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Abstract

Let G be a complex symplectic group. In [K1], we singled out the
nilpotent cone 91 of some reducible G-module, which we call the (1-)
exotic nilpotent cone. In this paper, we study the set of G-orbits of
the variety 9. It turns out that the variety O gives a variant of the
Springer correspondence for Weyl groups of type C, but shares a similar
flavor with that of type A case. (I.e. there appears no non-trivial local
system and the correspondence is bijective.) As an application, we present
one sufficient condition for the bijectivity of our exotic Deligne-Langlands
correspondence [K1].

1 Main results

Let G = Sp(2n,C) be a complex symplectic group. Let B and T be its Borel
subgroup and a maximal torus of B, respectively. We denote by X*(T') the
character group of T. Let R be the root system of (G,T) and let R be its
positive part defined by B. Let W := Ng(T')/T be the Weyl group of (G,T).
For a group or an algebra H, we put IrrH the set of isomorphism classes of
simple H-modules. We embed R and Rt into a n-dimensional Euclid space
E = ¢,C¢; as:

R+ = {éi + 6j}1‘<j U {261} C {:l:q + Gj} U {:|:261} =R CE.

We define V; := C?" and Vs := (A?V;)/C. These representations have B-highest
weights €1 and €1 + €2, respectively. We put V := V; @ V5. For a G-module V,
we define its weight A-part (with respect to T') as V[A]. The positive part VT

of V is defined as
vti= b Vv
AE€Q>oRT—{0}
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We define
F=GxPVtcaGxPVv=G/BxV.

Composing with the second projection, we have a map
w:F—V.

We denote the image of p by 9. This is the G-variety which we refer as the
exotic nilpotent cone'. By abuse of notation, we may denote the map F — 0
also by p. Basic properties of 91 are:

Theorem A (Geometric properties of N, cf. [K1] 1.2). We have:
1. The G x (C*)2-action on V descends to N;

The defining ideal of M is (C[V]F)C[V] = (C[V5]F)C[V];

The variety N is normal;

The map p is a birational projective morphism;

The variety Z := F Xy F is a union of equi-dimensional irreducible vari-
eties.

This result itself follows rather easily from the results and technique de-
veloped by Kempf, Schwarz, Hesselink, and Dadok-Kac. Here we repeat the
statement for the convenience of readers.

Let Py(n) denote the set of pairs (A, u) of partitions such that [A| + |u| = n.
It is well-known that the set Pa(n) parametrizes lrrW (cf. Macdonald [Mc95] I
Appendix B).

Theorem B (= Corollary 6.6). The set of G-orbits of M is in one-to-one
correspondence with Pa(n).

The proof is divided into three steps: First, we introduce a set MP(n) (cf.
2.2) and construct a bijection with Pa(n). This is done via an intermediate set
SP(n) (cf. 3.3). Then, we construct a map MP(n) — G\ and show it is
surjective. This surjectivity statement is an enhancement of a correspondence
given by Sekiguchi-Ohta [Se84, Oh86]. Finally, we deduce the injectivity as a
byproduct of Theorem C explained in the below.

Let O be a G-orbit in M. Let X € 0. By means of the Ginzburg theory
[CGI7, Gi97] and [K1] 2.13, we equip the vector space

M@ = Hcodim@(/ﬁil(X)a (C)

with an action of W. (The symbol H, always represents the Borel-Moore homol-
ogy group instead of the usual homology group.) Here the RHS is independent
of the choice of X € O (as W-modules).

Theorem C (= Theorem 6.5). The assignment O — Mg establishes a one-to-
one correspondence between the set of G-orbits of Mt and lrrW.

IFrom the view-point of invariant theory, our variety 91is nothing special. (See eg. Schwarz
[Sc78] and Dadok-Kac [DK85]) The author considers it as an “exotic nilpotent cone of the Lie
algebra g’ since it shares many representation-theoretic features with the nilpotent cone of g
in an “exotic” fashion. Theorem C of this paper represents one of such features.



This is an enhancement of Grinberg’s generalized Springer correspondence
[Gr98]. Apart from the Ginzburg theory and a weak form of Theorem B, the
proof depends on two facts: One is the numerical identity |[MP(n)| = |IrW]|,
and the other is the connectedness of the stabilizer of G-orbits of 9t. The former
is a numerical version of a combinatorial bijection Pa(n) < MP(n) defined as
above. The latter follows by a result of Igusa (cf. Theorem 6.1).

For each A € X*(T")\{0}, we fix a basis element v[A] € V[A]. Then, the most
simple non-trivial example of Theorem C is:

Ezample D (n = 2). Let G = Sp(4,C) and let N/ be the nilpotent cone of
5p(4,C). Let x[a] € sp(4,C) be a non-zero T-root vector corresponding to .
We put a1 := €1 — e2. We have:

17374 G\N P2(2) | dim G\N
TR () ) A O R ()
Ssign viel] 0,H) 1 x[2¢€1]
Lsign v(as] (o,0) | 1 x| ]
regular  v[ai]+via] (O,0) 2 x[aq]
triv viog] 4+ viee]  (0,D) 1 X[a] + x[2€2]

Here the sets G\ and G\N specify the corresponding orbits in our result
and the Springer correspondence, respectively. If we denote the usual Springer
resolution by ug, the above table implies:

Hs(ug' (x[a1])) = Lsign @ regular

and
Ha(u~ (vian))) 2 Lsign, Ha (™ (vian] + vier])) 2 regular,

We set Z := F xq F. For a = (s,q1,q2) € G x (C*)?2, we define M and Z¢
to be the subvarieties of 9 and Z consisting of a-fixed points, respectively. We
set G(s) := Zg(s). With an aid of Theorem C, we prove:

Theorem E (= Theorem 7.9). Let a = (s,q1,q2) € G x (C*)? be a semi-simple
element such that qa is not a root of unity. Then, there exists a one-to-one
correspondence

G(s)\N* < IrrH  (Z9),

where He(Z%) acquires an associative algebra structure by means of convolution

operations (cf. §4 or [CG97] §2).

In [K1], we study the representation theory of the affine Hecke algebra H
of type C,. It is an associative algebra with three independent parameters
(o, q1,q2). Its quotient by the two-sided ideal generated by (go + 1) is isomor-
phic to the extended affine Hecke algebras of type B,,. In the language of [K1],
Theorem E implies the following:

Theorem F (= Corollary 7.10). For the extended affine Hecke algebra of type
B,, with two-parameters (—qi,q1,q2), the regularity condition of parameters
holds automatically unless —q? # q2jEm forO0<m <mnorgh#1 forl<Il<2n.

A large part of the proofs of the above two theorems are borrowed from
Lusztig [Lu95] with several minor modifications. Most notably, we do not need



the odd-term vanishing condition of the homology of fibers by using Borho-
MacPherson’s argument and localization technique. We do not know whether
the odd-term vanishing result holds in this setting. (But it is expected to have
a close connection to the project of Achar-Henderson [AHO7].)

In order to deepen the subjects of [K1] and this paper, we need to determine
the correspondence of Theorem C explicitly. This is done in a subsequent paper
[K2], where we employ a different method as well as the results of this paper.

2 Preparatory materials

In this section, we collect some extra notation which we use throughout this
paper. For each X €V, we write

Xo=v[0l+ > XNV,
AEX*(T)
where v[0] € V[0]. We define the support of X as
| X]| == {i € [1,n] : X(£e;) # 0 or X (£e;+e;) # 0 for some sign and j € [1,n]}.

The following definition of normal form is a slight enhancement of the good
basis of Ohta [Oh86]. (See also Igusa [Ig73].)

Definition 2.1 (Normal forms). A block J(A) of length A and position ¢ is one
of the following vectors in V+:

A—1

V(j)(/\)i = (1—0j,0)v[€irs] + Z vkl
k=1

where a; = €; — €;41, 0 < j < X is an integer, and ;o is Kronecker’s delta. It
is clear that ||[vW)(\);]| = [i + 1, A +i] or §. A normal form of V is a sum

n—1
v = Zv(ji)(/\z)i S V+
=0

such that [|vU) ()il N ||vUe) (N )ar || = 0 if 4 # 4.

Definition 2.2 (Marked partitions). A marked partition X = (M, a) is a par-
tition A = (A > A2 > ...) of n, together with a sequence a = (a1, as,...) of
integers such that:

1. 0 < ap < )\ for each k;
2. ap = 0 if )\k+1 = )\k;
3. Ap—Ag>ap—ag>0if p<qanda, #0 # a,.
We denote the set of marked partitions by MP(n). For (A, a) € MP(n), we
put
T a) = v ),

p>1

where A\S =37 _ Ag. It is clearly a normal form.



For a G-variety X, we denote the set of G-orbits of X by Ox.

Remark 2.3 (Ohta [Oh86] §2). Let 0 denote the sequence (0,0,...). Then, the
assignment
P(n) DA G.J()\, 0) € Onnv,

gives a one-to-one correspondence.

3 Combinatorial correspondence

We retain the setting of the previous section. In this section, we present com-
binatorics which is needed in the sequel.

Definition 3.1 (Bi-partition). Let P2(n) denote the set of pairs (A, ) of par-
titions such that [A| + |u| = n.

It is known that IrrW is parametrized by Pa(n) (cf. [Mc95] I Appendix B).
Theorem 3.2. The set Pa(n) is in one-to-one correspondence with MP(n)
Corollary 3.3. The set MP(n) is in one-to-one correspondence with lreW. O

The rest of this section is devoted to the construction of a bijection between
MP(n) and P2(n). For two partitions A, u, we define their sum A\ ® p as the
partition {\, + fip}p>1-

Definition 3.4. Let I C Z. A sub-segment [r,s] C I is called a component
ifr—1¢1%s+1. A pair (A ) is called a segmented partition of n if A
(= (A1 > A2...)) is a partition of n and I C [1, A\1] (possibly empty) decomposes
into components

I'=Tlir, AjyJ U fig, A ] U -

such that i, < Aj, + 1 < ipy1 holds for every possible p. We denote the set of
segmented partitions by SP(n).

Ezample 3.5 (n = 3). We have the following correspondences:

A 3 B (3) (3) (L1L1) (L1
MP(3) 0 (1,0) (2,0) (3,0) 0 (0,0,1)
SP(3) 1] [1,3] (2, 3] 3, 3] 1] [1,1]

Po3) | (3.0} {3} (1.2} {@.0) | {@.1,0,0) {0.(1,1,1)}
A (2, 1) (2, 1) (2, 1) (2, 1)
MP(3) 0 (1,0) (2,0) 0,1)
SP(3) 0 1,2] 2,2] 1,1]
Po(3) | (21,0} {0,21) {111} {1).011)}

Lemma 3.6. There exists a one-to-one correspondence between the sets MP(n)

and SP(n).

Proof. Let X be a partition of n. Let x = (x1,x2,...) be a strictly decreasing
finite positive integer sequence. We define

MP(Ax) :={(\,a) € MP(n) : a, #0< p € x}.



Notice that MP(X,x) = 0 if x contains p such that A, = A\,41. Let SP()A, x) be
the set of segmented partitions such that {\,}pex is the set of (right) boundaries
of components. In other word, we define

SPAx):={(\I)eSPn) :x={peZ: N, €I FN+1,0p11#N}}.
We have

MP(n)= || MPOAx) andSP(n)= || SP(\x).

AeP(n),x XeP(n),x

Claim 1. We have #MP (A, x) = Ay, Hf:;()\r —Xain — 1).

Proof. We count the number of possible markings a = (a1, as,...). Since we
have a, = 0 if p & x, we restrict our attension to the set {a,}pex. We count the
possible choice of a,, with the knowledge of as,,az,,...,05, ,. If i =1, then
the possible choice is 1 < ag, < Ag, since az, # 0. If i > 1, then the possible
choice is

max{a,; : j < i} < ap, <min{dy, — Ay, +ag; 1 j < i}.

By definition, both the maximal and the minimal are attained at j = i — 1.
Therefore, the number of possible choice of a; is (Az,_, — A\z; — 1) (independent
of {a;}j>i). Therefore, multiplying these yields the result. O

Claim 2. We have #SP(\,x) = Ay, Hfixg(/\z — Az — 1).

Proof. By definition, we have a non-empty segment for each {A;}sex. By
definition, the number of choice of segments ended at A,, is A\, (i = 1) or
Az, — A —1) (¢ > 2). Multiplying these yields the result. O

Tit1
By the comparison of two claims, we deduce
H#MP (N x) = #SP(A, x).

Hence, it suffices to construct an injective assignment SP (A, x) — MP(A, x).
Fix (A\,I) € SP(\,x). We construct an integer sequence a(A,I) = (a1, as,...)
inductively as follows:

1. If p > n, then we put a, := 0;

2. Assume that {aq}q>p is already defined. Then, we put

min{j,j —Ag+aq —1:¢>p,a, #0} (if [§,\p] C I is a component)
ap =
b 0 (otherwise)

We have
ap > Mg +2)—Ag+ag—1>a4if p<qganda,#0#a,.
Moreover, we deduce

ap <j—Agtag—1< XA, —Ag+aq



if [§,A\p] C I is a component. In particular,
Ap —ap > Ay —aq if p < g and ap # 0 # aq.

Hence, we deduce (A, a(X, I)) € MP(A x). Thus, it suffices to show a(A, I) =
a(\, I') only if I = I'. Assume that I # I’. Then, there exists maximal number
q such that 1) a, = a;, for every p > q and 2) [j, \;] is a component of I and
not a component of I'. Then, we have necessarily a, # aj. Therefore, the
assignment

SP(n) > (A, x)— (A a(\ 1)) € MP(\ x)
determines an injective map as desired. O

Lemma 3.7. There exists a one-to-one correspondence between the sets Pa(n)

and SP(n).
Proof. First, we construct a map Pz(n) — SP(n). Fix (A, pu) € Pa(n). We
define j,7 := X + pp and jp := A, + pipy1 + 1. Then, we define

IO ) == | Upr 5i)-

p>1

Here we understand [j,, 7,7] = 0 when j© < j,. We regard [a, b]U[b+1, ¢] = [a, (]
as segments. We have j,” € A® p. Thus, we conclude (A ® p, I(\, 1)) € SP(n).
Second, we construct a map SP(n) — Pa(n). Fix (A, I) € SP(n). Put

,UP(/\vj) = # (I n [17)‘20]) a’Y(/\vj) = /\P - :up()‘vl)'

It is clear that (u(A, I),v(A, I)) € Pa2(n). These two maps are mutually inverse,
which implies the result. O

Theorem 3.2 immediately follows from the combination of Lemma 3.7 and
Lemma 3.6.

4 Realization of Weyl groups

We retain the setting of §2. Let R(H) be the complezified representation ring
of an algebraic group H. We have natural identification

Z={(91B,g2B,X) € (G/B)? xV: X € 1VF N gV}

We have an inclusion Z C F x F. Let p;; : F3 — F? be the (i, j)-th projection
(1 <i < j < 3). Since p;; is proper when restricted to piy (Z) N pys (Z), we
have a well-defined convolution map

*x: K(Z)® K(Z) 3 (F,G) = Y (—1)'[R(p1).(p},F @" p330)] € K(Z).
i>0

Theorem 4.1 (Ginzburg). The group K(Z) becomes an algebra via the convo-
lution action. O



Let t := Lie T. We define
Clt]o == C[t]/ (C[1Y),

where C[t]%¥ := C[{]"V Nnt*S(t*). By the natural W-action on t, the space Clt]o
admits a W-action. Hence, we have their amalgamated product

W := C[W] ® C[to,

whose multiplication is given by (w1, f)(w2, g) := (wiwe, fwi(g)).
For Z-module A, we set A¢ := C ®z A.

Theorem 4.2. We have an isomorphism K(Z)c =W as algebras.

Proof. Choose an element (1,1,—1,1) € G x (C*)3. It acts on Fy := G xB
(V2 @ V5)T with its fixed part isomorphic to F = G xB (Vi @ 0@ V,") C
F,. By [K1] Corollary 2.13 and Remark 2.2 3), we conclude that K(Z)c is
isomorphic to the specialization of the three-parameter Hecke algebra of type
WV at go=-q¢ =¢2=1and s =1 € G. In particular, K(Z)¢ is isomorphic
to the quotient of the group ring of the affine Weyl group W x X*(T') by the
ideal generated by the maximal ideal m C R(G) corresponding to 1 € G. (We
regard X*(T') = @V, where Q" is the coroot lattice of R.) Here we have

R(T)/mR(T) = R(T)/ ([V] — (dim V)[C] : V € RepG) == C[{]}V
as W-modules. Since K(Z)c = C[W]® R(T)/mR(T), the result follows. O

Corollary 4.3. We have a surjective map W —» C[W]. In particular, we
have an inclusion
lrrW C {simple W-modules},

where the RHS is the set of isomorphism classes.

Proof. We retain the setting of the proof of Theorem 4.2. The maximal ideal
my C C[T] corresponding to 1 € T is clearly W-invariant. We have C[TJm C my.
It follows that W/Wmg = C[WW] as desired. O

Remark 4.4. As is shown later (Proof of Theorem 6.5), the inclusion of Corollary
4.3 is in fact an equality. We can also deduce it directly from the structure of
W.

5 Rough classification of orbits

We assume the setting of the previous sections. The goal of this section is to
prove:

Theorem 5.1. The map
J: MP(n) 3 X J(\) € G\N
s surjective.

Proposition 5.2 ([K1] 1.9). Every element of M is G-conjugate to a normal
form. O



Remark 5.3. Theorem 5.1 does not follow from Proposition 5.2 immediately
since ImJ does not exhaust the set of normal forms modulo the N¢g(T')-action.

Let Go C G be the subgroup such that 1) T C G and 2) the root system of
(GQ,T) is {:l:(q — éj)}i<j C R. We have Gy = GL(TL,(C) Let Xeifq € LieGg C
g be a non-zero root vector of T-weight €; — ¢; with standard normalization. We
put v; j := exp(X¢, ;) € Go.

Proof of Theorem 5.1. Let A = (A, a), where A is a partition of n and a =
(a1,a2,...) is an integer sequence such that 0 < a, < A, for each p. (We put

X = Aif A is a marked partition.) By Proposition 5.2, we assume

T=JQ) =Y TNy =T+ () € VT

with J; € V; and Ay = (A, 0). Let 4, j be two distinct integers such that A; > ;.

Claim 3. There exists elements g;fj,g;j € Stabg, (J(Ag)) which induces unipo-
tent transforms on Vi so that

gfjv[é,\_<+k] _ {V[€A§+k] + V[€A§+k] (0<k S Aj) (5.1)
’ i V[€>\j<+k] (otherwise)
and
Ve ] = {V[€A§+lk] tvles, k] (0<E <)) . (5.2)
B3 TNk viex< gl (otherwise)
i+1

Proof. It is straight-forward to see that gij;- satisfies (5.1) and (5.2). Define
95 = H NS +hAS+h0 Bij °= H UrS, —kAS,—k € GO
1<k<N; 0<k< A

fixes J(Ay). By a weight comparison, these elements do not depend on the
order of the product. The presentation of the transformations on V; follow
immediately from this expression. We have

gfjJ(Ao) =J(Q) + Z XeAfM—eAfMV[ﬁA;Jrk - 6Aj<+k+1]
1<k<);

+ j: Xfxi<+k+1_€x<+k+1v[6>\i<+k o 6>‘i<+k+l] = J(A)-
1<k<); !

(Remember that the Gg-action on LieGq is the adjoint action.) This proves
9i; € Stabg, (J(X)). The case g;; follows from a similar equality. O

Assume that Ji = J7 + v]ex< o] + v[ey< i, ] with
suppJy N (AS + LAS U DS +1,A5,4]) = 0.

We have
(gz_j)ilJ =J- V[GA,i<+aj]-



If a; < aj, then there exists an unipotent stabilizer u € GL(\;) C Go of J(A)
such that .
u(g;,rj)—lj =J(N) + J7 — V[eAeraj] — V[(‘)\eraj]'

If a; = a;, then we have
(QZ_j)ilJ = J(XO) - V[GAf+a]~]~

In other words, we have g;"u(g;;)™'J = J — V]er<yq,] OF (g7 = J -
vl[exsiq,] When a; < a;. Thus, if a; < a;, then we have GJ(}) = GJ()) for
A = (\ ), where al, = a, (p #1i) or 0 (p = i).

By using g, ; instead of g:j, we deduce: If \; —a; < A\; — a;, then we have
GJ(A) = GJ(X) for X' = (\,a’), where al, = a,, (p # j) or 0 (p = j).

We replace (A, a) by (A, a’) when one of the above two inequalities (a; < a;
or A\; —a; < A\j —aj) occur. Repeating these procedures for all possible pairs
(4,7) such that X\; > X;, we obtain a marked partition 7 = (A, a”) such that
GJ(ji) = GJ(pn) = GJ(A) as desired. O

6 An exotic version of Springer correspondence

We retain the setting of the previous section. The following result is not exactly
the same as the original, but we can easily deduce it from the proof:

Theorem 6.1 (Igusa [Ig73] Lemma 8). Let X = (\,0) € P(n) € MP(n).

Then, the reductive part of the stabilizer of J (X) is
Ly := Sp(2n1,C) x Sp(2ne,C) x - - |

where the sequence (ni,na,...) are the number of \;’s which share the same
value. Moreover, we have

Res{ V) = @ V(i)
i>1

where V(i) is the external tensor product of a vector representation of Sp(2n;)
and trivial representations of Sp(2n;) (j # ). O

Corollary 6.2. For each X € M, the G-stabilizer of X is connected.

Proof. Weput X = X160 Xs € V1 ® V5. Let G1 and G2 denote the G-stabilizers
of X; and X5. We show that G1 N Gg is connected. Let G = LyUs be the
Levi decomposition of G3. The component group of G; NG5 is the same as that
of G1 N Ly. By repeating the argument of [K1] Lemma 7.8, we conclude that
G4 N Ly must be connected. O

Theorem 6.3 (cf. [CGI7] 8.9.3 and 8.4.8). There exists an algebraic stratifi-
cation O of M such that

pCrldim F] = @5 Lo RIC(0),
OeOH

where Lo is a vector space and IC(O) is the minimal extension of Co[dim O].
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Proof. By the BBD-G decomposition theorem (cf. Saito [Sa88] 5.4.8.2), we
deduce that

wCrldmFl= @ Lyox®IC(O,)d] € DY),
deZL,0eDH,x

where Lq 0, is a vector space, x is a G-equivariant local system on O, and
IC(0O, x) is the minimal extension of x. The map p is G-equivariant. It follows
that O is a refinement of OH. Since p is semi-small with respect to O, it is
also semi-small with respect to O*. Hence, we have d = 0. (cf. [CG97] 8.9.2)
Each strata O € 9" is smooth. In particular, the map 71 (O, *) — 71 (O, %) is
surjective for the dense open G-orbit @ C O. Therefore, we have Ly, # 0
only if d =0 and x = 1 as desired. O

For O € Oy and X € O, we define
Mg = Hcodim@(,u_l(X)a(C) and Ng := @ Hm(,u_l(X)v(C)a
m>0

where O € O is the strata such that O C O. By the Ginzburg theory, Ng is
a K(Z)-module. Since G is connected, the G-conjugation of X gives mutually
isomorphic K (Z)-modules. Thus, Ng is independent of the choice of X as a
K (Z)-module with a grading.

Theorem 6.4 (Chriss-Ginzburg). Fach Mg is a simple quotient of Ng as
K(Z)c-modules if it is non-zero. Moreover, the set of isomorphism classes of
non-zero modules in {Mo}ocony, gives a complete collection of simple K(Z)c-
modules.

Proof. Since Z has a paving by affine spaces (see [K1] 1.5), it follows that K (Z)
is spanned by algebraic cycles. By [CG97] 5.11.11, we have an isomorphism
K(Z)c &2 Ho(Z,C) as convolution algebras. The first part follows from the
combination of Theorem 6.3, [CG97] 8.9.8, and 8.9.14 (b). The second part
follows by [CG97] 8.9.8. O

Theorem 6.5. The assignment
On >0~ Mg € lrtW
establish a one-to-one correspondence.
Proof. The subset OF; := {0 € On : Mg # 0} gives a map
7:95 30— Mg € {simple K(Z)c-modules}.
By Theorem 6.4, this map must be surjective. Hence, we have

#{simple K (Z)c-modules} < #9905 < #9On < #MP(n)
= #Ps(n) = #lrrW < #{simple K(Z)c-modules}

by Theorem 5.1, Theorem 3.2, and Corollary 4.3. This implies that all the
inequalities are in fact an equality. Therefore, the map 7 is defined at the whole
of Oy and the map is injective. Since every simple W-module give rise to a
simple K (Z)c-module, the result follows. O

Corollary 6.6. The set O is in one-to-one correspondence with Pa(n). O

11



7 Regularity conditions of parameters

This section might also be viewed as an continuation of [K1] with the knowledge
of this paper. In the below, we use notation of [K1] freely only by indicating
pointers to them. We assume the setting of §4. Let a = (s,q1,¢q2) € T %
(C*)2. (This is equivalent to assume a € G x (C*)? is semi-simple by taking
an appropriate conjugate.)

Consider the following condition:

(#)1 g2 is not a root of unity of order < 2n;

(#)2 Let ¥(s) be the set of s-eigenvalues in V3. For each c1, co € ¥U(s), we have
c = (]’2”02il for some integer m and

cl,qglcl,...,q;mcl e U(s).

Theorem 7.1. Assume (f). There exists a one-parameter subgroup ¢ : C* —
T x (C*)? such that:

Zax(cx)2(V(r) = Zax(cx)2(a), and NV =N
for a generic choice of r € Ryg.

Proof. By [K1] §4, the condition (f) implies that the setting is governed by the
relations and values of 1 = €™, gz = "2, and s = exp(D>_ 1, \i€;). In particular,
we can rearrange their values to be r;, \; € R without changing the 9%* and F'¢
from the original ones. [l

In the setting of Theorem 7.1, we define A = A(r) to be the Zariski closure
of {y(mr):m € Z} C T x (C*)%

Corollary 7.2. Keep the setting of Theorem 7.1. For a generic choice of r €
R, the torus A(r) is connected.

Proof. If 1(r) is not sitting in the identity component of A, then so does each of
P(r/m) (m € Zso). This is impossible since A has only finitely many connected
components by definition. This contradiction implies ¥ (r) € A, which in turn
yields that A is connected. O

We assume (f) and the setting of Theorem 7.1 until Theorem 7.9.

For each m > 0, let EA,, := (C™\{0})¥™4 be a variety such that i-th C*-
factor of A = (C* )dim A acts as dilation of the i-th factor for each 1 < i < m. By
the standard embedding C™ — C™*! sending () to (z,0), we form a sequence
of A-varieties

(D:EA()‘HEAl‘HEAQ‘H .

We define FA = hLQm EA,,, which is an ind-quasiaffine scheme with free A-
action. Since E'A is contractible manifold with respect to the classical topology,
we regard E A as the classifying space of A. For a A-variety X, we set

Xa:=NA\ (FAXx X).
We have a forgetful map
fe:X4— BA=A\FEA.

12



Let D4 be the relative dualizing sheaf with respect to fx. We define

HAX) = H (X4, D).

3

We have the Leray spectral sequence

H(BA) © Hy(X) = HA,,(X).
In the below, we understand that H(X) := @,, H/A(X). The projection maps
pi i Za — Fa (i =1,2) equip H}(Z) a structure of convolution algebra. It is
straight-forward to see that the diagonal subsets AF C Z and (AF)a C Za
represents 1 € Ho(Z) and 1 € HZ(Z), respectively.

Lemma 7.3. The algebra HA(Z) contains He(Z) as its subalgebra. In partic-
ular, we have C[W] C H2(Z) as subalgebras. Moreover, the center of H{(Z)
contains H*(BA)|[(AF)a] C He(Z).

Proof. In the Leray spectral sequence
H'(BA)® H;(Z) = H*,, ;(Z),

we have H°(BA) = 0 (by Corollary 7.2) and H,q4(Z) = 0 (since Z is paved
by affine spaces). It follows that this spectral sequence degenerates at the level
of Ea-terms. Moreover, the image of the natural map ¢ : H;(Z) — HJA(Z)
represents cycles which are locally constant fibration over the base BA. It
follows that the map @ is an embedding of convolution algebras.

Multiplying H*(BA) is an operation along the base BA, which commutes with
the convolution operation (along the fibers of f2). It follows that H®(BA) —
H*(BA)[(AF)4] C H}(Z) is central subalgebra as desired. O

The following result is a consequence of Borho-MacPherson’s argument ap-
plied to the sheaf 1,C as in the previous section.

Theorem 7.4 (Borho-MacPherson cf. [CG97] §8.8). Let y,y' € M. Then, we
have

0 (yegGy)
1 (yeGy)

as W-modules. O

[Ho(ﬂil(y)) : MGy’] = {

Lemma 7.5. Let y € . The Leray spectral sequence
H*(BA) ® Ho(n™'(y)) — H{ (1™ (v))

induces a map of HA(Z)-module by letting H*(BA) act only on the first term
of the LHS and letting He(Z) act only on the second term of the LHS.

Proof. The LHS is the cohomology space of a sheaf of He(Z)-modules on BA.
For any contractible set Y C BA, we have

H (1™ (y) — Ha((fi() " U) = Ha(u™ ' (y))

as He(Z)-modules. It follows that the composition map

H(BA)®@ Ho(u ' (y)) —» H (™' (y)) — Ho(u ™ (y))
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is a He(Z)-module map. Since the map
H*(BA) @ Ho(p™" (y) — HJ (™" ()

is a H*(BA)-module map, we conclude that it is a HZ(Z)-module map as
desired. O

Let y € M. We put
véz,y) = H ' (y))/H® (BA)-torsion.
Lemma 7.6. The HJ'(Z)-module Véw) contains W-module H*(BA) @ Mg,.

Proof. By Borho-MacPherson’s theorem, the W-module M, appears in He (11! (y))
with multiplicity one. It follows that the Mg,-isotypical component of the Leray
spectral sequence

H*(BA) @ Hy(1™ ' (y)) — H(n™ " (y))

is Fa-degenerate. This implies that the Mg,-isotypical component of HZ (11 (y))
is a free H*(BA)-module, which cannot be torsion. O

We put a := LieA. We have H*(BA) = Cla]. By inverting all monomials
which are perpendicular to a, we obtain a localized algebra H®*(BA), := C|a],.
For a A-variety X', we put

Hfl(X)a = H*(BA), ®re(BA) Hfl()()-
Let HT(BA) :== @,,., H™(BA).
Proposition 7.7. We have an isomorphism of convolution algebras:
HMNZY = HNZ o (7.1)
Moreover, the quotient space

o A + A
(aw) = Viay/H (BAV(, )

admits a He(Z%)-module structure such that

L. v/(a-y) is a subquotient of He(n™"(y)*) as He(Z*)-modules;

2. The map CIW] C Ho(Z) — HZA(Z%), defines a W-module structure on
oo
(a,y)’

3. V’( is a quotient module of He(pn™1(y)) as W-modules.

a,y)

Proof. Let R(A), be the localization of R(A) at the point a. By the Thomason
localization theorem (see e.g. [CG97] §8.2), we have an isomorphism

R(A)a ®r(a) K*(Z2%) = R(A)q ©r(a) K4(2)
as algebras. For each of X = Z, or Z%, we have a dense open embedding

KA(X) = lim K*A(EA, x X) = lim K (A\(EA,, x X)).

m m
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We regard the RHS as a substitute of K (X4). It follows that the Chern character
map relative to BA gives an isomorphism

Cllalla ®cja), HHN(Z2)a = Clla)]a ®cfa), HeH(Z)a,

where C[[a]], is the formal power series ring of C[a] along a. By restricting this
to the sum of vectors of finitely many degrees, we obtain (7.1). The second
assertion is automatic by letting He(Z%) act by

H,(Z%) — HA(Z%) — HAZ%)/HT(BA)HX (Z).

By a similar argument using Lemma 7.5, we deduce that V'(a’ y) is a subquotient
of He(™'(y)*), which implies 1). Now we verify 2). Since (7.1) is an algebra
isomorphism, it follows that 1 € C[W] goes to 1 € Ho(Z*). It follows that
each of s; goes to a non-zero element of He(Z®) with its square equal to 1. By
construction, there exists f; € C(a) (i = 1,...n) such that 1, fis1,... fns, €
H{(Z%), define linearly independent vectors in He(Z%). It follows that f? €
Cla]. This forces f; € Cla], which implies that the images of 1,s1,...,s, €
Ho(Z") are linearly independent. This verifies 2). Since C[W] is a semi-simple
algebra, we have W-module morphisms whose composition is surjective

Ho(p™ ' (y)) = H*(BA) © Ho(1™ (1)) — Vi{ay)-
This verifies 3) as desired. O

Proposition 7.8. Let O C M be a G-orbit. For any two distinct G(s)-orbits
01,05 C O%, we have L
O01N0; =0,

Proof. By the description of G-orbits of 9, we deduce that the scalar multipli-
cation of a normal form of 91 is achieved by the action of T'. It follows that
each G(s)-orbit of M is a Zg (cx)2(a)-orbit. Let y € O;. Let G, be the sta-
bilizer of y in G x (C*)2. Assume that Oy N O; # ) to deduce contradiction.
Since Oz is a Zgy (cx)2(a)-orbit, we have Oy C O,. Fix y3 € Oy. Consider
an open neighborhood U of 1 in G (as complex analytic manifolds). Then,
Uy € O is an open neighborhood of 3. It follows that Uy, N O # 0. We put
Ga,y, = LieGy, + LieZg, cx)2(a). We have

N(92/07?J2 = g/ga,yz-

Every non-zero vectors of No, 0 4, is expressed as a linear combination of eigen-
vectors with respect to the a-action. These a-eigenvectors can be taken to have
non-zero weights and does not contained in G,. It follows that

Uy N O ¢ V9,

which is contradiction (for an arbitrary sufficiently small /). Hence, we have
necessarily Oy N O1 = () as desired. O

Theorem 7.9. We have the following one-to-one correspondence
G(8)\N* 2 G(8)y = Lq,y) € IrrHo(Z?),

where L, is the unique Ho(Z")-irreducible constituent of Vg, which con-
tains W-module Mg, .
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Proof. By [K1] Theorem 1.8, the number of G(s)-orbits in M* is finite. By
[K1] Theorem 8.1, each G(s)-orbit of 91* corresponds to at most one irreducible
H(Z*)-module. We prove the assertion by the induction on the closure relation
of the orbits. By Ginzburg’s theory [CG97] §8.4 and Proposition 7.7 1), we
deduce that L, ) does not contain a W-module which do not appear in Vzmy,)

/

for some y € G(s)y’. By Lemma 7.8 and Theorem 7.4, we deduce that Vi)
carries a W-module Mg, which does not contained in Vzaﬂ/,) for every 3/ € M°
such that y € Gy’\Gy'. In particular, we conclude La,y) # 0 as desired. |

We forget the assumption (f).

Recall that an extended affine Hecke algebras of type B,, with two-parameters
(—q1,q1, q2) is the quotient of an affine Hecke algebra H of type C,, with three
parameters (qo, q1,¢2) by the two-sided ideal (go + g1). (See [K1] 2.1-2.2 for
more detail.)

Corollary 7.10. For an extended affine Hecke algebras of type B, with two-
parameters (—qi1,q1,q2), the regularity condition of parameters holds automati-
cally unless —q? # q2jEm forO<m<mnorgh#1 forl<Il<2n.

Proof. Applying [K1] Corollay 3.10, we can assume (f) freely. Hence, if we have
either Vl(s’ql) ={0}or Vl(s’_ql) = {0}, then Theorem 7.9 implies the result. Here
s has at most 2n-eigenvalues and every two eigenvalues &1, &s are connected by
& = qé”fgﬂ by some —n < m < n by (f)2. Therefore, we cannot have both

Vl(s’ql) # {0} and Vl(s’_ql) # {0} simultaneously by —q¢? # ¢F™. O
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