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Abstract

Let G = Sp(2n, C) be a complex symplectic group. We introduce a
G× (C×)ℓ+1-variety Nℓ, which we call the ℓ-exotic nilpotent cone. Then,

we realize the Hecke algebra H of type C
(1)
n with three parameters via

equivariant algebraic K-theory in terms of the geometry of N2. This
enables us to establish a Deligne-Langlands type classification of simple
H-modules under a mild assumption on parameters. As applications, we
present a character formula and multiplicity formulas of H-modules.
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Introduction

In their celebrated paper [KL87], Kazhdan and Lusztig gave a classification of
simple modules of an affine Hecke algebra H with one-parameter in terms of the
geometry of nilpotent cones. (It is also done by Ginzburg, c.f. [CG97].) Since
some of the affine Hecke algebras admit two or three parameters, it is natural to
extend their result to multi-parameter cases. (It is called the unequal parameter
case.) Lusztig realized the “graded version” of H (with unequal parameters) via
several geometric means [Lu88, Lu89, Lu95b] (c.f. [Lu03]) and classified their
representations in certain cases. Unfortunately, his geometries admit essentially

∗Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Meguro Komaba
153-8914, Japan.

†Current address: Research Institute for Mathematical Sciences, Kyoto University, Oiwake
Kita-Shirakawa Sakyo Kyoto 606-8502, Japan. E-mail:kato@kurims.kyoto-u.ac.jp

‡The author was supported by JSPS Research Fellowship for Young Scientists during this
research

1



only one parameter. As a result, his classification is restricted to the case where
all of the parameters are certain integral power of a single parameter. It is
enough for his main interest, the study of representations of p-adic groups (c.f.
[Lu95a]). However, there are many areas of mathematics which wait for the
full-representation theory of Hecke algebras with unequal parameters (see e.g.
Macdonald’s book [Mc03] and its featured review in MathSciNet).

In this paper, we give a realization of all simple modules of the Hecke algebra
of type C

(1)
n with three parameters by introducing a variety which we call the

ℓ-exotic nilpotent cone (c.f. §1.1). Our framework works for all parameters and
realizes the whole Hecke algebra (Theorem A) and its specialization to each
central character. Unfortunately, the study of our geometry becomes harder for
some parameters and the result becomes less explicit in such cases. Even so, our
result gives a definitive classification of simple modules of affine Hecke algebras
of type B

(1)
n and C

(1)
n for almost all parameters including so-called real central

character case. (See the argument after Theorem D.)
Let G be the complex symplectic group Sp(2n, C). We fix its Borel subgroup

B and a maximal torus T ⊂ B. Let R be the root system of (G,T ). We embed
R into a n-dimensional Euclid space ⊕iCϵi as R = {±ϵi ± ϵj} ∪ {±2ϵi}. We
define V1 := C2n and V2 := (∧2V1)/C. We put Vℓ := V ⊕ℓ

1 ⊕ V2 and call it the
ℓ-exotic representation. Let V+

ℓ be the positive part of Vℓ (for precise definition,
see §1). We define

Fℓ := G ×B V+
ℓ ⊂ G ×B Vℓ

∼= G/B × Vℓ.

Composing with the second projection, we have a map

µℓ : Fℓ −→ Vℓ.

We denote the image of µℓ by Nℓ. This is the G-variety which we refer as the
ℓ-exotic nilpotent cone. We put Zℓ := Fℓ ×Nℓ

Fℓ. Let Gℓ := G × (C×)ℓ+1. We
have a natural Gℓ-action on Fℓ (and Zℓ). (In fact, the variety Fℓ admits an
action of G × GL(ℓ, C) × C×. We use only a restricted action in this paper.)

Assume that H is the Hecke algebra with unequal parameters of type C
(1)
n

(c.f. Definition 2.1). This algebra has three parameters q0, q1, q2. All affine
Hecke algebras of classical type with two parameters are obtained from H by
suitable specializations of parameters (c.f. Remark 2.2).

Theorem A (= Theorem 2.8). We have an isomorphism

H
∼=−→ C ⊗Z KG2(Z2)

as algebras.

The Ginzburg theory suggests the classification of simple H-modules by the
G-conjugacy classes of the following Langlands parameters:

Definition B (Langlands parameters).

1) A triple q⃗ := (q0, q1, q2) ∈ (C×)3 is said to be admissible if q0 ̸= q1, q2 is not
a root of unity of order ≤ 2n, q0q

±1
1 ̸= qm

2 for |m| < n;

2) A pair (a,X) = (s, q⃗,X0 ⊕ X1 ⊕ X2) ∈ G2 × N2 is called an admissible
parameter iff s is semisimple, q⃗ is admissible, and sXi = qiXi for i = 0, 1, 2.
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For an admissible parameter (a,X), we put G2(a) := ZG2(a).
Notice that our Langlands parameters do not have additional data as in the

usual Deligne-Langlands-Lusztig correspondence. This is because the (equivari-
ant) fundamental groups of orbits are always trivial (c.f. Theorem 4.7). Instead,
we have the following kind of difficulty:

Example C (Non-regular parameters). Let G = Sp(4, C) and let a = (exp(rϵ1 +
(r + π

√
−1)ϵ2), er,−er,−e2r) ∈ T × (C×)3 (r ∈ C\π

√
−1Q). Then, the number

of G2(a)-orbits in Na
2 is eight, while the number of corresponding representations

of H is six. (c.f. Enomoto [En06]) In fact, there are two non-regular admissible
parameters in this case. These parameters correspond to weight vectors of ϵ1+ϵ2
or “ϵ1 & ϵ2”.

Now we state the main theorem of this paper:

Theorem D (= Theorem 10.2). The set of G-conjugacy classes of admissible
parameters is in one-to-one correspondence with the set of isomorphism classes
of simple H-modules if q2 is not a root of unity of order ≤ 2n, and q0q

±1
1 ̸= q±m

2

holds for every 0 ≤ m < n.

We treat a slightly more general case in Theorem 10.1 including Example C.
Since the general condition is rather technical, we state only a part of it here.

By imposing an additional relation q0 + q1 = 0, the algebra H specializes to
an extended Hecke algebra HB of type B

(1)
n with two-parameters. (c.f. Remark

2.2.) Therefore, Theorems D also gives a definitive classification of simple HB-
modules except for −q2

0 = qm
2 (|m| < n) or q2 is a root of order ≤ n.

Let us illustrate an example which (partly) explains the title “exotic”:

Example E (Equal parameter case). Let G = Sp(4, C). Let s = exp(rϵ1 +rϵ2) ∈
T (r ∈ C\π

√
−1Q). Fix a0 = (s, er) ∈ G × C× and a = (s, er,−er, e2r) ∈ G2.

Let N be the nilpotent cone of G. Then, the sets of G(s)-orbits of N a0 and Na
2

are responsible for the usual and our exotic Deligne-Langlands correspondences.
The number of G(s)-orbits in N a0 is three. (Corresponding to root vectors of ∅,
2ϵ1, and “2ϵ1 & 2ϵ2”) The number of G(s)-orbits in Na

2 is four. (Corresponding
to weight vectors of ∅, ϵ1, ϵ1 + ϵ2, and “ϵ1 & ϵ1 + ϵ2”) On the other hand, the
actual number of simple modules arising in this way is four (c.f. Ram [Ra01]
and [En06]).

The organization of this paper is as follows:
In §1, we fix notation and introduce exotic nilcones and related varieties. In

particular, we present the geometric structure involved in our varieties as much
as we need in the later section. In §2, we prove Theorem A, which connects
our varieties with an affine Hecke algebra H. In order to simplify the study of
representation theory of H, we divide our varieties into a product of primitive
ones in §3. In §4, we prove that the stabilizers of exotic nilpotent orbits are
connected, which implies that the “Lusztig” part of the Deligne-Langlands-
Lusztig parameter should be always trivial in our situation. Unfortunately, we
have no nice parabolic subgroup as Kazhdan-Lusztig employed in [KL87]. We
construct some explicit semisimple element out of each orbit in §5 for the sake
of compensation. We introduce the notion of exotic Springer fibers and prove
its odd-term vanishing result in §6, under the assumption that the parameters
are sufficiently nice (admissible). Its proof essentially relies on the argument of
§5. We define our standard modules as the total homology group of an exotic
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Springer fibers in §7. At the same time, we present an induction theorem, which
claims that they behave well under the induction. In §8, we present an analogue
of Springer correspondence for our exotic nilcones. In order to prove Theorem
D, we still need two additional structural results. One is that our geometric
structure is preserved by replacing the infinitesimal character by a suitable real
positive one. The other is that we can embed the corresponding finite Weyl
group into the graded version of H. Both are false in non-admissible parameter
range. These results occupy §9. With the knowledge of all of the previous
sections except for §7, we prove Theorem D in §10. The last section §11 concerns
with applications, which are straight-forward consequences of Ginzburg theory
assuming the results presented in earlier sections.

Acknowledgment: The present from of this paper1 is heavily benefited from
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Michael Finkelberg, Anthony Henderson, George Lusztig, Hiraku Nakajima, Eric Op-

dam, Toshiyuki Tanisaki, Masahiko Yoshinaga, discussion with Naoya Enomoto, Eric

Vasserot, Tonny A. Springer, and encouragement by Hisayosi Matumoto, Midori Sh-

iota. The author want to express his deep gratitute to all of them for their kindness,

warmness, and tolerance. In particular, Professor Ariki kindly arranged him an op-

portunity to talk at a seminar at RIMS. The author wishes to express his gratitude to

him and all the participants of the seminar.

1 Preparatory materials

Let G := Sp(2n, C). Let B be a Borel subgroup of G. Let T be a maximal
torus of B. Let X∗(T ) be the character group of T . Let R be the root system
of (G,T ) and let R+ be its positive part defined by B. We embed R and R+

into a n-dimensional Euclid space E = ⊕iCϵi with standard inner product as:

R+ = {ϵi ± ϵj}i<j ∪ {2ϵi} ⊂ {±ϵi ± ϵj} ∪ {±2ϵi} = R ⊂ E.

By the inner product, we identify ϵi with its dual basis. We put ϵi := −ϵ−i when
i < 0. We put αi := ϵi − ϵi+1 (i = 1, . . . , n − 1) or 2ϵn (i = n). Let W be the
Weyl group of (G,T ). For each αi, we denote the reflection of E corresponding
to αi by si. Let ℓ : W → Z≥0 be the length function with respect to (B, T ). We
denote by ẇ ∈ NG(T ) a lift of w ∈ W . For a subgroup H ⊂ G containing T , we
put wH := ẇHẇ−1. For a group H and its element h, we put H(h) := ZH(h).
We denote the identity component of H by H◦. If H acts on a space X and
x ∈ X , then we denote the stabilizer of the H-action on x by StabHx. For each
α ∈ R, we denote the corresponding one-parameter unipotent subgroup of G
(with respect to T ) by Uα. We define g, t, uα, g(s), etc. . . to be the Lie algebras
of G,T, Uα, G(s), etc. . ., respectively.

1Note: After the original version of this paper is circulated (in 2006, with different ar-
gument and weaker conclusion in Theorem D), there appeared two kind of related works.
One is the study of geometry which is connected to our nilcone by Achar-Henderson [AH07],
Finkelberg-Ginzburg-Travkin [FGT08], Springer [Sp07], Travkin [Tr08], and the other is the
classification of tempered dual by Opdam and Solleveld [OS07, So07]. For the former, I have
included explanation about the situation as much as I could in order to avoid potential prob-
lems. For the latter, I think it is a very interesting to connect our result with theirs. I hope
to make some contribution to this direction in my future work.
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For a T -module V , we define its weight λ-part (with respect to T ) as V [λ].
We define the positive part V + and negative part V − of V as

V + :=
⊕

λ∈Q≥0R+−{0}

V [λ], and V − :=
⊕

λ∈Q≤0R+−{0}

V [λ],

respectively. We denote the set of T -weights of V by Ψ(V ).
In this paper, a segment is a set of integers I written as I = [i1, i2] ∩ Z for

some integers i1 ≤ i2. By abuse of notation, we may denote I by [i1, i2]. For a
segment I, we set I∗ := I (if 0 ̸∈ I) or I − {0} (if 0 ∈ I).

We denote the absolute value function by | • | : C → R≥0.
We set Γ0 := 2π

√
−1Z ⊂ C and set exp : E → T to be the exponential map.

We normalize the map exp so that ker exp ∼=
∑n

i=1 Γ0ϵi.
For a variety X , we denote by H•(X ) the Borel-Moore homology groups

with coefficients C.

1.1 Exotic nilpotent cones

Let ℓ = 0, 1, or 2 be an integer. We define V1 := C2n (vector representation) and
V2 := (∧2V1)/C. These representations have B-highest weights ϵ1 and ϵ1 + ϵ2,
respectively. We put Vℓ := V ⊕ℓ

1 ⊕ V2 and call it the ℓ-exotic representation of
Sp(2n). For ℓ ≥ 1, the set of non-zero weights of Vℓ is in one-to-one correspon-
dence with R as

R ∋

{
±2ϵi ↔ ±ϵi ∈ Ψ(V1)
±ϵi ± ϵj ↔ ±ϵi ± ϵj ∈ Ψ(V2)

. (1.1)

We define
Fℓ := G ×B V+

ℓ ⊂ G ×B Vℓ
∼= G/B × Vℓ.

Composing with the second projection, we have a map

µℓ : Fℓ −→ Vℓ.

We denote the image of µℓ by Nℓ. We call this variety the ℓ-exotic nilpotent
cone. By abuse of notation, we may denote the map Fℓ → Nℓ also by µℓ.

Convention 1.1. For the sake of simplicity, we define objects F , N, V, µ, etc...
to be the objects Fℓ, Nℓ, Vℓ, µℓ etc... with ℓ = 1.

We summarize some basic geometric properties of Nℓ:

Theorem 1.2 (Geometric properties of Nℓ). We have the following:

1. The defining ideal of Nℓ is generated by G-invariant polynomials of C[Vℓ]
without constant terms;

2. The variety Nℓ is normal;

3. For ℓ = 1, 2, the map µℓ is a birational projective morphism onto Nℓ;

4. Every fiber of the map µℓ is connected;

In the below, we present properties which is valid only for the ℓ = 1 case.

5



5. The set of G-orbits in N1 is finite;

6. The map µ1 is stratified semi-small with respect to the stratification of N1

given by G-orbits.

Proof. The weight distribution of V+ and the Hesselink theory (c.f. [Po04]
Theorem 1) claims that µℓ gives a birational projective morphism onto an irre-
ducible component of the Hilbert nilcone of Vℓ. Here the Hilbert nilcone of Vℓ

is irreducible normal variety by Schwarz [Sc78], which implies that Nℓ ⊂ Vℓ is
the Hilbert nilcone. Therefore, we obtain 1–3). 4) is an immediate consequence
of 2), 3), and the Zariski main theorem (c.f. [CG97] 3.3.26). 5) is proved as a
part of Proposition 1.15. We show 6). Let Ô be the inverse image of a G-orbit
G.X = O ⊂ N under the map µ ◦ p2. Then, we have

dim O + 2dim µ−1(X) ≤ dim Ô.

The dimension of the RHS is less than or equal to dimF , which is the (constant)
dimension of irreducible components of Z. In particular, we have

dim O + 2dim µ−1(X) ≤ dim N = dim F,

which implies that µ is semi-small.

Lemma 1.3. We have a natural identification

Fℓ
∼= {(gB,X) ∈ G/B × Vℓ; X ∈ gV+

ℓ }.

Proof. Straightforward.

Let Gℓ := G × (C×)ℓ+1. We define a Gℓ-action on Nℓ as

Gℓ×Nℓ ∋ (g, q2−ℓ, . . . , q2)×(X2−ℓ⊕· · ·⊕X2) 7→ (q−1
2−ℓgX2−ℓ⊕· · ·⊕q−1

2 gX2) ∈ Nℓ.

(Here we always regard X2−ℓ, . . . , X1 ∈ V1 and X2 ∈ V2.) Similarly, we have
a natural Gℓ-action on Fℓ which makes µℓ a Gℓ-equivariant map. We define
Zℓ := Fℓ ×Nℓ

Fℓ. By Lemma 1.3, we have

Zℓ := {(g1B, g2B,X) ∈ (G/B)2 × Vℓ; X ∈ g1V+
ℓ ∩ g2V+

ℓ }.

We put

Z123
ℓ := {(g1B, g2B, g3B,X) ∈ (G/B)3 × Vℓ; X ∈ g1V+

ℓ ∩ g2V+
ℓ ∩ g3V+

ℓ }.

We define pi : Zℓ ∋ (g1B, g2B,X) 7→ (giB,X) ∈ Fℓ and pij : Z123
ℓ ∋ (g1B, g2B, g3B,X) 7→

(giB, gjB,X) ∈ Zℓ (i, j ∈ {1, 2, 3}). We also put p̃i : Fℓ × Fℓ → Fℓ as the first
and second projections (i = 1, 2). (Notice that the meaning of pi, p̃i, pij depends
on ℓ. The author hopes that there occurs no confusion on it.)

Lemma 1.4. The maps pi and pij (1 ≤ i < j ≤ 3) are projective.

Proof. The fibers of the above maps are given as the subsets of G/B defined by
incidence relations. It is automatically closed and we obtain the result.
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We have a projection

πℓ : Zℓ ∋ (g1B, g2B,X) 7→ (g1B, g2B) ∈ G/B × G/B.

For each w ∈ W , we define a point pw := B× ẇB ∈ G/B×G/B. This point
is independent of the choice of ẇ. We put Ow := Gpw ⊂ G/B × G/B. By the
Bruhat decomposition, we have

G/B × G/B =
⊔

w∈W

Ow. (1.2)

Lemma 1.5. The variety Zℓ consists of |W |-irreducible components. Moreover,
all of the irreducible components of Z have the same dimension.

Proof. We first prove the assertion for Z = Z1. By (1.2), the structure of Z is
determined by the fibers over pw. We have

π−1(pw) = V+ ∩ ẇV+.

By the dimension counting using (1.1), we deduce

dim V+ ∩ ẇV+ = dimV +
1 ∩ ẇV +

1 + dimV +
2 ∩ ẇV +

2

=#(R+
l ∩ wR+

l ) + #(R+
s ∩ wR+

s ) = N − ℓ(w),

where N := dim V+ = dimG/B and R+
l , R+

s are the sets of long and short
positive roots, respectively. As a consequence, we deduce

dim π−1(Ow) = N + ℓ(w) + N − ℓ(w) = 2N.

Thus, each π−1(Ow) is an irreducible component of Z.
Next, we prove the assertion for Z2. By forgetting the first V1-factor, we have
a surjective map η : Z2 → Z. We have a surjective map η′ : Z → Z0 given
by forgetting the V1-factor. The fiber of η at x ∈ Z is isomorphic to the
two-fold product of the fiber of η′ at η′(x). The latter fiber is isomorphic to
the vector space V +

1 ∩ gV +
1 when π(x) = (1, g)p1. Therefore, the preimage of

each irreducible component of Z gives an irreducible component of Z2. These
irreducible components are distinct since their images under η must be distinct.
Hence, the number of irreducible components of Z2 is equal to the number of
irreducible components of Z as desired.

By a general result of [Gi97] p135 (c.f. [CG97] 2.7), the Gℓ-equivariant
K-group of Zℓ becomes an associative algebra via the map

⋆ : KGℓ(Zℓ)×KGℓ(Zℓ) ∋ ([E ], [F ]) 7→
∑
i≥0

(−1)i[Ri(p13)∗(p∗12E⊗Lp∗23F)] ∈ KGℓ(Zℓ).

Moreover, the Gℓ-equivariant K-group of Fℓ becomes a representation of KGℓ(Zℓ)
as

◦ : KGℓ(Zℓ) × KGℓ(Fℓ) ∋ ([E ], [K]) 7→
∑
i≥0

(−1)i[Ri(p1)∗(E ⊗L p̃∗2K)] ∈ KGℓ(Fℓ).

Here we regard E as a sheaf over Fℓ×Fℓ via the natural embedding Zℓ ⊂ Fℓ×Fℓ.
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1.2 Definition of parameters

In this subsection, we present the definitions of parameters which we need in
the sequel. First, we put a0 := (1, 1,−1, 1) ∈ G2.

Definition 1.6 (Configuration of semisimple elements).

1) An element a = (s, q0, q1, q2) ∈ G2 is called pre-admissible iff s is semisimple,
q0 ̸= q1, q2 is not a root of unity of order ≤ 2n.

2) An element a ∈ G2 is called finite if Na
2 has only finitely many G2(a)-orbit.

3) A pre-admissible element a = (s, q0, q1, q2) is called admissible if q0q
±1
1 ̸= q±m

2

holds for every 0 ≤ m < n.

For a pre-admissible element a = (s, q0, q1, q2), we put

Va
2 = V

(s,q0)
1 ⊕ V

(s,q1)
1 ⊕ V

(s,q2)
2 ⊂ V1 ⊕ V1 ⊕ V2 = V2.

In the below, we may denote (q0, q1, q2) ∈ (C×)3 by q⃗ for the sake of sim-
plicity.

Let a = (s, q⃗) ∈ G2 be a pre-admissible element such that s ∈ T . We
sometimes denote it as

s = exp

(
n∑

i=1

logi(s)ϵi

)
∈ exp(E) ∼= T,

where logi(s) ∈ C.

Remark 1.7. The values of logi(s) are determined modulo Γ0. Here we under-
stand that logi(s) is a fixed choice of a representative in logi(s) + Γ0.

Definition 1.8 (Admissible parameters).

1) A pre-admissible parameter is a pair

ν = (a,X) = (s, q⃗,X1 ⊕ X2) ∈ G2 × N1

such that a is pre-admissible, (s − q0)(s − q1)X1 = 0, and sX2 = q2X2;

For a pre-admissible a ∈ G2, we denote by Λa the set of G(s)-conjugacy classes
of pre-admissible parameters of the form (a, Y ), where Y ∈ V.

2) A pre-admissible parameter ν = (a,X) is called admissible if a is admissible.

1.3 Orbit structures arising from Nℓ

In the following, we fix vectors in V1 and V2 as follows:

• For each i ∈ [−n, n]∗, we define 0 ̸= xi, x̄i ∈ V1 to be non-zero vectors of
weights ϵi;

• For each distinct i, j ∈ [−n, n]∗, we define yij ∈ V2 to be a non-zero vector
of weight ϵi − ϵj .

The following is a slight enhancement of the good basis of Ohta [Oh86] (1.3).
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Definition 1.9 (Signed partitions). Let J = (J1, J2, J3, . . .) be a sequence
of elements of [−n, n]∗. Let J := {J1, J2, . . .} be a collection of sequence of
elements of [−n, n]∗. (I.e. each Jk is of the form (J1

k , J2
k , . . .).) It is called a

signed partition of n if and only if the following condition hold:

• We have [1, n] =
⊔

k≥1{|j|; j ∈ Jk}.

For each member J of a signed partition J, we define

TJ := exp
∑
i∈J

Cϵi ⊂ T.

Let λ := (λ1 ≥ λ2 ≥ · · · ) be a partition of n. Then, we regard it as a signed
partition by setting

J i
j := i +

j−1∑
k=1

λk if λj ̸= 0 and 1 ≤ i ≤ λj .

Definition 1.10 (Foot functions). Let ℓ = 0, 1, or 2. A collection of ℓ-tuple of
functions δk : [−n, n]∗ → {0, 1} for 1 ≤ k ≤ ℓ is called a ℓ-foot function of n.
We denote a ℓ-foot function {δk}ℓ

k=1 as δ⃗.

Notice that Definition 1.10 claims that δ⃗ ≡ ∅ when ℓ = 0.

Definition 1.11 (Marked partitions, blocks and normal forms). Let ℓ be as in
Definition 1.10. We refer a pair σ = (J, δ⃗) consisting of a signed partition and
a ℓ-foot function of n as a ℓ-marked partition if the following condition hold:

• For each J ∈ J and m = 1, . . . , ℓ, we have

#{j ∈ J ; δm(j) = 1} + #{j ∈ J ; δm(−j) = 1} ≤ 1.

For each J ∈ J, we define the ℓ-block vJ
σ = vJ

σ,1 + vJ
σ,2 ∈ V associated to (σ, J)

as:

vJ
σ,1 :=

∑
j∈J

ℓ∑
k=1

(δk(j)xj + δk(−j)x−j) ∈ V1

vJ
σ,2 :=

∑
j≥1

yJj ,Jj+1 ∈ V2,

where we regard yJk
j ,Jk

j+1
≡ 0 whenever Jk nor Jk

j+1 is non-existent.
A ℓ-normal form vσ = vσ,1 + vσ,2 ∈ V associated to σ is defined as:

vσ,1 :=
∑
J∈J

vJ
σ,1 ∈ V1, and vσ,2 :=

∑
J∈J

vJ
σ,2 ∈ V2.

Definition 1.12 (Strict normal forms). A ℓ-marked partition σ = (J, δ⃗) is
called strict if and only if the following conditions hold:

1. J is obtained from a partition λ of n;

2. We have δ2 ≡ 0 and δ1(j) = 0 for every j ∈ [−n,−1];
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Assume the above two conditions. If we have δ1(j) = 1 for j ∈ J , then we set
#J := #{j′ ∈ J ; j′ ≤ j} and #J := #{j′ ∈ J ; j′ > j}.

3. Let k < m be two integers and let J = {J1, J2, . . .}. Then, we have
δ1|Jm≡ 0 if #Jk = #Jm;

4. Let J, J ′ ∈ J be a pair such that δ1(j) = 1 = δ1(j′) for some j ∈ J and
j′ ∈ J ′. If #J > #J ′, then we have

#J > #J ′ and #J > #J ′.

Conditions are not applicable when δ2 or δ1 are non-existent. Notice that only
the first condition survives when ℓ = 0. A normal form attached to a strict
marked partition is called a strict normal form.

In the below, we refer foot funtions, blocks, normal forms..., to be the 1-
foot funtions, 1-blocks, 1-normal forms..., respectively. Moreover, we naturally
identify strict 1-normal forms and strict 2-normal forms since δ2 ≡ 0 for 2-strict
marked partitions.

Theorem 1.13 (Orbit description of N1). We have the following:

1. The set of strict 1-normal forms is in one-to-one correspondence with the
the set of G-orbits of N1;

2. We have #(G\N1) = #IrrepW , where IrrepW is the set of isomorphism
classes of irreducible W -modules;

3. For each X ∈ N1, the group StabGX is connected.

Remark 1.14. The original form of the proof of Theorem 1.13 (in [Ka06b]) em-
ploys explicit calculation using basis. In the meantime, Springer [Sp07] gives
a base-free proof (with stronger consequences). The proof given here is some-
what the mixture of the both, which the author give it basically for the sake
of completeness. Note that the closure relation of the orbit structure of N1 is
calculated by Achar-Henderson [AH07].

The proof of Theorem 1.13 is obtained as a combinations of Proposition 4.4
and Theorem 8.3 by using the knowledge of the following:

Proposition 1.15 (Weak version of Theorem 1.13). We have the following:

1. Each G-orbit of N1 contains a strict normal form;

2. The number of elements of the set of strict marked partitions is less than
or equal to #IrrepW , where IrrepW is the set of isomorphism classes of
irreducible W -modules.

Proof. By a result of Ohta-Sekiguchi [Se84, Oh86], the set of strict 0-marked
partitions are in one-to-one correspondence with the set of G-orbits of N0 via
the assignment σ 7→ Gvσ. We have

C[V]G ∩ C[V0] = C[V0]G,

which gives the natural projection map

N1 −→ N0
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obtained from the natural projection V1 → V0. (In fact we have C[V]G =
C[V0]G. But this fact is not used here.) It follows that each orbit of N1 contains
a vector of type v = v1 ⊕ v2,λ, where λ is a partition of n regarded as a strict
0-marked partition in a natural way.
Consider the action of

G′ := Sp(2λ1) × Sp(2λ2) × · · · ⊂ Sp(2n),

which are embedded so that T ⊂ G′ and V1 restricted to G′ has the form

ResG
G′V1 =

⊕
k≥1

V
(k)
1

such that V
(k)
1 is a vector representation of Sp(2λk) with T -weights ±ϵi for

i = 1 +
∑k−1

j=1 λj , . . . ,
∑k

j=1 λj .
We decompose v =

∑
k≥1 vk, where vk = v1,k ⊕ vJk

2,λ ∈ V k
1 . We regard

vJk

2,λ ∈ ∧2V k
1

∼= Alt(V k
1 ) as a linear endomorphism on V k

1 which preserves the
symplectic form on V k

1 compatible with Sp(2λk). Ohta-Sekigushi result asserts
that such identification gives an identification of Sp(2λk)vJk

2,λ and the set of
linear endomorphism on V k

1 which preserves the symplectic form. Since v1,k

can be complemented to a suitable choice of standard basis of symplectic space,
we obtain that a suitable change of symplectic basis makes v1,k into one of xi

(i > 0). This implies that v can be transformed into a 1-normal form which
satisfies 1.12 1) and 2).
Now we examine the orbit structure of vk + vk′ ∈ V k

1 ⊕ V k′

1 under the ac-
tion of Sp(2λk + 2λk′) for k < k′. We have λk ≥ λk′ by 1.12 1). We put
ξ := vJk

2,σ +vJk′
2,σ . The Sp(2λk + 2λk′)-conjugacy class of ξ is the set of nilpotent

endomorphism of V k
1 ⊕V k′

1 preserving the natural symplectic form with its Jor-
dan form (λk, λk, λk′ , λk′). If v1,k = 0 or v1,k′ = 0 hold, then 1.12 3) and 4) are
satisfied for the pair (Jk, Jk′). Hence, we assume v1,k ̸= 0 ̸= v1,k′ in the below.
We have

ξ#Jkv1,k = 0, ξ#Jk−1v1,k ̸= 0, and ξ#Jk′ v1,k′ = 0, ξ#Jk′−1v1,k′ ̸= 0

v1,k ∈ Imξ#Jk , v1,k ̸∈ Imξ#Jk+1, and v1,k′ ∈ Imξ#Jk′ , v1,k′ ̸∈ Imξ#Jk′+1.

If #Jk ≤ #Jk′ or #Jk ≤ #Jk′ holds, then we can regard v1,k + v1,k′ as a part
of the standard basis of V k′

1 or V k
1 by suitable coordinate changes, respectively.

When λk = λk′ , we use this to acheive 1.12 3). When λk > λk′ , we use this to
transform our normal form into another normal form which satisfies 1.12 4) for
the pair (Jk, Jk′). Repeating these procedure completes the proof of the first
assertion.
For the second assertion, recall that IrrepW is parametrised by the set of ordered
pair of partitions (λ1, λ2) which sum up to n. We define two-partitions out of a
strict marked partition σ as

λ1
k + λ2

k = λk, and λ2
k :=

{
#Jk (vJk

1,σ ̸= 0)
max{#Jk′ , λk − #Jk′′ ; k′ > k > k′′} (otherwise)

for each k, where the set we choose its maximal is formed only from these Jk′

and Jk′′ for which # and # are defined. It is clear that two sequences λ1, λ2
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sum up to n. By 1.12 4), we deduce that

λk − #Jk′′ < #Jk (this is equivalent to #Jk′′ > #Jk)

holds for k′′ < k (such that # and # are defined for both Jk and Jk′′). It follows
that λ2 is a partition. (I.e. {λ2

i }i is a decreasing sequence.) By the symmetry
of # and # in 1.12, we conclude that λ1 is also a partition.
Therefore, it suffices to prove that the pairs of partitions formed by strict marked
partitions are equal only if the marked partitions are equal. (Since this gives
the injectivity of the above assignment.) For this, we assume that two strict
marked partitions σ = (J, δ1) and σ′ = (J′, δ′1) gives the same pair (λ1, λ2) to
deduce contradiction. We can assume that J = J′ since λ = λ1 + λ2. Hence,
their difference is concentrated in their foot function. By 1.12 3) and 4), we
deduce that the foot functions are non-trivial on Jk = Jk′ if and only if

λ2
k ̸= max{λ2

j , λ
2
k − λ1

i ; λj ̸= λk ̸= λi, i < k < j}

and λk ̸= λk−1. Moreover, the foot functions is determined by the value of λ2
k

if it is non-trivial. Since this system has a unique solution, we deduce σ = σ′,
which is contradiction. Thus, the pair of partitions recovers a strict marked
partition uniquely, which completes the proof of the second assertion.

Theorem 1.16 (Orbit structure of Na
2). Let ν = (a,X) = (s, q⃗,X) be an

admissible parameter. Then, there exists g ∈ G such that:

gsg−1 ∈ T and gX is a normal form.

Proof. Postponed to §4.

We have a natural W -action · on [−n, n]∗ by setting

si·j :=


−(i + 1) (j = ±i)
−(i − 1) (j = ±(i + 1))
j (otherwise)

for i = 1, . . . , n−1, and sn·j =

{
−j (j = ±n)
j (otherwise)

.

Using this, we define the W -action · on the set of ℓ-marked partitions as:
For w ∈ W and σ = (J, δ⃗) = ({J1, J2, . . . , }, {δ1, . . . , δℓ}), we set

w · σ := ({w · J1, w · J2, . . . , }, {w · δ1, . . . , w · δℓ}),

where we set

w · (J1
1 , J2

1 , . . .) = ((w · J)11, (w · J)21, . . .) := (w · J1
1 , w · J1

1 , . . .)

and w·δk(j) := δk(w·j). Notice that we have w·Jk = (w·J)k and w·Jj
k = (w·J)j

k

for every k, j in this action.

Lemma 1.17. Let σ = (J, δ⃗) is a marked partition which is a W -translation of
a strict marked partition. Then, we have

C×v1,σ ⊕ C×v2,σ ⊂ Tvσ, and C×vJ
1,σ ⊕ C×vJ

2,σ ⊂ TJvJ
σ for each J ∈ J.
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Proof. Since TJ ∩ TJ′ = {1}, it suffices to prove the second assertion. Let
vJ

σ =
∑

ξ∈Ξ vξ be the T -eigen-decomposition of vJ
σ . Then, we have #Ξ =

#J and dimTJ = #J . Moreover, the weights appearing in Ξ are linearly
independent. Hence, we have the scalar multiplications of each vξ, which implies
the result.

Corollary 1.18 (of the proof of Lemma 1.17). Let σ be a strict marked parti-
tion. Let w ∈ W . Then, we have vw·σ ∈ Gvσ. 2

1.4 Structure of simple modules

We put Tℓ := T ×(C×)ℓ+1. Let a ∈ Tℓ. Let Za
ℓ , F a

ℓ , and Na
ℓ be the set of a-fixed

points of Zℓ, Fℓ, and Nℓ, respectively. Let µa : F a
ℓ → Na

ℓ denote the restriction
of µℓ to a-fixed points.
We review the convolution realization of simple modules in our situation. The
detailed constructions are found in [CG97] 5.11, 8.4 or [Gi97] §5. For its variant,
see [Jo98].
The properties we used to apply the Ginzburg theory are: 1) Zℓ = Fℓ×Nℓ

Fℓ; 2)
Fℓ is smooth; 3) µℓ is projective; 4) R(Gℓ) ⊂ KGℓ(Zℓ) is central; and 5) H•(Zℓ)
is spanned by algebraic cycles.
Let Ca be the quotient of C⊗Z R(Gℓ) or C⊗Z R(Tℓ) by the ideal defined by the
evaluation at a. The Thomason localization theorem yields ring isomorphisms

Ca ⊗R(Gℓ) KGℓ(Zℓ)
∼=−→ Ca ⊗R(Gℓ(a)) KGℓ(a)(Za

ℓ )
∼=−→ Ca ⊗R(Tℓ) KTℓ(Za

ℓ ).

Moreover, we have the Riemann-Roch isomorphism

Ca ⊗R(Tℓ) KTℓ(Za
ℓ ) ∼= K(Za

ℓ ) RR−→ H•(Za
ℓ ) ∼= Ext•(µa

∗CF a
ℓ
, µa

∗CF a
ℓ
).

By the equivariant Beilinson-Bernstein-Deligne (-Gabber) decomposition theo-
rem (c.f. Saito [Sa88] 5.4.8.2), we have

µa
∗CF a

ℓ

∼=
⊕

O⊂Na
ℓ ,χ,d

LO,χ,d £ IC(O, χ)[d],

where O ⊂ Na
ℓ is a G(s)-stable subset such that µa is locally trivial along O, χ

is an irreducible local system on O, d is an integer, LO,χ,d is a finite dimensional
vector space, and IC(O, χ) is the minimal extension of χ. Moreover, the set
of O’s such that LO,χ,d ̸= 0 (for some χ and d) forms a subset of an algebraic
stratification in the sense of [CG97] 3.2.23. It follows that:

Theorem 1.19 (Ginzburg [Gi97] Theorem 5.2). The set of simple modules of
KGℓ(Zℓ) for which R(Gℓ) acts as the evaluation at a is in one-to-one corre-
spondence with the set of isomorphism classes of irreducible Gℓ(a)-equivariant
perverse sheaves appearing in µa

∗CF a
ℓ

(up to degree shift). 2

2 Hecke algebras and exotic nilpotent cones

We retain the setting of the previous section. We put G = G2, G := T2,
G := F2, µ := µ2, Z := Z2, and π := π2. Most of the arguments in this section
are exactly the same as [CG97] 7.6 if we replace G by G×C×, N2 by the usual
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nilpotent cone, µ by the moment map, F by the cotangent bundle of the flag
variety, and Z by the Steinberg variety. Therefore, we frequently omit the detail
and make pointers to [CG97] 7.6 in which the reader can obtain a correct proof
merely replacing the meaning of symbols as mentioned above.

We put AZ := Z[q±1
0 ,q±1

1 ,q±1
2 ] and A := C ⊗Z AZ = C[q±1

0 ,q±1
1 ,q±1

2 ].

Definition 2.1 (Hecke algebras of type C
(1)
n ). A Hecke algebra of type C

(1)
n

with three parameters is an associative algebra H over A generated by {Ti}n
i=1

and {eλ}λ∈X∗(T ) subject to the following relations:

(Toric relations) For each λ, µ ∈ X∗(T ), we have eλ · eµ = eλ+µ (and e0 = 1);

(The Hecke relations) We have

(Ti + 1)(Ti − q2) = 0 (1 ≤ i < n) and (Tn + 1)(Tn + q0q1) = 0;

(The braid relations) We have

TiTj = TjTi (if |i − j| > 1), (TnTn−1)2 = (Tn−1Tn)2,
TiTi+1Ti = Ti+1TiTi+1 (if 1 ≤ i < n − 1);

(The Bernstein-Lusztig relations) For each λ ∈ X∗(T ), we have

Tie
λ − esiλTi =

{
(1 − q2) eλ−esiλ

eαi−1 (i ̸= n)
(1+q0q1)−(q0+q1)e

ϵn

eαn−1 (eλ − esnλ) (i = n)
.

Remark 2.2. 1) The standard choice of parameters (t0, t1, tn) is: t21 = q2, t2n =
−q0q1, and tn(t0 − t−1

0 ) = (q0 + q1). This yields

Tneλ − esnλTn =
1 − t2n − tn(t0 − t−1

0 )eϵn

e2ϵn − 1
(eλ − esnλ);

2) If n = 1, then we have T1 = Tn in Definition 2.1. In this case, we have
H ∼= C[q±1

2 ] ⊗C H0, where H0 is the Hecke algebra of type A
(1)
1 with two-

parameters (q0,q1);
3) An extended Hecke algebra of type B

(1)
n with two-parameters considered in

[En06] is obtained by requiring q0+q1 = 0. An equal parameter extended Hecke
algebra of type B

(1)
n is obtained by requiring q0 +q1 = 0 and q2

1 = q2. An equal
parameter Hecke algebra of type C

(1)
n is obtained by requiring q2 = −q0q1 and

(1 + q0)(1 + q1) = 0.
For each w ∈ W , we define two closed subvarieties of Z as

Z≤w := π−1(Ow) and Z<w := Z≤w\π−1(Ow).

Let λ ∈ X∗(T ). Let Lλ be the pullback of the line bundle G ×B λ−1 over
G/B to F2. Clearly Lλ admits a G-action by letting (C×)3 act on Lλ trivially.
We denote the operator [p̃∗1Lλ ⊗L •] by eλ. By abuse of notation, we may
denote eλ(1) by eλ (in KG(Z)). Let q0 ∈ R({1} × C× × {1} × {1}) ⊂ R(G),
q1 ∈ R({1}×{1}×C××{1}) ⊂ R(G), and q2 ∈ R({1}×{1}×{1}×C×) ⊂ R(G)
be the inverse of degree-one characters. (I.e. q2 corresponds to the inverse of
the scalar multiplication on V2.) By the operation eλ and the multiplication by
qi, each of KG(Z≤w) admits a structure of R(T )-modules.

Each Z≤w\Z<w is a G-equivariant vector bundle over an affine fibration over
G/B via the composition of π and the second projection. Therefore, the cellular
fibration Lemma (or the successive application of localization sequence) yields:
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Theorem 2.3 (c.f. [CG97] 7.6.11). We have

KG(Z≤w) =
⊕

v∈W ;Ov⊂Ow

R(T )[OZ≤v
].

For each i = 1, 2, . . . , n, we put Oi := π−1(Osi). We define T̃i := [OOi ] for
each i = 1, . . . , n.

Theorem 2.4 (c.f. Proof of [CG97] 7.6.12). The set {[OZ≤1 ], T̃i, eλ; 1 ≤ i ≤
n, λ ∈ X∗(T )} is a generator set of KG(Z) as AZ-algebras.

Proof. The tensor product of structure sheaves corresponding to vector sub-
spaces of a vector space is the structure sheaf of their intersection. Taking
account into that, the proof of the assertion is exactly the same as [CG97]
7.6.12.

By the Thom isomorphism, we have an identification

KG(F ) ∼= KG(G/B) ∼= R(T ) = AZ[T ]. (2.1)

We normalize the images of [Lλ] and qi (i = 0, 1, 2) under (2.1) as eλ and qi,
respectively.

Theorem 2.5 (c.f. [CG97] Claim 7.6.7). The homomorphism

◦ : KG(Z) −→ EndR(G)K
G(G)

is injective. 2

Proposition 2.6. We have

1. [OZ≤1 ] = 1 ∈ EndR(G)K
G(F );

2. T̃i ◦ eλ = (1− q2e
αi) eλ−esiλ−αi

1−e−αi
for every λ ∈ X∗(T ) and every 1 ≤ i < n;

3. T̃n ◦ eλ = (1 − q0e
1
2 αn)(1 − q1e

1
2 αn) eλ−esnλ−αn

1−e−αn for every λ ∈ X∗(T ).

Proof. The component Z≤1 is equal to the diagonal embedding of F . In par-
ticular, both of the first and the second projections give isomorphisms between
Z≤1 and F . It follows that

[OZ≤1 ] ◦ [Lλ] =
∑
i≥0

(−1)i[Ri(p1)∗
(
OZ≤1 ⊗L p̃∗2Lλ

)
]

= [R0(p1)∗
(
OZ≤1 ⊗ p̃∗2Lλ

)
] = [Lλ],

which proves 1). For each i = 1, . . . , n, we define V+(i) := V+
2 ∩ ṡiV+

2 . Let
Pi := BṡiB ⊔ B be a parabolic subgroup of G corresponding to si. Each V+(i)
is B-stable. Hence, it is Pi-stable. We have

π2(Oi) = Osi = (1 × Pi)O1 ⊂ G/B × G/B.

The product (1×Pi)p1 ×V+(i) is a B-equivariant vector bundle. Here we have
G∩ (B ×Pi) = B. Hence, we can induce it up to a G-equivariant vector bundle
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Ṽ(i) on π(Oi). By means of the natural embedding of G-equivariant vector
bundles

F = G ×B V+
2 ↪→ G ×B V2

∼= G × V2,

we can naturally identify π−1(psi) with V+(i). Since V+(i) is Pi-stable, we
conclude π−1(psi) ∼= V+(i) as Pi-modules. As a consequence, we conclude
Ṽ(i) ∼= Oi. Let F̆ (i) := G ×B (V+

2 /V+(i)). It is a G-equivariant quotient
bundle of F . The rank of F̆ (i) is one (1 ≤ i < n) or two (i = n). Let Z̆≤si be
the image of Z≤si under the quotient map F × F → F̆ (i) × F̆ (i). We obtain
the following commutative diagram:

F

²²

Z≤si
oo //

²²

F

²²
F̆ (i) Z̆≤si

oo // F̆ (i)

Here the above objects are smooth V+(i)-fibrations over the bottom objects.
Therefore, it suffices to compute the convolution operation of the bottom line.
We have Z̆≤si = Osi ∪ △(F̆ (i)), where △ : F̆ (i) ↪→ F̆ (i)2 is the diagonal
embedding. Let p̆j : Osi → G/B (j = 1, 2) be projections induced by the
natural projections of G/B×G/B. By construction, each p̆j is a G-equivariant
P1-fibration. Let L̆λ be the pullback of G ×B λ−1 to F̆ (i). We deduce

T̃i ◦ [L̆λ] =
∑
i≥0

(−1)i[Ri(p̆1)∗(OOsi
⊗L (OF̆ (i) £ L̆λ)]

=
∑
i≥0

(−1)i[Ri(p̆1)∗p̆∗2(G ×B λ−1)] =
[
G ×B [

eλ − esiλ−αi

1 − e−αi
]
]

,

where [ eλ−esiλ−αi

1−e−αi
] ∈ R(T ) ∼= R(B) is a virtual B-module. Here the ideal sheaf

associated to G/B ⊂ F̆ (i) represents q2[L̆αi ] in KG(F̆ (i)) (1 ≤ i < n) or
corresponds to q0L̆ϵn + q1L̆ϵn ⊂ OF̆ (i) (i = n). In the latter case, divisors

corresponding to q0L̆ϵn and q1L̆ϵn are normal crossing. Thus, we have [q0L̆ϵn ∩
q1L̆ϵn ] = q0q1[L̆2ϵn ]. In particular, we deduce

[q0L̆ϵn + q1L̆ϵn ] = q0[L̆ϵn ] + q1[L̆ϵn ] − q0q1[L̆2ϵn ] ∈ KG(F̆ (n)).

Therefore, we conclude

T̃i ◦ eλ =

{
(1 − q2e

αi) eλ−esiλ−αi

1−e−αi
(1 ≤ i < n)

(1 − q0e
αn
2 )(1 − q1e

αn
2 ) eλ−esnλ−αn

1−e−αn (i = n)

as desired.

The following representation of H is usually called the basic representation
or the anti-spherical representation:

Theorem 2.7 (Basic representation c.f. [Mc03] 4.3.10). There is an injective
A-algebra homomorphism

ε : H → EndAA[T ],
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defined as ε(eλ) := eλ· (λ ∈ X∗(T )) and

ε(Ti)eλ :=

{
eλ−esiλ

eαi−1 − q2
eλ−esiλ+αi

eαi−1 (1 ≤ i < n)
eλ−esnλ

eαn−1 + q0q1
eλ−esnλ+αn

eαn−1 − (q0 + q1)eϵn eλ−esnλ

eαn−1 (i = n)
.

Theorem 2.8 (Exotic geometric realization of Hecke algebras). We have an
isomorphism

H
∼=−→ C ⊗Z KG(Z),

as algebras.

Proof. Consider an assignment ϑ

eλ 7→ eλ, Ti 7→

{
T̃i − (1 − q2(eαi + 1)) (1 ≤ i < n)
T̃i + (q0 + q1)eϵn − (1 + q0q1(eαn + 1)) (i = n)

.

By means of the Thom isomorphism, the above assignment gives an action of
an element of the set {eλ} ∪ {Ti}n

i=1 on A[T ]. We have

ϑ(eλ)eµ =eλ+µ

ϑ(Ti)eλ =
(
T̃i − (1 − q2(eαi + 1))

)
eλ = (1 − q2e

αi)
eλ − esiλ−αi

1 − e−αi
− eλ + q2(eαi + 1)eλ

=(
eλ − esiλ−αi

1 − e−αi
− eλ − eλ−αi

1 − e−αi
) − q2e

αi(
eλ − esiλ−αi

1 − e−αi
− eλ − eλ−2αi

1 − e−αi
) = ε(Ti)eλ

ϑ(Tn)eλ =
(
T̃n + (q0 + q1)eϵn − (1 + q0q1(eαn + 1))

)
eλ

=(1 − q0e
ϵn)(1 − q1e

ϵn)
eλ − esnλ−αn

1 − e−αn
− eλ + (q0 + q1)eλ+ϵn − q0q1(eαn + 1)eλ

=(
eλ − esnλ−αn

1 − e−αn
− eλ − eλ−αn

1 − e−αn
) + q0q1e

αn(
eλ − esnλ−αn

1 − e−αn
− eλ − eλ−2αn

1 − e−αn
)

− (q0 + q1)(
eλ+ϵn − esnλ−ϵn

1 − e−αn
− eλ+ϵn − eλ−ϵn

1 − e−αn
) = ε(Tn)eλ.

This identifies C ⊗Z KG(F ) with the basic representation of H via the cor-
respondence eλ 7→ eλ and Ti 7→ Ti. In particular, it gives an inclusion H ⊂
C ⊗Z KG(Z). Here we have Ti ∈ T̃i + A[T ] for 1 ≤ i ≤ n. It follows that
C ⊗Z KG(Z) ⊂ H, which yields the result.

Theorem 2.9 (Bernstein c.f. [CG97] 7.1.14 and [Mc03] 4.2.10). The center
Z(H) of H is naturally isomorphic to C ⊗Z R(G). 2

Corollary 2.10. The center of KG(Z) is R(G). 2

For a semisimple element a ∈ G, we define

Ha := Ca ⊗Z(H) H (c.f. §1.4)

and call it the specialized Hecke algebra.

Theorem 2.11. Let a ∈ G be a semisimple element. We have an isomorphism

Ha
∼= C ⊗Z K(Za)

as algebras.
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Proof. This is a combination of [CG97] 6.2.3 and 5.10.11. (See also [CG97]
8.1.6.)

Convention 2.12. Let a = (s, q⃗) ∈ G be a pre-admissible element. We define
Za

+ to be the image of Za under the natural projection defined by

Z ∋ (g1B, g2B,X0, X1, X2) 7→ (g1B, g2B,X0 + X1, X2) ∈ Z.

Let F a
+ be the image of Za

+ via the first (or the second) projection. Let µa
+ be

the restriction of µ to F a
+. We denote its image by Na

+. By the assumption
q0 ̸= q1, we have F a

+
∼= F a, Za

+
∼= Za, and Na

+
∼= Na

2 .

Corollary 2.13. Keep the setting of Convention 2.12. We have an isomorphism

Ha
∼= C ⊗Z K(Za

+)

as algebras. 2

3 Clan decomposition

We work under the same setting as in §2.

Definition 3.1 (Clans). Let a = (s, q⃗) be a pre-admissible element such that
s ∈ T . Let q2 = er2 . We put Γ := r2Z+Γ0. A clan associated to a is a maximal
subset c ⊂ [1, n] with the following property: For each two elements i, j ∈ c,
there exists a sequence i = i0, i1, . . . , im = j (in c) such that

{logik
(s) ± logik+1

(s)} ∩ {±r2 + Γ0, Γ0} ≠ ∅ for each 0 ≤ k < m.

We have a disjoint decomposition

[1, n] =
⊔

c∈Ca

c,

where each c is a clan associated to a and Ca is the set of clans associated to a.
For a clan c, we put nc := #c.

We assume the setting of Definition 3.1 in the rest of this section unless
stated otherwise. At the level of Lie algebras, we have a decomposition

g(s) := t ⊕
⊕

i < j, σ1, σ2 ∈ {±1},
σ1 logi(s) + σ2 logj(s) ≡ 0

g(s)[σ1ϵi + σ2ϵj ] ⊕
⊕

i ∈ [1, n], σ ∈ {±1},
2 logi(s) ≡ 0

g(s)[σ2ϵi],

where ≡ means modulo Γ0. For each c ∈ Ca, we define a Lie algebra g(s)c as
the Lie subalgebra of g(s) defined as⊕

i∈c

Cϵi ⊕
⊕

i < j ∈ c, σ1, σ2 ∈ {±1},
σ1 logi(s) + σ2 logj(s) ≡ 0

g(s)[σ1ϵi + σ2ϵj ] ⊕
⊕

i ∈ c, σ ∈ {±1},
2 logi(s) ≡ 0

g(s)[σ2ϵi],

where ≡ means modulo Γ0. Moreover, we have

g(s) =
⊕
c∈Ca

g(s)c. (3.1)

In particular, we have [g(s)c, g(s)c′ ] = 0 unless c = c′. Let G(s)c be the
connected subgroup of G(s) which has g(s)c as its Lie algebra.
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Lemma 3.2. We have G(s) =
∏

c∈Ca
G(s)c.

Proof. By (3.1), it is clear that
∏

c∈Ca
G(s)c is equal to the identity component

of G(s). Since G is a simply connected semi-simple group, it follows that G(s) is
connected by Steinberg’s centralizer theorem (c.f. [Ca85] 3.5.6). In particular,
we have G(s) ⊂

∏
c∈Ca

G(s)c as desired.

We denote B ∩ G(s)c and wB ∩ G(s)c by B(s)c and wB(s)c, respectively.

Convention 3.3. We denote by Va the image of Va
2 to V via the map

V2 ∋ (X0 ⊕ X1 ⊕ X2) 7→ ((X0 + X1) ⊕ X2) ∈ V.

Since q0 ̸= q1, we have Va ∼= Va
2 .

For each c ∈ Ca, we define

Va
c :=

∑
i,j∈c,σ1,σ2,σ3∈{±1}

Va[σ1ϵi + σ2ϵj ] ⊕ Va[σ3ϵi].

It is clear that Va =
⊕

c∈Ca
Va

c. By the comparison of weights, the g(s)c-action
on Va

c′ is trivial unless c = c′.

Remark 3.4. Since c is not an integer and we do not use Vℓ in the rest of this
paper, we use the notation Va

c. The author hopes the reader not to confuse Va
c

with (Vℓ)a.

Lemma 3.5. Let O ⊂ Na
+ be a G(a)-orbit. Let Oc denote the image of O

under the natural projection Va → Va
c. Then, we have a product decomposition

O = ⊕c∈CaOc.

Proof. Let X ∈ Va. There exists a family {Xc}c∈Ca (Xc ∈ Va
c) such that

X =
∑

c∈Ca
Xc. We have G(s)X =

⊕
c∈Ca

G(s)cXc. For each of i = 0, 1,

the clan c ∈ Ca such that (V (s,qi)
1 ∩ Vc) ̸= {0} is at most one since clans are

determined by the s-eigenvalues of V1. Let ci (i = 1, 2) be the unique clan such
that (V (s,qi)

1 ∩ Vci) ̸= {0}. Let Gc be the product of scalar multiplications of
V

(s,qi)
1 such that V

(s,qi)
1 ∩ Va

c ̸= {0}. Since the set of a-fixed points of a conic
variety in V is conic, we have (G(s)c × (C×)3)Xc = (G(s)c × Gc)Xc. We have∏

c∈Ca
(G(s)c × Gc) ⊂ G(a). It follows that

G(a)X =
⊕
c∈Ca

G(a)Xc =
⊕
c∈Ca

(G(s)c × Gc)Xc =
⊕
c∈Ca

Oc

as desired.

For each w ∈ W , we define

F a
+(w) := G(s) ×

wB(s) (ẇV+ ∩ Va).

Similarly, we define

F a
+(w, c) := G(s)c ×

wB(s)c (ẇV+ ∩ Va
c)

for each c ∈ Ca.
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Lemma 3.6. We have F a
+ = ∪w∈W F a

+(w).

Proof. The set of a-fixed points of G/B is a disjoint union of flag varieties of
G(s). It follows that each point of F a

+ is G(s)-conjugate to a point in the fiber
over a T -fixed point of G/B.

The local structures of these connected components are as follows.

Lemma 3.7. For each w ∈ W , we have

F a
+(w) ∼=

∏
c∈Ca

F a
+(w, c).

Proof. The set Va
c is T -stable for each c ∈ Ca. Hence, we have

F a
+(w) = G(s) ×

wB(s) (ẇV+ ∩ Va) ∼= G(s) ×
wB(s) (

⊕
c∈Ca

(ẇV+ ∩ Va
c)).

Since we have G(s)/B(s) ∼=
∏

c∈Ca
G(s)c/B(s)c, we deduce

G(s) ×
wB(s) (ẇV+ ∩ Va

c) ∼=
∏

c′∈Ca

G(s)c′ ×
wB(s)c′ (ẇV+ ∩ Va

c ∩ Va
c′).

Here the RHS is isomorphic to

F a
+(w, c) ×

∏
c ̸=c′

G(s)c′/wB(s)c′ .

Gathering these information yields the result.

We define a map wµa
c by

wµa
c : F a

+(w, c) = G(s)c ×
wB(s)c (ẇV+ ∩ Va

c) −→ Va
c.

Definition 3.8 (Regular parameters). A pre-admissible parameter (a, X) is
called regular iff there exists a direct factor A[d] ⊂ (µa

+)∗CF a
+
, where A is a

simple G(a)-equivariant perverse sheaf on Na
+ such that suppA = G(a)X and

d is an integer.
We denote by Ra the set of G(a)-conjugacy classes of regular parameters of the
form (a,X) (X ∈ Na

+).

Proposition 3.9 (Clan decomposition). For each w ∈ W , we have

µa
+|F a

+(w)
∼=

∏
c∈Ca

wµa
c.

In particular, every irreducible direct summand A of (µa
+)∗CF a

+
is written as an

external product of G(s)-equivariant sheaves appearing in (wµa
c)∗CF a

+(w,c) (up
to degree shift).

Proof. The first assertion follows from the combination of Lemma 3.5, Lemma
3.7, and the definition of wµa

c. We have CF a
+

=
⊕

F a
+(w)⊂F a

+
CF a

+(w). A direct
summand of (µa

+)∗CF a
+

is a direct summand of (µa
+)∗CF a

+(w) for some w ∈ W .
Since

(µa
+)∗CF a

+(w)
∼= £c(wµa

c)∗CF a
+(w,c),

the second assertion follows.
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We put Gc := Sp(2nc) and sc := exp(
∑

i∈c(logi(s))ϵi) ∈ T . We have
embeddings

s =
∏
c∈Ca

sc ∈
∏
c∈Ca

Sp(2nc) ⊂ Sp(2n),

induced by the following identifications:

g(s)c = gc(sc) ⊂

(⊕
i∈c

Cϵi

)
⊕

⊕
α = σ1ϵi + σ2ϵj ̸= 0

σ1, σ2 ∈ {±1}, i, j ∈ c

g[α] = gc. (3.2)

It follows that G(s)c = Gc(sc) ( Gc in general.
Let V(c) be the 1-exotic representation of Gc. We have a natural embedding

Va
c ⊂ V(c) of G(s)c-modules. (The G(s)c-module structure on the RHS is given

by restriction of Gc-action.)
Let ν = (a,X) be a pre-admissible parameter. We have a family of pre-

admissible parameters νc := (sc, q⃗, Xc) of Gc’s such that s =
∏

c sc, X = ⊕cXc.
We denote

ν =
∏
c∈Ca

νc

and call it the clan decomposition of ν. Let Wa :=
∏

c∈Ca
NGc(T )/T . By

Lemma 3.7, we conclude that∪
w∈Wa

F a
+(w) ⊂ F a

+ (3.3)

is the product of the F a
+’s obtained by replacing the pair (G, ν) by (Gc, νc) for

all c ∈ Ca.

Corollary 3.10. Let ν = (a,X) be a pre-admissible parameter. Then, it is
regular if and only if νc is a regular pre-admissible parameter of Gc for every
c ∈ Ca.

Proof. Let W0 := NG(s)(T )/T ⊂ W . We have a natural inclusion W0 ⊂ Wa.
Here we have

µa
+ =

⊔
w∈W/W0

µa
+|F a

+(w),

where we regard W/W0 ⊂ W by taking some representative. For each w ∈ W ,
there exists v ∈ Wa such that wV+ ∩ Va = vV+ ∩ Va ⊂ Va. Moreover, we can
choose v so that wB(s)c = vB(s)c holds for each c ∈ Ca. As a consequence,
all F a

+(w) are isomorphic to one of F a
+(w) (w ∈ Wa) as G(a)-varieties, together

with maps µa
+ |F a

+(w) to Va. Therefore, ν is regular if and only if an intersec-

tion cohomology complex with its support G(a)ν (with degree shift) appears in
(µa

+)∗CF a
+(w) for some w ∈ Wa. Hence, Proposition 3.9 implies the result.

Corollary 3.10 reduces the analysis of the decomposition pattern of (µa
+)∗CF a

+

into the case that ν has a unique clan.
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4 On stabilizers of exotic nilpotent orbits

We retain the setting of §2.

Lemma 4.1. Let H be an algebraic group and let X be an algebraic variety with
H-action. Let H = HrHu be a Levi decomposition of H with Hr its reductive
part. If StabHrx is connected for x ∈ X , then so is StabHx.

Proof. Assume to the contrary to deduce contradiction. Let h ∈ StabHx be an
element which is not in the identity component. Let h = hrhu ∈ HrHu be its
Levi decomposition. For some k > 1, we have hk ∈ (StabHx)◦. This implies the
existence of g ∈ (StabHx)◦ which satisfies hk = gk. Let g = grgu be the Levi
decomposition. We have Hu ▹ H, which claims hk

r = gk
r . Replacing h by g−1h,

we further assume hk
r = 1. Then, the assumption implies hu ̸= 1. Moreover, we

have hk ∈ (StabHux)◦ = StabHux. Consider the map

StabHux ∋ u 7→ (h1−k
r uhk−1

r ) · · · (h−1
r uhr)u ∈ StabHux.

By a Lie algebra calculation using the eigenvalues of hr, the image of this map
is (StabHu

x)hr , the hr-fixed part of StabHu
x. Here simple calculation shows

hk ∈ (StabHux)hr . Thus, we can adjust h by some element of (StabHux)hr

to assume hk = 1. Since an element of finite order is necessarily semisimple,
we conclude that h = mhrm

−1, where m ∈ Hu. This gives an element of
StabHrx − (StabHrx)◦, which contradicts the initial assumption of this proof.
As a consequence, we deduce the result.

The following result is not exactly the same as the original, but we can easily
deduce it from the proof:

Theorem 4.2 (Igusa [Ig73] Lemma 8). Let λ = (λ1 ≥ λ2 ≥ · · · ) be a partition
of n. We regard it as a 0-marked partition. Then, the reductive part of StabGvλ

is
Lλ := Sp(2n1, C) × Sp(2n2, C) × · · · ,

where the sequence (n1, n2, . . .) are the number of λi’s which share the same
value. Moreover, we have

ResG
Lλ

V1 =
⊕
i≥1

V (i)⊕λi ,

where V (i) is the vector representation of Sp(2ni) with trivial actions of Sp(2nj)
(j ̸= i). 2

Corollary 4.3. Keep the setting of Theorem 4.2. Then, we can choose maximal
torus of Lλ inside T .

Proof. Let J be the signed partition corresponding to λ. By Lemma 1.17, we
have C× ⊂ StabTJ

vJ for each J ∈ J. It follows that Lλ ∩ T contains a torus of
dimension (

∑
i≥0 ni), which implies the result.

Proposition 4.4. Let X ∈ N2. Then, StabGX is connected.
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Proof. Let X = (X0 ⊕ X1) ⊕ v2,λ, where λ is a partition of n regarded as
a 0-marked partition. By Theorem 4.2, it suffices to show that the action
of StabGv2,λ on (X0 ⊕ X1) has connected stabilizer. Let LλUλ be the Levi
decomposition of StabGv2,λ. By Lemma 4.1, it is sufficient to show that the
stabilizer of Lλ on (X0 ⊕X1) is connected. By Theorem 4.2, it suffices to prove
that the G-stabilizer of finite set of elements in V1 is connected. By a repeated
use of Lemma 4.1, it suffices to prove that the G-stabilizer of one element in V1

has Sp(2n − 2) as its (reductive) Levi factor. We denote the element v ∈ V1

and fix a symplectic form on V1 which is preserved by G. Then, it is easy to see
that StabGv preserves Cv, the compliment space v⊥ of V1 with respect to the
symplectic form. Thus, its Levi component is given as a subgroup of

C× × Sp(2n − 2) =
(
C× × GL(2n − 2, C) × C×)

∩ Sp(2n) ⊂ GL(V1),

which fixes v. (Here the middle group is the Levi component of GL(V1) which
preserves a partial flag {0} ⊂ Cv ⊂ v⊥ ⊂ V1.) Therefore, it is Sp(2n − 2) as
desired.

Remark 4.5. Springer [Sp07] contains an explicit description of the G-stabilizer
of each strict normal form. As is seen easily from the proof of Proposition 4.4,
it is not hard to write down the G-stabilizer of a point of N2 assuming [Sp07].

Corollary 4.6 (of the proof of Proposition 4.4). For each X ∈ N2, the reductive
part of StabGX is a product of symplectic groups. 2

Corollary 4.7. Let (a,X) = (s, q⃗,X) be a pre-admissible parameter. Then,
(StabGX) (s) is connected.

Proof. A Levi decomposition LXUX = StabGX is preserved by the a-action by
requiring a ∈ LX . Since a fixed part of a unipotent group is again unipotent,
we can forget about the unipotent part. Here we have LX = G∩StabGX. Since
LX is a product of symplectic groups, the Steinberg centralizer theorem asserts
that LX(s) is connected as desired.

A by-product of the above argument is the following:

Theorem 4.8 (Refined form of Theorem 1.16). Let ν = (a,X) = (s, q⃗,X1⊕X2)
be an admissible parameter or a = a0. Then, we have a clan decomposition

ν =
∏
c∈Ca

νc =
∏
c∈Ca

(sc, q⃗, Xc)

with the following properties:

• Each νc is an admissible parameter;

• There exists g ∈ G such that:

gsg−1 ∈ T and each gXc is a strict normal form.

Proof. If a = a0, then we have Na
2
∼= N. Hence, the result reduces to Proposition

1.15 1).
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Thus, we assume that a is admissible. Since the admissibility condition
depends only on the configuration of q⃗, the clan decomposition preserves admis-
sibility. Hence, it suffices to prove the case that c = [1, n] is the unique clan of
Ca. Then, two distinct eigenvalues t1, t2 of s on V1 satisfies

t1t2 or t1/t2 = qm
2 , where |m| < 2n.

It follows that at least one of q0 or q1 does not appear as a s-eigenvalue of V1

by the admissibility condition. Therefore, we can assume (s − q1)X1 = 0 by
swapping the roles of q0 and q1 if necessary.

Let us take G-conjugate to assume that X = vσ for a strict marked partition
σ = (J, δ⃗). By the description of the G-stabilizer of vσ, we deduce that we can
choose a maximal torus of StabGvσ inside of T . By Lemma 1.17 and the fact
vσ is a strict normal form, we deduce that a (possibly disconnected) maximal
torus of StabGvσ is taken inside T . Therefore, we conclude that (a,vσ) is a
strict normal form after taking conjugate of a by the StabGvσ-action (or the
StabGvσ-action).

Corollary 4.9. Let a = (s, q0, q1, q2) be an admissible element. If Ca consists
of a unique clan [1, n], then we have either V

(s,q0)
1 = {0} or V

(s,q1)
1 = {0}.

Proof. See the second paragraph of the proof of Proposition 4.8.

5 Semisimple elements attached to G\N1

We keep the setting of the previous section.
Let σ := (J, δ⃗) be a strict marked partition. Let λ = (λ1 ≥ λ2 ≥ · · · ) be the

partition of n corresponding to J = {J1, J2, . . .}.
We fix a sequence of positive real numbers γ0, γ1, . . . , γn > (n + 1)γ such

that

{γi + γj , γi − γj} ∩ (Γ + Zγ) = ∅ (5.1)

holds for every pair of (not necessarily distinct) numbers in [0, n].

Remark 5.1. Our choice of {γk}k and γ are possible since C is an extension of
the field Q(q2,

√
−1, π) with infinite transcendental degree.

We define a semi-simple element sσ ∈ T as follows:

• If δ1|Jk
≡ 0, then we set logj sσ = γk − jγ for each j ∈ Jk;

• If δ1(j0) = 1 for j0 ∈ Jk, then we set logj sσ = γ0 − (j − j0)γ for each
j ∈ Jk.

By the definition of strict marked partitions, the choice of j0 is unique for
each J ∈ J. Hence, sσ is uniquely determined. We put aσ := (sσ, eγ0 , 1, eγ) ∈ T .

Lemma 5.2. In the above setting, we have aσvσ = vσ.

Proof. It suffices to prove (sσ, eγ0 , 1, eγ)vJ
σ = vJ

σ for each J ∈ J. Let J = Jk.
Then, vJk

2,σ is a sum of yi,i+1 for i, i + 1 ∈ Jk, which has sσ-eigenvalue

e(γk−iγ−(γk−(i+1)γ)) = eγ .
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Hence, we have sσvJk
2,σ = eγvJk

2,σ. Moreover, we have sσxi = eγ0xi for every
i ∈ Jk. In particular, we have sσvJk

1,σ = eγ0vJk
1,σ. These calculations imply the

desired result.

Fix a real number r > 0. We define Dσ ∈ T to be

logi Dσ =

{
0 (logi sσ ̸= γ0)
−r(#Jk) (i ∈ Jk ∋ ∃j0, δ1(j0) = 1)

Consider a parabolic subgroup Pσ of G(sσ):

Pσ := {g ∈ G(sσ); lim
N→∞

Ad(DN
σ )g ∈ G(sσ)}.

It is well-known that Pσ is a parabolic subgroup of G(sσ). Let wσ be the shortest
element of W such that 〈

wσR+, Dσ

〉
≤ 1.

It is straight-forward to see

wσB ∩ G(sσ) ⊂ Pσ.

Lemma 5.3. For a strict marked partition σ, we have vσ ∈ Vaσ ∩ wσ V+.

Proof. By Lemma 5.2, it suffices to prove vσ ∈ wσ V+. The definition of wσ

implies that

1. xi ∈ wσ V+ if and only if a) Dσ(ϵi) < 1 or b) Dσ(ϵi) = 1 and i > 0;

2. yij ∈ wσ V+ if and only if a) Dσ(ϵi − ϵj) < 1 or b) Dσ(ϵi − ϵj) = 1 and
ϵi − ϵj ∈ R+.

Since v1,σ is sum of xi with Dσ-eigenvalue < 1, we have v1,σ ∈ wσ V+. The
vector v2,σ have Dσ-eigenvalue 1. By construction, a strict normal form is
contained in V+. There, we conclude v2,σ ∈ wσ V+, which completes the proof.

Proposition 5.4. Let σ = (J, δ⃗) be a strict marked partition. Then, we have
an inclusion

Pσvσ ⊂ Vaσ ∩ wσ V+,

which is dense open.

Before giving the proof of Proposition 5.4, we count the set of weights we
concern in its proof:

Lemma 5.5. Keep the setting of Proposition 5.4. Then, the set Ψ(Vaσ ∩wσ V+)
is given by the following list:

1. ϵi − ϵi+1 for each i, i + 1 ∈ J ∈ J;

2. ϵi+j0 − ϵi+j1+1 if the following conditions hold:

• i + j0, j0 ∈ Jk, and i + j1 + 1, j1 ∈ Jk′ for some k, k′;

• δ1(j0) = 1 = δ1(j1), and #Jk > #Jk′ ;
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3. ϵj0 for each j0 ∈ Jk such that δ(j0) = 1.

Proof. In this proof, we assume all integer index (which are a priori not neces-
sarily positive) to be positive. By the choice of the sequence {γk}k, we have

| 〈sσ, ϵj + ϵj′〉 | ≥ e−2nγ min{eγk+γk′ ; k, k′ ∈ [1, n]} > eγ

for each j, j′. It follows that weights of the form ϵj + ϵj′ does not belong to
Ψ(Vaσ ). We examine the assertion ±ϵj , ϵj − ϵj′ ∈ Ψ(Vaσ ∩ wσ V+) by the case-
by-case analysis. We have three cases:

(Case j, j′ ∈ Jk) We have ϵj − ϵ′j ∈ Ψ(Vaσ ) if and only if

〈ϵj − ϵj′ , sσ〉 = e(j′−j)γ = eγ .

Hence, we have j′ − j = 1. Hence, we put i := j, j′ = i + 1. We have
〈ϵi − ϵi+1, Dσ〉 = 1 ≤ 1, which verifies the first part of the assertion.

(Case i ∈ Jk ̸= Jm ∋ j) By (5.1), we deduce that

〈ϵj − ϵj′ , sσ〉 ∈ eΓ

if and only if j, j′ ∈ Jk or δ1(Jk) = {0, 1} = δ1(Jm) holds. We choose j0 ∈ Jk

and j1 ∈ Jm such that δ1(j0) = 1 = δ1(j1). We write j = i+ j0 and j′ := i′ + j1.
Then, we need

〈ϵi+j0 − ϵi′+j1 , sσ〉 = e(i′−i)γ = eγ .

This happens if and only if i′ = i + 1. By the definition of Dσ, we have

〈ϵi+j0 − ϵi+j1+1, Dσ〉 ≤ 1

if and only if #Jk ≥ #Jk′ . Since we assume (J, δ⃗) to be a strict marked
partition, it follows that #Jk ̸= #Jk′ by 1.12 4). This verifies the second part
of the assertion.

(Case j ∈ Jk) If ϵj ∈ Ψ(Vaσ ) or −ϵj ∈ Ψ(Vaσ ), then we have 〈s, ϵj〉 = eγ0

or e−γ0 , respectively. By (5.1), this forces ϵj ∈ Ψ(Vaσ ) and δ1(Jk) = {0, 1}.
Let j0 ∈ Jk be such that δ1(j0) = 1. Put j = i + j0 for some i ∈ Z. Then,
we have 〈ϵi+j0 , Dσ〉 = eiγ+γ0 = eγ0 if and only if i = 0. Moreover, we have
〈ϵj0 , Dσ〉 = 1 ≤ 1 and j0 > 0, which verifies the final part of the assertion.

Lemma 5.6. The group Pσ satisfies the following conditions:

1. Pσ = TUσ ⊂ B, where Uσ is a unipotent subgroup of G;

2. The Lie algebra uσ of Uσ contains a root subspace gα ⊂ g if and only if
α = ϵj − ϵj′ , where j, j′ are as follows:

• j ∈ Jk ̸= Jk′ ∋ j′ for some k, k′;

• There exists j0 ∈ Jk and j1 ∈ Jk′ such that δ1(j0) = 1 = δ1(j1);

• j − j0 = j′ − j1 and j < j′.
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Proof. Let Lσ be the semisimple Levi component of Lσ which contains T . We
have Lσ ⊂

∩
m1,m2∈Z G(Dm1

σ sm2
σ ). Each G(Dm1

σ sm2
σ ) is connected by Steinberg’s

centralizer theorem. Thus, we have Lσ = T if we have α(Dm1
σ sm2

σ ) ̸= 1 for each
α ∈ R and generic choices of m1,m2. This is equivalent to α(Dσ) ̸= 1 or
α(sσ) ̸= 1 holds for each α ∈ R since R is a finite set. In the below, we assume
all integer index to be positive. By (5.1), we have 〈ϵi − ϵj , sσ〉 = 1 if and only if

∃σ ∈ {±1} s.t. σi ∈ Jk ̸= Jk′ ∋ σj and δ1(Jk) = {0, 1} = δ1(Jk′), (5.2)

where Jk, Jk′ ∈ J. By 1.12 4), we deduce that

〈ϵi, Dσ〉 ̸= 〈ϵj , Dσ〉 for each i ∈ Jk, j ∈ Jk′ .

Therefore, we deduce Lσ = T .
Since T normalizes the unipotent part of Pσ, we describe all one-parameter

unipotent subgroup of G belongs to Pσ in order to prove the assertion. This is
equivalent to count the set of one-parameter unipotent subalgebra gα ⊂ g which
commutes with sσ and has eigenvalue ≤ 1 with respect to Dσ. We examine the
case α = ϵi − ϵj with the assumption (5.2) for σ = +1. (This last part of
the assumption is achieved by swapping the roles of i and j if necessary.) Fix
j0 ∈ Jk and j1 ∈ Jk′ such that δ1(j0) = 1 = δ1(j1). Then, the definition of sσ

further asserts i− j0 = j − j1. In order that Dσ has eigenvalue ≤ 1, we need to
have

〈ϵi, Dσ〉 ≤ 〈ϵj , Dσ〉 ,

which is equivalent to #Jk ≥ #Jk′ . This implies #Jk > #Jk′ by 1.12 4). It
follows that i < j, which verifies the second condition. Since α = ϵi − ϵj ∈ R+

in this case, we also deduce the first condition.

Proof of Propositon 5.4. Since Pσ ⊂ G(sσ), we have Pσvσ ⊂ Vaσ . Since the
reductive part of Pσ is equal to T , we deduce Pσvσ ⊂ wσ V+. Therefore, it
suffices to prove the following equality at the level of tangent space

Tvσ (Pσvσ) ∼= pσvσ = Vaσ ∩ wσ V+ (5.3)

in order to deduce the assertion. Consider a T -weight decomposition vJ
σ =∑

β∈ΞJ
vβ , where J ∈ J and 0 ̸= vβ ∈ V[β]. Since each ΞJ consists of linearly

independent weights of X∗(TJ) or X∗(T ), we deduce

tvJ
σ =

∑
k≥1

∑
β∈ΞJk

Cvβ .

It is easy to see that
∪

k≥1 ΞJk
is precisely the set of T -weights described in

Lemma 5.5 1) and 3).
In the below, we apply the action of uσ (c.f. Lemma 5.6) to fill out each V[β]

for each T -weight β described in Lemma 5.5 2). Such a β is written as ϵi − ϵj ,
where i ∈ Jk, j ∈ Jk′ are as in Lemma 5.5 2). By explicit calculation, we have
a non-zero element of g of weight ϵm+j0 − ϵm+j1 which satisfies

ξmvσ =

{
ym−1+j0,m+j1 − ym+j0,m+j1+1 (m + j0 + 1 ∈ Jk′)
ym−1+j0,m+j1 (m + j0 + 1 ̸∈ Jk′)

.
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for each m + j0 ∈ Jk′ . (Here we implicitly used #Jk > #Jk′ , which is deduced
from #Jk > #Jk′ by 1.12 4).) It is clear that ξm ∈ pσ. We have ∑

m∈Z;m+j1∈Jk′

Cξm

vσ =
∑

m∈Z;m+j1∈Jk′

V[ϵm−1+j0 − ϵm+j1 ].

By summing up for all possible pairs (Jk, Jk′) ∈ J, the set of T -weights appearing
in the RHS exhausts the T -weights described in Lemma 5.5 2).

Corollary 5.7. Keep the setting of Proposition 5.4. Let ν = (a,vσ) = (s, q⃗,vσ)
be an admissible parameter. Then, the natural embedding

Pσ(s)vσ ⊂ Va ∩ Vaσ ∩ wσ V+

is dense open.

Proof. The assertion follows merely by taking a-fixed part of (5.3) in the proof
of Proposition 5.4.

6 A vanishing theorem

We retain the setting of the previous section.
Let ν = (a,X) be a pre-admissible parameter. Associated to ν, we have a

subvariety
µ−1(X)a ⊂ F = G ×B V+.

By construction, it is immediate to see that the image of µ−1(X)a under the
projection to the base space G/B is an isomorphism. We denote this image by
Ea

X . We may also write EX instead of Ea
X when a = (1, 1, 1, 1).

Theorem 6.1 (Cohomology vanishing theorem). Let ν = (a,X) be an admis-
sible parameter or a = a0. Then, we have

H2i+1(Ea
X) = 0 for every i = 0, 1, . . . .

Moreover, we have an isomorphism

ch : C ⊗Z K(Ea
X)

∼=−→ H•(Ea
X).

Remark 6.2. 1) The map ch in Theorem 6.1 is the homology Chern character
map. (See e.g. [CG97] §5.8.) It sends the class of the (embedded) structure
sheaf OC for a closed subvariety C ⊂ Ea

X to

ch[OC ] = [C] + lower degree terms ∈ H2 dim C(Ea
X) ⊕ · · · ⊕ H0(Ea

X).

2) The first part of Theorem 6.1 is valid even for integral coefficient case when
G(s) ⊂ GL(n, C) (c.f. [AH07])2. Here we present a proof along the line of
earlier versions of this paper, with a slight enhancement informed to the author
by Eric Vasserot.

2Previous versions of this paper also contain such a result. The author decided to drop it
since [AH07] contains slightly stronger statement and a better proof.
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6.1 Review of general theory on cohomology vanishing

In this subsection, we recall several definitions and results of [KL87] and [DLP88]
which we need in the course of our proof of Theorem 6.1.

Definition 6.3 (α-partitions). A partition of a variety X over C is said to be
an α-partition if it is indexed as X1,X2, . . .Xk in such a way that X1 ∪ . . . ∪ Xi

is closed for every i = 1, . . . , k.

Theorem 6.4 ([DLP88] 1.7–1.10). Let X be a variety with α-partition X1,X2, . . . ,Xk.
If we have

H2i+1(Xm) = 0 for every i = 0, 1, . . .

for each m = 1, . . . , k, then we have

H2i+1(X ) = 0 for every i = 0, 1, . . . .

Moreover, we have ∑
i≥0

dimH2i(X ) =
∑
m≥1

∑
i≥0

dimH2i(Xm).

Theorem 6.5 ([DLP88] 1.5). Let π : E → X be a vector bundle over a smooth
variety X , with a fiber preserving linear C×-action on E with strictly positive
weights. Let Z ⊂ E be a C×-stable smooth closed subvariety. Then, π(Z) is
smooth and Z is a subbundle of E restricted to π(Z).

Theorem 6.6 ([KL87] Lemma 4.4). Let Z be a smooth variety with Gm-action.
Assume that some t ∈ Gm satisfies

ZGm = Zt = { lim
n→∞

tnz ∈ Z ∪ {∅};∀z ∈ Z}.

(I.e. every point of Z converges to a point of Zt.) Let X ⊂ Z be a (possibly
singular) subvariety such that XGm = ZGm . Then, the two assertions

H2i+1(Z) = 0 for every i = 0, 1, . . . , and H2i+1(X ) for every i = 0, 1, . . .

are equivalent. Moreover, we have∑
i≥0

dim H2i(Z) =
∑
i≥0

dimH2i(X ).

Remark 6.7. Notice that in [KL87], the statement is given by topological K-
groups (with complex coefficient). Here we identify them with our odd-part of
the Borel-Moore homology by the isomorphism

Ktop
1 (Z) ∼=

⊕
i≥0

H2i+1(Z),

which is valid for smooth varieties.
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6.2 Proof of vanishing theorem

Proposition 6.8 (Weak version of Theorem 6.1). Let (a,X) = (s, q⃗,X) be
an admissible parameter or a = a0. Then, we have some semi-simple element
sX ∈ G(s) with the following properties:

• sX has only positive real eigenvalues on V1;

• We have
H2i+1((Ea

X)sX ) = 0 for every i = 0, 1, . . . ;

• Each connected component of (Ea
X)sX is smooth projective;

• We have an isomorphism

ch : C ⊗Z K((Ea
X)sX )

∼=−→ H•((Ea
X)sX ).

Before giving the proof of Proposition 6.8, we present a proof of Theorem
6.1 for (a,X) assuming Proposition 6.8 for an element (a,X).

Proof of Theorem 6.1 for (a,X). Let E1, E2, . . . be a sequence of all connected
components of (Ea

X)sX . For each Ek, we set

Bk := {gB ∈ G/B; lim
N→∞

sN
XgB ∈ Ek}.

Let
P := {g ∈ G; lim

N→∞
Ad(sN

X)g ∈ G}

be a parabolic subgroup of G. It is well-known that

lim
N→∞

Ad(sN
X)g ∈ G(sX)

for g ∈ P . It follows that each Bk intersects with a unique P -orbit in G/B. In
particular, we can assume that the sequence B1,B2, . . . forms an α-partition of∪

k≥1 Bk ⊂ G/B by rearranging the sequence if necessary. By regarding each
P -orbit of G/B as a vector bundle over P/B, we can regard Bk as a vector
bundle over Ek by restriction. By Theorem 6.5, we deduce that (Bk ∩ Ea

X) is a
vector bundle over Ek, hence we have K(Ek) ∼= K(Bk ∩ Ea

X).
We have obvious decomposition

Ea
X =

⊔
k≥1

(Ea
X ∩ Bk).

This decomposition is an α-partition.
For the first assertion, it suffices to prove that

H2i+1(Ek) = 0 for every i = 0, 1, . . .

for each k. For the second assertion, it suffices to prove isomorphisms

ch : C ⊗Z K(Ek)
∼=−→ H•(Ek)

for each k, since the Chern character map commutes with the localization se-
quence and pullback along the fibers of vector bundles. (Thom isomorphism for
K-theory.) Both assertions follow from Proposition 6.8.
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The rest of this section is devoted to the proof of Proposition 6.8.
The natural projection induces an isomorphism (µ−1(X)a)(sX ,q⃗X) ∼= (Ea

X)sX

for every q⃗X ∈ G3
m such that sXX = q⃗XX. We have

(a,X) = (s, q⃗,X) =
∏
c∈Ca

(sc, q⃗, Xc).

By the same argument as in the proof of Corollary 3.10, each connected com-
ponent of µ−1(X)a is a product of connected components of

E(sc,q⃗)
Xc

⊂ Sp(2nc)/(B ∩ Sp(2nc)).

Therefore, by the Künneth formula, it suffices to prove the assertion when Ca

consists of a unique clan [1, n]. By Proposition 4.8, we further assume that s ∈ T ,
and X = vσ for a strict marked partition σ = (J, δ⃗) by taking G-conjugate if
necessary.

Now we take (sX , q⃗X) := aσ. Let A be the Zarkiski closure of the subgroup
of T generated by a and aσ. We put FA(w) := G(A) ×B(A) (VA ∩ wV+) for
each w ∈ W . We have

∪
w∈W FA(w) = (G ×B V+)A. Consider the map

wµA : FA(w) = G(A) ×B(A) (VA ∩ vwV+) −→ VA ∩ wV+,

where v ∈ NG(A)(T )/T ⊂ W is a unique element such that B(A) ⊂ vwB.

Lemma 6.9 (Part of Proposition 6.8). Each connected component of (Ea
X)aσ is

smooth projective.

Proof. Projectivity follows from that of EX , which itself follows by Theorem 1.2
3). By Lemma 5.6 1) and Corollary 5.7, we deduce that

B(A)vσ ⊂ VA

is a linear subspace. It follows that (wµA)−1(B(A)vσ) is a smooth subvariety
of G(A) ×B(A) (VA ∩ wV+). Hence, (wµA)−1(B(A)vσ) is a smooth subvariety
of Fw

A . Since changing vσ by B(A)-action gives an isomorphic fibers, we deduce
that (wµA)−1(vσ) is a smooth subvariety of Fw

A as required.

Corollary 6.10 (of the Proof of Lamma 6.9). The variety (wµA)−1(B(A)vσ)
is smooth. 2

We return to the proof of Proposition 6.8.
We prove the rest of assertions by the induction on the cardinality n(σ) of

the set
N(σ) := {J ∈ J; δ1(J) = {0, 1}}.

Notice that this implies that we can assume Theorem 6.1 for all admissible
parameter of the form (a,vσ) such that n(σ) < n(σ′). If n(σ) = 0, then Lemma
5.6 2) asserts that G(sσ) = T . This implies that (Ea

X)sσ is a union of points.
Thus, we obtained the assertion for n(σ) = 0.

We prove the assertion for n(σ) = k by assuming that the assertion holds
for all n(σ) < k. Let J ∈ N(σ) be the member such that #J ≥ #J ′ for every
J ′ ∈ N(σ). Let σ′ be a strict marked partition obtained from σ by replacing δ1

by δ′1 defined as:

δ′1(J) = {0}, and δ′1(j) = δ1(j) for all j ∈ [1, n]\J.
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Let j0 ∈ J be its unique element such that δ1(j0) = 1. By Lemma 1.17, there
exists t ∈ TJ such that

lim
N→∞

tNvσ = vσ − vJ
1,σ = vσ′ .

By Lemma 5.6 2), every T -weights of Pσ containing i ∈ J is of the form
ϵi − ϵj for some j ∈ J ′. Moreover, we have Pσ′ ⊂ Pσ. It follows that the action
of t ∈ T contracts Pσ to Pσ′ . By Corollary 5.7, the t-action also contracts
VA ∩ wσ V+ to

VA ∩ Vaσ′ ∩ wσ′ V+ = VA′
∩ wσ′ V+,

where A′ is the Zariski closure of 〈a, aσ′〉 ⊂ T .
Therefore, the t-action contracts (wµA)−1(B(A)vσ) to (wµA′

)−1(B(A′)vσ′).
By taking the quotient of

S := B(A)vσ ∪ B(A)vσ′

by StabB(A)vJ
1,σ, we obtain an affine plane A1 with contracting t-action to the

origin. Therefore, we obtain a smooth family of smooth projective varieties over
A1 whose fiber over 0 ∈ A1 is EA

vσ′ and whose general fiber EA
vσ

contracting to
EA′

vσ′ . Thus, applying Theorem 6.6 proceeds the induction for homologies. For
K-theory, moving smooth projective varieties is the same as moving all cycles
by rational equivalence. Therefore, it suffices to prove

C ⊗Z K(EA
v′

σ
)

∼=−→ H•(EA
v′

σ
).

This is guaranteed by Theorem 6.1 for (a,v′
σ), which is proved by the induction

hypothesis. Therefore, we have Proposition 6.8 for the pair (a,vσ) for all strict
marked partition with fixed n(σ). Hence, the induction proceeds and we have
proved Proposition 6.8 (and hence Theorem 6.1).

7 Standard modules and an induction theorem

We retain the setting of the previous section.

Definition 7.1 (Standard modules). Let ν = (a,X) be a pre-admissible pa-
rameter. We define

Mν := H•(Ea
X) and Mν := H•(Ea

X).

By the Ginzburg theory [CG97] 8.6, each of Mν or Mν is a H-module.

By the symmetry of the construction of varieties involved in M(a,X) and Ha,
we deduce M(a,X)

∼= M(Ad(g)a,gX) as Ha = HAd(g)a-modules for each g ∈ G(a).
Let sQ ∈ T (R) be an element such that

0 < 〈α, sQ〉 ≤ 1 for all α ∈ R+. (7.1)

Let Q := G(sQ) and Q := Q × (C×)3. These are subgroups of G and G,
respectively. We put VQ := VsQ and NQ = N

sQ

2 ⊂ VQ. We have a map

µQ : FQ := Q ×(Q∩B) (VQ ∩ V+) −→ NQ.
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We define ZQ := FQ ×NQ
FQ.

The natural inclusion map

Q ×(Q∩B) (VQ ∩ V+) ↪→
∪

w∈W

Q ×
wB(sQ) (VQ ∩ wV+) = F sQ

gives an identification of FQ with a connected component of F sQ . This equips
an action of Q on NQ, FQ, and ZQ by restricting the G-actions on their ambient
spaces.

We put
HQ := C ⊗Z KQ×(C×)3(ZQ),

where the convolution algebra structure on KQ(ZQ) are equipped by the re-
striction of the maps p1 and p2 from Z → F to ZQ → FQ.

Lemma 7.2. Keep the above setting. Form an increasing sequence of integers

1 ≤ n1 ≤ n2 ≤ · · ·

by requiring that

αi(sQ) < 1 if and only if i = nk for some k.

Then, we have

1. HQ is a subalgebra of H generated by A[T ] and the set

{Ti; i ̸= nk for some k};

2. For a pre-admissible parameter ν = (s, q⃗,X) such that s ∈ T and X ∈ NQ,
the vector space

MQ
ν := H•(µ−1

Q (X)(s,q⃗))

is a HQ-module.

Proof. By the condition (7.1), we have 〈α + β, sQ〉 = 1 for α, β ∈ R+ if and
only if 〈α, sQ〉 = 1 and 〈β, sQ〉 = 1. This implies that the Q is generated by T
and the one-parameter unipotent subgroups corresponding to simple roots αi

(and −αi) such that αi(sQ) = 1.
The variety FQ decomposes into a product of vector bundles over the flag

varieties of simple components of Q. By explicit computation, we deduce that
the vector bundles we concern are either a) the cotangent bundle of the flag
variety when the simple component is type A, or b) the variety F for a (possibly
smaller) symplectic group which arose as a simple component of Q. Moreover,
the map µQ is the product of the moment maps of cotangent bundles of flag
varieties of type A and our map µ (for some symplectic group).

Hence, taking account into the argument in §2, both statements are straight-
forward modifications of [CG97] §7.6 and §8.6. Thus, we leave the details to the
reader.

Let VU be the unique T -equivariant splitting of the map V+ −→ V+/V+
Q. If

X ∈ V satisfies sQX = X, then sQ has eigenvalue < 1 on uX. Hence, we have
necessarily uX ⊂ VU .
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Theorem 7.3 (Kazhdan-Lusztig type induction theorem). Let ν = (s, q⃗,X)
be an admissible parameter. Let P be a parabolic subgroup of G with its Levi
decomposition P = QU such that s ∈ Q and X ∈ NQ. If we have

Va
U ⊂ uX, (7.2)

then we have an isomorphism

IndH
HQ

MQ
ν

∼= Mν

as H-modules, where MQ
ν is in Lemma 7.2.

Remark 7.4. As we observe in the proof, one may obtain the strong induction
theorem in the sense of Lusztig [Lu02] (i.e. Theorem 7.3 without (7.2)) if we
have sufficiently nice slice instead of our E∼

X .

The rest of this section is devoted to the proof of Theorem 7.3.
We choose sQ ∈ T (R) so that G(sQ) = Q and (7.1) holds (so that we can

freely use the notation and terminology in the earlier part of this section). By
taking Q-conjugation if necessary, we assume X ∈ V+.

Let WQ := NQ(T )/T ⊂ W . We define

WQ := {w ∈ W ; ℓ(w) ≤ ℓ(vw) for all v ∈ WQ}.

Let w ∈ W . Let Ow be the P -orbit of G/B which contains ẇB. By counting
the weights, we have (V+∩VQ) ⊂ (V+∩wV+). It follows that X ∈ (V+∩wV+).
Hence, the map

(EX ∩ O1) = µ−1
Q (X) ∋ gB 7→ gẇB ∈ EX ∩ Ow

gives rise to an isomorphism (EX ∩ O1) ∼= EX ∩ OsQ
w . Let B− be the opposite

Borel subgroup of B with respect to T . We put Uw := U ∩ wB−. Since sQ

attracts points of Ow, we obtain a map

ψw : EX ∩ Ow → (EX ∩ O1)

by sending each point p to limN→∞ sN
Qp. We have an expression of a point

guẇB ∈ EX ∩ Ow as g ∈ Q, gB ∈ µ−1
Q (X), and u ∈ Uw. Let wQ be the longest

element of WQ.

Lemma 7.5. The fiber of the map ψw at gB ∈ QB is given as

ψ−1
w (gB) = {u ∈ gUwg−1;uX − X ∈ gwV+ ∩ VU}.

In particular, ψ−1
wQ

(gB) is isomorphic to StabU (X).

Proof. The variety Ow is a Uw-fibration over O1. The condition X ∈ guẇV+

is equivalent to (gu−1g−1)X − X ∈ gẇV+. Moreover, U is Q-stable and
(gu−1g−1)X − X ∈ VU , which implies the first result. Since UwQ = U and
gwQV+ ∩ VU = {0}, we conclude the second assertion.

Corollary 7.6. We have

dimH•(EX ∩ Ow) = dim H•(EX ∩ O1).
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Proof. By the proof of Theorem 6.1 and [KL87] Theorem 4.4, we have an α-
partition of EX ∩ O1 into an α-partition X1,X2, . . . such that each term is a
smooth variety without odd-term homology. Applying Theorem 6.6 by setting
Z to be the pullback of each piece along the contraction map Ow → OsQ

w , we
deduce that ∑

i≥0

dim H2i(Xm) =
∑
i≥0

dim H2i(ψ−1
w (Xm))

and
H2i+1(Xm) = H2i+1(ψ−1

w (Xm)) = 0 for i = 1, 2, . . .

for each m. Since ψ−1
w (X1), ψ−1

w (X2), . . . forms an α-partition of EX ∩ Ow, we
obtain the result.

We return to the proof of Theorem 7.3.
It is easy to see that

EX =
⊔

w∈W Q

(EX ∩ Ow)

forms an α-partition. Together with Theorem 6.1 and Corollary 7.6, this implies

dimMν = (#WQ) dim MQ
ν = (#W/#WQ) dim MQ

ν . (7.3)

Moreover, the natural map

ı : MQ
ν = H•(Ea

X ∩ O1) ↪→ H•(Ea
X) = Mν

is injective. Since we have

p1(Z≤si ∩ p−1
2 (O1)) ⊂ O1 if i ̸= nk for some k = 1, 2, . . . ,

the map ı is an embedding of HQ-modules. (The sequence {nk}k is borrowed
from Lemma 7.2.) Hence, we have an induced map

φ : IndH
HQ

MQ
ν −→ Mν .

Thanks to (7.3), we have:

Lemma 7.7. Theorem 7.3 follows if φ is surjective. 2

We return to the proof of Theorem 7.3.
For each w ∈ WQ, we define

Rw := [OZ≤w−1 ] ∈ KG(Z).

By the construction of §2, we have

RwH•(Ea
X ∩ O1) ⊂ H•(Ea

X ∩ Ow) ⊂ H•(Ea
X).

Since WQ has a partial order ≤Q induced by the Bruhat order, we put

H•(Ea
X)≤w :=

∑
v≤Qw;v∈W Q

RvH•(Ea
X ∩ O1).

Consider the composition map

τw : H•(Ea
X ∩ O1)

Rw◦−→ H•(Ea
X ∩ Ow) res−→ H•(Ea

X ∩ Ow).
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Lemma 7.8. Theorem 7.3 follows if each τw is surjective.

Proof. We have

dim Imφ ≥
∑

w∈W Q

dim grH•(Ea
X)≤w =

∑
w∈W Q

dimMQ
ν = (#WQ) dim MQ

ν .

Here gr stands for the graded quotient with respect to some completed order on
WQ which extends ≤Q. By (7.3), we conclude that φ must be surjective under
this assumption.

We return to the proof of Theorem 7.3.
We have only to prove that each τw is surjective provided if (7.2) holds. We

have an open enbedding(
p−1
2 (EX ∩ O1) ∩ π−1(Ow−1)

)
⊂

(
p−1
2 (EX ∩ O1) ∩ Z≤w−1

)
.

Lemma 7.9. For each subset E ⊂ (EX ∩O1), we have
(
p−1
2 (E) ∩ π−1(Ow−1)

) ∼=
ψ−1

w (E).

Proof. By definition, the LHS is written as:

{(g1B, g2B) ∈ µ−1(X) × (EX ∩ O1); g−1
1 g2 ∈ Bẇ−1B}.

Since B ∩ Q = wB ∩ Q, we have Bẇ−1B = Bẇ−1U . By taking the right B-
translation if necessary, we can assume g1 ∈ g2Uẇ. This forces g1B to live in
the fiber of the map ψw. This implies that g2B is completely determined by the
data of ψ−1

w (E) and vice versa.

Let A be the Zariski closure of 〈a, sQ〉 ⊂ T . The set uX ⊂ VU is an A-stable
linear subspace. It follows that

S := V/uX

has a A-stable splitting in VU . Using this splitting, we define

E∼
X := {(gB,X + y) ∈ F ; gB ∈ (EX ∩ O1), y ∈ S}.

Each element of VU is contracted to 0 by the sQ-action. Hence, S has a
contraction to 0 ∈ S. This gives a contraction

θ : E∼
X −→ (EX ∩ O1)

given by collecting sQ-attracting points.

Proposition 7.10. For each w ∈ WQ, the intersection of π−1(Ow−1) and
(F × E∼

X) is transversal inside F 2.

Proof. We prove the assertion by induction. The case w = 1 is clear. Assume
that

• w = w′s by w′ ∈ WQ and s = si such that ℓ(w) = ℓ(w′) + ℓ(s);

• The assertion holds for w′;
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and prove the assertion for w. For v = w,w′, we set

E∼(v) := {(gv̇B,X + y) ∈ p1((F × E∼
X) ∩ π−1(Ov−1))}.

We denote the fibers of the maps E∼(v) → (EX ∩ OsQ
v ) over gv̇B as:

Fv(gB) := {(u,X + y) ∈ gUvg−1 × S; u−1X − X ∈ gvV+, y ∈ S ∩ guvV+}.

Assume to the contrary to deduce contradiction. The failure of the dimension
condition of transversal intersection implies

dim Fw(gB) > dimFw′(gB) if s ̸= sn or
dim Fw(gB) ≥ dimFw′(gB) if s = sn (7.4)

for some gB ∈ (EX ∩ O1). Being transversal intersection is an open condition.
Since the intersection has a contraction to its sQ-fixed point, it suffices to con-
sider the situation near sQ-fixed points. Hence, we replace Fv(gB) in (7.4) by
the following tangent space version

fv(gB) := {(ξ, y) ∈ Ad(g)uv × S; ξX ∈ gvV+, y ∈ S ∩ gvV+}.

Let uv := Lie(U ∩ vB). It is clear that uvX ⊂ vV+ since X ∈ vV+. We have
u = uv ⊕ uv. It follows that

dim fv(gB) = dim Stabuvg−1X + dim(VU ∩ vV+)/uvX.

It is impossible to achieve the infinitesimal version of (7.4) since the dimensions
compensates each other. Hence, we have contradiction. It follows that the
intersection of π−1(Ow−1) and (F ×E∼

X) must have proper dimension inside F 2

under the induction hypothesis.
Now the linear independence of the normal vectors follows as an immediate

consequence of the fact that they are concentrated on the first factor and S on
the second factor (of F ×E∼

X), or the diagonal part (of π−1(Ow−1)), respectively.
Therefore, the induction proceeds and we obtain the result.

Lemma 7.11. The map τw is an isomorphism.

Proof. By [CG97] 2.7.26 and Proposition 7.10, we deduce that the map τw

induces an isomorphism

H•((E∼
X)a)

∼=−→ H•(p1((F × E∼
X) ∩ π−1(Ow−1))a). (7.5)

The spaces appearing in the homologies are given as fibrations over (EX∩O1) and
(EX ∩Ow) with its fiber linear subspaces of S. Here E∼

X has larger fiber. Hence,
the map τw itself is surjective if [Y ], [θ−1(Y )] ∈ KA(E∼

X) define the same cycle
up to an invertible factor for each A-stable closed subvariety Y ⊂ (EX ∩ O1).
(Here we switched to algebraic K-theory thanks to Theorem 6.1 and Lemma
7.6.) This is true if the alternating sum of the Koszul complex of S is invertible
in R(A)a. This is equivalent to Sa = 0, which is further re-pherased as

Va
U ⊂ uX.

This is (7.2).

We return to the proof of Theorem 7.3.
Thanks to Lemma 7.11, we have finished the proof of Theorem 7.3 by Lemma

7.8.
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8 Exotic Springer correspondence

We keep the setting of the previous section.
As we see in §1.4, we know that the action of H on Mν factors through the

isomorphism
C ⊗Z K(Za) RR−→ H•(Za) ∼= Ha.

Let
〈
C[t]W+

〉
be the ideal of C[t] generated by the set of W -invariant poly-

noimals without constant terms. Let C[W ]#
(
C[t]/

〈
C[t]W+

〉)
be the smash-

product, which means that its product is given as

(w1, f1)(w2, f2) := (w1w2, f1w1(f2)) for w1, w2 ∈ W, f1, f2 ∈ C[t]/
〈
C[t]W+

〉
.

It is clear that F a0 ∼= F , Za0 ∼= Z, and the restriction of the natural
projections Z → F restricts to natural projections Z → F .

Proposition 8.1. We have an isomorphism

C[W ]#
(
C[t]/

〈
C[t]W+

〉) ∼= H•(Za0)

as algebras.

Proof. We have
H•(Za0) ∼= Ca0 ⊗R(G) KG(Z).

Here the RHS is written as

C ⊗R(G) H/(q0 = −q1 = q2 = 1).

Thus, we have
H•(Za0) ∼= C ⊗R(G) C[W̃ ],

where W̃ := W n X∗(T ) is the affine Weyl group of type C
(1)
n . (Here C is the

R(G)-module given by the evaluation at 1 ∈ G. The algebra R(G) acts on C[W̃ ]
by R(G) ∼= Z[X∗(T )]W .) Thus, it suffices to show

C[X∗(T )]/C[X∗(T )]m∼
1
∼= C[t]/

〈
C[t]W+

〉
,

where m∼
1 ⊂ C[X∗(T )]W = C[T ]W is the defining ideal of the image of 1 ∈ T

in SpecC[T ]W . This follows from the fact that the neighborhoods of 1 ∈ T and
0 ∈ t are W -equivariantly diffeomorphic through the exponential map.

Corollary 8.2. Keep the setting of 8.1. We have a surjection

H•(Za0) −→→ C[W ].

Proof. Keep the notation of the proof of Theorem 8.1. We have〈
C[t]W+

〉
⊂ m1 ⊂ C[t],

where m1 is the defining ideal of 0 ∈ t. Since 0 is a W -fixed point of t, we deduce
that m1 is a W -invariant maximal ideal. It follows that

H•(Za0) ∼= C[W ]#
(
C[t]/

〈
C[t]W+

〉)
−→→ C[W ]# (C[t]/m1) ∼= C[W ]

as desired.
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Theorem 8.3 (Exotic Springer correspondence). There exists one-to-one cor-
respondences between the sets of the following three kinds of objects:

• a strict marked partition σ;

• the G-orbit of N given as Gvσ;

• an irreducible W -module.

Remark 8.4. Our proof of Theorem 8.3 does not tell which representation is
obtained from a given orbit. Such information can be found in [Ka08], which
employs totally different argument.

Proof of Theorem 8.3. Let P be the set of isomorphism classes G-equivariant
irreducible perverse sheaves on N. Each I ∈ P is isomorphic to the minimal
extension from a smooth G-orbit of N. By Proposition 4.4, the (perverse)
sheaf I must be the extension of a constant sheaf on a G-orbit. This implies a
#P ≤ #(G\N). Let S be the set of strict normal forms. By Proposition 1.15
1), we have #(G\N) ≤ #S. Hence, we have

#IrrepW ≤ #P ≤ #(G\N) ≤ #S ≤ #IrrepW (8.1)

where the first inequality comes from Theorem 1.19 and the last inequality is
Proposition 1.15 2). This forces all the inequalities in (8.1) to be equalities,
which implies the result.

The following is a summary of the consequences of §1.4:

Theorem 8.5 (Ginzburg, [CG97] §8.5). Let a be a finite pre-admissible element.
Let L be an irreducible Ha-module. Then, there exists unique G(a)-orbit O ⊂ Na

with the following properties:

1. There exists a surjective Ha-module homomorphism M(a,X) → L for every
X ∈ O;

2. If we have a non-trivial map M(a,Y ) → L of Ha-modules for some Y ∈ Na,
then we have Y ∈ O. 2

Theorems 8.3 and 8.5 claim that each strict marked partition σ gives a
unique simple quotient of M(a0,vσ). We denote this W -module by Lσ or LX for
X ∈ Gvσ, depending on the situation.

Corollary 8.6. Keep the setting of Theorem 8.3. A C[W ]-module M(a0,X)

contains Lσ only if X ∈ Gvσ holds. 2

9 A deformation argument on parameters

We retain the setting of the previous section.

Theorem 9.1. Let a = (s, q⃗) be an admissible element such that Ca = {[1, n]}.
Then, there exists an admissible element a′ := (s′, q⃗′) such that

• The s′-action on V1 has only positive real eigenvalue;
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• We have q′0, q
′
1, q

′
2 ∈ R×

≥0;

• We have equalities Na
+ = Na′

+ and G(s) = G(s′).

Moreover, we have an isomorphism Ha
∼= Ha′ as algebras.

Proof. For each i = 1, . . . , n, we set χi := ϵi(s). We set E := {χi, χ
−1
i ; 1 ≤ i ≤

n}. We choose a representative j0 ∈ [1, n] which satisfies the following condition:

• If ±1 ∈ E, then we require χj0 = ±1;

• If ±q
1/2
2 ∈ E, then we require χj0 = ±q

1/2
2 ;

• If ±q
−1/2
2 ∈ E, then we require χj0 = ±q

−1/2
2 .

For each pair i, j ∈ [1, n], we have

χ
κi,j

i = χ
κ′

i,j

j q
mi,j

2 for some σi,j ∈ {±1},mi,j ∈ [1, n]. (9.1)

Since q2 is not a root of unity of order ≤ 2n, it follows that mi,j are uniquely
determined if (κi,j , κ

′
i,j) is fixed. Let N be the largest positive integer such that

1, q2, . . . , q
N
2 are distinct. (If q2 is not a root of unity, then we regard N = ∞.)

For each pair (i, j) in [1, n], we set

I(i,j) :=

{
{(κi,j , κ

′
i,j ,mi,j); (9.1) and χ

κi,j

i , χ
κ′

i,j

j ∈ q
1
2 [1,N ]
2 } (±1,±q

±1/2
2 ̸∈ E)

{(κi,j , κ
′
i,j ,mi,j); (9.1)} (otherwise)

.

Notice that the all relations of the type (9.1) with mi,j = 0,±1 are contained
in I(i,j). Choose two real numbers q ≫ q′2 ≫ 1 such that q and q′2 have no
algebraic relation. Then, we set

(χ′
i)

κi,j0 :=


(q′2)

mi,j0 (χj0 = ±1)
(q′2)

mi,j0+κ′
i,j0

/2 (χj0 = ±q
1/2
2 )

(q′2)
mi,j0−κ′

i,j0
/2 (χj0 = ±q

−1/2
2 )

q(q′2)
mi,j0 (χj0 ̸= ±1,±q

±1/2
2 )

.

Since the relation (9.1) for (i, j) is determined by that of (i, j0) and (j, j0) for
each pair i, j in [1, n], it follows that

(χ′
i)

κi,j = (χ′
j)

κ′
i,j q

mi,j

2 for some κi,j , κ
′
i,j ∈ {±1},mi,j ∈ [1, n]

for all (κi,j , κ
′
i,j , mi,j) ∈ I(i,j). It is clear that χ2

i = 1 if and only if (χ′
i)

2 = 1.
We put s′ ∈ T so that ϵi(s′) = χ′

i for each i = 1, 2, . . . , n. By the above
consideration, it follows that g(s′) = g(s). Since both G(s′) and G(s) are
connected by Steinberg’s centralizer theorem, we deduce G(s) = G(s′).

Since the relation of (9.1) is preserved, we have V
(s,q2)
2 = V

(s′,q′
2)

2 . If we have
χσi

i = qk for some i ∈ [1, n], σi ∈ {±1}, and k = 0, 1, then we set q′k := (χ′
i)

σi .
Otherwise, we set q′k (i = 0, 1) to be an arbitrary real number which is not an
eigenvalue of s′ on V1. (I.e. not equal to any of (χ′

i)
±1.) Since we have infinitely

many possibilities, we can assume q′0 ̸= q′1 and q′k ≫ 1 in this case. This give
Va = Va′

by setting a′ := (s′, q⃗′). We have q′0 ̸= q′1 in all cases since q0 ̸= q1.
Hence, the isomorphism Va

2
∼= Va implies Va′

2
∼= Va′

.
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Therefore, as subvarieties of F and N2, we have equalities

F a =
∪

w∈W

G(s) ×
wB(s) (wV+ ∩ Va) =

∪
w∈W

G(s′) ×
wB(s′) (wV+ ∩ Va′

) = F a′

and Na
+ = Na′

+ .
The projection map F a → Na

+ are induced by the projection µ. Hence, so
is F a′ → Na′

+ . Therefore, we have an equality of convolution algebras

Ha
∼= C ⊗Z K(Za) = C ⊗Z K(Za′

) ∼= Ha′ ,

which proves the last assertion.
Since q, q′2 ≫ 1, each of q′i (i = 0, 1) is positive real. This verifies the

requirement about q⃗′ as desired.

Proposition 9.2. Let a = (s, q0, q1, q2) be an admissible element such that:

• We have Ca = [1, n];

• The s-action on V1 has only positive real eigenvalue;

• We have V
(s,q1)
1 = {0};

• Each qi (i = 0, 1, 2) is a positive real number;

Let a := (s, q0, q2) and let

log a := (log s, r0, r2), where q0 = er0 , q2 = er2 .

Let A be the Zariski closure of 〈a〉 ⊂ T . Then HA
• (Z) is a C[a]-algebra such

that

1. The quotient of HA
• (Z) by the ideal generated by functions of C[a] which

is zero along log a is isomorphic to H•(Za);

2. The images of the natural inclusions C[W ] ⊂ H•(Z) ⊂ HA
• (Z) induces an

injection
C[W ] ↪→ H•(Za) = H•(Za).

Moreover, we have
C[a] ⊗ H•(EX) ∼= HA

• (EX)

as a compatible (C[W ], C[a])-module, where W acts on a trivially.

Corollary 9.3. Keep the setting of Proposition 9.2. We have

M(a0,X) = H•(EX) ∼= H•(Ea
X) = M(a,X)

as C[W ]-modules. 2

The rest of this section is devoted to the proof of Proposition 9.2.

Lemma 9.4. Keep the setting of Proposition 9.2. Then, A is connected.
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Proof. The group A is defined to be the quotient of C[T1] by the monomials
m such that m(s, q0, q2) = 1. Since all the values of ϵi(s), q0, q1 are posi-
tive real number, the condition m(s, q0, q2) = 0 and m(sr, qr

0, q
r
2) = 0 is the

same for all r ∈ R>0, where the branch of powers are taken so that all of
ϵi(sr), qr

0, q
r
2 (i = 1, . . . , n) are positive real numbers. It follows that a monomial

m ∈ C[T1] satisfies m(s, q0, q2)k = 1 for some positive integer k if and only if
m(s, q0, q2) = 1. Therefore, such monomials form a saturated Z-sublattice of
X∗(T1). In particular, its quotient lattice is a free Z-lattice, which implies that
A is connected.

We return to the proof of Proposition 9.2.
For each m ≥ 0, let ETm := (Cm\{0})dim T be a variety such that i-th C×-

factor of T = (C×)dim T acts as dilation of the i-th factor for each 1 ≤ i ≤ n+3.
By the standard embedding Cm ↪→ Cm+1 sending (x) to (x, 0), we form a
sequence of A-varieties

∅ = ET0 ↪→ ET1 ↪→ ET2 ↪→ · · · .

We define ET := lim−→m
ETm, which is an ind-quasiaffine scheme with free A-

action. Since EA is contractible manifold with respect to the classical topology,
we regard ET as the universal vector bundle of each subgroup of T . (Hence we
regard BA := A\ET in the below.)

Corollary 9.5 (of Lemma 9.4). Keep the above setting. We have Hodd(BA) =
0.

Proof. It is well-known that BC× is homotopic to P∞, which has no odd-
cohomology.

We return to the proof of Proposition 9.2.
For a A-variety X , we set

XA := △A\ (ET ×X ) .

We have a forgetful map

fA
X : XA → BA = A\ET.

Let DA
X be the relative dualizing sheaf with respect to fX . We define

HA
i (X ) ∼= H−i(XA, DA

X).

We have the Leray spectral sequence

Hi(BA) ⊗ Hj(X ) ⇒ HA
−i+j(X ).

In the below, we understand that HA
• (X ) :=

⊕
m HA

m(X ). The projection maps
pi : ZA → FA (i = 1, 2) equip HA

• (Z) a structure of convolution algebra. It is
straight-forward to see that the diagonal subsets △F ⊂ Z and (△F )A ⊂ ZA

represents 1 ∈ H•(Z) and 1 ∈ HA
• (Z), respectively.

Lemma 9.6. The algebra HA
• (Z) contains H•(Z) as its subalgebra. In partic-

ular, we have C[W ] ⊂ HA
• (Z) as subalgebras. Moreover, the center of HA

• (Z)
contains H•(BA)[(△F )A] ⊂ HA

• (Z).
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Proof. In the Leray spectral sequence

Hi(BA) ⊗ Hj(Z) ⇒ HA
−i+j(Z),

we have Hodd(BA) = 0 and Hodd(Z) = 0 (since Z is paved by affine spaces). It
follows that this spectral sequence degenerates at the level of E2-terms. More-
over, the image of the natural map ı : Hj(Z) ↪→ HA

j (Z) represents cycles which
are locally constant fibration over the base BA. It follows that the map ı is an
embedding of convolution algebras.
Multiplying H•(BA) is an operation along the base BA, which commutes with
the convolution operation (along the fibers of fA

Z ). It follows that H•(BA) →
H•(BA)[(△F )A] ⊂ HA

• (Z) is central subalgebra as desired.

We return to the proof of Proposition 9.2.
Let R(A)a be the localization of R(A) at the point a. By the Thomason

localization theorem (see e.g. [CG97] §8.2), we have an isomorphism

R(A)a ⊗R(A) KA(Za) ∼= R(A)a ⊗R(A) KA(Z)

as algebras. For each of X = Z, or Za, we have a dense open embedding

KA(X ) ↪→ lim←−
m

KA(EAm ×X ) ∼= lim←−
m

K(A\(EAm ×X )).

We regard the RHS as a substitute of K(XA). It follows that the Chern character
map relative to BA gives an isomorphism

C[[a]]a ⊗C[a]a HA
• (Za)a

∼= C[[a]]a ⊗C[a]a HA
• (Z)a,

where C[[a]]a is the formal power series ring of C[a] along log a. By restricting
this to the sum of vectors of finitely many degrees, we obtain

HA
• (Za)a

∼= HA
• (Z)a. (9.2)

Since localization along C[a]a commutes with the quotient by its unique maximal
ideal, we deduce the first assertion.

The isomophism (9.2) is an algebra isomorphism, it follows that 1 ∈ C[W ]
goes to 1 ∈ H•(Za). It follows that each of si goes to a non-zero element of
H•(Za) with its square equal to 1. By construction, there exists fi ∈ C(a)
(i = 1, . . . n) such that 1, f1s1, . . . fnsn ∈ HA

• (Za)a define linearly independent
vectors in H•(Za). It follows that f2

i ∈ C[a]. This forces fi ∈ C[a], which
implies that the images of 1, s1, . . . , sn ∈ H•(Za) are linearly independent. This
verifies the second assertion.

The vector space HA
• (µ−1(X)) admits an action of HA

• (Z). By the Leray
spectral sequence, we have

H•(BA) ⊗ H•(µ−1(X)) ⇒ HA
• (µ−1(X)). (9.3)

By Theorem 6.1 and Lemma 9.5, we know that Hodd(µ−1(X)) = 0 = Hodd(BA).
It follows that (9.3) is E2-degenerate, which proves the last part of Proposition
9.2.
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10 Main Theorems

We retain the setting of §2.

Theorem 10.1 (Deligne-Langlands type classification). Let a ∈ G be a finite
pre-admissible element. Then, Ra is in one-to-one correspondence with the set
of isomorphism classes of simple Ha-modules.

Proof. By definition, each element of Ra corresponds to at least one isomor-
phism classes of Ha-modules. Since a is finite, each irreducible direct summand
of (µa

+)∗CF a
+

is the minimal extension of a local system (up to degree shift)
from G(a)-orbit O. By Corollary 4.7, a G(a)-equivariant local system on O is
a constant sheaf. As a result, every element of Ra corresponds to at most one
irreducible module as desired.

Theorem 10.2 (Effective Deligne-Langlands type classification). Let a ∈ G be
an admissible element. Then, the set Λa is in one-to-one correspondence with
the set of isomorphism classes of simple Ha-modules.

The proof of Theorem 10.3 is given at the end of this section.
As in Remark 2.2, the quotient H/(q0 + q1) is isomorphic to an extended

Hecke algebra HB of type B
(1)
n with two parameters. Hence, we have

Corollary 10.3 (Effective Deligne-Langlands type classification for type B).
Let a = (s, q0,−q0, q2) ∈ G be a pre-admissible element such that −q2

0 ̸= q±m
2

holds for every 0 ≤ m < n. Then, the set Λa is in one-to-one correspondence
with the set of isomorphism classes of simple Ha-modules. 2

Remark 10.4. The Dynkin diagram of type C
(1)
n is written as:

0 1 2 n − 2 n − 1 n
◦ > ◦ ◦ ······ ◦ ◦ < ◦

This Dynkin diagram has a unique non-trivial involution ϕ. We define
t0, t1, tn to be

t21 = q2, t
2
n = −q0q1, tn(t0 − t−1

0 ) = q0 + q1 (c.f. Remark 2.2 1)).

Let T0, . . . , Tn be the Iwahori-Matsumoto generators of H (c.f. [Mc03, Lu03]).
Their Hecke relations read

(T0 + 1)(T0 − t20) = (Ti + 1)(Ti − t21) = (Tn + 1)(Tn − t2n) = 0,

where 1 ≤ i < n. The natural map ϕ(Ti) = Tn−i (0 ≤ i ≤ n) extends to
an algebra map ϕ : H → H′, where H′ is the Hecke algebra of type C

(1)
n

with parameters tn, t1, t0. We have tn = ±
√
−q0q1 and t0 = ±

√
−q0/q1

or ±
√
−q1/q0. In particular, ϕ changes the parameters as (q0,q1,q2) 7→

(q0,q−1
1 ,q2) or (q−1

0 ,q1,q2). Therefore, the representation theory of Ha (a =
(s, q⃗)) is unchanged if we replace q0 with q−1

0 , or q1 with q−1
1 .

The rest of this section is devoted to the proof of Theorem 10.3. In the
course of the proof, we use:

Proposition 10.5. Let a be an admissible element. Let O ⊂ N be a G-orbit.
For any two distinct G(s)-orbits O1,O2 ⊂ O ∩ Na

+, we have

O1 ∩ O2 = ∅.
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Proof. By Proposition 4.8 and Lemma 1.17, we deduce that the scalar multi-
plication of a normal form of N is achieved by the action of T . It follows that
each G(s)-orbit of Na is a ZG×(C×)2(a)-orbit. Let X ∈ O1. Let GX be the
stabilizer of X in G× (C×)2. Assume that O2∩O1 ̸= ∅ to deduce contradiction.
Since O2 is a ZG×(C×)2(a)-orbit, we have O2 ⊂ O1. Fix X ′ ∈ O2. Consider
an open neighborhood U of 1 in G (as complex analytic manifolds). Then,
UX ′ ∈ O is an open neighborhood of X ′. It follows that UX ′ ∩O1 ̸= ∅. We put
ga,X′ := LieGX′ + LieZG×(C×)2(a). We have

NO2/O,X′ = g/ga,X′ .

Every non-zero vectors of NO2/O,X′ is expressed as a linear combination of
eigenvectors with respect to the a-action. These a-eigenvectors can be taken to
have non-zero weights and does not contained in GX′ . It follows that

UX ′ ∩ O1 ̸⊂ Va,

which is contradiction (for an arbitrary sufficiently small U). Hence, we have
necessarily O2 ∩ O1 = ∅ as desired.

By Corollary 3.10, it suffices to prove Theorem 10.3 when Ca consists of a
unique clan [1, n]. By Corollary 4.9, we can further assume V

(s,q1)
1 = {0} by

swapping the roles of q0 and q1 if necessary. By Theorem 8.5 (c.f. Theorem 1.19),
an admissible parameter (a,X) is regular if there exists a simple Ha-constituent
of M(a,X) which does not appear in any M(a,X′) such that G(s)X ( G(s)X ′.

We apply Propotision 9.1 (if necessary) to modify a so that the assumption
of Proposition 9.2 is fillfulled. By Proposition 9.2, each M(a,X) has a W -module
structure given by the restriction of the Ha-module structure. Moreover, the
simple W -module LX corresponding to the G-orbit GX ⊂ N (by the exotic
Springer correspondence) appears in M(a,X). By Proposition 10.5, we have
GX ̸= GX ′ for every X ′ ∈ Na such that GX ( GX ′. By Corollary 9.3 and
Corollary 8.6, M(a,X′) does not contain LX as W -modules. Hence, the simple
Ha-constituent of M(a,X) which contains LX as W -type does not occur in any
M(a,X′) such that G(s)X ( G(s)X ′ as required.

11 Consequences

In this section, we present some of the consequences of our results. We retain
the setting of the previous section.

Definition 11.1. Let ν = (a,X) be an admissible parameter. Let Lν be the
simple module of H corresponding to ν. Let IC(ν) be the corresponding G(a)-
equivariant simple perverse sheaf on Na

+. (c.f. §1.4) We denote by Pν the
projective cover of Lν as Ha-modules. (It exists since Ha is finite dimensional.)

Let K be a H-module and let L be a simple H-module. We denote by [K : L]
the multiplicity of L in A.

Definition 11.2. Let a = (s, q⃗) ∈ T be an admissible element. We form three
|Λa| × |Λa|-matrices

[P : L]aν,ν′ := [Pν , Lν′ ], Da
ν,ν′ := δν,ν′χc(ν), and ICa

ν,ν′ := [Mν , Lν′ ],

where χc(ν) :=
∑

i≥0(−1)i dim Hi(G(a)X, C) (ν = (a,X)).
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Applying [CG97] 8.6.23 to our situation, we obtain:

Theorem 11.3 (The multiplicity formula of standard modules). Let ν = (a, X),
ν′ = (a,X ′) be regular admissible parameters. We have:

[Mν : Lν′ ] =
∑

k

dimHk(i!XIC(ν′)) and [Mν : Lν′ ] =
∑

k

dimHk(i∗XIC(ν′)),

where iX : {X} ↪→ Na
+ is an inclusion. 2

The following result is a variant of the Lusztig-Ginzburg character formula
of standard modules in our setting.

Theorem 11.4 (The character formula of standard modules). Let ν = (a, X) =
(s, q⃗,X) be an admissible parameter. Let Bν be the set of connected components
of Ea

X . For each B ∈ Bν , we define a linear form 〈•, s〉B as a composition map

〈•, s〉B : R(T )
∼= // R(gBg−1)

evs // C

R+
?Â

OO

// {weights of gBg−1}
?Â
OO

by some g ∈ G such that gB ∈ B. Then, 〈•, s〉B is independent of the choice of
g and the restriction of Mν to R(T ) is given as

Tr(eλ; Mν) :=
∑

B∈Bν

〈λ, s〉B
∑
j≥0

dimH2j(B, C).

Proof. Taking account into Corollary 4.7, the proof is exactly the same as in
[CG97] §8.2.

The following result is a special case of the Ginzburg theory [CG97] Theorem
8.7.5 applied to our particular setting:

Theorem 11.5 (The multiplicity formula of projective modules). Keep the
setting of Definition 11.2. We have

[P : L]a = ICa · Da · tICa,

where t denotes the transposition of matrices. 2

Index of notation
(Sorted by the order of appearance)

G, B, T, G(s), Uα, . . . §1

R, R+, E, ϵi, αi §1

W, ẇ ∈ NG(T ), si, ℓ §1

wH := ẇHẇ−1 §1

StabHx (x ∈ X ) §1

g, t, g(s), uα, . . . §1

V [λ], V +, V −, Ψ(V ) §1

H•(X ), H•(X , Z) §1

I, I∗, Γ0, exp §1

V1 = Cn, V2 = ∧2V1 §1.1

Vℓ: ℓ-exotic rep. §1.1

Fℓ, µℓ, Nℓ §1.1

F, µ, N, . . . §1.1

Gℓ, Zℓ, pi, πℓ §1.1

Ca §1.1

pw ∈ Ow §1.1

⋆, ◦ §1.1

a0 := (1, 1,−1, 1) §1.2

q⃗, logi(s) (s ∈ T ) §1.2

Λa §1.2

xi, yi,j ∈ V §1.3

J, TJ , δ⃗ §1.3

σ = (J, δ⃗) §1.3

vσ, vi,σ, vJ
σ , . . . §1.3
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#J, #J (J ∈ J) §1.3

Tℓ, F a
ℓ , νa

ℓ , Na
ℓ , . . . §1.4

G = G2, T = T2, . . . §2

A, H §2

Ti, qi, eλ ∈ H §2

Z≤w, Oi, eTi, . . . §2

Ha, F a
+, µa

+, Na
+, . . . §2

c, nc, Γ §3

g(s)c, G(s)c §3

Va, Va
c , F a

+, F a
+(w) §3

Ra §3

wµa
c §3

Gc, V(c), Xc, . . . §3

νc §3

sσ, Dσ, Pσ §5

Ea
X , ch §6

Mν , Mν §7

sQ, VQ, HQ, . . . §7

Lσ = LX (X ∈ Gvσ) §8

ET, BA, HA
• (X ) §9

Lν , IC(ν) §11
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