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Abstract

Let G = Sp(2n, C) be a complex symplectic group. We introduce a
G× (C×)!+1-variety N!, which we call the !-exotic nilpotent cone. Then,

we realize the Hecke algebra H of type C
(1)
n with three parameters via

equivariant algebraic K-theory in terms of the geometry of N2. This
enables us to establish a Deligne-Langlands type classification of simple
H-modules under a mild assumption on parameters. As applications, we
present a character formula and multiplicity formulas of H-modules.
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Introduction

In their celebrated paper [KL87], Kazhdan and Lusztig gave a classification of
simple modules of an affine Hecke algebra H with one-parameter in terms of the
geometry of nilpotent cones. (It is also done by Ginzburg, cf. [CG97].) Since
some of the affine Hecke algebras admit two or three parameters, it is natural to
extend their result to multi-parameter cases. (It is called the unequal parameter
case.) Lusztig realized the “graded version” of H (with unequal parameters) via
several geometric means [Lu88, Lu89, Lu95b] (cf. [Lu03]) and classified their
representations in certain cases. Unfortunately, his geometries admit essentially
only one parameter. As a result, his classification is restricted to the case where
all of the parameters are certain integral power of a single parameter. It is
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enough for his main interest, the study of representations of p-adic groups (cf.
[Lu95a]). However, there are many areas of mathematics which wait for the
full-representation theory of Hecke algebras with unequal parameters (see e.g.
[Mc03] and its featured review in MathSciNet).

In this paper, we give a realization of all simple modules of the Hecke algebra

of type C(1)
n with three parameters by introducing a variety which we call the

!-exotic nilpotent cone (cf. §1.1). Our framework works for all parameters and
realizes the whole Hecke algebra (Theorem A) and its specialization to each
central character. Unfortunately, the study of our geometry becomes harder for
some parameters and the result becomes less explicit in such cases (cf. Theorem
D). Even so, our result, coupled with that of Lusztig [loc. cit.], gives a definitive

classification of simple modules of the extended Hecke algebra of type B(1)
n with

two-parameters for almost all parameters (cf. Theorem E and the argument
after that).

Let G be the complex symplectic group Sp(2n, C). We fix its Borel subgroup
B and a maximal torus T ⊂ B. Let R be the root system of (G, T ). We embed
R into a n-dimensional Euclid space ⊕iCεi as R = {±εi ± εj} ∪ {±2εi}. We
define V1 := C2n and V2 := (∧2V1)/C. We put V! := V ⊕!1 ⊕ V2 and call it the
!-exotic representation. Let V+

! be the positive part of V! (for precise definition,
see §1). We define

F! := G ×B V+
! ⊂ G ×B V!

∼= G/B × V!.

Composing with the second projection, we have a map

µ! : F! −→ V!.

We denote the image of µ! by N!. This is the G-variety which we refer as the
!-exotic nilpotent cone. We put Z! := F! ×N!

F!. Let G! := G × (C×)!+1. We
have a natural G!-action on F! (and Z!). (In fact, the variety F! admits an
action of G × GL(!, C) × C×. We use only a restricted action in this paper.)

Assume that H is the Hecke algebra with unequal parameters of type C(1)
n

(cf. Definition 2.1). This algebra has three parameters q0, q1, q2. All affine
Hecke algebras of classical type with two parameters are obtained from H by
suitable specializations of parameters (cf. Remark 2.2).

Theorem A (= Theorem 2.8). We have an isomorphism

H
∼=−→ C ⊗Z KG2(Z2)

as algebras.

The Ginzburg theory suggests the classification of simple H-modules by the
G-conjugacy classes of the following Langlands parameters:

Definition B (Langlands parameters).

1) A pair (a, X) = (s, q0, q1, q2, X0⊕X1⊕X2) ∈ G2×N2 is called an admissible
parameter iff s is semisimple, q0 += q1, q2 is not a root of unity of order ≤ 2n,
and sXi = qiXi for i = 0, 1, 2;

For an admissible parameter (a, X), we denote by µa
2 be the restriction of µ2 to

the set of a-fixed points F a
2 of F2. Let G2(a) := ZG2(a).
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2) An admissible parameter (a, X) is called regular iff there exists a direct
summand A[d] ⊂ (µa

2)∗CFa

2
, where A is a simple G2(a)-equivariant perverse

sheaf on Na
2 such that suppA = G2(a)X and d is an integer.

Notice that our Langlands parameters do not have additional data as in the
usual Deligne-Langlands-Lusztig correspondence. This is because the (equivari-
ant) fundamental groups of orbits are always trivial (cf. Theorem 7.14). Instead,
the regularity condition poses subtlety:

Example C (Non-regular parameters). Let G = Sp(4, C) and let a = (exp(rε1 +
(r +π

√
−1)ε2), er,−er,−e2r) ∈ T × (C×)3 (r ∈ C\π

√
−1Q). Then, the number

of G2(a)-orbits in Na
2 is eight, while the number of corresponding representations

of H is six. (cf. Enomoto [En06]) In fact, there are two non-regular admissible
parameters in this case. These parameters correspond to weight vectors of ε1+ε2
or “ε1 & ε2”.

Theorem D (= Corollary 6.3). Let (s, q0, q1, q2, X) be an admissible parameter.
If q2

0 += q±l
2 += q2

1 (0 ≤ ∀l < 2n) and q0q
±1
1 += q±m

2 (0 ≤ ∀m < n) hold, then it is
regular.

Now we state the main theorem of this paper:

Theorem E (= Part of Theorem 8.1 + Lemma 8.2). The set of G-conjugacy
classes of regular admissible parameters is in one-to-one correspondence with
the set of isomorphism classes of simple H-modules if q2 is not a root of unity
of order ≤ 2n, and q0q

±1
1 += q±m

2 holds for every 0 ≤ m < n.

We treat a slightly more general case in Theorem 8.1 including Example C.
Since the general condition is rather technical, we state only a part of it here.

By imposing an additional relation q0 + q1 = 0, the algebra H specializes to

an extended Hecke algebra HB of type B(1)
n with two-parameters. (cf. Remark

2.2) In this case, almost all of the exception of Theorem D is covered by the
description of Lusztig [loc. cit.]. (I learned this from Prof. Lusztig. The author
wants to express his gratitude to him for this kind information.) Therefore,
Theorems D-E complete a definitive classification of simple HB-modules except

for −q2
0 += qm

2 (|m| < n) or q(2n)!
2 += 1.

Let us illustrate an example which (partly) explains the title “exotic”:

Example F (Equal parameter case). Let G = Sp(4, C). Let s = exp(rε1 +rε2) ∈
T (r ∈ C\π

√
−1Q). Fix a0 = (s, er) ∈ G × C× and a = (s, er,−er, e2r) ∈ G2.

Let N be the nilpotent cone of G. Then, the sets of G(s)-orbits of N a0 and Na
2

are responsible for the usual and our exotic Deligne-Langlands correspondences.
The number of G(s)-orbits in N a0 is three. (Corresponding to root vectors of ∅,
2ε1, and “2ε1 & 2ε2”) The number of G(s)-orbits in Na

2 is four. (Corresponding
to weight vectors of ∅, ε1, ε1 + ε2, and “ε1 & ε1 + ε2”) On the other hand, the
actual number of simple modules arising in this way is four (cf. Ram [Ra01]
and [En06]).

The organization of this paper is as follows: In §1, we fix notation and intro-
duce our main geometric objects including the !-exotic nilpotent cone. Then,
we give a rough classification of orbits of Na

2 . In §1.3, we review Ginzburg’s
convolution realization of simple KG2(Z2)-modules. Theorem A is proved in
§2. The proof itself is similar to that of Chriss-Ginzburg [CG97] §7. The main
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point is to identify KG2(F2) with a basic representation of H. Here we also
introduce a way to regard Na

2 as a subvariety of N1, provided if q0 += q1. In
§3, we prove a reduction theorem (Corollary 3.10) which reduces the proofs of
Theorems D and E to their spacial cases. To analyze the primitive parameters
arising from this reduction procedure, we reformulate the description of param-
eters in §4. In particular, we introduce the notion of height functions adapted to
a parameter, which is a rough analogue of the Jacobson-Morozov theorem used
in Kazhdan-Lusztig’s work ([KL87]). In §5, we formulate abstract regularity cri-
teria of parameters (Proposition 5.2 and Lemma 5.4) involving height functions.
At the same time, we introduce several notation and lemmas which help us to
check the assumptions of the criteria. Using this, we give a sufficient condition
for the regularity of parameters (Corollary 6.3) by checking our criteria with
a case-by-case analysis (Propositions 6.1 and 6.2). In §7, we present a proof
that the equivariant fundamental groups of orbits are always trivial. Its main
ingredients are: the identification of Na

0 with the representation space of some
quivers, the representation theory of quivers, and the fact that a linearly defined
subgroup of GL(n, C) is connected. We formulate and prove (the precise form
of) Theorem E in §8. After proving Theorem E, we present a Deligne-Langlands

type classification in type B(1)
n -case. In §9, we study geometric standard mod-

ules as consequences of our results and the Ginzburg theory (cf. [CG97] §8).
We present its multiplicity formula of simple modules, its character formula,
and a special case of the multiplicity formula of simple modules in projective
modules. With an aid of [CG97] §8, the last result follows from the odd ho-
mology vanishing of relevant varieties, for which we provide a proof under the
same assumption as in Theorem D. Also, we briefly mention a connection with
the canonical basis of quantum groups of type ADE. We finish this paper by
supplying an appendix which is devoted to proofs of some geometric facts about
exotic nilpotent cones.

Acknowledgment: The author would like to thank Professors Susumu Ariki,

Masaki Kashiwara, George Lusztig, Hisayosi Matumoto, Hiraku Nakajima, Toshiyuki

Tanisaki, Masahiko Yoshinaga, Dr. Naoya Enomoto, and Midori Shiota for useful
comments, suggestions, and discussion on this topic. In particular, Professor Ariki

kindly arranged him an opportunity to talk at a seminar at RIMS. The author wishes
to express his gratitude to him and all the participants of the seminar.

1 Preparatory materials

Let G := Sp(2n, C). Let B be a Borel subgroup of G. Let T be a maximal
torus of B. Let X∗(T ) be the character group of T . Let R be the root system
of (G, T ) and let R+ be its positive part defined by B. We embed R and R+

into a n-dimensional Euclid space E = ⊕iCεi with standard inner product as:

R+ = {εi ± εj}i<j ∪ {2εi} ⊂ {±εi ± εj} ∪ {±2εi} = R ⊂ E.

By the inner product, we identify εi with its dual basis. We put αi := εi − εi+1

(i = 1, . . . , n− 1) or 2εn (i = n). Let W be the Weyl group of (G, T ). For each
αi, we denote the reflection of E corresponding to αi by si. Let ! : W → Z≥0

be the length function with respect to (B, T ). We denote by ẇ ∈ NG(T ) a lift
of w ∈ W . For a subgroup H ⊂ G containing T , we put wH := ẇHẇ−1. For a
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group H and its element h, we put H(h) := ZH(h). For each α ∈ R, we denote
the corresponding one-parameter unipotent subgroup of G (with respect to T )
by Uα. We define g, t, uα, g(s), etc. . . to be the Lie algebras of G, T, Uα, G(s),
etc. . ., respectively.

For a T -module V , we define its weight λ-part (with respect to T ) as V [λ].
We define the positive part V + of V as

V + :=
⊕

λ∈Q≥0R+−{0}

V [λ].

We denote the set of T -weights of V by Ψ(V ).
In this paper, a segment is a set of integers I written as I = [i1, i2] ∩ Z

for some integers i1 ≤ i2. By abuse of notation, we may denote I by [i1, i2].
For a variety X , we denote by H•(X ) and H•(X , Z) the Borel-Moore homology
groups with coefficients C and Z, respectively.

1.1 Exotic nilpotent cones

Let ! ≥ 0 be an integer. We define V1 := C2n (vector representation) and
V2 := (∧2V1)/C. These representations have B-highest weights ε1 and ε1 + ε2,
respectively. We put V! := V ⊕!1 ⊕ V2 and call it the !-exotic representation of
Sp(2n). For ! ≥ 1, the set of non-zero weights of V! is in one-to-one correspon-
dence with R as

R 2
{
±2εi ↔ ±εi ∈ Ψ(V1)

±εi ± εj ↔ ±εi ± εj ∈ Ψ(V2)
. (1.1)

We define
F! := G ×B V+

! ⊂ G ×B V!
∼= G/B × V!.

Composing with the second projection, we have a map

µ! : F! −→ V!.

We denote the image of µ! by N!. We call this variety the !-exotic nilpotent
cone. By abuse of notation, we may denote the map F! → N! also by µ!.

Convention 1.1. For the sake of simplicity, we define objects F , N, V, µ, etc...
to be the objects F!, N!, V!, µ! etc... with ! = 1.

We summarize some basic geometric properties of N = N1:

Theorem 1.2 (Geometric properties of N). We have the following:

1. The defining ideal of N is (C[V]G+)C[V] = (C[V2]G+)C[V];

2. The variety N is normal;

3. The set of G-orbits in N is finite;

4. For each ! ≥ 1, the map µ! is a birational projective morphism onto N!;

5. Every fiber of the map µ is connected;
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6. The map µ is stratified semi-small with respect to the stratification of N
given by G-orbits.

Proof. Postponed to Appendix A.

Lemma 1.3. We have a natural identification

F!
∼= {(gB, X) ∈ G/B × V!; X ∈ gV+

! }.

Proof. Straightforward.

Let G! := G × (C×)!+1. We define a G!-action on N! as

G!×N! 2 (g, q2−!, . . . , q2)×(X2−!⊕· · ·⊕X2) 4→ (q−1
2−!gX2−!⊕· · ·⊕q−1

2 gX2) ∈ N!.

(Here we always regard X2−!, . . . , X1 ∈ V1 and X2 ∈ V2.) Similarly, we have
a natural G!-action on F! which makes µ! a G!-equivariant map. We define
Z! := F! ×N!

F!. By Lemma 1.3, we have

Z! := {(g1B, g2B, X) ∈ (G/B)2 × V!; X ∈ g1V+
! ∩ g2V+

! }.

We put

Z123
! := {(g1B, g2B, g3B, X) ∈ (G/B)3 × V!; X ∈ g1V+

! ∩ g2V+
! ∩ g3V+

! }.

We define pi : Z! 2 (g1B, g2B, X) 4→ (giB, X) ∈ F! and pij : Z123
! 2 (g1B, g2B, g3B, X) 4→

(giB, gjB, X) ∈ Z! (i, j ∈ {1, 2, 3}). We also put p̃i : F! × F! → F! as the first
and second projections (i = 1, 2). (Notice that the meaning of pi, p̃i, pij depends
on !. The author hopes that there occurs no confusion on it.)

Lemma 1.4. The maps pi and pij (1 ≤ i < j ≤ 3) are projective.

Proof. The fibers of the above maps are given as the subsets of G/B defined by
incidence relations. It is automatically closed and we obtain the result.

We have a projection

π! : Z! 2 (g1B, g2B, X) 4→ (g1B, g2B) ∈ G/B × G/B.

For each w ∈ W , we define a point pw := B× ẇB ∈ G/B×G/B. This point
is independent of the choice of ẇ. We put Ow := Gpw ⊂ G/B × G/B. By the
Bruhat decomposition, we have

G/B × G/B =
⊔

w∈W

Ow. (1.2)

Lemma 1.5. For each ! ≥ 1, the variety Z! consists of |W |-irreducible compo-
nents. Moreover, all of the irreducible components of Z have the same dimen-
sion.

Proof. We first prove the assertion for Z. By (1.2), the structure of Z is deter-
mined by the fibers over pw. We have

π−1(pw) = V+ ∩ ẇV+.

6



By the dimension counting using (1.1), we deduce

dim V+ ∩ ẇV+ =dimV +
1 ∩ ẇV +

1 + dimV +
2 ∩ ẇV +

2

=#(R+
l ∩ wR+

l ) + #(R+
s ∩ wR+

s ) = N − !(w),

where N := dim V+ = dimG/B and R+
l , R+

s are the sets of long and short
positive roots, respectively. As a consequence, we deduce

dimπ−1(Ow) = N + !(w) + N − !(w) = 2N.

Thus, each π−1(Ow) is an irreducible component of Z.
Next, we prove the assertion for Z! (! ≥ 2). By forgetting the first (! − 1)
V1-factors, we have a surjective map η : Z! → Z. We have a surjective map
η′ : Z → Z0 given by forgetting the V1-factor. The fiber of η at x ∈ Z is
isomorphic to the (!−1)-fold product of the fiber of η′ at η′(x). The latter fiber
is isomorphic to the vector space V +

1 ∩gV +
1 when π(x) = (1, g)p1. Therefore, the

preimage of each irreducible component of Z gives an irreducible component of
Z!. These irreducible components are distinct since their images under η must
be distinct. Hence, the number of irreducible components of Z! is equal to the
number of irreducible components of Z as desired.

By a general result of [Gi97] p135 (cf. [CG97] 2.7), the G!-equivariant K-
group of Z! becomes an associative algebra via the map

' : KG!(Z!)×KG!(Z!) 2 ([E ], [F ]) 4→
∑

i≥0

(−1)i[Ri(p13)∗(p
∗
12E⊗Lp∗23F)] ∈ KG!(Z!).

Moreover, the G!-equivariant K-group of F! becomes a representation of KG!(Z!)
as

◦ : KG!(Z!) × KG!(F!) 2 ([E ], [K]) 4→
∑

i≥0

(−1)i[Ri(p1)∗(E ⊗L p̃∗2K)] ∈ KG!(F!).

Here we regard E as a sheaf over F!×F! via the natural embedding Z! ⊂ F!×F!.

1.2 Definition of parameters

In this subsection, we present a (rough) classification of orbits of Na
2 , which is

needed in the sequel. A complete classification of G-orbits of N is given by the
set of bi-partitions of n as is proved in [Ka06b].

For each λ ∈ X∗(T )\{0}, we fix a basis element v[λ] ∈ V[λ]. For each
X ∈ V, we write

X := v[0] +
∑

λ∈X∗(T )

X(λ)v[λ],

where X(λ) ∈ C and v[0] ∈ V[0]. We define the total support of X as

‖X‖ := {i ∈ [1, n]; X(±εi) += 0 or X(±εi±εj) += 0 for some sign and j ∈ [1, n]}.

The following is a slight enhancement of the good basis of Ohta [Oh86] (1.3).
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Definition 1.6 (!-normal form). A !-block of length m is a NG(T )-translate
of one of the following vectors in V:

v($,σ)(m)i :=
!∑

k=1

(1 − δjk,0)v[σkεi+jk
] +

λ−1∑

k=1

v[αi+k],

where * = (j1 ≤ j2 ≤ · · · ) ∈ [0, m]!, σ = {σk}k ∈ {±1}!, i ∈ [0, n], and δj,0 is
Kronecker’s delta. Here we interpret v[±εj ] = 0 = v[αj−1] if j > n. It is clear
that

‖v($,σ)(m)i‖ = [i + 1, m + i] or ∅.

A !-normal form of V is a sum v =
∑

i vi of !-blocks vi such that

‖vi‖ ∩ ‖vi′‖ = ∅ if i += i′.

We define the support of a !-normal form v as:

|v| := {‖vi‖; i ∈ [1, n] s.t. ‖vi‖ += ∅} ∪
⋃

k∈([1,n]−‖v‖)

{k}.

By abuse of notation, we may call 1-blocks or 1-normal forms merely by
blocks or normal forms. For the sake of simplicity, we may denote v(0,+)(m)i

by v(m)i.

Definition 1.7 (Configuration of semisimple elements).

1) An element a = (s, q0, q1, q2) ∈ G2 is called pre-admissible iff s is semisimple,
q0 += q1, q2 is not a root of unity of order ≤ 2n.

2) An element a ∈ G2 is called finite if Na
2 has only finitely many G2(a)-orbit.

3) A pre-admissible element a = (s, q0, q1, q2) is called general if q2
i += q±l

2

(i = 1, 2, 0 ≤ ∀l < 2n), and q0q
±1
1 += q±m

2 (0 ≤ ∀m < n).

For a pre-admissible element a = (s, q0, q1, q2), we put

Va
2 = V (s,q0)

1 ⊕ V (s,q1)
1 ⊕ V (s,q2)

2 ⊂ V1 ⊕ V1 ⊕ V2 = V2.

In the below, we may denote (q0, q1, q2) ∈ (C×)3 by *q for the sake of sim-
plicity.

Definition 1.8 (Admissible parameters).

1) An admissible parameter is a pair

ν = (a, X) = (s, *q, X1 ⊕ X2) ∈ G2 × N

such that a is pre-admissible, (s − q0)(s − q1)X1 = 0, and sX2 = q2X2;

For a pre-admissible a ∈ G2, we denote by Pa the set of admissible parameters
of the form (a, Y ) (Y ∈ V);

2) An admissible parameter ν is called standard if s ∈ T , and X is a 2n-normal
form.

The following theorems are exotic and equivariant analogues of a result of
Sekiguchi [Se84] (cf. Theorem A.1). For the sake of completeness, we provide a
full-proof in Appendix A.
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Theorem 1.9 (Normal forms). Let X ∈ N. Then, there exists g ∈ G such that
gX is a normal form.

Proof. Postponed to Appendix A.

Theorem 1.10 (Standard parameters). Let ν be an admissible parameter.
Then, there exists g ∈ G such that gν is a standard parameter.

Proof. Postponed to Appendix A.

1.3 Structure of simple modules

We put T! := T ×(C×)!+1. Let a ∈ T!. Let Za
! , F a

! , and Na
! be the set of a-fixed

points of Z!, F!, and N!, respectively. Let µa : F a
! → Na

! denote the restriction
of µ! to a-fixed points.
We review the convolution realization of simple modules in our situation. The
detailed constructions are found in [CG97] 5.11, 8.4 or [Gi97] §5. For its variant,
see [Jo98].
The properties we used to apply the Ginzburg theory are: 1) Z! = F!×N!

F!; 2)
F! is smooth; 3) µ! is projective; 4) R(G!) ⊂ KG!(Z!) is central; and 5) H•(Z!)
is spanned by algebraic cycles.
Let Ca be the quotient of C⊗Z R(G!) or C⊗Z R(T!) by the ideal defined by the
evaluation at a. The Thomason localization theorem yields ring isomorphisms

Ca ⊗R(G!) KG!(Z!)
∼=−→ Ca ⊗R(G!(a)) KG!(a)(Za

! )
∼=−→ Ca ⊗R(T!) KT!(Za

! ).

Moreover, we have the Riemann-Roch isomorphism

Ca ⊗R(T!) KT!(Za
! ) ∼= K(Za

! )
RR−→ H•(Z

a
! ) ∼= Ext•(µa

∗CFa

!
, µa
∗CFa

!
).

By the equivariant Beilinson-Bernstein-Deligne (-Gabber) decomposition theo-
rem (cf. Saito [Sa88] 5.4.8.2), we have

µa
∗CFa

!

∼=
⊕

O⊂Na

! ,χ,d

LO,χ,d ! IC(O, χ)[d],

where O ⊂ Na
! is a G(s)-stable subset such that µa is locally trivial along O, χ

is an irreducible local system on O, d is an integer, LO,χ,d is a finite dimensional
vector space, and IC(O, χ) is the minimal extension of χ. Moreover, the set
of O’s such that LO,χ,d += 0 (for some χ and d) forms a subset of an algebraic
stratification in the sense of [CG97] 3.2.23. It follows that:

Theorem 1.11 (Ginzburg [Gi97] Theorem 5.2). The set of simple modules of
KG!(Z!) for which R(G!) acts as the evaluation at a is in one-to-one corre-
spondence with the set of isomorphism classes of irreducible G!(a)-equivariant
perverse sheaves appearing in µa

∗CFa

!
(up to degree shift). !

2 Hecke algebras and exotic nilpotent cones

We retain the setting of the previous section. We put G = G2 and T := T2.
Most of the arguments in this section are exactly the same as [CG97] 7.6 if we
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replace G by G×C×, N2 by the usual nilpotent cone, µ2 by the moment map,
F2 by the cotangent bundle of the flag variety, and Z2 by the Steinberg variety.
Therefore, we frequently omit the detail and make pointers to [CG97] 7.6 in
which the reader can obtain a correct proof merely replacing the meaning of
symbols as mentioned above.

We put AZ := Z[q±1
0 , q±1

1 , q±1
2 ] and A := C ⊗Z AZ = C[q±1

0 , q±1
1 , q±1

2 ].

Definition 2.1 (Hecke algebras of type C(1)
n ). A Hecke algebra of type C(1)

n

with three parameters is an associative algebra H over A generated by {Ti}n
i=1

and {eλ}λ∈X∗(T ) subject to the following relations:

(Toric relations) For each λ, µ ∈ X∗(T ), we have eλ · eµ = eλ+µ (and e0 = 1);

(The Hecke relations) We have

(Ti + 1)(Ti − q2) = 0 (1 ≤ i < n) and (Tn + 1)(Tn + q0q1) = 0;

(The braid relations) We have

TiTj = TjTi (if |i − j| > 1), (TnTn−1)2 = (Tn−1Tn)2,
TiTi+1Ti = Ti+1TiTi+1 (if 1 ≤ i < n − 1);

(The Bernstein-Lusztig relations) For each λ ∈ X∗(T ), we have

Tie
λ − esiλTi =

{
(1 − q2)

eλ−esiλ

eαi−1 (i += n)
(1+q0q1)−(q0+q1)eεn

eαn−1 (eλ − esnλ) (i = n)
.

Remark 2.2. 1) The standard choice of parameters (t0, t1, tn) is: t21 = q2, t2n =
−q0q1, and tn(t0 − t−1

0 ) = (q0 + q1). This yields

Tneλ − esnλTn =
1 − t2n − tn(t0 − t−1

0 )eεn

e2εn − 1
(eλ − esnλ);

2) If n = 1, then we have T1 = Tn in Definition 2.1. In this case, we have

H ∼= C[q±1
2 ] ⊗C H0, where H0 is the Hecke algebra of type A(1)

1 with two-
parameters (q0, q1);

3) An extended Hecke algebra of type B(1)
n with two-parameters considered in

[En06] is obtained by requiring q0 +q1 = 0. An equal parameter extended Hecke

algebra of type B(1)
n is obtained by requiring q0 + q1 = 0 and q2

1 = q2. An equal

parameter Hecke algebra of type C(1)
n is obtained by requiring q2 = −q0q1 and

(1 + q0)(1 + q1) = 0.

For each w ∈ W , we define two closed subvarieties of Z2 as

Z≤w := π−1
2 (Ow) and Z<w := Z≤w\π−1

2 (Ow).

Let λ ∈ X∗(T ). Let Lλ be the pullback of the line bundle G ×B λ−1 over
G/B to F2. Clearly Lλ admits a G-action by letting (C×)3 act on Lλ trivially.
We denote the operator [p̃∗1Lλ ⊗L •] by eλ. By abuse of notation, we may
denote eλ(1) by eλ (in KG(Z)). Let q0 ∈ R({1} × C× × {1} × {1}) ⊂ R(G),
q1 ∈ R({1}×{1}×C××{1}) ⊂ R(G), and q2 ∈ R({1}×{1}×{1}×C×) ⊂ R(G)
be the inverse of degree-one characters. (I.e. q2 corresponds to the inverse of
the scalar multiplication on V2.) By the operation eλ and the multiplication by
qi, each of KG(Z≤w) admits a structure of R(T)-modules.
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Each Z≤w\Z<w is a G-equivariant vector bundle over an affine fibration
over G/B via the composition of π2 and the second projection. Therefore, the
cellular fibration Lemma (or the successive application of localization sequence)
yields:

Theorem 2.3 (cf. [CG97] 7.6.11). We have

KG(Z≤w) =
⊕

v∈W ;Ov⊂Ow

R(T)[OZ≤v
].

For each i = 1, 2, . . . , n, we put Oi := π−1
2 (Osi). We define T̃i := [OOi ] for

each i = 1, . . . , n.

Theorem 2.4 (cf. Proof of [CG97] 7.6.12). The set {[OZ≤1 ], T̃i, eλ; 1 ≤ i ≤
n, λ ∈ X∗(T )} is a generator set of KG(Z2) as AZ-algebras.

Proof. The tensor product of structure sheaves corresponding to vector sub-
spaces of a vector space is the structure sheaf of their intersection. Taking
account into that, the proof of the assertion is exactly the same as [CG97]
7.6.12.

By the Thom isomorphism, we have an identification

KG(F2) ∼= KG(G/B) ∼= R(T) = AZ[T ]. (2.1)

We normalize the image of [Lλ] under (2.1) as eλ.

Theorem 2.5 (cf. [CG97] Claim 7.6.7). The homomorphism

◦ : KG(Z2) −→ EndR(G)K
G(F2)

is injective. !

Proposition 2.6. We have

1. [OZ≤1 ] = 1 ∈ EndR(G)K
G(F2);

2. T̃i ◦ eλ = (1− q2eαi)e
λ−e

siλ−αi

1−e−αi
for every λ ∈ X∗(T ) and every 1 ≤ i < n;

3. T̃n ◦ eλ = (1 − q0e
1
2αn)(1 − q1e

1
2αn)e

λ−e
snλ−αn

1−e−αn for every λ ∈ X∗(T ).

Proof. The component Z≤1 is equal to the diagonal embedding of F2. In par-
ticular, both of the first and the second projections give isomorphisms between
Z≤1 and F2. It follows that

[OZ≤1 ] ◦ [Lλ] =
∑

i≥0

(−1)i[Ri(p1)∗
(
OZ≤1 ⊗L p̃∗2Lλ

)
]

= [R0(p1)∗
(
OZ≤1 ⊗ p̃∗2Lλ

)
] = [Lλ],

which proves 1). For each i = 1, . . . , n, we define V+(i) := V+
2 ∩ ṡiV

+
2 . Let

Pi := BṡiB 7 B be a parabolic subgroup of G corresponding to si. Each V+(i)
is B-stable. Hence, it is Pi-stable. We have

π2(Oi) = Osi = (1 × Pi)O1 ⊂ G/B × G/B.

11



The product (1×Pi)p1 ×V+(i) is a B-equivariant vector bundle. Here we have
G∩ (B ×Pi) = B. Hence, we can induce it up to a G-equivariant vector bundle
Ṽ(i) on π2(Oi). By means of the natural embedding of G-equivariant vector
bundles

F2 = G ×B V+
2 ↪→ G ×B V2

∼= G × V2,

we can naturally identify π−1
2 (psi) with V+(i). Since V+(i) is Pi-stable, we

conclude π−1
2 (psi) ∼= V+(i) as Pi-modules. As a consequence, we conclude

Ṽ(i) ∼= Oi. Let F̆ (i) := G ×B (V+
2 /V+(i)). It is a G-equivariant quotient

bundle of F2. The rank of F̆ (i) is one (1 ≤ i < n) or two (i = n). Let Z̆≤si be
the image of Z≤si under the quotient map F2 × F2 → F̆ (i) × F̆ (i). We obtain
the following commutative diagram:

F2

!!

Z≤si
"" ##

!!

F2

!!

F̆ (i) Z̆≤si
"" ## F̆ (i)

Here the above objects are smooth V+(i)-fibrations over the bottom objects.
Therefore, it suffices to compute the convolution operation of the bottom line.
We have Z̆≤si = Osi ∪ 8(F̆ (i)), where 8 : F̆ (i) ↪→ F̆ (i)2 is the diagonal
embedding. Let p̆j : Osi → G/B (j = 1, 2) be projections induced by the
natural projections of G/B×G/B. By construction, each p̆j is a G-equivariant

P1-fibration. Let L̆λ be the pullback of G ×B λ−1 to F̆ (i). We deduce

T̃i ◦ [L̆λ] =
∑

i≥0

(−1)i[Ri(p̆1)∗(OOsi
⊗L (OF̆ (i) ! L̆λ)]

=
∑

i≥0

(−1)i[Ri(p̆1)∗p̆
∗
2(G ×B λ−1)] =

[
G ×B [

eλ − esiλ−αi

1 − e−αi
]

]
,

where [ eλ−esiλ−αi

1−e−αi
] ∈ R(T ) ∼= R(B) is a virtual B-module. Here the ideal

sheaf associated to G/B ⊂ F̆ (i) represents q2[L̆αi ] in KG(F̆ (i)) (1 ≤ i < n)
or corresponds to q0L̆εn + q1L̆εn ⊂ OF̆ (i) (i = n). In the latter case, divisors

corresponding to q0L̆εn and q1L̆εn are normal crossing. Thus, we have [q0L̆εn ∩
q1L̆εn ] = q0q1[L̆2εn ]. In particular, we deduce

[q0L̆εn + q1L̆εn ] = q0[L̆εn ] + q1[L̆εn ] − q0q1[L̆2εn ] ∈ KG(F̆ (n)).

Therefore, we conclude

T̃i ◦ eλ =

{
(1 − q2eαi)e

λ−e
siλ−αi

1−e−αi
(if 1 ≤ i < n)

(1 − q0e
αn
2 )(1 − q1e

αn
2 ) eλ−e

snλ−αn

1−e−αn (if i = n)

as desired.

The following representation of H is usually called the basic representation
or the anti-spherical representation:
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Theorem 2.7 (Basic representation cf. [Mc03] 4.3.10). There is an injective
A-algebra homomorphism

ε : H → EndAA[T ],

defined as ε(eλ) := eλ· (λ ∈ X∗(T )) and

ε(Ti)e
λ :=

{
eλ−esiλ

eαi−1 − q2
eλ−esiλ+αi

eαi−1 (if 1 ≤ i < n)
eλ−esnλ

eαn−1 + q0q1
eλ−esnλ+αn

eαn−1 − (q0 + q1)eεn eλ−esnλ

eαn−1 (if i = n)
.

Theorem 2.8 (Exotic geometric realization of Hecke algebras). We have an
isomorphism

H
∼=−→ C ⊗Z KG(Z2),

as algebras.

Proof. Consider an assignment ϑ

eλ 4→ eλ, Ti 4→
{

T̃i − (1 − q2(eαi + 1)) (1 ≤ i < n)

T̃i + (q0 + q1)eεn − (1 + q0q1(eαn + 1)) (i = n)
.

By means of the Thom isomorphism, the above assignment gives an action of
an element of the set {eλ} ∪ {Ti}n

i=1 on A[T ]. We have

ϑ(eλ)eµ =eλ+µ

ϑ(Ti)e
λ =
(
T̃i − (1 − q2(e

αi + 1))
)

eλ = (1 − q2e
αi)

eλ − esiλ−αi

1 − e−αi
− eλ + q2(e

αi + 1)eλ

=(
eλ − esiλ−αi

1 − e−αi
− eλ − eλ−αi

1 − e−αi
) − q2e

αi(
eλ − esiλ−αi

1 − e−αi
− eλ − eλ−2αi

1 − e−αi
) = ε(Ti)e

λ

ϑ(Tn)eλ =
(
T̃n + (q0 + q1)e

εn − (1 + q0q1(e
αn + 1))

)
eλ

=(1 − q0e
εn)(1 − q1e

εn)
eλ − esnλ−αn

1 − e−αn
− eλ + (q0 + q1)e

λ+εn − q0q1(e
αn + 1)eλ

=(
eλ − esnλ−αn

1 − e−αn
− eλ − eλ−αn

1 − e−αn
) + q0q1e

αn(
eλ − esnλ−αn

1 − e−αn
− eλ − eλ−2αn

1 − e−αn
)

− (q0 + q1)(
eλ+εn − esnλ−εn

1 − e−αn
− eλ+εn − eλ−εn

1 − e−αn
) = ε(Tn)eλ.

This identifies C ⊗Z KG(F2) with the basic representation of H via the cor-
respondence eλ 4→ eλ and Ti 4→ Ti. In particular, it gives an inclusion H ⊂
C ⊗Z KG(Z2). Here we have Ti ∈ T̃i + A[T ] for 1 ≤ i ≤ n. It follows that
C ⊗Z KG(Z2) ⊂ H, which yields the result.

Theorem 2.9 (Bernstein cf. [CG97] 7.1.14 and [Mc03] 4.2.10). The center
Z(H) of H is naturally isomorphic to C ⊗Z R(G). !

Corollary 2.10. The center of KG(Z2) is R(G). !

For a semisimple element a ∈ G, we define

Ha := Ca ⊗Z(H) H (cf. §1.3)

and call it the specialized Hecke algebra.
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Theorem 2.11. Let a ∈ G be a semisimple element. We have an isomorphism

Ha
∼= C ⊗Z K(Za

2 )

as algebras.

Proof. This is a combination of [CG97] 6.2.3 and 5.10.11. (See also [CG97]
8.1.6.)

Convention 2.12. Let a = (s, *q) ∈ G be a pre-admissible element. We define
Za

+ to be the image of Za
2 under the natural projection defined by

Z2 2 (g1B, g2B, X0, X1, X2) 4→ (g1B, g2B, X0 + X1, X2) ∈ Z.

Let F a
+ be the image of Za

+ via the first (or the second) projection. Let µa
+ be

the restriction of µ to F a
+. We denote its image by Na

+. By the assumption
q0 += q1, we have F a

+
∼= F a

2 , Za
+
∼= Za

2 , and Na
+
∼= Na

2 .

Corollary 2.13. Keep the setting of Convention 2.12. We have an isomor-
phism

Ha
∼= C ⊗Z K(Za

+)

as algebras. !

3 Clan decomposition

We work under the same setting as in §2.

Definition 3.1 (Clans). Let a = (s, *q) ∈ T be a pre-admissible element. We
denote s = exp(λ), where

λ =
n∑

i=1

λiεi ∈ E ∼= t.

Let q2 = exp r2. We put Γ0 := 2π
√
−1Z and Γ := r2Z + Γ0. A clan associated

to a is a maximal subset c ⊂ [1, n] with the following property: For each two
elements i, j ∈ c, there exists a sequence i = i0, i1, . . . , im = j (in c) such that

{λik
± λik+1} ∩ {±r2 + Γ0,Γ0} += ∅ for each 0 ≤ k < m.

We have a disjoint decomposition

[1, n] =
⊔

c∈I(a)

c,

where each c is a clan associated to a and I(a) is the set of clans associated to
a. For a clan c, we put nc := #c.

We assume the setting of Definition 3.1 in the rest of this section unless
stated otherwise. At the level of Lie algebras, we have a decomposition

g(s) := t ⊕
⊕

i < j, σ1, σ2 ∈ {±},
σ1λi + σ2λj ≡ 0

g(s)[σ1εi + σ2εj ] ⊕
⊕

i ∈ [1, n], σ ∈ {±},
2λi ≡ 0

g(s)[σ2εi],
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where ≡ means modulo Γ0. For each c ∈ I(a), we define a Lie algebra g(s)c as
the Lie subalgebra of g(s) defined as
⊕

i∈c

Cεi ⊕
⊕

i < j ∈ c, σ1, σ2 ∈ {±},
σ1λi + σ2λj ≡ 0

g(s)[σ1εi + σ2εj ] ⊕
⊕

i ∈ c, σ ∈ {±},
2λi ≡ 0

g(s)[σ2εi],

where ≡ means modulo Γ0. Moreover, we have

g(s) =
⊕

c∈I(a)

g(s)c. (3.1)

In particular, we have [g(s)c, g(s)c′ ] = 0 unless c = c′. Let G(s)c be the
connected subgroup of G(s) which has g(s)c as its Lie algebra.

Lemma 3.2. We have G(s) =
∏

c∈I(a) G(s)c.

Proof. By (3.1), it is clear that
∏

c∈I(a) G(s)c is equal to the identity component
of G(s). Since G is a simply connected semi-simple group, it follows that G(s)
is connected by Steinberg’s centralizer theorem (cf. [Ca85] 3.5.6). In particular,
we have G(s) ⊂

∏
c∈I(a) G(s)c as desired.

We denote B ∩ G(s)c and wB ∩ G(s)c by B(s)c and wB(s)c, respectively.

Convention 3.3. We denote by Va the image of Va
2 to V via the map

V2 2 (X0 ⊕ X1 ⊕ X2) 4→ ((X0 + X1) ⊕ X2) ∈ V.

Since q0 += q1, we have Va ∼= Va
2 .

For each c ∈ I(a), we define

Va
c :=

∑

i,j∈c,σ1,σ2,σ3∈{±}

Va[σ1εi + σ2εj ] ⊕ Va[σ3εi].

It is clear that Va =
⊕

c∈I(a) Va
c . By the comparison of weights, the g(s)c-action

on Va
c′ is trivial unless c = c′.

Remark 3.4. Since c is not an integer and we do not use V! in the rest of this
paper, we use the notation Va

c . The author hopes the reader not to confuse Va
c

with (V!)a.

Lemma 3.5. Let O ⊂ Na
+ be a G(a)-orbit. Let Oc denote the image of O

under the natural projection Va → Va
c. Then, we have a product decomposition

O = ⊕c∈I(a)Oc.

Proof. Let X ∈ Va. There exists a family {Xc}c∈I(a) (Xc ∈ Va
c) such that

X =
∑

c∈I(a) Xc. We have G(s)X =
⊕

c∈I(a) G(s)cXc. Let ci (i = 1, 2) be

the unique clan such that V (s,qi)
1 [σεj ] += 0 for some j ∈ ci and σ ∈ {±}. Let

Gc be the product of scalar multiplications of V (s,qi)
1 such that V (s,qi)

1 ∩ Va
c +=

{0}. Since the set of a-fixed points of a conic variety in V is conic, we have
(G(s)c × (C×)3)Xc = (G(s)c × Gc)Xc. We have

∏
c∈I(a)(G(s)c × Gc) ⊂ G(a).

It follows that

G(a)X =
⊕

c∈I(a)

G(a)Xc =
⊕

c∈I(a)

(G(s)c × Gc)Xc =
⊕

c∈I(a)

Oc

as desired.
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For each w ∈ W , we define

F a
+(w) := G(s) ×

wB(s) (ẇV+ ∩ Va).

Similarly, we define

F a
+(w, c) := G(s)c ×

wB(s)c (ẇV+ ∩ Va
c)

for each c ∈ I(a).

Lemma 3.6. We have F a
+ = ∪w∈W F a

+(w).

Proof. The set of a-fixed points of G/B is a disjoint union of flag varieties of
G(s). It follows that each point of F a

+ is G(s)-conjugate to a point in the fiber
over a T -fixed point of G/B.

The local structures of these connected components are as follows.

Lemma 3.7. For each w ∈ W , we have

F a
+(w) ∼=

∏

c∈I(a)

F a
+(w, c).

Proof. The set Va
c is T -stable for each c ∈ I(a). Hence, we have

F a
+(w) = G(s) ×

wB(s) (ẇV+ ∩ Va) ∼= G(s) ×
wB(s) (

⊕

c∈I(a)

(ẇV+ ∩ Va
c)).

Since we have G(s)/B(s) ∼=
∏

c∈I(a) G(s)c/B(s)c, we deduce

G(s) ×
wB(s) (ẇV+ ∩ Va

c) ∼=
∏

c′∈I(a)

G(s)c′ ×
wB(s)

c
′ (ẇV+ ∩ Va

c ∩ Va
c′).

Here the RHS is isomorphic to

F a
+(w, c) ×

∏

c-=c′

G(s)c′/wB(s)c′ .

Gathering these information yields the result.

We define a map wµa
c by

wµa
c : F a

+(w, c) = G(s)c ×
wB(s)c (ẇV+ ∩ Va

c) −→ Va
c .

Definition 3.8 (Regular parameters). An admissible parameter (a, X) is called
regular iff there exists a direct factor A[d] ⊂ (µa

+)∗CFa

+
, where A is a simple

G(a)-equivariant perverse sheaf on Na
+ such that suppA = G(a)X and d is an

integer. For a pre-admissible element a ∈ G, we define

Λa := {X ∈ Na
+; (a, X) is regular admissible}/G(a).

Proposition 3.9 (Clan decomposition). For each w ∈ W , we have

µa
+|Fa

+(w)
∼=
∏

c∈I(a)

wµa
c .

In particular, every irreducible direct summand A of (µa
+)∗CFa

+
is written as an

external product of G(s)-equivariant sheaves appearing in (wµa
c)∗CFa

+(w,c) (up

to degree shift).
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Proof. The first assertion follows from the combination of Lemma 3.5, Lemma
3.7, and the definition of wµa

c . We have CFa

+
=
⊕

Fa

+(w)⊂Fa

+
CFa

+(w). A direct

summand of (µa
+)∗CFa

+
is a direct summand of (µa

+)∗CFa

+(w) for some w ∈ W .
Since

(µa
+)∗CFa

+(w)
∼= !c(

wµa
c)∗CFa

+(w,c),

the second assertion follows.

We put Gc := Sp(2nc) and sc := exp(
∑

i∈c
λiεi) ∈ T . We have embeddings

s =
∏

c∈I(a)

sc ∈
∏

c∈I(a)

Sp(2nc) ⊂ Sp(2n),

induced by the following identifications:

g(s)c = gc(sc) ⊂
(
⊕

i∈c

Cεi

)

⊕
⊕

α = σ1εi + σ2εj -= 0
σ1, σ2 ∈ {±}, i, j ∈ c

g[α] = gc. (3.2)

It follows that G(s)c = Gc(sc) ! Gc in general.
Let V(c) be the 1-exotic representation of Gc. We have a natural embedding

Va
c ⊂ V(c) which is compatible with (3.2).

Let ν = (a, X) be a standard parameter. We have a family of admissible
parameters νc := (sc, *q, Xc) of Gc’s such that s =

∏
c
sc, X = ⊕cXc. Let

Wa :=
∏

c∈I(a) NGc
(T )/T . By Lemma 3.7, we conclude that

⋃

w∈Wa

F a
+(w) ⊂ F a

+ (3.3)

is the product of the F a
+’s obtained by replacing the pair (G, ν) by (Gc, νc) for

all c ∈ I(a).

Corollary 3.10. Let ν = (a, X) be a standard parameter. Then, it is regular
if and only if νc is a regular admissible parameter of Gc for every c ∈ I(a).

Proof. Let W0 := NG(s)(T )/T ⊂ W . We have a natural inclusion W0 ⊂ Wa.
Here we have

µa
+ =

⊔

w∈W/W0

µa
+|Fa

+(w),

where we regard W/W0 ⊂ W by taking some representative. For each w ∈ W ,
there exists v ∈ Wa such that wV+ ∩ Va = vV+ ∩ Va ⊂ Va. Moreover, we can
choose v so that wB(s)c = vB(s)c holds for each c ∈ I(a). As a consequence,
all F a

+(w) are isomorphic to one of F a
+(w) (w ∈ Wa) as G(a)-varieties, together

with maps µa
+|Fa

+(w) to Va. Therefore, ν is regular if and only if an intersection

cohomology complex with its support G(a)ν (with degree shift) appears in
(µa

+)∗CFa

+(w) for some w ∈ Wa. Hence, Proposition 3.9 implies the result.

Corollary 3.10 reduces the analysis of the decomposition pattern of (µa
+)∗CFa

+

into the case that ν has a unique clan.
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4 Rearrangement of parameters

We work under the same setting as in the previous section. In particular, we fix
a pre-admissible a = (s, *q) ∈ T such that s = exp(

∑
i λiεi). In the below, we

assume that c = [1, n] is the unique clan associated to a unless stated otherwise.
For each ξ ∈ C, we put c(ξ) := {i ∈ c;λi ∈ (ξ + Γ0) ∪ (−ξ + Γ0)} and

c̃(ξ) := c(ξ) ∪ c(ξ + π
√
−1).

Lemma 4.1. Let c and λ be as the above. If c(λ) += ∅, then there exists λ0 ∈ C
such that

c(λ0) += ∅, c(λ0 + nr2) = ∅, and c =
⊔

0≤m<n

c(λ0 + mr2).

Moreover, the choice of λ0 is unique up to sign and translation by Γ0.

Proof. By the definition of clans, we have c =
⋃

0≤m c(λ′0 + mr2) for some
λ′0 ∈ C. We can rearrange λ′0 if necessary to assume

(λ′0 + Z≥0r2 + Γ0) ∩ (−λ′0 − Z≥0r2 + Γ0) ⊂ Γ0.

(Notice that the LHS is non-empty only if 2λi ∈ Γ for every i.) Since we have
c(λ′0 + mr2) = c(−λ′0 − mr2) and q2 is not a root of unity of order ≤ 2n, this
implies ⊔

0≤m≤n

c(λ′0 + (m + k)r2) ⊂ c

for each k ∈ Z≥0. We have c(λ′0 + mr2) += ∅ only if c(λ′0 + (m ± 1)r2) += ∅
or c(λ′0 + mr2) = c. Hence, there exists unique m0 such that λ0 = λ′0 + m0r2

satisfies c =
⊔

0≤m≤n c(λ0 + mr2) and c(λ0) += ∅. This implies c(λ0 + nr2) = ∅
as desired.

Definition 4.2. Keep the setting of Lemma 4.1. We define cm := c(λ0 + mr2)
for each 0 ≤ m < n.

Definition 4.3. Let a and c be as the above. The clan c is called type II iff
c0 = c̃(r2/2), and called type III iff c0 = c̃(0). Otherwise, we call c type I.

Lemma 4.4. We have cm = c̃(0) if and only if c is type III and m = 0.

Proof. The “if” part is definition. We prove “only if” part. We assume c̃(0) += ∅.
It follows that c̃(−nr2) = c̃(nr2) = ∅ and c̃(−r2) = c̃(r2). Thus, the description
of Lemma 4.1 forces 2λ0 ∈ Γ0, which implies c0 = c̃(0) as desired.

Lemma 4.5. We have cm = c̃(r2/2) if and only if c is type II and m = 0.

Proof. The “if” part is definition. We prove “only if” part. We assume c̃(r2/2) +=
∅. It follows that c̃(−n+1

2 r2) = c̃(n+1
2 r2) = ∅ and c̃(−r2/2) = c̃(r2/2). Thus,

the description of Lemma 4.1 forces 2λ0 ∈ r2 + Γ0, which implies c0 = c̃(r2/2)
as desired.

For each J ⊂ [1, n] and 0 ≤ m < n, we define Jm := J ∩ cm. By abuse of
notation, we may denote by Jm the unique member of Jm if J satisfies #Jm ≤ 1
for each m. We put

J := {m ∈ [0, n); Jm += ∅} ⊂ [0, n).
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Lemma 4.6. Let ν = (a, X) be a standard parameter. Assume that J ∈ |X |.
There exists a unique partition J = J+∪J− such that J± are segments, J− ⊂ J+,

(J±)m = ∅ or {j±m} (signs are the same), and j+
m ≥ j−m holds for each 0 ≤ m < n.

Proof. By the definition of standard parameters, we have i, j ∈ Jm only if
λi ∈ σjλj + ljr2 + Γ0 for some σj ∈ {±} and 0 < |lj | < n. Since c(λi) = c(λj)
and r2 is not a root of unity of order ≤ 2n, we have 2λi ≡ ljr2 mod Γ0. Let
i, j, k ∈ Jm be distinct members to deduce contradiction. Then, we have

σkλk + lkr2 ≡ λi ≡ σjλj + ljr2 mod Γ0,

for some σk ∈ {±} and 0 < |lk| < n. We have 2λi ≡ lkr2 mod Γ0. This forces
lj = lk since r2 is not a root of unity of order ≤ 2n. This is contradiction. It
follows that we have #Jm ≤ 2. Hence, we have a unique partition J = J+ ∪ J−
with J− ⊂ J+, #(J±)m = ∅ or {j±m}, and j+

m ≥ j−m. Since J is the support of a
block, it follows that each of J± must be a segment.

For a standard parameter ν = (a, X), we define

J (ν) := {J±; J ∈ |X |}.

Here J± are defined as in Lemma 4.6. We define m(J) = minJ . For each
J, J ′ ∈ J (ν), we put αJ,J′ := εJm(J)

+ εJ′
m(J′)

.

Definition 4.7 (Supports and normal forms). We assume the same setting as
in Lemma 4.6. For J ∈ J (ν), we define vJ :=

∑
m,m−1∈I v[εJm − εJm−1 ]. For

J ∈ |X |, we define
vJ := v[αJ+,J− ] + vJ+ + vJ− ,

where we understand that v[αJ+,J− ] = 0 unless J− += ∅.

Let ν = (a, X) be an admissible parameter. The action of NG(T ) exchanges
λi with ±λj . Adding an element of Γ0 to λi does not change s = eλ. Hence, we
can rearrange ν and {λi}i to satisfy the following condition ('):

(')1 We have λi − mr2 = λj if i ∈ ck+m and j ∈ ck for some k;

(')2 We have i < j if i ∈ ck+m and j ∈ ck for some k and m > 0;

(')3 We have X2 =
∑

J∈|X| vJ .

By construction, we can assume (') for a representative of every G(s)-conjugacy
class in Pa without the loss of generality.

Lemma 4.8. Assume the condition ('). Then, we have

Ψ(Va ∩ V2) = Ψ(ν) ∪
⋃

m≥0

{εi − εj ; i ∈ cm+1, j ∈ cm},

where we have

Ψ(ν) =






∅ (c is type I)

{εi + εj ; i ∈ c1, j ∈ c0} (c is type II)

{εi + εj ; i, j ∈ c0, i += j} (c is type III)

.

In particular, we have Va ∩ V2 ⊂ V +
2 .
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Proof. We have (Va ∩ V2)[σ1εi + σ2εj] += 0 (i < j, σ1, σ2 ∈ {±}) if and only
if σ1λi + σ2λj ∈ r2 + Γ0. By (')1, this happens only if a) σ1 = σ2 = + and
i, j ∈ c̃(r2/2), b) σ1 = σ2 = + and i ∈ c̃(r0), j ∈ c̃(0), or c) σ1 = +, σ2 = − and
λi = λj + r2. These roots are positive by (')2.

Corollary 4.9. Keep the setting of Lemma 4.8. Then, we have X2 ∈ V +
2 for

every (a, X) ∈ Pa. !

For each 0 ≤ m < n, we put

g(m) :=






⊕

i∈cm

Cεi ⊕
⊕

i∈cm,σ∈{±}

g[σ2εi] ⊕
⊕

i, j ∈ cm, i < j

σ1, σ2 ∈ {±}

g[σ1εi + σ2εj ] (cm = c̃(0))

⊕

i∈cm

Cεi ⊕
⊕

i, j ∈ cm, i < j

σ ∈ {±}

g[σ(εi − εj)] (otherwise)
.

These are Lie subalgebras of g(s)c = g(s). By a weight comparison, we conclude
[g(m), g(m′)] = 0 unless m = m′. We define G(m) to be the connected subgroup
of G with its Lie algebra g(m). We have

G(m) ∼=

{
GL(da

m) (cm += c̃(0))

Sp(da
m) (cm = c̃(0))

, (4.1)

where da
m = #cm (cm += c̃(0)), or 2(#cm) (cm = c̃(0)).

Lemma 4.10. We have G(s) = G(s)c =
∏

m≥0 G(m).

Proof. The first identity follows from the assumption [1, n] = c. Let i, j ∈ c and
let σ1, σ2 ∈ {±}. We have g(s)[σ1εi + σ2εj] += 0 if and only if σ1λi + σ2λj ∈ Γ0

holds. By (')1, this implies i, j ∈ cm for some m. Moreover, σ1σ2 = + occurs
in the above condition if and only if i, j ∈ c̃(0). Therefore, we deduce G(s) ⊃∏

m≥0 G(m). The reverse inclusion exists since G(s) is connected.

Definition 4.11 (Height function). Let ν = (s, *q, X) be a standard parameter.
Let h : J (ν) → R be a function. We put

sh := exp(
∑

i∈J,J∈J (X)

h(J)εi).

We call h a height function adapted to ν if shX = X holds. Let Lh := ZG(s)(sh).
We put

Uh := exp

〈
Z ∈ g(s); lim

n→−∞
sn

hZ = 0

〉
and Vh := {v ∈ V; lim

n→−∞
sn

hv converges.}.

The group P h := LhUh is a subgroup of G(s). We put Vh := Vh ∩ Va. It is
clear that P h acts on Vh. Let wh ∈ W be the shortest element which sends V+

into Vh.

Lemma 4.12. Keep the setting of Definition 4.11. The subgroup P h ⊂ G(s) is
parabolic.
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Proof. By the choice of sh, we have α(sh) ∈ R>0 for every α ∈ R. Let Rh :=
{α ∈ R;α(sh) ≥ 1}. The set Rh contains wR+ for some w ∈ W . The set
Rs

h := {α ∈ Rh;α(s) = 1} defines the set of T -roots of P h. This contains
wR+∩Rs

h, which is the set of T -roots of a Borel subgroup of G(s) as desired.

Corollary 4.13. Keep the setting of Definition 4.11. A function h : J (ν) → R
is a height function adapted to ν only if we have h(J+) + h(J−) = 0 for each
J ∈ |X |. In addition, we have a reverse implication when X = X2.

Proof. Since h is a function on J (ν), we have

sh(
∑

I∈J (ν)

vI) = sh(
∑

J∈|X|

(vJ− + vJ+)) = (
∑

J∈|X|

(vJ− + vJ+)) =
∑

I∈J (ν)

vI .

In order to have shX2 = X2, it suffices to check

sh(
∑

J∈|X|

vJ+,J−) =
∑

J∈|X|

eh(J+)+h(J−)vJ+,J− =
∑

J∈|X|

vJ+,J−

by (')3. This is equivalent to h(J+) + h(J−) = 0, which implies the results.

5 Abstract criteria of regularity

We work under the same settings as in the previous section. In the below, we
fix a standard parameter ν = (a, X) which satisfies (') and a height function h
adapted to ν.

The goal of this section is to present Proposition 5.2, together with its local
counter-parts.

Lemma 5.1. Assume that there exists w ∈ W such that

G(a)X ∩ ẇV+ ∩ Va ⊂ ẇV+ ∩ Va

is dense. Then, ν is regular.

Proof. The subspace Ô := G(s) ×wB(s) (ẇV+ ∩ Va) ⊂ F a
+ is a connected com-

ponent of F a
+. By assumption, we have

ẇV+ ∩ Va = G(a)X ∩ ẇV+ ∩ Va ⊂ G(a)X.

Hence, we have µa
+(Ô) = G(a)X . Therefore, the Beilinson-Bernstein-Deligne

(-Gabber) decomposition theorem yields the result.

Proposition 5.2. Let ν = (s, *q, X) be a standard parameter such that X ∈ V+.
Let h be a height function adapted to ν. If we have phX = Vh, then we have
P hX = Vh. In particular, we have

X ∈ (Va ∩ ẇhV+) ⊂ P hX = Vh.

Proof. By construction, we have X ∈ Vh. Since phX is the tangent space of
P hX at X , the equality phX = Vh implies dimP hX = dim Vh. Since Vh is an
irreducible variety, we conclude P hX = Vh. This proves the first assertion. We
prove the second assertion. The inclusion (Va ∩ ẇhV+) ⊂ Vh is clear from the

21



definition of ẇh. Since shX = X , the vector X belongs to the zero weight space
with respect to the sh-action. Since ẇh is the shortest element which sends V+

to Vh, the ẇh-action gives an automorphism on the sh-weight zero part of V+.
This means X ∈ ẇhV+, which implies the result.

Corollary 5.3. Keep the setting of Proposition 5.2. Then, ν is regular. !

Proof. Since G(a)X ∩ (Va ∩ ẇhV+) ⊂ (Va ∩ ẇhV+) is clearly open, Lemma 5.1
implies the result.

It is not easy to check the assumption phX = Vh in Proposition 5.2 directly.
To remedy this, we introduce some Lie subalgebras of ph and linear subspaces
of Vh, which enable us to check the assumption of Proposition 5.2 in more
“localized” form.

Let J, J ′ be subsets of [1, n]. We define

ph
J,J′ :=

∑

i,j∈J∪J′

ph[±εi ± εj ] ⊂ p, g(s)J,J′ :=
∑

i,j∈J∪J′

g(s)[±εi ± εj ] ⊂ g(s)

Vh
J,J′ :=

∑

i,j∈J∪J′

(Vh[±εi] ⊕ Vh[±εi ± εj ]) ⊂ Vh, and

VJ,J′ :=
⊕

m≥0

⊕

i∈Jm,j∈J′
m−1

V[εi − εj ] ⊂ V2.

It is clear that ph
J,J′ and g(s)J,J′ are Lie subalgebras of g(s). We denote the

corresponding connected algebraic subgroups of G by P h
J,J′ and G(s)J,J′ , re-

spectively. For the sake of simplicity, we may write the subscript as J when
J ′ = J .

Lemma 5.4. Let ν = (a, X) be a standard parameter which satisfies ('). Let
h be the height function adapted to ν. Then, we have phX = Vh if

1) (Vh ∩ V1) ⊂ phX and 2) (Vh
J,J′ ∩ V2) ⊂ ph

J,J′X2

holds for every J, J ′ ∈ |X |.

Proof. We have Vh = (Vh∩V1)⊕(Vh∩V2). We have phX ⊂ Vh by construction.
Hence, the assertion (Vh∩V1) ⊂ phX implies that (Vh∩V2) ⊂ phX2 is equivalent
to (Vh ∩ V2) ⊂ phX . Therefore, we obtain

Vh = (Vh ∩ V1) +
∑

J,J′

(Vh
J,J′ ∩ V2) ⊂ phX +

∑

J,J′

ph
J,J′X2 ⊂ phX + phX ⊂ phX,

which implies the result.

Corollary 5.5. Keep the setting of Lemma 5.4. If X ∈ V+, then ν is regular.
!

Proof. See Proposition 5.2 and Corollary 5.3.

In the below, we present several notation and lemmas which help us to check
Lemma 5.4 1–2) in the next section.

Let I = [i1, i2] and I ′ = [i3, i4] be two segments in [0, n). We denote I ≤ I ′

iff i1 ≤ i3 ≤ i2 ≤ i4 holds. We denote I ≺ I ′ iff i1 < i3 ≤ i2 + 1 ≤ i4 holds.
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Definition and Lemma 5.6. Let J, J ′ ∈ J (ν). For each l ∈ J ∩ J ′, we have

ξJ,J′

l ∈ g such that 0 += ξJ,J′

l = ξl ∈ g[εJl
− εJ′

l
] ⊂ g(s). Moreover, we have

ξJ,J′

l ∈ ph if and only if h(J) ≥ h(J ′).

Proof. The first inclusion follows by (')1. The second assertion follows by the
construction of sh and ph.

Definition and Lemma 5.7. Let J, J ′ ∈ J (ν). Let

vJ,J′

k = vk = v[εJk
− εJ′

k−1
] ∈ V[εJk

− εJ′
k−1

] ⊂ VJ,J′

be an element which we understand it to be zero when Jk = ∅ or J ′k−1 = ∅ hold.
For each l ∈ J ∩ J ′, we have

ξJ,J′

l vJ = −vl+1, and ξJ,J′

l vJ′ = vl

up to normalizations of ξl and v[β] for β ∈ Ψ(Va). Moreover, {vJ,J′

k ; vJ,J′

k += 0}k

is a basis of VJ,J′ .

Proof. Notice that vk is uniquely defined since #Jm, #J ′m ≤ 1. We have vJ =∑
m≥0 v[εJm − εJm−1 ] and vJ′ =

∑
m≥0 v[εJ′

m
− εJ′

m−1
]. It follows that

ξlvJ =ξlv[εJl+1 − εJl
] ∈ Cvl+1 = V[εJl+1 − εJ′

l
]

ξlvJ′ =ξlv[εJ′
l
− εJ′

l−1
] ∈ Cvl = V[εJl

− εJ′
l−1

].

This proves the first assertion by taking account into weights. The second
assertion is an immediate consequence of the definition.

Lemma 5.8. Let J, J ′ ∈ J (ν). If J ≤ J ′ and J ′m += ∅ holds, then we have

V1[εJm ] ⊕ VJ,J′ ⊂ g(s)J,J′(v[εJ′
m

] + vJ + vJ′).

In addition, we have

V1[εJm ] ⊕ VJ,J′ ⊂ ph
J,J′(v[εJ′

m
] + vJ + vJ′).

when h(J) ≥ h(J ′). Moreover, these inclusions still hold if we add v[εJm ] to
(v[εJ′

m
] + vJ + vJ′).

Proof. By explicit calculation, we have ξlv[εJm ] = 0 and ξlv[εJ′
m

] = δl,mv[εJm ]
up to non-zero scalars. This implies the last assertion provided if we prove the
other assertions only by using ξl’s. By the comparison of dimensions, it follows
that the multiplication gives an isomorphism

∑

l∈J∩J′

Cξl 2 ξ 4→ ξX ∈ V1[εJm ] ⊕ VJ,J′ ,

which implies the first result. By Definition and Lemma 5.6, we have
∑

l∈J∩J′ Cξl ⊂
ph when h(J) ≥ h(J ′). This proves the second assertion.

Corollary 5.9. Keep the setting of Lemma 5.8. We have

(v[εJ′
m

] + vJ + vJ′) + V1[εJm ] ⊂ G(s)J,J′ (v[εJ′
m

] + vJ + vJ′).
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Proof. Admitting the proof of Lemma 5.8, the result follows by merely expo-
nentiating Cξ ⊂

∑
l∈J∩J′ Cξl which annihilates vJ + vJ′ .

Lemma 5.10. Let J, J ′ ∈ J (ν). Assume h(J) ≥ h(J ′) and J +< J ′. Then, we
have an inclusion

VJ,J′ ⊂ ph
J,J′(vJ + vJ′).

Proof. We put [k−, k+] = J ∩ J ′. If [k−, k+] = ∅ and VJ,J′ += {0}, then we
have J +< J ′, which is excluded by the assumption. If [k−, k+] += ∅, then the
assumption J +< J ′ is equivalent to J ′k−−1 = ∅ or Jk++1 = ∅. It follows that
vk = 0 (k > k+) or vk = 0 (k ≤ k−) holds. Therefore, we deduce

dimVJ,J′ = #{vk; vk += 0}k ≤ #(J ∩ J ′).

By Definition and Lemma 5.7, the multiplication

∑

l∈J∩J′

Cξl 2 ξ 4→ ξX ∈ VJ,J′

is surjective as desired.

Lemma 5.11. Let J, J ′ ∈ |X |. Assume that h(J+) ≥ h(J ′+), J ′+ += J ′, and
J ≤ J ′. Then, we have v[αJ+,J′

−
] ∈ ph

J,J′X2 if and only if J0 += ∅.

Proof. Let y := vJ + vJ′ + v[αJ+,J− ] + v[αJ′
+,J′

−
]. By J ′+ += J ′, we deduce

J ′0 += ∅. By the comparison of weights, we have ph
J,J′X2 = ph

J,J′y. By (')1, we
deduce 0 += v[αJ+,J′

−
] ∈ Va only if J0 += ∅. By explicit computation, we have

ξ
J+,J′

+

l v[αJ+,J− ] = 0, and ξ
J+,J′

+

l v[αJ′
+,J′

−
] =

{
δl,0v[αJ+,J′

−
] (J0 += ∅)

0 (otherwise)
.

Therefore, the assertion falls into Lemma 5.8 applied to the pair (J+, J ′+).

Lemma 5.12. Let J ∈ J (ν). we have an equality

ph
JvJ = (Vh

J ∩ V2).

Proof. A weight consideration implies the inclusion ⊂. Hence, we prove ⊃. By
the definition of vJ , tvJ contains T -eigenspaces of weight εJm − εJm−1 . By
Lemma 4.8, a T -weight of Vh

J ∩V2 is given as εJl
− εJl−1 for some l, or εJ1 + εJ2.

The latter occurs only if ν is type III. Since we have tvJ = (Vh
J ∩V2) if the latter

does not occur, we assume Vh
J [εJ0 + εJ1 ] += 0. In this case, we have g[2εJ0] ⊂ ph.

This gives Vh
J [εJ0 + εJ1 ] ⊂ ph

JvJ , which implies

(Vh
J ∩ V2) = Vh

J [εJ0 + εJ1 ] + tvJ ⊂ ph
JvJ

as required.
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6 Proof of regularity of parameters

The goal of this section is to prove Corollary 6.3, which guarantees the regu-
larity of parameters for general parameters. The core of the argument lies on
Propositions 6.1 and 6.2, which is proved by the case-by-case argument.

We retain the setting of §3.

Proposition 6.1. Let ν = (s, *q, X) be a standard parameter which satisfies (').

Assume that either V (s,q0)
1 = {0} or V (s,q1)

1 = {0}. If c is type I, then there

exists a height function h adapted to ν such that P hX = Vh. In particular, ν
is regular.

Proposition 6.2. Let ν = (s, *q, X) be a standard parameter which satisfies

('). Assume that V (s,q0)
1 = {0} = V (s,q1)

1 . Then, there exists a height function

h adapted to ν such that P hX = Vh. In particular, ν is regular.

Before giving the proofs of Propositions 6.1 and 6.2, we prove the following
consequence by admitting them.

Corollary 6.3. An admissible parameter ν = (s, *q, X) is regular if *q is general.

Proof of Corollary 6.3. The assertion is unchanged by the conjugation by G.
Hence, we rearrange ν by the G-action to assume that ν is a standard parameter
by Theorem 1.10. By Corollary 3.10, we have only to show the case that (s, *q)
has a unique clan. By taking NG(T )-conjugation if necessary, we can assume
that ν satisfies (') without the loss of generality. The set of s-eigenvalues of
V1 is contained in {(eλ0qk

2 )±1; 0 ≤ k < n}. By the relations q0q
±1
1 += q±m

2

(0 ≤ m < n), it follows that either V (s,q0)
1 = {0} or V (s,q1)

1 = {0} holds.
Therefore, we deduce the result by Proposition 6.1 if c is type I. Otherwise, we
have c0 = c̃(0) or c̃(r2/2). Then, the relation q2

0 += q±l
2 += q2

1 (0 ≤ l < 2n) claims
Va ∩ V1 = {0}. Thus, Proposition 6.2 yields the result in this case.

Proof of Proposition 6.1. By Lemma 4.8, we have εi + εj +∈ Ψ(Va) for each
i, j ∈ c. In particular, we have J− = ∅ for every J ∈ |X |. (Which in turn
implies |X | = J (ν).)

By (')1, the set of T -weights of Va ∩ V1 are given as the form {εi}i∈cm or

{−εi}i∈cm for some m. By V (s,q0)
1 = {0} or V (s,q1)

1 = {0}, the choice of m is at

most one. By c0 += c̃(0), the sign σ of weight for which V (s,q∗)
1 [σεi] += 0 (i ∈ cm)

is at most one. Hence, we apply NG(T )-action (as λi 4→ −λn−i for all i) if
necessary to assume (Va ∩V1) ⊂ V +

1 holds. Then, we have Va ⊂ V+ by Lemma
4.8. We put

m0 := max{m; ∀i ∈ cm, V (s,q0)
1 [εi] += 0 or V (s,q1)

1 [εi] += 0} ∪ {−1}.

We have X(εi) = 0 unless i ∈ cm0 . We define

D0 :={J ∈ J (ν); X(εJm0
) += 0, and + ∃J ′ ∈ J (ν) s.t. J ≤ J ′, X(εJ′

m0
) += 0},

D− :={J ∈ J (ν); Jm0 += ∅, X(εJm0
) = 0, and + ∃J ′ ∈ D0 s.t. J ≤ J ′},

and D+ := J (ν)\(D− ∪ D0). For each J ∈ D+ such that Jm0 += ∅, there exists
J ′ ∈ D0 such that J ≤ J ′ (otherwise we have J ∈ D− by the definition of D−).
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Applying Corollary 5.9 to J ∈ D+ such that X(εJm0
) += 0 (with some J ′ ∈ D0

such that J ≤ J ′), we rearrange X by the StabG(s)X2-action if necessary to
assume

X1 =
∑

J∈D0

v[εJm0
] (6.1)

without the loss of generality.
We choose a sequence γ0, γ1, . . . ∈ R such that: 1) γi > γi+1 for every i; and

2) γm0+1 < γm0 < 0 < γm0−1. Fix 1
nγm0 < δ < 0. We define a height function

h as

h(J) :=






(m(J) + 1)δ (if J ∈ D−)

0 (if J ∈ D0)

γm(J) (if J ∈ D+).

By (6.1), we conclude that h is adapted to ν. By Corollary 5.5, it suffices to
check Lemma 5.4 1–2) for proofs of the assertions. We have

Vh ∩ V1 =
⊕

J∈D+;h(J)>0

V1[εJm0
] ⊕
⊕

J∈D0

V1[εJm0
]. (6.2)

The second term of the RHS of (6.2) is contained in tX . For each J ∈ D+, we
apply Lemma 5.8 to the pair (J, J ′) such that J ′ ∈ D0 and J ≤ J ′. It follows
that

Cv[εJm0
] ⊂ ph

J,J′(X1 ⊕ (vJ + vJ′)) ⊂ phX.

This implies that Lemma 5.4 1) holds. Therefore, we have only to show Lemma
5.4 2) for each pair (J, J ′) in J (ν). Since we have εi + εj +∈ Ψ(Vh) for every
i, j ∈ c, we have

Vh
J,J′ ∩ V2 =

∑

K,K′∈{J,J′};h(K)≥h(K′)

V h
K,K′ .

We have VJ ⊂ tX2 by the definition of standard parameters. In particular,
Lemma 5.4 2) holds if we have

VJ,J′ ⊂ ph
J,J′(vJ + vJ′)

for every distinct J, J ′ ∈ J (ν) such that h(J) ≥ h(J ′). By Lemma 5.10, it
suffices to check that no pair (J, J ′) in J (ν) satisfies h(J) ≥ h(J ′) and J < J ′

simultaneously. The condition J < J ′ implies m(J) > m(J ′). We assume the
existence of such pair (J, J ′) to deduce contradiction. There are three cases:

(J ∈ D−) We have J ′ +∈ D− since h(J) ≥ h(J ′) implies m(J) ≤ m(J ′) in this
case. The case J ′ ∈ D0 is impossible by h(J) < 0 = h(J ′) in this case. We have
J ′ +∈ D+ since m0 ≥ m(J) > m(J ′) implies h(J) < 0 < h(J ′) in this case.

(J ∈ D0) We have J ′ +∈ D− ∪ D0 since J < J ′ is prohibited by the definitions
of the sets D− and D0. We have J ′ +∈ D+ since m0 ≥ m(J) > m(J ′) implies
h(J) = 0 < h(J ′) in this case.

(J ∈ D+) Assume J ′ ∈ D− ∪ D0 to deduce contradiction. We have h(J) ≥
h(J ′) > γm0 , which implies m(J) < m0 in this case. By J < J ′, we have 0 ∈ J .
In particular, there exists J ′′ ∈ D0 such that J ′ ≤ J ≤ J ′′. Since 0 ∈ J ′ ∩ J ′′,
we deduce J ′ ≤ J ′′, which contradicts with the definition of D− or D0. Hence,
J ′ +∈ D− ∪ D0. We have J ′ +∈ D+ since m(J) > m(J ′) implies h(J) < h(J ′) in
this case.
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By the above case-by-case analysis, we cannot have a desired pair (J, J ′), which
completes the proof.

Proof of Proposition 6.2. We assume that c is not type I. We choose a sequence
γ0, γ1, . . . ∈ R such that:

0 > γ0 > γ1 > · · · > γi > γi+1 > · · · .

Fix a negative real number δ such that 1
nγ0 < δ. For each K ∈ J (ν), we define

l(K) := max K. We define a height function as

h(K) :=






(l(J+) + 1)δ (if J+ = K += J for some J ∈ |X |)
−(l(J+) + 1)δ (if K = J− for some J ∈ |X |)
γm(K) (otherwise).

By Corollary 4.13, we deduce that h is adapted to ν. We apply Lemma 5.4 and
Corollary 5.5 to deduce the assertions. Lemma 5.4 1) is a void condition in this
case. We check Lemma 5.4 2) for every pair (J, J ′) ∈ |X | by the case-by-case
analysis:

(The case J = J ′) Since h(J+) < 0, we have ε(J+)0 + ε(J+)1 +∈ Ψ(Vh). We have
h(J+) < h(J−). Compared with Lemma 4.8, it follows that

Vh
J = VJ+,J+ ⊕ VJ−,J+ ⊕ VJ−,J− ⊕ Vh[αJ+,J− ].

By (')3, we have

VJ+,J+ ⊕ VJ−,J− ⊕ Vh[αJ+,J− ] ⊂ tX.

Hence, it suffices to show VJ−,J+ ⊂ phX . For each l ∈ J+ ∩ J−, we have

ξlv[αJ+,J− ] = ξlv[εm(J+) + εm(J−)] = 0

since the RHS must have a weight outside of Ψ(V2). Therefore, we deduce
VJ−,J+ ⊂ ph

JX by Lemma 5.10 applied to the pair (J−, J+) in J (ν). This
implies ph

JX = Vh
J as desired.

(The case J = J+ or J ′ = J+) By swapping the roles of J and J ′ if necessary,
we assume J+ = J . We divide this proof into two subcases:

i) If we have J ′+ = J ′, then we have h(J) + h(J ′) < 0. Hence, we have
εi + εj +∈ Ψ(Vh) if i ∈ J and j ∈ J ′. Compared with Lemma 4.8, it follows that

Vh
J,J′ =

∑

K,K′∈{J,J′};h(K)≥h(K′)

VK,K′ .

By the definition of h, we have m(K) ≤ m(K ′) if h(K) ≥ h(K ′). In particular,
we have K +< K ′ when h(K) ≥ h(K ′). Therefore, we deduce ph

J,J′X = Vh
J,J′

by applying Lemma 5.10 to all the pairs (K, K ′) such that h(K) ≥ h(K ′) and
K += K ′.

ii) If we have J ′+ += J ′, then we have h(J)+h(J ′+) < h(J)+h(J ′−) < 0. Hence,
we have εi + εj +∈ Ψ(Vh) if i ∈ J and j ∈ J ′. We have h(J ′+), h(J ′−) > h(J). It
follows that

Vh
J,J′ = Vh

J ⊕ Vh
J′ ⊕ VJ′

+,J ⊕ VJ′
−,J .
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Since m(J) ≥ m(J ′+) = 0, we deduce J ′+ +< J . Applying Lemma 5.10 to
(J ′+, J), we conclude VJ′

+,J ⊂ ph
J,J′X . The same argument applies to the pair

(J ′−, J) if m(J) ≥ m(J ′−). Otherwise, we have necessarily have 0 = m(J) <
m(J ′−) = 1. This implies that c is type III. We have 0 += ξ ∈ ph[−ε(J′

+)0 − εJ0 ]

by (−h(J ′+) − h(J)) > 0. We have ξvJ′
+

= 0 and

ξv[αJ′
+,J′

−
] = v[ε(J′

−)1 − εJ0 ]

by explicit calculation. We have dim VJ′
−,J ≤ dim(J ′− ∩ J) + 1. Taking account

into the proof of Lemma 5.10, we conclude VJ′
−,J ⊂ ph

J′
−,JX . By Lemma 5.12,

we conclude
Vh

J,J′ = Vh
J ⊕ Vh

J′ ⊕ VJ′
+,J ⊕ VJ′

−,J ⊂ ph
J,J′X

in this case.

(The case J += J+ and J ′ += J+) By swapping the roles of J and J ′ if necessary,
we assume h(J+) ≤ h(J ′+). By the choice of h, we have

h(J+) ≤ h(J ′+) < 0 < h(J ′−) ≤ h(J−), and J ′− ⊂ J ′+ = J ′ ⊂ J = J+. (6.3)

We divide the proof into three subcases i) c is type II, ii) c is type III and
h(J) += h(J ′), and iii) c is type III and h(J) = h(J ′):

i) Assume that c is type II. Compared with Lemma 4.8, we have

Vh
J,J′ = Vh

J ⊕ Vh
J′ ⊕





∑

K ∈ {J±}, K′ ∈ {J′
±}

h(K) ≥ h(K′)

VK,K′




⊕





∑

K ∈ {J±}, K′ ∈ {J′
±}

h(K) + h(K′) ≥ 0

Vh[αK,K′ ]




.

We have K0 += ∅ for every K ∈ {J±, J ′±}. It follows that we have K +< K ′ for
all the pairs (K, K ′) in {J±, J ′±}. Therefore, we deduce Vh

J,J′ ⊂ ph
J,J′X by a

successive application of Lemma 5.10 and Vh
J ⊂ ph

JX (the first case treated in
the above) provided if we have

∑

K ∈ {J±}, K′ ∈ {J′
±}

h(K) + h(K′) ≥ 0

Vh[αK,K′ ] ⊂ phX. (6.4)

Claim A. The inclusion (6.4) holds when the pair (J, J ′) ∈ |X | satisfies J += J+,
J ′ += J ′+, and c is type II.

Proof of Claim A. For (K, K ′) = (J+, J ′+), we have Vh[αK,K′ ] = 0 by h(J+) +
h(J ′+) < 0. For (K, K ′) = (J+, J ′−), we have Vh[αK,K′ ] += 0 only if h(J+) ≥
h(J ′+). We have J ′− ≤ J+ and J0 += ∅. Hence, we have Vh[αK,K′ ] ⊂ ph

J,J′X by

Lemma 5.11. The case (K, K ′) = (J−, J ′+) is the same as the previous case by
swapping the roles of K and K ′. For the case (K, K ′) = (J−, J ′−), we always
have Vh[αJ−,J′

−
] += 0 by h(J−) + h(J ′−) > 0. We have J ′− ⊂ J+. The vectors

v[αJ+,J− ] = v[ε(J+)0 + ε(J−)0 ] and v[αJ′
+,J′

−
] = v[ε(J′

+)0 + ε(J′
−)0 ] behave as

elements of vector representation of G(s)J+,J′
−

with its weight ε(J+)0 and ε(J′
−)0 ,

respectively. Hence, we apply Lemma 5.8 to the pair (J ′−, J+) to deduce

Vh[αJ−,J′
−
] ⊕ VJ′

−,J+ ⊂ ph
J′
−,J+

X.
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In particular, we obtain Vh[αK,K′ ] ⊂ ph
K′,J+

X when (K, K ′) = (J−, J ′−). These
case-by-case checking yields Claim A as desired.

We return to the proof of Proposition 6.2. Now (6.4) implies Vh
J,J′ ⊂ ph

J,J′X
when c is type II as desired.

ii) Assume that c is type III and h(J+) < h(J ′+). We define

V ′J,J′ :=
⊕

i∈c,j∈{(J+)0,(J′
+)0}

Vh
J,J′ [εi ± εj ].

We put J̇ := J+ − {(J+)0} and J̇ ′ := J ′+ − {(J ′+)0}. It is clear that

m(J̇) = m(J−) = m(J̇ ′) = m(J ′−) = 1. (6.5)

It follows that K +< K ′ for every K, K ′ ∈ {J̇ , J−, J̇ ′, J ′−}. Compared with
Lemma 4.8, we have

Vh
J,J′ = V ′J,J′ ⊕

∑

K,K′∈{J̇,J−,J̇′,J′
−};h(K)≥h(K′)

VK,K′ ,

where we extend the domain of h so that h(J̇) = h(J+) and h(J̇ ′) = h(J ′+)
hold. By forgetting J0 and J ′0, we can apply Lemma 5.10 for all pairs (K, K ′)
in {J̇ , J−, J̇ ′, J ′−} such that h(K) ≥ h(K ′). Then, we conclude Vh

J,J′ ⊂ ph
J,J′X

provided if

V ′J,J′ ⊂ ph
J,J′X (6.6)

holds.

Claim B. The inclusion (6.6) holds when the pair (J, J ′) ∈ |X | satisfies J += J+,
J ′ += J ′+, c is type III, and h(J+) < h(J ′+).

Proof of Claim B. By (6.3) and (6.5), we deduce J ′− ≤ J̇ and J̇ ′ ≤ J̇ . Here the
vectors

v[ε(J+)1 − ε(J+)0 ],v[αJ+.J− ],v[ε(J′
+)1 − ε(J′

+)0 ],v[αJ′
+,J′

−
],

behaves as vectors in the vector representation of G(s)J̇ ,J̇′ or G(s)J̇ ,J′
−

of weights

ε(J+)1 , 0, ε(J′
+)1 , or ε(J′

−)1 , respectively. Applying Lemma 5.8 to the pairs (J̇ ′, J̇)

and (J ′−, J̇) by forgetting J0 and J ′0, we deduce that

v[ε(J′
+)1 − ε(J+)0 ],v[ε(J′

−)1 − ε(J+)0 ] ∈ ph
J,J′X. (6.7)

We have

Ψ(g(0) ∩ ph
J,J′) = {0,−2ε(J+)0 ,−2ε(J′

+)0 ,−ε(J+)0 ± ε(J′
+)0}.

Moreover, we have

X = v[ε(J+)1 − ε(J+)0 ] + v[αJ+,J− ] + v[ε(J′
+)1 − ε(J′

+)0 ] + v[αJ′
+,J′

−
] + Xot,
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where Xot is a sum of T -eigenvectors of weight εk ± εl (k +∈ {(J+)0, (J ′+)0} +2 l).
It is clear that (g(0) ∩ ph

J,J′)Xot = 0. Now an explicit computation gives

v[ε(J−)1 − ε(J+)0 ],v[ε(J′
−)1 − ε(J′

+)0 ],v[ε(J−)1 − ε(J′
+)0 ] + v[ε(J′

−)1 − ε(J+)0 ],

v[ε(J−)1 + ε(J′
+)0 ] − v[ε(J′

+)1 − ε(J+)0 ] ∈ (g(0) ∩ ph
J,J′)X

Taking account into (6.7) and dim(tX ∩ V ′J,J′) = 4, we deduce

dim(V ′J,J′ ∩ phX) ≥ 10.

Hence, it suffices to prove dim V ′J,J′ = 10. Consider the following numbers:

h(J±) ± h(J+), h(J±) ± h(J ′+), h(J ′±) ± h(J ′+), h(J ′±) ± h(J+). (6.8)

Here the above numbers are responsible for the non-negativity of log(sh)-eigenvalues
of the weights εi ± εj, where (i, j) ∈ c1 ×c0 is taken from (J, J), (J, J ′), (J ′, J ′),
and (J ′, J), respectively. Hence, it suffices to show that exactly 10 out of the 16
numbers in (6.8) are non-negative when −h(J−) = h(J+) < h(J ′+) = −h(J ′−) <
0. We have 3, 2, 3, 2 non-negative numbers out of each blocks consisting of four.
Hence, Claim B follows.

We return to the proof of Proposition 6.2. Now (6.6) implies Vh
J,J′ ⊂ ph

J,J′X
when c is type III and h(J+) > h(J ′+) as desired.

iii) Assume that c is type III and h(J+) = h(J ′+). Consider small pertur-
bations h+ and h− of h such that h+(J+) > h+(J ′+) and h−(J+) < h−(J ′+),
respectively. Then, we have

Vh?

J,J′ ⊂ Vh
J,J′ and ph?

J,J′ ⊂ ph
J,J′

for ? = ±. Moreover, we have

Vh+

J,J′ + Vh−

J,J′ = Vh
J,J′ .

Since the arguments of the case c is type III and h(J+) > h(J ′+) carries over to
h? (? = ±), we conclude

Vh
J,J′ = Vh+

J,J′ + Vh−

J,J′ ⊂ ph+

J,J′X + ph−

J,J′X ⊂ ph
J,J′X.

These case-by-case analysis complete the verification of the condition of Lemma
5.4 2) as desired.

7 Stabilizers of exotic nilpotent orbits

We work under the setting of §4. In particular, we fix a standard parameter
ν = (a, X) = (s, *q, X1 ⊕ X2) which satisfies ('). Let c = [1, n] be the unique
clan associated to a. We assign the following quiver Qa to a:

• The vertexes of Qa is {m ∈ Z≥0; cm += 0};

• The edges of Qa connect from (m − 1) (source or start) to m (target or
terminal) for each m.
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We put V (m) := Cda

m for each m ≥ 0. We fix a basis of V (m) as {vi, vi}i∈cm

(if cm = c̃(0)), or {vi}i∈cm (otherwise). We form a dimension vector da of Qa

as {da
m}m. Let Rep(Qa,da) be the representation space of Qa with dimension

vector da.

Construction 7.1 (Quiver presentation of Va). We assign v[εi − εj ] (i ∈ cm,
j ∈ cm−1) a linear map

υ[εi − εj] : V (m − 1) −→ V (m)

such that

υ[εi − εj ]v̄k = 0, υ[εi − εj ]vk =

{
vi (j = k)

0 (otherwise)
.

We assign v[εi + εj ] (i ∈ c1, j ∈ c0; type III) a linear map

υ[εi + εj] : V (0) −→ V (1)

defined as

υ[εi + εj ]vk = 0, υ[εi + εj ]v̄k =

{
vi (j = k)

0 (otherwise)
.

These assignments give rise to a map

Ξ : V (s,q2)
2 2 X2 =

∑

i,j∈[1,n],σ∈{±}

cσi,jv[εi + σεj ]

4→ Ξ(X2) :=
∑

i,j∈[1,n],σ∈{±}

cσi,jυ[εi + σεj ] ∈ Rep(Qa,da).

Here we understand that c+
i,j = 0 unless i < j. We assign v[εi +εj] (i, j ∈ c0, i <

j; type II) a two-form θ[εi + εj] ∈ ∧2V (0) defined as

θ[εi + εj ] = vi ∧ vj .

We define a two-form θ = θ(X2) ∈ ∧2V (0) associated to X2 as

θ :=
∑

i,j∈c0

c+
i,jθ[εi + εj ].

Remark 7.2. Since ν is a standard parameter, we have

dimθ⊥ = dimV (0)∗ − 2#{(i, j) ∈ c0 × c0; c
+
i,j += 0}

if θ is defined (i.e. c is type II).

By Construction 7.1, we have a Qa-representation structure on the space
M := ⊕k≥0V (k) by letting Ξ(X2) act. For each J ∈ |X | and σ ∈ {±}, we define

Mσ
J :=

{
(
∑

i∈Jσ
Cvi) ⊕ CvJ0 (σ = −, (J−) += ∅, and (J−)0 = ∅)

∑
i∈Jσ

Cvi (otherwise)
.
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Lemma 7.3. For each J ∈ |X |, the subspaces M±
J of M are Ξ(X2)-stable. In

particular, M±
J are submodules of M as Qa-representations.

Proof. Straight-forward.

Lemma 7.4. For each J ∈ |X |, the Qa-representations M±
J are indecomposable.

In particular, the decomposition

M =
⊕

J∈|X|

(M+
J ⊕ M−

J )

is an indecomposable direct sum decomposition of Qa-representations.

Proof. The first assertion is clear since the both J± and J− ∪ {0} are segments.
The second assertion follows by [1, n] = #‖X‖ and dim M = n + #c̃(0).

We put Ga :=
∏

i≥0 GL(da
i ). The space Rep(Qa,da) admits a natural Ga-

action.

Lemma 7.5. We have a natural embedding G(s) ↪→ Ga, which makes Ξ a
G(s)-equivariant map. Moreover, it acts on θ as the base change of two forms.

Proof. Consider the action of G(m) on V (s,q2)
2 . By a weight consideration, we

have

V (s,q2)
2

∼=

{
Mat(da

m+1, d
a
m) ⊕ ∧2V (0) ⊕ triv (if c is type II and m = 0)

Mat(da
m+1, d

a
m) ⊕ Mat(da

m, da
m−1) ⊕ triv (otherwise)

as GL(da
m)-modules, where we understand da

m = 0 if m +∈ Qa and triv is the
trivial representation of some dimension. The natural action of G(m) = GL(da

m)
or Sp(da

0) is

G(m) × Mat(da
m+1, d

a
m) 2(g, A) 4→ Ag−1 ∈ Mat(da

m+1, d
a
m),

G(m) × Mat(da
m, da

m−1) 2(g, A) 4→ gA ∈ Mat(da
m, da

m−1), and

G(0) × Alt(da
0) 2(g, A) 4→ gAtg ∈ Alt(da

0) ∼= ∧2V (0).

The first two actions commute with the composition of matrices. Hence, we
have an injective map G(m) → GL(da

m) which commutes with the embedding
Ξ. The last action claims that G(0) acts on the ∧2V (0) by the coordinate
transformation, which forms a subgroup of GL(da

0).

Corollary 7.6 (of proof of Lemma 7.5). Keep the setting of Lemma 7.5. Then,
we have a natural embedding M ⊂ V1 which is compatible with the G(s)-actions
on Ξ(X2) and V1.

Proof. The assignments vi 4→ v[εi] and vi 4→ v[−εi] gives an embedding M ⊂ V1

as vector spaces. This respects the action of G(s) by the proof of Lemma 7.5.

Corollary 7.7. We have a natural Ga-action on V (s,q0)
1 ⊕V (s,q1)

1 , which factors
through G(m) × G(m′) for some pair (m, m′).
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Proof. Choose m so that V (s,q0)
1 [εi] += 0 or V (s,q0)

1 [−εi] += 0 for some i ∈ cm.

Then, we have V (s,q0)
1

∼= V (m) or V (m)∗ as G(s)-modules by the weight com-

parison. Hence, the natural action of G(s) on V (s,q0)
1 must factor through G(m).

Applying the same argument to the (s, q1)-fixed points of V1, we conclude the
result.

Lemma 7.8. Let Sp(2l, C) be a symplectic group embedded into GL(2l, C). Let
v1, v2 ∈ C2l and let P be the simultaneous stabilizer of (v1, v2) in GL(2l, C).
Then, the group Sp(2l, C) ∩ P is connected.

Proof. We put P0 := Sp(2l, C)∩P . Let ω be a symplectic form on C2m associ-
ated to Sp(2l, C). Let v⊥ be the orthogonal compliment of v with respect to ω.
The Levi subgroup of P0 is the stabilizer of

(v⊥1 ∩ v⊥2 )/((Cv1 + Cv2) ∩ (v⊥1 ∩ v⊥2 )).

This is always a symplectic vector space. Therefore, the Levi subgroup of P0 is
isomorphic to a symplectic group, which completes the proof.

For each pair γ = (I, I ′) of segments (maybe emptysets) and a Qa-submodule
N of M, we define

nγ := #{J ∈ |X | ; I = J+, I ′ = J−}, M±
γ :=

⊕

J∈|X|,I=J+,I′=J−

M±
J

Mγ := M+
γ ⊕ M−

γ , N(m) := N ∩ V (m) (m ≥ 0),

and θγ := θ(X2)|Mγ (0) (the last definition applies only if c is type II).

Lemma 7.9. We have
θ(X2) =

∑

γ

θγ ,

where γ = (I, I ′) runs over all pairs of segments.

Proof. Immediate from definition.

Definition 7.10. Assume that c is type III. For each pair γ = (I, I ′) of segments
(maybe emptysets), we define

θγ := ω|Mγ(0),

where ω is a symplectic form of V1 which defines G.

Lemma 7.11. Keep the setting of Definition 7.10. Then, we have

ω|V (0)=
∑

γ

θγ ,

where γ = (I, I ′) runs over all pairs of segments. In particular, θγ is non-
degenerate.
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Proof. We put MJ := M+
J ⊕ M−

J for each J ∈ |X |. The decomposition M =
⊕J∈|X|MJ is T -stable. Since c is type III, we have εi ∈ Ψ(MJ(0)) if and only if
−εi ∈ Ψ(MJ(0)). Hence, we have

ω(MJ(0), MJ′(0)) ≡ 0

unless J = J ′. This yields the first equality. By construction, we can identify
V (0) with a subspace of V1 with its T -weights {±εi}i∈ec(0). It follows that ω|V (0)

is non-degenerate as desired.

Corollary 7.12. The group G(s) is the subgroup of Ga which respects ω|V (0).

Proof. The inclusion ⊂ is trivial. The inclusion ⊃ is (4.1).

Proposition 7.13. Assume that X1 = 0. The subgroup L of Ga which pre-
serves each Mγ (as Qa-representations) and θγ contains a Levi subgroup of the
stabilizer of X2 in G(s).

Proof. The group Ga(Ξ(X2)) is equal to the group of automorphism of M as
Qa-representations. Hence, L fixes Ξ(X2). By a standard quiver theory (cf.
Crawley-Boevey [CB92], p12), it is a semi-direct product of general linear groups
and an unipotent subgroup of Ga. Moreover, the size of general linear groups
are equal to the multiplicity of an indecomposable module appearing in M. If c
is type I, then Mγ += 0 only if γ = (I, ∅) for some segment I. Since Ga

∼= G(s)
if c is type I, we conclude the result in this case. Assume that c is type II or II
I. By Corollary 7.12, we have L ⊂ G(s). By Lemma 7.9 and 7.11, the group L
fixes X2. By construction, θγ is zero or non-degenerate for each γ.

We put L′ be a Levi subgroup of L. Let L′′ be a Levi subgroup of the
stabilizer of X2 in G(s) which contains L′. Write g ∈ AutQa(M) as

g = {gγ,γ′}γ,γ′ = {gσ,σ′

γ,γ′}σ,σ′

γ,γ′ , where σ, σ′ ∈ {±}, and

gγ,γ′ =
⊕

σ,σ′∈{±}

gσ,σ′

γ,γ′ ∈
⊕

σ,σ′∈{±}

HomQa(Mσ
γ , Mσ′

γ′ ) = HomQa(Mγ , Mγ′)

for every pair of segments γ, γ′. It is easy to see that θγ gives a non-degenerate
pairing between M+

γ (0) and M−
γ (0) if M−

γ += {0}. It follows that respecting
two-forms θ(X2) (c is type II) or ω|V (0) (c is type III) gives rise to the constraint

gσ,σ′

γ,γ′ += 0 ⇔ (g−1)−σ
′,−σ

γ′,γ += 0 if (♦) : g ∈ L′′, M−
γ += {0} and M−

γ′ += {0}.

Claim C. Assume (♦). We put γ = (I, I ′) and γ′ = (K, K ′). Then, we have
gγ,γ′ += 0 only if

I ≥ K, I ′ ≤ K ′, or I ≤ K, I ′ ≥ K ′.

Proof of Claim C. Since g respects two-forms, we have gσ,σ′

γ,γ′ += 0 only if

HomQa(Mσ
γ , Mσ′

γ′ ) += {0} and HomQa(M−σ′

γ′ , M−σ
γ ) += {0}.

By a quiver-theoretic consideration, we have

HomQa(Mσ
J , Mσ′

J′) += {0} (J, J ′ ∈ |X | , σ, σ′ ∈ {±})

only if Jσ ≤ J ′σ′ . Rewriting this by Mγ yields the result.
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We return to the proof of Proposition 7.13. Consider the map

fss : AutQa(M) −→ AutQa(M)/U(M),

where U(M) be the unipotent radical of AutQa(M). Since L′′ injects to the RHS,
we can rearrange L′′ if necessary to sit in a splitting of fss. In particular, we

can assume gσ,σ′

γ,γ′ = 0 holds for every g ∈ L′′ unless at least one of

Mσ
γ
∼= Mσ′

γ′ , or M−σ
γ

∼= M−σ′

γ′ (as Qa-representations)

holds. It follows that γ += γ′ implies that each g ∈ L′′ satisfies gσ,σ′

γ,γ′ = 0 or

gσ
′,σ

γ′,γ = 0 for all possible choices of σ, σ′. Since L′′ is reductive, we can further
rearrange L′′ if necessary to assume gγ,γ′ = 0 (g ∈ L′′) unless γ += γ′. Therefore,
L′′ preserves each Mγ . This forces L′ = L′′ as desired.

For an admissible parameter ν0 = (s0, *q, X0), we define G(ν0) to be the
simultaneous stabilizer of (s0, X0) in G. Let C(ν0) be the component group of
G(ν0).

Theorem 7.14. We have C(ν0) = {1} for every admissible parameter ν0.

Proof. The assertion is unchanged by the conjugation action of G. Take G-
conjugate to assume that ν0 is a standard parameter. By Lemma 3.5, we have
only to verify the case that ν0 has a unique clan. Hence, we further assume
that ν0 = ν. Let Ga(X2) be the stabilizer of Ξ(X2) in Ga. Since Ga(X2) is the
group of Qa-automorphisms of M, we deduce its connectivity. Let Ga(X1) be
the stabilizer of X1 in Ga. The group Ga(X1) is realized as the pullback of a
linearly defined subgroup of the RHS of the natural map

f : Ga =
∏

m≥0

GL(da
m) −→ GL(V (m1)) × GL(V (m2)), (7.1)

where m1 += m2 are some integers given by Corollary 7.7. (If they do not ex-
ist, then we set GL(V (mk)) = {1}.) Denote the RHS of (7.1) by H . The
Ga-stabilizer Ga(X) of X1 ⊕ Ξ(X2) is given as Ga(X1) ∩ Ga(X2). By a stan-
dard quiver theory, Ga(X2) is a linearly defined subgroup of Ga. In particular,
f(Ga(X2)) is the common zeros of linear functions on H . Hence, the image
of Ga(X1) ∩ Ga(X2) in H is connected. Therefore, we conclude that Ga(X) is
connected. Since Ga

∼= G(s) if c is type I, we conclude the result in this case.
Assume that c is type II or III. Let Gθ

a(X2) be the Ga-stabilizer of Ξ(X2) which
respects

∑
γ θγ . By Corollary 7.12, we have Gθ

a(X2) ⊂ G(s). By Proposition

7.13, a Levi subgroup L of Gθ
a(X2) is contained in the simultaneous stabilizer

of Mγ and θγ for every possible pairs of segments γ. It suffices to prove that
the stabilizer of X1 in L is connected. We have an inclusion

L ↪→
∏

γ

AutQaMγ ↪→
∏

m≥0

∏

γ

GL(Mγ(m)) ⊂ Ga.

If γ = (I, ∅) for some segment I, then Mγ(m) is contained in the direct sum
of Qa-modules M+

J such that γ = (J, ∅). It follows that θγ = 0. Hence, the
action of L on Mγ gives a direct factor of L isomorphic to GL(nγ). If γ = (I, I ′)
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for some two non-empty segments I, I ′, then the condition Mγ += {0} forces
0 ∈ I ∩ I ′ by definition. The action of AutQaMγ on Mγ factors through

GL(Mγ(0)) ∼= GL(2nγ) ⊂ GL(da
0).

We have two cases:

(M+
J
∼= M−

J as Qa-representation) The action of GL(Mγ(0)) preserves θγ if and
only if it respects a non-degenerate alternating form. It follows that the L-action
on Mγ gives its direct factor isomorphic to Sp(2nγ).

(otherwise) Since M+
J +∼= M−

J , the group AutQaMγ is a parabolic subgroup of
GL(Mγ(0)) with its Levi component GL(nγ) × GL(nγ). Since respecting θγ
reduces AutQaMγ to a subgroup of Sp(2nγ), we deduce that the L-action on
Mγ gives its direct factor isomorphic to GL(nγ).

It follows that L is a product of general linear groups and symplectic groups.
Applying Lemma 7.8, we conclude the result.

8 Main Theorems

We retain the setting of §2.

Theorem 8.1 (A Deligne-Langlands type classification). Let a ∈ G be a fi-
nite element. Then, the set Λa is in one-to-one correspondence with the set of
isomorphism classes of simple Ha-modules.

Proof. The definition of regular parameters asserts that we have at least one
simple module corresponding to each element of Λa. Each irreducible direct
summand of (µa

+)∗CFa

+
is the minimal extension of a local system (up to degree

shift) from some smooth G(a)-stable locally closed subvariety Õ of Na
+ which

contains a dense open G(a)-orbit O. (cf. §1.3) By Theorem 7.14, a G(a)-
equivariant local system on O is a constant sheaf. Since Õ\O is real codimension
two in Õ, we deduce that the natural map π1(O, ∗) → π1(Õ, ∗) is surjective. In
particular, every G(a)-equivariant local system on Õ is constant. As a result,
every G-conjugacy class of regular admissible parameter of the form (a, X)
corresponds to at most one irreducible module as desired.

In order to give more effective versions of Theorem 8.1, we need

Lemma 8.2. Let a = (s, q0, q1, q2) ∈ G be a pre-admissible element. If q0q
±1
1 +=

q±m
2 holds for every 0 ≤ m < n, then a is finite.

Proof. By taking G-conjugate, we can assume a ∈ T without the loss of gen-
erality. The number of standard parameters of type (a, X) (X is a 1-normal
form) are finite (up to T -action). By Theorem 1.10, there are infinitely many
G(a)-orbits in Na

+ only if there exists a standard parameter ν′ = (a, X ′) which
satisfies (') such that X ′ is not G(s)-conjugate to a 1-normal form. Here we
have

X1 ∈ V (s,q0)
1 + V (s,q1)

1 ⊂ V1.

By the definition of 0-normal forms and Corollary 5.9, it suffices to prove that

V (s,qi)
1 [σεj ] += {0} (i ∈ {0, 1}, σ ∈ {±}, and j ∈ cm)
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holds for a unique choice of i, m. This is equivalent to the case that the s-
eigenvalues of V1 does not contain both of q0 and q1. This follows from q0q

±1
1 +=

q±m
2 (0 ≤ m < n). Hence, all !-normal forms X ′ ∈ Na

+ are G(s)-conjugate to
1-normal forms as desired.

Corollary 8.3. A general element of G is finite. !

As in Remark 2.2, the quotient H/(q0 + q1) is isomorphic to an extended

Hecke algebra HB of type B(1)
n with two parameters. Combined with Lemma

8.2, we have

Corollary 8.4 (Type B case). Let a = (s, q0,−q0, q2) ∈ G be a pre-admissible
element such that −q2

0 += q±m
2 holds for every 0 ≤ m < n. Then, the set Λa

is in one-to-one correspondence with the set of isomorphism classes of simple
Ha-modules. !

Corollary 8.5 (General case). Let a = (s, *q) ∈ G be a general element. Then,
the set of G(s)-orbits in Na

+ is in one-to-one correspondence with the set of
isomorphism classes of simple Ha-modules.

Proof. Assuming Theorem 8.1, the assertion is an immediate consequence of
Corollary 8.3 and Corollary 6.3.

Remark 8.6. The Dynkin diagram of type C(1)
n is written as:

0 1 2 n − 2 n − 1 n
◦ > ◦ ◦ ······ ◦ ◦ < ◦

This Dynkin diagram has a unique non-trivial involution ϕ. We define
t0, t1, tn to be

t21 = q2, t
2
n = −q0q1, tn(t0 − t−1

0 ) = q0 + q1 (cf. Remark 2.2 1)).

Let T0, . . . , Tn be the Iwahori-Matsumoto generators of H (cf. [Mc03, Lu03]).
Their Hecke relations read

(T0 + 1)(T0 − t20) = (Ti + 1)(Ti − t21) = (Tn + 1)(Tn − t2n) = 0,

where 1 ≤ i < n. The natural map ϕ(Ti) = Tn−i (0 ≤ i ≤ n) extends to an alge-

bra map ϕ : H → H′, where H′ is the Hecke algebra of type C(1)
n with parameters

tn, t1, t0. We have tn = ±
√
−q0q1 and t0 = ±

√
−q0/q1 or ±

√
−q1/q0. In par-

ticular, ϕ changes the parameters as (q0, q1, q2) 4→ (q0, q
−1
1 , q2) or (q−1

0 , q1, q2).
Therefore, the representation theory of Ha is unchanged if we replace q0 with
q−1
0 , or q1 with q−1

1 .

9 Consequences

In this section, we present some of the consequences of our results. We retain
the setting of the previous section. For an admissible parameter ν = (a, X), we
define

F (ν) := (µa
+)−1(X) ⊂ F.

By means of the isomorphism F a
+
∼= F a

2 (cf. 2.12), we may regard F (ν) ⊂ F2.
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Definition 9.1 (Standard modules). Let ν = (a, X) be an admissible parame-
ter. We define

Mν := H•(F (ν), C) and Mν := H•(F (ν), C).

By the Ginzburg theory [CG97] 8.6, each of Mν or Mν is H-module. Let ν′ =
(a, X ′) be a regular admissible parameter. Let Lν′ be the corresponding simple
module of H. Let IC(ν′) be the corresponding G(a)-equivariant simple perverse
sheaf on Na

+. (cf. §1.3) We denote by Pν′ the projective cover of Lν′ as Ha-
modules. (It exists since Ha is finite dimensional.)

Applying [CG97] 8.6.23 to our situation, we obtain:

Theorem 9.2 (The multiplicity formula of standard modules). Let ν = (a, X),
ν′ = (a, X ′) be regular admissible parameters. We have:

[Mν : Lν′ ] =
∑

k

dimHk(i!XIC(ν′)) and [Mν : Lν′ ] =
∑

k

dim Hk(i∗XIC(ν′)),

where iX : {X} ↪→ Na
+ is an inclusion. !

The following result is a variant of the Lusztig-Ginzburg character formula
of standard modules in our setting.

Theorem 9.3 (The character formula of standard modules). Let ν = (s, *q, X)
be an admissible parameter. Let Bν be the set of connected components of F (ν).
For each B ∈ Bν , we define a linear form 〈•, s〉B as a composition map

〈•, s〉B : R(T )
∼= ## R(gBg−1)

evs ## C

R+
!

"

$$

## {weights of gBg−1}
!

"

$$

by some g ∈ G such that gB ∈ B. Then, 〈•, s〉B is independent of the choice of
g and the restriction of Mν to R(T ) is given as

Tr(eλ; Mν) :=
∑

B∈Bν

〈λ, s〉B
∑

j≥0

dimHj(B, C).

Proof. Taking account into Theorem 7.14, the proof is exactly the same as in
[CG97] §8.2.

In order to provide a standard form of the above character formula and to
apply a general theory on projective modules, we need the following analogue
of the De Concini-Lusztig-Procesi version of the Spaltenstein-Shoji’s vanishing
theorem [Sp82, Sh83]:

Theorem 9.4. Let ν = (s, *q, X1 ⊕ X2) be an admissible parameter such that *q
is general. Then, we have Hodd(F (ν), Z) = 0.

Proof. Postponed to §10.

Let A be a H-module and let L be a simple H-module. We denote by [A : L]
the multiplicity of L in A.
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Definition 9.5. Let a = (s, *q) ∈ T be a general element. We form three
|Λa| × |Λa|-matrices

[P : L]aν,ν′ := [Pν , Lν′ ], Da
ν,ν′ := δν,ν′χc(ν), and ICa

ν,ν′ := [Mν , Lν′ ],

where χc(ν) :=
∑

i≥0(−1)i dimHi(G(a)X, C) (ν = (a, X)).

The following result is a special case of the Ginzburg theory [CG97] Theorem
8.7.5 applied to our particular setting:

Theorem 9.6 (The multiplicity formula of projective modules). Keep the set-
ting of Definition 9.5. We have

[P : L]a = ICa · D · tICa,

where t denotes the transposition of matrices. !

Remark 9.7 (Relation with canonical bases of quantum groups). Assume the
setting of §7. Let ν = (a, X) = (s, *q, X) be a standard parameter of type I. Let
Qa be the quiver attached to a. We define a quiver Qa

+ by adding new vertexes
and arrows to Qa as follows:

• A vertex i and an arrow i → i if Va[εk] += 0 for some k ∈ ci;

• A vertex i and an arrow i → i if Va[−εk] += 0 for some k ∈ ci.

We define da
+ to be the dimension vector of Qa

+ obtained from da by adding 1’s
to all vertexes of Qa

+\Qa. Then, we have a natural isomorphism

Na
+
∼= Rep(Qa

+,da
+)

extending that of Construction 7.1. We further assume that Qa
+ is of finite or

affine type. This assumption includes all affine quivers of type ADE except for

A(1)
! . In this case, the variety Rep(Qa

+,da
+) has only finitely many orbit. By

Theorem 8.1, each simple module of Ha determines a G(a)-orbit of Na
+.

Let U+
v be the plus part of the corresponding quantized enveloping algebra.

Then, the coefficients of Theorem 9.2 are identified with the coefficients of the
PBW bases of U+

v in terms of the canonical bases specialized to 1. (For more
details, consult Lusztig [Lu90] and Ariki [Ar96].)

10 Proof of Theorem 9.4

In this section, we recall several key definitions and results of [DLP88] and apply
them to prove Theorem 9.4.

Definition 10.1 (α-partitions). A partition of a variety X over C is said to be
an α-partition if it is indexed as X1,X2, . . .Xk in such a way that X1 ∪ . . . ∪ Xi

is closed for every i = 1, . . . , k.

The following is a slight modification of the condition (S) in [DLP88] 1.7:

Definition 10.2 (Condition (S′)). A variety X is said to satisfy condition (S′)
if there exists an α-partition {Xi}i of X such that each Xi satisfy the condition
(S′). We declare that the following varieties satisfy the condition (S′):
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1. A smooth projective variety with Gm-action with finite fixed points;

2. A vector bundle over a variety with (S′);

3. A smooth deformation of a smooth projective variety with (S′).

Theorem 10.3 (Bialynichi-Birula cf. [DLP88] 1.2). A smooth projective variety
X with Gm-action satisfies (S′) if XGm satisfies (S′).

Using the arguments of [DLP88] 1.7–1.10 and Theorem 10.3, it is straight-
forward to see that a variety with (S′) satisfies the homological property (the
first condition) of the condition (S). In particular, we have:

Theorem 10.4 ([DLP88] 1.7–1.10). For a veriety X with (S′), we have Hodd(X , Z) =
0.

Theorem 10.5 ([DLP88] 1.5). Let π : E → X be a vector bundle over a smooth
variety X , with a fiber preserving linear C×-action on E with strictly positive
weights. Let Z ⊂ E be a C×-stable smooth closed subvariety. Then, π(Z) is
smooth and Z is a subbundle of E restricted to π(Z).

The rest of this section is devoted to the proof of Theorem 9.4. In the
below, we first assume the setting of §9 and assume more notation from previous
sections as indicated.

Let Y ∈ Na
+. Then, ν′ := (a, Y ) is an admissible parameter. We put

B := (G/B)s. It is isomorphic to a disjoint union of copies of G(s)/B(s) as
G(s)-varieties. Let BY denote the projection of F (ν′) to B. (It is clear that
F (ν′) ∼= BY .)

By the argument in §3 (cf. (3.3) and Corollary 3.10), F (ν) is isomorphic to
a disjoint union of

∏
c∈I(a)(

wµa
c)−1(Xc) for w ∈ Wa. Therefore, it is enough to

show Hodd((wµa
c)−1(Xc)), Z) = 0 for each w ∈ Wa and c ∈ I(a). In particular,

we can assume that c is the unique clan associated to a. Since *q is general, we
deduce that the assumption of Proposition 6.1 or Proposition 6.2 holds by the
proof of Corollary 6.3. In particular, we can assume that

• ν is a standard parameter which satisfies (');

• We have a height function h adapted to ν.

Proposition 10.6 (cf. Proposition 5.2). The space P hX ⊂ Va is a linear
subspace.

We return to the proof of Theorem 9.4.
We assume Y ∈ P hX and shY = Y in the below. Let O be a P h-orbit

of B. Since B is a union of finitely many P h-orbits, BY =
⊔

O(O ∩ BY ) is an
α-partition. Thus, BY satisfies (S′) if (O ∩ BY ) satisfies (S′) for each O.

We define

E(Y ) := {(gB, Z) ∈ B × P hY , Z ∈ Va ∩ gV+}.

The second projection p̆2 : E(Y ) 2 (gB, Z) 4→ Z ∈ P hX is P h-equivariant. It
is clear that p̆−1

2 (Y ) ∼= BY .
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Proposition 10.7. Assume that the locally closed subset

(P hY ∩ gV+) ∩ G(s)Y ⊂ V

is smooth for every gB ∈ B. Then, (O ∩ BY ) is smooth for each P h-orbit O.

Proof. We define a P h-stable subvariety of E(Y ) as:

EO(Y ) := {(gB, Z) ∈ E(Y ), gB ∈ O, Z ∈ G(s)Y }.

Since p̆2 is a P h-equivariant fibration over P hY , the fiber (p̆−1
2 (Y ) ∩ EO(Y )) is

smooth if EO(Y ) is smooth. Here EO(Y ) is an open subset of a smooth fibration
over O. Thus, EO(Y ) must be smooth. As a result, we deduce that (O ∩ BY )
is smooth.

Corollary 10.8. Keep the setting of Proposition 10.7. The variety Bsh

Y is
smooth projective. !

Proof. The variety Osh is isomorphic to the flag variety of Lh. Since BY is
closed, the intersection (Osh ∩ BY ) = (O ∩ Bsh

Y ) is projective. The smoothness
follows by Proposition 10.7.

Corollary 10.9. The varieties Bsh

X and (O∩BX) are smooth for each P h-orbit
O of B. !

Proof. Since P hX is a linear subspace of V, we deduce that P hX ∩ gV+ is a
linear subspace of V. Hence, its open subset is smooth.

We return to the proof of Theorem 9.4.
For a P h-orbit O in B, we have a vector bundle O → Osh whose fiber is given

as the Uh-translate. This vector bundle satisfies the first condition of Theorem
10.5 by using some one-parameter subgroup which contains sh and fixes X . It
follows that we have a vector bundle structure

O ∩ BX → (O ∩ BX)sh .

Therefore, BX satisfies (S′) if each connected component of Bsh

X satisfies
(S′).

Let T0 be the maximal torus of the stabilizer of X in G(a) which contains
sh. We have T0 ⊂ P h × (C×)3. Each BX ∩O is T0-stable. By Theorem 10.3, it
suffices to show that each connected component of BT0

X ∩ O satisfies (S′).
For a 1-block v, we have

dimStabT v =

{
dim T − #‖v‖ + 1 (v is a 0-block)

dim T − #‖v‖ (otherwise)
.

It follows that we can choose T0 so that the ZG(s)(T0)-action separates the sup-
ports of 0-blocks appearing in X . Hence, we can concentrate into the cases where
1) X has a unique block, or 2) X is a sum of blocks and TX1 = ⊕i∈‖X‖V

a
1 [εi].

Since *q is general, genuine 1-blocks can appear only if c is type I (cf. Proof of
Corollary 6.3). Thus, the case 2) occurs only if c is type I.

In these cases, the group ZG(s)(T0) is always a product of tori and groups of
type Am. (The latter occurs only if 2) holds.) In the first case, every connected
component of BT0

X is a point, which satisfies (S′).
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Proposition 10.10. Assume that ZG(s)(T0) contains type Am-factor. Then,

the variety BT0
X satisfies (S′).

Proof. We prove the assertion by the induction on # |X |. The case # |X | ≤ 1
is covered by the case 1). We assume the assertion for |X | < l. We prove the
case |X | = l.

Let G0 := ZG(s)(T0) ⊂ P h. Let B0 := ZG(s)(T0) ∩ B. We put V := (Va)T0 .
We write X2 =

∑
J∈|X| vJ . By Corollary 5.9, we rearrange X if necessary to

assume J ! J ′ or J ′ ! J for each J += J ′ ∈ |X |. It follows that StabG0X2 is a
torus T1 of rank l. Let J0 be the maximal element of |X | with respect to the
inclusion relations of J . We put

Y =
∑

J0 -=J∈|X|

v[εJm ] ⊕ X2 ∈ P hX,

where Jm ∈ J is the unique member such that v[εJm ] ∈ TX1. We have shY = Y .
We put G := expCεJ0

m
. We identify V with a representation space of a type

A-quiver with one extra vertex as in Remark 9.7. It follows that G0X is dense
in V and the G0Y is codimension one in V .

For each w ∈ W , we define a map

φw : G0 ×
wB0 (V ∩ ẇV+) → V.

It suffices to prove that φ−1
w (X) satisfies (S′) for each w ∈ W . Each fiber of φw

is projective. By Corollary 10.9, we know that φ−1
w (X) is smooth.

By the semi-continuity of the dimensions of fibers, we have dimφ−1
w (X) =

dimφ−1
w (Y ). The variety φ−1

w (G0X) is reduced. It follows that φ−1
w (GX) is

reduced. By Hartshorne [Ha77] II 9.7, we deduce that φ−1
w (GX) gives a flat

family over A1 with its general fiber isomorphic to φ−1
w (X) and its special fiber

isomorphic to φ−1
w (Y ).

We have Y ∈ GX ⊂ V . Let V → V ∩ V2 be the projection, which we
regard as a vector bundle V . By construction, G0Y is a vector subbundle of
V of corank one. Therefore, we deduce that G0Y ∩ gẇV+ is smooth for each
g ∈ G0. By Proposition 10.7, we conclude that φ−1

w (Y ) is smooth. Since each
fiber is smooth, φ−1

w (GX) is a smooth family over A1.
The set of G-fixed points of φ−1

w (Y ) satisfies (S′) by the induction assump-
tion. It follows that φ−1

w (Y ) satisfies (S′). This implies that φ−1
w (X) itself

satisfies (S′). Thus, the induction proceeds and we conclude the result.

We return to the proof of Theorem 9.4.
By Theorem 10.3, we conclude that BX itself satisfies (S′). Therefore, The-

orem 10.4 implies the result.

A Proofs of geometric results on N

In this appendix, we prove three geometric assertions whose proofs are not given
in the main body of this paper. We retain the setting of §1.1 and §1.2.

The following proof of Theorem 1.2 is suggested by referees of a previous
version of this paper. The author wishes to thank the referees for these kind
information.
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Proof of Theorem 1.2. 1) is a direct consequence of Dadok-Kac [DK85] Table 1.
1) implies that N is a product of V1 and the Hilbert null-cone (cf. Popov [Po04])
of V2. Since the latter is normal by a result of Kostant-Rallis [KR71], 2) follows.
3) is a corollary of Theorem 1.9, which we postpone to §1.2. (Its proof is given
in the below.) 4) is a direct consequence of the weight distribution of V+ and
the Hesselink theory (cf. [Po04] Theorem 1). 5) is an immediate consequence

of 2), 4), and the Zariski main theorem. (cf. [CG97] 3.3.26) We show 6). Let Ô
be the inverse image of a G-orbit G.X = O ⊂ N under the map µ ◦ p2. Then,
we have

dim O + 2 dimµ−1(X) ≤ dim Ô.

The dimension of the RHS is less than or equal to dimF , which is the (constant)
dimension of irreducible components of Z. In particular, we have

dim O + 2 dimµ−1(X) ≤ dim N = dim F,

which implies that µ is semi-small.

For each p ∈ [1, n], we define elements (−)p, ẇp ∈ NG(T ) as lifts of elements
of W given by

(−)pεi =

{
εi (p += i),

−εp (p = i)
and ẇpεi =

{
εi (i ≤ p)

−εn+p+1−i (i > p)
.

Let G0 ⊂ G be the subgroup generated by T and the unipotent one-parameter
subgroups of G corresponding to the roots ±α1, . . . ,±αn−1. (G0

∼= GL(n, C))
We have a natural decomposition

V1 = V +
1 ⊕ V −1 , V2 = V ,

2 ⊕ V 0
2 ⊕ V -

2

as G0-modules, where V ±
1 =

⊕
i V1[±εi], V -

2 =
⊕

i<j V2[εi + εj], and V ,
2 =⊕

i<j V2[−(εi + εj)]. Let ui,j be a non-zero element of the unipotent one-
parameter subgroup of G with its weight εi + εj.

Proof of Theorem 1.10. We start by assuming s ∈ T and X ∈ V1⊕V +
2 by the G-

action (cf. Lemma 3.5 and 4.8). Let X2 = X0
2 +X-

2 ∈ V 0
2 ⊕V -

2 be the isotypical
decomposition. We may regard X0

2 as an element of gln via the embedding
V 0

2
∼= sln ⊂ gln. We put dX := #(‖X2‖\‖X0

2‖). We define nX as an integer
such that (X0

2 )nX += 0 and (X0
2 )nX+1 = 0. We define rX as the rank of X0

2 .
(Since X0

2 does not naturally act on some space, the definition of rX and nX

might look strange. But we only use them as invariants under the G0-action,
which make sense in this setting.) We divide the proof into five steps:

(Step 1) By means of G0(s)-action and the NG0(T )-action, we can assume that
s ∈ T and X0

2 is a Jordan normal form of gln. I.e.

X2(εi − εj) += 0 only if j = i + 1.

(Step 2) Assume that dX > 0. We choose j ∈ ‖X2‖\‖X0
2‖. By multiplying ẇ ∈

NG0(T ) appropriately, we assume that ẇX2 ∈ V +
2 , ẇX0

2 is still a Jordan normal
form, and ẇεj = εn. We have ẇX(εi + εn) += 0 for some i. If i ∈ ‖X2‖\‖X0

2‖,
then (−)nẇX2 ∈ V +

2 and r(−)nẇX > rX . Assume that i ∈ ‖X0
2‖. We have

uc
i+1,jX(εi + εj) = 0 for some c ∈ C if X(εi − εi+1) += 0. Thus, we can assume
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X(εi − εi+1) = 0. Here (−)nẇX2 ∈ V +
2 and we have r(−)nẇX > rX . We replace

X with (−)nẇX and again apply the procedure of (Step 1). We can do this
operation only finitely many times since rX ≤ n. As a consequence, we can
assume that ‖X2‖ = ‖X0

2‖.
(Step 3) The action of ui,j is trivial on X-

2. Moreover, we have [ui,j, ui′,j′ ] = 1.
We have

ui,jX
0
2 = X0

2 + c1
i,jv[εi−1 + εj ] + c2

i,jv[εi + εj−1]

for some constants ck
i,j (k = 1, 2). Moreover, we have c1

i.j = c2
i,j = 0 only if

X(εi−1 − εi) = X(εj−1 − εj) = 0.

It follows that we can rearrange X by an appropriate product

u =
∏

bi,j∈C

u
bi,j

i,j ∈ G(s) (bi,j ∈ C),

so that uX2 = X0
2 + Ẋ-

2 satisfies

Ẋ-
2(εi + εj) = 0

if X(εp − εp+1) += 0 (i ≤ p ≤ j − 1) holds. We replace X with uX . Notice
that this operation is consistent with the operations in (Step 1) and (Step 2).
Therefore, the repeated use of procedures in (Step 1)–(Step 3) terminates.

(Step 4) We can assume

X0
2 =

n−1∑

i=0

v(µi)i, ‖X-
2‖ ⊂ ‖X0

2‖, and X-(εp + εq) = 0 (if p, q ∈ ‖v(µi)i‖)

for an appropriate choice of µi ∈ Z≥0. Rearranging X2 by the action of NG0(T ),
we can assume µ0 ≥ µi for every i. If X(εi + εj) = 0 for every i ∈ [1, µ0] and
j +∈ [1, µ0], then we forget v(µ0)0 and restrict our attention to X2−v(µ0)0 under
the action of Sp(2(n−µ0)). Repeating this procedure, we deduce either X0

2 = X2

or X(εi + εj) += 0 for some i ∈ [1, µ0] and j +∈ [1, µ0]. By rearranging X by the
action of NG0(T ), we assume that j ∈ [p + 1, n], where µp = n − p. By means
of ui,j-action (i ∈ [1, µ0] and j ∈ [p + 1, n]), we can rearrange X if necessary
to assume X(εi + εj) = 0 for i += µ0. Then, we have (−)p+1 · · · (−)nẇpX ∈
V1 ⊕ V +

2 and n(−)p+1···(−)nẇpX > nX . Since we have nX ≤ n, a repeated use of
this operation terminates. Repeating this procedure and that of (Step 1), we
conclude that (s, X) is expressed as the form

s ∈ T, X1 ∈ V1 and X0
2 = X2 =

n−1∑

i=0

v(µ′i)i (A.1)

up to G-conjugation.

(Step 5) By the description of (Step 4), it suffices to consider the case X2 = v(n)0
or ∅. (Since here we consider all n.) In this setting, X is at worst 2n-normal
form, which implies the result.

By forgetting the semisimple element s in the proof of Theorem 1.10 at steps
1–4, we re-prove a result of Sekiguchi [Se84]:
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Theorem A.1 (Sekiguchi cf. [Oh86] Proposition 1). The following assignment
gives a one-to-one correspondence between the set of partitions of n and the set
of G-orbits in N0:

λ = (λ1 ≥ λ2 ≥ . . .) 4→ [G(
∑

i≥1

v(λi)λ≤
i
)] ∈ G\N0,

where λ≤i =
∑

j≤i λi.

Proof of Theorem 1.9. By Theorem A.1, it suffices to prove that X1 ⊕ v(n)0
is G-conjugate to a 1-normal form for every n and X1 ∈ V1. By a weight
consideration, there exists elements ci,j ∈ C such that

g1 := u1,1, g2 := u1,2, g3 := u1,3u
c2,2

2,2 , g4 := u1,4u
c2,3

2,3 , g5 := u1,5u
c2,4

2,4 u
c3,3

3,3 , . . . , gn

fixes v(n)0. Let X1 = X+
1 ⊕ X−

1 ∈ V +
1 ⊕ V −1 be the direct decomposition.

We have gpX
+
1 = X+

1 for each p ∈ [1, n]. The stabilizer U of v(n)0 in SL(n)
is a (n − 1)-dimensional unipotent subgroup of SL(n). By means of U -action,
we assume that X1(−εp) += 0 holds for a unique p ∈ [1, n]. By rearranging
X by (−)1 · · · (−)nẇ0

0 if necessary before the U -conjugation, we further assume
X1(εn−q) = 0 for q ≤ p. Thus, we can choose appropriate cn, cn−1, . . . , cp to
obtain

gcn
n gcn−1

n−1 · · · gcp
p X1(εn−q) = 0

for each 1 ≤ q ≤ n. Therefore, we obtain

(−)1 · · · (−)nẇ0
0g

cn
n gcn−1

n−1 · · · gcp
p X = v[εn−p] + v(n)0

as desired.

Index of notation
(Sorted by the order of appearance)

G, B, T, G(s), Uα §1

R, R+, E, εi, αi §1

W, ẇ ∈ NG(T ), si, ! §1

wH := ẇHẇ−1 §1

g, t, g(s), uα §1

V [λ], V +,Ψ(V ) §1

H•(X ), H•(X , Z) §1

V1 = Cn, V2 = ∧2V1 §1.1

V!: !-exotic rep. §1.1

F!, µ!, N! §1.1

F, µ, N, . . . §1.1

G!, Z!, pi, π! §1.1

Ca §1.1

pw ∈ Ow §1.1

/, ◦ §1.1

X(λ), v[λ] (λ -= 0) §1.2

‖X‖: total support §1.2

v
(,σ(m)i: !-block §1.2

v: !-normal form §1.2

|v|: support §1.2

a: pre-admissible §1.2

a: finite, general §1.2

ν: admissible param. §1.2

ν ∈ Pa §1.2

ν: standard param. §1.2

T!, Fa

! , νa

! , Na

! , . . . §1.3

G = G2, T = T2,A, . . . §2

H: Hecke algebra §2

Ti, eλ ∈ H §2

Z≤w , Oi, eTi, . . . §2

Ha, Fa

+, µa

+, Na

+, . . . §2

λ =
P

λiεi §3

Γ0 ⊂ Γ §3

c: a clan of a §3

nc: size of c §3

g(s)c, G(s)c §3

Va, Va

c
, Fa

+, Fa

+(w) §3

ν: regular param. §3

wµa

c
,Λa §3

Gc, V(c), Xc, . . . §3

cm, c(ξ), ec(ξ) ⊂ c §4

c: type I, II, III §4
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Jm, J (J ⊂ [1, n]) §4

J± (J ∈ |X|) §4

J (ν) §4

m(J), αJ,J′ , vJ §4

Condition (/) §4

g(m), G(m) §4

d
a = {da

m}m §4 & §7

h: height function §4

sh, P h, Vh, Vh, . . . §4

ph
J,J′ , Vh

J,J′ , . . . §5

I ≤ I′, I 5 I′, . . . §5

ξl = ξJ,J′

l , vJ,J′

l §5

Qa: quiver of a §7

V (m),Ξ §7

θ, Ga §7

M, M±
J §7

nγ , M±
γ , θγ , ω §7

G(ν0), C(ν0) §7

F (ν) ⊂ F §9

Mν , Mν : H-modules §9

[M : L], Bν §9

[P : L], D, IC §9

Qa

+: ext’d quiver §9

Condition (S′) §10
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