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Abstract

Let G be a complex symplectic group. In [K1], we singled out the
nilpotent cone N of some reducible G-module, which we call the (1-)
exotic nilpotent cone. In this paper, we study the set of G-orbits of
the variety N. It turns out that the variety N gives a variant of the
Springer correspondence for Weyl groups of type C, but shares a similar
flavor with that of type A case. (I.e. there appears no non-trivial local
system and the correspondence is bijective.) As an application, we present
one sufficient condition for the bijectivity of our exotic Deligne-Langlands
correspondence [K1].

1 Main results

Let G = Sp(2n, C) be a complex symplectic group. Let B and T be its Borel
subgroup and a maximal torus of B, respectively. We denote by X∗(T ) the
character group of T . Let R be the root system of (G, T ) and let R+ be its
positive part defined by B. Let W := NG(T )/T be the Weyl group of (G, T ).
For a group or an algebra H , we put IrrH the set of isomorphism classes of
simple H-modules. We embed R and R+ into a n-dimensional Euclid space
E = ⊕iCεi as:

R+ = {εi ± εj}i<j ∪ {2εi} ⊂ {±εi ± εj} ∪ {±2εi} = R ⊂ E.

We define V1 := C2n and V2 := (∧2V1)/C. These representations have B-highest
weights ε1 and ε1 + ε2, respectively. We put V := V1 ⊕ V2. For a G-module V ,
we define its weight λ-part (with respect to T ) as V [λ]. The positive part V +

of V is defined as
V + :=

⊕

λ∈Q≥0R+−{0}

V [λ].

∗This is a revised version of a preprint entitled “On the geometry of exotic nilpotent cones”,
available through math.RT/0607478v1. We changed the title in order to stress our central
acheivement.

†Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Meguro Komaba
153-8914, Japan.

‡The author was supported by the JSPS Research Fellowship for young scientists during
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We define
F := G×B

V
+ ⊂ G×B

V ∼= G/B × V.

Composing with the second projection, we have a map

µ : F −→ V.

We denote the image of µ by N. This is the G-variety which we refer as the
exotic nilpotent cone1. By abuse of notation, we may denote the map F → N
also by µ. Basic properties of N are:

Theorem A (Geometric properties of N, cf. [K1] 1.2). We have:

1. The G× (C×)2-action on V descends to N;

2. The defining ideal of N is (C[V]G+)C[V] = (C[V2]G+)C[V];

3. The variety N is normal;

4. The map µ is a birational projective morphism;

5. The variety Z := F ×N F is a union of equi-dimensional irreducible vari-
eties.

This result itself follows rather easily from the results and technique de-
veloped by Kempf, Schwarz, Hesselink, and Dadok-Kac. Here we repeat the
statement for the convenience of readers.

Let P2(n) denote the set of pairs (λ, µ) of partitions such that |λ|+ |µ| = n.
It is well-known that the set P2(n) parametrizes IrrW (cf. Macdonald [Mc95] I
Appendix B).

Theorem B (= Corollary 6.6). The set of G-orbits of N is in one-to-one
correspondence with P2(n).

The proof is divided into three steps: First, we introduce a set MP(n) (cf.
2.2) and construct a bijection with P2(n). This is done via an intermediate set
SP(n) (cf. 3.3). Then, we construct a map MP(n) *→ G\N and show it is
surjective. This surjectivity statement is an enhancement of a correspondence
given by Sekiguchi-Ohta [Se84, Oh86]. Finally, we deduce the injectivity as a
byproduct of Theorem C explained in the below.

Let O be a G-orbit in N. Let X ∈ O. By means of the Ginzburg theory
[CG97, Gi97] and [K1] 2.13, we equip the vector space

MO := HcodimO(µ−1(X), C)

with an action of W . (The symbol H• always represents the Borel-Moore homol-
ogy group instead of the usual homology group.) Here the RHS is independent
of the choice of X ∈ O (as W -modules).

Theorem C (= Theorem 6.5). The assignment O *→ MO establishes a one-to-
one correspondence between the set of G-orbits of N and IrrW .

1From the view-point of invariant theory, our variety N is nothing special. (See eg. Schwarz
[Sc78] and Dadok-Kac [DK85]) The author considers it as an “exotic nilpotent cone of the Lie
algebra g” since it shares many representation-theoretic features with the nilpotent cone of g
in an “exotic” fashion. Theorem C of this paper represents one of such features.
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This is an enhancement of Grinberg’s generalized Springer correspondence
[Gr98]. Apart from the Ginzburg theory and a weak form of Theorem B, the
proof depends on two facts: One is the numerical identity |MP(n)| = |IrrW |,
and the other is the connectedness of the stabilizer of G-orbits of N. The former
is a numerical version of a combinatorial bijection P2(n) ↔ MP(n) defined as
above. The latter follows by a result of Igusa (cf. Theorem 6.1).

For each λ ∈ X∗(T )\{0}, we fix a basis element v[λ] ∈ V[λ]. Then, the most
simple non-trivial example of Theorem C is:

Example D (n = 2). Let G = Sp(4, C) and let N be the nilpotent cone of
sp(4, C). Let x[α] ∈ sp(4, C) be a non-zero T -root vector corresponding to α.
We put α1 := ε1 − ε2. We have:

IrrW G\N P2(2) dim G\N
sign {0} ( , ∅) 1 {0}
Ssign v[ε1] (∅, ) 1 x[2ε1]
Lsign v[α1] ( , ∅) 1 x[α1]

regular v[α1] + v[ε1] ( , ) 2 x[α1]
triv v[α1] + v[ε2] (∅, ) 1 x[α1] + x[2ε2]

Here the sets G\N and G\N specify the corresponding orbits in our result
and the Springer correspondence, respectively. If we denote the usual Springer
resolution by µS , the above table implies:

H2(µ
−1
S (x[α1])) ∼= Lsign⊕ regular

and
H4(µ

−1(v[α1])) ∼= Lsign, H2(µ
−1(v[α1] + v[ε1])) ∼= regular.

We set Z := F ×N F . For a = (s, q1, q2) ∈ G× (C×)2, we define Na and Za

to be the subvarieties of N and Z consisting of a-fixed points, respectively. We
set G(s) := ZG(s). With an aid of Theorem C, we prove:

Theorem E (= Theorem 7.9). Let a = (s, q1, q2) ∈ G× (C×)2 be a semi-simple
element such that q2 is not a root of unity. Then, there exists a one-to-one
correspondence

G(s)\Na ↔ IrrH•(Z
a),

where H•(Za) acquires an associative algebra structure by means of convolution
operations (cf. §4 or [CG97] §2).

In [K1], we study the representation theory of the affine Hecke algebra H

of type Cn. It is an associative algebra with three independent parameters
(q0, q1, q2). Its quotient by the two-sided ideal generated by (q0 + q1) is isomor-
phic to the extended affine Hecke algebras of type Bn. In the language of [K1],
Theorem E implies the following:

Theorem F (= Corollary 7.10). For the extended affine Hecke algebra of type
Bn with two-parameters (−q1, q1, q2), the regularity condition of parameters
holds automatically unless −q2

1 .= q±m
2 for 0 ≤ m < n or ql

2 .= 1 for 1 ≤ l < 2n.

A large part of the proofs of the above two theorems are borrowed from
Lusztig [Lu95] with several minor modifications. Most notably, we do not need
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the odd-term vanishing condition of the homology of fibers by using Borho-
MacPherson’s argument and localization technique. We do not know whether
the odd-term vanishing result holds in this setting. (But it is expected to have
a close connection to the project of Achar-Henderson [AH07].)

In order to deepen the subjects of [K1] and this paper, we need to determine
the correspondence of Theorem C explicitly. This is done in a subsequent paper
[K2], where we employ a different method as well as the results of this paper.

2 Preparatory materials

In this section, we collect some extra notation which we use throughout this
paper. For each X ∈ V, we write

X := v[0] +
∑

λ∈X∗(T )

X(λ)v[λ],

where v[0] ∈ V[0]. We define the support of X as

‖X‖ := {i ∈ [1, n] : X(±εi) .= 0 or X(±εi±εj) .= 0 for some sign and j ∈ [1, n]}.

The following definition of normal form is a slight enhancement of the good
basis of Ohta [Oh86]. (See also Igusa [Ig73].)

Definition 2.1 (Normal forms). A block J(λ) of length λ and position i is one
of the following vectors in V+:

v(j)(λ)i := (1 − δj,0)v[εi+j ] +
λ−1
∑

k=1

v[αi+k],

where αi := εi − εi+1, 0 ≤ j ≤ λ is an integer, and δj,0 is Kronecker’s delta. It
is clear that ‖v(j)(λ)i‖ = [i + 1, λ+ i] or ∅. A normal form of V is a sum

v =
n−1
∑

i=0

v(ji)(λi)i ∈ V
+

such that ‖v(ji)(λi)i‖ ∩ ‖v(ji′ )(λi′ )i′‖ = ∅ if i .= i′.

Definition 2.2 (Marked partitions). A marked partition %λ = (λ, a) is a par-
tition λ = (λ1 ≥ λ2 ≥ . . .) of n, together with a sequence a = (a1, a2, . . .) of
integers such that:

1. 0 ≤ ak ≤ λk for each k;

2. ak = 0 if λk+1 = λk;

3. λp − λq > ap − aq > 0 if p < q and ap .= 0 .= aq.

We denote the set of marked partitions by MP(n). For (λ, a) ∈ MP(n), we
put

J(λ, a) :=
∑

p≥1

v(ap)(λp)λ<
p
,

where λ<
p =

∑

q<p λq. It is clearly a normal form.
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For a G-variety X , we denote the set of G-orbits of X by OX .

Remark 2.3 (Ohta [Oh86] §2). Let 0 denote the sequence (0, 0, . . .). Then, the
assignment

P(n) 3 λ *→ G.J(λ,0) ∈ ON∩V2

gives a one-to-one correspondence.

3 Combinatorial correspondence

We retain the setting of the previous section. In this section, we present com-
binatorics which is needed in the sequel.

Definition 3.1 (Bi-partition). Let P2(n) denote the set of pairs (λ, µ) of par-
titions such that |λ| + |µ| = n.

It is known that IrrW is parametrized by P2(n) (cf. [Mc95] I Appendix B).

Theorem 3.2. The set P2(n) is in one-to-one correspondence with MP(n)

Corollary 3.3. The set MP(n) is in one-to-one correspondence with IrrW . !

The rest of this section is devoted to the construction of a bijection between
MP(n) and P2(n). For two partitions λ, µ, we define their sum λ 4 µ as the
partition {λp + µp}p≥1.

Definition 3.4. Let I ⊂ Z. A sub-segment [r, s] ⊂ I is called a component
if r − 1 .∈ I .3 s + 1. A pair (λ, I) is called a segmented partition of n if λ
(= (λ1 ≥ λ2 . . .)) is a partition of n and I ⊂ [1, λ1] (possibly empty) decomposes
into components

I = [i1, λj1 ] ∪ [i2, λj2 ] ∪ · · ·

such that ip < λjp + 1 < ip+1 holds for every possible p. We denote the set of
segmented partitions by SP(n).

Example 3.5 (n = 3). We have the following correspondences:

λ (3) (3) (3) (3) (1, 1, 1) (1, 1, 1)
MP(3) 0 (1, 0) (2, 0) (3, 0) 0 (0, 0, 1)
SP(3) ∅ [1, 3] [2, 3] [3, 3] ∅ [1, 1]
P2(3) {(3), ∅} {∅, (3)} {(1), (2)} {(2), (1)} {(1, 1, 1), ∅} {∅, (1, 1, 1)}

λ (2, 1) (2, 1) (2, 1) (2, 1)
MP(3) 0 (1, 0) (2, 0) (0, 1)
SP(3) ∅ [1, 2] [2, 2] [1, 1]
P2(3) {(2, 1), ∅} {∅, (2, 1)} {(1, 1), (1)} {(1), (1, 1)}

Lemma 3.6. There exists a one-to-one correspondence between the sets MP(n)
and SP(n).

Proof. Let λ be a partition of n. Let x = (x1, x2, . . .) be a strictly decreasing
finite positive integer sequence. We define

MP(λ,x) := {(λ, a) ∈ MP(n) : ap .= 0 ⇔ p ∈ x}.
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Notice that MP(λ,x) = ∅ if x contains p such that λp = λp+1. Let SP(λ,x) be
the set of segmented partitions such that {λp}p∈x is the set of (right) boundaries
of components. In other word, we define

SP(λ,x) := {(λ, I) ∈ SP(n) : x = {p ∈ Z : λp ∈ I .3 λp + 1, λp+1 .= λp}}.

We have

MP(n) =
⊔

λ∈P(n),x

MP(λ,x) and SP(n) =
⊔

λ∈P(n),x

SP(λ,x).

Claim 1. We have #MP(λ,x) = λx1

∏#x

i=2(λxi − λxi+1
− 1).

Proof. We count the number of possible markings a = (a1, a2, . . .). Since we
have ap = 0 if p .∈ x, we restrict our attension to the set {ap}p∈x. We count the
possible choice of axi with the knowledge of ax1

, ax2
, . . . , axi−1

. If i = 1, then
the possible choice is 1 ≤ ax1

≤ λx1
since ax1

.= 0. If i > 1, then the possible
choice is

max{axj : j < i} < axi < min{λxi − λxj + axj : j < i}.

By definition, both the maximal and the minimal are attained at j = i − 1.
Therefore, the number of possible choice of ai is (λxi−1

− λxi − 1) (independent
of {aj}j>i). Therefore, multiplying these yields the result.

Claim 2. We have #SP(λ,x) = λx1

∏#x

i=2(λxi − λxi+1
− 1).

Proof. By definition, we have a non-empty segment for each {λq}q∈x. By
definition, the number of choice of segments ended at λxi is λxi (i = 1) or
(λxi − λxi+1

− 1) (i ≥ 2). Multiplying these yields the result.

By the comparison of two claims, we deduce

#MP(λ,x) = #SP(λ,x).

Hence, it suffices to construct an injective assignment SP(λ,x) → MP(λ,x).
Fix (λ, I) ∈ SP(λ,x). We construct an integer sequence a(λ, I) = (a1, a2, . . .)
inductively as follows:

1. If p > n, then we put ap := 0;

2. Assume that {aq}q>p is already defined. Then, we put

ap :=

{

min{j, j − λq + aq − 1 : q > p, aq .= 0} (if [j, λp] ⊂ I is a component)

0 (otherwise)

We have

ap ≥ (λq + 2)− λq + aq − 1 > aq if p < q and ap .= 0 .= aq.

Moreover, we deduce

ap ≤ j − λq + aq − 1 < λp − λq + aq

6



if [j, λp] ⊂ I is a component. In particular,

λp − ap > λq − aq if p < q and ap .= 0 .= aq.

Hence, we deduce (λ, a(λ, I)) ∈ MP(λ,x). Thus, it suffices to show a(λ, I) =
a(λ, I ′) only if I = I ′. Assume that I .= I ′. Then, there exists maximal number
q such that 1) ap = a′

p for every p > q and 2) [j, λq ] is a component of I and
not a component of I ′. Then, we have necessarily aq .= a′

q. Therefore, the
assignment

SP(n) 3 (λ,x) *→ (λ, a(λ, I)) ∈MP(λ,x)

determines an injective map as desired.

Lemma 3.7. There exists a one-to-one correspondence between the sets P2(n)
and SP(n).

Proof. First, we construct a map P2(n) → SP(n). Fix (λ, µ) ∈ P2(n). We
define j+

p := λp + µp and jp := λp + µp+1 + 1. Then, we define

I(λ, µ) :=
⋃

p≥1

[jp, j
+
p ].

Here we understand [jp, j+
p ] = ∅ when j+

p < jp. We regard [a, b]∪[b+1, c] = [a, c]
as segments. We have j+

p ∈ λ4 µ. Thus, we conclude (λ4 µ, I(λ, µ)) ∈ SP(n).
Second, we construct a map SP(n) → P2(n). Fix (λ, I) ∈ SP(n). Put

µp(λ, I) := # (I ∩ [1, λp]) , γ(λ, I) := λp − µp(λ, I).

It is clear that (µ(λ, I), γ(λ, I)) ∈ P2(n). These two maps are mutually inverse,
which implies the result.

Theorem 3.2 immediately follows from the combination of Lemma 3.7 and
Lemma 3.6.

4 Realization of Weyl groups

We retain the setting of §2. Let R(H) be the complexified representation ring
of an algebraic group H . We have natural identification

Z ∼= {(g1B, g2B, X) ∈ (G/B)2 × V : X ∈ g1V
+ ∩ g2V

+}.

We have an inclusion Z ⊂ F × F . Let pij : F 3 → F 2 be the (i, j)-th projection
(1 ≤ i < j ≤ 3). Since pij is proper when restricted to p−1

12 (Z) ∩ p−1
23 (Z), we

have a well-defined convolution map

' : K(Z)⊗K(Z) 3 (F ,G) *→
∑

i≥0

(−1)i[Ri(p13)∗(p
∗
12F ⊗L p∗23G)] ∈ K(Z).

Theorem 4.1 (Ginzburg). The group K(Z) becomes an algebra via the convo-
lution action. !

7



Let t := Lie T . We define

C[t]0 := C[t]/
〈

C[t]W+
〉

,

where C[t]W+ := C[t]W ∩ t∗S(t∗). By the natural W -action on t, the space C[t]0
admits a W -action. Hence, we have their amalgamated product

W := C[W ]⊗ C[t]0,

whose multiplication is given by (w1, f)(w2, g) := (w1w2, fw1(g)).
For Z-module A, we set AC := C⊗Z A.

Theorem 4.2. We have an isomorphism K(Z)C
∼= W as algebras.

Proof. Choose an element (1, 1,−1, 1) ∈ G × (C×)3. It acts on F2 := G ×B

(V ⊕2
1 ⊕ V2)+ with its fixed part isomorphic to F ∼= G ×B (V +

1 ⊕ 0 ⊕ V +
2 ) ⊂

F2. By [K1] Corollary 2.13 and Remark 2.2 3), we conclude that K(Z)C is
isomorphic to the specialization of the three-parameter Hecke algebra of type

C(1)
n at q0 = −q1 = q2 = 1 and s = 1 ∈ G. In particular, K(Z)C is isomorphic

to the quotient of the group ring of the affine Weyl group W ! X∗(T ) by the
ideal generated by the maximal ideal m ⊂ R(G) corresponding to 1 ∈ G. (We
regard X∗(T ) ∼= Q∨, where Q∨ is the coroot lattice of R.) Here we have

R(T )/mR(T ) = R(T )/ 〈[V ]− (dim V )[C] : V ∈ RepG〉 ∼= C[t]W0

as W -modules. Since K(Z)C = C[W ]⊗R(T )/mR(T ), the result follows.

Corollary 4.3. We have a surjective map W −→→ C[W ]. In particular, we
have an inclusion

IrrW ⊂ {simple W-modules},

where the RHS is the set of isomorphism classes.

Proof. We retain the setting of the proof of Theorem 4.2. The maximal ideal
m0 ⊂ C[T ] corresponding to 1 ∈ T is clearly W -invariant. We have C[T ]m ⊂ m0.
It follows that W/Wm0

∼= C[W ] as desired.

Remark 4.4. As is shown later (Proof of Theorem 6.5), the inclusion of Corollary
4.3 is in fact an equality. We can also deduce it directly from the structure of
W .

5 Rough classification of orbits

We assume the setting of the previous sections. The goal of this section is to
prove:

Theorem 5.1. The map

J : MP(n) 3 %λ *→ J(%λ) ∈ G\N

is surjective.

Proposition 5.2 ([K1] 1.9). Every element of N is G-conjugate to a normal
form. !
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Remark 5.3. Theorem 5.1 does not follow from Proposition 5.2 immediately
since ImJ does not exhaust the set of normal forms modulo the NG(T )-action.

Let G0 ⊂ G be the subgroup such that 1) T ⊂ G0 and 2) the root system of
(G0, T ) is {±(εi− εj)}i<j ⊂ R. We have G0

∼= GL(n, C). Let Xεi−εj ∈ LieG0 ⊂
g be a non-zero root vector of T -weight εi− εj with standard normalization. We
put vi,j := exp(Xεi−εj ) ∈ G0.

Proof of Theorem 5.1. Let λ = (λ, a), where λ is a partition of n and a =
(a1, a2, . . .) is an integer sequence such that 0 ≤ ap ≤ λp for each p. (We put
%λ = λ if λ is a marked partition.) By Proposition 5.2, we assume

J = J(λ) :=
∑

i

J (ai)(λi)λ<
i

= J1 + J(λ0) ∈ V
+

with J1 ∈ V1 and λ0 = (λ,0). Let i, j be two distinct integers such that λi ≥ λj .

Claim 3. There exists elements g+
i,j , g

−
i,j ∈ StabG0

(J(λ0)) which induces unipo-
tent transforms on V1 so that

g+
i,jv[ελ<

j +k] =

{

v[ελ<
i +k] + v[ελ<

j +k] (0 < k ≤ λj)

v[ελ<
j +k] (otherwise)

(5.1)

and

g−i,jv[ελ<
i+1

−k] =

{

v[ελ<
i+1

−k] + v[ελ<
j+1

−k] (0 ≤ k < λj)

v[ελ<
i+1−k] (otherwise)

. (5.2)

Proof. It is straight-forward to see that g±ij satisfies (5.1) and (5.2). Define

g+
ij :=

∏

1≤k≤λj

vλ<
i +k,λ<

j +k, g−ij :=
∏

0≤k<λj

vλ<
j+1

−k,λ<
i+1

−k ∈ G0

fixes J(λ0). By a weight comparison, these elements do not depend on the
order of the product. The presentation of the transformations on V1 follow
immediately from this expression. We have

g+
i,jJ(λ0) = J(λ0) +

∑

1≤k<λj

Xε
λ<

i
+k

−ε
λ<

j
+k

v[ελ<
j +k − ελ<

j +k+1]

+
∑

1≤k<λj

Xε
λ<

i
+k+1

−ε
λ<

j
+k+1

v[ελ<
i +k − ελ<

i +k+1] = J(λ0).

(Remember that the G0-action on LieG0 is the adjoint action.) This proves
g+

i,j ∈ StabG0
(J(λ0)). The case g−i,j follows from a similar equality.

Assume that J1 = J◦
1 + v[ελ<

i +ai
] + v[ελ<

j +aj
] with

suppJ◦
1 ∩ ([λ<

i + 1, λ<
i+1] ∪ [λ<

j + 1, λ<
j+1]) = ∅.

We have
(g+

i,j)
−1J = J − v[ελ<

i +aj
].

9



If ai < aj , then there exists an unipotent stabilizer u ∈ GL(λi) ⊂ G0 of J(λ0)
such that

u(g+
i,j)

−1J = J(%λ0) + J◦
1 − v[ελ<

i +aj
]− v[ελ<

j +aj
].

If ai = aj , then we have

(g+
i,j)

−1J = J(%λ0)− v[ελ<
j +aj

].

In other words, we have g+
i,ju(g+

i,j)
−1J = J − v[ελ<

i +ai
] or (g+

i,j)
−1J = J −

v[ελ<
i +ai

] when ai ≤ aj. Thus, if ai ≤ aj , then we have GJ(λ) = GJ(λ′) for

λ′ = (λ, a′), where a′
p = ap (p .= i) or 0 (p = i).

By using g−i,j instead of g+
i,j, we deduce: If λi − ai ≤ λj − aj , then we have

GJ(λ) = GJ(λ′) for λ′ = (λ, a′), where a′
p = ap (p .= j) or 0 (p = j).

We replace (λ, a) by (λ, a′) when one of the above two inequalities (ai ≤ aj

or λi − ai ≤ λj − aj) occur. Repeating these procedures for all possible pairs
(i, j) such that λi ≥ λj , we obtain a marked partition %µ = (λ, a′′) such that
GJ(%µ) = GJ(µ) = GJ(λ) as desired.

6 An exotic version of Springer correspondence

We retain the setting of the previous section. The following result is not exactly
the same as the original, but we can easily deduce it from the proof:

Theorem 6.1 (Igusa [Ig73] Lemma 8). Let %λ = (λ,0) ∈ P(n) ⊂ MP(n).
Then, the reductive part of the stabilizer of J(%λ) is

Lλ := Sp(2n1, C)× Sp(2n2, C)× · · · ,

where the sequence (n1, n2, . . .) are the number of λi’s which share the same
value. Moreover, we have

Res
G
Lλ

V1 =
⊕

i≥1

V (i)⊕λi ,

where V (i) is the external tensor product of a vector representation of Sp(2ni)
and trivial representations of Sp(2nj) (j .= i). !

Corollary 6.2. For each X ∈ N, the G-stabilizer of X is connected.

Proof. We put X = X1⊕X2 ∈ V1⊕V2. Let G1 and G2 denote the G-stabilizers
of X1 and X2. We show that G1 ∩ G2 is connected. Let G2 = L2U2 be the
Levi decomposition of G2. The component group of G1∩G2 is the same as that
of G1 ∩ L2. By repeating the argument of [K1] Lemma 7.8, we conclude that
G1 ∩ L2 must be connected.

Theorem 6.3 (cf. [CG97] 8.9.3 and 8.4.8). There exists an algebraic stratifi-
cation Oµ of N such that

µ∗CF [dimF ] ∼=
⊕

O∈Oµ

LO ! IC(O),

where LO is a vector space and IC(O) is the minimal extension of CO[dimO].
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Proof. By the BBD-G decomposition theorem (cf. Saito [Sa88] 5.4.8.2), we
deduce that

µ∗CF [dim F ] ∼=
⊕

d∈Z,O∈Oµ,χ

Ld,O,χ ! IC(O, χ)[d] ∈ Db(N),

where Ld,O,χ is a vector space, χ is a G-equivariant local system on O, and
IC(O, χ) is the minimal extension of χ. The map µ is G-equivariant. It follows
that ON is a refinement of Oµ. Since µ is semi-small with respect to ON, it is
also semi-small with respect to Oµ. Hence, we have d ≡ 0. (cf. [CG97] 8.9.2)
Each strata O ∈ Oν is smooth. In particular, the map π1(O, ∗) → π1(O, ∗) is
surjective for the dense open G-orbit O ⊂ O. Therefore, we have Ld,O,χ .= 0
only if d = 0 and χ = 1 as desired.

For O ∈ ON and X ∈ O, we define

MO := HcodimO(µ−1(X), C) and NO :=
⊕

m≥0

Hm(µ−1(X), C),

where O ∈ Oµ is the strata such that O ⊂ O. By the Ginzburg theory, NO is
a K(Z)-module. Since G is connected, the G-conjugation of X gives mutually
isomorphic K(Z)-modules. Thus, NO is independent of the choice of X as a
K(Z)-module with a grading.

Theorem 6.4 (Chriss-Ginzburg). Each MO is a simple quotient of NO as
K(Z)C-modules if it is non-zero. Moreover, the set of isomorphism classes of
non-zero modules in {MO}O∈ON

gives a complete collection of simple K(Z)C-
modules.

Proof. Since Z has a paving by affine spaces (see [K1] 1.5), it follows that K(Z)
is spanned by algebraic cycles. By [CG97] 5.11.11, we have an isomorphism
K(Z)C

∼= H•(Z, C) as convolution algebras. The first part follows from the
combination of Theorem 6.3, [CG97] 8.9.8, and 8.9.14 (b). The second part
follows by [CG97] 8.9.8.

Theorem 6.5. The assignment

ON 3 O *→ MO ∈ IrrW

establish a one-to-one correspondence.

Proof. The subset O◦
N := {O ∈ ON : MO .= 0} gives a map

τ : O◦
N 3 O *→ MO ∈ {simple K(Z)C-modules}.

By Theorem 6.4, this map must be surjective. Hence, we have

#{simple K(Z)C-modules} ≤ #O◦
N ≤ #ON ≤ #MP(n)

= #P2(n) = #IrrW ≤ #{simple K(Z)C-modules}

by Theorem 5.1, Theorem 3.2, and Corollary 4.3. This implies that all the
inequalities are in fact an equality. Therefore, the map τ is defined at the whole
of ON and the map is injective. Since every simple W -module give rise to a
simple K(Z)C-module, the result follows.

Corollary 6.6. The set ON is in one-to-one correspondence with P2(n). !
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7 Regularity conditions of parameters

This section might also be viewed as an continuation of [K1] with the knowledge
of this paper. In the below, we use notation of [K1] freely only by indicating
pointers to them. We assume the setting of §4. Let a = (s, q1, q2) ∈ T ×
(C×)2. (This is equivalent to assume a ∈ G × (C×)2 is semi-simple by taking
an appropriate conjugate.)

Consider the following condition:

(+)1 q2 is not a root of unity of order ≤ 2n;

(+)2 Let Ψ(s) be the set of s-eigenvalues in V1. For each c1, c2 ∈ Ψ(s), we have
c1 = qm

2 c±1
2 for some integer m and

c1, q
−1
2 c1, . . . , q

−m
2 c1 ∈ Ψ(s).

Theorem 7.1. Assume (+). There exists a one-parameter subgroup ψ : C× →
T × (C×)2 such that:

ZG×(C×)2(ψ(r)) = ZG×(C×)2(a), and Nψ(r) = Na

for a generic choice of r ∈ R>0.

Proof. By [K1] §4, the condition (+) implies that the setting is governed by the
relations and values of q1 = er1 , q2 = er2 , and s = exp(

∑n
i=1 λiεi). In particular,

we can rearrange their values to be ri, λi ∈ R without changing the Na and F a

from the original ones.

In the setting of Theorem 7.1, we define A = A(r) to be the Zariski closure
of {ψ(mr) : m ∈ Z} ⊂ T × (C×)2.

Corollary 7.2. Keep the setting of Theorem 7.1. For a generic choice of r ∈
R>0, the torus A(r) is connected.

Proof. If ψ(r) is not sitting in the identity component of A, then so does each of
ψ(r/m) (m ∈ Z>0). This is impossible since A has only finitely many connected
components by definition. This contradiction implies ψ(r) ∈ A, which in turn
yields that A is connected.

We assume (+) and the setting of Theorem 7.1 until Theorem 7.9.
For each m ≥ 0, let EAm := (Cm\{0})dimA be a variety such that i-th C×-

factor of A = (C×)dim A acts as dilation of the i-th factor for each 1 ≤ i ≤ m. By
the standard embedding Cm ↪→ Cm+1 sending (x) to (x, 0), we form a sequence
of A-varieties

∅ = EA0 ↪→ EA1 ↪→ EA2 ↪→ · · · .

We define EA := lim−→m
EAm, which is an ind-quasiaffine scheme with free A-

action. Since EA is contractible manifold with respect to the classical topology,
we regard EA as the classifying space of A. For a A-variety X , we set

XA := :A\ (EA×X ) .

We have a forgetful map

fA
X : XA → BA = A\EA.
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Let DA
X be the relative dualizing sheaf with respect to fX . We define

HA
i (X ) ∼= H−i(XA, DA

X).

We have the Leray spectral sequence

Hi(BA)⊗Hj(X ) ⇒ HA
−i+j(X ).

In the below, we understand that HA
• (X ) :=

⊕

m HA
m(X ). The projection maps

pi : ZA → FA (i = 1, 2) equip HA
• (Z) a structure of convolution algebra. It is

straight-forward to see that the diagonal subsets :F ⊂ Z and (:F )A ⊂ ZA

represents 1 ∈ H•(Z) and 1 ∈ HA
• (Z), respectively.

Lemma 7.3. The algebra HA
• (Z) contains H•(Z) as its subalgebra. In partic-

ular, we have C[W ] ⊂ HA
• (Z) as subalgebras. Moreover, the center of HA

• (Z)
contains H•(BA)[(:F )A] ⊂ H•(Z).

Proof. In the Leray spectral sequence

Hi(BA)⊗Hj(Z) ⇒ HA
−i+j(Z),

we have Hodd(BA) = 0 (by Corollary 7.2) and Hodd(Z) = 0 (since Z is paved
by affine spaces). It follows that this spectral sequence degenerates at the level
of E2-terms. Moreover, the image of the natural map ı : Hj(Z) ↪→ HA

j (Z)
represents cycles which are locally constant fibration over the base BA. It
follows that the map ı is an embedding of convolution algebras.
Multiplying H•(BA) is an operation along the base BA, which commutes with
the convolution operation (along the fibers of fA

Z ). It follows that H•(BA) →
H•(BA)[(:F )A] ⊂ HA

• (Z) is central subalgebra as desired.

The following result is a consequence of Borho-MacPherson’s argument ap-
plied to the sheaf µ∗C as in the previous section.

Theorem 7.4 (Borho-MacPherson cf. [CG97] §8.8). Let y, y′ ∈ N. Then, we
have

[H•(µ
−1(y)) : MGy′ ] =

{

0 (y .∈ Gy′)

1 (y ∈ Gy′)

as W -modules. !

Lemma 7.5. Let y ∈ N. The Leray spectral sequence

H•(BA)⊗H•(µ
−1(y)) −→ HA

• (µ−1(y))

induces a map of HA
• (Z)-module by letting H•(BA) act only on the first term

of the LHS and letting H•(Z) act only on the second term of the LHS.

Proof. The LHS is the cohomology space of a sheaf of H•(Z)-modules on BA.
For any contractible set U ⊂ BA, we have

HA
• (µ−1(y)) −→ H•((f

A
µ−1(y))

−1(U)) ∼= H•(µ
−1(y))

as H•(Z)-modules. It follows that the composition map

H0(BA)⊗H•(µ
−1(y)) → HA

• (µ−1(y)) → H•(µ
−1(y))
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is a H•(Z)-module map. Since the map

H•(BA)⊗H•(µ
−1(y)) −→ HA

• (µ−1(y))

is a H•(BA)-module map, we conclude that it is a HA
• (Z)-module map as

desired.

Let y ∈ Na. We put

∇A
(a,y) := HA

• (µ−1(y))/H•(BA)-torsion.

Lemma 7.6. The HA
• (Z)-module ∇A

(a,y) contains W -module H•(BA) ⊗MGy.

Proof. By Borho-MacPherson’s theorem, the W -module MGy appears in H•(µ−1(y))
with multiplicity one. It follows that the MGy-isotypical component of the Leray
spectral sequence

H•(BA)⊗H•(µ
−1(y)) −→ HA

• (µ−1(y))

is E2-degenerate. This implies that the MGy-isotypical component of HA
• (µ−1(y))

is a free H•(BA)-module, which cannot be torsion.

We put a := LieA. We have H•(BA) ∼= C[a]. By inverting all monomials
which are perpendicular to a, we obtain a localized algebra H•(BA)a := C[a]a.
For a A-variety X , we put

HA
• (X )a := H•(BA)a ⊗H•(BA) HA

• (X ).

Let H+(BA) :=
⊕

m>0 Hm(BA).

Proposition 7.7. We have an isomorphism of convolution algebras:

HA
• (Za)a

∼= HA
• (Z)a. (7.1)

Moreover, the quotient space

∇′
(a,y) := ∇A

(a,y)/H+(BA)∇A
(a,y)

admits a H•(Za)-module structure such that

1. ∇′
(a,y) is a subquotient of H•(µ−1(y)a) as H•(Za)-modules;

2. The map C[W ] ⊂ H•(Z) ↪→ HA
• (Za)a defines a W -module structure on

∇′
(a,y);

3. ∇′
(a,y) is a quotient module of H•(µ−1(y)) as W -modules.

Proof. Let R(A)a be the localization of R(A) at the point a. By the Thomason
localization theorem (see e.g. [CG97] §8.2), we have an isomorphism

R(A)a ⊗R(A) KA(Za) ∼= R(A)a ⊗R(A) KA(Z)

as algebras. For each of X = Z, or Za, we have a dense open embedding

KA(X ) ↪→ lim←−
m

KA(EAm ×X ) ∼= lim←−
m

K(A\(EAm ×X )).
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We regard the RHS as a substitute of K(XA). It follows that the Chern character
map relative to BA gives an isomorphism

C[[a]]a ⊗C[a]a HA
• (Za)a

∼= C[[a]]a ⊗C[a]a HA
• (Z)a,

where C[[a]]a is the formal power series ring of C[a] along a. By restricting this
to the sum of vectors of finitely many degrees, we obtain (7.1). The second
assertion is automatic by letting H•(Za) act by

H•(Z
a) −→ HA

• (Za) −→ HA
• (Za)/H+(BA)HA

• (Za).

By a similar argument using Lemma 7.5, we deduce that ∇′
(a,y) is a subquotient

of H•(µ−1(y)a), which implies 1). Now we verify 2). Since (7.1) is an algebra
isomorphism, it follows that 1 ∈ C[W ] goes to 1 ∈ H•(Za). It follows that
each of si goes to a non-zero element of H•(Za) with its square equal to 1. By
construction, there exists fi ∈ C(a) (i = 1, . . . n) such that 1, f1s1, . . . fnsn ∈
HA

• (Za)a define linearly independent vectors in H•(Za). It follows that f2
i ∈

C[a]. This forces fi ∈ C[a], which implies that the images of 1, s1, . . . , sn ∈
H•(Za) are linearly independent. This verifies 2). Since C[W ] is a semi-simple
algebra, we have W -module morphisms whose composition is surjective

H•(µ
−1(y)) ↪→ H•(BA)⊗H•(µ

−1(y)) −→ ∇′
(a,y).

This verifies 3) as desired.

Proposition 7.8. Let O ⊂ N be a G-orbit. For any two distinct G(s)-orbits
O1,O2 ⊂ Oa, we have

O1 ∩ O2 = ∅.

Proof. By the description of G-orbits of N, we deduce that the scalar multipli-
cation of a normal form of N is achieved by the action of T . It follows that
each G(s)-orbit of Na is a ZG×(C×)2(a)-orbit. Let y ∈ O1. Let Gy be the sta-

bilizer of y in G × (C×)2. Assume that O2 ∩ O1 .= ∅ to deduce contradiction.
Since O2 is a ZG×(C×)2(a)-orbit, we have O2 ⊂ O1. Fix y2 ∈ O2. Consider
an open neighborhood U of 1 in G (as complex analytic manifolds). Then,
Uy2 ∈ O is an open neighborhood of y2. It follows that Uy2 ∩ O1 .= ∅. We put
ga,y2

:= LieGy2
+ LieZG×(C×)2(a). We have

NO2/O,y2
= g/ga,y2

.

Every non-zero vectors of NO2/O,y2
is expressed as a linear combination of eigen-

vectors with respect to the a-action. These a-eigenvectors can be taken to have
non-zero weights and does not contained in Gy2

. It follows that

Uy2 ∩ O1 .⊂ V
a,

which is contradiction (for an arbitrary sufficiently small U). Hence, we have
necessarily O2 ∩ O1 = ∅ as desired.

Theorem 7.9. We have the following one-to-one correspondence

G(s)\Na 3 G(s)y *→ L(a,y) ∈ IrrH•(Z
a),

where L(a,y) is the unique H•(Za)-irreducible constituent of ∇(a,y) which con-
tains W -module MGy.
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Proof. By [K1] Theorem 1.8, the number of G(s)-orbits in Na is finite. By
[K1] Theorem 8.1, each G(s)-orbit of Na corresponds to at most one irreducible
H•(Za)-module. We prove the assertion by the induction on the closure relation
of the orbits. By Ginzburg’s theory [CG97] §8.4 and Proposition 7.7 1), we
deduce that L(a,y) does not contain a W -module which do not appear in ∇′

(a,y′)

for some y ∈ G(s)y′. By Lemma 7.8 and Theorem 7.4, we deduce that ∇′
(a,y)

carries a W -module MGy, which does not contained in ∇′
(a,y′) for every y′ ∈ Na

such that y ∈ Gy′\Gy′. In particular, we conclude L(a,y) .= 0 as desired.

We forget the assumption (+).
Recall that an extended affine Hecke algebras of type Bn with two-parameters

(−q1, q1, q2) is the quotient of an affine Hecke algebra H of type Cn with three
parameters (q0, q1, q2) by the two-sided ideal (q0 + q1). (See [K1] 2.1–2.2 for
more detail.)

Corollary 7.10. For an extended affine Hecke algebras of type Bn with two-
parameters (−q1, q1, q2), the regularity condition of parameters holds automati-
cally unless −q2

1 .= q±m
2 for 0 ≤ m < n or ql

2 .= 1 for 1 ≤ l < 2n.

Proof. Applying [K1] Corollay 3.10, we can assume (+) freely. Hence, if we have

either V (s,q1)
1 = {0} or V (s,−q1)

1 = {0}, then Theorem 7.9 implies the result. Here
s has at most 2n-eigenvalues and every two eigenvalues ξ1, ξ2 are connected by
ξ1 = qm

2 ξ±1
2 by some −n < m < n by (+)2. Therefore, we cannot have both

V (s,q1)
1 .= {0} and V (s,−q1)

1 .= {0} simultaneously by −q2
1 .= q±m

2 .
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