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Abstract

Let G = Sp(2n) be the symplectic group over Z. We present a certain
kind of deformation of the nilpotent cone of G with G-action. This enables
us to make direct links between the Springer correspondence of sp2n

over
C, that over characteristic two, and our exotic Springer correspondence.
As a by-product, we obtain a complete description of our exotic Springer
correspondence.

Introduction

Let G = Sp(2n) be the symplectic group over Z. Let k be an algebraically closed
field. Let g be the Lie algebra of G defined over Z. Let N denote the subscheme
of nilpotent elements of g. Let Gk, gk, and Nk denote the specializations of G,
g, and N to k.

Springer [Spr76] defines a correspondence between the set of Gk-orbits in
Nk and a certain set of Weyl group representations (with a basis) when chark
is good (ie. not equal to 2). This correspondence, together with the so-called
“A-group data”, lifts to a one-to-one correspondence.

This story is later deepen in two ways. One is Lusztig’s generalized Springer
correspondence [Lus84], which serves as a basis of his theories on Chevalley
groups. The other is Joseph’s realization [Jos83], which serves a model of the
structure of the primitive spectrum of the enveloping algebra of gC.

In our previous papers [K06a, K06b], we found that a certain Hilbert nilcone
N gives a variant of one aspect of the above mentioned Lusztig’s theory (cf.
[KL87] and [Lus88]). Quite unexpectedly, our correspondence gives a one-to-
one correspondence without the “A-group data”, which is needed in the original
Springer correspondence for Weyl groups of type C. Therefore, it seems natural
to seek some meaning of N.

The main theme of this paper is to give one explanation of N. Roughly
speaking, our conclusion is that N is a model of NF2 over Z, which is “better”
than N in a certain sense.

∗This paper cannot be re-submitted until the acceptance of my previous paper
math.RT/0607478, for which I might merge into the next revision of math.RT0601155. In
this sense, the current paper is something like “pre-preprint”. Any comment is welcome.
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To see what we mean by this, we need a more precise formulation: Let T be
a maximal torus of G. We define the Weyl group of (G, T ) as W := NG(T )/T .
We denote the set of irreducible representations of W by W∨. Let V1 be the
vector representation. Put V2 := ∧2V1. We denote V1 ⊕ V2 by V. Let ε1, . . . , εn

be the standard choice of T -weight basis of G (see eg. Bourbaki [Bou02]). We
denote the “positive part” of g and V by n and V+, respectively. (Cf. §1.2) Let
N be the Hilbert nilcone of (G, V) over Z. We have a natural map

ν : G×B V+ −→ N,

which we regard as a counter-part of the Springer resolution.

Theorem A. The variety N is normal and flat over Z. Moreover, the number
of Gk-orbits of Nk is independent of the characteristic of k.

Theorem B. Let k = F2. There exists a Gk-equivariant flat family π : NS −→
A1

k with the following properties:

1. We have π−1(t) ∼= Nk for t (= 0;

2. There exists an isogeny F1 : Nk −→ π−1(0), which is an endomorphism
as varieties.

Moreover, for a Gk-orbit Ok ⊂ Nk, there exists a flat subfamily of single Gk-
orbits OS ⊂ NS such that OS ∩ π−1(0) = F1(Ok).

Theorem A claims that our variety N behaves well with respect to the spe-
cializations. Theorem B claims that we can regard N as a model of Nk in a
certain sense.

To illustrate these, let us describe the orbit correspondence of Theorem B,
together with the corresponding Springer correspondences:

Example C (The orbit correspondence for n = 2). We put α1 := ε1 − ε2. Let
x[λ] ∈ g and v[λ] ∈ V be T -eigenvectors with T -weight λ. We refer the Springer
correspondence of N by ordinary and that of N by exotic. Then, we have:

W∨ dim. ordinary (chark (= 2) ordinary (chark = 2) exotic
sign 1 0 0 0
Ssign 1 x[2ε1] x[2ε1] v[ε1]
Lsign 1 x[α1] x[α1] v[α1]

regular 2 x[α1] x[α1] + x[2ε1] v[α1] + v[ε1]
triv 1 x[α1] + x[2ε2] x[α1] + x[2ε2] v[α1] + v[ε2]

Theorem B gives an isogeny between the Springer fibers of Nk and Nk when
chark = 2. This implies that the Springer correspondences associated to Nk and
Nk must coincide up to scalar multiplication of their basis.

To see this phenomena more closely, we employ the Joseph model of the
Springer representations. Following Joseph [Jos83], we define the orbital variety
attached to a GC-orbit OC ⊂ NC as an irreducible component of the intersection
OC∩nC. Let us denote the set of orbital varieties attached to OC by Comp(OC).
Similarly, let OC ⊂ NC be a GC-orbit and let Comp(OC) be the set of irreducible
components of OC∩V+

C . We also call a member of Comp(OC) an orbital variety
(attached to OC).
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Joseph found that the T -equivariant Hilbert polynomials of Comp(OC) yield
an irreducible W -module which is contained in the Springer representation at-
tached to OC. These polynomials are usually called the Joseph polynomials.

In view of Joseph [Jos89] (cf. Chriss-Ginzburg [CG97]), it is straightforward
to see that Joseph’s construction extends to the case of our exotic Springer cor-
respondence. In particular, we have the notion of Joseph polynomials attached
to each orbit of N.

Theorem D. Let k = F2. Let OC be a GC-orbit of NC. Then, there exists
G-stable locally closed subsets O ⊂ N and O ⊂ N such that

1. We have OC = O⊗ C;

2. The set O ⊗ k is a single Gk-orbit which corresponds to a unique dense
open Gk-orbit of O⊗ k;

3. The Joseph polynomials of OC and that of OC are equal up to scalar.

It may worth to mention that there exists some orbit O of N which does not
correspond to an orbit of NC. In this case, our version of Joseph polynomials
realize Weyl group representations which cannot be realized by the usual Joseph
polynomials. To illustrate these, we compare Joseph polynomials for Sp(4):

Example E (Joseph polynomials for n = 2). Keep the setting of Example C.
We have:

W∨ dim. ordinary (chark (= 2) ordinary (chark = 2) exotic
sign 1 4ε1ε2(ε21 − ε22) 4ε1ε2(ε21 − ε22) ε1ε2(ε21 − ε22)
Ssign 1 2(ε21 − ε22) 2(ε21 − ε22) (ε21 − ε22)
Lsign 1 N/A 4ε1ε2 ε1ε2

regular 2 α1, 2ε2 α1, 2ε2 α1, ε2
triv 1 1 1 1

Since our exotic Springer correspondence shares a similar flavor with the
usual Springer correspondence of type A, it is natural to expect a combinatorial
description. To state this, we need:

Definition F. Let (µ, ν) be a pair of partitions such that |µ| + |ν| = n. For a
partition λ, we put λ<

i :=
∑

j<i λj and λ≤
i :=

∑
j≤i λj . We define

D0
i (µ) :=

∏

µ<
i <k<l≤µ

≤
i

(ε2k − ε2l ), D+
i (µ, ν) :=

∏

ν<
i <k<l≤ν≤

i

(ε2k+|µ| − ε2l+|µ|), and

D(µ, ν) :=
∏

i>|µ|

εi ×
∞∏

i=1

D0
i (µ)D+

i (µ, ν).

Theorem G. For each G-orbit O of N, there exists a pair of partitions (µ, ν)
such that there exists X ∈ Comp(O) whose Joseph polynomial is a scalar multi-
plication of D(µ, ν).

Since (µ, ν) in Theorem G is easily computable, this completes a determi-
nation of our exotic Springer correspondence. Taking account into Theorem D,
we have determined some special Joseph polynomials which we cannot compute
easily from their naive definitions.
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The organization of this paper is as follows:
In §1, we fix convention and introduce our variety N. Then, we describe its

set of defining equations in §2. Our system of defining equations is explicit and
behaves nice with respect to the restriction to certain linear subvariety. These
facts enable us to prove that N is normal in §3. This proves the first part of
Theorem A. Also, we introduce a parameterization of orbits of N over Z or k.
The §4 contains the main observations of this paper. Namely, we observe:

• the adjoint representation g of a symplectic group over characteristic two
is not irreducible;

• this reducibility enables one to define a natural deformation of g, and its
subvariety N in characteristic two;

• the special fiber such that (the deformation of) g becomes decomposable
is isogenous to V;

• the above three observations are sufficient to construct a “deformation”
from N (general fiber) to N (special fiber) in characteristic two.

These observations enable us to prove Theorem B. In §5, we see that every orbit
of Nk extends to an orbit of N in order to prove the second part of Theorem
A. The §§6–7 are devoted to the equi-dimensionality of the orbital varieties
attached to N. Its proof is nothing but a minor modification of the Steinberg-
Spaltenstein-Joseph theorem, which we present here for the reference purpose.
(So I claim no originality here.) These are preparatory steps to the later sec-
tions. In §8, we use the results in the previous sections to prove Theorem D.
With the help of previous sections and Joseph’s theory, the only missing piece
boils down to the rigidity of the torus character. In §9, we construct a special
orbital variety from an orbit of N in order to prove Theorem G. The main
difficulty in the couse of its proof is that we cannot expect some orbital variety
to be a linear subspace contrary to the type A case. We make a trick coming
from the symmetry of Joseph polynomials to avoid this difficulty.

With the technique developed in this paper, a similar construction applied
to G∨ = SO(2n+1) yields an analogue of Theorem D for special representations
of the Weyl groups of Sp(2n) and SO(2n + 1). However, the orbit correspon-
dence is rather unclear since the number of orbits are different1 (cf. [Hes79]).
We hope to settle this in our future work.

Finally, one word of caution is in order. We work not over SpecZ but a
neighborhood of SpecF2 in the main body of this paper. The reason is that two
is the only bad prime for symplectic groups and the corresponding statements
are more or less trivial (or inexistent) with respect to the reduction to the other
primes.

1This point is bit clarified by a recent result of Tian Xue [Xue08], who established the
Springer correspondence in this setting.
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1 Preliminaries

1.1 Convention

Consider a ring

A := Z[p−1, ζN ; p, N ∈ Z>0, (p, 2) = 1, ζ2N−1
N = 1] ⊂ Q.

This is a local ring with a unique maximal ideal (2). Let K be the quotient field
of A and let k be the residual field of A. We have k = F2.

For a partition λ = (λ1, λ2, . . .), we define λ<
i :=

∑
j<i λj and λ>

i :=
∑

j>i λj

for each i. We also use the notation λ≥
i := λ>

i−1 and λ≤
i := λ<

i+1. We put

|λ| := (λ)≥1 . We denote the dual partition of λ by tλ.
For a scheme X over A, we denote its specializations to k and K by Xk and

XK, respectively. In addition, assume that X admits an action of the group
scheme G over A. By a G-orbit on X , we refer a flat subfamily O of X over
A such that OK is a single GK-orbit. For a map of commutative rings A → D,
we define X (D) the set of D-valued points of X . We denote by H•(X , C) the
Borel-Moore homology of XC.

We understand that the intersection ∩ of two (sub-)schemes are set-theoretic.
(I.e. we consider the reduced part of the scheme-theoretic intersection.) The
scheme-theoretic intersection is denoted by ∩̇.

For a scheme Y over k, we denote its (geometric) Frobenius endomorphism
by Fr. Here geometric means that the induced map Fr∗ : OY → OY is k-linear
and (suitable) local coordinates are changed to its 2nd power.

1.2 Notation and Terminology

Let G = Sp(2n, A) be the symplectic group of rank n over A. Let B ⊃ T
be its Borel subgroup and a maximal torus defined over A. Put N := [B, B].
Denote the opposite unipotent radical of N (with respect to T ) by N−. Let
W := NG(T )/T be the Weyl group of G. We denote by X∗(T ) the weight
lattice of T . Let R be the set of roots of (G, T ) with its positive part R+

determined by B. Consider an A-module V1 := A2n, for which G acts by the
multiplication of matrices. Let V2 := ∧2V1 (⊂ ∧2(V1)C) be the A-module with
the natural G-module structure. Let g be the Lie algebra of G over Z, whose
integral structure is Sym2V1 = (V1 ⊗A V1)S2 . Let b, t, n be the intersections of
Lie algebras corresponding to BC, TC, NC with g inside of gC, respectively.

Fix a Z-basis ε1, . . . , εn of X∗(T ) such that R+ = {εi ± εj}i<j ∪ {2εi}i ⊂
X∗(T ). For each i, we put αi := εi− εi+1 (1 ≤ i < n), 2εn (i = n). Let si be the
reflection of W corresponding to αi. Let ' : W → Z denote the length function
on W with respect to s1, . . . , sn.

We put V := V1 ⊕ V2. Consider the sum V+ of T -weight spaces of V with
its weights in Q≥0R+ − {0}. For a T -weight λ (= 0, we denote a non-zero
T -eigenvector of V with T -weight λ by v[λ]. (It is unique up to scalar.)

For each w ∈ W , we denote (one of) its lift by ẇ ∈ NG(T ). For a T -stable
subset S in V or g, we define wS := ẇS.

We denote the flag variety G/B by B.
Let N be the G-subscheme of V defined by the positive degree part A[V]G+

of A[V]G.
Let N be the space of ad-nilpotent elements of g.
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Theorem 1.1 (Hesselink [Hes79]). We have N (k) =
⋃

g∈G(k) Ad(g)n(k).

Theorem 1.1 implies that the natural map (the Springer resolution over A)

µ : G×B n −→ N

is surjective at the level of points.
For a Gk-module V over k, we have its Frobenius twist V [1] as the compo-

sition map

Gk −→ GL(V )
Fr
−→ GL(V ) ⊂ Endk(V ).

2 Defining equations of N

Let e ∈ T be an element such that εi(e) = c (for every 1 ≤ i ≤ n), where
c ∈ A is an element with sufficiently high order after taking modulo two. In
particular, we assume ZG(e) ∼= GL(n, A), V e

1 = {0}, and V e
2
∼= Mat(n, A). Put

G0 := ZG(e). Consider a direct sum decomposition

g = g−2 ⊕ g0 ⊕ g2, and V = V−2 ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ V2 (2.1)

determined by the eigenvalues of the action of e (indicated as subscript). Here
g±2 and Vi (−2 ≤ i ≤ 2) are G0-modules. We have Lie(G0)C ∩ g = g0

∼= V0

as G0-modules. Let n0 := LieG0 ∩ n, which we may regard as a subspace of
V0. We define G−2, G2, N0 to be the unipotent subgroups of G corresponding
to g−2, g2, and n0, respectively. We fix an identification Sn = NG0(T )/T ∼=
〈si; i < n〉 ⊂ W . We define

J :=

(
0 −1n

1n 0

)
.

We have V2
∼= Alt(2n, A) as GL(2n, A)-modules. Hence, it restricts to a

G-module isomorphism. Let Pf be the Pfaffian associated to X = {xij}ij =
{−xji}ij ∈ Alt(2n). It is defined as

Pf(X) =
1

n!

∑

σ

sgn(σ)xσ(1)σ(2) · · ·xσ(2n−1)σ(2n), (2.2)

where σ runs over all permutations of S2n such that σ(2m − 1) < σ(2m) for
every 1 ≤ m ≤ n. By using Pf, we define polynomials 1 = P0, P1, . . . Pn on V2

as
n∑

i=0

tn−iPi(X) = Pf(tJ−X) (X ∈ V2
∼= Alt(2n)).

We have Pi ∈ A[V2]G by

Pf(tJ−X) = det(g)Pf(tJ−X) = Pf(tgJtg − gXtg) = Pf(tJ− gXtg).

Proposition 2.1. By means of the G-module isomorphism V2
∼= Alt(2n), the

variety (N ∩ V2) is identified with the common zeros of P1, . . . , Pn.
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Proof. Under the isomorphism V2
∼= Alt(2n), the subspace V0 ⊂ V2 corresponds

to

Alt(2n)0 = {{xij} ∈ Alt(2n); xij = 0 for 1 ≤ i, j ≤ n or n < i, j ≤ 2n}.

Substituting them into the definition of Pfaffians, we deduce

Pf(tJ−X) = (−1)n det(t1n − Y ) where X =

(
0 −Y

tY 0

)
.

This implies
A[V2]

G ⊃ A[Pi; i ≥ 1] ∼= A[V2[0]]Sn

via the restriction map. By the Dadok-Kac classification [DK85] table 2, we
know that

C[V2]
G ∼= C[V0]

G0 ∼= C[V2[0]]Sn .

This implies that {Pi}n
i=1 generates the ideal

〈
A[V2]G+

〉
as desired.

Corollary 2.2. We have N ∼= A[V]/(Pi; 1 ≤ i ≤ n).

Proof. It is clear from the isomorphism C[V]G ∼= C[V2]G, which can be read off
from the Dadok-Kac classification ([DK85] table 2).

Lemma 2.3. Let Y ∈ Alt(n) and let Z ∈ Mat(n). Then, we have

Pi

(
Y Z
−tZ 0

)
= Pi

(
0 Z

−tZ 0

)

for each i.

Proof. By the pigeon hole principle, if a Pfaffian term

sgn(σ)xσ(1)σ(2) · · ·xσ(2n−1)σ(2n)

in (2.2) satisfies σ(2m−1), σ(2m) ≤ n for some m, then there exists m′ such that

σ(2m′ − 1), σ(2m′) > n. Then, this term cannot contribute to Pf

(
Y Z
−tZ 0

)
,

which implies the result.

Corollary 2.4. We have N(A) = (GV+) (A) ⊂ V(A).

Proof. By the proof of Proposition 2.1, the variety (N∩̇V0) is isomorphic to the
nilpotent cone of g0. By Lemma 2.3, it follows that

(N ∩ V0)⊕ V1 ⊕ V2 = N ∩ (V0 ⊕ V1 ⊕ V2) ⊂ N.

We know
C[V]G ∼= C[V0 ⊕ V1 ⊕ V2]

G0B ∼= C[V0]
G0 .

Here the inclusion G(V0 ⊕ V1 ⊕ V2) ⊂ V is a closed subset. As a consequence,
G(V0 ⊕ V1 ⊕ V2)(A) = V(A) follows. Therefore, we deduce

(G ((N ∩ V0)⊕ V1 ⊕ V2)) (A) = N(A).

Here we have N ∩ V0 = G0(V0 ∩V+), which implies the result.

Corollary 2.5. We have N(k) = G(k)V+(k) ⊂ V(k). !
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3 Geometric construction of N

We retain the setting of the previous section. Let F := G×B V+. Consider the
map

ν : F = G×B V+ −→ V.

We denote the specialization of ν to K and k by νK and νk, respectively. Since
the fiber of ν is naturally isomorphic to a closed subscheme of a flag variety, ν
is projective.

Lemma 3.1. The map ν is semi-small with respect to the stratification given
by G-orbits.

Proof. This is a straight-forward generalization of the results in K [K06a] §1.1.

Remark 3.2. By a result of Borho-MacPherson (cf. [CG97] §8.9), our exotic
Springer correspondence (a bijection between GC-orbits of NC and irreducible
representations of W ) implies that νC must be strictly semi-small. (Otherwise
there must be some GC-orbit which does not correspond to an irreducible rep-
resentation of W .)

Proposition 3.3. The differentials dP1, . . . , dPn of the polynomials P1, . . . , Pn

are linearly independent up to codimension two subscheme of N.

Proof. By [K06a] 1.2 6), a non-dense orbit of GK in NK has codimension two.
Hence it suffices to check the assertion for the open orbit of Nk. (The existence
of an open Gk-orbit in Nk follows from Corollary 2.4 and a modification of
[K06a] 1.8 or Theorem 4.1 in this paper.) The linear independence is an open
condition. By the proof of Proposition 2.1, it suffices to prove that the assertion
on the dense open (G0)k-orbit of (Nk ∩ (V0)k), which is the regular nilpotent
orbits for GL(n)k. This is well-known (or is easily checked).

Corollary 3.4. The scheme N is regular in codimension one.

Proof. The reduced induced scheme of N is a complete intersection up to codi-
mension two locus.

Proposition 3.5. The scheme N is Cohen-Macaulay.

Proof. We have
A[V[0]]Sn ∼= A[V]G = A[P1, . . . Pn].

As a consequence, we deduce that A[V[0]] is a free A[V[0]]Sn -module by the
Pittie-Steinberg theorem. It follows that the multiplication map A[V/V[0]]⊗A

A[V]G → A[V] equip A[V] the structure of a free A[V/V[0]]⊗A A[V]G-module.
We have A[N] ∼= A[V]⊗A[V]G A. This is a free A[V/V[0]]-module, which implies
that N is Cohen-Macaulay.

Corollary 3.6. The scheme N is flat over A.

Proof. A free A[V/V[0]]-module is automatically flat over A[V/V[0]].

Theorem 3.7. The scheme N is normal.
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Proof. By the Serre criterion and Propositions 3.3 and 3.5, it suffices to show
that N is integral. The intersection

N∩̇(V1 ⊕ V0 ⊕ V2)

is integral since N∩̇V0 is so. Let I1 = (Pi) and I2 := (xij = 0; i, j > n) be
ideals of A[V], where {xij} ∈ Alt(2n) ∼= V2. Then, the ideal I := I0 + I1 is
prime. The set of A-valued points T (A) ∼= (A×)n is Zariski dense in T . By
the Bruhat decomposition, it follows that G(A) is Zariski dense in G. Since
G(V0 ⊕ V1 ⊕ V2) = V, this implies that

I1 = I1 +
⋂

g∈G(A)

(g∗I2) =
⋂

g∈G(A)

(I1 + g∗I2) =
⋂

g∈G(A)

g∗I

=
⋂

g∈G(A)

(g∗I ⊗A K) ∩A[V] =
〈
K[V]G+

〉
∩A[V].

Since K[N] is integral, the RHS is an ideal whose quotient does not contain a
zero divisor.

Theorem 3.8. The image of ν is equal to N.

Proof. Since F is smooth over A, the A-algebra

B := Γ(V, ν∗OF ) = Γ(F,OF )

is torsion-free over A. Hence, B is flat and integral over A.
We have C ⊗A B ∼= (νC)∗OFC

∼= C[N] by [K06a] 1.2 and the Zariski main
theorem. By the proof of Theorem 3.7, we have

〈
A[V]G+

〉
=

〈
C[V]GC

+

〉
∩A[V].

In particular, the natural map A[V] 3 f 4→ f.1 ∈ B factors through A[N]. Here
we have (Imν)(k) = N(k) as sets. This implies that B must be normal since
A[N] is so.

Definition 3.9 (Marked partitions). A marked partition λ = (λ, a) is a par-
tition λ = (λ1 ≥ λ2 ≥ . . .) of n, together with a sequence a = (a1, a2, . . .) of
integers such that:

1. 0 ≤ ak ≤ λk for each k;

2. ak = 0 if λk+1 = λk;

3. λp − λq > ap − aq > 0 if p < q and ap (= 0 (= aq.

Let X = X1⊕X2 ∈ N. Since V ∗
1
∼= V1, we can regard X2 ∈ End(V1) via the

embedding

X2 ∈ V2
∼=−→ Alt(V1) ⊂ (V1) ! (V1) ∼= EndA(V1). (3.1)

Definition 3.10. Let λ = (λ, a) be a marked partition of n. An element X ∈ N
is said to have K-invariant λ if the following conditions hold:

• X2 is a nilpotent element with its Jordan type (λ2
1, λ

2
2, . . .);

9



• There exists a family of vectors {ξ(i)}i≥0 ∈ (V1)K such that:

1. X1 =
∑

j X
λj−aj

2 ξ(j);

2. Xλi−1
2 ξ(i) (= 0 and Xλi

2 ξ(i) = 0 for each i such that ξ(i) (= 0.

We say that X ∈ N have k-invariant λ if the same conditions hold by replacing
every K by k. The K-invariant (resp. the k-invariant) of X is denoted by
λ(XK) = (λ(XK), a(XK)) (resp. λ(Xk)). We define Oλ to be the locally closed
subscheme whose K-valued points shares the K-invariant λ.

It is standard that the K-invariants and k-invariants are invariants under
the G-action.

Theorem 3.11 ([K06b] Theorem B). Two points X, Y ∈ NK are GK-conjugate
iff X and Y share the same K-invariant. In particular, (Oλ)K is a single GK-
orbit. !

4 A geometric family of nilcones

We assume the same setting as in the previous section. The Gk-module gk

has a non-trivial B-eigenvector with its highest weight ε1 + ε2. This yields the
following short exact sequence of Gk-modules:

0 −→ (V2)k −→ gk −→ (V1)
[1]
k −→ 0. (4.1)

Thus, we have a Gk-equivariant flat deformation

πV : V −→ A1
k

of gk such that π−1
V (0) ∼= (V1)

[1]
k ⊕(V2)k and π−1

V (x) ∼= gk (x (= 0) as Gk-modules.
Let V+ ⊂ V be its Bk-equivariant smooth subfamily such that V+ ∩ π−1

V (0) ∼=
(
V +

1

)[1]

k
⊕ (V +

2 )k and V+ ∩ π−1
V (x) ∼= nk (x (= 0).

By (4.1) and the isomorphism Sym2V1
∼= g over A, we have the following

Gk-equivariant map

ml : Vk = (V1)k ⊕ (V2)k 3 (X1 ⊕X2) 4→ Sym2X1 + X2 ∈ gk.

This map is Gk-equivariant and finite as a map between affine algebraic varieties.
By restriction, we obtain a commutative diagram

A1
k × V+

k

ml
!! V+

{0} × V+
k

""

F1!! {0} × (V +
1 )[1]k ⊕ (V +

2 )k

"" , (4.2)

where the map ml is the natural prolongization of the map ml, and the map
F1 is the product of the Frobenius map of the first component of V+

k and the
identity map of the second component of V+

k .
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Let F := Gk ×Bk V+
k and F := Gk ×Bk V+. The latter is a flat family over

A1
k. We define NS := GkV+ ⊂ V . We define π := πV |NS . The diagram (4.2)

gives a Gk-equivariant commutative diagram

A1
k × F

##

eml !! F

##

{0} × F

νk

##

$$

A1
k ×Nk

ml !! NS {0} ×Nk
$$

. (4.3)

Here the vertical arrows are defined as Gk-translation of (4.2) inside A1
k × Vk,

V , or Vk, respectively. Thanks to the surjectivity of ml at (4.2) and Theorem
1.1 and 3.8, the map ml at (4.3) is surjective at the level of points. Since F is
flat over A, it follows that NS is flat over A1

k. Let m : Nk −→ Nk be the map
obtained by the specialization of ml to the fiber at the point {1} ∈ A1

k.

Theorem 4.1. Each Gk-orbit O of Nk extends to a flat family of Gk-orbits in
NS with its general fiber isomorphic to m(O). Moreover, this yields a one-to-
one correspondence between Gk-orbits of Nk and Nk which preserves the closure
relations.

Proof. The map m is an isomorphism at the level of k-valued points. Hence, we
have an equi-dimensional one-to-one correspondence between the Gk-orbits of
Nk and Nk.

We have an equi-dimensional family OS := ml(A1
k ×O) for each Gk-orbit O.

Here the map F1 is finite. As a result, OS is an equi-dimensional family such
that each fiber contains a unique dense open Gk-orbit. Therefore, each Gk-orbit
O ⊂ Nk determines a Gk-orbit O′ ⊂ F1(N) via

O′ open
↪→ F1(O) = π−1(0) ∩ O ⊂ OS = π−1((A1

k − {0})×O). (4.4)

This establishes a one-to-finite correspondence between Gk-orbits in Nk and
that of Nk.

We have F1(O)(k) ∼= O(k) as sets with G(k)-actions. Therefore, the cor-
respondences given by m and (4.4) are identical (and hence one-to-one). As a
consequence, OS must coincide with the desired family at the level of points.

Since A1
k is one-dimensional, taking quotient by the nilpotent ideal of OS

yields the required flat family ÕS .

In the below, we denote the one-to-one correspondence from the set of Gk-
orbits of Nk to that of Nk described in Theorem 4.1 by df.

Corollary 4.2. The numbers of Gk-orbits in Nk and Nk are equal to the number
of GK-orbits in NK. !

Corollary 4.3. Two Gk-orbits in Nk are equal if and only if their k-invariants
are equal. !

5 Normality of nilcones in characteristic two

We retain the setting of the previous section.
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Theorem 5.1. Let X = X1 ⊕X2 ∈ N be a point with k-invariant (λ, a). Let
OK ⊂ NK be a GK-orbit with K-invariant (λ, a). Then, there exists a GK-orbit
O′

K such that XK ∈ O′
K and OK ⊂ O′

K holds.

Proof. Let Y ∈ O be a point with K-invariant (λ, a) such that Yk = (X1⊕X2)k.
First, we assume X1 = 0. We regard X2 ∈ End(V1)K as in Definition 3.10. We
have (tλ(X))≤i := 1

2 dimkerX i
2. By the upper-semicontinuity of the dimensions

of closed subsets, we have (tλ(X))<
i ≤ (tλ)<

i for each i. By the closure relation
of G-orbits of V2 (cf. Ohta [Oht86] (1.4)), we conclude the result when X1 = 0.
Now we consider the case (X1)k (= 0. We prove this case by the induction
on the rank n of G. Hence, we assume (♣): the assertion holds for Sp(2m)
(m < n) or (X1)k = 0. By rearranging X and Y if necessary by the G-action,
we can assume that X1 = Y1 = v[ε1]. It suffices to prove the following assertion
inductively on m (by also using the above induction hypothesis):

Claim 5.2. Let m ≥ 0 be an integer. Let

Ym := v[ε1] +
m−1∑

p=1

v[(−1)p(εp + εp+1)].

Here we understand that Y1 = v[ε1]. If we have

X, Y ∈ Ym +
∑

p>m

(V2[ε1 ± εp] + V2[(−1)mεm ± εp]) +
∑

p,q>m

V2[±εp ± εq], (5.1)

then we have (GY )C ⊂ (GX)C.

Notice that m = 1 case of Claim 5.2 implies Theorem 5.1. We prove Claim
5.2. Define

V m
+ :=

∑

p>m

V2[ε1±εp], V
m
− :=

∑

p>m

V2[(−1)mεm±εp], and V m :=
∑

p,q>m

V2[±εp±εq].

We define Vm := V m
+ ⊕ V m

− ⊕ V m. Let Pm := StabG(Ym). We define

Gm := Sp(2(n−m))
1×id
−→ Sp(2m)× Sp(2(n−m)) ↪→ G,

where the middle factor contains T and εi(T ∩Gm) = 1 for 1 ≤ i ≤ m. Let Um

be the unipotent group generated by unipotent one-parameter subgroups of G
with T -weights

(−1)m−1εm ± εp (p > m), and (−1)m−12εm.

It is clear that GmUm ⊂ Pm and Gm normalizes Um. In addition, there exists
gm ∈ ZPm(Gm) such that

gmv[ε̇i] =

{
v[ε1] + v[(−1)mεm] (i = m, ε̇m = (−1)mεm)

v[ε̇i] (otherwise)
,

where ε̇i = εi or −εi. The element gm is given as an appropriate product of
elements of unipotent one-parameter subgroups with T -weights

ε1 + (−1)m−1εm,−ε2 + (−1)m−2εm−1, ε3 + (−1)m−3εm−2, . . . .

12



Let X = Ym +X+ +X−+X0 and Y = Ym +Y+ +Y−+Y0 be the decomposition
of X and Y corresponding to (5.1). It is unique by the T -weight consideration.
Assume that Y+ = 0 or Y− = 0 holds. If X+ = 0 (Y+ = 0 case) or X− = 0
(Y− = 0 case) holds, then the assertion follows from the induction hypothesis
(♣) applied to Gm and Y −Ym ∈ V m

1 ⊕ V m. Here V m
1 = V m

+ (if X− = 0 = Y−)
or V m

− (if X+ = 0 = Y+). We define X ′ = X − X∗ (∗ = + if Y+ = 0 and
− if Y− = 0). If X+ (= 0 (= X−, then the assertion reduces to the induction
hypothesis if the following subclaim holds:

Subclaim 5.3. We have X ′
C ∈ (GX)C.

Proof of Subclaim 5.3. Let {γi}n
i=1 be the basis of t such that 〈εi, γj〉 = δij . Let

c ∈ Q− {0}. We put

s = exp(
m∑

i=1

(−1)icγi) ∈ T (C), and q1 = exp(c), q2 = 1 ∈ C×.

Consider an action a : N(C) 3 Z1⊕Z2 4→ q1sZ1⊕ q2sZ2 ∈ N(C). It is straight-
forward to see that a fixes Ym + X0 and Ym + Y0. Here the a-action dilates V m

+

by q−1
1 and dilates V m

− by q1. A nilpotent Gm-orbit of V m
1 ⊕V m

2 is stable under
the action of G2

m defined as the scalar multiplications of V m
1 and V m

2 . It follows
that there exists a′ ∈ Gm such that a′ fixes Ym +X0, aX− = q±1

0 X−, and moves
X+ = X ′

+ +X ′′
+ (a sum of vectors in V m

+ ) as aX+ = q0X ′
+ + q−1

0 X ′′
+. Letting q0

and q1 sufficiently generic, we conclude Ym +X+ +X0 ∈ 〈a, a′〉X. By swapping
the roles of X±, we conclude that Ym + X+ + X0, Ym + X− + X0 ∈ (GX)C as
required.

We return to the proof of Claim 5.2. In the below, we always assume Y+ (=
0 (= Y−. This implies X+ (= 0 (= X− since X is a lift of Yk. By rearranging X
and Y by the Gm-action if necessary, we can assume X− = Y− = v[(−1)m(εm +
εm+1)] without the loss of generality. By rearranging X and Y by means of the
unipotent one-parameter subgroups of Pm+1 with its weights (−1)m+2εm+1± εp

(p > m + 1), we assume that

X, Y ∈ Ym+1 + Vm+1 + V2[ε1 ± εm+1].

By rearranging X and Y by some powers of gm ∈ Pm, we assume that

X, Y ∈ Ym+1 + Vm+1 + V2[ε1 + (−1)m+1εm+1].

Let +Em :=
∑m

i=1 V1[(−1)iεi] and −Em :=
∑m

i=1 V1[(−1)i+1εi]. We define
+E⊥

m := −Em +
∑

i>m Vi[±εi] and −E⊥
m := +Em +

∑
i>m Vi[±εi]. We have

composition maps

σEm ↪→ V1 → V1 →→ V1/
σE⊥

m
∼= σEm for σ = ±,

which yields a surjection θ−m+1 : End(V1) → End(−Em+1). Since X, Y ∈
End(V1) are nilpotent elements which preserve −E⊥

m+1, it follows that θ−m+1(X2)
and θ−m+1(Y2) must be nilpotent. Let Y ′

m+1 :=
∑m

p=1 v[(−1)p(εp + εp+1)]. (This

is the V2-part of Ym+1.) An element Z ∈ θ−m+1(Y
′
m+1 + V2[ε1 + (−1)m+1εm+1])

is nilpotent if and only if Z = θ−m+1(Y
′
m+1). Therefore, we deduce

X, Y ∈ Ym+1 + Vm+1,
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which reduces the assertion from m to m+1. By repeating these reductions, the
assertion follows from the case m = n− 1. This case is easy since the resulting
elements Yn−1 defines a dense open orbit in N. This completes the proof of
Claim 5.2. Letting m = 1, we deduce Theorem 5.1 as desired.

Corollary 5.4. For each Gk-orbit Ok of Nk, there exists a G-orbit O of N such
that O ⊗ k = Ok.

Proof. Assume that Ok has k-invariant (λ, a). Let O be the G-orbit of N with
K-invariant (λ, a). By the semi-continuity of the dimension, we have dimO⊗k ≥
dimOK. Here we have a section s : SpecA → OK, where the RHS is the closure
in a scheme N over A. Applying Lemma 3.1, we conclude that

dim Gks(k) ≤ N − 2 dim ν−1
k (s(k)) ≤ N − 2 dim ν−1

K (s(K)) = dimOK.

Therefore, OK is equi-dimensional over A. By Corollary 4.3 and Theorem 5.1,
we have OK ⊗ k = Ok. Since A is one-dimensional, taking the reduced quotient
of

O := OK −
⋃

O′:GK-orbit;O′⊂O

O′
K

yields the result.

Corollary 5.5. The variety Nk is normal.

Proof. By the proof of Corollary 3.8, the space of defining equations of N in V
is flat. Hence, Nk is regular in codimension one. By Corollary 5.4, it follows
that every non-dense Gk-orbit in Nk is codimension two. Therefore, we deduce
the result.

Theorem 5.6. The variety Nk is normal.

Proof. The isogeny ml : V 4→ g induces an injective map k[gk] ↪→ k[Vk].
Since this map is G(k)-equivariant, we have an inclusion k[gk]G ↪→ k[Vk]G.
The variety Nk is defined from N by reduction modulo 2. Hence, its defining
equations are coming from Q[gQ]G, which are given by polynomials of degree
2, 4, . . . , 2n (cf. [Bou02]). Here we have Pk(a2

ij − v2
i v2

j ) ∈ k[gk] ∩ k[Vk]G, where
{aij}ij ∈ Alt(V1)k

∼= (V2)k and {vi, vi}i ∈ (V1)k are the coordinates with respect
to the T -eigenbasis. We assume that vi is of weight εi and vn+i := vi is of weight
−εi for each 1 ≤ i ≤ n. By explicit calculation, we have

Pk(a2
ij − v2

i v2
j ) =

∑

I⊂[1,n];#I=k

∏

i∈I

(vivi)
2 + lower terms with respect to {vi}.

It follows that the differentials of Pk(a2
ij − v2

i v2
j ) with respect to (V1)

[1]
k =

Speck[v2
i ] defines a collection of linear independent differentials along the generic

point, regardless the values of aij .

By degree counting using the inclusions k[V[1]
k ] ⊂ k[gk] ⊂ k[Vk], these are pre-

cisely the defining equations of Nk embedded into k[Vk]. The union of non-dense
orbit of Nk has codimension two (cf. [Hes79] or Theorem 4.1). Therefore, the
defining equations of Nk defines a set of linearly independent differentials up to
codimension two. In conclusion, the same proof as the normality of Nk implies
the result.
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Remark 5.7. The normality of the nilpotent cone of sp(2n) over a field of char-
acteristic (= 2 is well-known. (See eg. Brion-Kumar [BK04] §5.)

6 Exotic orbital varieties: statement

In this section, the term “flat” means that the object is a flat scheme over
SpecA.

Let O be a G-orbit of N. We denote the set of irreducible components of
O∩V+ by Comp(O). We define Comp(O) for a G-orbit of O ⊂ N by replacing
V+ with n.

Similarly, we denote the set of irreducible components of O∗∩V+
∗ (or O∗∩n∗)

by Comp(O∗) or Comp(O∗) for ∗ = A, K, k.
An element of Comp(O) or Comp(O) is called an orbital variety.

Theorem 6.1. Let OK be a GK-orbit. Let XK ∈ Comp(OK). Then, we have

1. dimXK = 1
2 dimOK;

2. There exists w ∈ W such that XK = BK(V+
K ∩ wV+

K ).

Proof. Postponed to §7.

Remark 6.2. Theorem 6.1 is an “exotic” analogue of Joseph’s version of the
Steinberg-Spaltenstein theorem.

Corollary 6.3. Let O be a G-orbit of N. Then, every element of Comp(O)
has relative dimension 1

2 dimOK over A.

Proof. By Theorem 5.4, there exists a G-orbit O such that O ⊗ k ∼= O. The
scheme-theoretic intersection O∩̇V+ is flat since each variety is flat. In par-
ticular, each member of Comp(O) gives rise to (possibly several) irreducible
components of O of the same dimension. Therefore, Theorem 6.1 implies the
result.

Corollary 6.4. Let Ok is a Gk-orbit of Nk. Then, every element of Comp(Ok)
has dimension 1

2 dimOk. !

Remark 6.5. If the variety G×B V+
C nor OC admits a symplectic structure, then

Theorem 6.1 follows from Kaledin [Kal06] nor [CG97]. However, there exists
no G-invariant holomorphic symplectic form on both of them. We do not know
whether it exists when we drop the invariance.

Lemma 6.6. Let O be a G-orbit of N and let O be a G-orbit of N.

1) Let X ∈ Comp(O). The variety Xk is irreducible.

2) Let Y ∈ Comp(O). The variety Yk is irreducible.

Proof. Since the proof for O is obtained by the proof for O merely replacing the
meaning of symbols as O by O, X by Y and V+ by n, we provide the proof only
for O.

By theorem 6.1, we have a dense inclusion XK ⊂ B(V+ ∩ wV+) for some
w ∈ W . We put

Xw := B ×(B∩wB) (V+ ∩ wV+) ↪→ G×(B∩wB) (V+ ∩ wV+).
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Let Z := {(g1B, g2B, v) ∈ B2 × V; v ∈ g1V+ ∩ g2V+}. We have an embedding

G×(B∩wB) (V+ ∩ wV+) 3 (g, v) 4→ (gB, gẇB, v) ∈ Z.

Let Xw be the closure of Xw in Z. This is clearly an irreducible scheme. It is
straight-forward to see

ν̃ : Z 3 (g1B, g2B, v) 4→ v ∈ N

gives a projective morphism. Since the image of a closed subset is closed under
the projective map, we deduce that

XK = ν̃(Xw)K.

By construction, (Xw)k is irreducible. It follows that

Xk = ν̃((Xw)k).

This implies that Xk is irreducible as desired.

Definition 6.7. Let X ∈ N. Then, we define a set

GX := {g ∈ G; X ∈ gV+}.

It is clear that GX admits a free left StabG(X)-action and a free right B-action.

Let O be a G-orbit of N. For each X ∈ O, we define

EX := GX/B ⊂ B

and call it the (exotic) Springer fiber along X . By taking conjugation, we know
that EX ⊗K ∼= EY ⊗K and EX ⊗ k ∼= EY ⊗ k holds if X, Y ∈ O.

Lemma 6.8. Keep the setting of Definition 6.7. Let O be a G-orbit such that
X ∈ O. Let {Gi

X}i be the set of irreducible components of GX . Then, the
assignment

Comp(O) 3 Gi
XX 4→ Gi

X/B ⊂ EX

establishes one-to-one correspondences between the sets of irreducible compo-
nents of O ∩ V+,GX , and EX .

Proof. The assignments Gi
X 4→ Gi

X/StabG(X) ∼= Gi
XX ∈ Comp(O) and Gi

X 4→
Gi

X/B gives a surjection from the set of irreducible components of GX and the
other two sets. Hence, these assignments fail to be bijective only if StabG(X)K

or BK is not connected. The group StabG(X)K is connected by [K06b] 6.2. The
Borel subgroup BK ⊂ GK is clearly connected.

Corollary 6.9. Let O be a G-orbit of N and let X ∈ O be a point. The variety
EX is an equi-dimensional scheme over A.

Proof. By Theorem 6.1, all connected components of GX share the same relative
dimension 1

2 dimO + dimStabG(X) over A. Since the specialization to K or k
does not change the relative dimensions over the base, we conclude the result.
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7 Exotic orbital varieties: proof

This section is devoted to the proof of Theorem 6.1.
The proof itself is a modification of the arguments of Steinberg [Ste74],

Spaltenstein [Spa77], and Joseph [Jos83]. The only essential diffusion in the
proof is contained in the strict semi-smallness of the map ν, which is proved
in [K06b]. Since the literature is little scattered, we provide a proof with its
necessary modifications.

In the below, we assume the same settings as in Theorem 6.1, but we drop
the subscript K for the sake of simplicity.

Lemma 7.1. We have dim X ≤ 1
2 dimO. Moreover, there exists X ∈ Comp(O)

which satisfies the equality.

Proof. Let X ∈ X. We have

1

2
dimGX + dim ν−1(X) = dimG/B

by the semi-smallness of ν. Since ν−1(X) = GX/B, we have

1

2
dimGX + dimGX − dimB = dimG/B.

We have X ⊂ GX/StabG(X). In particular, we have

1

2
dimGX + dimX + dimStabG(X) ≤ dimG.

Therefore, we have

dimX ≤ dimG− dimStabG(X)−
1

2
dimGX =

1

2
dimO, (7.1)

which proves the first assertion. The second assertion follows by choosing X so
that dimX = dimGX/StabG(X).

Proposition 7.2. Assume that dimX = 1
2 dimO. Then there exists w ∈ W

such that
X ⊂ B(V+ ∩ wV+)

is a dense open subset.

Proof. Let X ∈ X. We assume that X ∼= GiX for an irreducible component Gi

of GX ⊂ G. We put E i
X := Gi/B, which is an irreducible component of EX .

By dimX = 1
2 dimO, it follows that E i

X has the maximal dimension among the
irreducible components of EX . In other words, we have

dim E i
X =

1

2
(dim N− dimO). (7.2)

Consider the variety

S := {(g1B, g2B, v) ∈ B × B × V; v ∈ g1V+ ∩ g2V+ ∩ O}

and its subvarieties

Sw := {(g1B, g2B, v) ∈ S; g−1
1 g2 ∈ BẇB}
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for each w ∈ W . It is straight-forward to check S = 6w∈WSw (the arguments
in [Ste74] p133 L14-L20 works merely by changing the meaning of the symbols
appropriately). By considering the third projection p3 : S → O, we deduce that

p−1
3 (X) ∼= EX × EX .

Consider the projection p12 : S → B × B of S to the first two components. By
definition, we have p12(Sw) = G([B × ẇB]). It follows that

dimSw = dimB + '(w) + dim(V+ ∩ wV+ ∩ O)

≤ dimB + '(w) + dim(V+ ∩ wV+) = dimG− n = dimS.

Define
Si,i := G(E i

X × E i
X × {X}) ⊂ Gp−1

3 (X) ⊂ S.

This is an irreducible component of S. Since Gp−1
3 (X) = S and (7.2), we

conclude

dimSi,i = dimO + 2 dimE i
X = dimO + 2×

1

2
codimO = N = dimG− n.

There exists w ∈ W such that Sw ∩ Si,i ⊂ Si,i is a dense open subset. By
dimension counting, we deduce Si,i = Sw. Now we have

Sw = {(g1B, g2B, X); g−1
1 g2 ∈ BẇB, X ∈ g1(V

+ ∩ wV+ ∩O)}. (7.3)

Since dimS = dimSi,i = dimSw, we deduce that

V+ ∩ wV+ ∩ O ⊂ V+ ∩ wV+

is dense.
Consider the image Gw of Sw under the first and third projection p13 : S → B×V.
Its second projection q3 : Gw → O satisfies q3 ◦ p13 = p3. In the RHS of (7.3),
g2 plays no rôle for the restriction on X . Therefore, we deduce q−1

3 (X) ⊂ E i
X

(dense open subset). By construction, we have

Gw = {(gB, X); X ∈ g(V+ ∩ wV+ ∩ O)}.

As a consequence, we deduce

X = GiX ⊂ {g−1X ; (gB, X) ∈ Gw} = B(V+ ∩ wV+).

Since the second inclusion is dense by construction, we conclude the result.

Lemma 7.1 and Proposition 7.2 claim that the both assertions of Theorem
6.1 hold for at least one X ∈ Comp(O). To derive Theorem 6.1 for general
irreducible components, we need some preparation:

For each 1 ≤ i ≤ n, we put V(i) := (V++siV+). We define V+
i := V+/(V+∩

siV+) and Vi := V(i)/(V+ ∩ siV+).
For each 1 ≤ i ≤ n, we put Pi := BṡiB∪B. It is a parabolic subgroup of G.
The derived group of the Levi part of Pi is isomorphic to SL(2). Its action

on Vi is equivalent to either sl(2) (adjoint representation, 1 ≤ i < n) or K2

(vector representation, i = n).
Since every V+

i and (V+ ∩ siV+) are Pi-stable, it follows that Vi admits a
natural Pi-action. Let πi : V(i) −→ Vi. The map πi is Pi-equivariant. We
define Xi := πi(X).
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Lemma 7.3. Let 1 ≤ i ≤ n. Assume that the both assertions of Theorem 6.1
hold for X ∈ Comp(O). Then, PiX ∩ V+ is a union of irreducible components
of O which satisfy the both assertions of Theorem 6.1.

Proof. By Proposition 7.2, it suffices to prove Theorem 6.1 1).
By construction, Xi ⊂ V+

i is a B-stable subset. We have dim V+
i = 1. Hence,

we have Xi = {0} or Xi = V+
i . If Xi = {0}, then X is Pi-stable. Thus, the

assertion trivially holds.
Therefore, we concentrate ourselves to the case Xi = V+

i in the below. Let
X′ ∈ Comp(O) such that X′ ∩ PiX (⊂ X. If X′ does not exist, then we have
PiX ∩ V+ = X. Hence, the assertion trivially holds. Thus, we assume the
existence of X′.

Let D := X∩ π−1
i ({0}) ⊂ X. This is a purely codimension one subscheme of

X. Since π−1
i ({0}) = (V+ ∩ siV+) is Pi-stable, it follows that

PiD ⊂ PiX ∩ π−1
i ({0}) ⊂ V+.

Let 0 (= X ∈ V+
i . By an explicit SL(2)-computation, we have gX ∈ V+

i

(g ∈ Pi) if and only if g ∈ Pi ∩B. This implies

Pi(X−D) ∩ V+ = X−D.

Hence, we have X′ ∩ PiD (= ∅. Let D0 ⊂ D be an irreducible component such
that X′ ∩ PiD0 (⊂ D. We have necessarily PiD0 (= D0. This implies

dimPiD0 = dimD0 + 1 = dimX.

As a consequence, PiD0 contains a (unique) element of Comp(O) which is dif-
ferent from X. Letting X′ and D0 vary arbitrary, we conclude the result.

In order to complete the proof of Theorem 6.1, it suffices to prove that a
successive application of Lemma 7.3 eventually exhausts the whole of Comp(O).
This is guaranteed by the following:

Proposition 7.4. Let X, X′ ∈ Comp(O). Assume that X′ satisfies the both as-
sertions of Theorem 6.1. Then, there exists a sequence of integers i1, i2, . . . , im ∈
[1, n] and a sequence X1, X2, . . . , Xm ∈ Comp(O) such that

X′ = X1, Xm = X, and Xk−1 ⊂ Pik
Xk

hold for every 2 ≤ k ≤ m.

Proof. Let i1, . . . im ∈ [1, n] be a sequence of integers such that

X′ ⊂ Pi1Pi2 · · ·PimX. (7.4)

We assume that (.): X′ (⊂ Pi′1
Pi′2

· · ·Pi′
m′

X does not holds for any sequence

i′1, . . . , i
′
m′ if m′ < m. This implies that si1si2 · · · sim is a reduced expression.

We prove that there exists a sequence X1, X2, . . . , Xm ∈ Comp(O) which satisfies
the required condition. By (7.4) and (.), we deduce

Z := Bṡi1X
′ ∩Bṡi2B · · ·BṡimX (= ∅.

Claim 7.5. We have dimZ = dim X′.
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Proof. By (.), we have Pi1X
′ (= X′. Hence, we have

Pi1X
′ = dimX′ + 1

Since Z is an open subset of a codimension one subscheme of Pi1X
′, we deduce

the result.

We return to the proof of Proposition 7.4.
We have Bṡi1X

′ ⊂ V(i1). We put w = si2 · · · sim . This is a reduced expres-
sion. In particular, we deduce that

Bṡi2B · · ·BṡimX ⊂ BẇV+.

Since '(w) < '(si1w), we have V[−αi1 ] (⊂ ẇV+. It follows that (K×v[−αi1 ] +
V+)∩BẇV+ = ∅ by a weight comparison. Hence, we have V(i1)∩BẇV+ ⊂ V+.
This implies that

Bṡi1X
′ ∩Bṡi2B · · ·BṡimX ⊂ V+.

In particular, there exists an irreducible component X′′ ⊂ Pi1X
′ ∩V+ such that

X′′ ∩Bṡi2B · · ·BṡimX (= ∅

and the LHS is a maximal dimensional irreducible component of Z. By Lemma
7.3 and the equality dimZ = dimX′, we conclude that

X′′ ⊂ Bṡi2B · · ·BṡimX = Pi2Pi3 · · ·PimX.

Since the assertion for m = 1 is proved in Lemma 7.3, the downward induction
on m yields the result.

8 Comparison of Springer correspondences

Let OK be a GK-orbit of NK. We define

BX := {g ∈ GK; X ∈ Ad(g)nK}/BK ⊂ BK

and call it the Springer fiber along X .

Lemma 8.1. Let X ∈ Nk. Then, we have

EX = Bm(X) ⊂ Bk.

In particular, the Springer fiber of Nk has an isogeny to that of Nk.

Proof. The orbital variety for Nk is equi-dimensional since Comp(Ok) is equi-
dimensional for all Gk-orbits Ok ⊂ Nk and both F1(V

+
k ) and Ok are special

fibers of flat families over A1
k (cf. Theorem 4.1). By the same argument as in

the proof of Theorem 6.9, we deduce that Bm(X) is an equi-dimensional scheme
with the same dimension as EX . We have m(EX)(k) ⊂ Bm(X)(k). Here the map

m̃l|EX is surjective along the zero fiber. As a consequence, we deduce that m̃l|EX

is surjective along A1
k at the level of points. Since F1 does not change a point

in B, the result follows.

Corollary 8.2. Every Springer fiber of Nk is equi-dimensional. !
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Let X be a T -equivariant scheme over A. Let KT∗(X∗)Q be the Q-coefficient
Grothendieck group of T∗-equivariant coherent sheaves on X∗ which are flat
over the base (∗ = A, K, k). Let R(T )Q be the representation ring of T with
coefficient Q. For a T -module V , we define chT V to be the class [V ] ∈ R(T )Q.
Consider a map

p : KT (n)Q −→ R(T )Q

which sends a T -equivariant closed subset C ⊂ n to the ratio

chT Γ(n,OC)/chT Γ(n,On) ∈ R(T )Q.

Replacing T and n with T∗ and n∗ (where ∗ = A, K, k), we define the corre-
sponding maps p∗. Similarly, consider a map

q : KT (V+)Q −→ R(T )Q

which sends a T -equivariant closed subset C ⊂ V+ to the ratio

chT Γ(V+,OC)/chT Γ(V+,OV+) ∈ R(T )Q.

Replacing T and V+ with T∗ and V+
∗ (where ∗ = K, k), we define the corre-

sponding maps q∗.
Let fx : R(T ) → C[[t]] be the map given by the formal expansion of a function

on T along 1. For f ∈ R(T ), we denote the lowest non-zero homogeneous term
of fx(f) by lt(f). By definition, lt(f) is a homogeneous polynomial on t.

Let O be a G-orbit in N . For each Y∗ ∈ Comp(O∗) (∗ = A, K, k), we define
the Joseph polynomial attached to Y∗ as lt

(
p∗(Y∗)

)
. (This is identical to the

T -equivariant Hilbert polynomial of Y∗.) Let O be a G-orbit in N. For each
X∗ ∈ Comp(O∗) (∗ = K, k), we define the Joseph polynomial attached to X∗ as
lt

(
q∗(X∗)

)
.

We denote the set of Q-multiples of Joseph polynomials attached to orbital
varieties of O∗ or O∗ (∗ = A, K, k) by Jos(O∗) or Jos(O∗), respectively.

Proposition 8.3. Let X ⊂ V+ and Y ⊂ n be T -equivariant flat subfamilies
over A. Then, we have

qK(XK) = qk(Xk) and pK(YK) = pk(Yk).

Proof. Each character of tori is defined over A. In particular, every irreducible
T -module is flat over A. Hence, the assumption implies that the coordinate
rings K[XK] and k[Xk] share the same character (as T -modules). Hence, we
conclude the result for X . The case Y is entirely the same.

Proposition 8.4. Let C be a Tk-stable flat subfamily of V+ over A1
k. Let Ct :=

C∩̇π−1(t). Then, we have

lt(pk([C1])) ∈ Qlt(qk([F
∗
1(C0)])).

Proof. For the sake of simplicity, we drop the subscripts k during this proof. A
T -character does not admit a non-trivial deformation. It follows that the classes
[C1] ∈ KT (n) and [C0] ∈ KT (F1(V+)) defines the same class after sending to
R(T ). The pullback F∗

1 is given by • ⊗
F
−1
1 O

F1(V+)
OV+ . It is clear that OV+ is a
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free F−1
1 OF1(V+)-module of rank 2n. As T -modules, it corresponds to tensoring

some T -module. Therefore, the map

(F1)
∗ : KTk(F1(V

+)) → KTk(V+)

is given by multiplication of some T -characters. Since a character of a finite-
dimensional T -module has non-zero leading term, we conclude the result.

Theorem 8.5 (Joseph [Jos83, Jos89]). Let O be a G-orbit of N and let O be a
G-orbit of N. The C-span of Jos(OK) or Jos(OK) form an irreducible W -module.

Proof. The proof for the case OK is the original case and is treated in [CG97]
6.5.13 and 7.4.1. The case OK follows from the same construction as in [CG97]
6.5 and 7.4 if we replace nK with V+

K , NK with NK, and OK with OK uniformly.

Lemma 8.6. Let O be a G-orbit in N . Then, Ok is a union of a single Gk-orbit
of dimension dim O and Gk-orbits of dimension < dim O.

Proof. Consider the natural embedding ι : NK ⊂ Mat(2n)K. It is well-known
that the induced map GK\NK ↪→ GL(2n)K\Mat(2n)K is injective. (See eg.
Tanisaki [Tan85] P152 for this kind of phenomenon.) Hence, Ok is a union of
Gk-orbits with the same Jordan normal form (in Mat(2n, k).) By Hesselink
[Hes79], the maximal dimension of Gk-orbits in Ok is attained by a unique orbit
as desired.

Theorem 8.7. Let O be a G-orbit in N . Let O be a G-orbit in N such that
df(Ok) ⊂ Ok is a open dense subset. Then, we have

Jos(O) = Jos(O).

Proof. Since the construction of Joseph polynomials factors through the closures
of orbital varieties, we may refer an orbital variety closure as an orbital variety
during this proof (for the sake of simplicity). We prove the following identities:

Jos(OK) = Jos(Ok) = Jos(Ok) = Jos(O). (8.1)

(Proof of Jos(OK) = Jos(Ok)) Let Y ⊂ Comp(O). The variety Yk is irreducible.
By Lemma 6.6 2). Since O∩̇n is a flat family over A, we deduce that Y is also a
flat family over A. Therefore, Jos(OK) = Jos(Ok) follows from Proposition 8.3
as desired.

(Proof of Jos(Ok) = Jos(Ok)) Let Xk ∈ Comp(Ok). Consider a family ml(Xk).
This is a Bk-stable equidimensional subfamily of V+. By the comparison of
dimensions, it is a flat family of orbital varieties over A1

k. Hence the equality
Jos(Ok) = Jos(Ok) follows from Proposition 8.4.

(Proof of Jos(OK) = Jos(Ok)) Let X ∈ Comp(O). The variety Xk is irreducible
by Lemma 6.6 1). Since X is flat over A, the equality Jos(OK) = Jos(Ok) follows
from Proposition 8.3.
Now (8.1), and hence Theorem 8.7 is proved.
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Corollary 8.8. Let O be a G-orbit of N with its codimension 2d. Let O be a
G-orbit of N such that df(Ok) ⊂ Ok is a dense open subset. Let X ∈ OK and
let Y ∈ OK. Let CY := StabG(Y )/StabG(Y )◦. Then, we have a W -equivariant
isomorphism

H2d(BY , C)CY ∼= H2d(EX , C),

compatible with their embeddings into H2d(B, C). Moreover, the bases given by
irreducible components of BX and EX coincides up to scalar multiplication.

Proof. This is a direct consequence of Theorem 8.7 and [CG97] 6.5.13. Here
the counter-part of [CG97] 6.5.13 for N is obtained by merely by replacing the
meaning of the symbols as N by N, O by O, and BY by EX .

9 An explicit description of the correspondence

We work under the same setting as in the previous section, but fix the base to
be K (or rather its scalar extension to C).

Theorem 9.1 ([K06b] §3). Let λ = (λ, a) be a marked partition of n. We
define a sequence of integers b = (b1, b2, . . .) as

bi :=

{
ai (ai (= 0)

max {{aj + λi − λj ; j < i} ∪ {aj; j ≥ i}} (ai = 0)
.

Then, we define two partitions µλ and νλ as

µλ
i = bi, ν

λ
i = λi − bi.

The pair (µλ, νλ) gives a bi-partition of n. Moreover, this assignment establish
a bijection between the set of marked partitions of n and the set of bi-partitions
of n. !

We refer the bi-partition (µλ, νλ) the associated bi-partition of a marked
partition λ. Let Oλ be the G-orbit with its K-invariant λ.

Definition 9.2 (Special elements). Let λ be a marked partition and let (µ, ν) :=
(µλ, νλ) be its associated bi-partition. We define an element wλ ∈ W as

wλεi =






εn−m+1 (i = (tµ)≥m)

−ε|ν|+(tµ)<
m+i−(tµ)>

m−m+1 ((tµ)>
m < i < (tµ)≥m)

−ε(tν)>
m+i−(tν)<

m
(|µ| + (tν)<

m < i ≤ |µ| + (tν)≤m)

,

where m is some natural number. We put Vλ := V+ ∩ wλV+. We define a
sequence of integers dλ := {dλ

i }
µ1+ν1
i=1 as

dλ
1 := (tµ)≥µ1

, . . . , dλ
µ1

:= (tµ)≥1 , dλ
µ1+1 := |µ| + (tν)≤1 , . . . , dλ

µ1+ν1 := |µ| + (tν)≤ν1 .

We may drop the superscript λ if the meaning is clear from the context.

Lemma 9.3. Keep the setting of Definition 9.2. We have

1. We have εi − εj (∈ Ψ(Vλ) if and only if i ≥ j or one of the following
conditions hold for some natural number m:
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(a) (tµ)>
m < i, j < (tµ)≥m;

(b) |µ| + (tν)<
m < i, j ≤ |µ| + (tν)≤m;

(c) j = (tµ)≥m, 1 ≤ i ≤ |µ|, and i ∈ {(tµ)≥l }l>m.

2. We have εi + εj ∈ Ψ(Vλ) if and only if i (= j and i, j ∈ {(tµ)≥m}m;

3. We have εi ∈ Ψ(Vλ) if and only if i ∈ {(tµ)≥m}m.

Proof. Straight-forward.

Lemma 9.4. Keep the setting of Definition 9.2. We have

Vλ ⊂ B(Vλ ∩ (V0 ⊕ V1)),

where V0 ⊂ V2 and V1 ⊂ V1 are G0-stable subspaces defined at (2.1).

Proof. We put γm := ε
(tµ)≥m

. By Lemma 9.3, we have εi + εj ∈ Ψ(Vλ) only if

i, j ∈ {(tµ)≥m}m. Moreover, i < j and εi + εj ∈ Ψ(Vλ) implies εi − εj ∈ Ψ(Vλ).
We put

U+ :=
∏

l≤m

Uγl+γm , V◦
0 :=

⊕

l>m

V[γl − γm], and V◦
2 :=

⊕

l<m

V[γl + γm].

We have V◦
0, V

◦
2 ⊂ V+

λ . By a weight comparison, we deduce

U+Vλ = U+((V◦
0 + V◦

2) ∩ Vλ) + Vλ.

Here U+V◦
0 ⊂ V◦

0 + V◦
2 is a dense open subset. Thus, we conclude

Vλ ⊂ U+(Vλ ∩ (V0 ⊕ V1)) ⊂ B(Vλ ∩ (V0 ⊕ V1))

as desired.

Lemma 9.5. Keep the setting of Definition 9.2. We define

Vλ
01 :=

⊕

i≤dµ1

V1[εi]⊕
⊕

l<m

⊕

dl < i ≤ dl+1

dm < j ≤ dm+1

V[εi − εj ].

Then, we have BVλ
01 = BVλ.

Proof. We put Ψ := Ψ(Vλ ∩ (V0⊕V1)). Since Vλ ∩ (V0⊕V1) ⊂ Vλ
01, it suffices

to prove the inclusion

Vλ
01 ⊂ N0(Vλ ∩ (V0 ⊕ V1)) ⊂ BVλ.

Here the second inclusion is obvious. We have

Ψ(Vλ
01)\Ψ = {εi; i ∈ [1, dµ1 ]\{(

tµ)≥m}m} ∪ {εi − εj; i < j, i (∈ {(tµ)≥m}m 3 j}.

We deduce that



∏

i<|µ|,i/∈{(tµ)≥m}m

Uεi−ε|µ|



 V [ε|µ|] ⊂ Vλ
01 ∩ V1
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is a dense open subset by the comparison of weights. We put

U− :=
∏

i<j;i/∈{(tµ)≥m}m,j∈{(tµ)≥m}m>1

Uεi−εj .

It is easy to see that U− does not depend on the order of the product. By the
comparison of weights, we have a dense open subset

U−
(
V1[ε|µ|]⊕ (Vλ ∩ V0)

)
= V1[ε|µ|]⊕ U−(Vλ ∩ V0) ⊂ V1[ε|µ|]⊕ (Vλ

01 ∩V0),

which guarantees that the first inclusion is dense.

In the below, we denote by Vλ
i (i = 0, 1) the spaces Vλ

01 ∩ Vi coming from
the statement of Lemma 9.5 for each marked partition λ.

Proposition 9.6. Let λ be a marked partition. We have GVλ = Oλ.

Proof. By Definition 3.10, we deduce that Oλ ⊂ GVλ. Thus, it suffices to check
Vλ

01 ⊂ Oλ. We define an increasing filtration

{0} = F0 ! F1 ! · · · ! Fµ1+ν1−1 ! Fµ1+ν1 = V1

as Fk :=
⊕

i≤dk
V1[εi]. By a weight comparison, each x ∈ Vλ

0 preserves the flag
{Fk}k when regarded as an element of End(V1) as in (3.1). Moreover, the set
of elements x in Vλ

0 which satisfies

dimxFk/Fk−2 = min{dimFk/Fk−1, dimFk−1/Fk−2}

is dense in Vλ
0 . Let ξ ∈ Fµ1 ∩V +

1 be an element such that there exists {ξ(i)}i ⊂
V +

1 which satisfies

ξ =
∑

i≥1

xλi−biξ(i), and xλi−1ξ(i) (= 0 = xλiξ(i) if ξ(i) (= 0.

Under the above choice of x, this condition is an open condition. We rearrange
{ξ(i)} according to the following rules: If bi = aj for some j < i, then we
rearrange ξ(i), ξ(j) as 0, xλj−λiξ(i) + ξ(j), ai = 0, and let others unchanged.
If bi = aj − λj + λi for i > j, then we rearrange ξ(i), ξ(j) with 0, ξ(i) + ξ(j),
ai = 0, and let others unchanged.
By repeating this procedure for all possible pairs (i, j), we conclude that ξ ⊕ x
has K-invariant (λ, a) as desired.

Corollary 9.7. Under the setting of Proposition 9.6, we have

dimOλ = dimO(λ,0) + 2 |µ| .

Proof. We retain the setting of the proof of Proposition 9.6. Let ξ ∈ V +
1 .

Then, we have ξ ⊕ x ∈ Oλ if and only if ξ ∈
⊕

i≤|µ| V1[εi]. The Jordan type

of x is λ (unchanged) if we regard x ∈ End(V1) as either x ∈ End(V +
1 ) or

x ∈ End(V −
1 ). Therefore, the fiber of the projection Oλ → O(λ,0) has dimension

2 dimFν1 = 2 |µ| as desired.

The original form of the following formula seems to go back to Kraft-Procesi
[KP82] §8.1. Here we present a slightly modified form which is suitable for
applications.
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Theorem 9.8 (Kraft-Procesi [KP82]). Let λ be a partition of n and let 0 =
(0, 0, . . .) be a sequence of zeros. We put λ := (λ,0). Then, we have

dimO(λ,0) = 2 dim(O(λ,0) ∩ V0) = 4
∑

i<j

dλ
i dλ

j .

Corollary 9.9. For each marked partition λ, there exists Xλ ∈ Comp(Oλ) such
that

Xλ = BVλ.

Proof. By Theorem 6.1, it suffices to prove dim BVλ ≥ |µ| + 2
∑

i<j didj . The

subspace V1 ∩ Vλ
01 is B-stable and has dimension |µ|. Since BVλ = BVλ

01, we
have only to prove dim B(V2 ∩ Vλ

01) ≥ 2
∑

i<j didj . Since V2 ∩ Vλ
01 is N0-stable

and dim V2 ∩ Vλ
01 =

∑
i<j didj , it suffices to prove that dimG2x ≥

∑
i<j didj

for a generic element of x ∈ V2 ∩ Vλ
01. Since the dimension of the G2-stabilizer

is an upper-semicontinuous function, it is enough to show dim G2x ≥
∑

i<j didj

for some x ∈ V2 ∩ Vλ
01. Since x ∈ V0, we have

dim g2x = dim g−2x.

Theorem 9.8 implies that

dimO(λ,0) = dim gx = 2 dim g0x = 4
∑

i<j

didj .

In particular, we have dim g2x =
∑

i<j didj as desired.

Definition 9.10 (Special vectors). Let λ be a marked partition of n and let
(µ, ν) be its associated bi-partition. We define

D0
i (λ) :=

∏

di<k<l≤di+1

(ε2k − ε2l ), and D+
i (λ) := D0

i (λ)
∏

di<k≤di+1

εk.

Using this, we define

D(µ, ν) :=
µ1−1∏

i=1

D0
i (λ)×

µ1+ν1−1∏

i=µ1

D+
i (λ).

For a bi-partition (µ, ν) of n, we define the Macdonald representation at-
tached to (µ, ν) as

L(µ, ν) := C[W ]D(µ, ν) ⊂ C[t].

We remark that L(µ, ν) is well-defined due to Theorem 9.1. Let C[t]m denote
the degree m-part of the polynomial ring C[t].

Theorem 9.11 (Macdonald cf. Lusztig-Spaltenstein [LS79]). For each bi-
partition (µ, ν) of n, the Macdonald representation L(µ, ν) is an irreducible
representation of W . Moreover, we have

HomW (L(µ, ν), C[t]m) =

{
0 (m < deg D(µ, ν))

1 (m = deg D(µ, ν))
.
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We define

Wl := 〈sisi+1 · · · sn−1snsn−1 · · · si; 1 ≤ i ≤ n〉 ⊂ W.

We have Wl
∼= (Z/2Z)n. Moreover, we have a short exact sequence of groups

{1} −→ Wl −→ W −→ Sn −→ {1}.

Corollary 9.12. Let λ be a partition of n. We have

HomW (L(λ, ∅), C[t]m) = HomSn(L(λ, ∅), C[t]Wl
m ).

Corollary 9.13. We have

lt(q(Xλ)) ∈ Q

µ1−1∏

i=1

D0
i (λ)×

µ1+ν1−1∏

i=µ1

D+
i (λ).

In particular, the C-span of Jos(Oλ) is isomorphic to L(µλ, νλ) as W -modules.

Proof. We define

q0(λ) :=
∏

i>|µ|

εi ×
∏

i≥0

∏

di<j<k≤di+1

(εj − εk).

The map p : V+ −→ V+/(V1 ⊕ V2) is a B-equivariant fibration. Hence, it
induces the associated map Xλ −→ p(Xλ), which is generically a flat fibration.
By Lemma 9.5, we have p(Xλ) = Vλ ∩ V0. It follows that q0(λ) divides q(λ).

By a dimension counting, we deduce that

2dY := 2 dim EY = codimNGY = deg lt(q(Xλ)) = deg D(µ, ν) (9.1)

for each Y ∈ Oλ.
Applying the argument of [CG97] 6.5.3 and 7.4.1, we know that

H2dY (EY , C) ↪→ H•(B, C) ↪→ C[t]

is some Macdonald representation. (The second inclusion is realized by the har-
monic polynomials realized by T -equivariant fundamental classes.) By [K06b],
this establishes a one-to-one correspondence between the set of Macdonald rep-
resentations and the set of G-orbits of N.

By Lemma 9.5, each Xλ is written as a product of
⊕

1≤i≤|µ| V1[εi] and Xλ ∩

V2. Here we have Xλ ∩ V2 = ẇXγ for some w ∈ Sn and a marked partition γ
which corresponds to a bi-partition (γ, ∅) of n. We have an equality

q(λ) = (
∏

i>|µ|

εi)wq(γ).

The polynomial wq(γ) is fixed by the action of

Sd1 ×Sd2−d1 × · · · ⊂ Sn

since its lift to NG(T ) preserves ẇXγ . Moreover, the action of sn fixes wq(γ)
by the same reason. It follows that sn−dµ1+ν1+1, . . . , sn fixes wq(γ). Moreover,
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permuting the sequence {di − di−1} = {d1, d2 − d1, . . .} changes wq(γ) only by
some element of Sn. Therefore, we conclude that wq(γ) is fixed by the action
of Wl. In particular,

D(µλ, νλ) =
∏

k>|µ|

εk ×
∏

k≥0

∏

dk<i<j≤dk+1

(ε2i − ε2j)

divides q(λ). By the comparison of dimensions, we know deg D(µλ, νλ) =
codimOλ = deg q(λ), which implies the result.

Corollary 9.14. For each marked partition λ, we have 〈Jos(Oλ)〉C = L(µλ, νλ)
as sub-representations of C[t]. !

Acknowledgement The author wants to express his thanks to Professors
Michel Brion, Toshiaki Shoji, and Tonny A. Springer for remarks and discus-
sions. The author also want to express his thanks to Professor George Lusztig,
who carried his attention to [Xue08]. Part of this paper is written during his stay
at MPI Bonn. The author thanks their hospitality and comfortable atmosphere.

References

[Bou02] Nicolas Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Elements of Math-
ematics, Springer-Verlag Berlin 2002 xii+300pp ISBN 0-8176-4191-2

[BK04] Michel Brion, and Sharwan Kumar, Frobenius splitting methods in Geometry
and Representation theory, PM 234 Birkhäuser, 2004. viii+250 pp. ISBN 0-
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