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Abstract

Let G = Sp(2n) be the symplectic group over Z. We present a certain
kind of deformation of the nilpotent cone of G with G-action. This enables
us to make direct links between the Springer correspondence of sp,,, over
C, that over characteristic two, and our exotic Springer correspondence.
As a by-product, we obtain a complete description of our exotic Springer
correspondence.

Introduction

Let G = Sp(2n) be the symplectic group over Z. Let k be an algebraically closed
field. Let g be the Lie algebra of G defined over Z. Let A/ denote the subscheme
of nilpotent elements of g. Let Gy, gi, and N denote the specializations of G,
g, and NV to k.

Springer [Spr76] defines a correspondence between the set of Gg-orbits in
Nk and a certain set of Weyl group representations (with a basis) when chark
is good (ie. not equal to 2). This correspondence, together with the so-called
“A-group data”, lifts to a one-to-one correspondence.

This story is later deepen in two ways. One is Lusztig’s generalized Springer
correspondence [Lus84], which serves as a basis of his theories on Chevalley
groups. The other is Joseph’s realization [Jos83], which serves a model of the
structure of the primitive spectrum of the enveloping algebra of gc.

In our previous papers [K06a, KO6b], we found that a certain Hilbert nilcone
N gives a variant of one aspect of the above mentioned Lusztig’s theory (cf.
[KL87] and [Lus88]). Quite unexpectedly, our correspondence gives a one-to-
one correspondence without the “A-group data”, which is needed in the original
Springer correspondence for Weyl groups of type C. Therefore, it seems natural
to seek some meaning of M.

The main theme of this paper is to give one explanation of 9. Roughly
speaking, our conclusion is that 91 is a model of N, over Z, which is “better”
than A in a certain sense.

*This paper cannot be re-submitted until the acceptance of my previous paper
math.RT /0607478, for which I might merge into the next revision of math.RT0601155. In
this sense, the current paper is something like “pre-preprint”. Any comment is welcome.
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To see what we mean by this, we need a more precise formulation: Let T" be
a maximal torus of G. We define the Weyl group of (G,T') as W := Ng(T')/T.
We denote the set of irreducible representations of W by WV. Let V; be the
vector representation. Put V3 := A%2V;. We denote V1 @ Vo by V. Let €1,..., €,
be the standard choice of T-weight basis of G (see eg. Bourbaki [Bou02]). We
denote the “positive part” of g and V by n and V7, respectively. (Cf. §1.2) Let
M be the Hilbert nilcone of (G, V) over Z. We have a natural map

v:GxBPVvt —m,
which we regard as a counter-part of the Springer resolution.

Theorem A. The variety M is normal and flat over Z. Moreover, the number
of Gk-orbits of Ny is independent of the characteristic of k.

Theorem B. Let k =Fy. There exists a Gy-equivariant flat family ©: Ng —
Al with the following properties:

1. We have = 1(t) =2 N for t # 0;

2. There exists an isogeny F1 : M — 71'_1(0), which is an endomorphism

as varieties.

Moreover, for a Gg-orbit Ox C Ny, there exists a flat subfamily of single G-
orbits Os C Ns such that Os N7~ 1(0) = F1(O).

Theorem A claims that our variety 9t behaves well with respect to the spe-
cializations. Theorem B claims that we can regard 91 as a model of Ay in a
certain sense.

To illustrate these, let us describe the orbit correspondence of Theorem B,
together with the corresponding Springer correspondences:

Ezample C (The orbit correspondence for n = 2). We put a1 := €; — €. Let
x[A] € g and v[\] € V be T-eigenvectors with T-weight \. We refer the Springer
correspondence of N by ordinary and that of 9 by exotic. Then, we have:

wv dim. | ordinary (chark # 2) | ordinary (chark = 2) exotic
sign 1 0 0 0
Ssign 1 X[2€1] x[2€1] vie]
Lsign 1 x[aq] x[aq] vi[aq]
regular 2 x[aq] x[oq] + x[2€1] vi]aq] + vler]
triv 1 x[oq] + x[2€2) x[oq] + x[2€2) v]aq] + veg]

Theorem B gives an isogeny between the Springer fibers of Nj and 9% when
chark = 2. This implies that the Springer correspondences associated to A and
i must coincide up to scalar multiplication of their basis.

To see this phenomena more closely, we employ the Joseph model of the
Springer representations. Following Joseph [Jos83], we define the orbital variety
attached to a G¢-orbit Q¢ C N as an irreducible component of the intersection
OcNng. Let us denote the set of orbital varieties attached to O¢ by Comp(Q¢).
Similarly, let Oc C N¢ be a Ge-orbit and let Comp(Oc) be the set of irreducible
components of Oc NVE. We also call a member of Comp(Oc¢) an orbital variety
(attached to Oc).



Joseph found that the T-equivariant Hilbert polynomials of Comp(QOc¢) yield
an irreducible W-module which is contained in the Springer representation at-
tached to Q¢. These polynomials are usually called the Joseph polynomials.

In view of Joseph [Jos89] (cf. Chriss-Ginzburg [CG97]), it is straightforward
to see that Joseph’s construction extends to the case of our exotic Springer cor-
respondence. In particular, we have the notion of Joseph polynomials attached
to each orbit of M.

Theorem D. Let k = Fy. Let Oc be a Ge-orbit of Ne.
G-stable locally closed subsets @ C N and O C N such that

1. We have Oc = 0 ® C;

Then, there exists

2. The set O @ k is a single Gx-orbit which corresponds to a unique dense
open Gy-orbit of O ® k;

3. The Joseph polynomials of O¢ and that of O¢ are equal up to scalar.

It may worth to mention that there exists some orbit O of 91 which does not
correspond to an orbit of M. In this case, our version of Joseph polynomials
realize Weyl group representations which cannot be realized by the usual Joseph
polynomials. To illustrate these, we compare Joseph polynomials for Sp(4):

Ezample E (Joseph polynomials for n = 2). Keep the setting of Example C.
We have:

wv dim. | ordinary (chark # 2) | ordinary (chark = 2) exotic
sign 1 derea(e? — €3) derea(e? — €3) er1€2(e3 — €3)
Ssign 1 2(f — ) 2(f - €3) (e —€3)
Lsign 1 N/A 4eren €1€9
regular 2 a1, 26 a1, 26 Qaq, €
triv 1 1 1 1

Since our exotic Springer correspondence shares a similar flavor with the
usual Springer correspondence of type A, it is natural to expect a combinatorial
description. To state this, we need:

Definition F. Let (y,
partition A, we put A\ :=

v) be a pair of partitions such that |u| + |v| = n. For a
Zj<i )\J and )\zg = E]SZ )\J We define

DY(u):= [ (&-e).Df ()= [l (i —eiru) and
pE <k<i<ps vE<k<I<vS
D(u,v) =[] eleDO )DF (1. ).
i>|pl

Theorem G. For each G-orbit O of M, there exists a pair of partitions (u,v)
such that there exists X € Comp(Q) whose Joseph polynomial is a scalar multi-
plication of D(u,v).

Since (u,v) in Theorem G is easily computable, this completes a determi-
nation of our exotic Springer correspondence. Taking account into Theorem D,
we have determined some special Joseph polynomials which we cannot compute
easily from their naive definitions.



The organization of this paper is as follows:

In §1, we fix convention and introduce our variety M. Then, we describe its
set of defining equations in §2. Our system of defining equations is explicit and
behaves nice with respect to the restriction to certain linear subvariety. These
facts enable us to prove that 91 is normal in §3. This proves the first part of
Theorem A. Also, we introduce a parameterization of orbits of 91 over Z or k.
The §4 contains the main observations of this paper. Namely, we observe:

e the adjoint representation g of a symplectic group over characteristic two
is not irreducible;

e this reducibility enables one to define a natural deformation of g, and its
subvariety N in characteristic two;

e the special fiber such that (the deformation of) g becomes decomposable
is isogenous to V;

e the above three observations are sufficient to construct a “deformation”
from N (general fiber) to 9 (special fiber) in characteristic two.

These observations enable us to prove Theorem B. In §5, we see that every orbit
of M extends to an orbit of M in order to prove the second part of Theorem
A. The §§6-7 are devoted to the equi-dimensionality of the orbital varieties
attached to 9. Its proof is nothing but a minor modification of the Steinberg-
Spaltenstein-Joseph theorem, which we present here for the reference purpose.
(So I claim no originality here.) These are preparatory steps to the later sec-
tions. In §8, we use the results in the previous sections to prove Theorem D.
With the help of previous sections and Joseph’s theory, the only missing piece
boils down to the rigidity of the torus character. In §9, we construct a special
orbital variety from an orbit of 91 in order to prove Theorem G. The main
difficulty in the couse of its proof is that we cannot expect some orbital variety
to be a linear subspace contrary to the type A case. We make a trick coming
from the symmetry of Joseph polynomials to avoid this difficulty.

With the technique developed in this paper, a similar construction applied
to G¥ = SO(2n+1) yields an analogue of Theorem D for special representations
of the Weyl groups of Sp(2n) and SO(2n + 1). However, the orbit correspon-
dence is rather unclear since the number of orbits are different! (cf. [Hes79]).
We hope to settle this in our future work.

Finally, one word of caution is in order. We work not over SpecZ but a
neighborhood of SpecF; in the main body of this paper. The reason is that two
is the only bad prime for symplectic groups and the corresponding statements
are more or less trivial (or inexistent) with respect to the reduction to the other
primes.

IThis point is bit clarified by a recent result of Tian Xue [Xue08], who established the
Springer correspondence in this setting.



1 Preliminaries

1.1 Convention
Consider a ring
N —
A=2Zp~ (i N € Zso, (p,2) = 1,¢ P =1]CQ

This is a local ring with a unique maximal ideal (2). Let K be the quotient field
of A and let k be the residual field of A. We have k = [F,.

For a partition A = (A1, A2,...), we define A~ := 37, A\jand A7 =37, A
for each 7. We also use the notation )\? = A7 ; and )\ig = )\fﬂ. We put

Al := (\)£. We denote the dual partition of A by t).

For a scheme X over A, we denote its specializations to k and K by Aj and
Xk, respectively. In addition, assume that X admits an action of the group
scheme G over A. By a G-orbit on X', we refer a flat subfamily O of X over
A such that Ok is a single Gg-orbit. For a map of commutative rings A — D,
we define X(D) the set of D-valued points of X. We denote by He(X,C) the
Borel-Moore homology of A¢.

We understand that the intersection N of two (sub-)schemes are set-theoretic.
(I.e. we consider the reduced part of the scheme-theoretic intersection.) The
scheme-theoretic intersection is denoted by M.

For a scheme Y over k, we denote its (geometric) Frobenius endomorphism
by Fr. Here geometric means that the induced map Fr* : Oy — Oy is k-linear
and (suitable) local coordinates are changed to its 2nd power.

1.2 Notation and Terminology

Let G = Sp(2n, A) be the symplectic group of rank n over A. Let B D T
be its Borel subgroup and a maximal torus defined over A. Put N := [B, BJ.
Denote the opposite unipotent radical of N (with respect to T') by N~. Let
W = Ng(T)/T be the Weyl group of G. We denote by X*(T') the weight
lattice of T. Let R be the set of roots of (G,T) with its positive part R
determined by B. Consider an A-module V; := A%", for which G acts by the
multiplication of matrices. Let Vo := A2V} (C A%(Vi)c) be the A-module with
the natural G-module structure. Let g be the Lie algebra of G over Z, whose
integral structure is Sym2V1 = (V1 ®4 V1)%2. Let b, t,n be the intersections of
Lie algebras corresponding to Bg, T, Nc with g inside of gc, respectively.

Fix a Z-basis €1,...,€, of X*(T) such that RT = {¢; + ¢;},«; U {2¢6;}; C
X*(T). For each i, we put a; := ¢; —€;41 (1 <4 < n), 2¢, (i =n). Let s; be the
reflection of W corresponding to «;. Let £ : W — Z denote the length function
on W with respect to s1,...,sp,.

We put V := V; @ V5. Consider the sum V+ of T-weight spaces of V with
its weights in Q>oR"™ — {0}. For a T-weight A # 0, we denote a non-zero
T-eigenvector of V with T-weight A by v[A]. (It is unique up to scalar.)

For each w € W, we denote (one of) its lift by & € Ng(T'). For a T-stable
subset S in V or g, we define *S := wS.

We denote the flag variety G/B by B.

Let 91 be the G-subscheme of V defined by the positive degree part A[V]¢
of A[V]C.

Let N be the space of ad-nilpotent elements of g.



Theorem 1.1 (Hesselink [Hes79]). We have N(k) = U, cqn) Ad(g)n(k).
Theorem 1.1 implies that the natural map (the Springer resolution over A)
p:GxBn—N

is surjective at the level of points.
For a Gi-module V over k, we have its Frobenius twist V! as the compo-
sition map
Gy — GL(V) % GL(V) ¢ Endy (V).

2 Defining equations of 1

Let e € T be an element such that €;(e) = ¢ (for every 1 < i < n), where
¢ € A is an element with sufficiently high order after taking modulo two. In
particular, we assume Zg(e) =2 GL(n, A), V¢ = {0}, and Vi = Mat(n, A). Put
Go := Zg(e). Consider a direct sum decomposition

g=09-2®gP®g2, and V=V o, 0V_;6VodV, §V, (2.1)

determined by the eigenvalues of the action of e (indicated as subscript). Here
g+o and V; (=2 < i < 2) are Gp-modules. We have Lie(Go)c Ng = go = Vy
as Gg-modules. Let ng := LieGy N n, which we may regard as a subspace of
Vo. We define G_3, G2, Ny to be the unipotent subgroups of G corresponding
to g_o, g2, and ng, respectively. We fix an identification &,, = Ng,(T)/T =

(si;i < n) C W. We define
0o -1,
(0 ).

We have V, = Alt(2n, A) as GL(2n, A)-modules. Hence, it restricts to a
G-module isomorphism. Let Pf be the Pfaffian associated to X = {x;;}i; =
{—xj;}i; € Alt(2n). It is defined as

1
Pf(X) = E Z Sgn(a)mo(l)d@) To(2n—1)o(2n)> (22)

where o runs over all permutations of &g, such that o(2m — 1) < o(2m) for
every 1 < m < n. By using Pf, we define polynomials 1 = Py, P;,... P, on V;

as
n

D t"TIP(X) = Pf(tT - X) (X € V3 = Alt(2n)).
=0

We have P; € A[V2]¢ by
Pf(tJ — X) = det(g)Pf(tJ — X) = Pf(tgJ'g — gX'g) = Pf(tJ — gX'g).

Proposition 2.1. By means of the G-module isomorphism Vo = Alt(2n), the
variety (M N Va) is identified with the common zeros of Py, ..., P,.



Proof. Under the isomorphism V5 2 Alt(2n), the subspace Vo C Vs corresponds
to

Alt(2n)o = {{zi;} € Alt(2n);2,; =0for 1 <4i,j <morn <i,j<2n}.

Substituting them into the definition of Pfaffians, we deduce

Pf(tJ — X) = (-1)"det(tl, —Y) where X = (tg)/ _0Y> .

This implies
A[Va]% D A[P;i > 1] == A[V[0]] S

via the restriction map. By the Dadok-Kac classification [DK85] table 2, we
know that
C[V2]¢ = C[Vo]“® = C[V2[0]]°".

This implies that {P;}?_, generates the ideal (A[V2]¢) as desired. O
Corollary 2.2. We have Mt = A[V]/(P;;1 <i<n).

Proof. Tt is clear from the isomorphism C[V]¢ 2 C[V;]¢, which can be read off
from the Dadok-Kac classification ([DK85] table 2). O

Lemma 2.3. Let Y € Alt(n) and let Z € Mat(n). Then, we have
Y Z 0 Z

Proof. By the pigeon hole principle, if a Pfaffian term

for each i.

SEN(0) T (1)0(2) * * * To(2n—1)o(2n)
in (2.2) satisfies 0(2m—1), 0(2m) < n for some m, then there exists m’ such that

o(2m’ —1),0(2m’) > n. Then, this term cannot contribute to Pf <—}ZZ §>’
which implies the result. O
Corollary 2.4. We have M(A) = (GV1) (A) C V(A).

Proof. By the proof of Proposition 2.1, the variety (MMVy) is isomorphic to the
nilpotent cone of gg. By Lemma 2.3, it follows that

MNVy) eV eV =N (Vo V& Vy) C .

We know
C[V]® = C[Vo & V; @ V5B = C[V,]%.

Here the inclusion G(Vy & V; @ Vy) C V is a closed subset. As a consequence,
G(Vo @V, @ Vs3)(A) = V(A) follows. Therefore, we deduce

(G(MNVy)dVdVa))(A) =N(A).
Here we have 1NV = Gy(Vo N V™), which implies the result. O

Corollary 2.5. We have N(k) = G(k)V*t (k) C V(k). O



3 Geometric construction of

We retain the setting of the previous section. Let F := G x B V+. Consider the
map
v:F=GxBvVt —V.

We denote the specialization of v to K and k by vk and v, respectively. Since
the fiber of v is naturally isomorphic to a closed subscheme of a flag variety, v
is projective.

Lemma 3.1. The map v is semi-small with respect to the stratification given
by G-orbits.

Proof. This is a straight-forward generalization of the results in K [K06a] §1.1.
O

Remark 3.2. By a result of Borho-MacPherson (cf. [CG97] §8.9), our exotic
Springer correspondence (a bijection between Gc-orbits of ¢ and irreducible
representations of W) implies that v¢ must be strictly semi-small. (Otherwise
there must be some G¢-orbit which does not correspond to an irreducible rep-
resentation of W.)

Proposition 3.3. The differentials dPi,...,dP, of the polynomials Pi,..., P,
are linearly independent up to codimension two subscheme of M.

Proof. By [K06a] 1.2 6), a non-dense orbit of Gk in Mk has codimension two.
Hence it suffices to check the assertion for the open orbit of 9. (The existence
of an open Gy-orbit in M follows from Corollary 2.4 and a modification of
[K06a] 1.8 or Theorem 4.1 in this paper.) The linear independence is an open
condition. By the proof of Proposition 2.1, it suffices to prove that the assertion
on the dense open (Go)x-orbit of (9 N (Vo)k), which is the regular nilpotent
orbits for GL(n)k. This is well-known (or is easily checked). O

Corollary 3.4. The scheme N is reqular in codimension one.

Proof. The reduced induced scheme of 91 is a complete intersection up to codi-
mension two locus. O

Proposition 3.5. The scheme N is Cohen-Macaulay.

Proof. We have
A[V[0]]®" = A[V]® = A[Py,...P,].

As a consequence, we deduce that A[V[0]] is a free A[V[0]]®»-module by the
Pittie-Steinberg theorem. It follows that the multiplication map A[V/V[0]] ® 4
A[V]Y — A[V] equip A[V] the structure of a free A[V/V[0]] ®4 A[V]%-module.
We have A[N] = A[V] ® 41yje A. This is a free A[V/V[0]]-module, which implies
that 91 is Cohen-Macaulay. O

Corollary 3.6. The scheme 2Nt is flat over A.
Proof. A free A[V/V[0]]-module is automatically flat over A[V/VI0]]. O

Theorem 3.7. The scheme N is normal.



Proof. By the Serre criterion and Propositions 3.3 and 3.5, it suffices to show
that 91 is integral. The intersection

‘ﬂﬂ(Vl d VoD Vg)

is integral since MNVy is so. Let Iy = (F;) and I := (z;; = 0;i,5 > n) be
ideals of A[V], where {x;;} € Alt(2n) = V5. Then, the ideal I := Iy + I; is
prime. The set of A-valued points T'(A4) = (A*)™ is Zariski dense in T. By
the Bruhat decomposition, it follows that G(A) is Zariski dense in G. Since
G(Vo® Vi @ V,y) =V, this implies that

L=hL+ () (¢)= (] (h+gk)= () ¢1

geG(A) geG(A) geG(A)
— ) FTeaR) N AV = (KVIS) N ALV,
geG(A)

Since K[M] is integral, the RHS is an ideal whose quotient does not contain a
zero divisor. g

Theorem 3.8. The image of v is equal to N.

Proof. Since F' is smooth over A, the A-algebra
B :=T(V,v.0p) =T(F,OF)

is torsion-free over A. Hence, B is flat and integral over A.
We have C®4 B & (v¢)«Op. = CMN] by [K06a] 1.2 and the Zariski main
theorem. By the proof of Theorem 3.7, we have

(AWI§) = (CvI§e) n Av].

In particular, the natural map A[V] 3 f — f.1 € B factors through A[N]. Here
we have (Imv)(k) = 91(k) as sets. This implies that B must be normal since
AM] s so. O

Definition 3.9 (Marked partitions). A marked partition A = (), a) is a par-
tition A = (A > Ag > ...) of n, together with a sequence a = (a1, as,...) of
integers such that:

1. 0 < ap < )\ for each k;
2. akZOif)\kJrl:)\k;
3. Ap—Ag>ap—ag>0if p<qanda, #0 # a,.

Let X = X7 ® X2 € 9. Since Vi* =2 V3, we can regard Xy € End(V;) via the
embedding

Xo € Va — Alt(Vy) € (V) KR (V1) = End 4 (1). (3.1)

Definition 3.10. Let A = (), a) be a marked partition of n. An element X € 9N
is said to have K-invariant A if the following conditions hold:

e X, is a nilpotent element with its Jordan type (A}, A3,...);



e There exists a family of vectors {£(¢)}i>0 € (V1)K such that:

L X1 =Y, X9 e();
2. X3771¢(i) # 0 and X37€(i) = 0 for each i such that £(i) # 0.

We say that X € 91 have k-invariant A if the same conditions hold by replacing
every K by k. The K-invariant (resp. the k-invariant) of X is denoted by
A(Xk) = (AM(Xk),a(Xk)) (resp. A(Xk)). We define Oy to be the locally closed
subscheme whose K-valued points shares the K-invariant .

It is standard that the K-invariants and k-invariants are invariants under
the G-action.

Theorem 3.11 ([K06b] Theorem B). Two points X,Y € Nk are Gk -conjugate
iff X andY share the same K-invariant. In particular, (Ox)k is a single G-
orbit. O

4 A geometric family of nilcones

We assume the same setting as in the previous section. The Gi-module gi
has a non-trivial B-eigenvector with its highest weight €; + ¢5. This yields the
following short exact sequence of Gg-modules:

0 — (Vo) — gx — (Vi) — 0. (4.1)

Thus, we have a Gi-equivariant flat deformation
Ty Y — Aﬂi

of gi such that 7y,'(0) = (V4 )[E] @ (Vo) and 7, () = gk (z # 0) as Gx-modules.
Let V* C V be its By-equivariant smooth subfamily such that V+ N, ' (0) =

(Vi @ (V) and v Nt (@) = e (o £0).
By (4.1) and the isomorphism Sym?V; 2 g over A, we have the following

Gi-equivariant map
ml: V=V ® (Vo) 3 (X1 @ Xa) — Sym?X; 4+ X, € g;.

This map is Gg-equivariant and finite as a map between affine algebraic varieties.
By restriction, we obtain a commutative diagram

ml

AL X Vi —= vt : (42)

T |

{0} x Vi —= 10} x (Vi) & (V5

where the map ml is the natural prolongization of the map ml, and the map
F; is the product of the Frobenius map of the first component of Vﬂj and the
identity map of the second component of Vﬂj .
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Let F := Gy xBx Vu;" and F := Gy xB= V. The latter is a flat family over
Al. We define Ng := GxV*+ C V. We define 7 := 7y |pn,. The diagram (4.2)
gives a Gi-equivariant commutative diagram

AlxF-™ > F {0} x F . (4.3)

R

AL x My ™ Vg <— {0} x My

Here the vertical arrows are defined as Gy-translation of (4.2) inside A} x Vy,
V, or Vi, respectively. Thanks to the surjectivity of ml at (4.2) and Theorem
1.1 and 3.8, the map ml at (4.3) is surjective at the level of points. Since F is
flat over A, it follows that N is flat over Al. Let m : 9 — N be the map
obtained by the specialization of ml to the fiber at the point {1} € A{.

Theorem 4.1. Each Gg-orbit O of My extends to a flat family of Gk-orbits in
Ns with its general fiber isomorphic to m(Q). Moreover, this yields a one-to-
one correspondence between Gy-orbits of My and Ny which preserves the closure
relations.

Proof. The map m is an isomorphism at the level of k-valued points. Hence, we
have an equi-dimensional one-to-one correspondence between the Gy-orbits of
‘ﬂk and Nk.

We have an equi-dimensional family Qg := ml(A{l x O) for each Gi-orbit O.
Here the map F; is finite. As a result, Qg is an equi-dimensional family such
that each fiber contains a unique dense open Gy-orbit. Therefore, each Gi-orbit
O C N determines a Gg-orbit Q" C Fq () via

open

O LS F(O) =7 (0) N O c Og = 7 (AL — {0}) x O). (4.4)

This establishes a one-to-finite correspondence between Gg-orbits in 91 and
that of M.

We have F1(0)(k) = O(k) as sets with G(k)-actions. Therefore, the cor-
respondences given by m and (4.4) are identical (and hence one-to-one). As a
consequence, Og must coincide with the desired family at the level of points.

Since Al is one-dimensional, taking quotient by the nilpotent ideal of Og

yields the required flat family Os. |

In the below, we denote the one-to-one correspondence from the set of G-
orbits of 9 to that of Ay described in Theorem 4.1 by df.

Corollary 4.2. The numbers of Gy-orbits in Ny and Ny are equal to the number
of Gk-orbits in Nk. O

Corollary 4.3. Two Gg-orbits in Ny are equal if and only if their k-invariants
are equal. O

5 Normality of nilcones in characteristic two

We retain the setting of the previous section.
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Theorem 5.1. Let X = X1 ® Xy € M be a point with k-invariant (A, a). Let
Ok C Nk be a Gk-orbit with K-invariant (A, a). Then, there exists a Gx-orbit
Ok such that Xk € Ok and Ox C O’k holds.

Proof. Let Y € O be a point with K-invariant (), a) such that Yx = (X1 ® X2)k.
First, we assume X; = 0. We regard Xo € End(V7)k as in Definition 3.10. We
have (*A(X))S = 3 dimkerX4. By the upper-semicontinuity of the dimensions
of closed subsets, we have (*A(X))= < (*A)5 for each . By the closure relation
of G-orbits of V5 (cf. Ohta [Oht86] (1.4)), we conclude the result when X; = 0.
Now we consider the case (X1)x # 0. We prove this case by the induction
on the rank n of G. Hence, we assume (&): the assertion holds for Sp(2m)
(m < n) or (X1)x = 0. By rearranging X and Y if necessary by the G-action,
we can assume that X; = Y7 = v]ep]. It suffices to prove the following assertion

inductively on m (by also using the above induction hypothesis):
Claim 5.2. Let m > 0 be an integer. Let

m—1

Y = V[el] + Z V[(_l)p(ep + 6;DJrl)]~

=1

bS]

Here we understand that Y1 = v]e1]. If we have

XY €Ym+ > (Valer &) +Vo[(-1)™em £ 6p]) + > Valfep 64, (5.1)
p>m p,g>m

then we have (GY)c C (GX)c.

Notice that m = 1 case of Claim 5.2 implies Theorem 5.1. We prove Claim
5.2. Define

V= Z Valertey], VI = Z Va[(=1)"emte,], and V™ := Z Va[tepte,].

p>m p>m p,g>m
We define V" := V* @ V™ @ V™. Let P, := Stabg(Y,,). We define

1xid

G := Sp(2(n —m)) — Sp(2m) x Sp(2(n —m)) — G,

where the middle factor contains T and ¢;(T N G,,) =1 for 1 <4 < m. Let Uy,
be the unipotent group generated by unipotent one-parameter subgroups of G
with T-weights

()™ e, +ep, (p>m), and (—1)™ 12¢,,.

It is clear that G,,U,, C P,, and G,, normalizes U,,. In addition, there exists
gm € Zp, (Gy,) such that

)

viel = dvlal Hvl=Dmen] (@ =m b = (1))
e {V[éi] (otherwise)

where é; = ¢; or —¢;. The element g, is given as an appropriate product of
elements of unipotent one-parameter subgroups with T-weights

€1 + (—l)mflem, —€9 + (—l)mfgem,l, €3 + (—1)m73€m,2, e

12



Let X =Y, + X4+ X_+Xpoand Y =Y,,+ Y, +Y_ +Y) be the decomposition
of X and Y corresponding to (5.1). It is unique by the T-weight consideration.
Assume that Y3 = 0or Y_ =0 holds. If Xy =0 (Y =0 case) or X_ =0
(Y_ = 0 case) holds, then the assertion follows from the induction hypothesis
(&%) applied to Gy, and Y =Y, e V" @ V™. Here V" =V if X_ =0=Y_)
or V™ (if Xy =0=7Yy). Wedefine X' =X —-X, (x=+if Yy =0 and
—if Y. =0). If X3 # 0 # X_, then the assertion reduces to the induction
hypothesis if the following subclaim holds:

Subclaim 5.3. We have X{ € (GX)c.

Proof of Subclaim 5.3. Let {7;}7_, be the basis of t such that (e;,v;) = 0;;. Let
ce€Q—{0}. We put

m

s = exp(>_(~1)ieys) € T(C), and g1 = exp(c), @2 = 1 € C*.
=1

Consider an action a : M(C) 3 Z1 ® Zy — q1521 @ qasZ2 € N(C). It is straight-
forward to see that a fixes Y, + X and Y, + Yp. Here the a-action dilates V"
by g1 ! and dilates V™ by ¢;. A nilpotent G,,-orbit of V™ @ Vg™ is stable under
the action of G2, defined as the scalar multiplications of V;™ and V5". It follows
that there exists a’ € G,,, such that o’ fixes Y,, + X, aX_ = qéth_, and moves
Xy = X + X/ (asum of vectors in V) as aX; = go X', + ¢y ' X Letting qo
and ¢ sufficiently generic, we conclude Y;, + X4 4+ Xo € (a,a’) X. By swapping
the roles of X4, we conclude that Y,,, + X1 + Xo,Y,, + X_ + X € (GX)c as
required. ([l

We return to the proof of Claim 5.2. In the below, we always assume Y, #
0 # Y_. This implies X; # 0 # X_ since X is a lift of Y. By rearranging X
and Y by the Gp,-action if necessary, we can assume X_ =Y_ = v[(—1)" (e, +
€m+1)] without the loss of generality. By rearranging X and Y by means of the
unipotent one-parameter subgroups of Py, 1 with its weights (—1)m+2
(p > m+ 1), we assume that

€m+1E¢€p

XY e Ym+l + Vm+1 + ‘/2[61 =+ 6erl]'
By rearranging X and Y by some powers of g,,, € P,,, we assume that
X,Y € Yoy + V™ 1 Voleg + (=)™ Mepga).

Let TE, = Y, Vil[(-1)%] and ~E,, = > Vi[(-1)""'e]. We define
VYEL: = "Ep 4+ Y0, Vilke] and TEL = TE, + Y, Vil+e]. We have
composition maps

i>m

"By — Vi = Vi = Vi )°FBL=°E,, for o = +,

which yields a surjection 6,,,, : End(Vi) — End(TE,1). Since XY €
End(V;) are nilpotent elements which preserve ~E;L it follows that 6, (X>)
and 0, ,,(Y2) must be nilpotent. Let Yy, ., := > 27" v[(—=1)P(ep +€py1)]. (This
is the Va-part of Y,41.) An element Z € 0, (Y1 + Valer + (1) epnpa])
is nilpotent if and only if Z =6, (Y, ). Therefore, we deduce

XY € Yy +VHL
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which reduces the assertion from m to m+1. By repeating these reductions, the
assertion follows from the case m = n — 1. This case is easy since the resulting
elements Y,,_; defines a dense open orbit in M. This completes the proof of
Claim 5.2. Letting m = 1, we deduce Theorem 5.1 as desired. O

Corollary 5.4. For each Gy-orbit Oy of N, there exists a G-orbit O of M such
that O & k = O]k,

Proof. Assume that Oy has k-invariant (\,a). Let O be the G-orbit of 91 with
K-invariant (A, ). By the semi-continuity of the dimension, we have dim O®k >
dim O. Here we have a section s : SpecA — Ok, where the RHS is the closure
in a scheme MM over A. Applying Lemma 3.1, we conclude that

dim Gys(k) < N — 2dimy, '(s(k)) < N — 2dim g ' (s(K)) = dim Ok.

Therefore, ¢ Ok is equi-dimensional over A. By Corollary 4.3 and Theorem 5.1,
we have Og ® k = O. Since A is one-dimensional, taking the reduced quotient
of
O:=0g — U O_]’K
O’:Gg-orbit; O’ CO
yields the result. U

Corollary 5.5. The variety Ny is normal.

Proof. By the proof of Corollary 3.8, the space of defining equations of 91 in V
is flat. Hence, M is regular in codimension one. By Corollary 5.4, it follows
that every non-dense Gyg-orbit in D is codimension two. Therefore, we deduce
the result. O

Theorem 5.6. The variety Ny is normal.

Proof. The isogeny ml : V +— g induces an injective map k[gx] — k[Vg].
Since this map is G(k)-equivariant, we have an inclusion k[gy]® — k[Vi]“.
The variety D is defined from 91 by reduction modulo 2. Hence, its defining
equations are coming from Q[gg]®, which are given by polynomials of degree
2,4,...,2n (cf. [Bou02]). Here we have Py(af; — v7v?) € klgi] Nk[Vy]C, where
{aij}ij € Alt(Vi)x = (V)i and {v;,T;}; € (V1)k are the coordinates with respect
to the T-eigenbasis. We assume that v; is of weight ¢; and v,,4; := T; is of weight
—e¢; for each 1 < i < n. By explicit calculation, we have

Pk(a?j - va?) = Z H(vﬁi)2 + lower terms with respect to {v;}.

IC[l,n);#I=ki€l

It follows that the differentials of Pj(a%, — v?v3) with respect to (V)i =

Speck[v?] defines a collection of linear independent differentials along the generic

point, regardless the values of a;;.

By degree counting using the inclusions k[VE]] C k[gk] C k[Vk], these are pre-

cisely the defining equations of M embedded into k[Vi]. The union of non-dense

orbit of My has codimension two (cf. [Hes79] or Theorem 4.1). Therefore, the

defining equations of Ny defines a set of linearly independent differentials up to

codimension two. In conclusion, the same proof as the normality of 9 implies

the result. |
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Remark 5.7. The normality of the nilpotent cone of sp(2n) over a field of char-
acteristic # 2 is well-known. (See eg. Brion-Kumar [BK04] §5.)

6 Exotic orbital varieties: statement

In this section, the term “flat” means that the object is a flat scheme over
SpecA.

Let O be a G-orbit of 9. We denote the set of irreducible components of
ONVT by Comp(O). We define Comp(Q) for a G-orbit of O C N by replacing
V+ with n.

Similarly, we denote the set of irreducible components of O,NV] (or O.Nn,)
by Comp(O,) or Comp(0,) for * = A, K k.

An element of Comp(O) or Comp(0) is called an orbital variety.

Theorem 6.1. Let Og be a Gk-orbit. Let Xg € Comp(Ok). Then, we have
1. dim Xg = § dim Ok;

2. There exists w € W such that Xx = BK(VHQ N “JVHE).
Proof. Postponed to §7. O

Remark 6.2. Theorem 6.1 is an “exotic” analogue of Joseph’s version of the
Steinberg-Spaltenstein theorem.

Corollary 6.3. Let O be a G-orbit of M. Then, every element of Comp(Q)
has relative dimension %dim Ok over A.

Proof. By Theorem 5.4, there exists a G-orbit O such that O @ k =2 Q. The
scheme-theoretic intersection ONVT is flat since each variety is flat. In par-
ticular, each member of Comp(Q) gives rise to (possibly several) irreducible
components of O of the same dimension. Therefore, Theorem 6.1 implies the
result. |

Corollary 6.4. Let O is a Gx-orbit of Nix. Then, every element of Comp(O)
has dimension % dim Ok. o

Remark 6.5. If the variety G x? VE nor O¢ admits a symplectic structure, then
Theorem 6.1 follows from Kaledin [Kal06] nor [CG97]. However, there exists
no G-invariant holomorphic symplectic form on both of them. We do not know
whether it exists when we drop the invariance.

Lemma 6.6. Let O be a G-orbit of N and let O be a G-orbit of N.

1) Let X € Comp(O). The variety Xk is irreducible.

2) Let Y € Comp(0). The variety Yk is irreducible.

Proof. Since the proof for O is obtained by the proof for O merely replacing the
meaning of symbols as O by O, X by ) and V*+ by n, we provide the proof only
for O.

By theorem 6.1, we have a dense inclusion Xg C B(Vt NwV+t) for some
w € W. We put

X, = B xBMB) (vt nuyt) s @ x(BNB) (v n vy,
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Let Z := {(91B, g2B,v) € B> x V;v € g1Vt N g2V}, We have an embedding
G xBNB) (y+ nwyt) 5 (g,v) — (9B, gB,v) € Z.

Let X, be the closure of X,, in Z. This is clearly an irreducible scheme. It is
straight-forward to see

v:Z>(@1B,g2B,v)—veN

gives a projective morphism. Since the image of a closed subset is closed under
the projective map, we deduce that

Xx = v(Xu)k-
By construction, (X, )x is irreducible. It follows that

% = #((Xu))-
This implies that Xy is irreducible as desired. O
Definition 6.7. Let X € 91. Then, we define a set

Gx ={g€G;X gV}

It is clear that Gx admits a free left Stabg (X )-action and a free right B-action.
Let O be a G-orbit of 9t. For each X € O, we define

SX = gx/BCB

and call it the (exotic) Springer fiber along X. By taking conjugation, we know
that Ex K2 &y @ Kand Ex @k 2 & @k holds if X, Y € O.

Lemma 6.8. Keep the setting of Definition 6.7. Let O be a G-orbit such that
X € 0. Let {Gi}i be the set of irreducible components of Gx. Then, the

assignment ‘ ‘
Comp(0) 3 GxX — G5 /B C Ex

establishes one-to-one correspondences between the sets of irreducible compo-
nents of ONVY, Gx, and Ex.

Proof. The assignments G% — G% /Stabg(X) = Gi- X € Comp(O) and G —
G /B gives a surjection from the set of irreducible components of Gx and the
other two sets. Hence, these assignments fail to be bijective only if Stabg (X )k
or Bk is not connected. The group Stabg (X )k is connected by [K06b] 6.2. The
Borel subgroup Bx C Gk is clearly connected. |

Corollary 6.9. Let O be a G-orbit of N and let X € O be a point. The variety
Ex is an equi-dimensional scheme over A.

Proof. By Theorem 6.1, all connected components of Gx share the same relative
dimension 3 dim O + dim Stabg (X ) over A. Since the specialization to K or k
does not change the relative dimensions over the base, we conclude the result.

O
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7 Exotic orbital varieties: proof

This section is devoted to the proof of Theorem 6.1.

The proof itself is a modification of the arguments of Steinberg [Ste74],
Spaltenstein [Spa77], and Joseph [Jos83]. The only essential diffusion in the
proof is contained in the strict semi-smallness of the map v, which is proved
in [KO6b]. Since the literature is little scattered, we provide a proof with its
necessary modifications.

In the below, we assume the same settings as in Theorem 6.1, but we drop
the subscript g for the sake of simplicity.

Lemma 7.1. We have dim X < § dim O. Moreover, there ezists X € Comp(O)
which satisfies the equality.

Proof. Let X € X. We have
%dimGI—F dimv~(X) = dimG/B

by the semi-smallness of v. Since v~ 1(X) = Gx /B, we have

% dim GX + dim Gx — dim B = dim G/ B.
We have X C Gx /Stabg(X). In particular, we have

% dim GX + dim X + dim Stabg (X) < dim G.
Therefore, we have
dim X < dim G — dim Stabg(X) — %dime{ = %dim(’), (7.1)

which proves the first assertion. The second assertion follows by choosing X so
that dim X = dim Gx /Stabg(X). O

Proposition 7.2. Assume that dimX = %dim O. Then there exists w € W
such that
X C B(Vtnuwvyt)

is a dense open subset.

Proof. Let X € X. We assume that X =2 G'X for an irreducible component G°
of Gx C G. We put 5}} = gi/B, which is an irreducible component of Ex.
By dim X = %dim O, it follows that £% has the maximal dimension among the
irreducible components of £x. In other words, we have

dim &% = %(dim N — dim 0). (7.2)
Consider the variety
S :={(91B,92B,v) € Bx BxV;v e ¢:Vt N gV NO}
and its subvarieties

Sw = {(q1B,92B,v) € S; g7 *g2 € BB}
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for each w € W. It is straight-forward to check & = U,ew S, (the arguments
in [Ste74] p133 L14-L20 works merely by changing the meaning of the symbols
appropriately). By considering the third projection p3 : S — O, we deduce that

p3_1(X) g(c/’X X 5_)(.

Consider the projection p12 : & — B x B of S to the first two components. By
definition, we have p12(Sy,) = G([B x wB]). It follows that

dim S, =dim B + {(w) + dim(VT N"“VT N O)
< dim B+ 4(w) + dim(VF N“VT) = dim G —n = dim S.

Define B ‘ ‘
Shi=G(EY x E x {X}) cGps ' (X)C S

This is an irreducible component of S. Since Gp;'(X) = S and (7.2), we
conclude

y , 1
dimS** =dim O +2dim &% = dim O + 2 x icodim(’) =N=dimG —n.

There exists w € W such that ‘SW ﬁ§” C 8% is a dense open subset. By
dimension counting, we deduce §"* = §,,. Now we have
Sw={(91B,92B,X); 9y ‘g2 € BuB,X € g1(VI NV N O)}. (7.3)
Since dim S = dim S** = dim S,,,, we deduce that
vrn*vtno cvtnvvt

is dense.

Consider the image G,, of S,, under the first and third projection p13 : S — BxV.
Its second projection g3 : G, — O satisfies g3 o p13 = ps. In the RHS of (7.3),
g2 plays no role for the restriction on X. Therefore, we deduce g5 LX) c &l
(dense open subset). By construction, we have

Guw = {(9B,X); X € g(V NV nO)}.

As a consequence, we deduce

X=G'X C{g7'X; (9B, X) € Gu} = B(VF nvwVH).
Since the second inclusion is dense by construction, we conclude the result. [

Lemma 7.1 and Proposition 7.2 claim that the both assertions of Theorem
6.1 hold for at least one X € Comp(O). To derive Theorem 6.1 for general
irreducible components, we need some preparation:

For each 1 <4 < n, we put V(i) := (V* +5VT). We define V; := V+/(Vn
5iVT) and V; := V(%)/ (VT N sVT).

For each 1 <i < n, we put P; := B$; BUB. It is a parabolic subgroup of G.

The derived group of the Levi part of P; is isomorphic to SL(2). Its action
on V; is equivalent to either s(2) (adjoint representation, 1 < i < n) or K2
(vector representation, i = n).

Since every Vi and (V* N V+) are Pi-stable, it follows that V; admits a
natural Pj-action. Let m; : V(i) — V;. The map m; is P;-equivariant. We
define X; := m;(X).
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Lemma 7.3. Let 1 < i < n. Assume that the both assertions of Theorem 6.1
hold for X € Comp(Q). Then, P,X NV is a union of irreducible components
of O which satisfy the both assertions of Theorem 6.1.

Proof. By Proposition 7.2, it suffices to prove Theorem 6.1 1).

By construction, X; C Vj is a B-stable subset. We have dim Vj = 1. Hence,
we have X; = {0} or X; = V. If X; = {0}, then X is Pi-stable. Thus, the
assertion trivially holds.

Therefore, we concentrate ourselves to the case X; = V;r in the below. Let
X’ € Comp(O) such that X' N ;X ¢ X. If X’ does not exist, then we have
P,XN VT = X. Hence, the assertion trivially holds. Thus, we assume the
existence of X'.

Let ® :=XNm, 1({0}) C X. This is a purely codimension one subscheme of
X. Since m; ({0}) = (VF N *V*) is P;-stable, it follows that

P®c Pxnz '({0}) cV*.

Let 0 # X € V{. By an explicit SL(2)-computation, we have gX € V;
(g € P,) if and only if g € P, N B. This implies

P(X-D)NVt=x—-D.

Hence, we have X' N P,D # 0. Let D9 C D be an irreducible component such
that X' NP0y ¢ ©. We have necessarily P;Dg # Dg. This implies

dim P®y = dim®y + 1 = dim X.

As a consequence, P;®( contains a (unique) element of Comp(QO) which is dif-
ferent from X. Letting X’ and D vary arbitrary, we conclude the result. [l

In order to complete the proof of Theorem 6.1, it suffices to prove that a
successive application of Lemma 7.3 eventually exhausts the whole of Comp(O).
This is guaranteed by the following:

Proposition 7.4. Let X, X' € Comp(O). Assume that X' satisfies the both as-
sertions of Theorem 6.1. Then, there exists a sequence of integers iy, io, ..., im €
[1,n] and a sequence %1,%a,..., %, € Comp(O) such that

X' =X1, X=X, and Xx_1 C P, Xx
hold for every 2 < k < m.

Proof. Let i1,...i, € [1,n] be a sequence of integers such that

x'c PP, P X (7.4)
We assume that (x): X' ¢ Py Py --- Py X does not holds for any sequence
#,...,4, if m" < m. This implies that s;,s;, ---$;,, is a reduced expression.

We prove that there exists a sequence X1, Xo, ..., X,, € Comp(O) which satisfies
the required condition. By (7.4) and (%), we deduce

3:=Bs, X' NBs;,B---Bs;, X #0.

Claim 7.5. We have dim 3 = dim X’.
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Proof. By (%), we have P;, ¥’ # X’. Hence, we have
P, X' =dimX' +1

Since 3 is an open subset of a codimension one subscheme of P;, X', we deduce
the result. [l

We return to the proof of Proposition 7.4.
We have Bs$;, X' C V(i1). We put w = s;, -+ s;,.. This is a reduced expres-
sion. In particular, we deduce that

B$i,B -+ Bs;, X C BuV™.

Since l(w) < £(s;,w), we have V[—a;,] ¢ wV*. It follows that (K*v[—ay, ] +
VH)NBwVT = ) by a weight comparison. Hence, we have V(i;)NBwV*t C V*.
This implies that

Bs, X' N Bs;,B---Bs;,, X C VT,

In particular, there exists an irreducible component X" C P;, X' N VT such that
X'"NBs$,B---Bs;, X#0

and the LHS is a maximal dimensional irreducible component of 3. By Lemma
7.3 and the equality dim 3 = dim X’, we conclude that

X" Cc Bs,B---Bs; X = Pigpl,g...pl,mz

Since the assertion for m = 1 is proved in Lemma 7.3, the downward induction
on m yields the result. O

8 Comparison of Springer correspondences
Let Ok be a Gg-orbit of Nx. We define
Bx :={g € Gx; X € Ad(g)nx}/Bx C Bk

and call it the Springer fiber along X.
Lemma 8.1. Let X € M. Then, we have

Ex = Bm(X) C B.
In particular, the Springer fiber of My has an isogeny to that of N.

Proof. The orbital variety for Ny is equi-dimensional since Comp(Q) is equi-
dimensional for all Gg-orbits Op C D and both Fl(Vﬂir ) and O are special
fibers of flat families over Al (cf. Theorem 4.1). By the same argument as in
the proof of Theorem 6.9, we deduce that By, x) is an equi-dimensional scheme
with the same dimension as €x. We have m(Ex)(k) C Bm(x)(k). Here the map

;1/|| £y 18 surjective along the zero fiber. As a consequence, we deduce that /nﬂgx
is surjective along A} at the level of points. Since F; does not change a point
in B, the result follows. O

Corollary 8.2. Every Springer fiber of N is equi-dimensional. O
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Let X be a T-equivariant scheme over A. Let K+ (X, )g be the Q-coefficient
Grothendieck group of Ti-equivariant coherent sheaves on X, which are flat
over the base (x = A, K k). Let R(T)g be the representation ring of T' with
coefficient Q. For a T-module V', we define chrV to be the class [V] € R(T)q.
Consider a map

p: K7(n)g — R(T)q

which sends a T-equivariant closed subset C' C n to the ratio
chrT'(n, O¢)/chrT'(n, Oy) € R(T)Q.

Replacing T' and n with T, and n, (where x = A K, k), we define the corre-
sponding maps p.. Similarly, consider a map

¢: K'(VF)g — R(T)g
which sends a T-equivariant closed subset C' C V* to the ratio
ChTF(V+, Oc)/ChTr(V+, Ov+) S R(T)Q

Replacing T' and VT with T, and VI (where * = K, k), we define the corre-
sponding maps g

Let fx : R(T') — C[[t]] be the map given by the formal expansion of a function
on T along 1. For f € R(T'), we denote the lowest non-zero homogeneous term
of fx(f) by It(f). By definition, It(f) is a homogeneous polynomial on t.

Let O be a G-orbit in N. For each 9, € Comp(0.) (x = A, K, k), we define
the Joseph polynomial attached to 9. as It (p«(2,)). (This is identical to the
T-equivariant Hilbert polynomial of 9)..) Let O be a G-orbit in M. For each
X, € Comp(O.) (*+ = K, k), we define the Joseph polynomial attached to X, as
It (g.(X)).

We denote the set of Q-multiples of Joseph polynomials attached to orbital
varieties of O, or O, (x = A, K k) by Jos(O,) or Jos(0,), respectively.

Proposition 8.3. Let X C VT and Y C n be T-equivariant flat subfamilies
over A. Then, we have

qx (Xk) = qx(Xk) and px(Vk) = pe(dk).

Proof. Each character of tori is defined over A. In particular, every irreducible
T-module is flat over A. Hence, the assumption implies that the coordinate
rings K[Ak| and k[X] share the same character (as T-modules). Hence, we
conclude the result for X. The case ) is entirely the same. O

Proposition 8.4. Let C be a Ti-stable flat subfamily of V* over Al. Let Cy :=
CHn~Y(t). Then, we have

It(pi([C1])) € Qlt(gk([F1(Co)]))-

Proof. For the sake of simplicity, we drop the subscripts x during this proof. A
T-character does not admit a non-trivial deformation. It follows that the classes
[C1] € KT(n) and [Cy] € KT(F1(V")) defines the same class after sending to
R(T). The pullback Fj is given by e ®F-10 Oy+. It is clear that Oy+ is a

Fr(vh)
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free Fl_lOpl(V+)—module of rank 2". As T-modules, it corresponds to tensoring
some T-module. Therefore, the map

(F1)" : K™(F1(VF)) — KT(V¥)

is given by multiplication of some T'-characters. Since a character of a finite-
dimensional T-module has non-zero leading term, we conclude the result. O

Theorem 8.5 (Joseph [Jos83, Jos89]). Let O be a G-orbit of N and let O be a
G-orbit of . The C-span of Jos(Ok) or Jos(Ok) form an irreducible W-module.

Proof. The proof for the case Ok is the original case and is treated in [CG97]
6.5.13 and 7.4.1. The case Ok follows from the same construction as in [CG97]
6.5 and 7.4 if we replace ng with V;g, Nx with Mg, and Ok with Ok uniformly.

(|

Lemma 8.6. Let © be a G-orbit in N'. Then, Q is a union of a single Gy-orbit
of dimension dim Q and Gy-orbits of dimension < dim Q.

Proof. Consider the natural embedding ¢ : Nx C Mat(2n)k. It is well-known
that the induced map Gx\Nx — GL(2n)x\Mat(2n)x is injective. (See eg.
Tanisaki [Tan85] P152 for this kind of phenomenon.) Hence, O is a union of
Gy-orbits with the same Jordan normal form (in Mat(2n,k).) By Hesselink
[Hes79], the maximal dimension of Gi-orbits in O is attained by a unique orbit
as desired. O

Theorem 8.7. Let Q be a G-orbit in N'. Let O be a G-orbit in M such that
df(Ok) C Qx is a open dense subset. Then, we have

Jos(0) = Jos(O).

Proof. Since the construction of Joseph polynomials factors through the closures
of orbital varieties, we may refer an orbital variety closure as an orbital variety
during this proof (for the sake of simplicity). We prove the following identities:

Jos(Og) = Jos(0k) = Jos(Ok) = Jos(O). (8.1)

(Proof of Jos(Ok) = Jos(Qx)) Let 9 C Comp(0). The variety Yy is irreducible.
By Lemma 6.6 2). Since On is a flat family over A, we deduce that ) is also a
flat family over A. Therefore, Jos(Og) = Jos(Qk) follows from Proposition 8.3
as desired.

(Proof of Jos(Qy) = Jos(O)) Let ¥ € Comp(Oy). Consider a family ml(%y).
This is a By-stable equidimensional subfamily of V. By the comparison of
dimensions, it is a flat family of orbital varieties over Al. Hence the equality
Jos(Qx) = Jos(O) follows from Proposition 8.4.

(Proof of Jos(Ok) = Jos(Ok)) Let X € Comp(O). The variety Xi is irreducible
by Lemma 6.6 1). Since X is flat over A, the equality Jos(Ok) = Jos(Ok) follows

from Proposition 8.3.
Now (8.1), and hence Theorem 8.7 is proved. O
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Corollary 8.8. Let O be a G-orbit of N with its codimension 2d. Let O be a
G-orbit of M such that df(Ok) C Ok is a dense open subset. Let X € Ok and
let Y € Og. Let Cy := Stabg(Y)/Stabg(Y)°. Then, we have a W -equivariant
isomorphism

Hyq(By,C)Y = Hyy(Ex,C),

compatible with their embeddings into Haq(B,C). Moreover, the bases given by
irreducible components of Bx and Ex coincides up to scalar multiplication.

Proof. This is a direct consequence of Theorem 8.7 and [CG97] 6.5.13. Here
the counter-part of [CG97] 6.5.13 for O is obtained by merely by replacing the
meaning of the symbols as A" by N, O by O, and By by £x. O

9 An explicit description of the correspondence

We work under the same setting as in the previous section, but fix the base to
be K (or rather its scalar extension to C).

Theorem 9.1 ([KO6b] §3). Let X = (A, a) be a marked partition of n. We
define a sequence of integers b= (by,ba,...) as

b — a; (ai 7é 0) )
’ max {{a; +\i — \j;j <i}U{a;;j >i}} (a; =0)

Then, we define two partitions p™ and v as
/1,3‘ = bi,l/i)\ = )\1‘ — bl

The pair (u>,v>) gives a bi-partition of n. Moreover, this assignment establish
a bijection between the set of marked partitions of n and the set of bi-partitions
of n. O

We refer the bi-partition (u*,2>) the associated bi-partition of a marked
partition A. Let Ox be the G-orbit with its K-invariant A.

Definition 9.2 (Special elements). Let A be a marked partition and let (p, v) :=
(u™, ) be its associated bi-partition. We define an element wy € W as

€n—m+1 (i=(wz)
WAE = § — €| (tp)S+im(tu) D —m+1 ()i <i< ("'w)7) )
€ ti— ()5 (Il + (v)s < < pl + ("W)57)
where m is some natural number. We put V* := Vt N xV+, We define a

sequence of integers d* := {d} 11" as

&= (i dy = (T A= |l + (V)T oy, = el + ()5
We may drop the superscript * if the meaning is clear from the context.
Lemma 9.3. Keep the setting of Definition 9.2. We have

1. We have ¢; — €; & W(V>) if and only if i > j or one of the following

conditions hold for some natural number m:
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(a) ("m); <ivj < ()i
(0) |ul+ (Cv)s <i g < lul+ (V)5
(¢) j= (w7 1<i<|ul, andi € {("0)7 hism-
2. We have €; +¢€; € W(VX) if and only if i # j and i,j € {(*1)2 s
3. We have ¢; € W(V>) if and only if i € {(*p)Z }m.-
Proof. Straight-forward. O

Lemma 9.4. Keep the setting of Definition 9.2. We have

VX € B(VAN (Vo @ V1)),
where Vo C Vo and V1 C Vi are Gy-stable subspaces defined at (2.1).

Proof. We put v, = €tz By Lemma 9.3, we have ¢; + ¢; € U(V*) only if

i,j € {(*p)z }m. Moreover, i < j and €; + ¢; € ¥(V>) implies ¢; — ¢; € U(V?).
We put

Up =[] Uyt V5 = @ Vin — vml, and V5 := €5 Vv + -

1<m I>m I<m
We have V§,V§ C V;\r. By a weight comparison, we deduce
UV = UL (V5 + V) NVA) + VA

Here U, Vg C Vg + V3 is a dense open subset. Thus, we conclude

VX CU (VAN (Vo Vy)) C B(VAN (Vo V)
as desired. O

Lemma 9.5. Keep the setting of Definition 9.2. We define

V= P ville@ P Ve«

i<d, I<m dy < i < digy
dm < j < dm+1

Then, we have BV}, = BV,

Proof. We put ¥ := ¥(VAN (Vo @ Vy)). Since VAN (Vo @V;) C V7, it suffices
to prove the inclusion

Vi, € No(VAN (Vo @ V) € BV,
Here the second inclusion is obvious. We have
V(VoO\ = {eisi € [L,du N ()7t} Uder — 530 <5 € {("m)im}m 2 5}
We deduce that

H Uei—e | Ve C Vo1 Ny

i<|ul i { () b
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is a dense open subset by the comparison of weights. We put

U_:= H Ue,—e;-

i<jsi@{(t1) 2 Y m d €{("1)E Fms1

It is easy to see that U_ does not depend on the order of the product. By the
comparison of weights, we have a dense open subset

U_ (Vl[qm] &) (V)‘ QVO)) = Vl[qm] &) U,(V)‘ NVy) C Vl[em] ©® (V()J\l NVoy),
which guarantees that the first inclusion is dense. [l

In the below, we denote by V2 (i = 0,1) the spaces V) N'V; coming from
the statement of Lemma 9.5 for each marked partition A.

Proposition 9.6. Let A be a marked partition. We have GV* = Oy.

Proof. By Definition 3.10, we deduce that Ox C GV, Thus, it suffices to check
V31 € Ox. We define an increasing filtration

{O}ZFogFlg"'gFulJrlq*lgFMlJer:‘/1

as Fi := @,,, Vilei]. By a weight comparison, each = € Vg preserves the flag
{F)}r when regarded as an element of End(V;) as in (3.1). Moreover, the set
of elements x in V) which satisfies

dimek/Fk,Q = min{dim Fk/kal,dim ka]_/Fk;72}

is dense in V. Let & € F,,, NV;" be an element such that there exists {£(i)}; C
V" which satisfies

€= @M 7e(i), and M) £ 0 = 26 () i £(3) # 0.

i>1

Under the above choice of z, this condition is an open condition. We rearrange
{&(i)} according to the following rules: If b; = a; for some j < ¢, then we
rearrange £(i),£(j5) as 0,222 E(i) + £(j), a; = 0, and let others unchanged.
If b; = a; — Aj + A; for ¢ > j, then we rearrange £(¢),£(j) with 0,£(?) + £(j),
a; = 0, and let others unchanged.

By repeating this procedure for all possible pairs (7, j), we conclude that £ & x
has K-invariant (A, a) as desired. O

Corollary 9.7. Under the setting of Proposition 9.6, we have
dim Ox = dim O(» gy + 2 |p] .

Proof. We retain the setting of the proof of Proposition 9.6. Let § € Vit
Then, we have £ ® x € O, if and only if £ € @iilul Vilei]. The Jordan type
of x is A (unchanged) if we regard * € End(V;) as either 2 € End(V;") or

x € End(V]"). Therefore, the fiber of the projection Ox — O, oy has dimension
2dim F,,, = 2|p| as desired. O

The original form of the following formula seems to go back to Kraft-Procesi
[KP82] §8.1. Here we present a slightly modified form which is suitable for
applications.

25



Theorem 9.8 (Kraft-Procesi [KP82]). Let A be a partition of n and let 0 =
(0,0,...) be a sequence of zeros. We put A := (A,0). Then, we have

dim Oy, 0) = 2dim(O(x.0) N Vo) =4 Y d}d}.
i<j

Corollary 9.9. For each marked partition X, there exists Xx € Comp(Oy) such
that o

X\ = BV,
Proof. By Theorem 6.1, it suffices to prove dim BV* > |u| + 2 Ei<j d;d;j. The
subspace V4 N V), is B-stable and has dimension |u|. Since BV* = BV}, we
have only to prove dim B(Vo N'V}y) > 2 >icjdid;j. Since Vo N V{, is No-stable
and dim Vo NV = >ic; didj, it suffices to prove that dim Goz > 37, . did;
for a generic element of xz € V5 N VO)‘l. Since the dimension of the Ga-stabilizer

is an upper-semicontinuous function, it is enough to show dim Goz > >, _ j d;d;
for some x € Vo N V},. Since = € Vy, we have
dim goxr = dimg_sx.
Theorem 9.8 implies that
dim O 0) = dim gz = 2dimgox =4 ) _ d;d;.
i<j
In particular, we have dim gox = ZKJ- d;d; as desired. [l

Definition 9.10 (Special vectors). Let A be a marked partition of n and let
(1, v) be its associated bi-partition. We define

DYN = ] (f—€), andDf(A):=D{(A) ][] e

di<k<l<d;i1 di<k<d;y1

Using this, we define

p1—1 p1t+ri—1
D(p,v) == [[ DN x  J] D).
i=1 i=p1

For a bi-partition (u,v) of n, we define the Macdonald representation at-
tached to (u,v) as
L(p,v) == C[W]D(,v) C C[t].
We remark that L(u,v) is well-defined due to Theorem 9.1. Let C[t],, denote
the degree m-part of the polynomial ring C[t].

Theorem 9.11 (Macdonald cf. Lusztig-Spaltenstein [LS79]). For each bi-
partition (u,v) of n, the Macdonald representation L(u,v) is an irreducible
representation of W. Moreover, we have

{o (m < deg D(u, )
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We define
Wi = (8i8i41 " Sn—1SnSn—1---8;;1 <i<n) C W.
We have W; = (Z/2Z)"™. Moreover, we have a short exact sequence of groups
{1} =W — W — 6, — {1}.
Corollary 9.12. Let A\ be a partition of n. We have
Homuy (L(),0), Cltn) = Homes,, (L(),0), CI¥1).

Corollary 9.13. We have

p1—1 p1trvi—1
lt(g(Xx) € @ [ DY) x [ DiF (V.

In particular, the C-span of Jos(Oy) is isomorphic to L(u™*,v>) as W-modules.

Proof. We define

qo(A) == H € X H H (€5 — €k)-

1> 120d;<j<k<dit+1

The map p : VI — V*1/(V; @ Vy) is a B-equivariant fibration. Hence, it

induces the associated map ¥x — p(Xx), which is generically a flat fibration.

By Lemma 9.5, we have p(Xx) = VA N V. It follows that go(X) divides g(\).
By a dimension counting, we deduce that

2dy :=2dim &y = codimnGY = deglt(q(Xx)) = degD(u, v) (9.1)

for each Y € O,.
Applying the argument of [CG97] 6.5.3 and 7.4.1, we know that

Haay (Ey,C) — He(B,C) — CJt]

is some Macdonald representation. (The second inclusion is realized by the har-
monic polynomials realized by T-equivariant fundamental classes.) By [K06b],
this establishes a one-to-one correspondence between the set of Macdonald rep-
resentations and the set of G-orbits of 1.

By Lemma 9.5, each Xy is written as a product of @195““ Vi[e;] and X5 N

V,. Here we have X5 NV = wf{_,, for some w € &,, and a marked partition
which corresponds to a bi-partition (v, ) of n. We have an equality

qA) = ([ e)wa(y).

i>|p
The polynomial wq(+) is fixed by the action of
Gdl X Gdg—dl X C 6,

since its lift to Ng(T') preserves wX.. Moreover, the action of s, fixes wq(v)
by the same reason. It follows that s,—a, ., +1,--.,8s fixes wq(v). Moreover,
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permuting the sequence {d; — d;—1} = {dy,ds — dy, ...} changes wq(vy) only by
some element of &,,. Therefore, we conclude that wq(~y) is fixed by the action
of W;. In particular,

D(pr, ) = H € X H H (€ - 6?)

k>|pl k>0 dj<i<j<di+1

divides ¢(A). By the comparison of dimensions, we know degD(p*, 1v*) =
codimQOy = deg¢q(A), which implies the result. O

Corollary 9.14. For each marked partition X, we have (Jos(Ox))¢ = L(p>, v

as sub-representations of C[t].

~—
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