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Abstract

Let G = Sp(2n,C) be a complex symplectic group. We introduce a
G x (C*)**Lvariety 91, which we call the f-exotic nilpotent cone. Then,
we realize the Hecke algebra H of type Cﬂf) with three parameters via
equivariant algebraic K-theory in terms of the geometry of 9%. This
enables us to establish a Deligne-Langlands type classification of simple
H-modules under a mild assumption on parameters. As applications, we
present a character formula and multiplicity formulas of H-modules.
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Introduction

In their celebrated paper [KL87], Kazhdan and Lusztig gave a classification of
simple modules of an affine Hecke algebra H with one-parameter in terms of the
geometry of nilpotent cones. (It is also done by Ginzburg, cf. [CG97].) Since
some of the affine Hecke algebras admit two or three parameters, it is natural to
extend their result to multi-parameter cases. (It is called the unequal parameter
case.) Lusztig realized the “graded version” of H (with unequal parameters) via
several geometric means [Lu88, Lu89, Lu9sb] (cf. [Lu03]) and classified their
representations in certain cases. Unfortunately, his geometries admit essentially
only one parameter. As a result, his classification is restricted to the case where
all of the parameters are certain integral power of a single parameter. It is
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enough for his main interest, the study of representations of p-adic groups (cf.
[Lu9bal). However, there are many areas of mathematics which wait for the
full-representation theory of Hecke algebras with unequal parameters (see e.g.
[Mc03] and its featured review in MathSciNet).

In this paper, we give a realization of all simple modules of the Hecke algebra
of type C,(ll) with three parameters by introducing a variety which we call the
L-exotic nilpotent cone (cf. §1.1). Our framework works for all parameters and
realizes the whole Hecke algebra (Theorem A) and its specialization to each
central character. Unfortunately, the study of our geometry becomes harder for
some parameters and the result becomes less explicit in such cases (cf. Theorem
D). Even so, our result, coupled with that of Lusztig [loc. cit.], gives a definitive
classification of simple modules of the extended Hecke algebra of type B,(ll) with
two-parameters for almost all parameters (cf. Theorem E and the argument
after that).

Let G be the complex symplectic group Sp(2n, C). We fix its Borel subgroup
B and a maximal torus T C B. Let R be the root system of (G,T"). We embed
R into a n-dimensional Euclid space ®,Ce; as R = {£e¢; & ¢;} U {£+2¢}. We
define V; := C?" and V, := (A%V;)/C. We put V, := Vl@é @ Va and call it the
{-exotic representation. Let Vj be the positive part of V, (for precise definition,
see §1). We define

Fy =G XBVZ_ c@qG XBVg = G/B X Vy.
Composing with the second projection, we have a map
pe : Fp — V.

We denote the image of pp by M,. This is the G-variety which we refer as the
{-exotic nilpotent cone. We put Zy := Fy xom, Fy. Let Gy := G x (C*)“L. We
have a natural Gg-action on Fy (and Z;). (In fact, the variety Fp admits an
action of G x GL(¢,C) x C*. We use only a restricted action in this paper.)

Assume that H is the Hecke algebra with unequal parameters of type Cr(Ll)
(cf. Definition 2.1). This algebra has three parameters qg,q1,g2. All affine
Hecke algebras of classical type with two parameters are obtained from H by
suitable specializations of parameters (cf. Remark 2.2).

Theorem A (= Theorem 2.8). We have an isomorphism

H = C®gz K% (Z,)
as algebras.

The Ginzburg theory suggests the classification of simple H-modules by the
G-conjugacy classes of the following Langlands parameters:

Definition B (Langlands parameters).

1) A pair (a, X) = (8,90, q1, g2, Xo® X1 B X2) € G2 x Ny is called an admissible
parameter iff s is semisimple, g # q1, g2 is not a root of unity of order < 2n,
and sX; = ¢ X; fori =0,1,2;

For an admissible parameter (a, X ), we denote by u§ be the restriction of ug to
the set of a-fixed points F of Fy. Let Ga(a) := Zg,(a).



2) An admissible parameter (a, X) is called regular iff there exists a direct
summand A[d] C (u8)+«Crs, where A is a simple Ga(a)-equivariant perverse

sheaf on Mg such that suppA = G2(a)X and d is an integer.

Notice that our Langlands parameters do not have additional data as in the
usual Deligne-Langlands-Lusztig correspondence. This is because the (equivari-
ant) fundamental groups of orbits are always trivial (cf. Theorem 7.14). Instead,
the regularity condition poses subtlety:

Ezample C (Non-regular parameters). Let G = Sp(4,C) and let a = (exp(re; +
(r+mv/=1)e2),e", —e", —e?") € T x (C*)3 (r € C\my/—1Q). Then, the number
of Gz (a)-orbits in M3 is eight, while the number of corresponding representations
of H is six. (cf. Enomoto [En06]) In fact, there are two non-regular admissible
parameters in this case. These parameters correspond to weight vectors of €1 +¢5
or “61 & 62”.

Theorem D (= Corollary 6.3). Let (s, qo,q1, g2, X) be an admissible parameter.
If 2 # qQﬂ #q? (0 <Vl < 2n) and qoqft1 #+ qum (0 < Vm < n) hold, then it is
regular.

Now we state the main theorem of this paper:

Theorem E (= Part of Theorem 8.1 + Lemma 8.2). The set of G-conjugacy
classes of regular admissible parameters is in one-to-one correspondence with
the set of isomorphism classes of simple H-modules if g2 is not a root of unity
of order < 2n, and qoqljEl #* q2im holds for every 0 <m < n.

We treat a slightly more general case in Theorem 8.1 including Example C.
Since the general condition is rather technical, we state only a part of it here.

By imposing an additional relation gy + ¢1 = 0, the algebra H specializes to
an extended Hecke algebra Hp of type B,(ll) with two-parameters. (cf. Remark
2.2) In this case, almost all of the exception of Theorem D is covered by the
description of Lusztig [loc. cit.]. (I learned this from Prof. Lusztig. The author
wants to express his gratitude to him for this kind information.) Therefore,
Theorems D-E complete a definitive classification of simple Hp-modules except
for —g8 # g5 (|m| <n) or ¢ # 1.

Let us illustrate an example which (partly) explains the title “exotic”:

Ezample F (Equal parameter case). Let G = Sp(4,C). Let s = exp(re; + 7€) €
T (r € C\my/—1Q). Fix ag = (s,e") € G x C* and a = (s,e", —€",e*") € Ga.
Let A be the nilpotent cone of G. Then, the sets of G(s)-orbits of A2 and N3
are responsible for the usual and our exotic Deligne-Langlands correspondences.
The number of G(s)-orbits in N2 is three. (Corresponding to root vectors of 0,
2¢1, and “2e1 & 2€2”) The number of G(s)-orbits in 95 is four. (Corresponding
to weight vectors of (), €1, €1 + €2, and “e; & €1 + €2”) On the other hand, the
actual number of simple modules arising in this way is four (c¢f. Ram [Ra01]
and [En06]).

The organization of this paper is as follows: In §1, we fix notation and intro-
duce our main geometric objects including the f-exotic nilpotent cone. Then,
we give a rough classification of orbits of 91§. In §1.3, we review Ginzburg’s
convolution realization of simple K%2(Zs)-modules. Theorem A is proved in
§2. The proof itself is similar to that of Chriss-Ginzburg [CG97] §7. The main



point is to identify K“2(Fy) with a basic representation of H. Here we also
introduce a way to regard 2§ as a subvariety of 91y, provided if g9 # ¢1. In
§3, we prove a reduction theorem (Corollary 3.10) which reduces the proofs of
Theorems D and E to their spacial cases. To analyze the primitive parameters
arising from this reduction procedure, we reformulate the description of param-
eters in §4. In particular, we introduce the notion of height functions adapted to
a parameter, which is a rough analogue of the Jacobson-Morozov theorem used
in Kazhdan-Lusztig’s work ([KL87]). In §5, we formulate abstract regularity cri-
teria of parameters (Proposition 5.2 and Lemma 5.4) involving height functions.
At the same time, we introduce several notation and lemmas which help us to
check the assumptions of the criteria. Using this, we give a sufficient condition
for the regularity of parameters (Corollary 6.3) by checking our criteria with
a case-by-case analysis (Propositions 6.1 and 6.2). In §7, we present a proof
that the equivariant fundamental groups of orbits are always trivial. Its main
ingredients are: the identification of 9§ with the representation space of some
quivers, the representation theory of quivers, and the fact that a linearly defined
subgroup of GL(n,C) is connected. We formulate and prove (the precise form
of) Theorem E in §8. After proving Theorem E, we present a Deligne-Langlands
type classification in type Br(Ll)-case. In §9, we study geometric standard mod-
ules as consequences of our results and the Ginzburg theory (cf. [CG97] §8).
We present its multiplicity formula of simple modules, its character formula,
and a special case of the multiplicity formula of simple modules in projective
modules. With an aid of [CG97] §8, the last result follows from the odd ho-
mology vanishing of relevant varieties, for which we provide a proof under the
same assumption as in Theorem D. Also, we briefly mention a connection with
the canonical basis of quantum groups of type ADFE. We finish this paper by
supplying an appendix which is devoted to proofs of some geometric facts about
exotic nilpotent cones.
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comments, suggestions, and discussion on this topic. In particular, Professor Ariki
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1 Preparatory materials

Let G := Sp(2n,C). Let B be a Borel subgroup of G. Let T be a maximal
torus of B. Let X*(T') be the character group of T. Let R be the root system
of (G,T) and let R* be its positive part defined by B. We embed R and R
into a n-dimensional Euclid space E = @;Ce¢; with standard inner product as:

Rt = {Ei + 5j}i<j U {261} C {:I:el- + €j} U {i2€z} =RCE.

By the inner product, we identify ¢; with its dual basis. We put «; 1= ¢; — €;41
(i=1,...,n—1) or 2¢, (i =n). Let W be the Weyl group of (G, T). For each
a;, we denote the reflection of [E corresponding to a; by s;. Let £ : W — Z>g
be the length function with respect to (B,T). We denote by w € Ng(T') a lift
of w € W. For a subgroup H C G containing T, we put Y H :=wHw~!. For a



group H and its element h, we put H(h) := Zy(h). For each a € R, we denote
the corresponding one-parameter unipotent subgroup of G (with respect to T')
by U,. We define g, t,u,,g(s), etc... to be the Lie algebras of G, T,U,, G(s),
etc. . ., respectively.

For a T-module V, we define its weight A-part (with respect to T') as V[)].
We define the positive part V* of V as

vie= p Vi

AE€Qso R+ —{0}

We denote the set of T-weights of V' by (V).

In this paper, a segment is a set of integers I written as I = [i1,i2] N Z
for some integers i; < i2. By abuse of notation, we may denote I by [i1,is].
For a variety X, we denote by He(X) and He(X,Z) the Borel-Moore homology
groups with coefficients C and Z, respectively.

1.1 Exotic nilpotent cones

Let ¢ > 0 be an integer. We define V; := C?" (vector representation) and
Vo := (A?V7)/C. These representations have B-highest weights €1 and €; + €,
respectively. We put V, := Vl@é @ Vo and call it the {-exotic representation of
Sp(2n). For £ > 1, the set of non-zero weights of Vy is in one-to-one correspon-
dence with R as

R> {:EQEZ' — *te; € \I/(Vl) (11)

teite; o tete; €U(Va)

We define
F=GxBVfcGxPV,2G/BxV,.

Composing with the second projection, we have a map
e - F[ — Vz.

We denote the image of py by 9M,. We call this variety the {-exotic nilpotent
cone. By abuse of notation, we may denote the map Fy — 91y also by pu.

Convention 1.1. For the sake of simplicity, we define objects F', M, V, u, etc...
to be the objects Fy, My, Vi, pe ete... with £ = 1.

We summarize some basic geometric properties of 91 = M;:
Theorem 1.2 (Geometric properties of ). We have the following:
1. The defining ideal of M is (C[V]S)C[V] = (C[V5]F)C[V];
The variety N is normal;
The set of G-orbits in N is finite;

For each £ > 1, the map ¢ is a birational projective morphism onto Ny;

Sro

Every fiber of the map 1 is connected;



6. The map p is stratified semi-small with respect to the stratification of N
given by G-orbits.

Proof. Postponed to Appendix A. O

Lemma 1.3. We have a natural identification
F,~2{(gB,X)€G/BxVy; X €gVi}
Proof. Straightforward. O
Let Gy := G x (C*)**1. We define a Gy-action on M, as

GexMNe 3 (g, qo—t,- -+, q2) X (Xom @ - ®X2) — (45,9 Xo—e® - Bg; ' gX2) € N

(Here we always regard Xo_y,..., X7 € V4 and Xo € V,.) Similarly, we have
a natural Gy-action on Fy which makes uy a Gy-equivariant map. We define
Zy = Fy X, Fy. By Lemma 1.3, we have

Zy:={(1B,92B,X) € (G/B)* x V; X € 1V N g2V}
We put
Z}* = {(¢1B, 92B,9sB,X) € (G/B)’ x Vi; X € 1V N g2V NgsV[ }.

We define p; : Zy 3 (1B, 92B, X) — (¢;B,X) € Fyand pyj : Z}** 3 (1B, 2B, 93B, X) —
(9:B,9;B,X) € Z; (i, € {1,2,3}). We also put p; : Fp x Fy — Fy as the first

and second projections (i = 1,2). (Notice that the meaning of p;, p;, p;; depends

on ¢. The author hopes that there occurs no confusion on it.)

Lemma 1.4. The maps p; and p;; (1 <i < j < 3) are projective.

Proof. The fibers of the above maps are given as the subsets of G/B defined by
incidence relations. It is automatically closed and we obtain the result. (|

We have a projection
7e:Ze 3 (1 B,g2B,X) — (¢1B,92B) € G/B x G/B.

For each w € W, we define a point p,, := B xwB € G/B x G/B. This point
is independent of the choice of w. We put O,, := Gp,, C G/B x G/B. By the
Bruhat decomposition, we have

G/BxG/B= | | Ou. (1.2)
weWw

Lemma 1.5. For each £ > 1, the variety Z; consists of |W|-irreducible compo-
nents. Moreover, all of the irreducible components of Z have the same dimen-
sion.

Proof. We first prove the assertion for Z. By (1.2), the structure of Z is deter-
mined by the fibers over p,,. We have

7 pw) = VT NV



By the dimension counting using (1.1), we deduce

dim VY NVt =dim Vit nwV;" + dim V;" NV,
=#(R NwR") + #(RF NwRY) = N — {(w),

where N := dim V™ = dimG/B and R}, R} are the sets of long and short
positive roots, respectively. As a consequence, we deduce

dim71(0y) = N + £(w) + N — £(w) = 2N.

Thus, each 771(0,,) is an irreducible component of Z.

Next, we prove the assertion for Z, (¢ > 2). By forgetting the first (¢ — 1)
V1-factors, we have a surjective map n : Z; — Z. We have a surjective map
n : Z — Zy given by forgetting the Vi-factor. The fiber of n at x € Z is
isomorphic to the (¢ —1)-fold product of the fiber of 7’ at (z). The latter fiber
is isomorphic to the vector space V;" NgV;" when 7(z) = (1, g)p1. Therefore, the
preimage of each irreducible component of Z gives an irreducible component of
Zy. These irreducible components are distinct since their images under 7 must
be distinct. Hence, the number of irreducible components of Z; is equal to the
number of irreducible components of Z as desired. [l

By a general result of [Gi97] p135 (cf. [CG97] 2.7), the Gy-equivariant K-
group of Z, becomes an associative algebra via the map

* 0 K9(Z0)x K9 (Z0) 3 ([, [F]) = > _(=1)'[R'(p13)« (p12E@ 33 F)] € K (Z0).
i>0

Moreover, the Gy-equivariant K-group of F; becomes a representation of K %¢(Z,)
as

o: K (Zg) x K(Fy) 3 (I€],[K)) = Z(—l)i[Ri(pl)*(g @ p3K)] € KO (Fy).

Here we regard £ as a sheaf over Fy x Fy via the natural embedding Z, C Fy x Fy.

1.2 Definition of parameters

In this subsection, we present a (rough) classification of orbits of 918, which is
needed in the sequel. A complete classification of G-orbits of 9 is given by the
set of bi-partitions of n as is proved in [Ka0O6b).
For each A € X*(T)\{0}, we fix a basis element v[\] € V[A]. For each
X €V, we write
Xe=v[0]+ Y XWv,
AEX*(T)

where X () € C and v[0] € V[0]. We define the total support of X as
(1X| := {7 € [1,n]; X (£e€;) # 0 or X (+e;%€;) # 0 for some sign and j € [1,n]}.

The following is a slight enhancement of the good basis of Ohta [Oh86] (1.3).



Definition 1.6 (¢-normal form). A ¢-block of length m is a Ng(T)-translate
of one of the following vectors in V:

£ A—1
VO (m); = (1= 65, 0)VIoneirs] + Y vl
k=1 k=1

where 7= (j1 < ja < --+) € [0,m]%, o = {ok}x € {£1}%, i € [0,n], and §; ¢ is
Kronecker’s delta. Here we interpret vite;] = 0 = v[a;_1] if j > n. It is clear
that

v (m)|| = [i + 1,m + 1] or 0.

A (-normal form of V is a sum v = >, v; of £-blocks v; such that
[vill O [|vir || = 0 if i £ 4.

We define the support of a ¢-normal form v as:

vl = {llvillsi € [Ln] st v 00 | {k}

ke([Ln]=[IvID

By abuse of notation, we may call 1-blocks or 1-normal forms merely by
blocks or normal forms. For the sake of simplicity, we may denote v(%1)(m);
by v(m);.

Definition 1.7 (Configuration of semisimple elements).

1) An element a = (s, qo, q1,¢2) € G2 is called pre-admissible iff s is semisimple,
qo # q1, g2 is not a root of unity of order < 2n.

2) An element a € Gy is called finite if 913 has only finitely many G (a)-orbit.
3) A pre-admissible element a = (s,qo,q1,q2) is called general if ¢? # qul
(i=1,2,0 < VI < 2n), and qogi’ # ¢z™ (0 < ¥m < n).

For a pre-admissible element a = (s, o, g1, g2), we put
va = Vl(s’q“) ® Vl(sﬁql) ® V2(sﬁq2) CViaV,oV,=V,.
In the below, we may denote (go,q1,q2) € (C*)? by ¢ for the sake of sim-
plicity.
Definition 1.8 (Admissible parameters).

1) An admissible parameter is a pair
v= (avX) = (SaCﬁXl @XQ) €GyxM

such that a is pre-admissible, (s — go)(s — ¢1)X1 = 0, and s X3 = g2 X;
For a pre-admissible a € G2, we denote by B, the set of admissible parameters
of the form (a,Y) (Y € V);

2) An admissible parameter v is called standard if s € T', and X is a 2n-normal
form.

The following theorems are exotic and equivariant analogues of a result of
Sekiguchi [Se84] (cf. Theorem A.1). For the sake of completeness, we provide a
full-proof in Appendix A.



Theorem 1.9 (Normal forms). Let X € M. Then, there exists g € G such that
gX is a normal form.

Proof. Postponed to Appendix A. O

Theorem 1.10 (Standard parameters). Let v be an admissible parameter.
Then, there exists g € G such that gv is a standard parameter.

Proof. Postponed to Appendix A. O

1.3 Structure of simple modules

We put Ty := T x (C*)*+1. Let a € Ty. Let Z2, F2, and N2 be the set of a-fixed
points of Z,, Fy, and g, respectively. Let p® : F* — N7 denote the restriction
of py to a-fixed points.

We review the convolution realization of simple modules in our situation. The
detailed constructions are found in [CG97] 5.11, 8.4 or [Gi97] §5. For its variant,
see [Jo98].

The properties we used to apply the Ginzburg theory are: 1) Zy = Fy X, Fy; 2)
Fy is smooth; 3) py is projective; 4) R(Gy) C K9(Z;) is central; and 5) H,(Z;)
is spanned by algebraic cycles.

Let C, be the quotient of C®z R(Gy) or C®z R(T) by the ideal defined by the
evaluation at a. The Thomason localization theorem yields ring isomorphisms

Ca ®r(cy) K% (Z0) = Ca ®pgy(a)) KE®(28) =5 Ca ®p(r,) KT(Z2).
Moreover, we have the Riemann-Roch isomorphism
Ca @pery) K™(28) = K(22) 75 Ho(Z8) 2 Ext® (12Cra, p2Cra).

By the equivariant Beilinson-Bernstein-Deligne (-Gabber) decomposition theo-
rem (cf. Saito [Sa88] 5.4.8.2), we have

/J’Z:(CF[a = @ L@,X,d X IC(@, X)[d]7
0CN3 x,d

where O C M? is a G(s)-stable subset such that p? is locally trivial along O, x
is an irreducible local system on @, d is an integer, Lo 4 is a finite dimensional
vector space, and IC(Q, x) is the minimal extension of y. Moreover, the set
of O@’s such that Lg y,q # 0 (for some x and d) forms a subset of an algebraic
stratification in the sense of [CG97] 3.2.23. It follows that:

Theorem 1.11 (Ginzburg [Gi97] Theorem 5.2). The set of simple modules of
KC%(Z,) for which R(Gy) acts as the evaluation at a is in one-to-one corre-
spondence with the set of isomorphism classes of irreducible Gy(a)-equivariant
perverse sheaves appearing in piCra (up to degree shift). O

2 Hecke algebras and exotic nilpotent cones

We retain the setting of the previous section. We put G = G5 and T := T5.
Most of the arguments in this section are exactly the same as [CG97] 7.6 if we



replace G by G x C*, My by the usual nilpotent cone, us by the moment map,
F5 by the cotangent bundle of the flag variety, and Z5 by the Steinberg variety.
Therefore, we frequently omit the detail and make pointers to [CG97] 7.6 in
which the reader can obtain a correct proof merely replacing the meaning of
symbols as mentioned above.

We put Az := Z[qoﬂ, qlil, qQﬂ] and A :=C®z Az = (C[qgﬂ, qfl, qzﬂ].

Definition 2.1 (Hecke algebras of type C,(ll)). A Hecke algebra of type C,Sl)
with three parameters is an associative algebra H over A generated by {T;}™
and {e)‘}AGX*(T) subject to the following relations:

(Toric relations) For each A, 1 € X*(T), we have ¢* - e# = e**# (and € = 1);
(The Hecke relations) We have

(T;+1D)(Ti —q2) =0 (1 <i<n)and (T, + D)(T), + goq1) = 0;
(The braid relations) We have

T%TJ— = TjT% (lf |Z _.]| > 1)7 (TnTnfl)2 = (TnflTn)2,
TiTi T = Ty TiTip (f 1 <i<n—1);

(The Bernstein-Lusztig relations) For each A € X*(T'), we have

A _siA .
A s J (1= q2)5a5 (i#n)
Tie® — e = {(1+¢ZOQ18);(¢101-|-111)€€" (6>‘ _ esnA) (Z _ n) :

Remark 2.2. 1) The standard choice of parameters (to,t1,t,) is: t3 = qo, t2 =
—qoq1, and t,,(tg — t5 ") = (g0 + q1). This yields

1—12 —t,(to — ty e
e2en — 1

Tyt — e T, = (et — e*n?);

2) If n = 1, then we have T} = T, in Definition 2.1. In this case, we have
H = (C[qul] ®c Hp, where Hy is the Hecke algebra of type Agl) with two-
parameters (qo, q1);

3) An extended Hecke algebra of type B,(ll) with two-parameters considered in
[En06] is obtained by requiring go+¢1 = 0. An equal parameter extended Hecke

) is obtained by requiring qo + ¢1 = 0 and ¢7 = g2. An equal

algebra of type B,(,1
parameter Hecke algebra of type C,Sl) is obtained by requiring ¢2 = —qoq1 and
(I+4q0)(1+q1) =0.

For each w € W, we define two closed subvarieties of Z5 as
Zew =15 (04) and Zyy := Z<y\ 1y ().

Let A € X*(T). Let £y be the pullback of the line bundle G xZ A\~! over
G/B to Fy. Clearly £y admits a G-action by letting (C*)? act on Ly trivially.
We denote the operator [piL) ®@" o] by e*. By abuse of notation, we may
denote e*(1) by e* (in KG(Z)). Let go € R({1} x C* x {1} x {1}) € R(G),
@1 € R{1}x {1} xC*x{1}) C R(G),and g2 € R({1} x{1} x{1} xC*) C R(G)
be the inverse of degree-one characters. (L.e. g2 corresponds to the inverse of
the scalar multiplication on V5.) By the operation e and the multiplication by
qi, each of K&(Z<,,) admits a structure of R(T)-modules.
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Each Z<,\Z<, is a G-equivariant vector bundle over an affine fibration
over G/ B via the composition of w5 and the second projection. Therefore, the
cellular fibration Lemma (or the successive application of localization sequence)
yields:

Theorem 2.3 (cf. [CG97] 7.6.11). We have

K¢(Z<w)= @ R(MD)Oz,]
veEW;0, COw

For each i = 1,2,...,n, we put Q; := 7, '(0,,). We define T; := [Og,] for
eacht=1,...,n.

Theorem 2.4 (cf. Proof of [CGI7] 7.6.12). The set {[Ozgl],f}-,e)‘;l <i<
n, A € X*(T)} is a generator set of K& (Z3) as Az-algebras.

Proof. The tensor product of structure sheaves corresponding to vector sub-
spaces of a vector space is the structure sheaf of their intersection. Taking
account into that, the proof of the assertion is exactly the same as [CG97]
7.6.12. O

By the Thom isomorphism, we have an identification
KS(Fy) = KS(G/B) = R(T) = Ag[T). (2.1)

We normalize the image of [£)] under (2.1) as e’.

Theorem 2.5 (cf. [CG97] Claim 7.6.7). The homomorphism

o: K%(Zy) — Endg(a) K G (F)
18 1njective. O
Proposition 2.6. We have

1. [0251] =1e€ EndR(G)KG(FQ);
2. Tyjoer = (1 —QQeai)% for every A € X*(T') and every 1 <1i < n;

~ A sSpA—a

3. Tpoer = (1—quez)(1 — qrezon)e =2

T—e on

= for every X € X*(T).

Proof. The component Z<; is equal to the diagonal embedding of F5. In par-
ticular, both of the first and the second projections give isomorphisms between
Z<1 and F;. It follows that

[Oz,] 0 [£2] = Z(—l)i[Ri(pl)* (0z., & F3L1))

= [R(p1)« (Oz, @ p5L2)] = [L2],
which proves 1). For each i = 1,...,n, we define V¥ (i) := VJ N 4§ V). Let
P, := B$;B U B be a parabolic subgroup of G corresponding to s;. Each V*(3)
is B-stable. Hence, it is P;-stable. We have

Fg(@i) :651' = (1 X H)Ol C G/B X G/B

11



The product (1 x P;)p; x V(i) is a B-equivariant vector bundle. Here we have
GN(B x P;) = B. Hence, we can induce it up to a G-equivariant vector bundle
V(i) on m(Q;). By means of the natural embedding of G-equivariant vector
bundles

F=GxPV] - GxBVy, =G xV,,

we can naturally identify m;'(ps;) with VT (i). Since V*(i) is P;-stable, we
conclude 75 Y(ps,) = V*(i) as P-modules. As a consequence, we conclude
V(i) = 0;. Let F(i) := G xB (V5 /Vt(i)). It is a G-equivariant quotient
bundle of F. The rank of F(i) is one (1 < i < n) or two (i = n). Let Z<,, be
the image of Z<,, under the quotient map Fy x Fy — F(i) x F(i). We obtain
the following commutative diagram:

F Z<s, Fy
| | |
F(i) Z<s; F(i)

Here the above objects are smooth V7 (i)-fibrations over the bottom objects.
Therefore, it suffices to compute the convolution operation of the bottom line.
We have Z<,, = O,, U A(F(i)), where A : F(i) — F(i)? is the diagonal
embedding. Let p; : O5, — G/B (j = 1,2) be projections induced by the
natural projections of G/B x G/B. By construction, each p; is a G-equivariant

P!-fibration. Let £y be the pullback of G xB A~! to F(i). We deduce

Tio[Ly] = Z(—l)i[Ri(f?l)*(OQi ®" (O K Ly)]

i>0
) o . B 1 B 6)\_651»)\7041»
= SR G556 <P A7) = 6P 1)
i>0
where [exff;i:ai] € R(T) = R(B) is a virtual B-module. Here the ideal

sheaf associated to G/B C F(i) represents ga[La,] in KG(F(i)) (1 < i < n)
or corresponds to goLe, + q1Le, C Opy (i = n). In the latter case, divisors

corresponding to qofen and qlfén are normal crossing. Thus, we have [qOEEn N
@1 Le,] = qoq1[L2e,]- In particular, we deduce

[@0Le, + 1 L] = qolLe,] + @1lLe,] — q0q1[Lac,] € KC(F(n)).

Therefore, we conclude

T oo — (1—Q2eai)% (if 1 <i<n)
i - An an ekiesnkfan .
(1—qoe™= )(1 —qre™ )W (if i =n)
as desired. O

The following representation of H is usually called the basic representation
or the anti-spherical representation:

12



Theorem 2.7 (Basic representation cf. [Mc03] 4.3.10). There is an injective
A-algebra homomorphism

€ : H — End 4 A[T],
defined as e(e*) :=e*- (A € X*(T)) and

X_ s A_ _sidta; . )
E(T')GA B eiaie_llk - q2€ e‘Eil—l :\+ N N (Zf 1 <1< ’rL)
H - —e® —e® @ _ .8 . .
e+ o e — (0 + q)e S5 (ifi=n)

Theorem 2.8 (Exotic geometric realization of Hecke algebras). We have an
isomorphism,
H— C&z K%(2,),

as algebras.

Proof. Consider an assignment 9

P — (e 7] <,
e)‘»—>e’\,£|—>{Tl (1 —g2(e* +1)) (1_z<n)'

T + (g0 + qr)e™ — (1 + qgoqi(e* +1)) (i=n)

By means of the Thom isomorphism, the above assignment gives an action of
an element of the set {e*} U{T;}"; on A[T]. We have

I(eH)et =M

- ) ) €>\ _ esi)\fai )
I(Ty)et = (E — (I —qa(e™ + 1))) et = (1 — gae™) e et 4 gae® +1)e?
6)\ _ 657;)\7041’ €>\ _ 6)\70(1' 6)\ _ 657;)\7041’ €>\ _ e)\fQOti
— _ _ (e 7} _ — Tz A
( l—e l—e ) a2 l—e l—e ) =e@e

IT)e* = (To+ (g0 + @)™ = (1+ qoar (e + 1)) )

6)\ _ eSn)\*Oén N N \
=(1 —qoe™)(1 — que™) o O F (g0 + @)™ — qoqi(e® + 1)e
7(6)\ _ eSn)\*Oén 6)\ _ 6)\704”) N N (6)\ _ eSn)\*Oén e)\ _ 6)\720%
TV l—e o l—eOn Qe l—e o  1—eon
Aen SnA—€n Aen A—én
e —e e —e A\
— (g0 + q1)( [ ) =e(Tp)e.

This identifies C ®7z K% (Fy) with the basic representation of H via the cor-
respondence e — e* and T; — T;. In particular, it gives an inclusion H C

C @z KG(Zy). Here we have T € Tj + A[T] for 1 < i < n. Tt follows that

C ®z K€(Zy) C H, which yields the result. O
Theorem 2.9 (Bernstein cf. [CG97] 7.1.14 and [Mc03] 4.2.10). The center
Z(H) of H is naturally isomorphic to C ®z R(G). O
Corollary 2.10. The center of KS(Z3) is R(G). O

For a semisimple element a € G, we define
Ha = (Ca ®Z(H) H (Cf §13)

and call it the specialized Hecke algebra.
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Theorem 2.11. Let a € G be a semisimple element. We have an isomorphism
Hy = C®z K(Z3)
as algebras.

Proof. This is a combination of [CG97] 6.2.3 and 5.10.11. (See also [CG97]
8.1.6.) O

Convention 2.12. Let a = (s,q) € G be a pre-admissible element. We define
Z% to be the image of Z§ under the natural projection defined by

Z3 3 (1B, g2B, Xo, X1, X2) = (91 B, 92B, Xo + X1, X2) € Z.

Let F§ be the image of Z% via the first (or the second) projection. Let u3 be
the restriction of 4 to F'¥. We denote its image by 91%. By the assumption
Qo # q1, we have F? = I3, 7% = 78 and M§ = N3.

Corollary 2.13. Keep the setting of Convention 2.12. We have an isomor-
phism
H, = C®z K(Z3)

as algebras. O

3 Clan decomposition

We work under the same setting as in §2.

Definition 3.1 (Clans). Let a = (s,¢) € T be a pre-admissible element. We
denote s = exp(\), where

)\:i/\iEiEng.
i=1

Let g2 = expro. We put I'g := 27nv/—1Z and I := r9Z + I'y. A clan associated
to a is a maximal subset ¢ C [1,n] with the following property: For each two
elements i, j € ¢, there exists a sequence i = ig,41,...,%n = J (in ¢) such that

iy X N {Fxr2 +T0, T} # 0 for each 0 < k < m.

We have a disjoint decomposition
L= ] e
cel(a)

where each ¢ is a clan associated to a and I(a) is the set of clans associated to
a. For a clan ¢, we put n® := #c.

We assume the setting of Definition 3.1 in the rest of this section unless
stated otherwise. At the level of Lie algebras, we have a decomposition

g(s) =t® T g(s)[ore; + o2¢5] @ T 9(s)[o2€i],
i < j,01,00 € {£}, i € [1,n],0 € {£},
Ul)\i+g2)\j =0 2X\; =0
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where = means modulo I'y. For each ¢ € I(a), we define a Lie algebra g(s). as
the Lie subalgebra of g(s) defined as

@Cei P @ g(s)[o1€; + 02¢5] @ @ g(s)[o2¢],
icc i< jE€c,o1,02 € {£}, i€c,o € {%},
o1Ni + 022 =0 20, =0

where = means modulo I'g. Moreover, we have
8(s) = €D s(s)e- (3.1)

/

In particular, we have [g($)ec,8(s)er] = 0 unless ¢ = ¢’. Let G(s). be the
connected subgroup of G(s) which has g(s)c as its Lie algebra.

Lemma 3.2. We have G(s) = [[cer(a) G(5)e-

Proof. By (3.1), it is clear that [ [, ;(,) G(s)c is equal to the identity component
of G(s). Since G is a simply connected semi-simple group, it follows that G(s)
is connected by Steinberg’s centralizer theorem (cf. [Ca85] 3.5.6). In particular,
we have G(s) C [[ces(a) G(8)c as desired. O

We denote BN G(s)c and * BN G(s)c by B(s)e and ¥ B(s)e, respectively.
Convention 3.3. We denote by V2 the image of V§ to V via the map
V2o (Xo® X1 0 Xa) — (Xo+X1)®X2) €V.
Since g # g1, we have V2 = V3.
For each ¢ € I(a), we define
VE = Z Va[o1€; + 02€] & Vo3¢,
i,j€c,01,02,03€{£}
It is clear that V& = @Cel(a) V2. By the comparison of weights, the g(s)c-action

on V2, is trivial unless ¢ = ¢’

Remark 3.4. Since c is not an integer and we do not use V, in the rest of this
paper, we use the notation V2. The author hopes the reader not to confuse V2
with (Vy)2.

Lemma 3.5. Let O C M3 be a G(a)-orbit. Let Q. denote the image of O
under the natural projection V& — V2&. Then, we have a product decomposition
@ - @Cej(a)(o)c.

Proof. Let X € V2. There exists a family {Xc}eera) (Xe € V2) such that
X =3 cera) Xe- We have G(s)X = @cr(a) G(5)eXec. Let ct (i = 1,2) be
the unique clan such that Vl(s’qi)[oej] # 0 for some j € ¢ and o € {£}. Let
Ge be the product of scalar multiplications of V%) such that V"% nva
{0}. Since the set of a-fixed points of a conic variety in V is conic, we have
(G(5)e x (C*)?)Xe = (G(8)e X Ge)Xe. We have ] ) (G(s)e X Ge) C G(a).
It follows that

G@X = P G@Xc= P (G(s)e xGe)Xe = P O

cel(a) cel(a) cel(a)

as desired. O

cel(a
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For each w € W, we define
F2(w) := G(s) x BE) (wV+ nve).
Similarly, we define
F2(w,c) i= G(s)e x P& (VN Va)
for each c € I(a).
Lemma 3.6. We have F? = Uyew F3 (w).

Proof. The set of a-fixed points of G/B is a disjoint union of flag varieties of
G(s). It follows that each point of F?? is G(s)-conjugate to a point in the fiber
over a T-fixed point of G/B. O

The local structures of these connected components are as follows.
Lemma 3.7. For each w € W, we have
Frw)= [[ F2(wo).
cel(a)
Proof. The set V2 is T-stable for each ¢ € I(a). Hence, we have
F2(w) = G(s) x"PO @V N V) = G(s) <P (@ (@V* nve)).
cel(a)
Since we have G(s)/B(s) = [[oe(a) G(5)e/B(s)c, we deduce
G(s) x" PO VT nva)y= J[ G(s)e x PEe (VT nVaNVE).
c’el(a)
Here the RHS is isomorphic to
F3(w,c) x [[ G(s)e /" B(s)er-
c#c!
Gathering these information yields the result. (|
We define a map “u2 by
YpR s F2(w, ) = G(s)e x P& (VN VE) — V2,

Definition 3.8 (Regular parameters). An admissible parameter (a, X) is called
regular iff there exists a direct factor A[d] C (p3):Cpa, where A is a simple

G (a)-equivariant perverse sheaf on 9% such that suppA = G(a)X and d is an
integer. For a pre-admissible element a € G, we define

Aq = {X € M%; (a, X) is regular admissible} /G(a).
Proposition 3.9 (Clan decomposition). For each w € W, we have
Klew e T vwl
cel(a)

In particular, every irreducible direct summand A of (ui)*CFi s written as an
external product of G(s)-equivariant sheaves appearing in (w,ui‘)*([:pi(wm (up
to degree shift).
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Proof. The first assertion follows from the combination of Lemma 3.5, Lemma
3.7, and the definition of “u2. We have (Cpi = GaFi(w)CFi (Cpi(w). A direct

summand of (1% )«Cpa is a direct summand of (13 )«Cra(y) for some w € W.
Since

(15)+Craw) = Me(“ 1)+ Cra(w,c)

the second assertion follows. O

We put G := Sp(2n°) and sc := exp(d_, .. Ai€;) € T. We have embeddings

i€c
5= H Sc € H Sp(2n®) C Sp(2n),

cel(a) cel(a)

induced by the following identifications:

g(s)c = gc(sc) C <@ C6i> S @ g[a] = fe- (3'2)

i€c a =016, +0o2€; #0
01,02 €{£},i,j€c

It follows that G(s)e = Ge(se) S Ge in general.

Let V(c) be the 1-exotic representation of G.. We have a natural embedding
V2 C V(c) which is compatible with (3.2).

Let v = (a, X) be a standard parameter. We have a family of admissible
parameters ve := (S¢,q, Xc) of Ge’s such that s = [[,sc, X = @cXc. Let
Wa = [leer(a) N (T)/T. By Lemma 3.7, we conclude that

U F2(w) c Fg (3.3)
weEWa

is the product of the F?’s obtained by replacing the pair (G,v) by (Gc,vc) for
all c € I(a).

Corollary 3.10. Let v = (a, X) be a standard parameter. Then, it is reqular
if and only if ve is a regular admissible parameter of G for every c € I(a).

Proof. Let Wy := Ng)(T)/T C W. We have a natural inclusion Wy C W.
Here we have
pi = |_| M1|Fi(w)u
’IJJGW/W()

where we regard W/Wy C W by taking some representative. For each w € W,
there exists v € W, such that YVt NV2 =Y+ N V2 c V& Moreover, we can
choose v so that Y B(s)e = YB(s)c holds for each ¢ € I(a). As a consequence,
all F2(w) are isomorphic to one of F(w) (w € Wa) as G(a)-varieties, together
with maps 3| F2(w) O V2. Therefore, v is regular if and only if an intersection

cohomology complex with its support G(a)v (with degree shift) appears in
(Mi)*CFi(w) for some w € W,. Hence, Proposition 3.9 implies the result. O

Corollary 3.10 reduces the analysis of the decomposition pattern of (13 ).C P2
into the case that v has a unique clan.
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4 Rearrangement of parameters

We work under the same setting as in the previous section. In particular, we fix

a pre-admissible a = (s,§) € T such that s = exp(}_, A\j¢;). In the below, we

assume that ¢ = [1,n] is the unique clan associated to a unless stated otherwise.
For each {£ € C, we put c(§) :={i € c¢;\; € (£ +Ty) U (—€+Ty)} and

&(6) 1= c(¢) Ue(€ + my/=1).

Lemma 4.1. Let ¢ and X\ be as the above. If ¢(\) # (), then there exists Ao € C

such that

c(Xg) # 0,c(No +nre) =0, and c = |_| c(Ag + mra).

o<m<n
Moreover, the choice of Ao is unique up to sign and translation by I'y.

Proof. By the definition of clans, we have ¢ = |J,,, c(Aj + mrz) for some
Ay € C. We can rearrange \| if necessary to assume

(/\6 + Z>or2 +To) N (—)\6 — Z>or2 +Ty) C Tp.

(Notice that the LHS is non-empty only if 2); € I" for every i.) Since we have
c(A) + mra) = c(—=A) — mrz) and g2 is not a root of unity of order < 2n, this
implies
] b+ m+kr)ce
0<m<n

for each k € Z>o. We have c¢(\) + mra) # 0 only if ¢(A\) + (m £ 1)ra) # 0
or c(A\j + mrz) = c. Hence, there exists unique mg such that A\g = Ay + mor2
satisfies ¢ = | |y, <, €(Ao + mrz) and c(Ag) # 0. This implies c(Ag + nr2) =0
as desired. |

Definition 4.2. Keep the setting of Lemma 4.1. We define ¢, := c(Ag + mrs)
for each 0 < m < n.

Definition 4.3. Let a and c be as the above. The clan c is called type II iff
co = ¢(r2/2), and called type I iff ¢y = ¢(0). Otherwise, we call ¢ type I.

Lemma 4.4. We have c,, = ¢(0) if and only if ¢ is type Il and m = 0.

Proof. The “if” part is definition. We prove “only if” part. We assume ¢(0) # 0.
It follows that ¢(—nrs) = ¢(nr2) = 0 and ¢(—r2) = ¢(r2). Thus, the description
of Lemma 4.1 forces 2\ € T'g, which implies ¢y = ¢(0) as desired. O

Lemma 4.5. We have c,,, = ¢(r2/2) if and only if c is type II and m = 0.

Proof. The “if” part is definition. We prove “only if” part. We assume ¢(r2/2) #
0. It follows that ¢(—2ry) = ¢(Ztry) = 0 and ¢(—r2/2) = €(r2/2). Thus,
the description of Lemma 4.1 forces 2)\g € 9 + I'g, which implies c¢g = ¢(r2/2)

as desired. O

For each J C [1,n] and 0 < m < n, we define J,,, := J Nc,,. By abuse of
notation, we may denote by J,,, the unique member of J,, if J satisfies #J,,, <1
for each m. We put

Ji={me0,n);J, #0} C[0,n).
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Lemma 4.6. Let v = (a,X) be a standard parameter. Assume that J € |X]|.
There exists a unique partition J = JyUJ_ such that Jy are segments, J_ C Jy,

(J)m = 0 or {j£} (signs are the same), and j;, > j- holds for each 0 < m < n.

Proof. By the definition of standard parameters, we have i,j € J,, only if
Ai € 0jAj + ljra + T for some o; € {£} and 0 < |I;| < n. Since c(A;) = c(}j)
and rp is not a root of unity of order < 2n, we have 2\; = l;r2 mod I'y. Let
i,7,k € Jp, be distinct members to deduce contradiction. Then, we have

oAk +lkra = Ny = oA +1jra mod Ty,

for some o}, € {£} and 0 < |lx| < n. We have 2\; = lyra mod T'y. This forces
l; = I}, since ry is not a root of unity of order < 2n. This is contradiction. It
follows that we have #J,, < 2. Hence, we have a unique partition J = J, U J_
with J_ C Jy, #(J+)m = 0 or {j£}, and 5 > j. Since J is the support of a
block, it follows that each of J4+ must be a segment. O

For a standard parameter v = (a, X), we define
I (W) = {Jx; J € [X]}.
Here Ji are defined as in Lemma 4.6. We define m(J) = minJ. For each
J,J' € J(v), we put aj = e€g,, + €T

Definition 4.7 (Supports and normal forms). We assume the same setting as
in Lemma 4.6. For J € J(v), we define v, :=3_ ., vley,, —¢€g, ]| For
J € |X|, we define

vy i=viag g ] +vy +vi,

where we understand that v[e s, ;| =0 unless J_ # 0.

Let v = (a, X) be an admissible parameter. The action of Ng(T') exchanges
A; with ;. Adding an element of I'g to A; does not change s = e*. Hence, we
can rearrange v and {\;}; to satisfy the following condition (*):

(x)1 We have \; — mry = A; if i € Cgq4n and j € ¢y, for some k;
(x)2 We have i < j if i € cgyp and j € ¢, for some k and m > 0;
(x)3 We have Xo =3 ;¢ x| V.

By construction, we can assume (%) for a representative of every G(s)-conjugacy
class in B, without the loss of generality.

Lemma 4.8. Assume the condition (x). Then, we have
U(VANVe) = U(w) U | {ei — €0 € Cmyr,J € em},
m>0
where we have
) (c is type I)
U(v) = {e+eic€ci,jecot (cistype II) .
{€Z+€j77’a]€COaZ¢]} (C is typell[)

In particular, we have V& NV, C V2+.
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Proof. We have (V2 N Vy)[o1€; + 02¢] # 0 (i < j, 01,02 € {£}) if and only
it 01X + 02A; € 72+ Ty. By (%)1, this happens only if a) 01 = 02 = + and
i,j €¢(r2/2),b) 01 =02 =+ and i € ¢(rg),j € ¢(0), or ¢) o1 = 4,02 = — and
Ai = Aj + r2. These roots are positive by (x)s. O

Corollary 4.9. Keep the setting of Lemma 4.8. Then, we have Xo € V5 for
every (a, X) € Pa. O

For each 0 < m < n, we put

@ Ce; @ @ glo2e;] @ @ glo1€; + o2¢;] (e =¢€(0))

i€em i€em,oe{+} i€ om i< ]
01,02 € {£}
m) = )
at) @ Cei @ @ glo(ei —€;)] (otherwise)
1ECm 6§ € cm,i<j
oce{£}

These are Lie subalgebras of g(s)c = g(s). By a weight comparison, we conclude
[g(m), g(m’)] = 0 unless m = m’. We define G(m) to be the connected subgroup
of G with its Lie algebra g(m). We have

GL(d2 m 7 ¢(0
Gy = [THB) (en #80) W
Sp(dy,)  (em =€(0))
where d2, = #cp, (¢, # €(0)), or 2(#cp,) (¢ = €(0)).
Lemma 4.10. We have G(s) = G(s)c = [[,,50 G(m).
Proof. The first identity follows from the assumption [1,n] = c. Let 4,5 € ¢ and
let 01,09 € {£}. We have g(s)[o1€; + 02¢;] # 0 if and only if o1 \; + 02); € Ty
holds. By (*)1, this implies ¢, j € ¢, for some m. Moreover, 0109 = + occurs

in the above condition if and only if i,j € ¢(0). Therefore, we deduce G(s) D
[L,,>0 G(m). The reverse inclusion exists since G(s) is connected. O

Definition 4.11 (Height function). Let v = (s, , X ) be a standard parameter.
Let h: J(v) — R be a function. We put

sp, = exp( Z h(J)e;).

i€J,JET(X)
We call h a height function adapted to v if s, X = X holds. Let L" := Zgs)(sn).
We put

UM = exp <Z €g(s); lim spZ = 0> and Vj, := {v € V; lim spv converges.}.

The group P" := L"U" is a subgroup of G(s). We put V" := V,, NV, It is
clear that P" acts on V. Let wy, € W be the shortest element which sends V*
into V.

Lemma 4.12. Keep the setting of Definition 4.11. The subgroup P" C G(s) is
parabolic.
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Proof. By the choice of s, we have a(sy) € Rsq for every a € R. Let Rj, :=
{a € R;a(sp) > 1}. The set Ry, contains wR™ for some w € W. The set
R; = {a € Rp;a(s) = 1} defines the set of T-roots of P". This contains
wRTNR;, which is the set of T-roots of a Borel subgroup of G(s) as desired. O

Corollary 4.13. Keep the setting of Definition 4.11. A function h : J(v) — R
is a height function adapted to v only if we have h(Jy) + h(J-) = 0 for each
J € |X|. In addition, we have a reverse implication when X = Xo.

Proof. Since h is a function on J(v), we have
sn( Y o) =sa( Y (v +vi )= (Y (voo+vy )= Y o
IeJ(v) Je|X| Je|X| IeJ(v)

In order to have s, Xo = X5, it suffices to check

sn( Z vy ) = Z MIDTRUI )y, ) — Z vy, g

Je|X| JelX| JelX|

by (%)s. This is equivalent to h(Jy) + h(J-) = 0, which implies the results. [

5 Abstract criteria of regularity

We work under the same settings as in the previous section. In the below, we
fix a standard parameter v = (a, X) which satisfies (x) and a height function h
adapted to v.

The goal of this section is to present Proposition 5.2, together with its local
counter-parts.

Lemma 5.1. Assume that there exists w € W such that
G(a)X N wVT NV cwVtnva
is dense. Then, v is regular.

Proof. The subspace O := G(s) x“B®) (wV+ N Va) C F?2 is a connected com-
ponent of F'?. By assumption, we have

wVtNVa =Ga)X NuwVtNVac G(a)X.
Hence, we have p% (@) = G(a)X. Therefore, the Beilinson-Bernstein-Deligne
(-Gabber) decomposition theorem yields the result. O

Proposition 5.2. Let v = (s,q, X) be a standard parameter such that X € V+.
Let h be a height function adapted to v. If we have p"X = V" then we have
PhX = V", In particular, we have

X € (V2N V) c PhX = V",
Proof. By construction, we have X € V". Since p"X is the tangent space of
P"X at X, the equality p” X = V" implies dim P"X = dim V". Since V" is an

irreducible variety, we conclude P*X = V". This proves the first assertion. We
prove the second assertion. The inclusion (V2 N, V) C V% is clear from the
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definition of wy. Since sp X = X, the vector X belongs to the zero weight space
with respect to the sj,-action. Since w0y, is the shortest element which sends VT
to V},, the 1p-action gives an automorphism on the sj,-weight zero part of V+.
This means X € 1y, VT, which implies the result. O

Corollary 5.3. Keep the setting of Proposition 5.2. Then, v is regqular. O

Proof. Since G(a)X N (V2N w, V1) C (V2Nw, V") is clearly open, Lemma 5.1
implies the result. O

It is not easy to check the assumption p”* X = V" in Proposition 5.2 directly.
To remedy this, we introduce some Lie subalgebras of p" and linear subspaces
of V" which enable us to check the assumption of Proposition 5.2 in more
“localized” form.

Let J, J' be subsets of [1,n]. We define

pho= Y plEatelCp g(s)= Y als)[ke €] Cals)

ijeJut’ ijeJuT’
V’}J, = Z (Vh[2e;] ® VP +e; +¢;]) € VP, and
ijeJut’

VJ)J/ = @ @ V[El — Ej] c V.

m2>0i€Jm,j€J], _,

It is clear that pf}yJ, and g(s), are Lie subalgebras of g(s). We denote the
corresponding connected algebraic subgroups of G by P"}) g and G(s) g, re-

spectively. For the sake of simplicity, we may write the subscript as J when
J =J.

Lemma 5.4. Let v = (a, X) be a standard parameter which satisfies (). Let
h be the height function adapted to v. Then, we have p" X = V" if

1) (VPnWi) Cp"X and 2) (Vi NVe) Cplh X
holds for every J,J' € | X|.

Proof. We have V? = (V'NV)®(V"NV3,). We have p" X C V" by construction.
Hence, the assertion (V*NV;) C p X implies that (VPNV4) C p" Xy is equivalent
to (VPN V) C p"X. Therefore, we obtain

Vh = (VEOVA) + ) (Vh, nVe) Cp" X+ ph X Cp"X +p"X Cp"X,

J,J! J,J!
which implies the result. O
Corollary 5.5. Keep the setting of Lemma 5.4. If X € VT, then v is regular.
O
Proof. See Proposition 5.2 and Corollary 5.3. O

In the below, we present several notation and lemmas which help us to check
Lemma 5.4 1-2) in the next section.

Let I = [i1,1i2] and I’ = [i3,i4] be two segments in [0,n). We denote I < I
iff 41 < i3 <149 < iy holds. We denote I < I’ iff 41 < i3 < 49 + 1 < i4 holds.

22



Definition and Lemma 5.6. Let J,J' € J(v). For each | € JN J', we have
l‘]"] € g such that 0 # §l‘l"] = & € gles, — ey] C g(s). Moreover, we have
&' € ph if and only if h(J) > h(.J').

Proof. The first inclusion follows by (x)1. The second assertion follows by the
construction of s, and p”. O

Definition and Lemma 5.7. Let J,J' € J(v). Let

’
vp? = =vleg, — e J€Viey, —ep 1CVyyp

be an element which we understand it to be zero when J; =0 or J;,_; = 0 hold.
For each | € JN J', we have

J,J' _ d J,J’ -
&7 vy =—v41, and 7 vy =y

up to normalizations of  and v([g] for § € ¥(V?). Moreover, {U,;I’J/; vk‘]’]/ # 0}
is a basis of Vj j.

Proof. Notice that vy is uniquely defined since #.J,,, #J/, < 1. We have v; =
Yomso Ve, —€s, Jand vy =37 ovley —ey ] It follows that

gle :glV[EJHl - EJZ] € CvlJrl = V[EJZ+1 - GJ{]

§[VJ/ ZflV[EJZ/ — 6‘]{71] € Cuy = V[E]l — EJLLI].

This proves the first assertion by taking account into weights. The second
assertion is an immediate consequence of the definition. [l

Lemma 5.8. Let J,J' € J(v). If J < J and J,, # 0 holds, then we have
Viles, ] ® Vi Ca(s)sr(Ves, ] + vy +vy).
In addition, we have
Viles, ) & Vi Col5 p(vVies 1+ vr+va).

when h(J) > h(J'). Moreover, these inclusions still hold if we add vle;, ] to
(V[EJ;R]-‘rVJ—f—VJ/).

Proof. By explicit calculation, we have v[e;,,] =0 and {vles | = 6 mVles,,]
up to non-zero scalars. This implies the last assertion provided if we prove the
other assertions only by using &;’s. By the comparison of dimensions, it follows
that the multiplication gives an isomorphism

> Ca3¢-EX eViles,]® Vi,
leJnJ’

which implies the first result. By Definition and Lemma 5.6, we have ) ;. Jgns C& C
p" when h(J) > h(J'). This proves the second assertion. O

Corollary 5.9. Keep the setting of Lemma 5.8. We have

(V[EJ;,L] +vy+vy)+Viles,] CG(s)yz (V[GJ;n] +vy+vy).
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Proof. Admitting the proof of Lemma 5.8, the result follows by merely expo-
nentiating C§ C ), ;4 ,» C&§ which annihilates vy 4+ v . O

Lemma 5.10. Let J,J' € J(v). Assume h(J) > h(J') and J % J'. Then, we
have an inclusion
Virp C pﬁ)J, (Vv +vy).

Proof. We put [k_,ky] = JNJ. If [k_, k] = 0 and Vj ;» # {0}, then we
have J # J', which is excluded by the assumption. If [k_,k,] # @, then the
assumption J # J' is equivalent to J|, _; = 0 or Ji, 41 = 0. It follows that
vg =0 (k> kg) or v, =0 (k < k_) holds. Therefore, we deduce

dim Vy p = #{vk; v # 0} < #(JI N J).
By Definition and Lemma 5.7, the multiplication
Y CasEmEX eV
leJnJ’
is surjective as desired. O

Lemma 5.11. Let J,J' € |X|. Assume that h(Jy) > h(J\), J, # J', and
J < J'. Then, we have vy, j] € p}}7J/X2 if and only if Jy # 0.

Proof. Let y := vy + vy + viag, s ]+ V[aJ/+7JL]. By Ji # J', we deduce
Jy # (. By the comparison of weights, we have p}}J,Xg = p?)J,y. By (x)1, we
deduce 0 # v[ay, | € V* only if Jy # 0. By explicit computation, we have

drovias, o] (Jo #0)

0 (otherwise)

Ji,J I, J
lJr +V[O‘J+7J7] =0, and gl i +V[aJ'+7JL] - {

Therefore, the assertion falls into Lemma 5.8 applied to the pair (Jy,J}). O
Lemma 5.12. Let J € J(v). we have an equality
phvs = (VN 1e).

Proof. A weight consideration implies the inclusion C. Hence, we prove D. By
the definition of v, tv; contains T-eigenspaces of weight e; —e€j _,. By
Lemma 4.8, a T-weight of VAN V5 is given as e, — €, , for some [, or €, + €.
The latter occurs only if v is type III. Since we have tv; = (V’J‘ NV3) if the latter
does not occur, we assume V% [e; +€,] # 0. In this case, we have g[2¢,,] C p”.
This gives V[ej, + €,] C pv,, which implies

(VN Vo) =Viles, +es] +tvy Cplivy

as required. O
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6 Proof of regularity of parameters

The goal of this section is to prove Corollary 6.3, which guarantees the regu-
larity of parameters for general parameters. The core of the argument lies on
Propositions 6.1 and 6.2, which is proved by the case-by-case argument.

We retain the setting of §3.

Proposition 6.1. Let v = (s,q, X) be a standard parameter which satisfies (x).
Assume that either Vl(s’qo) = {0} or Vl(s"h) = {0}. If c is type I, then there

exists a height function h adapted to v such that PP X = V", In particular, v
is regqular.

Proposition 6.2. Let v = (s,4,X) be a standard parameter which satisfies
(). Assume that Vl(s’q“) = {0} = Vl(s’ql). Then, there exists a height function
h adapted to v such that PhX = V. In particular, v is regular.

Before giving the proofs of Propositions 6.1 and 6.2, we prove the following
consequence by admitting them.

Corollary 6.3. An admissible parameter v = (s, q, X) is regular if ¢ is general.

Proof of Corollary 6.3. The assertion is unchanged by the conjugation by G.
Hence, we rearrange v by the G-action to assume that v is a standard parameter
by Theorem 1.10. By Corollary 3.10, we have only to show the case that (s, q)
has a unique clan. By taking N¢(T')-conjugation if necessary, we can assume
that v satisfies (x) without the loss of generality. The set of s-eigenvalues of
Vi is contained in {(e*¢5)*1;0 < k < n}. By the relations qoqfEl #+ qum
(0 < m < n), it follows that either Vl(s’q“) = {0} or Vl(sm) = {0} holds.
Therefore, we deduce the result by Proposition 6.1 if ¢ is type I. Otherwise, we
have co = ¢(0) or €(r3/2). Then, the relation ¢ # g5’ # ¢} (0 <1 < 2n) claims
V&N V; = {0}. Thus, Proposition 6.2 yields the result in this case. O

Proof of Proposition 6.1. By Lemma 4.8, we have ¢; + ¢; ¢ U(V?) for each
i,j € c. In particular, we have J_ = ) for every J € |X|. (Which in turn
implies | X| = J(v).)

By ()1, the set of T-weights of V2 N V; are given as the form {¢;};cc,, or
{—¢€i}icc,, for some m. By Vl(s’qo) = {0} or Vl(sm) = {0}, the choice of m is at
most one. By ¢o # ¢(0), the sign o of weight for which V%) [ze;] # 0 (i € cp,)
is at most one. Hence, we apply Ng(T)-action (as \; — —A\,_; for all 7) if
necessary to assume (V2N V;) C V™ holds. Then, we have V& C V* by Lemma
4.8. We put

mo 1= max{m; Vi € cpm, V" [e;] # 0 or V" [e;] £ 0} U {1}
We have X (¢;) = 0 unless i € ¢,,,. We define

DY :={J € Jw); X(es,,,) #0, and BJ' € J(v) s.t. J < J', X(egy, ) # 0},
D~ :{J S j(y); Jmo 7é @7X(6Jmo) =0, and /HJ/ € DO st J < l}7

and DT := J(v)\(D~ UDP). For each J € DT such that J,,, # 0, there exists
J' € DY such that J < J’ (otherwise we have J € D~ by the definition of D7).
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Applying Corollary 5.9 to J € D such that X (e, ) # 0 (with some J' € Do
such that J < J'), we rearrange X by the Stabg (s Xo-action if necessary to
assume

X1= Y vle,,] (6.1)

JeDo

without the loss of generality.
We choose a sequence g, 71, - . - € R such that: 1) v; > 7,41 for every 4; and
2) Ymot1 < Ymo < 0 < Ymg—1. Fix 275, < 8 < 0. We define a height function
h as
(m(J)+1)6 (@(f Je D7)
h(J):=<¢0 (if J € DY)
Ym(J) (lf J e D+).

By (6.1), we conclude that h is adapted to v. By Corollary 5.5, it suffices to
check Lemma 5.4 1-2) for proofs of the assertions. We have

Vh N ‘/1 = @ ‘/1[6‘]”10] EB @ ‘/i[EJ7n0]' (6'2)
JeDt;h(J)>0 JeDO

The second term of the RHS of (6.2) is contained in tX. For each J € DT, we
apply Lemma 5.8 to the pair (J,J’) such that J' € D° and J < J'. Tt follows
that

Cvles,,,] C p}}J/(Xl ®(vy+vy)) Cp'X.
This implies that Lemma 5.4 1) holds. Therefore, we have only to show Lemma
5.4 2) for each pair (J,J') in J(v). Since we have ¢; +¢; ¢ U(V") for every
i,7] € ¢, we have

Vi Ve = ) Vit xcr
K,K'e{J,J' };h(K)>h(K")

We have V; C tX, by the definition of standard parameters. In particular,
Lemma 5.4 2) holds if we have

VJJ/ C p’})J/ (VJ + VJ/)

for every distinct J,J' € J(v) such that h(J) > h(J’). By Lemma 5.10, it
suffices to check that no pair (J,J') in J(v) satisfies h(J) > h(J') and J >~ J’
simultaneously. The condition J > J’ implies m(J) > m(J’). We assume the
existence of such pair (J, J') to deduce contradiction. There are three cases:
(J € D7) We have J' ¢ D~ since h(J) > h(J') implies m(J) < m(J’) in this
case. The case J' € DY is impossible by h(J) < 0 = h(J’) in this case. We have
J' & DT since mg > m(J) > m(J') implies h(J) < 0 < h(J') in this case.

(J € D) We have J' ¢ D~ U D since J = J' is prohibited by the definitions
of the sets D~ and DY. We have J' ¢ DT since mg > m(J) > m(J’) implies
h(J) =0 < h(J’) in this case.

(J € DY) Assume J' € D~ U D to deduce contradiction. We have h(J) >
h(J") > m,, which implies m(J) < mg in this case. By J = J’, we have 0 € J.
In particular, there exists J” € D° such that J' < J < J”. Since 0 € J'nJ”,
we deduce J’ < J”, which contradicts with the definition of D~ or D°. Hence,
J' ¢ D= UD. We have J' ¢ Dt since m(J) > m(J') implies h(J) < h(J') in
this case.

26



By the above case-by-case analysis, we cannot have a desired pair (J, J'), which
completes the proof. O

Proof of Proposition 6.2. We assume that c is not type I. We choose a sequence
Y0515 - - - € R such that:

O0>v%>m>>%>%+1 >

Fix a negative real number & such that 2+ < 6. For each K € J(v), we define
I(K) := max K. We define a height function as

((Jy)+1)6  (f J4 = K # J for some J € |X|)
hEK) =< —((Jy)+1)d (if K= J_ for some J € |X])
Y (K) (otherwise).

By Corollary 4.13, we deduce that h is adapted to v. We apply Lemma 5.4 and
Corollary 5.5 to deduce the assertions. Lemma 5.4 1) is a void condition in this
case. We check Lemma 5.4 2) for every pair (J,J’) € |X| by the case-by-case
analysis:

(The case J = J’) Since h(J4) < 0, we have €.;,), + €(1,), € ¥(V"). We have
h(J+) < h(J-). Compared with Lemma 4.8, it follows that

V=V 5,0V g, 0V g oViay, 5]
By (%)3, we have
V:]+J+ D VJ,,J, S3) Vh[aJ+7J7] C tX.
Hence, it suffices to show V;_ ;. C p"X. For each [ € J+ N J_, we have

Gvias, g ] =&Vlemy) +em)l =0

since the RHS must have a weight outside of ¥(V3). Therefore, we deduce
Vi_g. C p" X by Lemma 5.10 applied to the pair (J_,J;) in J(v). This
implies p’}X Vh as desired.

(The case J = J4 or J' = J;) By swapping the roles of J and J’ if necessary,
we assume J; = J. We divide this proof into two subcases:

i) If we have J) = J’, then we have h(J) 4+ h(J') < 0. Hence, we have
€i+e; ¢ (VM) ifi € Jand j € J'. Compared with Lemma 4.8, it follows that

VJ J = Z VK7K/.
K,K'e€{J,J' };h(K)>h(K')

By the definition of h, we have m(K) < m(K’) if h(K) > h(K'). In particular
we have K % K’ when h(K) > h(K’). Therefore, we deduce p; , X =V’ ,
by applying Lemma 5.10 to all the pairs (K, K’) such that h(K) > h(K’) and
K+K.

ii) If we have J', # J', then we have h(.J)+h(J}) < h(J)+h(J_) < 0. Hence,
we have €; +¢; ¢ (V") if i € J and j € J'. We have h(J}),h(J_) > h(J). It
follows that

Vi =Vievi eV, oV
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Since m(J) > m(J,) = 0, we deduce J| ¥ J. Applying Lemma 5.10 to
(J4,J), we conclude VJ;)J - pf}yJ,X. The same argument applies to the pair
(JL,J) if m(J) > m(J_). Otherwise, we have necessarily have 0 = m(J) <
m(J") = 1. This implies that c is type IIl. We have 0 # £ € ph[—e(J;)O — €]
by (=h(J}) — h(J)) > 0. We have {vy; =0 and

Evlagy, gl =vlewr ), — €]

by explicit calculation. We have dim V, ; < dim(J” N J) + 1. Taking account
into the proof of Lemma 5.10, we conclude Vy ; C p’}L ;X. By Lemma 5.12,

we conclude
V?)J, =VieVvh o Via®Vy g C P}},J/X

in this case.

(The case J # J4 and J' # J) By swapping the roles of J and J’ if necessary,
we assume h(Jy) < h(J,). By the choice of h, we have

W) <h(J) <0< h(J)<h(J), and J. CJ, =J CcJ=J,. (63
+ + It

We divide the proof into three subcases i) ¢ is type II, i) c is type I and
h(J) # h(J"), and iii) c is type Il and h(J) = h(J'):

i) Assume that c is type II. Compared with Lemma 4.8, we have

V?)J, =Vievh e Z Vg | @ Z V' ak ]
Ke{Ji}, K e {Ji} Ke{Ji}, K e{J}}
h(K) > h(K") h(K)+h(K') >0

We have K¢ # ) for every K € {Jx,J} }. It follows that we have K ¥ K’ for
all the pairs (K, K') in {Jx,J}}. Therefore, we deduce V% ;, C p% ,, X by a
successive application of Lemma 5.10 and V}} - pﬁX (the first case treated in
the above) provided if we have

> V' ag k] C p"X. (6.4)
Ke{J+}, K e{J.}
h(K) + h(K') >0
Claim A. The inclusion (6.4) holds when the pair (J, J') € | X| satisfies J # J4,
J' # J, and c is type II.

Proof of Claim A. For (K,K') = (J4,J)), we have V' ag x/] = 0 by h(J4) +
h(J,) < 0. For (K,K') = (Jy4,J"), we have V"'[ag x/] # 0 only if h(Jy) >
h(J'). We have J' < Jy and Jy # 0. Hence, we have V'ag x/] C p% ;, X by
Lemma 5.11. The case (K, K') = (J_, J!) is the same as the previous case by
swapping the roles of K and K'. For the case (K,K') = (J_,J_), we always
have V*[a;_ 5] # 0 by h(J-) + h(J_) > 0. We have J_ C J;. The vectors
V[OZJJN(]?] = V[E(J+)0 + E(J,)o] and V[OAJ;”]L] = V[E(J;)O + G(J’,)o] behave as
elements of vector representation of G(s) s, with its weight €(;, ), and €’ ),,

respectively. Hence, we apply Lemma 5.8 to the pair (J', J;) to deduce

VMay_ s l@Vy g, Cply g X
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In particular, we obtain V*[a g x/] C p}}@’hX when (K, K’) = (J_,J"). These
case-by-case checking yields Claim A as desired. O

We return to the proof of Proposition 6.2. Now (6.4) implies V’}J, C p’}“],X
when c is type II as desired.
ii) Assume that c is type IIl and h(Jy) < h(J' ). We define

Vi = @ Virle £ ).
i€c,j€{(J4+)o,(J})o}

We put J := J; — {(J4)o} and J" := J, — {(J)o}. It is clear that
m(J) =m(J_) =m(J')=m(J ) =1. (6.5)

It follows that K ¥ K’ for every K,K' € {J,J_,J’,J"}. Compared with
Lemma 4.8, we have

Vi =Vig® E Vi K,
K,K'e{J,J_,J",J" }:h(K)>h(K")

where we extend the domain of h so that h(J) = h(Jy) and h(J') = h(J})
hold. By forgetting Jy and J)), we can apply Lemma 5.10 for all pairs (K, K')
in {J,J_,J’,J"} such that h(K) > h(K'). Then, we conclude VAl X
provided if

Vip CplhpX (6.6)

holds.

Claim B. The inclusion (6.6) holds when the pair (J, J') € | X| satisfies J # J4,
J' # J, cis type II, and h(Jy) < h(J)).

Proof of Claim B. By (6.3) and (6.5), we deduce J' < .J and J’ < J. Here the

vectors —
Ve, — €l viau gL view), — el vl o ],

behaves as vectors in the vector representation of G(s) ; j or G(s) j ;» of weights
€10 05 €)1 O €0y )y, respectively. Applying Lemma 5.8 to the pairs (J’, J)
and (J',.J) by forgetting Jo and J§, we deduce that

Ve ) = €0l VIEW ) =€) € 00 X (6.7)
We have

W(g(0) NPl 1) = {0, =2¢(s,)0, =260, )05 =€ )0 £ €000}

Moreover, we have

X = V[E(J+)l — 6(J+)0] =+ V[a‘]+7‘]7] + V[E(er)l — 6(‘];)0] + V[CYJ;’JL] + Xot,
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where X, is a sum of T-eigenvectors of weight e, £ ¢ (k & {(J4+)o, (S )o} Z1).
It is clear that (g(0) N p’}”],)Xot = 0. Now an explicit computation gives

Ve ) = €yels VIEw ) — €ols VIEw ) — €] + VI ) =€)l
View )y, + e = View), — o) € (8(0) el )X
Taking account into (6.7) and dim(tX NV; ;) = 4, we deduce
dim(V; 5, N p"X) > 10.
Hence, it suffices to prove dim Vi g+ = 10. Consider the following numbers:
B(Te) £ h(J4), h(JTe) £ h(IL), h(TL) £ h(IL), AL £ h(Ts). (638)

Here the above numbers are respounsible for the non-negativity of log(sy, )-eigenvalues
of the weights ¢; £ ¢;, where (¢, 7) € ¢1 X ¢g is taken from (J, J), (J,J"), (J',J),
and (J', J), respectively. Hence, it suffices to show that exactly 10 out of the 16
numbers in (6.8) are non-negative when —h(J_) = h(Jy) < h(J}) = —h(J") <
0. We have 3,2, 3, 2 non-negative numbers out of each blocks consisting of four.
Hence, Claim B follows. O

We return to the proof of Proposition 6.2. Now (6.6) implies V/; ;, C p’} ;, X
when c is type IIl and h(J;) > h(J) ) as desired.

iii) Assume that c is type Il and h(Jy) = h(J). Consider small pertur-
bations h* and h~ of h such that h*(Jy) > hT(J}) and h=(J4) < h™(J)),
respectively. Then, we have

? ?
Vg)J/ C Vg)J/ and p}}7J/ C p}}7J/
for ? = +. Moreover, we have
b
VA VT, = vh
J,J! JJ = V-

Since the arguments of the case c is type Il and h(Jy) > h(J',) carries over to
h* (? = £), we conclude

V,}},J/ — V}}rjl + V}}:]/ C p}}f]/X + p}}:]/X C p}}”]/X.
These case-by-case analysis complete the verification of the condition of Lemma
5.4 2) as desired. O
7 Stabilizers of exotic nilpotent orbits
We work under the setting of §4. In particular, we fix a standard parameter
v=(a,X)=(sq X1 ® Xz2) which satisfies (x). Let ¢ = [1,n] be the unique
clan associated to a. We assign the following quiver Q2 to a:

e The vertexes of Q2 is {m € Z>o; ¢y, # 0};

e The edges of Q* connect from (m — 1) (source or start) to m (target or
terminal) for each m.
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We put V (m) := C% for each m > 0. We fix a basis of V (m) as {v;, T; }ice,,
(if ¢,y = €(0)), or {v; }ice,, (otherwise). We form a dimension vector d® of Q2
as {d2,}m. Let Rep(Q?,d?) be the representation space of Q* with dimension
vector d?.

Construction 7.1 (Quiver presentation of V). We assign vie; — ¢;] (i € ¢y,
j € ¢m—1) a linear map

vies — €] V(im—1) — V(m)
such that

vles = €ifoe =0, vles = ejlu = {?(;l Eitzelj\)zvise) '
We assign v[e; + €] (i € c1, j € co; type III) a linear map

vlei + €] - V(0) — V(1)
defined as

vi (j=F)

vle; +e€ilog =0, vle +€5lvp = N
e + € e + sl {O (otherwise)

These assignments give rise to a map

= V2(s,q2) >Xy= Z cf ivlei +oej]
i,j€[1,n],oce{£}
— E(Xs) := Z cf julei + oe;] € Rep(Q?,d?).

i,j€[1l,n],ce{£}

Here we understand that c;-')’j = 0 unless ¢ < j. We assign v]e; +¢;] (4,5 € co,i <
J; type II) a two-form 0[¢; + €;] € A2V (0) defined as

9[61' + Gj] = v; N\ vj.

We define a two-form 6 = 6(X3) € A?V(0) associated to X as

0 .= Z ci}@[ei + €.
1,J€co
Remark 7.2. Since v is a standard parameter, we have

dim@* = dim V(0)* — 2#{(i,j) € co x cos ¢}, # 0}

if 0 is defined (i.e. c is type II).

By Construction 7.1, we have a (Q®-representation structure on the space
M := @k>0V (k) by letting Z(X3) act. For each J € | X| and o € {£}, we define

MC = (EieJU Cvi) D CﬁJo (0 = (J—) # (Z)u and (J—)O = @)
i Eiej(r Cu; (otherwise) :
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Lemma 7.3. For each J € |X|, the subspaces MT of M are Z(Xs)-stable. In
particular, M? are submodules of M as Q?-representations.

Proof. Straight-forward. O

Lemma 7.4. For each J € | X|, the Q®-representations Mf are indecomposable.
In particular, the decomposition

M = EB (MT @& M7)
Je|X|

is an indecomposable direct sum decomposition of Q*-representations.

Proof. The first assertion is clear since the both Jy and J_ U{0} are segments.
The second assertion follows by [1,n] = #[|X|| and dim M = n + #¢(0). O

We put G, := HiZO GL(d?). The space Rep(Q?,d?) admits a natural G-

action.

Lemma 7.5. We have a natural embedding G(s) — Ga, which makes E a
G(s)-equivariant map. Moreover, it acts on 0 as the base change of two forms.

Proof. Consider the action of G(m) on V2(S’q2). By a weight consideration, we
have

V) o Mat(d? 1, d2,) & A2V (0) & triv (if ¢ is type I and m = 0)
2 | Mat(d?, 4, d3,) & Mat(d?,,d?,_,) @ triv (otherwise)

as GL(d?,)-modules, where we understand d2, = 0 if m ¢ Q* and triv is the
trivial representation of some dimension. The natural action of G(m) = GL(d2,)
or Sp(dg) is

G(m) x Mat(d?,, 1,d2,) >(g, A) — Ag~' € Mat(d? )

m—+1>%m

G(m) x Mat(d2,,d2,_,) (g, A) — gA € Mat(d2,,d2,_,), and

m? “m—1 m’ “m—1

G(0) x Alt(d3) 3(g, A) — gA'g € Alt(d2) = A2V (0).

The first two actions commute with the composition of matrices. Hence, we
have an injective map G(m) — GL(d2,) which commutes with the embedding
Z. The last action claims that G(0) acts on the A2V (0) by the coordinate
transformation, which forms a subgroup of GL(d}). O

Corollary 7.6 (of proof of Lemma 7.5). Keep the setting of Lemma 7.5. Then,
we have a natural embedding M C Vi which is compatible with the G(s)-actions
on E(X2) and V1.

Proof. The assignments v; — v|e;] and T; — v[—¢;] gives an embedding M C V4
as vector spaces. This respects the action of G(s) by the proof of Lemma 7.5. O

Corollary 7.7. We have a natural Ga-action on Vl(s’qo) @‘/1(qu1)7 which factors
through G(m) x G(m') for some pair (m,m').
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Proof. Choose m so that Vl(s’qo)[ei] # 0 or Vl(s’q“)[—ei] # 0 for some i € cy.
Then, we have V%) = V(m) or V(m)* as G(s)-modules by the weight com-

parison. Hence, the natural action of G(s) on Vl(s’q“) must factor through G(m).
Applying the same argument to the (s, q;)-fixed points of V;, we conclude the
result. |

Lemma 7.8. Let Sp(2l,C) be a symplectic group embedded into GL(2l,C). Let
v1,v2 € C? and let P be the simultaneous stabilizer of (vi,va) in GL(2l,C).
Then, the group Sp(2l,C) N P is connected.

Proof. We put Py := Sp(2l,C) N P. Let w be a symplectic form on C?™ associ-
ated to Sp(2l,C). Let v be the orthogonal compliment of v with respect to w.
The Levi subgroup of P, is the stabilizer of

(vi- Nvy)/((Cuy 4+ Cuy) N (v1 Nvy)).

This is always a symplectic vector space. Therefore, the Levi subgroup of P is
isomorphic to a symplectic group, which completes the proof. O

For each pair v = (I, I") of segments (maybe emptysets) and a @*-submodule
N of M, we define

ny=#{J € |X|sI=Jp,I'=J_}, MT:= T ME
Je|X| I=Jy,I'=J

M, = Mj o M7, N(m) :=NNV(m) (m >0),
and 0, := 0(X2)|m, (0) (the last definition applies only if c is type II).
Lemma 7.9. We have
0(X2) = 05,
v
where v = (I, I') runs over all pairs of segments.
Proof. Immediate from definition. |

Definition 7.10. Assume that c is type IIl. For each pair v = (I, I') of segments
(maybe emptysets), we define

HV = w|M7(0),
where w is a symplectic form of V; which defines G.

Lemma 7.11. Keep the setting of Definition 7.10. Then, we have
wlv(0)= Z 0,
gl

where v = (I,I") runs over all pairs of segments. In particular, 6~ is non-
degenerate.
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Proof. We put My := M} @& M7 for each J € |X|. The decomposition M =
@ je|x|My is T-stable. Since c is type III, we have ¢; € ¥(M;(0)) if and only if
—€; € ¥(M;(0)). Hence, we have

L()(MJ(O), MJ/(O)) =0

unless J = J’. This yields the first equality. By construction, we can identify
V(0) with a subspace of V; with its T-weights {+¢; }icz(0)- It follows that w|y (o)
is non-degenerate as desired. O

Corollary 7.12. The group G(s) is the subgroup of Ga which respects w|y (o)-
Proof. The inclusion C is trivial. The inclusion D is (4.1). O

Proposition 7.13. Assume that X1 = 0. The subgroup L of G, which pre-
serves each My (as Q*-representations) and 0., contains a Levi subgroup of the
stabilizer of X5 in G(s).

Proof. The group G,(E(X2)) is equal to the group of automorphism of M as
Q?-representations. Hence, L fixes Z(X2). By a standard quiver theory (cf.
Crawley-Boevey [CB92], p12), it is a semi-direct product of general linear groups
and an unipotent subgroup of G5. Moreover, the size of general linear groups
are equal to the multiplicity of an indecomposable module appearing in M. If ¢
is type I, then M, # 0 only if v = (1, 0) for some segment I. Since Ga = G(s)
if ¢ is type I, we conclude the result in this case. Assume that c is type II or I
I. By Corollary 7.12, we have L C G(s). By Lemma 7.9 and 7.11, the group L
fixes X7. By construction, 6, is zero or non-degenerate for each +.

We put L’ be a Levi subgroup of L. Let L” be a Levi subgroup of the
stabilizer of X5 in G(s) which contains L'. Write g € Autga(M) as

! /
o,0' 0,0

9 =9y }yy =1957,3775, , where 0,0" € {£}, and

= P 977 € P Homgs(MJ, M) = Homga (M, M)
o,0’'e{£} o,0’e{£}

for every pair of segments ~y,7’. It is easy to see that 0., gives a non-degenerate
pairing between MY (0) and M7 (0) if M7 # {0}. Tt follows that respecting
two-forms 0(X2) (c is type II) or wly (o) (c is type IIl) gives rise to the constraint

955, #0e (7,77 #0 i (O):geL”, My # {0} and M7, # {0}.
Claim C. Assume (). We put v = (I,I') and v = (K, K’). Then, we have
G,y 7 0 only if

I>KI'<K', 6 orI<K, I >K'.
Proof of Claim C. Since g respects two-forms, we have giij # 0 only if
Homgs (M, MZ,) # {0} and Homga (M, M) # {0}.
By a quiver-theoretic consideration, we have
Homga (M3, M%) # {0} (J.J' € |X|,0,0" € {£})

only if J, < J;:, . Rewriting this by M., yields the result. [l
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We return to the proof of Proposition 7.13. Consider the map
fss : Autga (M) — Autga(M)/U(M),

where U(M) be the unipotent radical of Autga(M). Since L” injects to the RHS,
we can rearrange L if necessary to sit in a splitting of fss. In particular, we

can assume gz’:, = 0 holds for every g € L unless at least one of
M7 = ME'Y:, or MJ7= M;,‘T, (as Q®-representations)

holds. It follows that v # +/ implies that each g € L” satisfies gi? =0or

gz,l 7 = 0 for all possible choices of 7,0". Since L" is reductive, we can further
rearrange L” if necessary to assume g, .- = 0 (¢ € L") unless v # +'. Therefore,
L" preserves each M,,. This forces L’ = L as desired. O

For an admissible parameter vy = (so, ¢, Xo), we define G(vp) to be the
simultaneous stabilizer of (sg, Xo) in G. Let C (1) be the component group of

G(Vo).
Theorem 7.14. We have C(vp) = {1} for every admissible parameter vy.

Proof. The assertion is unchanged by the conjugation action of G. Take G-
conjugate to assume that vy is a standard parameter. By Lemma 3.5, we have
only to verify the case that 1y has a unique clan. Hence, we further assume
that vy = v. Let Ga(X2) be the stabilizer of £(X32) in G,. Since Ga(X3) is the
group of Q*-automorphisms of M, we deduce its connectivity. Let Ga(X1) be
the stabilizer of X7 in G,. The group G,(X1) is realized as the pullback of a
linearly defined subgroup of the RHS of the natural map

f:Ga= [] GL(d2) — GL(V(m1)) x GL(V(m2)), (7.1)

m>0

where my # mgo are some integers given by Corollary 7.7. (If they do not ex-
ist, then we set GL(V(my)) = {1}.) Denote the RHS of (7.1) by H. The
Ga-stabilizer G,(X) of X1 & E(X3) is given as Ga(X1) N Ga(X2). By a stan-
dard quiver theory, Ga(X2) is a linearly defined subgroup of G,. In particular,
f(Ga(X2)) is the common zeros of linear functions on H. Hence, the image
of Ga(X1) N Ga(X2) in H is connected. Therefore, we conclude that G,(X) is
connected. Since G, = G(s) if ¢ is type I, we conclude the result in this case.
Assume that c is type I or IIl. Let G%(X2) be the G-stabilizer of Z(X5) which
respects > 6. By Corollary 7.12, we have GY%(X2) C G(s). By Proposition
7.13, a Levi subgroup L of G%(X5) is contained in the simultaneous stabilizer
of M, and 6, for every possible pairs of segments . It suffices to prove that
the stabilizer of X; in L is connected. We have an inclusion

L— HAUtQ*‘MW — H HGL(I\/I,Y(m)) C Ga.

m>0 v

If v = (I,0) for some segment I, then M, (m) is contained in the direct sum
of @*-modules M} such that v = (J,0). It follows that 6, = 0. Hence, the
action of L on M, gives a direct factor of L isomorphic to GL(ny). If v = (I,I')
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for some two non-empty segments I,I’, then the condition M, # {0} forces
0 € I NI’ by definition. The action of AutgaM, on M, factors through

GL(M,(0)) = GL(2n,) C GL(d2).

We have two cases:

(M} 2 M7 as Q*-representation) The action of GL(M,(0)) preserves 6, if and
only if it respects a non-degenerate alternating form. It follows that the L-action
on M, gives its direct factor isomorphic to Sp(2n.).

(otherwise) Since l\/Ij 2 M7, the group AutgaM, is a parabolic subgroup of
GL(M,(0)) with its Levi component GL(n,) x GL(n,). Since respecting 6
reduces AutgaM,, to a subgroup of Sp(2n,), we deduce that the L-action on
M., gives its direct factor isomorphic to GL(n.).

It follows that L is a product of general linear groups and symplectic groups.
Applying Lemma 7.8, we conclude the result. O

8 Main Theorems

We retain the setting of §2.

Theorem 8.1 (A Deligne-Langlands type classification). Let a € G be a fi-
nite element. Then, the set Ay is in one-to-one correspondence with the set of
isomorphism classes of simple Ha-modules.

Proof. The definition of regular parameters asserts that we have at least one
simple module corresponding to each element of A,. Each irreducible direct
summand of (1% )«Cpa is the minimal extension of a local system (up to degree

shift) from some smooth G(a)-stable locally closed subvariety O of M2 which
contains a dense open G(a)-orbit @. (cf. §1.3) By Theorem 7.14, a G(a)-
equivariant local system on Q is a constant sheaf. Since @\@ is real codimension
two in O, we deduce that the natural map m (0,%) > m (@, %) is surjective. In
particular, every G(a)-equivariant local system on O is constant. As a result,
every G-conjugacy class of regular admissible parameter of the form (a, X)
corresponds to at most one irreducible module as desired. O

In order to give more effective versions of Theorem 8.1, we need

Lemma 8.2. Leta = (s,q0,q1,q2) € G be a pre-admissible element. Ifqoqfl #+
(]2jEm holds for every 0 < m < n, then a is finite.

Proof. By taking G-conjugate, we can assume a € T without the loss of gen-
erality. The number of standard parameters of type (a, X) (X is a l-normal
form) are finite (up to T-action). By Theorem 1.10, there are infinitely many
G (a)-orbits in 9% only if there exists a standard parameter ' = (a, X’) which
satisfies () such that X’ is not G(s)-conjugate to a 1-normal form. Here we
have

X, € Vl(s’q") + Vl(s"“) c V.

By the definition of 0-normal forms and Corollary 5.9, it suffices to prove that

Vl(s,qi)[aej] #{0} (i€{0,1},0 € {£}, and j € c,)
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holds for a unique choice of i,m. This is equivalent to the case that the s-
eigenvalues of V; does not contain both of gy and ¢;. This follows from qoqfl #+
™ (0 < m < n). Hence, all f-normal forms X' € NG are G(s)-conjugate to
1-normal forms as desired. O

Corollary 8.3. A general element of G is finite. O

As in Remark 2.2, the quotient H/(go + ¢1) is isomorphic to an extended

Hecke algebra Hp of type Br(Ll) with two parameters. Combined with Lemma
8.2, we have

Corollary 8.4 (Type B case). Let a = (8,490, —qo,q2) € G be a pre-admissible
element such that —q} # qum holds for every 0 < m < n. Then, the set Ay
is in one-to-one correspondence with the set of isomorphism classes of simple
H,-modules. O

Corollary 8.5 (General case). Let a = (s,q) € G be a general element. Then,
the set of G(s)-orbits in N3 is in one-to-one correspondence with the set of
isomorphism classes of simple Hy-modules.

Proof. Assuming Theorem 8.1, the assertion is an immediate consequence of

Corollary 8.3 and Corollary 6.3. (|
Remark 8.6. The Dynkin diagram of type C,(ll) is written as:

0 1 2 n—2 n—1 n

O—>—0 O——<——=0

This Dynkin diagram has a unique non-trivial involution ¢. We define
to,tl,tn to be

t% = qg,ti = —qoq1, tn(to — tal) =qo+q (cf. Remark 2.2 1)).

Let Ty, ..., T, be the Iwahori-Matsumoto generators of H (cf. [Mc03, Lu03]).
Their Hecke relations read

(To + 1)(To = t5) = (; + D)(Ti = 8]) = (T + 1)(Tn — 1) = 0,

where 1 <4 < n. The natural map ¢(T;) = T,,—; (0 < i < n) extends to an alge-

bra map ¢ : H — H’, where H' is the Hecke algebra of type ¢ with parameters
tn,t1,to. We have t, = £1/—qoq1 and tg = £1/—qo/q1 or £1/—q1/qo. In par-
ticular, ¢ changes the parameters as (¢o,q1,q2) — (q0,4; ", q2) or (g5, q1,q2)-
Therefore, the representation theory of H, is unchanged if we replace gy with
qo_l, or q; with ql_l.

9 Consequences

In this section, we present some of the consequences of our results. We retain
the setting of the previous section. For an admissible parameter v = (a, X), we
define
-1
Fv) = (u3) "' (X) C F.

By means of the isomorphism F¢ = F3 (cf. 2.12), we may regard F'(v) C F.
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Definition 9.1 (Standard modules). Let v = (a, X) be an admissible parame-
ter. We define

M, := Ho(F(v),C) and M" := H*(F(v),C).

By the Ginzburg theory [CG97] 8.6, each of M, or M” is H-module. Let v/ =
(a, X’) be a regular admissible parameter. Let L, be the corresponding simple
module of H. Let IC(v') be the corresponding G(a)-equivariant simple perverse
sheaf on M3. (cf. §1.3) We denote by P, the projective cover of L,/ as Ha-
modules. (It exists since H, is finite dimensional.)

Applying [CG97] 8.6.23 to our situation, we obtain:

Theorem 9.2 (The multiplicity formula of standard modules). Let v = (a, X),
V' = (a, X’) be regular admissible parameters. We have:

(M, : L) =Y dim H*(i%IC(v")) and [M" : L,/] = > dim H*(i%IC (),
k k

where ix : {X} — NG is an inclusion. O

The following result is a variant of the Lusztig-Ginzburg character formula
of standard modules in our setting.

Theorem 9.3 (The character formula of standard modules). Let v = (s,q, X)
be an admissible parameter. Let B, be the set of connected components of F(v).
For each B € B, we define a linear form (e, s),; as a composition map

(o,8)5 : R(T) R(gBg™") C

J

R+ — {weights of gBg~1}
by some g € G such that gB € B. Then, (e, s) is independent of the choice of
g and the restriction of M, to R(T) is given as

Tr(ed; M) = Y (A s)g D dim H;(B,C).

BeB, j=>0

Proof. Taking account into Theorem 7.14, the proof is exactly the same as in
[CGIT] §8.2. O

In order to provide a standard form of the above character formula and to
apply a general theory on projective modules, we need the following analogue
of the De Concini-Lusztig-Procesi version of the Spaltenstein-Shoji’s vanishing
theorem [Sp82, Sh&3]:

Theorem 9.4. Let v = (s,q, X1 ® X3) be an admissible parameter such that ¢
is general. Then, we have Hoqq(F (v),Z) = 0.

Proof. Postponed to §10. O

Let A be a H-module and let L be a simple H-module. We denote by [A : L]
the multiplicity of L in A.
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Definition 9.5. Let a = (s,§) € T be a general element. We form three
|Aa| X |Aa|-matrices

[P: L]g [Pl/vLV’]ng

;) =
WV

)= O0uxe(v), and ICZ , := [M",L,/],
N2 v X v,V

where xc(v) == 3,50(=1)"dim H(G(a)X,C) (v = (a, X)).

The following result is a special case of the Ginzburg theory [CG97] Theorem
8.7.5 applied to our particular setting:

Theorem 9.6 (The multiplicity formula of projective modules). Keep the set-
ting of Definition 9.5. We have

[P:L]*=1C*-D-'IC?,
where b denotes the transposition of matrices. O

Remark 9.7 (Relation with canonical bases of quantum groups). Assume the
setting of §7. Let v = (a, X) = (s,q, X) be a standard parameter of type I. Let
Q* be the quiver attached to a. We define a quiver Q% by adding new vertexes
and arrows to Q* as follows:

e A vertex ¢ and an arrow ¢ — ¢ if V2[ex] # 0 for some k € ¢;;
e A vertex i and an arrow i — i if V#[—¢;] # 0 for some k € c;.

We define d3 to be the dimension vector of Q% obtained from d® by adding 1’s
to all vertexes of @3\Q?. Then, we have a natural isomorphism

ML = Rep(Q},d})

extending that of Construction 7.1. We further assume that Q% is of finite or
affine type. This assumption includes all affine quivers of type ADE except for
Agl). In this case, the variety Rep(Q%,d?%) has only finitely many orbit. By
Theorem 8.1, each simple module of H, determines a G(a)-orbit of 9%.

Let U} be the plus part of the corresponding quantized enveloping algebra.
Then, the coefficients of Theorem 9.2 are identified with the coefficients of the
PBW bases of U,/ in terms of the canonical bases specialized to 1. (For more
details, consult Lusztig [Lu90] and Ariki [Ar96].)

10 Proof of Theorem 9.4

In this section, we recall several key definitions and results of [DLP88] and apply
them to prove Theorem 9.4.

Definition 10.1 (a-partitions). A partition of a variety X over C is said to be
an o-partition if it is indexed as &7, Xy, ... X} in such a way that X1 U... U X}
is closed for every i =1,... k.

The following is a slight modification of the condition (S) in [DLP88] 1.7:

Definition 10.2 (Condition (S")). A variety X is said to satisfy condition (S”)
if there exists an a-partition {X;}; of X such that each X; satisfy the condition
(S’). We declare that the following varieties satisfy the condition (S’):
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1. A smooth projective variety with G,,-action with finite fixed points;
2. A vector bundle over a variety with (S');
3. A smooth deformation of a smooth projective variety with (S’).

Theorem 10.3 (Bialynichi-Birula cf. [DLP88] 1.2). A smooth projective variety
X with G,,-action satisfies (S') if XCm satisfies (S').

Using the arguments of [DLP88] 1.7-1.10 and Theorem 10.3, it is straight-
forward to see that a variety with (S’) satisfies the homological property (the
first condition) of the condition (S). In particular, we have:

Theorem 10.4 ([DLP88] 1.7-1.10). For a veriety X with (S"), we have Hoqq(X,Z) =
0.

Theorem 10.5 ([DLP88] 1.5). Let 7 : & — X be a vector bundle over a smooth
variety X, with a fiber preserving linear C*-action on £ with strictly positive
weights. Let Z C &€ be a C*-stable smooth closed subvariety. Then, n(Z) is
smooth and Z is a subbundle of € restricted to w(Z).

The rest of this section is devoted to the proof of Theorem 9.4. In the
below, we first assume the setting of §9 and assume more notation from previous
sections as indicated.

Let Y € 91%. Then, v/ := (a,Y) is an admissible parameter. We put
B := (G/B)*. Tt is isomorphic to a disjoint union of copies of G(s)/B(s) as
G(s)-varieties. Let By denote the projection of F(v/) to B. (It is clear that
F@') = By.)

By the argument in §3 (cf. (3.3) and Corollary 3.10), F'(v) is isomorphic to
a disjoint union of [].c () (Yu2)~H(X.) for w € Wa. Therefore, it is enough to
show Hoga((“12) (X)), Z) = 0 for each w € W, and ¢ € I(a). In particular,
we can assume that c is the unique clan associated to a. Since ¢ is general, we
deduce that the assumption of Proposition 6.1 or Proposition 6.2 holds by the
proof of Corollary 6.3. In particular, we can assume that

e v is a standard parameter which satisfies (¥);
e We have a height function i adapted to v.

Proposition 10.6 (cf. Proposition 5.2). The space P"X C V2 is a linear
subspace.

We return to the proof of Theorem 9.4.

We assume Y € PX and s,Y = Y in the below. Let O be a P"-orbit
of B. Since B is a union of finitely many P"-orbits, By = | |,(O N By) is an
a-partition. Thus, By satisfies (S’) if (O N By ) satisfies (S”) for each O.

We define

E(Y):={(¢gB,Z) € Bx P"Y,Z € V2N gV*}.

The second projection py : E(Y) 3 (9B, Z) — Z € P"X is Ph-equivariant. It
is clear that p, 1(Y) = By.
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Proposition 10.7. Assume that the locally closed subset

(PPY NgVH)NG(s)Y cV
is smooth for every gB € B. Then, (O N By) is smooth for each P"-orbit O.
Proof. We define a P"-stable subvariety of E(Y) as:

Eo(Y):={(¢9B,Z) € E(Y),gB € 0,Z € G(s)Y}..

Since Py is a P'-equivariant fibration over P"Y, the fiber (p, ' (Y) N Eo(Y)) is
smooth if Ex(Y) is smooth. Here Ex(Y) is an open subset of a smooth fibration
over 0. Thus, Eo(Y) must be smooth. As a result, we deduce that (O N By)
is smooth. O

Corollary 10.8. Keep the setting of Proposition 10.7. The variety By is
smooth projective. O

Proof. The variety O®" is isomorphic to the flag variety of L". Since By is
closed, the intersection (O®" N By) = (O N By") is projective. The smoothness
follows by Proposition 10.7. O

Corollary 10.9. The varieties BY and (ONBx) are smooth for each P"-orbit
O of B. O

Proof. Since P"X is a linear subspace of V, we deduce that PPX NgV* is a
linear subspace of V. Hence, its open subset is smooth. O

We return to the proof of Theorem 9.4.

For a P"-orbit O in B, we have a vector bundle O — O*" whose fiber is given
as the U -translate. This vector bundle satisfies the first condition of Theorem
10.5 by using some one-parameter subgroup which contains s; and fixes X. It
follows that we have a vector bundle structure

ONBx — (OﬂBx)Sh.

Therefore, Bx satisfies (S’) if each connected component of By satisfies

(5.

Let Ty be the maximal torus of the stabilizer of X in G(a) which contains
sn. We have Ty C P" x (C*)3. Each Bx N O is Ty-stable. By Theorem 10.3, it
suffices to show that each connected component of By N O satisfies (S").

For a 1-block v, we have

dim Stabyo — {d?mT —#lv]|+1 (visa Q—block) '
dim T — #{Jv|| (otherwise)

It follows that we can choose Ty so that the Zg () (Tp)-action separates the sup-
ports of 0-blocks appearing in X. Hence, we can concentrate into the cases where
1) X has a unique block, or 2) X is a sum of blocks and TX1 = @;¢ x| Viles]-
Since ¢ is general, genuine 1-blocks can appear only if ¢ is type I (cf. Proof of
Corollary 6.3). Thus, the case 2) occurs only if ¢ is type L.

In these cases, the group Zg,)(To) is always a product of tori and groups of
type As,. (The latter occurs only if 2) holds.) In the first case, every connected
component of B3? is a point, which satisfies (S").

41



Proposition 10.10. Assume that Zg(s)(To) contains type Ap,-factor. Then,
the variety By satisfies (S').

Proof. We prove the assertion by the induction on # |X|. The case # |X| < 1
is covered by the case 1). We assume the assertion for |X| < I. We prove the
case | X|=1.

Let Go = Za(s)(To) C P*. Let By := Zg(s)(Th) N B. We put V := (V)T
We write Xo = EJEIXI vy. By Corollary 5.9, we rearrange X if necessary to
assume J C J' or J' C J for each J # J' € | X|. It follows that Stabg, X» is a
torus T of rank [. Let J° be the maximal element of |X| with respect to the
inclusion relations of J. We put

Y= > vls,]®X; € PPX,
JO£JE|X|

where J,, € J is the unique member such that v[e;, ] € TX;. We have s, Y =Y.
We put G := expCejo . We identify V' with a representation space of a type
A-quiver with one extra vertex as in Remark 9.7. It follows that G X is dense
in V and the GgY is codimension one in V.

For each w € W, we define a map

bw : Go x B (V NV = V.

It suffices to prove that ¢, (X) satisfies (S’) for each w € W. Each fiber of ¢,,
is projective. By Corollary 10.9, we know that ¢_,'(X) is smooth.

By the semi-continuity of the dimensions of fibers, we have dim ¢, (X) =
dim ¢, 1 (V). The variety ¢.,'(GoX) is reduced. It follows that ¢,'(GX) is
reduced. By Hartshorne [Ha77] II 9.7, we deduce that ¢, (GX) gives a flat
family over A! with its general fiber isomorphic to ¢,,'(X) and its special fiber
isomorphic to ¢, (Y).

We have Y € GX C V. Let V. — V NV, be the projection, which we
regard as a vector bundle V. By construction, GpY is a vector subbundle of
V of corank one. Therefore, we deduce that GoY N gwV™ is smooth for each
g € Goy. By Proposition 10.7, we conclude that ¢, (Y") is smooth. Since each
fiber is smooth, ¢, '(GX) is a smooth family over Al.

The set of G-fixed points of ¢,,}(Y) satisfies (S’) by the induction assump-
tion. It follows that ¢, (Y) satisfies (S’). This implies that ¢,'(X) itself
satisfies (S”). Thus, the induction proceeds and we conclude the result. O

We return to the proof of Theorem 9.4.
By Theorem 10.3, we conclude that Bx itself satisfies (S”). Therefore, The-
orem 10.4 implies the result.

A Proofs of geometric results on N

In this appendix, we prove three geometric assertions whose proofs are not given
in the main body of this paper. We retain the setting of §1.1 and §1.2.

The following proof of Theorem 1.2 is suggested by referees of a previous
version of this paper. The author wishes to thank the referees for these kind
information.
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Proof of Theorem 1.2. 1) is a direct consequence of Dadok-Kac [DK85] Table 1.
1) implies that 91 is a product of V4 and the Hilbert null-cone (cf. Popov [Po04])
of V5. Since the latter is normal by a result of Kostant-Rallis [KR71], 2) follows.
3) is a corollary of Theorem 1.9, which we postpone to §1.2. (Its proof is given
in the below.) 4) is a direct consequence of the weight distribution of V* and
the Hesselink theory (cf. [Po04] Theorem 1). 5) is an immediate consequence
of 2), 4), and the Zariski main theorem. (cf. [CG97] 3.3.26) We show 6). Let 0
be the inverse image of a G-orbit G.X = O C 91 under the map p o ps. Then,
we have

dim O + 2dim = (X)) < dim O.

The dimension of the RHS is less than or equal to dim F', which is the (constant)
dimension of irreducible components of Z. In particular, we have

dim O 4 2dim 1 (X) < dim N = dim F,
which implies that u is semi-small. [l

For each p € [1,n], we define elements (—),, W, € Ng(T') as lifts of elements
of W given by

(=)ei = {Ei P #9: a e = {Ei (i<p)

—€ (p=i “€ntp+l—i (i>p

~

Let Gy C G be the subgroup generated by T and the unipotent one-parameter
subgroups of G corresponding to the roots taq,...,*a,—1. (Go =& GL(n,C))
We have a natural decomposition

Vi=VireVvi a=VeaVYae V)

as Go-modules, where V= = @, Vi[+e/], Vi = D, Valei + ¢, and Vg =
@D, ; Va[—(e;i + ¢;)]. Let u;; be a non-zero element of the unipotent one-
parameter subgroup of G' with its weight €; + ¢;.

Proof of Theorem 1.10. We start by assuming s € T and X € V@V, by the G-
action (cf. Lemma 3.5 and 4.8). Let Xo = X9 + Xg eV VQn be the isotypical
decomposition. We may regard X7 as an element of gl, via the embedding
VQ = sl, C gl,. We put dx := #(|| X2|[\[| XJ]]). We define nx as an integer
such that (X9)"% # 0 and (X9)"**! = 0. We define rx as the rank of XJ.
(Since X9 does not naturally act on some space, the definition of rx and nx
might look strange. But we only use them as invariants under the Gy-action,
which make sense in this setting.) We divide the proof into five steps:

(Step 1) By means of G(s)-action and the Ng,(T)-action, we can assume that
s € T and XJ is a Jordan normal form of gl,. Le.

Xo(ei —€j) #0only if j =4+ 1.

(Step 2) Assume that dx > 0. We choose j € || X2||\||X?]|. By multiplying w €
Ng, (T) appropriately, we assume that X, € V5", wXY is still a Jordan normal
form, and we; = €,. We have wX (¢; + €,) # 0 for some . If i € || Xo|/\[| X3,
then (—),wXs € Vo' and r(_) 4,x > rx. Assume that i € [ XJ||. We have
ug,y ;X (€ +¢;) = 0 for some ¢ € Cif X(¢; — €;41) # 0. Thus, we can assume
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X (ei —€i41) = 0. Here (=), Xa € Vo' and we have T(—),wx > Tx. We replace
X with (—),wX and again apply the procedure of (Step 1). We can do this
operation only finitely many times since rx < m. As a consequence, we can
assume that || Xzl = [| X9

(Step 3) The action of w; ; is trivial on Xg. Moreover, we have [u; j,uy /] = 1.
We have
uiijS = Xg + c}ﬂjv[ei,l +¢]+ cfﬁjv[ei +ej-1]

1

for some constants cﬁj (k =1,2). Moreover, we have ¢; ; = ¢; ; = 0 only if

X(Gi_l - 61') = X(Ej_l - Ej) =0.
It follows that we can rearrange X by an appropriate product

u= [[ uwy €Gls) (bi;€0),

b;,;€C
so that uXy = X9 + Xg satisfies
Xi(ei+€) =0

if X(ep —€pt1) # 0 (i < p < j—1) holds. We replace X with uX. Notice
that this operation is consistent with the operations in (Step 1) and (Step 2).
Therefore, the repeated use of procedures in (Step 1)—(Step 3) terminates.

(Step 4) We can assume

n—1

X9 = 3" v I1X5] € X2, and X*(e, + ) = 0 (if p,q € [v(u)i])
1=0

for an appropriate choice of y1; € Z>o. Rearranging X, by the action of Ng,(T'),
we can assume g > p; for every i. If X(e; + ¢€;) = 0 for every i € [1, o] and
J & [1, po], then we forget v(ug)o and restrict our attention to Xo—v(ug)o under
the action of Sp(2(n—puo)). Repeating this procedure, we deduce either X9 = X»
or X (€ +¢€;) # 0 for some ¢ € [1, uo] and j & [1, p1o]. By rearranging X by the
action of Ng,(T), we assume that j € [p + 1,n], where p, = n — p. By means
of w; j-action (i € [1,uo] and j € [p+ 1,n]), we can rearrange X if necessary
to assume X (¢; + ¢;) = 0 for ¢ # po. Then, we have (—)p41 -+ (—)nwpX €
ié V2+ and () ., ..(2),w,x > Nx. Since we have nx < n, a repeated use of
this operation terminates. Repeating this procedure and that of (Step 1), we
conclude that (s, X) is expressed as the form

n—1
seT, X1 €Viand X§ = Xo =Y v(i)): (A1)
i=0
up to G-conjugation.
(Step 5) By the description of (Step 4), it suffices to consider the case X5 = v(n)g

or (. (Since here we consider all n.) In this setting, X is at worst 2n-normal
form, which implies the result. O

By forgetting the semisimple element s in the proof of Theorem 1.10 at steps
1-4, we re-prove a result of Sekiguchi [Se84]:
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Theorem A.1 (Sekiguchi cf. [Oh86] Proposition 1). The following assignment
gives a one-to-one correspondence between the set of partitions of n and the set
of G-orbits in Ny

A=A >>. ) [G(Zv()\i)/\ig)] € G\ My,

i>1
the € >\< A
T ;= E j<i N

Proof of Theorem 1.9. By Theorem A.l, it suffices to prove that X; @ v(n)o
is G-conjugate to a l-normal form for every n and X; € V5. By a weight
consideration, there exists elements c; ; € C such that

g1 1= U1, 2 1= UL, 03 1= UL3UG Y, 04 = U1 aly’y , g5 i= UL 5l 4 USS s s On
fixes v(n)y. Let X1 = X;" @ X € V;* &V~ be the direct decomposition.
We have g,X;” = X, for each p € [1,n]. The stabilizer U of v(n)o in SL(n)
is a (n — 1)-dimensional unipotent subgroup of SL(n). By means of U-action,
we assume that Xi(—e,) # 0 holds for a unique p € [1,n]. By rearranging
X by ()1 -+ (=)n1w) if necessary before the U-conjugation, we further assume
Xi(en—q) = 0 for ¢ < p. Thus, we can choose appropriate ¢y, cp—1,...,¢p to
obtain
G 9 957 X (€n—g) = 0

for each 1 < ¢ < n. Therefore, we obtain
()1 (_)nwggfzngrcln:ll e 'gng = v]en—p] + v(n)o
as desired. O

Index of notation
(Sorted by the order of appearance)

G,B,T,G(s),Uqs §1 *,0 §1.1 T;, e € H §2
R,RTE, e, a4 §1 X(A\),v[\] (A#£0) §1.2 Z<w, 03, Ty . §2
W,w € Ng(T), s, £ §1 || X]]: total support  §1.2 Ha, 3, p5, M5, ... §2
WH = wHu ! §1 v7*7(m);: €-block §1.2 A= Nie; §3
g,t 9(s), ua §1 v: £-normal form §1.2 I'oCT §3
VAL vt, (V) §1 |v|: support §1.2 c: a clan of a 83
Ho(X),Ho(X,Z) §1 a: pre-admissible §1.2 n°: size of ¢ §3
Vi =C" Ve =A%V 811 a: finite, general §1.2 9(8)e, G(8)e §3
Vy: £-exotic rep. §1.1 v: admissible param. §1.2 Ve, Ve, FEL F(w) §3
Fy,pe, Ny §1.1 v € Pa §1.2 v: regular param. 83
F,pu,M,... §1.1 v: standard param.  §1.2 Ypd, Aa §3
G, Zo,pi,mo 81.1 Te, Fpvg , NG, ... §1.3 Ge,V(c), Xe, ... 83
Ca §1.1 G=Go, T=TsA,... §2 Cm,c(€),8(€) C e 54
pw € Ouw 81.1 H: Hecke algebra §2 c: type I, I, I 84
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Jm,d (J C[1,n]) §4 sh, PPV, VL §4 1y ME, 05, w §7

Ji (J€|X]) §4 ph Vi §5 G(v), C(v0) §7
JTw) §4 I<I,I-1,... §5 F(v)CF §9
m(J), g g1,V §4 & = gl‘]“7/7yl‘]"’/ 85 M, , M": H-modules §9
Condition (*) §4 Q?: quiver of a §7 [M: L], B, §9
g(m),G(m) 84 V(m),E 87 [P:L],D,IC §9
d®* = {d? }m §4 & §7 0,Ga 87 Q7 ext’d quiver §9
h: height function 84 M, Mf 87 Condition (S”) §10
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