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Abstract

Let G = Sp(2n,C) be a complex symplectic group. We introduce a
G x (C*)**'_variety M,, which we call the f-exotic nilpotent cone. Then,
we realize the Hecke algebra H of type O with three parameters via
equivariant algebraic K-theory in terms of the geometry of 2. This
enables us to establish a Deligne-Langlands type classification of simple
H-modules under a mild assumption on parameters. As applications, we
present a character formula and multiplicity formulas of H-modules.
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Introduction

In their celebrated paper [KL87], Kazhdan and Luszstig gave a classification of
simple modules of an affine Hecke algebra H with one-parameter in terms of the
geometry of nilpotent cones. (It is also done by Ginzburg, c.f. [CG97].) Since
some of the affine Hecke algebras admit two or three parameters, it is natural to
extend their result to multi-parameter cases. (It is called the unequal parameter
case.) Lusztig realized the “graded version” of H (with unequal parameters) via
several geometric means [Lu88, Lu89, Lu95b] (c.f. [Lu03]) and classified their
representations in certain cases. Unfortunately, his geometries admit essentially
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only one parameter. As a result, his classification is restricted to the case where
all of the parameters are certain integral power of a single parameter. It is
enough for his main interest, the study of representations of p-adic groups (c.f.
[Lu95al). However, there are many areas of mathematics which wait for the
full-representation theory of Hecke algebras with unequal parameters (see e.g.
Macdonald’s book [Mc03] and its featured review in MathSciNet).

In this paper, we give a realization of all simple modules of the Hecke algebra
of type 07(11) with three parameters by introducing a variety which we call the
l-ezotic nilpotent cone (c.f. §1.1). Our framework works for all parameters and
realizes the whole Hecke algebra (Theorem A) and its specialization to each
central character. Unfortunately, the study of our geometry becomes harder for
some parameters and the result becomes less explicit in such cases. Even so, our
result gives a definitive classification of simple modules of affine Hecke algebras
of type B,(Ll) and C,(f) for almost all parameters including so-called real central
character case. (See the argument after Theorem D.)

Let G be the complex symplectic group Sp(2n,C). We fix its Borel subgroup
B and a maximal torus T C B. Let R be the root system of (G,T). We embed
R into a n-dimensional Euclid space &,Ce; as R = {£e; £ ¢;} U {£2¢}. We
define V; := C?" and V5 := (A%V})/C. We put V, := Vl@z @ Va5 and call it the
£-exotic representation. Let V} be the positive part of V, (for precise definition,
see §1). We define

Fr=GxBVf cGxPV,2G/BxV,.
Composing with the second projection, we have a map
e - Fg I Vz.

We denote the image of py by 9. This is the G-variety which we refer as the
L-exotic nilpotent cone. We put Z; := Fy xom, Fy. Let Gy := G x ((Cx)é‘*‘l. We
have a natural Gy-action on Fy (and Zy). (In fact, the variety Fy admits an
action of G x GL(¢,C) x C*. We use only a restricted action in this paper.)

Assume that H is the Hecke algebra with unequal parameters of type C’T(Ll)
(c.f. Definition 2.1). This algebra has three parameters qg, g1, 2. All affine
Hecke algebras of classical type with two parameters are obtained from H by
suitable specializations of parameters (c.f. Remark 2.2).

Theorem A (= Theorem 2.8). We have an isomorphism
H = C®gz K% (Z,)

as algebras.

The Ginzburg theory suggests the classification of simple H-modules by the
G-conjugacy classes of the following Langlands parameters:
Definition B (Langlands parameters).

1) A triple ¢:= (g0, q1,¢2) € (C*)? is said to be admissible if gy # q1, g2 is not
a root of unity of order < 2n, qogi! # g§* for |m| < n;

2) A pair (a,X) = (5,4, X0 ® X1 & X2) € G2 x Ny is called an admissible
parameter iff s is semisimple, ¢ is admissible, and sX; = ¢; X; for i = 0,1, 2.



For an admissible parameter (a, X), we put Ga(a) := Zg,(a).

Notice that our Langlands parameters do not have additional data as in the
usual Deligne-Langlands-Lusztig correspondence. This is because the (equivari-
ant) fundamental groups of orbits are always trivial (c.f. Theorem 4.7). Instead,
we have the following kind of difficulty:

Ezample C (Non-regular parameters). Let G = Sp(4,C) and let a = (exp(re; +
(r+mv=1)e2),e", —e", —€?") € T x (C*)3 (r € C\my/—1Q). Then, the number
of G3(a)-orbits in N9 is eight, while the number of corresponding representations
of H is six. (c.f. Enomoto [En06]) In fact, there are two non-regular admissible
parameters in this case. These parameters correspond to weight vectors of €1 +€5
or “e1 & €37,

Now we state the main theorem of this paper:

Theorem D (= Theorem 10.2). The set of G-conjugacy classes of admissible
parameters is in one-to-one correspondence with the set of isomorphism classes
of simple H-modules if qo is not a root of unity of order < 2n, and qoqlil #* qum
holds for every 0 < m < n.

We treat a slightly more general case in Theorem 10.1 including Example C.
Since the general condition is rather technical, we state only a part of it here.

By imposing an additional relation gy + g1 = 0, the algebra H specializes to

an extended Hecke algebra Hpg of type B,(Ll) with two-parameters. (c.f. Remark

2.2.) Therefore, Theorems D also gives a definitive classification of simple Hp-
modules except for —gZ = ¢5* (Jm| < n) or ¢z is a root of order < n.
Let us illustrate an example which (partly) explains the title “exotic”:

Ezample E (Equal parameter case). Let G = Sp(4,C). Let s = exp(re; + 7€) €
T (r € C\my/—1Q). Fix ag = (s,€") € G x C* and a = (s,e", —¢e",e*") € Gs.
Let AV be the nilpotent cone of G. Then, the sets of G(s)-orbits of A% and Mg
are responsible for the usual and our exotic Deligne-Langlands correspondences.
The number of G(s)-orbits in N is three. (Corresponding to root vectors of ),
2¢1, and “2e; & 2¢2”) The number of G(s)-orbits in M3 is four. (Corresponding
to weight vectors of (), €1, €1 + €2, and “e; & €; + €3”) On the other hand, the
actual number of simple modules arising in this way is four (c.f. Ram [Ra0l]
and [En06]).

The organization of this paper is as follows:

In §1, we fix notation and introduce exotic nilcones and related varieties. In
particular, we present the geometric structure involved in our varieties as much
as we need in the later section. In §2, we prove Theorem A, which connects
our varieties with an affine Hecke algebra H. In order to simplify the study of
representation theory of H, we divide our varieties into a product of primitive
ones in §3. In §4, we prove that the stabilizers of exotic nilpotent orbits are
connected, which implies that the “Lusztig” part of the Deligne-Langlands-
Lusztig parameter should be always trivial in our situation. Unfortunately, we
have no nice parabolic subgroup as Kazhdan-Lusztig employed in [KL87]. We
construct some explicit semisimple element out of each orbit in §5 for the sake
of compensation. We introduce the notion of exotic Springer fibers and prove
its odd-term vanishing result in §6, under the assumption that the parameters
are sufficiently nice (admissible). Its proof essentially relies on the argument of
§5. We define our standard modules as the total homology group of an exotic



Springer fibers in §7. At the same time, we present an induction theorem, which
claims that they behave well under the induction. In §8, we present an analogue
of Springer correspondence for our exotic nilcones. In order to prove Theorem
D, we still need two additional structural results. One is that our geometric
structure is preserved by replacing the infinitesimal character by a suitable real
positive one. The other is that we can embed the corresponding finite Weyl
group into the graded version of H. Both are false in non-admissible parameter
range. These results occupy §9. With the knowledge of all of the previous
sections except for §7, we prove Theorem D in §10. The last section §11 concerns
with applications, which are straight-forward consequences of Ginzburg theory
assuming the results presented in earlier sections.
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1 Preparatory materials

Let G := Sp(2n,C). Let B be a Borel subgroup of G. Let T be a maximal
torus of B. Let X*(T') be the character group of T. Let R be the root system
of (G,T) and let R* be its positive part defined by B. We embed R and R
into a n-dimensional Euclid space E = @;Ce; with standard inner product as:

Rt = {6,’ + Gj}i<j U {262} C {:tq + €j} ] {:|:2€1'} =RCE.

By the inner product, we identify €; with its dual basis. We put ¢; := —e_; when
1<0. Weput o :=€¢; — €41 (i=1,...,n— 1) or 2¢,, (i =n). Let W be the
Weyl group of (G, T). For each «;, we denote the reflection of E corresponding
to a; by s;. Let £ : W — Z>( be the length function with respect to (B,T). We
denote by w € Ng(T') a lift of w € W. For a subgroup H C G containing T, we
put “H :=wHw~!. For a group H and its element h, we put H(h) := Zg(h).
We denote the identity component of H by H°. If H acts on a space X and
x € X, then we denote the stabilizer of the H-action on x by Stabgx. For each
a € R, we denote the corresponding one-parameter unipotent subgroup of G
(with respect to T') by U,. We define g, t,u,, g(s), etc. .. to be the Lie algebras
of G,T,U,,G(s), etc. . ., respectively.

INote: After the original version of this paper is circulated (in 2006, with different ar-
gument and weaker conclusion in Theorem D), there appeared two kind of related works.
One is the study of geometry which is connected to our nilcone by Achar-Henderson [AH07],
Finkelberg-Ginzburg-Travkin [FGTO08], Springer [Sp07], Travkin [Tr08], and the other is the
classification of tempered dual by Opdam and Solleveld [OS07, So07]. For the former, I have
included explanation about the situation as much as I could in order to avoid potential prob-
lems. For the latter, I think it is a very interesting to connect our result with theirs. I hope
to make some contribution to this direction in my future work.



For a T-module V, we define its weight A-part (with respect to T') as V[A].
We define the positive part V1 and negative part V=~ of V as

vie= P VN, adV = fH V[,

A€QsoRT—{0} AEQ<oR+—{0}

respectively. We denote the set of T-weights of V' by ¥(V).

In this paper, a segment is a set of integers I written as I = [i1,42] N Z for
some integers i1 < i5. By abuse of notation, we may denote I by [i1,i2]. For a
segment I, we set I*:=1 (if0¢ I) or I — {0} (if 0 € I).

We denote the absolute value function by | e|: C — Rxo.

We set I'g := 27y/—1Z C C and set exp : E — T to be the exponential map.
We normalize the map exp so that kerexp = " | T'¢e;.

For a variety X, we denote by He(X) the Borel-Moore homology groups
with coefficients C.

1.1 Exotic nilpotent cones

Let £ = 0,1, or 2 be an integer. We define V; := C?" (vector representation) and
Vo := (A?V7)/C. These representations have B-highest weights ¢; and €1 + €3,
respectively. We put V, := Vl@e @ V5 and call it the {-exotic representation of
Sp(2n). For £ > 1, the set of non-zero weights of Vy is in one-to-one correspon-
dence with R as

. {:t?ei o te €v(Vi) a1

te;te; o e e, € U(1h)

We define
Fr:=GxBVf cGxPV,2G/BxV,.

Composing with the second projection, we have a map
Mt Fg — V@.

We denote the image of py by 9. We call this variety the £-exotic nilpotent
cone. By abuse of notation, we may denote the map Fy — 91, also by .

Convention 1.1. For the sake of simplicity, we define objects F', 0, V| u, etc...
to be the objects Fy, My, Vy, pe ete... with £ = 1.

We summarize some basic geometric properties of 91:
Theorem 1.2 (Geometric properties of ;). We have the following:

1. The defining ideal of My is generated by G-invariant polynomials of C[V]
without constant terms;

2. The variety Ny is normal;
8. For £ =1,2, the map pyg is a birational projective morphism onto Ny;

4. Every fiber of the map g is connected;

In the below, we present properties which is valid only for the £ =1 case.



5. The set of G-orbits in My is finite;

6. The map py is stratified semi-small with respect to the stratification of My
given by G-orbits.

Proof. The weight distribution of V* and the Hesselink theory (c.f. [Po04]
Theorem 1) claims that p gives a birational projective morphism onto an irre-
ducible component of the Hilbert nilcone of V,. Here the Hilbert nilcone of V,
is irreducible normal variety by Schwarz [Sc78], which implies that 91, C V, is
the Hilbert nilcone. Therefore, we obtain 1-3). 4) is an immediate consequence
of 2), 3), and the Zariski main theorem (c.f. [CG97] 3.3.26). 5) is proved as a
part of Proposition 1.15. We show 6). Let O be the inverse image of a G-orbit
G.X =0 C 9 under the map p o ps. Then, we have

dim O 4 2dim p~'(X) < dim O.

The dimension of the RHS is less than or equal to dim F', which is the (constant)
dimension of irreducible components of Z. In particular, we have

dim O + 2dim ¢~ (X) < dim N = dim F,
which implies that p is semi-small. O

Lemma 1.3. We have a natural identification
Fr=2{(9B,X)€G/BxVy;X €gVi}
Proof. Straightforward. O

Let Gy := G x (C*)**1. We define a Gy-action on My as
GyxMNy > (g, qo—py .-, q2) X(nggGE' . '@XQ) g (q;_lng27£@. . '@q;ngQ) € MNy.

(Here we always regard Xo_y,..., Xy € V; and X € V5.) Similarly, we have
a natural Gy-action on Fy which makes puy a Gy-equivariant map. We define
Zy = Fy xon, Fy. By Lemma 1.3, we have

Zo={(¢1B,92B,X) € (G/B)* x Vyi; X € g1V} N g2V 1.
We put
7 .= {(1B, 2B, 93B,X) € (G/B)? x Vi3 X € g1V N g2V} NgsV}.

We define p; : Z; 3 (1B, 2B, X) — (¢;B,X) € Fyand p;j : Z}* 3 (1B, 92B, g3B, X) —
(9:B,9;B,X) € Z; (i, € {1,2,3}). We also put p; : Fy x Fy — Fj as the first

and second projections (i = 1,2). (Notice that the meaning of p;, p;, p;; depends

on £. The author hopes that there occurs no confusion on it.)

Lemma 1.4. The maps p; and p;; (1 <1i < j < 3) are projective.

Proof. The fibers of the above maps are given as the subsets of G/B defined by
incidence relations. It is automatically closed and we obtain the result. O



We have a projection
T Ze 3 (1B, 92B, X) — (91B,92B) € G/B x G/B.

For each w € W we define a point p,, := BxwB € G/B x G/B. This point
is independent of the choice of w. We put O, := Gp,, C G/B x G/B. By the
Bruhat decomposition, we have

G/BxG/B= || Oy (1.2)

weWw

Lemma 1.5. The variety Zy consists of |W|-irreducible components. Moreover,
all of the irreducible components of Z have the same dimension.

Proof. We first prove the assertion for Z = Z;. By (1.2), the structure of Z is
determined by the fibers over p,,. We have

7 (pw) = VI NwVT.
By the dimension counting using (1.1), we deduce

dimVt NV =dim Vit NV + dim Vo™ NV,
=#(R; NwR) + #(Rf NwR}) = N — {(w),

where N := dimV*+ = dimG/B and R}, R} are the sets of long and short
positive roots, respectively. As a consequence, we deduce

dim7~1(0y) = N + {(w) + N — £(w) = 2N.

Thus, each 7=1(0,,) is an irreducible component of Z.

Next, we prove the assertion for Zs. By forgetting the first V;-factor, we have
a surjective map n : Zy — Z. We have a surjective map 1’ : Z — Z; given
by forgetting the Vi-factor. The fiber of n at € Z is isomorphic to the
two-fold product of the fiber of ' at n/(x). The latter fiber is isomorphic to
the vector space V;™ N gV;" when m(z) = (1,g)p1. Therefore, the preimage of
each irreducible component of Z gives an irreducible component of Z5. These
irreducible components are distinct since their images under 1 must be distinct.
Hence, the number of irreducible components of Zs is equal to the number of
irreducible components of Z as desired. O

By a general result of [Gi97] pl35 (c.f. [CG97] 2.7), the Gy-equivariant
K-group of Z, becomes an associative algebra via the map

* 1 KGO Z)xK%(Z,) > (€], [F]) — Z(—l)i[Ri(plg)*<p’{2€®%’2‘3f )| € K(Zy).

Moreover, the Gy-equivariant K-group of F; becomes a representation of K% (Z,)
as

o K9 (Zy) x K9 (Fy) 5 ([€],[K]) = Y (=1)'[R'(p1).(€ @ p3K)] € KF(Fy).
i>0

Here we regard £ as a sheaf over Fy x Fy via the natural embedding Z, C Fy x F}.



1.2 Definition of parameters

In this subsection, we present the definitions of parameters which we need in
the sequel. First, we put ag := (1,1,—1,1) € Gbs.
Definition 1.6 (Configuration of semisimple elements).

1) An element a = (s, qo, q1,92) € G2 is called pre-admissible iff s is semisimple,
qo # q1, g2 is not a root of unity of order < 2n.

2) An element a € G is called finite if 91§ has only finitely many Gs(a)-orbit.

3) A pre-admissible element a = (s, o, g1, ¢2) is called admissible if q0q1il # qzim
holds for every 0 < m < n.

For a pre-admissible element a = (s, qo, q1, ¢2), we put
Vs =V o v oV cVieie Vs = Vs,

In the below, we may denote (qo,q1,q2) € (C*)? by ¢ for the sake of sim-
plicity.

Let a = (s,q) € G2 be a pre-admissible element such that s € T. We
sometimes denote it as

5 =exp (Z logi(s)q) cexp(E) =T,
i=1

where log;,(s) € C.

Remark 1.7. The values of log,(s) are determined modulo I'g. Here we under-
stand that log;(s) is a fixed choice of a representative in log;(s) + I'y.

Definition 1.8 (Admissible parameters).
1) A pre-admissible parameter is a pair
v={(a,X)=(50X1®X2) € G2 xM

such that a is pre-admissible, (s — qo)(s — ¢1) X1 = 0, and sX2 = g2 X>;

For a pre-admissible a € Go, we denote by A, the set of G(s)-conjugacy classes
of pre-admissible parameters of the form (a,Y’), where Y € V.

2) A pre-admissible parameter v = (a, X) is called admissible if a is admissible.

1.3 Orbit structures arising from 91,

In the following, we fix vectors in V; and V5 as follows:

e For each i € [—n,n]*, we define 0 # x;,Z; € V; to be non-zero vectors of
weights €;;

e For each distinct ¢, j € [—n,n]*, we define y;; € V> to be a non-zero vector
of weight €; — €;.

The following is a slight enhancement of the good basis of Ohta [Oh86] (1.3).



Definition 1.9 (Signed partitions). Let J = (J!,J2,J2,...) be a sequence
of elements of [—n,n]*. Let J := {Jy,Ja,...} be a collection of sequence of
elements of [-n,n]*. (Le. each Jj is of the form (J},J2,...).) It is called a
signed partition of n if and only if the following condition hold:

e We have [1,n] = | |;5,{[7];j € Ji}-
For each member J of a signed partition J, we define
Ty := epo(Cq cT.
ieJ
Let A := (A1 > A2 > --+) be a partition of n. Then, we regard it as a signed
partition by setting

j—1
Jii=i+ Y A if A £ 0and 1< i < A
k=1
Definition 1.10 (Foot functions). Let £ = 0,1, or 2. A collection of ¢-tuple of
functions &, : [—n,n]* — {0,1} for 1 < k < £ is called a ¢-foot function of n.
We denote a (-foot function {8;}{_, as 6.

Notice that Definition 1.10 claims that & = () when ¢ = 0.

Definition 1.11 (Marked partitions, blocks and normal forms). Let £ be as in
Definition 1.10. We refer a pair ¢ = (J,d) consisting of a signed partition and
a (-foot function of n as a f-marked partition if the following condition hold:

e Foreach J€Jand m=1,...,{, we have
#{j S J75m(]) = 1}+#{] € J;577L(_j) = 1} <1l

For each J € J, we define the (-block v = v/, +vJ, € V associated to (o, .J)
as:

l
Vaa =Y (Ok(f)a; + 0k(=f)z—;) € Vi

jeJ k=1

J o E
VJ,2 = YJi;,Jjs1 € V27
j=1

where we regard y ;« Jh, = 0 whenever J* nor JJ’»“_|r1 is non-existent.
37
A {-normal form v, = V51 + Vo2 € V associated to o is defined as:

Vo1 1= E vi,l € Vi, and vy 1= E Viz e V.
Jed Jed

Definition 1.12 (Strict normal forms). A f-marked partition o = (J,4) is
called strict if and only if the following conditions hold:
1. J is obtained from a partition A\ of n;

2. We have d; = 0 and §;(j) = 0 for every j € [—n, —1];



Assume the above two conditions. If we have d;(j) = 1 for j € J, then we set
#J =" € J;j' <j} and #J = #{j' € J;j' > j}.
3. Let k < m be two integers and let J = {Jy,Ja,...}. Then, we have
017, = 0if #Jp = #Jm;

4. Let J,J' € J be a pair such that 6;(j) = 1 = 61(j’) for some j € J and
jeJ. U #J > #J, then we have

#J > #J and #J > #J'.

Conditions are not applicable when d5 or §; are non-existent. Notice that only
the first condition survives when ¢ = 0. A normal form attached to a strict
marked partition is called a strict normal form.

In the below, we refer foot funtions, blocks, normal forms..., to be the 1-
foot funtions, 1-blocks, 1-normal forms..., respectively. Moreover, we naturally
identify strict 1-normal forms and strict 2-normal forms since §, = 0 for 2-strict
marked partitions.

Theorem 1.13 (Orbit description of 9;). We have the following:

1. The set of strict 1-normal forms is in one-to-one correspondence with the
the set of G-orbits of My;

2. We have #(G\MNy1) = #lrrepW, where IrrepW is the set of isomorphism
classes of irreducible W-modules;

3. For each X € My, the group Stabg X is connected.

Remark 1.14. The original form of the proof of Theorem 1.13 (in [Ka0O6b]) em-
ploys explicit calculation using basis. In the meantime, Springer [Sp07] gives
a base-free proof (with stronger consequences). The proof given here is some-
what the mixture of the both, which the author give it basically for the sake
of completeness. Note that the closure relation of the orbit structure of M is
calculated by Achar-Henderson [AHO7].

The proof of Theorem 1.13 is obtained as a combinations of Proposition 4.4
and Theorem 8.3 by using the knowledge of the following:

Proposition 1.15 (Weak version of Theorem 1.13). We have the following:
1. Each G-orbit of My contains a strict normal form;

2. The number of elements of the set of strict marked partitions is less than
or equal to #lrrepW |, where lrrepW is the set of isomorphism classes of
irreducible W-modules.

Proof. By a result of Ohta-Sekiguchi [Se84, Oh86], the set of strict 0-marked
partitions are in one-to-one correspondence with the set of G-orbits of My via
the assignment o — Gv,. We have

C[V]¢ N C[V,] = C[V(]“,
which gives the natural projection map

‘ﬁl —>m0

10



obtained from the natural projection V; — Vi. (In fact we have C[V]¢ =
C[Vo]%. But this fact is not used here.) It follows that each orbit of 91; contains
a vector of type v = v1 @ va 5, where X is a partition of n regarded as a strict
0-marked partition in a natural way.

Consider the action of

G := Sp(2\1) x Sp(2X2) x -+ C Sp(2n),
which are embedded so that T' C G’ and V; restricted to G’ has the form

Resg Vi = P vV
E>1

such that Vl(k) is a vector representation of Sp(2\;) with T-weights +e; for
P=1+ Y A

We decompose v = Zk>1 v, where vy, = v @ v‘2]_’”‘>\ S Vlk. We regard
v‘;’i\ € N2V = Alt(VF) as a linear endomorphism on V;* which preserves the
symplectic form on V}* compatible with Sp(2);). Ohta-Sekigushi result asserts
that such identification gives an identification of Sp(?)\k)v‘;ﬁ\ and the set of
linear endomorphism on V{*¥ which preserves the symplectic form. Since vy j
can be complemented to a suitable choice of standard basis of symplectic space,
we obtain that a suitable change of symplectic basis makes vy ; into one of z;
(¢ > 0). This implies that v can be transformed into a 1-normal form which
satisfies 1.12 1) and 2).

Now we examine the orbit structure of vy + v € V¥ @ V&' under the ac-
tion of Sp(2Ax 4+ 2M\xs) for k < k. We have A\ > A\ by 1.12 1). We put
&= vi’j, +V;ﬁ;. The Sp(2Xy + 2\xs )-conjugacy class of £ is the set of nilpotent
endomorphism of V¥ @ Vlkl preserving the natural symplectic form with its Jor-
dan form (Mg, Ak, Ak Akr). If v1, = 0 or vg i = 0 hold, then 1.12 3) and 4) are
satisfied for the pair (Ji, Ji/). Hence, we assume vq ;5 # 0 # v 5 in the below.
We have

vy g, = 0,687 1y, £ 0, and €870 vy = 0,627 Ly £0

o1k € ImEF vy & ImEF/R 1 and vy € ImE# W vy 4 & Img# e+,

If #J, < #J or #J, < #J, holds, then we can regard U1,k + U1k as a part
of the standard basis of Vlk/ or V{¥ by suitable coordinate changes, respectively.
When A\p = Agr, we use this to acheive 1.12 3). When Ay > Mg/, we use this to
transform our normal form into another normal form which satisfies 1.12 4) for
the pair (Jg, Jir). Repeating these procedure completes the proof of the first
assertion.

For the second assertion, recall that lrrepW is parametrised by the set of ordered
pair of partitions (A!, \?) which sum up to n. We define two-partitions out of a
strict marked partition o as

#Jk (vi% #0)

M4+ A2 =)y, and A2 = _
Bk g b max{#Jp, Ay — #Jpr; K >k > K"} (otherwise)

for each k, where the set we choose its maximal is formed only from these Jx/
and Ji» for which # and # are defined. It is clear that two sequences AL A2
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sum up to n. By 1.12 4), we deduce that
e — #Jpr < #J, (this is equivalent to #Jgr > #J)

holds for k" < k (such that # and # are defined for both Jj and Jy). It follows
that A\? is a partition. (Le. {A\?}; is a decreasing sequence.) By the symmetry
of # and # in 1.12, we conclude that ! is also a partition.

Therefore, it suffices to prove that the pairs of partitions formed by strict marked
partitions are equal only if the marked partitions are equal. (Since this gives
the injectivity of the above assignment.) For this, we assume that two strict
marked partitions o = (J,d;) and o’ = (J',6}) gives the same pair (A}, A\?) to
deduce contradiction. We can assume that J = J’ since A = A! + A\2. Hence,
their difference is concentrated in their foot function. By 1.12 3) and 4), we
deduce that the foot functions are non-trivial on J, = Jy/ if and only if

Ar #max{A3, A7 — A A # Ak # Nt < k< j}

and A\ # A,_1. Moreover, the foot functions is determined by the value of A}
if it is non-trivial. Since this system has a unique solution, we deduce o = o,
which is contradiction. Thus, the pair of partitions recovers a strict marked
partition uniquely, which completes the proof of the second assertion. O

Theorem 1.16 (Orbit structure of MNG). Let v = (a,X) = (5,4, X) be an
admissible parameter. Then, there exists g € G such that:

gsg~t €T and gX is a normal form.

Proof. Postponed to §4. O

We have a natural W-action - on [—n,n]* by setting

—j (G=4n)

siji=<—(l—-1) (j==x@G+1)) fori=1,...,n—1, and s,-j = ¢ . SN
) ) J (otherwise)
J (otherwise)

—(i+1) (j==%i) {

Using this, we define the W-action - on the set of /-marked partitions as:

=

For w e W and o = (J,8) = ({J1, J2,..., },{01,...,0¢}), we set
w-o:={w-J,w-Jo,..., 1 {w-01,...,w-d}),
where we set
w- (Ji,JE,..) = ((w- D, (w- D)3, = (w- JHw- Ji,...)

and w0y, (j) := dx(w-j). Notice that we have w-Jj, = (w-J);, and w-J, = (w-J)]
for every k, j in this action.

-

Lemma 1.17. Let o = (J,0) is a marked partition which is a W -translation of
a strict marked partition. Then, we have

C*vi, ®C* vy, C Tv,, and CXVIJ,J &) CXV‘Q{J C Tyv? for each J € J.

12



Proof. Since Ty N T; = {1}, it suffices to prove the second assertion. Let
vl = deE ve be the T-eigen-decomposition of v/. Then, we have #Z =
#J and dimT; = #J. Moreover, the weights appearing in = are linearly
independent. Hence, we have the scalar multiplications of each v¢, which implies
the result. O

Corollary 1.18 (of the proof of Lemma 1.17). Let o be a strict marked parti-
tion. Let w € W. Then, we have Vy,.,o € Gv,. O

1.4 Structure of simple modules

We put Ty := T x (C*)**. Let a € Ty. Let Z¢, F, and N¢ be the set of a-fixed
points of Z;, Fy, and 9, respectively. Let u® : F' — N} denote the restriction
of py to a-fixed points.

We review the convolution realization of simple modules in our situation. The
detailed constructions are found in [CG97] 5.11, 8.4 or [Gi97] §5. For its variant,
see [Jo98].

The properties we used to apply the Ginzburg theory are: 1) Z, = Fy xm, Fy; 2)
F is smooth; 3) py is projective; 4) R(G¢) C K% (Z,) is central; and 5) He(Z)
is spanned by algebraic cycles.

Let C, be the quotient of C®z R(G/) or C®z R(Ty) by the ideal defined by the
evaluation at a. The Thomason localization theorem yields ring isomorphisms

Co ®r(ay) K (Z0) > Ca ORr(auiay) K D(28) > Co @pery KT4(Z8).
Moreover, we have the Riemann-Roch isomorphism
a\ ~v a RR a ~ o a a
Co @r(ry) KT (2)) = K(Z) = Ho(Z}) = Ext®(u{Crp, niCryp).

By the equivariant Beilinson-Bernstein-Deligne (-Gabber) decomposition theo-
rem (c.f. Saito [Sa88] 5.4.8.2), we have

Mché’ = @ L@,X,d X IC((O)v X)[d]’
oCMng,x,d

where O C NY is a G(s)-stable subset such that p® is locally trivial along O, x
is an irreducible local system on @, d is an integer, Lo y,q is a finite dimensional
vector space, and IC(Q, x) is the minimal extension of y. Moreover, the set
of O’s such that Lo y,q # 0 (for some x and d) forms a subset of an algebraic
stratification in the sense of [CG97] 3.2.23. It follows that:

Theorem 1.19 (Ginzburg [Gi97] Theorem 5.2). The set of simple modules of
K% (Z,) for which R(Gy) acts as the evaluation at a is in one-to-one corre-
spondence with the set of isomorphism classes of irreducible Gy(a)-equivariant
perverse sheaves appearing in p1$Cpg (up to degree shift). O

2 Hecke algebras and exotic nilpotent cones
We retain the setting of the previous section. We put G = Gy, G = Tj,

G :=Fy, p = o, Z := Zs, and 7 := m9. Most of the arguments in this section
are exactly the same as [CG97] 7.6 if we replace G by G x C*, 915 by the usual
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nilpotent cone, u by the moment map, F' by the cotangent bundle of the flag
variety, and Z by the Steinberg variety. Therefore, we frequently omit the detail
and make pointers to [CG97] 7.6 in which the reader can obtain a correct proof
merely replacing the meaning of symbols as mentioned above.

We put Az := Z[qi', qf', qi '] and A := C ®z Az = ClaZ', o', a3 ']

Definition 2.1 (Hecke algebras of type C,gl)). A Hecke algebra of type C’r(Ll)
with three parameters is an associative algebra H over A generated by {T;}*,
and {eh}xex*(T) subject to the following relations:

(Toric relations) For each A, u € X*(T), we have e* - e# = e*# (and € = 1);
(The Hecke relations) We have

(T; + 1)(T; —q2) =0 (1 <i<n)and (T, + 1)(T, + qoq1) = 0;
(The braid relations) We have

T,T; = T;T; (if |i — j| > 1), (TnTn—1)? = (Tn—1Ty)?,
T Ty = Ty TiTi (if 1 <i<n—1);

(The Bernstein-Lusztig relations) For each A\ € X*(T), we have

A_siA .
A s J (I —a2) a5 (i £n)
Tie" — T = { (1+qOQ1e);n(Sol+q1)eE" (6)‘ . es“’\) (Z _ n) .

Remark 2.2. 1) The standard choice of parameters (to,t1,t,) is: 13 = qo, t2 =
—qoqi, and t,(to — ty ') = (qo + qi1). This yields

1—12 —t,(tg — tg e

A Sn A _ n A SnAY.
T,e" — e’ T, = e r— (eM —e®n?);

2) If n = 1, then we have T3 = T, in Definition 2.1. In this case, we have
H = Clqf'] ®c Ho, where Hy is the Hecke algebra of type Aﬁ” with two-
parameters (qo, q1);

3) An extended Hecke algebra of type B,(ll) with two-parameters considered in

[En06] is obtained by requiring qp+q; = 0. An equal parameter extended Hecke

) is obtained by requiring qo+q; = 0 and q? = q2. An equal

algebra of type By(,1
parameter Hecke algebra of type C,(Ll) is obtained by requiring q2 = —qpq; and
(I+qo)(1+ai)=0.

For each w € W, we define two closed subvarieties of Z as
Zew =7 1(04) and Zyy = Z<,,\7 1 (0y).

Let A € X*(T). Let Ly be the pullback of the line bundle G xZ A=! over
G/B to Fy. Clearly £, admits a G-action by letting (C*)? act on L) trivially.
We denote the operator [pLy ®“ e] by e*. By abuse of notation, we may
denote e*(1) by e* (in K%(Z)). Let qo € R({1} x C* x {1} x {1}) € R(GQ),
a1 € R{1}x{1}xC*x{1}) C R(G),and g2 € R({1} x{1}x{1} xC*) C R(G)
be the inverse of degree-one characters. (I.e. qa corresponds to the inverse of
the scalar multiplication on V5.) By the operation e* and the multiplication by
qi, each of K¢(Z<,,) admits a structure of R(T)-modules.

Each Z<,\Z<,, is a G-equivariant vector bundle over an affine fibration over
G/ B via the composition of 7 and the second projection. Therefore, the cellular
fibration Lemma (or the successive application of localization sequence) yields:
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Theorem 2.3 (c.f. [CGI7] 7.6.11). We have

K9Z<w)= @ R@[0z,)
vEW;0,CO0,

For each i = 1,2,...,n, we put Q; := w~1(0,,). We define T, := [Og,] for
eachi=1,...,n.

Theorem 2.4 (c.f. Proof of [CG97] 7.6.12). The set {[Oz_,]),T;,e*1 < i <
n, A € X*(T)} is a generator set of KG(Z) as Ag-algebras.

Proof. The tensor product of structure sheaves corresponding to vector sub-
spaces of a vector space is the structure sheaf of their intersection. Taking
account into that, the proof of the assertion is exactly the same as [CG97]
7.6.12. 0

By the Thom isomorphism, we have an identification
K¢ (F) = K®(G/B) = R(T) = Ag[T). (2.1)

We normalize the images of [£,] and q; (i = 0,1,2) under (2.1) as e* and q;,
respectively.

Theorem 2.5 (c.f. [CG97] Claim 7.6.7). The homomorphism
o: K%(Z) — Endpe)K°(G)
s injective. O
Proposition 2.6. We have
1. [0z.,] =1 € EndgeKC(F);

2. Tioet =(1 fqgeai)% for every A € X*(T) and every 1 <i < n;
A—an

3. Tn o 6)\ — (1 _ qoe%an)(l _ qle%an)&

l—e—9n

for every A € X*(T).

Proof. The component Z<; is equal to the diagonal embedding of F. In par-
ticular, both of the first and the second projections give isomorphisms between
Z<y and F. It follows that

[Oz]0 (L3 = Y (=1 R (p1)« (Oze, @ F3L1)]

i>0
= [R%(p1)+ (Oz, @ 55Lx)] = [LA],
which proves 1). For each i = 1,...,n, we define V¥ (i) := VI N §VI. Let

P, := B$;B U B be a parabolic subgroup of G corresponding to s;. Each V*(4)
is B-stable. Hence, it is P;-stable. We have

WQ(@z') = Gsi = (1 X P,-)Ol C G/B X G/B
The product (1 x P;)p; x VT (i) is a B-equivariant vector bundle. Here we have
GN (B x P;) = B. Hence, we can induce it up to a G-equivariant vector bundle
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V(i) on 7(Q;). By means of the natural embedding of G-equivariant vector
bundles
F=GxBV] - GxPVy=GxV,,

we can naturally identify w~!(ps,) with V*(i). Since V¥ (i) is P;-stable, we
conclude 7~ *(ps ;) = V*(i) as P-modules. As a consequence, we conclude
V(i) = ;. Let F(i) := G xB (V§/V*(i)). It is a G-equivariant quotient
bundle of F. The rank of F(i) is one (1 < i < n) or two (i = n). Let Z<,, be
the image of Z<,, under the quotient map F x F — F(i) x F(i). We obtain
the following commutative diagram:

T
E(i) <, E(i)

Here the above objects are smooth V*(i)-fibrations over the bottom objects.
Therefore, it suffices to compute the convolution operation of the bottom line.
We have Z<,, = O,, U A(F(i)), where A : F(i) < F(i)? is the diagonal
embedding. Let p; : O5, — G/B (j = 1,2) be projections induced by the
natural projections of G/B x G/B. By construction, each p; is a G-equivariant
Pl-fibration. Let £, be the pullback of G xB A\~ to F(z) We deduce

Tio[Ly] = Z(_l)i[Ri(ﬁl)*(O@i &L (Oppy ® Z3)]

i>0
. . B e)\ _ eSiA—(X@
= SR )56 <P A = [0 1P 1)
i>0
where [ekl__e:i:,ai] € R(T) = R(B) is a virtual B-module. Here the ideal sheaf

associated to G/B C F(i) _represents q[Lo,] in KG(F(i) (1 < i < n) or
corresponds to qoﬁen + qlﬁen C (’) (2 = n). In the latter case, divisors

correspondlng to qoﬁ ., and ql.C ,, are normal crossing. Thus, we have [qoliﬁn N
ai1Le,] = qoqi[Lac,]. In particular, we deduce

[QO»éen + Ohﬁven] =qo [ﬁven] +a: [[:en] —qod1 [ﬁvzen} € KG(F(TL))

Therefore, we conclude

SiA—ay;

A k3 .
A {(1 — qgze” )76 T (1<i<n)
oe =

=~

A__snA—an

(1—qoe®)(1—qe™ )= (i=n)
as desired. O

The following representation of H is usually called the basic representation
or the anti-spherical representation:

Theorem 2.7 (Basic representation c.f. [Mc03] 4.3.10). There is an injective
A-algebra homomorphism

e: H — End 4 A[T],
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defined as e(e*) := e+ (A € X*(T)) and

A_siA A sidtay

ST 5 1<i<n
E(T’Z‘)B)\ = ei—L;}M R ee)\l:elsn)\+cyn e er—eSnA ( B ) .
S TR o — (@ +a)e 5= (i=n)

Theorem 2.8 (Exotic geometric realization of Hecke algebras). We have an
isomorphism
H — Cez K9(Z),

as algebras.

Proof. Consider an assignment 9

~,_ _ a; <
xHeA@H{Tl (1— qa(e™ +1)) (1<i<n)

€ ~
Ti+ (qo +ar)e™ — (1+qoqi(e™ +1)) (i =n)

By means of the Thom isomorphism, the above assignment gives an action of
an element of the set {e*} U {T;}; on A[T]. We have

19(6’\)6“ =eMH

Ve = (T — (1 — ai A_(1_ aiw_A a; A
HT)et =T — (1 —qa(e® +1)) ) e = (1 — qee™) gy e +aa(e” +1)e
A . Si)\*Oéi A _ Afai A _ si)\fai A _ )\720@
(e - ) e (e - ) = e(T)e
1—e 1—e 1 —e 1 —e

I(Tp)et = (Tn + (o +qi)e™ — (1 + qoqi (™" + 1))) et

A SpA—Qy,

e —e
=(1 = aqoe™)(I — e ) ————— — e* + (qo +aq1)e* ™ — qoqi (e® + 1)e
_(6)\ _ esn)\fan e>\ _ 6)\70‘") N an(e)\ _ 6Sn)\*04n e)\ _ e)\72an
R 1—eon dode 1—eon 1—e
Ate€n SnA—€n Aten A—e€n
e —e e —e N
(a0t a) (e - S — e

This identifies C ®7 K (F) with the basic representation of H via the cor-
respondence e* — ¢* and T} — T;. In particular, it gives an inclusion H C
C ®z K€ (Z). Here we have T; € T; + A[T] for 1 < i < n. It follows that

C ®z K%(Z) C H, which yields the result. O
Theorem 2.9 (Bernstein c.f. [CG97] 7.1.14 and [Mc03] 4.2.10). The center
Z(H) of H is naturally isomorphic to C @z R(G). O
Corollary 2.10. The center of K&(Z) is R(G). O

For a semisimple element a € G, we define
Ha = (Ca ®Z(H) H (Cf §14)
and call it the specialized Hecke algebra.

Theorem 2.11. Let a € G be a semisimple element. We have an isomorphism
H, = C®z K(Z%)

as algebras.
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Proof. This is a combination of [CG97] 6.2.3 and 5.10.11. (See also [CG97]
8.1.6.) O

Convention 2.12. Let a = (s,q) € G be a pre-admissible element. We define
Z$ to be the image of Z* under the natural projection defined by

Z > (nga9287X0aX17X2) = (ngaQQB;XO +X17X2) €z

Let F¢ be the image of Z¢ via the first (or the second) projection. Let x4 be
the restriction of 4 to F'{. We denote its image by 919. By the assumption
qo # q1, we have ['{ = F¢, 79 = Z% and Mg = N3.

Corollary 2.13. Keep the setting of Convention 2.12. We have an isomorphism
H, = C®z K(Z%)

as algebras. O

3 Clan decomposition

We work under the same setting as in §2.

Definition 3.1 (Clans). Let a = (s, q) be a pre-admissible element such that
s€T. Let go =€e™. Weput I' := r3Z+Ty. A clan associated to a is a maximal
subset ¢ C [1,n] with the following property: For each two elements i,j € c,
there exists a sequence i = ig, 41, -.,4m = j (in ¢) such that

{log;, (s) £log;, , (s)} N{Fr2 + T, To} #0 for each 0 <k < m.

We have a disjoint decomposition
[1,7’L] = |_| c,
ceC,

where each c is a clan associated to a and C, is the set of clans associated to a.
For a clan ¢, we put n® := #c.

We assume the setting of Definition 3.1 in the rest of this section unless
stated otherwise. At the level of Lie algebras, we have a decomposition

g(s) =ta o, g(s)[or€i + o265] D g(s)[o2¢],

i < j,01,02 € {£1}, i €[1,n],0 € {£1},
o1log;(s) +o2log;(s) =0 2log;(s) =0

where = means modulo T'y. For each ¢ € C,, we define a Lie algebra g(s). as
the Lie subalgebra of g(s) defined as

@ Ce; @ @ g(s)[o1€; + 02¢5] B @ g(s)[o2¢€;],

i€c i<j€c,o1,02 € {£1}, i€c,o€ {1},
o1 log,(s) + o2log;(s) =0 2log;(s) =0

where = means modulo I'g. Moreover, we have
a(s) = P a(s)e- (3.1)

ceC,

/

In particular, we have [g(s)c,8(s)er] = 0 unless ¢ = ¢’. Let G(s)c be the
connected subgroup of G(s) which has g(s). as its Lie algebra.

18



Lemma 3.2. We have G(s) = [[.cc, G(S)e-

Proof. By (3.1), it is clear that [[ ... G(s)c is equal to the identity component
of G(s). Since G is a simply connected semi-simple group, it follows that G(s) is
connected by Steinberg’s centralizer theorem (c.f. [Ca85] 3.5.6). In particular,
we have G(s) C [[.cc, G(8)c as desired. O

We denote BN G(s)c and Y BN G(s)e by B(s)e and ¥ B(s)., respectively.
Convention 3.3. We denote by V* the image of V§ to V via the map
Vo3 (Xo® X1 ®Xo)— (Xo+X1)® Xo) €V.
Since go # g1, we have V* = V§.
For each ¢ € C,, we define

Vg = Z Va[Uléi + 0'26]'] D Va[(fgei].

i,j€c,01,02,03€{£1}
It is clear that V¢ = P ... V¢. By the comparison of weights, the g(s)c-action
on V¢ is trivial unless ¢ = c’.

Remark 3.4. Since c is not an integer and we do not use V; in the rest of this
paper, we use the notation V2. The author hopes the reader not to confuse V2
with (V@)a.

Lemma 3.5. Let O C MY be a G(a)-orbit. Let Q. denote the image of O
under the natural projection V¢ — V. Then, we have a product decomposition
@ - @ceca ©c-

Proof. Let X € V®. There exists a family {Xc}eec, (Xc € VZ) such that
X = Y cee, Xe- We have G(s)X = P e, G(5)cXc. For each of i = 0,1,

the clan ¢ € C, such that (Vl(s’qi) NV.) # {0} is at most one since clans are
determined by the s-eigenvalues of V7. Let ¢’ (i = 1,2) be the unique clan such

that (Vl(s’qi) NVei) # {0}. Let G be the product of scalar multiplications of

Vl(s’Qi) such that Vl(S’Qi) N V2 # {0}. Since the set of a-fixed points of a conic
variety in V is conic, we have (G(s)e X (C*)?)Xe = (G(58)e X Ge¢)Xe. We have
[lecc, (G(8)e X Ge) C G(a). Tt follows that

G(a)X = P G(a)Xe = P (G(5)c x Ge)Xe = EP O

ceC, ceC, ceC,
as desired. O

For each w € W, we define
Fi(w) = G(s) x " B&) (Vv nve).
Similarly, we define
Fi(w,c) = G(s)e x P& (wVT NV

for each c € C,.
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Lemma 3.6. We have F'{ = Uyew F{(w).

Proof. The set of a-fixed points of G/B is a disjoint union of flag varieties of
G(s). It follows that each point of F{ is G(s)-conjugate to a point in the fiber
over a T-fixed point of G/B. O

The local structures of these connected components are as follows.
Lemma 3.7. For each w € W, we have
w) = H Fl(w,c).
ceC,
Proof. The set V2 is T-stable for each ¢ € C,. Hence, we have
Fi(w) = G(s) x" PO (VT NV 2 G(s) x PO (P (VT nve)).
ceC,
Since we have G(s)/B(s) = [[cec, G(5)e/B(5)e, we deduce
G(s) x PO (vt nve) = ] Gs)e x PO (wVH nVEnve).
c’€Cq
Here the RHS is isomorphic to
Fi(w,c) x H G(s)e' /" B(s)e
c#c’
Gathering these information yields the result. O
We define a map “u? by
Wul s FO(w, ) = G(s)e x P& (wVF NVE) — V.
Definition 3.8 (Regular parameters). A pre-admissible parameter (a, X) is

called regular iff there exists a direct factor A[d] C (u%)+Cre, where A is a

simple G (a)-equivariant perverse sheaf on 9% such that suppA = G(a)X and
d is an integer.

We denote by R, the set of G(a)-conjugacy classes of regular parameters of the
form (a, X) (X € M9).

Proposition 3.9 (Clan decomposition). For each w € W, we have

/”'+|F“(w H Y.

ceCq
In particular, every irreducible direct summand A of (ui)*(cpi 18 written as an
external product of G(s)-equivariant sheaves appearing in (ng)*CFﬂw}c) (up
to degree shift).
Proof. The first assertion follows from the combination of Lemma 3.5, Lemma
3.7, and the definition of 1. We have Cpa = EBFa (w)CFs Cra(w)- A direct

summand of (14 ).Cra is a direct summand of (%)« (Cpi(w) for some w € W.
Since

(Mi)*(CFi(w) = K ( ,LLC) (C F¢(w,e)»

the second assertion follows. O
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We put Ge := Sp(2n°®) and s. := exp(D_,c.(log;(s))e;) € T. We have
embeddings
5= H S¢ € H Sp(2n°) C Sp(2n),

ceC, ceC,

induced by the following identifications:

M%Z%@JCGEQO@ B el =g (3.2)

i€c a =016 + 0265 #0
01,02 € {£1},4,5 €c

It follows that G(s)c = Ge(Se) © Ge in general.

Let V(c) be the 1-exotic representation of G.. We have a natural embedding
V& C V(c) of G(s)c-modules. (The G(s)c-module structure on the RHS is given
by restriction of G-action.)

Let v = (a,X) be a pre-admissible parameter. We have a family of pre-
admissible parameters vg := (s¢, ¢, Xc) of G¢'s such that s = [ s¢, X = ®cXo.

We denote
=TI »
ceC,

and call it the clan decomposition of v. Let W, := [] N¢ . (T)/T. By

Lemma 3.7, we conclude that

U Fe(w) c Fe (3.3)
weW,

ceC,

is the product of the F¢’s obtained by replacing the pair (G,v) by (G, vc) for
all c € C,.

Corollary 3.10. Let v = (a,X) be a pre-admissible parameter. Then, it is
regular if and only if ve is a reqular pre-admissible parameter of G for every
cecC,.

Proof. Let Wy := Ng(5)(T)/T C W. We have a natural inclusion Wy C W,.
Here we have
pi= ] mlre),
weW /Wy

where we regard W/Wy C W by taking some representative. For each w € W,
there exists v € W, such that *V+ NV = *V+ N V2 C V¢ Moreover, we can
choose v so that “B(s). = YB(s). holds for each ¢ € C,. As a consequence,
all F{(w) are isomorphic to one of F¢(w) (w € W,) as G(a)-varieties, together
with maps p% | F(w) tO Ve. Therefore, v is regular if and only if an intersec-

tion cohomology complex with its support G(a)v (with degree shift) appears in
(M?k)*(CFi(w) for some w € W,. Hence, Proposition 3.9 implies the result. [

Corollary 3.10 reduces the analysis of the decomposition pattern of (% ).C F
into the case that v has a unique clan.
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4 On stabilizers of exotic nilpotent orbits

We retain the setting of §2.

Lemma 4.1. Let H be an algebraic group and let X be an algebraic variety with
H-action. Let H = H.H, be a Levi decomposition of H with H, its reductive
part. If Staby, x is connected for v € X, then so is Stabyx.

Proof. Assume to the contrary to deduce contradiction. Let h € Stabyx be an
element which is not in the identity component. Let h = h.h, € H,.H, be its
Levi decomposition. For some k > 1, we have h* € (Stabgz)°. This implies the
existence of g € (Stabyz)° which satisfies h* = g*. Let g = g,.g, be the Levi
decomposition. We have H, < H, which claims h* = g*. Replacing h by g~ 'h,
we further assume h* = 1. Then, the assumption implies h,, # 1. Moreover, we
have h* € (Staby,z)° = Staby,z. Consider the map

Staby,x > u s (WL uhF=1) - (b 'uh,)u € Staby, .

By a Lie algebra calculation using the eigenvalues of h,., the image of this map
is (Stabg,z)", the h,-fixed part of Stabg,z. Here simple calculation shows
hk € (Stabg,x)". Thus, we can adjust h by some element of (Stabg,z)"
to assume h* = 1. Since an element of finite order is necessarily semisimple,
we conclude that h = mh,m~!, where m € H,. This gives an element of
Staby, x — (Stabg, x)°, which contradicts the initial assumption of this proof.
As a consequence, we deduce the result. O

The following result is not exactly the same as the original, but we can easily
deduce it from the proof:

Theorem 4.2 (Igusa [Ig73] Lemma 8). Let A = (A\y > Ao > ---) be a partition
of n. We regard it as a 0-marked partition. Then, the reductive part of Stabgv ),
18

Ly := Sp(2n,C) x Sp(2n2,C) x -+,

where the sequence (ni,na,...) are the number of \;’s which share the same
value. Moreover, we have

Res?, Vi = @ V(i)*™,
i>1

where V (1) is the vector representation of Sp(2n;) with trivial actions of Sp(2n;)
(U #1). 0

Corollary 4.3. Keep the setting of Theorem 4.2. Then, we can choose mazimal
torus of Ly inside T.

Proof. Let J be the signed partition corresponding to A\. By Lemma 1.17, we
have C* C Stabr, v’ for each J € J. It follows that Ly N7 contains a torus of
dimension (3,5 n), which implies the result. O

Proposition 4.4. Let X € My. Then, Stabg X is connected.
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Proof. Let X = (Xo @ X1) ® va,\, where A is a partition of n regarded as
a 0-marked partition. By Theorem 4.2, it suffices to show that the action
of Stabgva y on (X @ X;) has connected stabilizer. Let L U, be the Levi
decomposition of Stabgva x. By Lemma 4.1, it is sufficient to show that the
stabilizer of Ly on (X ® X1) is connected. By Theorem 4.2, it suffices to prove
that the G-stabilizer of finite set of elements in V; is connected. By a repeated
use of Lemma 4.1, it suffices to prove that the G-stabilizer of one element in V;
has Sp(2n — 2) as its (reductive) Levi factor. We denote the element v € V;
and fix a symplectic form on V7 which is preserved by G. Then, it is easy to see
that Stabgv preserves Cv, the compliment space v+ of Vi with respect to the
symplectic form. Thus, its Levi component is given as a subgroup of

C* x Sp(2n —2) = (C* x GL(2n — 2,C) x C*) N Sp(2n) C GL(V1),

which fixes v. (Here the middle group is the Levi component of GL(V;) which
preserves a partial flag {0} C Cv C v+ C V;.) Therefore, it is Sp(2n — 2) as
desired. 0

Remark 4.5. Springer [Sp07] contains an explicit description of the G-stabilizer
of each strict normal form. As is seen easily from the proof of Proposition 4.4,
it is not hard to write down the G-stabilizer of a point of My assuming [Sp07].

Corollary 4.6 (of the proof of Proposition 4.4). For each X € Ny, the reductive
part of Stabg X is a product of symplectic groups. O

Corollary 4.7. Let (a,X) = (s,4,X) be a pre-admissible parameter. Then,
(StabgX) (s) is connected.

Proof. A Levi decomposition LxUyx = StabgX is preserved by the a-action by
requiring @ € Lx. Since a fixed part of a unipotent group is again unipotent,
we can forget about the unipotent part. Here we have Lx = GNStabgX. Since
Lx is a product of symplectic groups, the Steinberg centralizer theorem asserts
that Lx(s) is connected as desired. O

A by-product of the above argument is the following:

Theorem 4.8 (Refined form of Theorem 1.16). Let v = (a, X) = (s, 7, X195 X3)
be an admissible parameter or a = ag. Then, we have a clan decomposition

v = H Ve = H(Sca(zXc)

ceC, ceC,
with the following properties:
e Fach v is an admissible parameter;

e There exists g € G such that:

gsg~t € T and each gXc is a strict normal form.

Proof. If a = ag, then we have 91§ = 9. Hence, the result reduces to Proposition
1.15 1).
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Thus, we assume that a is admissible. Since the admissibility condition
depends only on the configuration of ¢, the clan decomposition preserves admis-
sibility. Hence, it suffices to prove the case that ¢ = [1,n] is the unique clan of
C,. Then, two distinct eigenvalues t1,ts of s on V; satisfies

tits or t1/te = ¢§*, where |m| < 2n.

It follows that at least one of gg or ¢; does not appear as a s-eigenvalue of V;
by the admissibility condition. Therefore, we can assume (s — ¢1)X; = 0 by
swapping the roles of gy and ¢; if necessary.

Let us take G-conjugate to assume that X = v, for a strict marked partition
o= (J, g) By the description of the G-stabilizer of v,, we deduce that we can
choose a maximal torus of Stabgv, inside of T. By Lemma 1.17 and the fact
v, is a strict normal form, we deduce that a (possibly disconnected) maximal
torus of Stabgv, is taken inside T'. Therefore, we conclude that (a,v,) is a
strict normal form after taking conjugate of a by the Stabgv,-action (or the
Stabgv,-action). O

Corollary 4.9. Let a = (s,4q0,¢1,92) be an admissible element. If C, consists
of a unique clan [1,n], then we have either Vl(s’q“) = {0} or Vl(s’ql) = {0}.

Proof. See the second paragraph of the proof of Proposition 4.8. O

5 Semisimple elements attached to G\9%

We keep the setting of the previous section.

-

Let o := (J,9) be a strict marked partition. Let A = (A > Ag > --+) be the
partition of n corresponding to J = {Jy, Ja,...}.

We fix a sequence of positive real numbers vo,71,...,7v, > (n + 1)v such
that

{vi+7.7 =N T +2Zy)=0 (5.1)

holds for every pair of (not necessarily distinct) numbers in [0, n].

Remark 5.1. Our choice of {7;}r and « are possible since C is an extension of
the field Q(g2,+/—1,7) with infinite transcendental degree.

We define a semi-simple element s, € T as follows:
e If 1|5, = 0, then we set log; s, =y — jy for each j € J;

e If 61(jo) = 1 for jo € Ji, then we set log; s, = 70 — (j — jo)7 for each
j € Jg.

By the definition of strict marked partitions, the choice of jg is unique for
each J € J. Hence, s, is uniquely determined. We put a, := (s,,€%,1,¢7) € T.

Lemma 5.2. In the above setting, we have a,vy = Vg .

Proof. 1t suffices to prove (s,,e7,1,e¥)vJ = vJ for each J € J. Let J = Jj.

g
Then, VLQI,kO' is a sum of y; ;41 for 4,7+ 1 € Jj, which has s,-eigenvalue

eVe=iv=(ve=(i4+1)7)) — o7,
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Hence, we have s,,vi’“a = e”vi’;. Moreover, we have s,x; = e"z; for every

i € Jy. In particular, we have s,v;’ = e’mvl‘]ﬁ,. These calculations imply the
desired result. O

Fix a real number r > 0. We define D, € T to be

0 (log; s¢ # 70)
log; D, =
08 {r(#Jk) (i € Jk 2 Jjo,61(jo) = 1)

Consider a parabolic subgroup P, of G(s,):

Py :={g € G(s,); lim Ad(D})g € G(s5)}.

It is well-known that P, is a parabolic subgroup of G(s,). Let w, be the shortest
element of W such that
(woR*,D,) < 1.

It is straight-forward to see
Y"BNG(sy) C Py.
Lemma 5.3. For a strict marked partition o, we have vy € Vo N @oy+,

Proof. By Lemma 5.2, it suffices to prove v, € “oV+. The definition of w,
implies that

1. x; € “o VT if and only if a) D,(¢;) < 1 or b) D,(¢;) =1 and i > 0;
2. yi; € YoVt if and only if a) D,(e; —€;) <1 or b) Dy(e; —€¢j) = 1 and
€ —¢€; € RY.

Since vi, is sum of x; with D,-eigenvalue < 1, we have v, , € wo Y+, The
vector vy, have D,-eigenvalue 1. By construction, a strict normal form is
contained in V*. There, we conclude va , € YV which completes the proof.

O

-

Proposition 5.4. Let o = (J,8) be a strict marked partition. Then, we have
an inclusion
P,v, C Vi NWoyt,

which is dense open.

Before giving the proof of Proposition 5.4, we count the set of weights we
concern in its proof:

Lemma 5.5. Keep the setting of Proposition 5.4. Then, the set ¥(V% NWoy+)
is given by the following list:

1. €, —€;41 foreachi,i+1e JeJ;
2. €iyjo — €itjr+1 if the following conditions hold:

e i+ jo,J0 € Ji, and i+ j1 + 1,j1 € Jyr for some k, K';
e 01(jo) =1 =161(j1), and #Jx > #Ju;
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3. ¢;, for each jo € Jy, such that §(jo) = 1.

Proof. In this proof, we assume all integer index (which are a priori not neces-
sarily positive) to be positive. By the choice of the sequence {vj }«, we have

| (S0, €5 +€j) | > e 2™ min{e? % kK € [1,n]} > €7

for each j,j’. It follows that weights of the form €; + ¢; does not belong to
U (V). We examine the assertion =£e;,€; — € € U(V% N V+) by the case-
by-case analysis. We have three cases:

(Case j,j" € Jx) We have ¢; — €; € ¥(V?) if and only if

(ej — €0, 86) = el =97 — o7
Hence, we have 5/ — j = 1. Hence, we put i := 5,57/ = i+ 1. We have
(€; — €i+1, Dy) = 1 < 1, which verifies the first part of the assertion.

(Case i € Ji, # Jn D j) By (5.1), we deduce that

(ej — €1, 80) € €"

if and only if j,5" € Ji or §1(Ji) = {0,1} = 61(J,,) holds. We choose jo € Ji

and j; € Jp, such that §;(jo) = 1 = §1(j1). We write j = i+ jo and j' := i’ + j;.

Then, we need L
(€itgo = ity 50) = el T = ¢,

This happens if and only if #/ = ¢ + 1. By the definition of D, we have

(€itjo — €itjut+1,Dy) <1

=

if and only if #.Jp > #Jp. Since we assume (J,0) to be a strict marked
partition, it follows that #.Ji # #Ji by 1.12 4). This verifies the second part
of the assertion.

(Case j € Ji) If ¢j € U(V?) or —e; € ¥(V), then we have (s,¢;) = €7
or e~ 7, respectively. By (5.1), this forces ¢; € U(V?) and 61(Jx) = {0,1}.
Let jo € Ji be such that 01(jo) = 1. Put j = i + jo for some i € Z. Then,
we have (€4, Dy) = €777 = €% if and only if i = 0. Moreover, we have
(€jo, Do)y =1 <1 and jo > 0, which verifies the final part of the assertion. [

Lemma 5.6. The group P, satisfies the following conditions:
1. P, =TU, C B, where U, is a unipotent subgroup of G;

2. The Lie algebra u, of U, contains a root subspace g, C g if and only if
a = €; —€jr, where j, j' are as follows:

e jcJ,# Jiw >y for somek,k';
e There exists jo € Jx and j1 € Ji such that 61(jo) =1 =061(j1);
e j—jo=j —j1andj<j'.

26



Proof. Let L, be the semisimple Levi component of L, which contains T'. We
have Lo C (,,, ez G(Dg'ts5?). Each G(Dj''s;'?) is connected by Steinberg’s
centralizer theorem. Thus, we have L, = T if we have o(D}"*s7'2) # 1 for each
a € R and generic choices of mq,my. This is equivalent to a(D,) # 1 or
a(ss) # 1 holds for each o € R since R is a finite set. In the below, we assume
all integer index to be positive. By (5.1), we have (¢; — ¢;, s,) = 1 if and only if

Jo € {£1} s.t. gi € Ji # Ji 2 0j and 61(J) = {0,1} = 61 (Jr), (5.2)
where Ji, Jir € J. By 1.12 4), we deduce that
(€iy Do) # (€j, Do) for each i € Jy,j € Jyr.

Therefore, we deduce L, = T.

Since T" normalizes the unipotent part of P,, we describe all one-parameter
unipotent subgroup of G belongs to P, in order to prove the assertion. This is
equivalent to count the set of one-parameter unipotent subalgebra g, C g which
commutes with s, and has eigenvalue < 1 with respect to D,. We examine the
case a = ¢; — €; with the assumption (5.2) for ¢ = +1. (This last part of
the assumption is achieved by swapping the roles of ¢ and j if necessary.) Fix
jo € Jr and j1 € Jis such that 61(jo) = 1 = 01(j1). Then, the definition of s,
further asserts i — jo = j — j1. In order that D, has eigenvalue < 1, we need to
have

<€i7DU> < <€j7D0>7

which is equivalent to #Jy > #Jx. This implies #.J, > #Jp by 1.12 4). It
follows that ¢ < j, which verifies the second condition. Since o = ¢; —¢; € RT
in this case, we also deduce the first condition. O]

Proof of Propositon 5.4. Since P, C G(s,), we have P,v, C V% . Since the
reductive part of P, is equal to T, we deduce P,v, C “2V*t. Therefore, it
suffices to prove the following equality at the level of tangent space

Ty, (Psvy) 2 povy = Vie nWoyt (5.3)

o

in order to deduce the assertion. Consider a T-weight decomposition v/ =

> pe=, Vs, where J € J and 0 # vg € V[3]. Since each = consists of linearly
independent weights of X*(T;) or X*(T'), we deduce

tv! = Z Z Cug.

k>1B€=s,

It is easy to see that (J,~, =, is precisely the set of T-weights described in
Lemma 5.5 1) and 3).

In the below, we apply the action of u, (c.f. Lemma 5.6) to fill out each V[3]
for each T-weight [ described in Lemma 5.5 2). Such a [ is written as €; — ¢,
where i € Ji,j € Ji are as in Lemma 5.5 2). By explicit calculation, we have
a non-zero element of g of weight €,,4j, — €m+;, which satisfies

Ve = Ym—1+jo,m+j1 = Ym+jo,m+j1+1 (m+jot+1e Jk’)
mVvYo — . *
Ym—14jo,m+j1 (m +jo+1 g Jk')
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for each m + jo € Jys. (Here we implicitly used #.J; > #.Jjs, which is deduced
from #J, > #Jir by 1.12 4).) It is clear that &, € p,. We have

Z Cgm Vo = Z V[Em*lJrjo - €m+j1]'

meZym~+j1€Jy meEZym~+j1E€Jy

By summing up for all possible pairs (Ji, Ji/) € J, the set of T-weights appearing
in the RHS exhausts the T-weights described in Lemma 5.5 2). O

Corollary 5.7. Keep the setting of Proposition 5.4. Let v = (a,v,) = (s,q,Vs)
be an admissible parameter. Then, the natural embedding

Py(s)ve CVEN VI Q%o VT
is dense open.

Proof. The assertion follows merely by taking a-fixed part of (5.3) in the proof
of Proposition 5.4. O

6 A vanishing theorem

We retain the setting of the previous section.
Let v = (a,X) be a pre-admissible parameter. Associated to v, we have a
subvariety
p H(X)Cc F=GxBvT.
By construction, it is immediate to see that the image of p=(X)® under the
projection to the base space G/B is an isomorphism. We denote this image by
E%. We may also write Ex instead of £ when a = (1,1, 1,1).

Theorem 6.1 (Cohomology vanishing theorem). Let v = (a, X) be an admis-
sible parameter or a = ag. Then, we have

Hyi11(E%) =0 for every i =0,1,....
Moreover, we have an isomorphism
ch: Coy K(EL) — Ho(EL).

Remark 6.2. 1) The map ch in Theorem 6.1 is the homology Chern character
map. (See e.g. [CGI7] §5.8.) It sends the class of the (embedded) structure
sheaf O¢ for a closed subvariety C' C £% to

ch[O¢] = [C] + lower degree terms € Ha gimc(ES) ® -+ @ Ho(E%).

2) The first part of Theorem 6.1 is valid even for integral coefficient case when
G(s) € GL(n,C) (c.f. [AHOT7])®2. Here we present a proof along the line of
earlier versions of this paper, with a slight enhancement informed to the author
by Eric Vasserot.

2Previous versions of this paper also contain such a result. The author decided to drop it
since [AHO7] contains slightly stronger statement and a better proof.
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6.1 Review of general theory on cohomology vanishing

In this subsection, we recall several definitions and results of [KL87] and [DLP&8]
which we need in the course of our proof of Theorem 6.1.

Definition 6.3 (a-partitions). A partition of a variety X over C is said to be
an a-partition if it is indexed as Xy, X5, ... X} in such a way that X; U ... U AX;
is closed for every i = 1,..., k.

Theorem 6.4 ([DLP88] 1.7-1.10). Let X' be a variety with a-partition X1, Xa, ..., X.
If we have
Hyi11(Xm) =0 for every i =0,1,...

for each m =1,... k, then we have
Hyi11(X) =0 for everyi =0,1,....

Moreover, we have

> dim Hy(X) = ) dim Ha (&),

i>0 m>1i>0

Theorem 6.5 ([DLP88] 1.5). Let m: & — X be a vector bundle over a smooth
variety X, with a fiber preserving linear C*-action on € with strictly positive
weights. Let Z C £ be a C*-stable smooth closed subvariety. Then, w(Z) is
smooth and Z is a subbundle of £ restricted to w(Z).

Theorem 6.6 ([KL87] Lemma 4.4). Let Z be a smooth variety with G,,-action.
Assume that some t € G, satisfies

ZCm = 2t = {lim t"z € ZU{D};Vz € Z}.
(Le. every point of Z converges to a point of Zt.) Let X C Z be a (possibly
singular) subvariety such that X®m = ZEm  Then, the two assertions
Hyi11(Z2) =0 for every i =0,1,..., and Hai11(X) for every i =0,1,...

are equivalent. Moreover, we have

> dim Hy;(2) = dim Hy;(X).

i>0 i>0

Remark 6.7. Notice that in [KL87], the statement is given by topological K-
groups (with complex coefficient). Here we identify them with our odd-part of
the Borel-Moore homology by the isomorphism

K("(2) = P Hairn(2),
i>0

which is valid for smooth varieties.
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6.2 Proof of vanishing theorem

Proposition 6.8 (Weak version of Theorem 6.1). Let (a,X) = (s,4,X) be
an admissible parameter or a = ag. Then, we have some semi-simple element
sx € G(s) with the following properties:

e sx has only positive real eigenvalues on Vi;

e We have
Hyi 1 1((E%)°X) =0 for every i =0,1,...;

FEach connected component of (£%)°X is smooth projective;

e We have an isomorphism
ch: C®y K((E%)™) — Hy((E%)%X).

Before giving the proof of Proposition 6.8, we present a proof of Theorem
6.1 for (a, X') assuming Proposition 6.8 for an element (a, X).

Proof of Theorem 6.1 for (a,X). Let & ,&,... be a sequence of all connected
components of (£%)°X. For each &, we set

By :={yB € G/B; Nlim sNgB € &}

Let
P:={ge G’;A}im Ad(s¥)g € G}

be a parabolic subgroup of G. It is well-known that

lim Ad(sY)g € G(sx)

N—oo

for g € P. Tt follows that each By intersects with a unique P-orbit in G/B. In
particular, we can assume that the sequence By, Bo, ... forms an a-partition of
Ug>1 Br € G/B by rearranging the sequence if necessary. By regarding each
P-orbit of G/B as a vector bundle over P/B, we can regard By as a vector
bundle over & by restriction. By Theorem 6.5, we deduce that (Bx N E%) is a
vector bundle over &, hence we have K (&) = K(Br, NEY).

We have obvious decomposition

£ =[] nBy).

k>1

This decomposition is an a-partition.
For the first assertion, it suffices to prove that

Hy;i11(&) =0 for every i =0, 1,. ..
for each k. For the second assertion, it suffices to prove isomorphisms
ch: C®y K(E) — Ho(&)

for each k, since the Chern character map commutes with the localization se-
quence and pullback along the fibers of vector bundles. (Thom isomorphism for
K-theory.) Both assertions follow from Proposition 6.8. O
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The rest of this section is devoted to the proof of Proposition 6.8.
The natural projection induces an isomorphism (g1 (X)®)(sx:0x) = (£4.)sx
for every ¢x € G2, such that sx X = JxX. We have

(CL,X) = (S,(T?X) = H (Sca‘j,Xc)'
ceC,

By the same argument as in the proof of Corollary 3.10, each connected com-
ponent of p~1(X)? is a product of connected components of

£¢=? < Sp(2n°) /(B N Sp(2n°)).

Therefore, by the Kiinneth formula, it suffices to prove the assertion when C,
consists of a unique clan [1, n]. By Proposition 4.8, we further assume that s € T,
and X = v, for a strict marked partition o = (J, 5) by taking G-conjugate if
necessary.

Now we take (sx,7x) := a,. Let A be the Zarkiski closure of the subgroup
of T generated by a and a,. We put F4(w) := G(A) xBA) (VAN wVt) for
each w € W. We have |J,,cp F(w) = (G xB V)4, Consider the map

vt s FA(w) = G(A) x B (VAN vt — vA NV,
where v € Ng(a)(T)/T C W is a unique element such that B(A) C " B.

Lemma 6.9 (Part of Proposition 6.8). Each connected component of (E%)% is
smooth projective.

Proof. Projectivity follows from that of £x, which itself follows by Theorem 1.2
3). By Lemma 5.6 1) and Corollary 5.7, we deduce that

B(A)v, c VA

is a linear subspace. It follows that (“u4)~'(B(A)v,) is a smooth subvariety

of G(A) xBA) (VA N wy+). Hence, (“u?)'(B(A)v,) is a smooth subvariety
of F'y. Since changing v, by B(A)-action gives an isomorphic fibers, we deduce
that (“u4)~1(v,) is a smooth subvariety of F{ as required. O

Corollary 6.10 (of the Proof of Lamma 6.9). The variety (“u)~'(B(A)v,)
s smooth. O

We return to the proof of Proposition 6.8.
We prove the rest of assertions by the induction on the cardinality n(o) of
the set
N(o) :={J € J;6:(J) ={0,1}}.

Notice that this implies that we can assume Theorem 6.1 for all admissible
parameter of the form (a,v,) such that n(c) < n(¢’). If n(c) = 0, then Lemma
5.6 2) asserts that G(s,) = T. This implies that (£%)% is a union of points.
Thus, we obtained the assertion for n(o) = 0.

We prove the assertion for n(o) = k by assuming that the assertion holds
for all n(o) < k. Let J € N(o) be the member such that #J > #J’ for every
J' € N(o). Let o’ be a strict marked partition obtained from o by replacing &,
by ¢] defined as:

81(J) = {0}, and &1 (j) = 61(j) for all j € [1,n]\J.
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Let jo € J be its unique element such that d;(jo) = 1. By Lemma 1.17, there
exists t € Ty such that

lim Vv, =v, — vlJ

= V.
N—o0 i 7

By Lemma 5.6 2), every T-weights of P, containing ¢ € J is of the form
€; — €; for some j € J'. Moreover, we have P, C P,. It follows that the action
of t € T contracts P, to P,.. By Corollary 5.7, the t-action also contracts
VAN VT to

VANV N0y = VA eyt
where A’ is the Zariski closure of (a,a,) C T.

Therefore, the t-action contracts (“u4) =1 (B(A)vy) to (“u? )1 (B(A)v,).

By taking the quotient of

S = B(A)v, U B(A)ve

by Stab,;;(A)Vi{(77 we obtain an affine plane A! with contracting t-action to the
origin. Therefore, we obtain a smooth family of smooth projective varieties over
A' whose fiber over 0 € Al is 8(,40, and whose general fiber £ contracting to

5"?;,. Thus, applying Theorem 6.6 proceeds the induction for homologies. For
K-theory, moving smooth projective varieties is the same as moving all cycles
by rational equivalence. Therefore, it suffices to prove

Coy K(E)) — Hu(ED).

This is guaranteed by Theorem 6.1 for (a, v’ ), which is proved by the induction
hypothesis. Therefore, we have Proposition 6.8 for the pair (a, v,) for all strict
marked partition with fixed n(o). Hence, the induction proceeds and we have
proved Proposition 6.8 (and hence Theorem 6.1).

7 Standard modules and an induction theorem

We retain the setting of the previous section.

Definition 7.1 (Standard modules). Let v = (a, X) be a pre-admissible pa-
rameter. We define

M, := Ho(E%) and M” := H*(E%).
By the Ginzburg theory [CG97] 8.6, each of M, or MY is a H-module.

By the symmetry of the construction of varieties involved in M, x) and Hy,
we deduce M, x) = M(ad(g)a,gx) @ Haq = Haq(g)q-modules for each g € G(a).
Let sg € T(R) be an element such that

0 < {a,sqg) <1foralla € RT. (7.1)

Let @ := G(sqg) and Q := Q x (C*)3. These are subgroups of G and G,
respectively. We put Vg := V*@ and Mg = N3? C V. We have a map

no  Fo =@ x (@NEB) (VQ ﬂV+) — Ng.
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We define Zg := Fg xm, Fg.
The natural inclusion map

QxOM) (VonVh) o | Qx"PE) (Vonvvt) = Fe
weW

gives an identification of Fiy with a connected component of F*2. This equips
an action of @ on Mg, Fp, and Zg by restricting the G-actions on their ambient
spaces.
We put
He = C &7 K9 (Z,),

where the convolution algebra structure on K?(Zg) are equipped by the re-
striction of the maps p; and p; from Z — F to Zg — Fy.

Lemma 7.2. Keep the above setting. Form an increasing sequence of integers
1<n;<ny<---
by requiring that
a;(sg) < 1 if and only if i = ny, for some k.
Then, we have

1. Hg is a subalgebra of H generated by A[T| and the set

{T;; i # ny for some k};

2. For a pre-admissible parameter v = (s,q, X ) such that s € T and X € Ny,
the vector space
M = H,y(ng' (X))

174

is a Hg-module.

Proof. By the condition (7.1), we have (a+ 8,s¢q) = 1 for o, 8 € RT if and
only if (o, sg) =1 and (8, sg) = 1. This implies that the @ is generated by T
and the one-parameter unipotent subgroups corresponding to simple roots «;
(and —aq;) such that a;(sg) = 1.

The variety Fg decomposes into a product of vector bundles over the flag
varieties of simple components of ). By explicit computation, we deduce that
the vector bundles we concern are either a) the cotangent bundle of the flag
variety when the simple component is type A, or b) the variety F' for a (possibly
smaller) symplectic group which arose as a simple component of ). Moreover,
the map pq is the product of the moment maps of cotangent bundles of flag
varieties of type A and our map p (for some symplectic group).

Hence, taking account into the argument in §2, both statements are straight-
forward modifications of [CG97] §7.6 and §8.6. Thus, we leave the details to the
reader. O

Let Vi be the unique T-equivariant splitting of the map V* — V+/ Vg. If
X €V satisfies so X = X, then sg has eigenvalue < 1 on uX. Hence, we have
necessarily uX C Vy.
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Theorem 7.3 (Kazhdan-Lusztig type induction theorem). Let v = (s,q, X)
be an admissible parameter. Let P be a parabolic subgroup of G with its Levi
decomposition P = QU such that s € Q and X € Ng. If we have

Vi CukX, (7.2)
then we have an isomorphism
Indiz, M = M,

as H-modules, where M2 is in Lemma 7.2.

Remark 7.4. As we observe in the proof, one may obtain the strong induction
theorem in the sense of Lusztig [Lu02] (i.e. Theorem 7.3 without (7.2)) if we
have sufficiently nice slice instead of our £5.

The rest of this section is devoted to the proof of Theorem 7.3.

We choose sg € T(R) so that G(sg) = Q and (7.1) holds (so that we can
freely use the notation and terminology in the earlier part of this section). By
taking Q-conjugation if necessary, we assume X € V7.

Let Wg := Ng(T)/T C W. We define

W = {we W;l(w) < L(vw) for all v € Wg}.

Let w € W. Let O, be the P-orbit of G/B which contains wB. By counting
the weights, we have (VT NVg) C (VI NwVT). It follows that X € (VI NnwV+).
Hence, the map

(ExNOL) = pg' (X) 3 gB— gitB € Ex N O,

gives rise to an isomorphism (£x N O1) = Ex N Oy°. Let B~ be the opposite
Borel subgroup of B with respect to 7. We put U, := U N*“B~. Since sg
attracts points of O,,, we obtain a map

wwtgxﬂowﬁ(gxﬂ()ﬂ

by sending each point p to limy_. o sg p. We have an expression of a point
guwB € ExNOy asge @, gB € uél(X), and u € U,,. Let wg be the longest
element of W€.

Lemma 7.5. The fiber of the map 1, at gB € QB is given as
¥, (gB) = {u € gUug HuX — X € gV NV}
In particular, 1/}1;(2 (9B) is isomorphic to Staby (X).

Proof. The variety O, is a U,-fibration over O;. The condition X € guw V™

is equivalent to (gu=l¢™1)X — X € gwV*t. Moreover, U is Q-stable and

(gu=tg™")X — X € Vy, which implies the first result. Since U, = U and
g“eV+t NVy = {0}, we conclude the second assertion. O

Corollary 7.6. We have

dimH.((‘:X n Ow) = dimH.(EX N 01).
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Proof. By the proof of Theorem 6.1 and [KL87] Theorem 4.4, we have an -
partition of £x N O into an a-partition X7, Xs,... such that each term is a
smooth variety without odd-term homology. Applying Theorem 6.6 by setting
Z to be the pullback of each piece along the contraction map O, — O, we
deduce that

Z dim Ho;(X,,) = Z dim Ha; (¢, (X))

i>0 i>0
and
Hoi1(Xp) = Haiyr (Wi (X)) =0 for i = 1,2,....
for each m. Since ¥ 1 (X1), ¢, (Xz),... forms an a-partition of Ex N O,,, we
obtain the result. O

We return to the proof of Theorem 7.3.
It is easy to see that

Ex= || ExnOw)
weWe

forms an a-partition. Together with Theorem 6.1 and Corollary 7.6, this implies

dim M, = (#W?) dim M@ = (#W/#Wq) dim M. (7.3)
Moreover, the natural map

1: ME = Hy(E% N O1) — Hy(E%) = M,

is injective. Since we have

p1(Z<s, Npy H(O1)) C Oy if i # ny, for some k =1,2,...,

the map 2 is an embedding of Hg-modules. (The sequence {ny}y is borrowed
from Lemma 7.2.) Hence, we have an induced map

¢ : Indg, MP — M,
Thanks to (7.3), we have:
Lemma 7.7. Theorem 7.3 follows if ¢ is surjective. O

We return to the proof of Theorem 7.3.
For each w € W, we define

R, =[Oy € K¢(2).

<m—1}

By the construction of §2, we have
RyHo(EX NO1) C Ho(ESX NOy) C Ho(ES).
Since W€ has a partial order <@ induced by the Bruhat order, we put
Ho(%)<w = Y, R,HJ(EXNOy).
v<QuwveEW®Q
Consider the composition map

Tw t Ho(E% N O1) B8 H (2 N Oy) = Ho(E2 N O).
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Lemma 7.8. Theorem 7.3 follows if each T, is surjective.

Proof. We have

dimIm¢ > > dimgrHe(E%)<w = Y dim M = (#W)dim M.
weW weW R

Here gr stands for the graded quotient with respect to some completed order on
W which extends <g. By (7.3), we conclude that ¢ must be surjective under
this assumption. O

We return to the proof of Theorem 7.3.
We have only to prove that each 7, is surjective provided if (7.2) holds. We
have an open enbedding

(pgl(gx n (91) n ﬁ_l(ow—l)) C (p;l(gx N 01) N Zgw—l) .

Lemma 7.9. For each subset & C (ExNO1), we have (p3 () Nw1(0y-1)) =
Uit (€)-

Proof. By definition, the LHS is written as:
{(91B,92B) € p~1(X) x (Ex N O1); 97 'g2 € Bi ™' B}.

Since BNQ = “BNQ, we have Biv"'B = Buw~'U. By taking the right B-
translation if necessary, we can assume g1 € goUw. This forces g1 B to live in
the fiber of the map 1,,. This implies that g2 B is completely determined by the
data of 1,1(€) and vice versa. O

Let A be the Zariski closure of (a,sg) C T. The set uX C Vy is an A-stable
linear subspace. It follows that

S:=V/uX
has a A-stable splitting in V. Using this splitting, we define
EY ={(¢gB, X +y) e F;gBe (ExN0Oy),y €S}

Each element of Vi is contracted to 0 by the sg-action. Hence, S has a
contraction to 0 € S. This gives a contraction

0:E5 — (ExNOy)
given by collecting sg-attracting points.

Proposition 7.10. For each w € W, the intersection of w1 (0,-1) and
(F x £3) is transversal inside F>.

Proof. We prove the assertion by induction. The case w = 1 is clear. Assume
that

e w=uw's by w € WP and s = s; such that ¢(w) = £(w’) + £(s);

e The assertion holds for w';
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and prove the assertion for w. For v = w,w’, we set
£%(0) = {(g0B. X + ) € pr((F x £5) n71(0,-1))}.
We denote the fibers of the maps £~(v) — (Ex N OL°) over giB as:
F,(9B) :={(u, X +y) € gU,g ' x S;u ' X — X € gV, y € SNgu’V*t}.

Assume to the contrary to deduce contradiction. The failure of the dimension
condition of transversal intersection implies

dim Fy,(9B) > dim F,,/(¢gB) if s # s, or
dim F,,(¢B) > dim F,,/(¢B) if s = s, (7.4)

for some gB € (Ex N O7). Being transversal intersection is an open condition.
Since the intersection has a contraction to its sg-fixed point, it suffices to con-
sider the situation near sg-fixed points. Hence, we replace F,(¢gB) in (7.4) by
the following tangent space version

fu(gB) = {(&,vy) € Ad(g)u, x S;¢X € g"VT,y e SNg'VT}.

Let u¥ := Lie(U N YB). It is clear that u’X C "V since X € “V*. We have
u=u’ ®u,. It follows that

dim f,(gB) = dim Stab,, g~ ' X + dim(Vy N V) /u’X.

It is impossible to achieve the infinitesimal version of (7.4) since the dimensions
compensates each other. Hence, we have contradiction. It follows that the
intersection of w71(0,,-1) and (F x £5) must have proper dimension inside F2
under the induction hypothesis.

Now the linear independence of the normal vectors follows as an immediate
consequence of the fact that they are concentrated on the first factor and S on
the second factor (of F' x £%), or the diagonal part (of w=!(0,,-1)), respectively.

Therefore, the induction proceeds and we obtain the result. O

Lemma 7.11. The map 7, is an isomorphism.

Proof. By [CG97] 2.7.26 and Proposition 7.10, we deduce that the map 7,
induces an isomorphism

Ho((ER)") = Ho(pr(F x EX) N7~ (0y1))%). (7.5)

The spaces appearing in the homologies are given as fibrations over (£xNO7) and
(Ex NOy,) with its fiber linear subspaces of S. Here £% has larger fiber. Hence,
the map 7, itself is surjective if [Y],[071(Y)] € K4(£%) define the same cycle
up to an invertible factor for each A-stable closed subvariety Y C (Ex N Oy).
(Here we switched to algebraic K-theory thanks to Theorem 6.1 and Lemma
7.6.) This is true if the alternating sum of the Koszul complex of S is invertible
in R(A),. This is equivalent to S* = 0, which is further re-pherased as

Vi CcuX.
This is (7.2). O

We return to the proof of Theorem 7.3.
Thanks to Lemma 7.11, we have finished the proof of Theorem 7.3 by Lemma
7.8.
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8 Exotic Springer correspondence

We keep the setting of the previous section.
As we see in §1.4, we know that the action of H on M, factors through the
isomorphism

C®y K(Z2%) 2% H,(Z%) ~ H,.

Let (C[]¥) be the ideal of C[t] generated by the set of W-invariant poly-
noimals without constant terms. Let C[W]# (C[t]/ (C[])¥)) be the smash-
product, which means that its product is given as

(wl,fl)(wg,fg) = (wlwg,flwl(fz)) for wi, W € W, fl,fg S (C[f]/<(C[f]Y> .

It is clear that F% = F, Z% = Z and the restriction of the natural
projections Z — F restricts to natural projections Z — F.

Proposition 8.1. We have an isomorphism
CIW 4 (C[1/(ClUY)) = Ho(Z™)
as algebras.

Proof. We have
Ho(Z™) = Cqp ®p(a) K€ (2).

Here the RHS is written as
C®re H/(q@o=—a1 =q2 =1).

Thus, we have .
HQ(ZGO) =C ®R(G) C[W]v

where W := W x X*(T) is the affine Weyl group of type oW, (Here C is the
R(G)-module given by the evaluation at 1 € G. The algebra R(G) acts on C[W]
by R(G) = Z[X*(T)]"'.) Thus, it suffices to show

CLX™(T))/CIX*(T)]my = C[{]/(C[{Y ),

where my” C C[X*(T)]" = C[T]" is the defining ideal of the image of 1 € T
in SpecC[T]". This follows from the fact that the neighborhoods of 1 € T' and
0 € t are W-equivariantly diffeomorphic through the exponential map. O

Corollary 8.2. Keep the setting of 8.1. We have a surjection
Ho(Z*) — C[W].

Proof. Keep the notation of the proof of Theorem 8.1. We have
(Cly¥) cmi c )

where m; is the defining ideal of 0 € t. Since 0 is a W-fixed point of t, we deduce
that m; is a W-invariant maximal ideal. It follows that

Ho(Z%) = CW]# (C[Y/(C[1Y)) — CW]# (C[t]/m1) = C[W]
as desired. O]
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Theorem 8.3 (Exotic Springer correspondence). There exists one-to-one cor-
respondences between the sets of the following three kinds of objects:

e q strict marked partition o;
e the G-orbit of M given as Gv,;
e an irreducible W-module.

Remark 8.4. Our proof of Theorem 8.3 does not tell which representation is
obtained from a given orbit. Such information can be found in [Ka08], which
employs totally different argument.

Proof of Theorem 8.3. Let P be the set of isomorphism classes G-equivariant
irreducible perverse sheaves on 9. Kach I € P is isomorphic to the minimal
extension from a smooth G-orbit of 9. By Proposition 4.4, the (perverse)
sheaf I must be the extension of a constant sheaf on a G-orbit. This implies a
#P < #(G\M). Let S be the set of strict normal forms. By Proposition 1.15
1), we have #(G\MN) < #S. Hence, we have

#HlrrepW < #P < #(G\N) < #S < #lrrepW (8.1)

where the first inequality comes from Theorem 1.19 and the last inequality is
Proposition 1.15 2). This forces all the inequalities in (8.1) to be equalities,
which implies the result. O

The following is a summary of the consequences of §1.4:

Theorem 8.5 (Ginzburg, [CG97] §8.5). Let a be a finite pre-admissible element.
Let L be an irreducible H,-module. Then, there exists unique G(a)-orbit O C N
with the following properties:

1. There exists a surjective H,-module homomorphism M, xy — L for every
X eO;

2. If we have a non-trivial map M, yy — L of Hy-modules for someY € N*,
then we have Y € O. o

Theorems 8.3 and 8.5 claim that each strict marked partition o gives a
unique simple quotient of M, v,). We denote this W-module by L, or Lx for
X € Gv,, depending on the situation.

Corollary 8.6. Keep the setting of Theorem 8.3. A C[W]-module M, x)
contains L, only if X € Gv, holds. O

9 A deformation argument on parameters

We retain the setting of the previous section.

Theorem 9.1. Let a = (s,q) be an admissible element such that C, = {[1,n]}.
Then, there exists an admissible element o' := (s',q") such that

e The s'-action on Vi has only positive real eigenvalue;
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o We have ¢}, 1,45 € Rgo;
e We have equalities ML = ‘ﬁ‘i' and G(s) = G(s').
Moreover, we have an isomorphism H, = H,/ as algebras.

Proof. For each it = 1,...,n, we set x; := €;(s). We set E := {Xi,Xi_l; 1<i<
n}. We choose a representative jo € [1, n] which satisfies the following condition:

e If £1 € E, then we require x;, = £1;

o If iql/z € E, then we require x;, = iql/z,
o If :i:q; > e E, then we require x;, = :i:q_l/Q.
For each pair ¢, € [1,n], we have
i = X;i’qu”'j for some o, ; € {£1},m; ; € [1,n]. (9.1)

Since gz is not a root of unity of order < 2n, it follows that m; ; are uniquely
determined if (ki j, 7 ;) is fixed. Let N be the largest positive integer such that

1,q2,...,qY are distinct. (If g3 is not a root of unity, then we regard N = c0.)
For each pair (4,7) in [1, n], we set

I b (GRS §J7mz’,j);(9 1) and Xfi'j,x b €q 2[1 M4, +q:'? ¢E)
) {(ri;, z]>m2 3):(9-1)} (otherwise)

Notice that the all relations of the type (9.1) with m; ; = 0,%1 are contained
in I(;;. Choose two real numbers g > q5 > 1 such that ¢ and ¢4 have no
algebraic relation. Then, we set

(gg)m 0 , (xjo = £1)

ey o BT (G, = 20T
(qh) ™50 a0/ (x4, = £5 /%)
g(qh) ™o (Xjo # £1, x5 /%)

Since the relation (9.1) for (4, 4) is determined by that of (7, jo) and (7, jo) for
each pair ,j in [1,n], it follows that

(x5)rFia = (X;.)”Qujq 7 for some k; j, K ; €{E1},mij € [1,n]

for all (ki j, K} ;,mi ;) € I ). It is clear that Xf = 1 if and only if (x})? = 1.
We put s’ € T so that €(s’) = x} for each ¢ = 1,2,...,n. By the above
consideration, it follows that g(s’) = g(s). Since both G(s') and G(s) are

connected by Steinberg’s centralizer theorem, we deduce G(s) = G(s').

Since the relation of (9.1) is preserved, we have V(S %) = V(S %) If we have
X7" = gy for some i € [1,n], o; € {£1}, and k = 0,1, then we set ¢}, :== (x})7.
Otherwise, we set ¢;, (¢ = 0,1) to be an arbitrary real number which is not an
eigenvalue of s’ on V. (L.e. not equal to any of (x;)*!.) Since we have infinitely
many possibilities, we can assume g # ¢; and ¢;, > 1 in this case. This give
ve = ye by setting o’ := (s',¢"). We have q0 # q1 in all cases since qy # q1.-
Hence, the isomorphism V§ = V“ implies V“ >y,
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Therefore, as subvarieties of F' and Iy, we have equalities

Fo= |J G(s) x"PO (v nve) = | G(s) x"BE (v nve) = B
weW weWw

and M? = N7
The projection map F* — 919 are induced by the projection p. Hence, so
is Fo' — ‘ﬁi/ Therefore, we have an equality of convolution algebras

H, =~ C®z K(Z%) =Coz K(Z%) = H,,

which proves the last assertion.
Since ¢,¢5 > 1, each of ¢} (i = 0,1) is positive real. This verifies the
requirement about ¢’ as desired. O

Proposition 9.2. Let a = (s,qo0,q1,92) be an admissible element such that:
e We have C, = [1,n];
e The s-action on V1 has only positive real eigenvalue;
o We have Vl(s’(“) = {0};
e Fach q; (i =0,1,2) is a positive real number;
Let a := (s,qo,q2) and let
T2,

loga := (log s, rg,72), where g =€, g2 = e

Let A be the Zariski closure of (a) C T. Then HX(Z) is a Cla]-algebra such
that

1. The quotient of H{(Z) by the ideal generated by functions of Cla] which
is zero along log a is isomorphic to He(Z%);

2. The images of the natural inclusions C[W] C He(Z) C H{(Z) induces an
injection
C[W] — He(Z%) = Ho(Z*).

Moreover, we have
Cla] ® Ho(Ex) = HJNEx)

as a compatible (C[W], Cla])-module, where W acts on a trivially.
Corollary 9.3. Keep the setting of Proposition 9.2. We have
Miag,x) = He(Ex) = Ho(E%) = M(q,x)
as C[W]-modules. O
The rest of this section is devoted to the proof of Proposition 9.2.

Lemma 9.4. Keep the setting of Proposition 9.2. Then, A is connected.
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Proof. The group A is defined to be the quotient of C[T}] by the monomials
m such that m(s,qo,q2) = 1. Since all the values of €;(s), qo,q1 are posi-
tive real number, the condition m(s,qo,q2) = 0 and m(s", ¢}, ¢5) = 0 is the
same for all »r € R~g, where the branch of powers are taken so that all of
€(s"),q5, 45 (i =1,...,n) are positive real numbers. It follows that a monomial
m € C[Ty] satisfies m(s, qo, q2)¥ = 1 for some positive integer k if and only if
m(s,qo,q2) = 1. Therefore, such monomials form a saturated Z-sublattice of
X*(T1). In particular, its quotient lattice is a free Z-lattice, which implies that
A is connected. [

We return to the proof of Proposition 9.2.

For each m > 0, let ET,, := (C™\{0})¥™T be a variety such that i-th C*-
factor of T = (C*)¥mT acts as dilation of the i-th factor for each 1 <i < n+3.
By the standard embedding C™ — C™*! sending (z) to (x,0), we form a
sequence of A-varieties

@ZET()‘—>ET1‘—>ET2‘—>

We define ET := li_n}m ET,,, which is an ind-quasiaffine scheme with free A-
action. Since F'A is contractible manifold with respect to the classical topology,
we regard ET as the universal vector bundle of each subgroup of T. (Hence we
regard BA := A\ET in the below.)

Corollary 9.5 (of Lemma 9.4). Keep the above setting. We have H°¥(BA) =
0.

Proof. 1t is well-known that BC* is homotopic to P*°, which has no odd-
cohomology. O

We return to the proof of Proposition 9.2.
For a A-variety X, we set

Xa:=NA\ (ET x X).

We have a forgetful map
f2:X4— BA= A\ET.

Let ]D’)‘} be the relative dualizing sheaf with respect to fy. We define
HAX) = H (X4, D%).

We have the Leray spectral sequence

HY(BA)® H;(X) = HA

Zing (X).

In the below, we understand that HZ(X) := @,, H/»(X). The projection maps
pi: Za — Fa (i =1,2) equip H}(Z) a structure of convolution algebra. It is
straight-forward to see that the diagonal subsets AF C Z and (AF)a C Za
represents 1 € Ho(Z) and 1 € HZ(Z), respectively.

Lemma 9.6. The algebra HA(Z) contains Ho(Z) as its subalgebra. In partic-
ular, we have C[W] C H{(Z) as subalgebras. Moreover, the center of HA(Z)
contains H*(BA)[(AF)al C HA(Z).
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Proof. In the Leray spectral sequence
H'(BA) @ Hj(Z) = HY;, ;(2),

we have H°(BA) = 0 and H,qq(Z) = 0 (since Z is paved by affine spaces). It
follows that this spectral sequence degenerates at the level of Es-terms. More-
over, the image of the natural map +: H;(Z) — H ]A(Z ) represents cycles which
are locally constant fibration over the base BA. It follows that the map 2 is an
embedding of convolution algebras.

Multiplying H®(BA) is an operation along the base BA, which commutes with
the convolution operation (along the fibers of f2). It follows that H®(BA) —
H*(BA)[(AF)a) C HZ(Z) is central subalgebra as desired. O

We return to the proof of Proposition 9.2.
Let R(A), be the localization of R(A) at the point a. By the Thomason
localization theorem (see e.g. [CG97] §8.2), we have an isomorphism

R(A)q @p(a) K4(Z%) = R(A)a @r(a) K*(2)
as algebras. For each of X = Z, or Z%, we have a dense open embedding

KA(X) = lim K*A(BAn, x X) = lim K(A\(EA, x X)),

m m

We regard the RHS as a substitute of K (X4). It follows that the Chern character
map relative to BA gives an isomorphism

Clla)la ®cja), He (Z2%)a = Clla]]la Ocfa], He'(Z)a,

where C[[a]], is the formal power series ring of C[a] along loga. By restricting
this to the sum of vectors of finitely many degrees, we obtain

HMNZYo = HN D)o (9-2)

Since localization along Cla], commutes with the quotient by its unique maximal
ideal, we deduce the first assertion.

The isomophism (9.2) is an algebra isomorphism, it follows that 1 € C[W]
goes to 1 € Ho(Z*). It follows that each of s; goes to a non-zero element of
H,(Z*) with its square equal to 1. By construction, there exists f; € C(a)
(i = 1,...n) such that 1, fis1,... fnsn € HA(Z%), define linearly independent
vectors in He(Z%). It follows that f? € Cla]. This forces f; € Cla], which
implies that the images of 1, s1,...,s, € He(Z*) are linearly independent. This
verifies the second assertion.

The vector space HA(u~1(X)) admits an action of HA(Z). By the Leray
spectral sequence, we have

H*(BA) ® Ho(p™ (X)) = H!Nu™'(X)). (9-3)

By Theorem 6.1 and Lemma 9.5, we know that Hogq(pu~1(X)) = 0 = H°%(BA).
It follows that (9.3) is Ea-degenerate, which proves the last part of Proposition
9.2.
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10 Main Theorems

We retain the setting of §2.

Theorem 10.1 (Deligne-Langlands type classification). Let a € G be a finite
pre-admissible element. Then, R, is in one-to-one correspondence with the set
of isomorphism classes of simple H,-modules.

Proof. By definition, each element of R, corresponds to at least one isomor-
phism classes of H,-modules. Since « is finite, each irreducible direct summand
of (44 )+Crpe is the minimal extension of a local system (up to degree shift)
from G(a)-orbit Q. By Corollary 4.7, a G(a)-equivariant local system on O is
a constant sheaf. As a result, every element of R, corresponds to at most one
irreducible module as desired. O

Theorem 10.2 (Effective Deligne-Langlands type classification). Let a € G be
an admissible element. Then, the set A, is in one-to-one correspondence with
the set of isomorphism classes of simple H,-modules.

The proof of Theorem 10.3 is given at the end of this section.

As in Remark 2.2, the quotient H/(gp + ¢1) is isomorphic to an extended
Hecke algebra Hp of type Bﬁl) with two parameters. Hence, we have
Corollary 10.3 (Effective Deligne-Langlands type classification for type B).
Let a = (8,90, —q0,q2) € G be a pre-admissible element such that —q2 # qum
holds for every 0 < m < n. Then, the set A, is in one-to-one correspondence
with the set of isomorphism classes of simple H,-modules. O

Remark 10.4. The Dynkin diagram of type Y is written as:
0 1 2 n—2 n—1 n

O=—>—0 o—<—0

This Dynkin diagram has a unique non-trivial involution ¢. We define
to,tl,tn to be

t% = qg,ti = —qod1, tn(to — tgl) =qo+aq1 (cf. Remark 2.2 1)).

Let Ty, ..., T, be the Iwahori-Matsumoto generators of H (c.f. [Mc03, Lu03]).
Their Hecke relations read

(To + 1)(To — t3) = (T; + 1)(T; — t3) = (T + 1)(T,, — £2) = 0,

where 1 < i < n. The natural map ¢(T;) = T,,—; (0 < i < n) extends to
an algebra map ¢ : H — H', where H' is the Hecke algebra of type Cr(Ll)
with parameters t,,t1,to. We have t, = £v/—qoq1 and tg = £v/—qo/q1
or £1/—q1/qo- In particular, ¢ changes the parameters as (qo,qi,q2) —
(qo,q;*,q2) or (qgl, d1,92). Therefore, the representation theory of H, (a =
(s,q)) is unchanged if we replace go with qo_l, or q; with ¢ '

The rest of this section is devoted to the proof of Theorem 10.3. In the
course of the proof, we use:

Proposition 10.5. Let a be an admissible element. Let O C N be a G-orbit.
For any two distinct G(s)-orbits 01,02 C O NNY, we have

O1NOs =1
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Proof. By Proposition 4.8 and Lemma 1.17, we deduce that the scalar multi-
plication of a normal form of 91 is achieved by the action of T'. It follows that
each G(s)-orbit of M* is a Zgy(cx)2(a)-orbit. Let X € O;. Let Gx be the
stabilizer of X in G x (C*)2. Assume that O, NO; # 0 to deduce contradiction.
Since Oy is a Zgyx(cx)2(a)-orbit, we have O C O;. Fix X' € Oy. Consider
an open neighborhood U of 1 in G (as complex analytic manifolds). Then,
UX' € O is an open neighborhood of X'. It follows that X' N Oy # 0. We put
ga,x' = LieGx/ + LieZgy (cx)2(a). We have

No,/0,x' = 8/8a,x'-

Every non-zero vectors of No, 0 x+ is expressed as a linear combination of
eigenvectors with respect to the a-action. These a-eigenvectors can be taken to
have non-zero weights and does not contained in Gx-. It follows that

UX'NO; ¢ Ve,

which is contradiction (for an arbitrary sufficiently small /). Hence, we have
necessarily Oy N O; = () as desired. O

By Corollary 3.10, it suffices to prove Theorem 10.3 when C, consists of a
unique clan [1,n]. By Corollary 4.9, we can further assume Vl(s’ql) = {0} by
swapping the roles of gy and ¢ if necessary. By Theorem 8.5 (c.f. Theorem 1.19),
an admissible parameter (a, X) is regular if there exists a simple H,-constituent
of M, xy which does not appear in any M, x) such that G(s)X C G(s)X".

We apply Propotision 9.1 (if necessary) to modify a so that the assumption
of Proposition 9.2 is fillfulled. By Proposition 9.2, each M, x) has a W-module
structure given by the restriction of the H,-module structure. Moreover, the
simple W-module Lx corresponding to the G-orbit GX C M (by the exotic
Springer correspondence) appears in M, x). By Proposition 10.5, we have
GX # GX' for every X' € M® such that GX € GX’. By Corollary 9.3 and
Corollary 8.6, M, x+) does not contain Lx as W-modules. Hence, the simple
H,-constituent of M, x) which contains Ly as W-type does not occur in any

M, x+y such that G(s)X C G(s)X’ as required.

11 Consequences

In this section, we present some of the consequences of our results. We retain
the setting of the previous section.

Definition 11.1. Let v = (a, X) be an admissible parameter. Let L, be the
simple module of H corresponding to v. Let IC(v) be the corresponding G(a)-
equivariant simple perverse sheaf on 91%. (c.f. §1.4) We denote by P, the
projective cover of L, as H,-modules. (It exists since H, is finite dimensional.)

Let K be a H-module and let L be a simple H-module. We denote by [K : L]
the multiplicity of L in A.

Definition 11.2. Let a = (s,q) € T be an admissible element. We form three

|[Aq| X |Ag|-matrices
[P : L}g,u’ = [PlleV’]sz, 5V7V'XC(V)7 and IOZ,V’ = [MuvLD/]a

where xc(v) == 3,5(=1) dim H(G(a)X,C) (v = (a, X)).

v o
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Applying [CG97] 8.6.23 to our situation, we obtain:

Theorem 11.3 (The multiplicity formula of standard modules). Letv = (a, X),
V' = (a,X’) be reqular admissible parameters. We have:

(M, : L] =Y dim H*(i\IC (V) and [M" : L] = _ dim H* (i%IC(/)),
k k

where ix : {X} — NG is an inclusion. O

The following result is a variant of the Lusztig-Ginzburg character formula
of standard modules in our setting.

Theorem 11.4 (The character formula of standard modules). Let v = (a, X) =
(s,q, X) be an admissible parameter. Let B, be the set of connected components
of E%. For each B € B, we define a linear form (e,s), as a composition map

(o,5)p  R(T)

evg

R(gBg~!) ——C

Rt — {weights of gBg~'}
by some g € G such that gB € B. Then, (e, s) is independent of the choice of
g and the restriction of M, to R(T) is given as

Tr(ed M,) = > (A s)g Y _ dim Hy;(B,C).

BeB, 3=>0

Proof. Taking account into Corollary 4.7, the proof is exactly the same as in
[CGIT7] §8.2. O

The following result is a special case of the Ginzburg theory [CG97] Theorem
8.7.5 applied to our particular setting:

Theorem 11.5 (The multiplicity formula of projective modules). Keep the
setting of Definition 11.2. We have

[P:L]*=1IC" D*-'IC",
where t denotes the transposition of matrices. O

Index of notation
(Sorted by the order of appearance)

G,B,T,G(5),Uq,... §1 I,1*,To,exp §1 x,0 §1.1
R,RT K, ¢, a; §1 Vi=C"Va =A%V §1.1 ap :=(1,1,-1,1) §1.2
W,w € Ng(T), s, §1 Vy: £-exotic rep. §1.1 q,log;(s) (s €T) §1.2
WH = wHuw ! §1 Fy, e, Mg §1.1 Aq §1.2
Stabpz (z € X) §1 F,p,M,... §1.1 i, yi; €V §1.3
9,4 8(s), ta, - - - §1 G, Zu, iy §1.1 J.7;,8 §1.3
VIALVE, V™, ¥(V) §1 Ca §1.1 o =(3,6) §1.3
Ho(X),Ho(X,Z) 81 pw € Oy §1.1 Vo, Vie, VD, ... §1.3
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H#I,#T (J €T) §1.3 c,n®, T §3 S0, Do, Py 85

T, F'vg My, .. §1.4 9(8)e, G(8)c §3 E%,ch §6
G=Go,T="Ts,... §2 V4, Ve, Fe, R (w) §3 M,, MY §7
A H §2 Ra 83 sqQ,Vq,Hq,... 87
Ti,qi, e € H §2 Y §3 Ly =Lx (X €Gvy) §8
Zew, 05, T, . .. §2 Ge,V(c), Xe, ... §3 ET,BA, HA(X) §9
Ho, F,p%, M, ... §2 Ve §3 Ly, IC(v) §11
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