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Abstract

In this paper we give a combinatorial characterization of projections of
geodesics in Euclidean buildings to Weyl chambers. We apply these results to
the representation theory of complex semisimple Lie groups and to spherical
Hecke rings associated with nonarchimedean reductive Lie groups. Our main
application is a generalization of the saturation theorem of Knutson and Tao
for SL,, to other complex semisimple Lie groups.

1 Introduction

In his papers [L1], [L2], P. Littelmann has introduced a path model for the represen-
tations of complex semisimple Lie groups G¥ = GY(C), where G" is a split algebraic
group over Z. The Littelmann’s path model gives a method to compute the structure
constants of the representation ring of GV by counting certain piecewise linear paths,
called LS paths. Let G be the Langlands’ dual of GV, K be a nonarchimedean local

field, G := G(K) and X be a Euclidean (Bruhat-Tits) building associated with G.

In this paper we define a class of PL paths in a Weyl chamber A, called Hecke
paths (see Definition B28), and prove that a path p in A is a Hecke path if and only
if p is the projection (into A) of a geodesic segment in the building X. The Hecke
paths play the same role in computation of the structure constants for Hg as the LS
paths (in Littelmann’s path model) play for computation of structure constants in
the representation ring of GV. Here Hg is the spherical Hecke algebra associated with
the group G. Hecke paths are defined by eliminating one of the axioms for LS paths,
therefore each LS path for GV is a Hecke path for G.

The converse relation is more subtle: For certain generalizations of the notions
of Hecke and LS path, dilation of a generalized Hecke path by a uniform factor kg
is a generalized LS path. The number kg is the saturation factor of the root system
R (associated with G), defined as follows. Let BY denote a Borel subgroup of G
containing a maximal torus TV C GV. Let L C P(R") denote the character lattice
of TV. Assume that the root system of GV relative to TV is RY. Let aq,...,o; be



the simple roots (using the ordering corresponding to BY). Let wy,...,w; be the
fundamental coweights (the elements of the basis of t dual to the basis of simple
roots). Let 6 be the highest root and define positive integers my, ..., m; by

l
0= E m;o;.
=1

Then kg is the least common multiple of the numbers m;, 1 = 1,...,1. We refer to
section for the computation of kg.

One of our main results is the following theorem (see section[), which, in a weaker
form, has been conjectured by S. Kumar:

Theorem 1.1 (Saturation theorem). Let GV and L be as above. Suppose that
a,B,v € L are dominant characters such that o« + 5+~ € Q(RY) and that there
exists N € N so that

(Viva ® Vivg @ Vivy)? # 0.
Then for k = kr we have:

(Via ® Vig ® Vi) £ 0.

Here and in what follows V) is the irreducible representation of GV associated
with the weight A of GV.

Observe that for R = A;, kg = 1 and thus we get the saturation theorem of
A. Knutson and T. Tao [KT] for SL;;; as a special case of Theorem [Tl

Question 1.2. Is it true that if G is a simple simply-laced group, then in Theorem
[ one can always take k = 1 and in the case of non-simply laced groups the smallest
k which suffices is k =27

The affirmative answer to this question is supported by the group G when we get
the saturation constant 2 rather than the number 6 listed in section (see [KLM3]),
as well as by a number of computer experiments with the exceptional root systems
and the root systems Dy.

Using the results of [KLM2, [KLLM3] one can reformulate Theorem [l as follows:

Theorem 1.3. Let W,,, and A denote the finite Weyl group and its positive Weyl
chamber associated with GV. Then there exists a convex homogeneous cone Ds C A3,

the solution set of the generalized triangle inequalities, which depends only on Wy, |
so that the following hold:

1. If a triple (o, B,7) € (AN L)? satisfies
(Va® V3@ V,)"" #£0,

then («, 3,v) € D3 and
a+B+v€Q(RY).

2. “Conversely”, if (o, 8,7) € kr- L> N D3 and o+ B+ € kr - Q(RY), then
(Va@ V3 V,)¢ #0.



This theorem partially confirms the following more precise conjecture of Knutson
and Tao:

Conjecture 1.4 (A. Knutson, T. Tao, [KT]). Suppose that (o, 3,7) € D3 N L?
are such that o+ 4+~ € Q(RY) and furthermore

(a+ B+7)(w;) =0 mod m;, 1 <i<I.

Then
(Va® Va3 V)9 #0.

Remark 1.5. The condition o + 4+ v € Q(RY) is equivalent to the condition that
the numbers (o + 8 + v)(w;) are integers. The above congruence conditions (when
they are nontrivial, i.e. m; > 1) imply that the character a+ 3+~ of TV annihilates
those elements in TV whose centralizers in GV are mazimal subgroups of the rank [
which are semisimple.

Another result of our paper is a geometric proof of Theorem 9.17 in [KLM3] which
was originally proven via Satake correspondence (another, algebro-geometric proof,
was given by Tom Haines in [Hal). To state this theorem we need several definitions.
Suppose that K is a local field with discrete valuation and finite residue field, G is
a reductive split algebraic group over Z. Set G := G(K), G¥ := G"(C). The lattice
L C P(RY) defined above is the cocharacter lattice of a maximal torus 7' C G. Let
‘H = H¢ denote the spherical Hecke ring corresponding to G this ring is generated
by certain characteristic functions cy, A € P(RY) N A. The multiplication on H is
defined via the convolution product x. Define the structure constants m, g(7y) for H
by

T S
ol

We refer the reader to section X8, [Gro] and [KLM3] for more details. Let X be the
(locally compact) Bruhat-Tits building associated with G. The structure constants
for ‘H are related to the geometry of Fuclidean buildings via the following

Theorem 1.6 (See [KLM3]). m,s(y) # 0 if and only if there exists a geodesic
triangle T C X whose vertices are special vertices of X and whose A-side lengths are

a, 8,7

Remark 1.7. One can also compute the structure constants mq g(y) by counting the
number of triangles in X, see section [Z4.

Finally,

Theorem 1.8 (Theorem 9.17 in [KLLM3], Theorem of the this paper).
Suppose that o, 3,7 € LN A are dominant weights such that

(Va®@ V3 V,)E #0. (1)

Then in the Euclidean building X there exists a geodesic triangle whose vertices are
special vertices of X and A-side lengths are o, 3,7. FEquivalently, [) implies that

Ma,p(7) # 0.



In section B2 we prove a characterization theorem for folded triangles (this is the
most difficult result of this paper), which implies:

Theorem 1.9. There exists a geodesic triangle T' C X whose vertices are special
vertices of X and whose A-side lengths are o, 3,7* if and only if there exists a Hecke
path p € P of the A-length 3 so that

a+p(l) =7
and the concatenation 7, * p is contained in A.

Here and in what follows 7, is the geodesic path parameterizing the directed
segment 0 = a. See Figure [l

Then, by combining theorems [LH and [CY, we obtain

Theorem 1.10. m,5(y) # 0 if and only if there exists a Hecke path p € P of the
A-length 3 such that

a+p(l) =y

and the concatenation m, * p is contained in A.

This theorem is an analogue of Littelmann’s decomposition formula, [L2, Page
500]; there are some interesting similarities between it and the results of S. Gaussent
and P. Littelmann in [GIJ. For instance, the Hecke paths appear to be geometric
analogues of the positively folded galleries defined in [GLJ; Corollary seems to
correspond to Theorem B in [GIJ. However the precise relation between the present
paper and [GI] is unclear to us at this moment, for instance, it does not seem that
our main application, Saturation Theorem [}, follows from the results of [GIJ.

The important difference between the Theorem [LT0 and Littelmann’s decompo-
sition formula is that in Littelmann’s path model the multiplicities of irreducible
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components in tensor products equal the number of LS paths. To the contrary, to
compute the structure constants m, g(7y) one has to count the number geodesic seg-
ments in X which project to the given Hecke path. This computation is done in
section under certain extra hypothesis, see Corollary B.16 the general case will
be discussed in another paper.

This paper is organized as follows. Preliminary material is discussed in section
Bl, where we review the concepts of Coxeter complexes, buildings and PL paths in
buildings, as well as the generalized distances in buildings. In section B we define the
notion of chains, which is essentially due to Littelmann. This concept allows one to
define both LS paths and Hecke paths, as well as to relate Hecke paths and foldings
of geodesic paths, which is discussed in the next section.

The main technical tool of this paper is the concept of folding of geodesics in a
building into an apartment, which is done via retraction of the entire building to an
apartment or chamber. ! Properties of foldings are discussed in section Bl In section
we prove that the image of each geodesic segment in X under folding f : X — A
of X to a Weyl chamber, satisfies chain condition and hence is a Hecke path, Theorem
EETA We then prove a partial converse to this result, i.e. that each Hecke path which
satisfies a simple chain condition can be unfolded in X. We also find a necessary and
sufficient condition for unfolding of a path p which is local, i.e. it depends only on
germs of the path p at its break-points.

In section Bl we review Littelmann’s path model for the representation theory of
complex semisimple Lie groups, in particular we discuss LS paths and generalized LS
paths as well as raising and lowering operators.

We use approzimation of LS paths by paths satisfying simple chain condition to
unfold LS paths in X, Theorem in section B Although there are Hecke paths
which are not LS paths, since unfolding condition is local, by restricting the root
system we reduce the general unfolding problem to the case of the LS paths. We thus
establish that a path in A is unfoldable in X it and only if it is a Hecke path, this
is done in section B2, Theorem We also show (under certain extra hypothesis)
how to use Hecke paths to compute structure constants of the Hecke ring. The reader
interested only in the proof of the saturation theorem can omit this section.

We prove the saturation theorem in section [, Corollary [[ 4. The idea of the proof
is to replace Hecke paths with PL paths contained in the 1-skeleton of the Euclidean
Coxeter complex. We show that dilation by kg of such a path results in a generalized
LS path which in turn suffices for finding invariant subspaces in triple tensor products.
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2 Definition and notation

2.1 Root systems and Coxeter complexes

A (discrete, nonnegatively curved) Cozeter complex is a pair (A, W), where A is either
a Fuclidean space or the unit sphere and W is a discrete reflection group acting on
A. The rank of the Coxeter complex is the dimension of A.

Remark 2.1. There are also Fuclidean Cozeter complexes which are nondiscrete
(i.e. the group W is nondiscrete, but has discrete linear part), as well as hyperbolic
Coxeter complexes, where one uses reflection groups of isometries of the hyperbolic
space. However we do not need them in the present paper.

An isomorphism of Coxeter complexes (A, W), (A’, W’) is an isometry ¢ : A — A’
so that
Wt =W

Walls in (A, W) are fixed point sets of reflections 7 € W. A point = € A is called
reqular if it does not belong to any wall and singular otherwise. The closure of each
connected component of the set of regular points is called an alcove in the Euclidean
case and a chamber in the spherical case.

In the case when W acts cocompactly on A, each alcove (resp. chamber) is a
product (resp. join) of simplices and (A, W) determines structure of a polysimplicial
complez on A. In general there exists a totally-geodesic subspace A" C A which is
W—invariant and such that A’/W is compact. Therefore each alcove in A is a product
of simplices and a Euclidean subspace in A. Thus much of the discussion of Euclidean
Coxeter complexes can be reduced to the case when A/W is compact.

Remark 2.2. A triangulation of a fundamental alcove (chamber) in A determines a
W —invariant simplicial complex on A. Thus we can always think of A as a simplicial
complex.

A half-apartment in A is the closure of a connected component of A\ H, where
H is a wall in A.

“Most” Coxeter complexes are associated with root systems as we describe below.
Suppose that R is a root system on a vector space V (i.e. each element o € R is a
linear functional on V). The rank of R is the number of simple roots in R, i.e. is the
rank of the free abelian subgroup in V* generated by R. Let A denote a Euclidean
affine space corresponding to V. This data defines a finite Coxeter group Wy, which
is a reflection group generated by reflections in the hyperplanes H, = {z : a(z) = 0}.
Weyl chambers of Wy, are closures of the connected components of the complement
to

UacrHa-

In what follows we fix a positive Weyl chamber A, it determines the subset of positive
roots Rt C R and of simple roots ® C R*. We also have the group of coweights



P(RY) associated with R:
A€ P(RY) < YaeR, «a\eZ.

Let W,ss denote the affine Cozxeter group determined by the above data, this group
is generated by reflections in the hyperplanes (affine walls)

H,,={a(x) =t} t € Z.

The translation subgroup in W,y is the coroot lattice Q(RY), it is generated by
the coroots ", v € R. The group P(RY) is the normalizer of Wy in the group of
translations V. Note that V/P(RY) is compact. The dimension of this quotient is
the same as the dimension of V' provided that rank(R) equals the dimension of V.

The special vertices of a Euclidean Coxeter complex are the points whose stabilizer
in W, is isomorphic to W,,. Equivalently, they are the points in the P(RY)-orbit
of the origin.

Remark 2.3. If A/W,s is compact, the special vertices of (A, W,yrs) are vertices of
the polysimplicial complex determined by Wyss.

Given a Coxeter complex (A, W) and a point x € A we define a new Coxeter
complex (S, W,) where S, is the unit tangent sphere at x and W, is the stabilizer
of z in W.

For a nonzero vector v € V' we let v := v/|v| denote the normalization of v. We
define rational elements of the unit sphere S to be the unit vectors of the form

n=rv, vePR.
The next lemma follows immediately from compactness of V/P(RY):

Lemma 2.4. Rational points are dense in S.

Suppose that (A, W) is a Euclidean Coxeter complex. A dilation of (A, W) is a
dilation h (i.e. a composition of translation and similarity v — Av, A > 0) in the

affine space A so that
RWh™t C W.

We let Dil(A, W) denote the semigroup of dilations of the complex (A, W). We will
refer to the number A\ as the conformal factor of the dilation h.

Given a point x € A and a dilation h € Dil(A, W), we can define a new spherical
Coxeter complex (S;, W) on the unit tangent sphere S, at x via pull-back

where Wi, is the stabilizer of h(x) in W.



Definition 2.5. Suppose that W is a finite Coxeter group acting on a vector space
V. Define a (nontransitive) relation ~y on V' \ {0} by

Wo~w Vo=

i, v belong to the same Weyl chamber of W'.
We will frequently omit the subscript W in this notation.

Definition 2.6 (See [L2], page 514). We say that nonzero vectors v, € V' satisfy
v >w i (for short, v > u) if for each positive root «,

a(v) > 0= a(u) >0.

Lemma 2.7. Suppose that v, € P(RY), w € W = W,y is such that w(v) = p.
Then

p—veQ(RY).

Proof: The mapping w is a composition of reflections 7; € W. Therefore it suffices to
prove the assertion in case when w is a reflection 7. This reflection is a composition of
a translation ¢ and a reflection 0 € W,. The translation ¢ belongs to the translation
subgroup Q(RY) of W, therefore it suffices to consider the case when 7 = o € W,
Then 7 = 75, where (3 is a root and we have

p—v=-—p)ps"

Since f(v) € Z and ¥ € Q(RY), the assertion follows. O

2.2 Paths

Suppose that A, V, Wy, etc., are as in the previous section.

Let P denote the set of all PL paths p : la,b] — V. We will be identifying paths
that differ by orientation-preserving re-parameterizations [a, b] — [a’,V']. Accordingly,
we will always (re)parameterize a PL path with the constant speed. We let p’ (¢), p’ (%)
denote the derivatives of the function p from the left and from the right. The space
P will be given the topology of uniform convergence.

If p,q:[0,1] — A are PL paths in a simplicial complex such that p(1) = ¢(0), we
define their composition r = pU q by

(t), te0,1],
Mﬂ:{ﬂ?&)te@%

Let P C P denote the set of paths p : [0,1] — V such that p(0) = 0. Given a path
p € P we let p* € P denote the reverse path

p(t) =p(1—1t) —p(1).



For a vector A € V define a geodesic path m, € P by
7T)\(t) =t\, te [0,1].
Given two paths py, ps € P define their concatenation p = py * ps by

(2t), telo,1/2],
p(t) = { (1) ﬁm(% —-1), tell/2,1].

Suppose that p € P and J = [a,b] is nondegenerate subinterval in I = |0, 1].
We will use the notation p|J € P to denote the function-theoretic restriction of p to
[a,b]. We will use the notation p|; to denote the path in P obtained from p|J by
pre-composing p|J with an increasing linear bijection ¢ : [ — J and post-composing
it with the translation by the vector —p(a).

Fix a positive Weyl chamber A C V; this determines the set of positive roots
R* C R, the set of simple roots ® C RT. We define the subset P* C P consisting of
the paths whose image is contained in A.

For a path p € P and a positive root a € R* define the height function

ha(t) = a(p(t))

on [0,1]. Let my, = mq(p) € R denote the minimum of h,. Clearly m,(p) < 0 for all
p € P. We set

Pr:={peP:Vaec dm,p) €Z}.
More restrictively, we define the set Pz, of paths p € P which satisfy the following
local integrality condition:

For each simple root a € ® the function h, takes integer values at the points of
local minima.

2.3 The saturation factors associated to a root system

In this section we define and compute saturation factors associated with root systems.
Let A© denote the verter set of (A, W,s;), which consists of points of maximal
intersection of walls in A. If R spans V*, the set A® equals the vertex set of the
polysimplicial complex in A defined by tessellation of A via alcoves of W,ss. Let
o € A be a special vertex, which we will identify with 0 € V.

Definition 2.8. We define the saturation factor kg for the root system R to be the
least natural number k such that k- A® C P(RY) -o. The numbers kg for the
irreducible root systems are listed in the table (3).

Note that the condition that k- A® C P(RY) - o is equivalent to that each point
of k- A is a special vertex.

Below we explain how to compute the saturation factors kg following [KLM3].
First of all, it is clear that if the root system R is reducible and Ry, ..., R, are its
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irreducible components, then kg = LCM (kg,, ..., kg,), where LC'M stands for the
least common multiple. Henceforth we can assume that the system R is reduced,
irreducible and has rank n = dim(V’). Then the affine Coxeter group W, acts
cocompactly on A and its fundamental domain (a Weyl alcove) is a simplex.

Let {ay, ..., a,, } be the collection of simple roots in R (corresponding to the positive
Weyl chamber A) and # be the highest root. Then

0= imiai. (2)
i=1

We have

Lemma 2.9 (See Section 2 of [KLM3]). kr = LCM(my,...,m,).

Below is the list of saturation factors:

Root system 0 kr
Ag o]+ ...+ 1
By a1+ 2009 + ... + 20 2
Cy 2001 + 209 + ...+ 201 + 2
Dg Oé1+0é2+0z3+20z4—|—...—|—20zg 2
G2 30(1 + 20[2 6 (3)
F4 20(1 + 3@2 + 40[3 + 20[4 12
E6 o]+ o+ 20&3 + 20(4 + 20(5 + 30&6 6
E7 o+ 20&2 + 20&3 + 20&4 + 30&54‘ 12

+3ag + dar
Eg 20&1 + 20&2 + 30&3 + 30&4 + 40(5"‘ 60
+4a + bay + bag

2.4 Buildings

Our discussion of buildings follows [KLJ]. We refer the reader to [Bi, [Ron], [Roul for
the more combinatorial discussion.

Fix a spherical or Euclidean (discrete) Coxeter complex (A, W), where A is a
Euclidean space E or a unit sphere S and W = W,s; or W = Wy, is a discrete
Euclidean or a spherical Coxeter group acting on A.

A metric space Z is called geodesic if any pair of points x,y in Z can be connected
by a geodesic segment Ty.

Let Z be a metric space. A geometric structure on Z modeled on (A, W) consists
of an atlas of isometric embeddings ¢ : A — Z satisfying the following compatibility
condition: For any two charts ¢; and s, the transition map o, o is the restriction
of an isometry in W. The charts and their images, p(A) = a C Z, are called apart-
ments. We will sometimes refer to A as the model apartment. We will require that
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there are plenty of apartments in the sense that any two points in Z lie in a common
apartment. All W-invariant notions introduced for the Coxeter complex (A, W), such
as rank, walls, singular subspaces, chambers etc., carry over to geometries modeled on
(A, W). If a,a’ C X are alcoves (in the Euclidean case) or chambers (in the spherical
case) then there exists an apartment A’ C X containing a U a’: Just take regular
points x € a,x’ € a’ and an apartment A’ passing through x and z’.

A geodesic metric space Z is said to be a CAT(k)-space if geodesic triangles in
Z are “thinner” than geodesic triangles in a simply-connected complete surface of the
constant curvature k. We refer the reader to [Bal for the precise definition. Suppose
that Z is a (non-geodesic) metric space with the discrete metric:

dz,y) =7 < z #v.
We will regard such a space as a CAT'(1) space as well.

Definition 2.10. A spherical building is a CAT(1)-space modeled on a spherical
Cozeter complez.

Spherical buildings have a natural structure of polysimplicial piecewise spheri-
cal complexes. We prefer the geometric to the combinatorial view point because it
appears to be more appropriate in the context of this paper.

Definition 2.11. A Euclidean building is a CAT(0)-space modeled on a (discrete)
Euclidean Coxeter complex.

A building is called thick if every wall is intersection of apartments. Thickness
t(H) of a wall H is the number of half-apartments in X bounded by H. For buildings
associated with algebraic groups, the number ¢(H) is independent of H and is called
thickness of the building. A non-thick building can always be equipped with a natural
structure of a thick building by reducing the Coxeter group.

Example 2.12. Let X be a (discrete) Euclidean building, consider the spaces of
directions X, X. We will think of this space as the space of germs of non-constant
geodesic segments Ty C X. As a polysimplicial complex ¥, X is just the link of the
point x € X. The space of directions has structure of a spherical building modeled on
(S, Wepn), which is thick if and only if x is a special vertex of X, see [KL)J. The same
applies in the case when X is a spherical building, only 3. X is a spherical building
modeled on (S, Wpn).

Let B be a spherical building modeled on a spherical Coxeter complex (.S, Wipp).
We say that two points x,y € B are antipodal, if d(z,y) = 7; equivalently, they are
antipodal points in an apartment S’ C B containing both z and y. The quotient map
S — S/Wepn = Ay, induces a canonical projection 6 : B — Ay, folding the building
onto its model Weyl chamber. The #-image of a point in B is called its type.

Remark 2.13. To define 0(x) pick an apartment S" containing x and a chart ¢ :
S — S’. Then 0(x) is the projection of ¢~ (x) to S/Wpn = Agpn. We note that this
1s clearly independent of S and ¢.
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Lemma 2.14. 1. Ifh: A — A" is an isomorphism of apartments in B (i.e. ¢/ ' o
hope W) then§oh=280.

2. If z, 2’ € B which belong to apartments A, A’ respectively and —x € A, —x' € A’
are antipodal to z, ', then 0(x) = 0(x') implies O(—x) = O(—2').

Proof: (1) is obvious, so we prove (2). Pick an isomorphism h : A — A’. Then
(since O(x) = 6(2')) there exists w € W ~ A’ such that w(h(x)) = 2’. Hence
wo h(—x) =—wo (x) = —2’. The claim now follows from 1. O

We will regard n-gons P in a building X as maps v : {1,...n} — X, v(i) = z;,
where x; will be the vertices of P. If rank(X) > 1 we can connect the consecutive
vertices x;, x;11 by shortest geodesic segments 7;7,;;7 C X thus creating a geodesic
polygon [x1, 9, ..., x,] in X with the edges T;7;71. Observe that in case z;, z;41 are
antipodal, the edge 7;7;1 is not unique.

We say that two subsets I, I in a building X are congruent if there exist apart-
ments A, A’ in X containing F, F’ resp., and an isomorphism A — A’ of Coxeter
complexes which carries I’ to F’.

Convention 2.15. Suppose that X is a spherical building. We will be considering
only those geodesic triangles T in X for which the length of each geodesic side of T
18 < .

Let K be a local field with a (discrete) valuation v and valuation ring O. Given
a split algebraic group G over Z, and a nonarchimedean Lie group G = G(K) we can
associate with it a Euclidean building (a Bruhat-Tits building) X = Xs. We refer
the reader to [BT], [KLM3] and [Rou] for more detailed discussion of the properties
of X. Here we only recall that:

1. X is thick and locally compact.

2. X is modeled on a Euclidean Coxeter complex (A, W,rr) whose dimension
equals the rank of GG, and the root system is isomorphic to the root system of G.

3. X contains a special vertex o whose stabilizer in G is G(O).

If X is a Euclidean building modeled on (A, W), for each point x € X the space
of directions ¥, (X) has two structures of a spherical building:

1. The restricted building structure which is modeled on the Coxeter complex
(S, W,), where S = S,(A) is the unit tangent sphere at x and W, is the stabilizer of
x in the Coxeter group W. This building structure is thick.

2. The unrestricted building structure which is modeled on the Coxeter complex
(S, Wepp), where S = S;(A) is the unit tangent sphere at x and Wy, is the linear
part of the affine Coxeter group Wys¢. This building structure is not thick, unless z
is a special vertex.

Let X,Y be buildings and f : X — Y a continuous map satisfying the following:
For each alcove (in Euclidean case) or spherical chamber (in the spherical case) a C X,
the image f(a) is contained in an apartment of Y and the restriction f|a is either an
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isometry. Then we call f differentiable and define the derivative df of f as follows.
Given a point x € X and y = f(z), the derivative df, is a map ¥,(X) — 3, (Y). For
each £ € ¥,(X) let Tz C X be a geodesic segment whose interior consists of regular
points only and so that £ is the unit tangent vector to *z. Then f sends Tz to a
nondegenerate geodesic segment y f(z) contained in an apartment A C Y. Then we
let df, (&) € £,(Y) be the unit tangent vector to yf(z).

We will be also using the above definition in the setting when a building Y is a
Euclidean Coxeter complex (A, W) and h € Dil(A,W). Then X := h*(A,W) and
h: X — Y is an isometry.

Convention 2.16. Throughout the paper we will be mostly using roman letters x,y, z,
etc., to denote points in Fuclidean buildings and greek letters £,n,(C, etc., to denote
points in spherical buildings. Sometimes however (e.g., in section [[.3) we will be
working simultaneously with a spherical bulding X and its links ¥,(X), which are
also spherical buildings. In this case we will use roman letters for points in X and
greek letters for points in ¥, (X).

2.5 Generalized distances and lengths in buildings

Let (A, W) be a spherical or Euclidean Coxeter complex. The complete invariant of
a pair of points (z,y) € A? with respect to the action W ~ A, is its image d,s(z,y)
under the canonical projection to A x A/W. We call d,.f(x,y) the refined distance
from x to y. This notion carries over to buildings modeled on the Coxeter complex
(A,W): For a pair of points (z,y) pick an apartment A’ containing x,y and, after
identifying A" with the model apartment A, let d,.r(z,y) be the projection of this
pair to A x A/W.

If points &, n in a spherical building are antipodal we will use 7 for the refined dis-
tance d,f(&,n): This does not create much ambiguity since given apartment contains
unique point antipodal to &.

In the case of Euclidean Coxeter complexes there is an extra structure associated
with the concept of refined length. Given a Euclidean Coxeter complex (A, Wyys),
pick a special vertex o € A. Then we can regard A as a vector space V', with the
origin 0 = 0. Let A C A denote a Weyl chamber of W, the tip of A is at o.

Then we define the A-distance between points of (A, W,ss) by composing d,.s
with the natural forgetful map

AX A/ Wags — A/ Wepn =

To compute the A-distance da(x,y) we regard the oriented geodesic segment Ty as
a vector in V' and project it to A. Again, the concept of A-distance, carries over to
the buildings modeled on (A, W,yy).

Definition 2.17. Let X be a thick Fuclidean building. Define the set D, (X) C A"
of A-side lengths which occur for geodesic n-gons in X.
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It is one of the results of [KLM2] that D, := D,(X) is a convex homogeneous
polyhedral cone in A", which depends only on (A, Wy,,). The polyhedron Dj in
Theorem is the polyhedron D3(X). The set of stability inequalities defining D, is
determined in [KLMI] and [BS].

Theorem 2.18 (See Corollary 8.4 in [KLM3]). Let X be a thick Fuclidean
building modeled on (A, Wayss). Suppose that o, 3,7 € P(RY), a+ 3+ v € Q(RY)
and (a, 3,7) € D3(X). Then there exists a geodesic triangle T C X whose vertices
are vertices of X and the A-side lengths are «, (3,7.

Suppose that p is a PL path in a Euclidean building X. We say that p is a billiard
path if for each ¢, s € [0, 1] the tangent vectors p/(t), p’(s) have the same projection to
the chamber A in the model apartment. If p is a path which is the composition

To1 U...UTyn1Tm

of geodesic paths, then the A-length of p is defined as
lengtha (p) := Z da(mi_y1, ;)
i=1

where da(z,y) is the A-distance from x to y

Each PL path p admits a unique representation

p=p1U..Up,

as a composition of maximal billiard subpaths so that
Ai = lengtha (pi)-

We define
length , (p) := A = (A1, ..., ).

Clearly, lengtha(p) is the sum of the vector components of \.

2.6 The Hecke ring

In this section we review briefly the definition of spherical Hecke rings and their
relation to geometry of Euclidean buildings; see [Grol [IKLM3] for more details.

Let K denote a locally compact field with discrete valuation v with finite residue
field of order q. Pick a uniformizer 7 € K for the valuation v. Let O denote the
subring in K which consists of elements with nonnegative valuation.

Consider a connected reductive algebraic group G over K. We fix a maximal split
torus T C G defined over O. We put G := G(K), K := G(O) and T := T'(K). We let
B C G be a Borel subgroup normalized by T and set B := B(K).
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Let X denote the Bruhat-Tits building associated with the group G; 0o € X is a
distinguished special vertex stabilized by the compact subgroup K.

We also have free abelian cocharacter group X, (') of T’ whose rank equals dim(ZT’).
This group contains the set of coroots RY of the group G. The roots are the characters
of T that occur in the adjoint representation on the Lie algebra of G. The subset
R™ of the roots that occur in representation on the Lie algebra of B forms a positive
system and the indecomposable elements of that positive system form a system of
simple roots ®. We let W denote the corresponding (finite) Weyl group.

The set of positive roots ® determines a positive Weyl chamber IT" in X, (T), by
It ={Xe X, (T): (\a)>0,ac d}.

This chamber is a fundamental domain for the action of W on X, (7).

We define a partial ordering on IIT by A\ > p iff the difference A — p is a sum of
positive coroots.

Definition 2.19. The (spherical) Hecke ring H = Hg is the ring of all locally con-
stant, compactly supported functions f : G — 7Z which are K-biinvariant. The
multiplication in 'H is by the convolution

fg(z) = / f(@) - gla2)dz

where dx is the Haar measure on G giving K volume 1.

The ring H is commutative and associative. For A € X,(T) let ¢, be the char-
acteristic function of the corresponding K-double coset A(7) € K\G/K. Then the
functions cy, A € A freely generate H as an (additive) abelian group. The structure
constants for H are defined by the formula

CA* €y = mew(y)cy = Cyyp + Zm,\,u(y)c,,, (4)

where the last sum is taken over all v € II" such that A + g > v and therefore is
finite.

It turns out that the structure constants m, ,(v) are nonnegative integers which
are are polynomials in ¢ with integer coefficients. These constants are determined
by the geometry of the building as follows. Given «, (3,7 let T = 7, 5(y) denote
the (finite) set of geodesic triangles [0, x,y] in the building X which have the A-side
lengths «, 3, ~v*, so that y is the projection of the point

y(m)yeT CG

into X under the map g — ¢ - 0. Recall that v as a cocharacter and therefore it
defines a homomorphism K* — T

Theorem 2.20 (Theorem 9.11, [KLM3]). m,3(7) equals the cardinality of T .
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3 Chains

3.1 Absolute chains

Let R be aroot system on a Euclidean vector space V', W = W, be the finite Coxeter
group associated with R, let W,¢; denote the affine Coxeter group associated to R.
Our root system R is actually the coroot system for the one considered by Littelmann
in [L2]. Accordingly, we will switch weights to coweights, etc. We pick a Weyl
chamber A for W, this determines the positive roots and the simple roots in R. Let
—A denote the negative chamber.

We get the Euclidean Coxeter complex (A, W,ss), where A = V' and the spherical
Coxeter complex (S, W) where S is the unit sphere in V. By abusing notation we
will also use the notation A, —A for the positive and negative chambers in (S, W).
We will use the notation (A, W, —A) for a Euclidean /spherical Coxeter complex with
chosen negative chamber. More generally, we will use the notation (A, Wesy,a) for a
Euclidean Coxeter complex with chosen alcove a.

Figure 1: A chain.

Definition 3.1. A W—chain in (A, W, —A) is a finite sequence (1, ..., M) of nonzero
vectors in 'V so that for each i = 1,...,m there exists a positive root 3; € Rt so that
the corresponding reflection 7; :== 15, € W satisfies

1. Ti(ni—l) =T1;-

2. 61(771_1) < 0.
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Sometimes we will refer to a chain as a (V, W, —A)-chain to emphasize the choice of
V, W and A. When the choice of W is clear we will frequently refer to W -chains as
chains.

Remark 3.2. One could call these chains (V, W, A)-chains instead, but this definition
would not generalize to affine chains.

Recall that 7; is the reflection in the wall H; = {#; = 0}. More geometrically
one can interpret the condition (2) by saying that the wall H; separates the negative
chamber —A from the vector n;. In other words, the reflection 7; moves the vector
ni—1 “closer” to the positive chamber.

The concept of a chain generalizes naturally to Euclidean Coxeter complexes
(A, Woyr). Pick an alcove a in A.

Definition 3.3. An affine chain in (A, Wysp,a) is a finite sequence (1o, ..., Nm) of
elements in A so that for each i = 1,...,m there exists a reflection 7, € Wesp such
that

1. Ti(ni—l) =1
2. The hyperplane H; C A fized by 7; separates a from ;.

We now return to the chains as in definition Bl By restricting vectors 7; to have
unit length we define chains in the spherical Coxeter complex, see Figure [l

Definition 3.4. The points n; as in Definition [Z1 will be called vertices of the chain.
We will say that the chain begins at ny and ends at n,,, or that this chain is between
No and Ny,. We refer to a subsequence (1;,Miv1, .-, Mm) as a tail of the chain.

We will refer to the number m as the length of the chain. A chain (1;) is called
simple if it has length 1. Set

disty (v, ) = dist(v, p)
to be the maximal length m of a W-chain which begins at v and ends at p.
Remark 3.5. If in a chain (n;) we have
dist(ni—1,m;)) =1, Vi=0,...,m,
then, of course, dist(ng, nm) < m.

Given a chain (no, ..., n,,) we define a subdivision of this chain to be a new chain
in (A, W) which is still a chain between 7 and 7,, and which contains all the vertices
of the original chain.

The concept of chain determines a partial order on the W-orbits in V:

Definition 3.6 (See [L2], page 509). For a pair of nonzero vectors v, € V. which
belong to the same W -orbit, write v >y p (or simply v > ) if there exists a W-chain
between v and p. Accordingly, v > X if v > X and v # \.
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Lemma 3.7. Suppose that v > p and « is a positive root such that a(p) < 0. Then

v 2 Ta(p).

Proof: If a(u) = 0 then 7,(p) = p and there is nothing to prove. Thus we assume
that () < 0. Consider a chain (v = vy, ...,vs = ). Then, since a(u) < 0, we also
have a(7,(p)) > 0 and thus we get a longer chain

(v=1p,....,vs = p, 7(p)). O
The word metric dy, on the finite Coxeter group W defines the length function
C:W-A—N

by
((p) := min{dy (w,1) : w € W,w ' (n) € A}.

Lemma 3.8. If v > p then ((v) > {(u).

Proof: 1t suffices to prove the assertion in the case when

p=r1(v),r=r"s,

where (3 is a positive root, 5(v) < 0,5(u) > 0. If W = Z/2 the assertion is clear,
so we suppose that it is not the case. Then we can embed the Cayley graph I' of W

as a dual graph to the tessellation of V' by the Weyl chambers of W. Suppose that
v € w(A), then the wall Hg = {8 = 0} separates w™(A) from A, where w € W
is the shortest element such that w(v) € A. Let p : [0,1] — I' denote the shortest
geodesic from 1 to w in I'. The path p crosses the wall H at a point x = p(T"). We
construct a new path ¢ by

QHOvT]:pHOvT]v QHTvl]:wopHTvl]’

The path ¢ connects 1 € A to the Weyl chamber 7w(A) containing p. This path
has a break-point at x, which is not a vertex of the Cayley graph. Therefore, by
eliminating the backtracking of ¢ at x, we obtain a new path which connects 1 to
Tw(A) and whose length is one less than the length of p. O

Corollary 3.9. The length of a chain in V' does not exceed the mazximal length of a
chain in the Bruhat order on W.

Corollary 3.10. Suppose that v € A and v > . Then = v.

Proof: Since v € A, ¢(v) = 0. Hence by Lemma B, (1) = 0, which implies that
w="v. 0

Lemma 3.11. Suppose that v = w(u) # 0 for some w € W and v > u. Then v > p.
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Proof: Let A be the positive Weyl chamber. Suppose that A is a chamber containing
v and A’ is a chamber containing p. These chambers are nonunique, but we can choose
them in such a way that for all £ € Ay, &' € A/

(e ¢
In other words, if a wall separates A’ from A then it also separates Ay from A. Let
(Ao, Ay, .., Ay = A)

be a gallery of Weyl chambers, i.e. for each i, A; N A; ;1 is a codimension 1 face F; of
A;; A 1. We choose this gallery to have the shortest length, i.e. so that the number
m is minimal. Let H; be the wall containing F; and 7; be the reflection in H;. We
claim that the sequence

(v =n0,m =T1(N0), -, 1t = N = Ton(Nm—1),

after deletion of equal members, is a chain.

Our proof is by induction on m. If m = 0 and v = p, there is nothing to prove.
Suppose the assertion holds for m — 1, let us prove it for m. We claim that for all
points & € Ay, & € Ay, & > & Indeed, otherwise the wall H; does not separate A
from A, but separates A; from A. Then H; does not separate A,, from A either.
Thus, as in the proof of Lemma B8, we can replace the gallery (Ag, Ay, ..., A,,) with
a shorter gallery connecting A, to A/, contradicting minimality of m. Now, clearly,

Mo = M1, Mo B> M-

Therefore, by the induction

Mo =M 2 Nm = V=102 N, =p L

Remark 3.12. The converse to the above lemma is false for instance for the root
system As. See Figure[d, where ng > ny but ng 1 1.

As a corollary of Lemma BT1 we obtain:
Lemma 3.13. Let v € V' \ {0} and let p be the unique vector in W - v which belongs
to A. Thenv > p.
Proof: Clearly, v > u. Then the assertion follows from Lemma BTl O

Definition 3.14 (Maximality condition). We say that a chain (1o, M1, ..., D) 1S
maximal if it cannot be subdivided into a longer W-chain. Equivalently,
dist(n;,mis1) = 1 for each i =0,...,m — 1.

Lemma 3.15. Suppose that v > p, and there exists a simple root 3 such that 75(v) =
w and B(v) < 0. Then dist(v, u) = 1.
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Figure 2: A chain.

Proof: Consider a chain from v to u, i.e. a sequence of vectors v = vy, vy, ..., Vs =
and positive roots (31, ..., #s so that

v =75,(v;iz1) and  Bi(vimp) < 0,i=1,..s.

Then
w—=v= _ﬂ(y)ﬂv’
and .
H—rv= Z —52'—1(%)@/-
i=1
Thus
> <Vi7 ﬂ\/)
f= O
; (v,
i.e. the simple root (3 is a positive linear combination of positive roots. It follows that
s=1and §; = 0. O

3.2 Relative chains

1. Chains relative to a root subsystem.

Let R be aroot system on V' with the set of simple roots ®, W be the corresponding
Weyl group. Let & C ® be a subset, W' C W the corresponding reflection subgroup
and A’ the positive chamber for W/, defined by the property that all simple roots
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a € ¢’ are nonnegative on A’. Thus we will be (frequently) considering (V, W', —A')-
chains rather than (V, W, —A)-chains. In this paper we will be using subgroups W’
which are stabilizers of points = in (A, W,sr) (where W = Wy,). Then we will think
of a relative (V, W')-chain as a chain in the tangent space T, A of the point x.

Lemma 3.16. Given a nonzero vector n € V' there exists a W'-chain
(N = N0, ey M) with n, € A’ so that the chain (n;) is maximal with respect to the
original root system R.

Proof: The proof is by induction on the number r = r(n) of simple roots in ® which
are negative on the vector n. If r(n) = 0 then n € A’ and there is nothing to prove.
Suppose the assertion holds for all n with r(n) < k. Let n be such that r(n) = k + 1.
Pick a root 5 € ®’ such that 5(n) < 0. Then for the vector

¢ :=15(n)
we have:
¢=n—Bms"
Clearly, 5(¢) > 0. Thus the pair (n,() is a W’-chain; this chain is maximal as a
W-chain by Lemma B.TH, since it is defined using a simple reflection in W.

For each simple root a € &'\ {#} which is nonnegative on 7

a(C) = a(n) — B(n)a(BY) = a(n) = 0.
Therefore r({) < r(n) and we are done by the induction. O

Lemma 3.17. Suppose that W' C W is a reflection subgroup as above. For any two
vectors a, 0 the following are equivalent:

1. There exists 3,7 so that a >y B ~w v >w 6.
2. There exists 3 so that o >y 3 ~w 0.
3. There exists v so that o ~yw v > 0.

Here ~ 1is the relation from Definition [Z2.

Proof: 1t is clear that 2 = 1 and 3 = 1. We will prove that 1 = 2, since the remaining
implication is similar. We have chains

(a:n()a"'vnm:ﬂ)a ni:Ti(ni_1>, 1= 1,...,m,
(7:7]6777];:5)7 U;ITZ/(TIQ_l), 1=1,...,s.
Then we can extend the first chain to
(=10, st = B, 71(B) = Nnt1s oos Ta(mts—1) = Nhmts = €).

After discarding equal members of this sequence we obtain a chain from « to €. Since
3,7 belong to the same chamber, the vectors € and 6 = 7. o ... o 7{(7y) also belong to
the same chamber. Therefore we obtain

a>e~o O
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Definition 3.18. We will write o 2w § if one of the equivalent conditions in the
above lemma holds. We will frequently omit the subscript W' in this notation when
the choice of the subgroup W' is clear or irrelevant.

The reason for using the relation ~ with respect to W rather than its subgroup
W' (as may seem more natural) is that we will be taking limits under which the
subgroup W’ is increasing (but the limit is still contained in W). Such limits clearly
preserve the relation 2y, but not the relation defined using ~yy.

The next corollary immediately follows from Lemma BT
Corollary 3.19. a 2§ <= —0 2 —a.

Lemma 3.20. Suppose that v 2 i and a € ® is such that a(v) < 0, a(u) > 0. Then

Ta(’/) 2 -

Proof: Let A be such that
V>~

Then a(\) > 0 and it follows that A\ # v, i.e. v > A. By applying [[.2, Lemma 4.3]
we get
To(V) > A~ p. O

2. Chains relative to positive real numbers (a-chains in the sense of
Littelmann).

Let a be a positive real number and let v, u € V' be nonzero vectors in the same
W-orbit.

Definition 3.21 (P. Littelmann, [L2]). An a-chain for (v, u) is a chain (Ao, .. ., As)
which starts at v, ends at 1 and satisfies

(i) For each i > 0 we have
ti = ﬂi(a)\i_1> S Z,

where \; = 75,(X\i—1) as in the Definition [Z1.
(ZZ) For each i, dist()\i_l, )\2) =1.

Remark 3.22. Our root system R 1is the coroot system for the one considered by
Littelmann.

Our goal is to give this definition a somewhat more geometric interpretation. In
particular, we will see that the concept of an a-chain is a special case of the concept
of a chain relative to a root subsystem.

The root system R defines an affine Coxeter complex (A, Wesr) on A. Let = €
P(RY) be a special vertex; set z; := x+a);, 7, :=73,, 0 = 0,...,s. Thus t; = §;(z;-1).
Note that ¢; € Z iff 8;(z;_1) € Z.
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Lemma 3.23. §;(zo) € Z for each i =1,2,...,s.

Proof: 1t suffices to consider the case x = 0. We have:
i—1
Ti1 = Ti1(Tia) = g — Bia(i2) Bl = wia — il = ... =20 — Z t;B;.
j=1

Hence 1
ti = Bi(wi—1) = Bi(xo) — Z ti3:(5;)-
j=1

Since t; € Z and 3;(;) € Z for all j, it follows that §;(xo) € Z. O
We define the integers k; := [;(xo) and the affine walls

Hi=Hgy, ={veV:[v) =k}

The reflection o; in the wall H; belongs to the group Wiy, its linear part is the
reflection 7, € Wy, i =1, ..., 5.

The argument in the proof of the above lemma can be easily reversed and hence
we get

Corollary 3.24. The integrality condition (i) is equivalent to the assumption that
the point xo lies on the intersection of walls H; of the Fuclidean Coxeter complex
(A, Waryr), where each H; is parallel to the reflection hyperplane of 7,. Equivalently,
the W-chain (Ao, ..., As) is actually a W'-chain, where W' = W, is the stabilizer of
o m Waff.

Therefore, identify the vectors \; with vectors in the tangent space V' := T, (A),
let A" C V' denote the Weyl chamber of W’ which contains the (parallel transport of
the) positive chamber A. We obtain

Proposition 3.25. Littelmann’s definition of an a-chain is equivalent to the con-
Junction of

1. (Mg, -y As) @8 a chain in (V! W' —A’).

2. This chain is mazimal as a W -chain.

Thus the choice of the real number a amounts to choosing a Coxeter subcomplex
(V!, W) in (V,Wgp). The reader will also note the discrepancy between (1) and
(2): The chain condition refers to the restricted Coxeter complex (V',W’), while
the maximality condition refers to the unrestricted one, (V, W,,). This is the key
difference between LS paths and Hecke paths.

Remark 3.26. Note that both conditions (1) and (2) are vacuous if xo is a special
vertez in the FEuclidean Coxeter complex (equivalently, if av is a coweight): If

(Aos A1y ooy As)
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is a W'-chain, since W' = Wy, we can subdivide this chain to get a longer chain

(Mo = Aoy ALy ooy A1y Al = Ag)

m—1

between \g and \s which satisfies the unit distance condition dist(N;, X, ) = 1 for all
1.

3.3 Hecke paths

The goal of this section is to introduce a class of PL paths which satisfy a con-
dition similar to Littelmann’s definition of LS (and generalized LS) paths. These
paths (Hecke paths) play the role in the problem of computing structure constants
for spherical Hecke algebras which is analogous to the role that LS paths play in the
representation theory of complex semisimple Lie groups.

Let (A, Wasr, —A) be a Euclidean Coxeter complex corresponding to a root system
R, with fixed negative chamber —A. Let p € P be a path equal to the composition

T2 U ...UZT, 17,.

For each vertex x = x;,7 = 2,...,n — 1 we define the unit tangent vectors £,n € S, to
the segments T;%;_1, T;T;11-

Definition 3.27. We say that the path p satisfies the chain condition if for each
x=x;,1=2.,...,n— 1 there exists a unit vector u so that

1.
—& >w, 1, 1n the spherical Cozeter complex (Sy, W, A).

2. w~nin the (unrestricted) spherical Cozeter complex (S, W), i.e. for each root
a € R we have
a(p) >0 <= an) >0.

In other words, for each t € [0,1] we have

/

p_ (t) sz(t) pii— (t)

Intuitively, at each break-point p(¢) the path p “turns towards the positive chamber”.
In what follows we will use the notation P4, for the set of all paths p € P satisfying
the chain condition.

Definition 3.28. A path p € P is called a Hecke path if it is a billiard path which
satisfies chain condition, i.e. for eacht

p/— (t) ZWp(t) pii— (t)

Below is example of a class of Hecke paths. Suppose that p € P and for each
t € [0,1] either p is smooth at t or there exists a reflection 7 € Wy so that the
derivative of 7 equals 73, § € R" and
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L dryy (P_(2) = Pl (1).

2. B(p_(¥)) <0, B(L(t) > 0.

Then p is a Hecke path with the length of each chain in (Sp, W) equal 0 or 1.
See Figure

Definition 3.29. We say that p satisfies the simple chain condition if at each break-
point x = p(t) the chain can be chosen to be simple, i.e. of length 1.

z

Figure 3: A billiard triangle satisfying simple chain condition.

3.4 A compactness theorem
Pick € > 0. We define the subset P,, . C P consisting of paths p with
lengthA(p) = A = (>\17 e )‘m)

so that for each i,
e < |\ <€t

Theorem 3.30. For each € > 0 the set Pehginm.e := Pehain N Pm,e 15 compact in Py, .

Proof: Suppose that p € P.pqin is a concatenation of m billiard paths p;. Then the
number of breaks in the broken geodesic p; is bounded from above by a constant
¢ equal to the length of a maximal chain in the Bruhat order of the finite Weyl
group Wy, see Corollary B9 This immediately implies that the subset Pepgin,m.e iS
precompact in P. What has to be proven is that this subset is closed.

Given a path p which belongs to the closure of Pepgin,m,c and which has n break-
points, we define the following number d = d(p):

d is the smallest number such that p is the limit of a sequence of paths ¢; €
Pehain,m.e S0 that each ¢; has exactly n + d edges.
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Lemma 3.31. For each path p in the closure of Pepainm.c with d(p) = d, there exists
€ >0 and PL paths r; such that:

1. Each r; belongs to the closure of Pehain,m,e -
2. lim; r; = p.

Proof: Suppose that p has n edges and let g; be a sequence in Pgpqgin,m, which con-
verges to p, where each ¢; has exactly s = d + n edges. We represent each g; as the
concatenation

Tap, % oo K TN, -

After passing to a subsequence if necessary we assume that k& € {1, ..., s} is such that

hIIl )\k,j = 0.
J

We let ¢; denote the concatenations
7T)\17j * ...7T)\k717j * W;\k’j * 7T)\k+17j * o0k TTy

8,57

where S\k,j is the normalization of Ay ;. It is clear that each ¢; belongs to Pepgin,m- Then
the sequence §; subconverges to a path r; clearly d(r) < d —1. Let n:= s — (d — 1).
Represent r as a concatenation

T Ty K K T,

where for some [ € {1,...,n}, y is the limit of a subsequence of (X ;). Set

1
il = —Hi-
g

It is clear that (for some ¢ > 0) each path in the sequence
Tj o Ty ke K My % Ty % Ty % e % Ty,
belongs to the closure of Perginm,e, d(rj) < d— 1, and that

limr; =p. O
j

Given the above lemma, the induction on d reduces the proof of theorem to
considering paths ¢ in the closure of Pepainm . for which d(q) < 1,

q = limp;,
J
where the number of vertices in p; is independent of j and is at most one more than

the number of vertices in the limiting path ¢. If d(¢) = 0 and thus ¢ and p; have the
same number of vertices, the proof is easy and is left to the reader.
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Thus we will assume that the length of exactly one geodesic subsegment in p;
converges to zero as j — oo. There are two cases which can occur:

Case 1. The subsegments in question do not contain concatenation points be-
tween maximal billiard subpaths in p;.

Case 2. These subsegments contain concatenation points between maximal bil-
liard subpaths in p;.

In the first case we can as well assume that m = 1 and we have a sequence of
billiard paths

Dj = D1 * - * Pkj € Pehain,1,e

converging to a path
q=q1*...% (g,

where k < c and each p; ;, ¢; is a geodesic segment.

Suppose that the metric lengths of ¢;_1, ¢;1+1 are positive but the metric length of
g; is zero. Let v, j, denote the unit vector parallel to the directed segment p; ;; then

Vic1j 2 Vij 2 Vig1j-

Since the group Wy, is finite, by passing to a subsequence we can assume that the
collections of reflections in W corresponding to the chains from v;_; ; to v; ; and from
Vi ; to vip1; are constant. Therefore the sequences of vectors v;_; j, ;41 ; converge to
Vi—1, Vit1, and the sequence v; ; subconverges to a unit vector v; so that

Vi1 2 Vi 2 Vig1.

It follows that at the vertex x in the path ¢, which is the point of concatenation
between ¢; 1 and ¢;,1, we obtain

Vi1 2 Vig1

and hence ¢ is a billiard path which satisfies the chain condition at x. Thus q satisfies
the chain condition.

Case 2. In this case it suffices to assume that
pj =Dj*xPj, q=q%*q,

where each pj, p;, ¢, ¢ € P is a billiard path satisfying the chain condition. Suppose
that

p] = pl,j X ... *ka’ pj = p17j * ... *ka’,

where each subpath p; ;, p; ; is a geodesic segment, and

lim length(p, ;) = 0.
J

Then
q=q1% ... % Qg * G2 % ... % (,
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where for each 1,

hmﬁi,j = ¢, hmﬁm = ;.
J J

Let v, iy, A; denote the unit vector parallel to the directed segments py ;, p1 j, P2,
respectively. Then there exist x; so that

ij,ujz)‘j — VjZK'jN,sz)\j < ij)\ja

see Lemma BT7 Since
v = h;rn Vi, A= h]m)\j’

to check the chain condition for the path ¢ at the concatenation point ¢(1) it suffices
to note that v 2 A. O

Remark 3.32. [t is easy to see that the assumption that the norm of each component
in the A-length of the path p; is bounded away from zero, is necessary.

4 Folding

The key tool for proving the main results of this paper is folding of polygons in a
building X into apartments and Weyl chambers. The folding construction replaces a
geodesic segment p in X with a PL path p in an apartment. This construction was
used in [KLM3] to construct various counter-examples. The reader will note that the
folding construction used in the present paper is somewhat different from the one in
[KLM3).

4.1 Folding via retraction

Suppose that X is a Euclidean or spherical building modeled on the Coxeter complex
(A, W), we identify the model apartment A with an apartment A C X; let a C A be
an alcove (or a chamber in the spherical case). Recall that the retraction, or folding,
to an apartment f = Fold, 4 : X — A is defined as follows (see for instance [Roul):

Given a point x € X choose an apartment A, containing x and a. Then there
exists a (unique) isomorphism ¢ : A, — A fixing A N A, pointwise and therefore
fixing a as well. We let f(z) := ¢(z). It is easy to see that f(z) does not depend on
the choice of A,. Observe that f is an isometry on each geodesic Ty, where y € a.

The retraction can be generalized as follows.

Suppose that X is a Euclidean building, a is an alcove with a vertex v (not
necessarily special). Let A C A denote a Weyl chamber with the tip 0. Choose
a dilation h € Dil(A,W) which sends v to 0. Let P : A — A denote the natural
projection which sends points z € A to Wy, - x N A, where Wy, is the stabilizer of
0 in Wa ff-
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We define a folding g = Fold, A : X — A as the composition
Poho Foldg, .

The mapping g will be called a folding into a Weyl chamber. Observe that ¢g (unlike
Fold, 4) does not depend upon the choice of the alcove a, therefore it will be denoted
in what follows g = Flold, . Note that

FOldu,koh,A =ko FOldU,h7A.

In case when h = id we will abbreviate Fold, , o to Folda.

Remark 4.1. The folding maps are Lipschitz and differentiable. The restriction
of the retraction Fold, 4 to each chamber (alcove) is a congruence of two chambers
(alcoves).

If h = id (and thus v = 0) one can describe f = Folda as follows. Given a point
x € X find an apartment A, through v,z and a Weyl chamber A, C A, with the tip
v. Let ¢ : A, — A be the unique isometry extending to an isomorphism of Coxeter
complexes A, — A. Then f(z) = ¢(z).

Suppose now that X is a Euclidean building, x € X; we give the link ¥,(X)
structure of an unrestricted spherical building Y. Let R denote the corresponding
root system. Let § be a chamber in Y and &, u € 6. Let f: X — A be a folding of X
to a Weyl chamber. Let 2/, £, i’ denote the images of z, &, u under f and df,. Then

Lemma 4.2. 1. d.s(&, 1) = dres(&,10).

2. For each a € R,
a() >0 < aln) >0.

Proof: The restriction df|s is an isometry which is the restriction of an isomorphism
of spherical apartments. This proves (1). To prove (2) observe that df sends ¢ to a
spherical Weyl chamber ¢’ in X,/ X. O

Let f be a folding of X into an apartment or a chamber.

Lemma 4.3. For each geodesic segment Ty C X its image f(Ty) is a broken geodesic,
i.e. it is a concatenation of geodesic segments.

Proof: We give a proof in the case of a folding into an apartment and will leave the
other case to the reader. Let A’ C X denote an apartment containing the geodesic
segment Ty. Let aq, ..., a,, denote the alcoves (or chambers in the spherical case) in A’
covering Ty, set T;T;11 := TyNa,. For each a; there exists an apartment A; containing
the alcoves a and a;. The restriction of the retraction f to A; is an isometry. It is
now clear that the path f(7y) is a composition of the geodesic paths f(Z;7;11). O

We let 2 = f(x;) denote the break points of f(7y). For each z} let &/, 1) denote
the unit tangent vectors in 7,/ A which are tangent to the segments iz} ,, iz,
respectively.
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Lemma 4.4. The broken geodesic f(Ty) is a billiard path, i.e. for each break point

/

x; the vectors & := &, ==, satisfy

Jw e W s w(l') = -1

Proof: We again present a proof only in the case of a folding into an apartment. Let
Y = ¥,.X denote the spherical building which is the space of directions of X at z;.
Let Ay denote the Weyl chamber of this building and 6 : Y — Ay the canonical
projection. The directions £ = & and n = n; of the segments T;7;, 1, T;T,11 are
antipodal in the building Y. Since the folding f is an isomorphism of the apartments
Ai — A, Ai—i—l — A, and

we see that
0(5) =0(&), 0(n) =6(n").
The assertion now follows from Lemma T4, part (2). O

Lemma 4.5. Suppose that X is a Euclidean building, f = Fold, s : X — A and
g = Fold, A are foldings to an apartment and a chamber respectively. Then for each
PL path p in X we have:

1. length  (f(p)) = length  (p).
2. length (g(p)) = k- length (p), where k > 0 is the conformal factor of the
dilation h.

Proof: We will prove the first assertion since the second assertion is similar. It suffices
to give a proof in the case when p is a billiard path. Then, analogously to the proof of
Lemma 4], there exists a representation of p as a composition of geodesic subpaths

p=p1U..Upn,

so that the restriction of f to each p; is a congruence. Therefore

lengtha (p;) = lengtha (f(ps))

and hence
lengtha(p) = Z lengtha (p;) = lengtha(f(p)). O

Derivative of the retraction. We assume that rank(X) > 1. We identify the
model apartment A with an apartment in X. Pick a C A which is an alcove (in the
Euclidean case) or a chamber (in the spherical case). Given a point 2/ € X choose
an apartment (A’, W) through a and 2’ and let ¢ : A — A’ denote the inverse to the
retraction f = Fold, 4 : A" — A. Set x = f(2') and let W, denote the stabilizer of 2’
in W’. Then the link Y = ¥,/(X) has a natural structure of a thick spherical building
modeled on (S, W)). It is easy to see that (S, W) is independent of the choice of A’.
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Observe that if 2’ is antipodal to a regular point y € a then 2z’ is regular itself and
therefore W. = {1}. We next define a chamber s C S:

Given a regular point y € a\ {2’} and a geodesic segment z'y, let ¢ = ((y) denote
the unit tangent vector to 2’y at z’. Then the set

{C(y) : y is a regular point in a},

is contained in a unique spherical chamber s C S. (If 2 is antipodal to some y € int(a)
then s = S.)

Set f':=¢o f=Fold, .

Lemma 4.6. The derivative d, f' 1Y — S equals Fold, s.

Proof: Given n € Y, find an alcove (or a spherical chamber) ¢ so that n € ¥,.c.
Then there exists an apartment A, C X containing both a and c. Let S, denote the
unit tangent sphere of A, at 2’. Then n € S, and s C S,. Now it is clear from the
definition that

df'(n) = Foldy,s(n)

since both maps send S, to S and fix s pointwise. O

Folding of polygons. Suppose now that X is a building and P = [2, &1, ..., ]
is a geodesic polygon in X. Pick an apartment A C X which contains Zz; and an
alcove a C A which contains Z. Let A C A denote a Weyl chamber (in case X is
Euclidean) with the tip o. Let f be a folding of X of the form

f = FOldmA

or

[ = Foldz pa,
where h is a dilation sending 2 to the tip of A. We will then apply f to P to obtain
a folded polygon P := f(P) in A or A respectively.

Observe that the restriction of f to the edges 27, and Z,,Z of P is an isometry or
a similarity. The restriction of f to the path

]3 - Lf‘li’g U..u jn—ljn

preserves the type of the unit tangent vectors, cf. Lemma EEA We will be using
foldings into apartments and chambers to transform geodesic polygons in X into
folded polygons.

In the special case when P = T is a triangle (and thus n = 2), the folded triangle
P = f(T) has two geodesic sides zw; := f(Z7,),722 := f(Z2Z) and one broken side
p = f(Z173), so we will think of f(T) as a broken triangle.

The next proposition relates folding into a Weyl chamber with the concept of
folding of polygons used in [KLM3|. Let P = [0, z1,x2,...,2,] be a polygon in A.
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Triangulate P from the vertex o into geodesic triangles T; = [zi, xi11,0]. Suppose
that P C X is a geodesic polygon

P = [07$1ax27"'7$n]ax1 = T,

triangulated into geodesic triangles T, = [Zi, Zi11, 0], where each T, is contained in an
apartment A;. Assume that for each ¢ there exists a congruence

i.e. an isometry sending Z; to x; (j = ¢,% + 1) which extends to an isomorphism of
Coxeter complexes ¢; : A; — A.

Proposition 4.7. Under the above assumptions, for each i, FoldAm- = ¢Z|T,

Proof: Let A, C A; denote the preimage of A under ¢;. Then each A; is a Weyl
chamber, hence ¢;|A; = Folda|A;, by the alternative description of Folda given
earlier in this section. O

The following lemma shows that unfolding of polygons is a local problem. Suppose
that T' = [0, x1, ..., x,] C A is a geodesic polygon so that z; # o for each i. For each
1 =2,...,n— 1 we define the unit vectors

§iMiy G € X A

which are tangent to the segments 7;z;,_1, T;T;11, £;0. Define thick spherical buildings
Y; := ¥,.(X). By combining the above proposition with [KLM3, Condition 7.5] we
obtain

Lemma 4.8. The polygon T can be unfolded in X to a geodesic triangle T whose
vertices project to o,xy, T, if and only if for each 1 = 2,...,n — 1, there exists a
triangle [&;, (;, 7] C Y; so that

dres (& G) = dreg (&, ),
dref(71i Gi) = dres(mi: G,
d(guﬁi) =m.

We will eventually obtain a characterization of the broken triangles in A which
are foldings of geodesic triangles in X as billiard triangles satisfying chain condition,
see section [l The goal of the next section is to give a necessary condition for a broken
triangle to be unfolded; we also give a partial converse to this result.
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4.2 Converting folded triangles in spherical buildings into
chains

Suppose that X is a (thick) spherical or Euclidean building modeled on (A, W).

Consider a triangle T = [x,y, 2] C X with

6 = dref<x7y>7 Y= dref(y7 Z).

Assume that A is embedded in X so that it contains x and z. Let a C A be a spherical
chamber or a Euclidean alcove containing z. In the spherical case we regard a as the
negative chamberin A, let A denote the positive chamber —a. We have the retraction
fi="Fold,s: X — A.

X

Figure 4: Converting geodesic triangle to a chain.

Theorem 4.9. There exists a (A, W,a)—chain (yo,...,Ym) Such that y, = f(y),
dvef(2,y0) = B, dref(Ym,2) = 7. (In the case when X is a Euclidean building the
above chain is an affine chain.) See Figure [

Proof: We prove the assertion for the spherical buildings as the Euclidean case is
completely analogous. (This is also the only case when this theorem is used in the
present paper.)

Our proof is by induction on the rank of the building. Consider first the case
when rank(X) = 0 (i.e. A= S5°is the 2-point set). If y and = are both distinct from
z, then f(y) # z. This implies that f(y) = x and we take

Yo :=2,y1 :=y,m=1.

In the remaining cases we will use the chain yo = f(y) = Y-

Suppose now that rank(X) = r > 1 and the assertion holds for all (spherical)
buildings of rank r» — 1, let’s prove it for buildings of rank 7.

We let p : [0,¢] — Ty denote the unit speed parametrization of Ty and set p :=
f(p). We assume for now that z ¢ Ty.
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As in the proof of Lemma B3, we “triangulate” the geodesic triangle T into
geodesic triangles T} := (2, T, Tiy1], where the points &; = p(t;), i« = 1,...,n, are
chosen so that each triangle T} is contained in an apartment A; C X and the map f
restricts to an isometry f : T, — f(T,) C A. Here g := x,%,,1 = y. Observe that
each side of T; has positive length.

Let S; := ¥#:(A;) denote the unit tangent sphere at #;. Define 3; to be the

(unique) chamber in S; containing all the directions of the geodesic segments from 7;
to the interior of a. This determines the positive chamber A; = —§; C S;.

Set .
i =7 (), & = —ni,
and let (; € S; denote the unit tangent vector to 7;z.
Now, applying the retraction f to all this data, we obtain:

1. The folded triangle T = f(T) which has two geodesic sides Z, Z,, (where
ym = f(y)), and the broken side represented by the path p = f(p). In particular,
dref(Ym, 2) = dref(y, 2) (as required by the theorem).

2. The vertices z; = p(t;) = f(Z;) of the broken geodesic p.

3. Unit tangent vectors & = df (&), n; = df (7i;), ¢; = df (§;) in ¥, A. These vectors
are tangent to the segments 7;7;_1, ¥;%,11, ;2 respectively.

4. The positive chamber A; = df(A;) and the negative chamber s; = df (5;) in the

spherical Coxeter complex (S; = X,,(A), W; = W,,). The negative chamber contains
the directions tangent to the geodesic segments from x; to the chamber a C A.

Our goal is to convert the broken side p of T into a chain in A by “unbending”
the broken geodesic p to a geodesic segment in A.
Lemma 4.10. The path p satisfies the following:

1. The metric lengths of p and p = Ty are the same.

2. p'(0) = p'(0).

3. At each break-point x; there exists an (S;, Wi, s;)-chain from —&; to n;.

Proof: The first two assertions are clear from the construction. Let’s prove the last
statement. For each ¢ and the point © = Z; we have the spherical building ¥ := ¥;(X)
which has rank » — 1. This building contains the antipodal points

gia 77]7,
and the point C~Z We form the geodesic triangle 7 = [él, i, ZZ] C Y, where we use an

arbitrary shortest geodesic in Y to connect &; to n;. Therefore &;, n;, (; are vertices of
the broken geodesic triangle df (1) C S;.

As in Lemma B, we use the isomorphism S; — S; (sending s; to §;) to identify
these apartments. Under this identification, df : Y — S; is the retraction Folds, g, of
Y to the apartment S;. Thus df(7) is a folded triangle in ;.

Hence, by the (rank) induction hypothesis, for each i there exists a chain

(=&is - mi)
in the spherical Coxeter complex (S;, W, s;). O
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Lemma 4.11. For each path p : [0, c] — A satisfying the conclusion of Lemma [f.10,
there exists a point iy’ € A such that

dref(x> y/) = /6

and
y > p(c)
in (A, W, =A).

Proof: We use the second induction, on the number n of vertices in the broken geodesic
p. Set u := p(c).

The metric length of the path p equals the metric length of the path p = 7y, the
tangent directions of these paths at = are the same. Therefore, if n = 0 (and hence
the path p is geodesic) there is nothing to prove, one can simply take 3’ = u.

Assume that the assertion holds for all n < N — 1, let’s prove it for V. We treat

the path p as the composition
p|[0,tn] U TN

Our goal is to replace the geodesic subpath Tyu with a geodesic path w(Zyu), where
w € W is fixing zy, so that:

1. Ty 1oy Uw(Tyu) is a geodesic segment.
2. There exists an (A, W, —A)-chain between w(u) and u. Then we would be done
by the induction on n. Indeed, the new path

p|[07tN] U w(xN—u>

has one less break-point and still satisfies the conclusion of Lemma EET0. Thus, by
the induction hypothesis, there exists ' € A so that

y 2w >u=y >u
dT@f(xv y/) = dT@f(xv y)'
Construction of w. Recall that there exists an (Sy, Wy, —Ay)-chain
(_gN = Vo, s Vi = nN)a

hence we have a sequence of reflections r,...,r, € Wy (fixing walls H; C Sy, 1 =
1,..., k) so that:
Ti(Vi—l) = I/Z',i = 1, ey ]{Z,

and each wall H; separates v; from the negative chamber sy. We extend each reflection
r; from Sy to a reflection r; in A, and each H; to a wall H; in A.

We therefore define the following points in A:
Yk = U Y1 = Tk(Uk), Yr—2 = Tee1(Uk—1)s - - -, Yo = T1(y1)-
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Note that the directions v; are tangent to the segments Tyy;. Thus for each i, the
wall H; separates the point y; from the negative chamber a C A and the sequence

(Yo, -+ Yo = )

forms a chain. We set w = r; o ... or,. The vector 1 is antipodal to —&y, hence the
path
pl[0, Ty] U w(Tn)
is geodesic at the point zny = p(Ty). O
This concludes the proof of Theorem in the case when z ¢ 7.

We now consider the special case when the above proof has to be modified: The
triangle T is degenerate, i.e. z € Ty, but the alcove a is such that y ¢ A. Thus the
folding Fold,, 4 is not an isometry on 7. Then the tangent direction (; is not defined
when x; = 2. Note that x; = 2z then is the only break-point in the broken side of 7".

In this case we replace the vertex z with an arbitrary point 2z’ in the interior of
a and repeat the above arguments. The chains constructed in the process will be
independent of the choice of 2z and thus, after taking the limit 2/ — z, we obtain a
chain as required by the assertion of Theorem. O

Corollary 4.12 (Cf. [KLM3], Theorem 8.2, Part 4). Suppose that X is a
Euclidean building. Assume that o := da(z,x), 3 = da(z,y),v := da(y,2z) are in
P(RY) and x,y, z are special vertices of X. Then

a+B+7€QRY).

Proof: Let (yo, ..., ym) be an affine chain given by Theorem We regard the point
x as the origin o in A; thus we will regard z, yo, y,, as vectors in V. Then, according
to Lemma 2.7,

Ym — Yo c Q(Rv)

Consider the vectors ' := yo—x,7 := 2 —Ym, @ := x—z in P(R"). By the definition
of A-length,
O/ € Wsphaa ﬁ/ € Wsphﬁa '7/ € Wsph’}/'

Therefore, by applying Lemma P.T again we see that the differences
a—a, f-0, =9
all belong to Q(R"). Since
o + B+ =yo — ym € Q(RY),
the assertion of lemma follows. O

The following simple proposition establishes a partial converse to Theorem
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Proposition 4.13. Suppose that X is a thick spherical building and, as before, the
point z belongs to a negative chamber a = —A. Then, for each simple chain (yo,y1)
such that dyer(z,y0) = T, dref(2,y1) = B, there exists a point y € X so that

dref(y> Z) =7 and dref(za y) =T.
Remark 4.14. Recall that d,.¢(x,y) = m means that the points x and y are antipodal.

Proof: Let 7(yo) = y1 where 7 is a reflection in a wall H C A as in the definition of
a chain. Let A = A~ U A" be the union of half-apartments, where A~ is bounded
by H and contains a. By the definition of a chain, y; € A™,yo € AT and hence the
antipodal point x = —yg belongs to A™.

Since X is thick, there exists a half-apartment B~ C X which intersects A along
H. Define the apartment B := A~ U B™; then there exists an isomorphism of Coxeter
complexes

¢:A— B o|A” =id.

We set y := ¢(yo).

Since ¢ is an isomorphism of Coxeter complexes which fixes z, it preserves the
refined distance to the point z and hence

dref(ya Z) = dref(yb Z) =7.

The union C' := AT U B~ is also an apartment in X. Then there exists an
isomorphism 1 : B~ — A~ so that
o ¢|A+ = 7’|A+.

The isomorphism ¢ extends to an isomorphism p : C' — A fixing AT pointwise and
hence fixing the point x. Therefore

dref(x>y) - dref(x>y0) =m. U

For the applications in section we need to count the number of points y in
the above proposition. Suppose that X is a spherical building modeled on Coxeter
complex (A, W), where W = Z/2 = (1). Thus a = A*, A = A7; let H be the
only wall in A (which could be empty in case when A = S°). Let ¢ +1 > 3 denote
thickness of the wall H in X. Let f : X — A denote the retraction Fold, 4.
Proposition 4.15. Suppose that y' € int(A~). Then:

1. The cardinality of f~'(y') equals q.

2. If y" € AT then f~1(y") = {y"}.

3. If v € int(AT) and y" := 7(y') then f~1(y') contains exactly ¢ — 1 points y
such that

dref(x> y) = dref(x> y”)'

4. If v € int(A7) then f~'(y') contains exactly q points y such that

dref(x7 y) = dT@f(x7 y/)'
See Figure [
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Figure 5: Counding the unfoldings.

Proof: 1. The proof of Proposition shows that there are at least ¢ points y €
f~X%'). On the other hand, if y € X is a regular point then there exists a unique
apartment B C X which contains y and such that

aC BNA.

Since f|B : B — A is an isomorphism, for each apartment B as above, BN f~1(y/)
consists of a single point. Thus the cardinality of f~'(y/) is at most q.

2. This assertion follows immediately from the definition of f.

3. The set f~1(y’) consists of ¢ points. The proof of Proposition shows that
at least ¢ — 1 of the point points y € f~%(y’) are such that

dref(x> y) = dref(llf, y”)‘

The remaining point in f~1(y/) is 3/’ itself. However d(z,y) # d(z,y"”) and whence
dref($a y,) 7& dref(x> y”)'
4. Since = € a, for each y € X we have

dref(x7y> = dref(xv f(y))

Since f~!(y’) consists of ¢ points, the assertion follows. a
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4.3 Folding polygons in Euclidean buildings

Our next goal is to show that each folding transforms certain PL paths in Euclidean
buildings to paths satisfying chain condition.

Suppose that X is a Euclidean building with model apartment (A, W,sr), A C A
is the positive Weyl chamber with the tip o. Consider a PL path j : [0, ¢] — A, which
is parameterized with the unit speed, where A C X is an apartment. We assume that
for each t € [0, ¢|

ﬁ/— (t) NWsph ﬁl—f‘(t)7
for instance, p could be a geodesic path.

Thus the path p trivially satisfies the chain condition. Let g : X — A be a folding
into A, g = Fold,, A for a certain z € A and h. Recall that the folding g is the
composition of three maps:

g=Paohof, f=Foldyu,

where a is an alcove in A containing z, h € Dil(A, W,yss) is a dilation sending z to
the point 0. Consider the structure of a Coxeter complex on A given by the pull-back

h* (A, Wayr).
We thus get a new (typically non-thick) building structure for X, the one modeled
on h*(A, Waff).
We say that a path p is generic if it is disjoint from z and from the codimension 2

skeleton of X and the break-points of p are disjoint from the codimension 1 skeleton
of X, where X is regarded as a building modeled on h*(A, Wyy).

The main result of this section is

Theorem 4.16. The folded path p = g(p) satisfies the chain condition.

Proof: The proof of this theorem is mostly similar (except for the projection P which
causes extra complications) to the proof of Theorem in the previous section. We
will prove Theorem EET0 in two steps: We first establish it for the paths p which are
generic. Then we use the compactness theorem to prove it in general.

Proposition 4.17. The conclusion of Theorem [[.1g holds for generic paths p.

Proof: 1f a point & = p(t) is a regular point of X, then

is an isometry. Thus the path p trivially satisfies the chain condition at the point x.

Therefore we assume that 7 is a singular point. Since p is assumed to be generic,
this point lies on exactly one wall of X; moreover, p is geodesic near .

We first analyze what happens to the germ of p at & under the retraction f. We
suppose that the restriction of f to the germ (p, Z) is not an isometry (otherwise there
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is nothing to discuss). Let ¢ € £;(X) denote the tangent to the geodesic segment Zz.
Let n € ¥;(X N A) be the tangent vector p'(t), { := —17 (this vector is also tangent
to the path p). Set §:= d,.f(C, 7).

We obtain the triangle 7 = [€,7,¢] in ¥3(X). The derivative of the retraction
f at & is a retraction of the spherical building ¥;(X) into its apartment S, after
identification of S with the sphere S,.(A), 2/ := f(Z) (see Lemma E0). Define the
following elements of S:

Therefore, according to Theorem EE9, the folded triangle 7" = df,(7) C S yields
an (S, W,r, —A,/)-chain?
(W =-=¢17)
such that d,.f(¢,n) = dref(f, n) = 0.

Here —A,/ is a chamber in (S, W,/) which contains the unit tangent vector to the
segment 7'z’ where 2’ € a is a regular point.

Remark 4.18. Note that our assumptions on p imply that (S, W) has a unique
wall. If the corresponding wall in A does not pass through z, then the negative chamber
—Ay in (S, Wy) is uniquely determined by the condition that it contains the direction
tangent to x'z.

Consider now the effect of the rest of the folding ¢ on the path p at z. Let
x := g(Z). We identify S with the unit tangent sphere at the point x.

The dilation h clearly preserves the chain condition at x’ (since it acts trivially
on the unit tangent sphere). The restriction of the projection P = P to the germ
of hf(p) at hf(Z) is necessarily an isometry (since p is generic), hence it is given by
an element w € W = W,,. This element transforms the above chain to another
(S, W,, —A,)—chain, where

A, :=d(woh)(Ay).

What is left to verify is that the positive chamber A, in this complex contains a
translate of the positive chamber A. In case when x belongs to the interior of A, the
segment 0T is not contained in any wall and thus the negative chamber —A, has to
contain the initial direction of the segment Tz (see the remark above). However this
initial direction belongs to —A and thus A, contains A.

Consider the exceptional case when x is on the boundary of A. It then belongs to
a unique wall H in the Coxeter complex (A, W,sr) and this wall passes through the
origin 0. Rather than trying to use Theorem EL9 to verify the chain condition at x,
we give a direct argument. Let 7, ¢ be the unit vectors which are the images of 1/, &’
under

dwoh): X (A) — 3. (A).

Since the path p is entirely contained in A, the vector p’ (t) points outside of A
and the vector p/, (t) points inside. The reflection o in the wall H sends the vector

2Which is necessarily simple since p is assumed generic.

41



—& = p'_(t) the vector n = p’ (). It is then clear that the (simple) chain condition is
satisfied at the point x.

Lastly, we consider the points & = p(t) for which f is an isometry on the germ of
p at . The point x = g(&) belongs to a face of A contained in a wall H, and this
is the only wall of (A, W,rs) which passes through x. Then, necessarily, the germ of
the path Af(p) at hf(Z) is a geodesic. We now simply repeat the arguments of the
exceptional case in the above proof (see also the proof of Proposition EET9) to see that
p satisfies the chain condition at x. O

We are now ready to prove Theorem E.T0 for arbitrary paths p. We will do so
by approximating the path p via generic paths. Let A\ be an arbitrary vector in A.
We let ¢y := p + A denote the translation of the path p by the vector A. It is clear,
from the dimension count, that for an open and dense set of vectors A, the path ¢, is
generic.

Since the folding ¢ is continuous,
pum— D pum— 1‘ a .
p=g(p) = lim g(gz)

By the Proposition LT, each ¢(gy) satisfies the chain condition. Observe that the
A-lengths of the paths p+ A\ are independent of A. Since f and P preserve A-lengths
of PL paths and the dilation h changes them by a fixed amount, we can apply the
compactness theorem (Theorem B30) to conclude that the limiting path p satisfies
the chain condition as well. O

We now verify that, at certain points, the folded path p satisfies the mazimal
chain condition.

Proposition 4.19. Under the assumptions of Theorem[{. 10 let T = p(t) be such that
the folding f restricts to an isometry on the germ (p,Z). Then the path p = g(p)
satisfies the maximal chain condition at x = g(Z).

Proof: Our proof follows Littelmann’s arguments in his proof of the PRV Conjecture,
see [LI]. We fold the path ¢ := hf(p) into A inductively.

We subdivide the interval [0, ¢] as
O=ty<t1 <..<tp,=c

such that [t;, t;411] are maximal subintervals so that ¢|[¢;,¢;11] is contained in a Weyl
chamber of Wj,,.

We first apply to ¢ an element wy € Wy, which sends ¢([0,%]) into A, so we can
assume that this subpath belongs to A. Let 1/, be the vectors ¢’ (t1), ¢/, (t1). Then

po~
see Lemma L2 Set x := ¢(t1). The image n of the vector " under PP is obtained as

dwl(n/)>
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where wy; € Wy, fixes the point  and 7 is the unique vector in the W,-orbit of
1’ € S, which points inside A. Below we describe w; as a composition of reflections.

Let R’ denote the root subsystem in R generated by the set of simple roots &’
which vanish at the point . Let A’ denote the positive chamber for W, defined
via ®. Then the vector n can be described as the unique vector in the W, -orbit
of ' (now, regarded as a vector in V' = T,(A)) which belongs to the interior of A’.
According to Lemma B.16],

Wy = Tm © .. 0 71, where for each i, 7, =75, 0; € ¥,
so that the sequence of vectors

(mo=n",m =71(10)s - T = T (Nm—1) = 10),

is a chain in (S, W,, —A) which is maximal as a chain in (S, Wypn, —A).

We therefore apply the identity transformation to the path ¢|[0, ¢;] and the element
wy to the path g|[t1, ¢| to transform the path ¢ to the new path

q1 = ql|[0,t1] Uwy o ql[ts, c].

Clearly, P(q) = P(q1) and 7 is the unit vector tangent to ¢1|[t1,c] at . The above
arguments therefore show that ¢, satisfies the maximal chain condition at the point
x.

We then proceed to the next point ¢, ¢;(t2) belongs to the boundary of A and
we transform ¢; to gs by

q2‘[07 tQ] = q1|[07t2]7 Q2Ht27 C] = w30 q1|[t27 C]a

where wy is a certain element of W, fixing ¢i1(t2) = ga(t2). Therefore P(q) =
P(g1) = P(¢) and the same arguments as before imply that ¢, satisfies maximal chain
condition at g(ts), etc. O

Definition 4.20. Suppose that P = ZxUpU7¥z is a polygon in A, wherep : [0,1] — A
is a PL path such that p(0) = z,p(1) = y. We say that P satisfies the chain condition
(resp. simple chain condition, resp. mazimal chain condition) if its subpath p satisfies
the chain condition (resp. simple chain condition, resp. maximal chain condition).

Therefore, as an application of Theorem ET6 we obtain

Corollary 4.21. Suppose that T' = [Z,%,7] C X is a geodesic triangle, Z is a special
vertex which belongs to an alcove a C A. Let A C A be a Weyl chamber with the
tip Z =0 and P = Folda(T) be the folding of T into A. Then the folded triangle P
satisfies the chain condition.

A converse to this corollary will be proven in Theorem 23 the following is a partial
converse to the corollary L2l (which is essentially contained in [KLM3, Lemma 7.7]):
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Corollary 4.22. Let A C A be a Weyl chamber with the tip of o in X. Suppose that
a polygon P = |0, 21, ...,x,] C A, satisfies the simple chain condition (at each vertex
x;,0<i<mn)and

p=2122U ... UTp 1Ty

is a billiard path. Then P unfolds to a geodesic triangle T C X, i.e. Folda(T) = P.

Proof: Let f := Foldax. We run the argument from the proof of Theorem in
the reverse; the reader will observe that our argument is essentially the same as in
the proof of the Transfer Theorem in [KLM2]. Triangulating the polygon P from
the vertex o we obtain geodesic triangles P; = [0, z;, xi11], @ = 1,2,...,n — 1. Let
&, Ciymi € 24, (A) denote the unit tangent vectors to the segments T;7;_1, T;0, T;Ti11
respectively.

We unfold P inductively. Set T := Pi; let A; := A, this apartment contains the
triangle 1. Set x1 := x1, To := 9,

Suppose that we have constructed apartments A; C X and flat triangles T; =
[0, %, Tiv1] C Ajy i =1,...,m — 1, so that T} is congruent to P, (i =1,...,m — 1) and

L&) =mi=1,...,m—1.

Here é,-,ﬁ,-,@ are directions in Xz (X) which correspond to the directions &;,n;,(;
under the congruences T; — P;. Our goal is to produce a flat triangle 7, C A,, C X
so that the above properties still hold.

Since we have a simple chain (=&, ) in (S,,,, W), it follows from Proposition
that there exists a point 7, € ¥z, (X) so that

d(ﬁ"la gm) =T, d(ﬁma <m) = dref(nma Cm)

Let A,, denote an apartment in X which contains oz, and such that 7, is tangent
to A,,. Construct a geodesic segment Z,,Z,,11 C A, C X whose metric length equals
the one of 7,,,7,,+1 and whose initial direction is 7,,,. This defines a flat triangle

Ty = [0, s Frmsr] C Am.

It is clear from the construction that the triangle 7, is congruent to P,,, in particular,
dref(0,3) = dye(0,y3). Observe also that

Tm—1Tm U T Tm+1

is a geodesic segment (because Z (7, &n) = 7). See Figure

Therefore, by induction we obtain a geodesic triangle T' = |0, 21, Z,] C X, which
is triangulated (from o) into flat geodesic triangles T; which are congruent to P;’s. We
claim that f(7) = P. For each i the folding f sends the triangle T; to P;, according
to Proposition 7 Therefore f(7') = P.

As in the proof of Theorem LU, the argument has to be modified in case when
x; = o for some 7, x; = p(t;). Then the vector u = p’ (¢;) belongs to the negative
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unfolding

o o

Figure 6: Unfolding a broken triangle.

chamber —A and the vector A = p/, (t;) belongs to the positive chamber A. Since p is
a billiard path, there exists w € W, which sends ;1 to A\. Now the chain and billiard
conditions imply that x; is the only break-point in p. Thus we can take

T =0z Up([0,t;]) Uw 'p([t;, 1]) Uw ™ *(0z,).

This degenerate geodesic triangle (it is contained in the geodesic through the points
x1,w(x,)) folds to P under the projection P : A — A. O

The same argument as above proves the following generalization of Corollary

Corollary 4.23. Suppose that P is a polygon in A which is the composition
ox UpUqgUTyo.

Assume that paths p,q satisfy the simple chain condition. Then there exists a polygon
P C X of the form o

orUpUqGUgo
so that f(P) = P, f(5) = p, f(3) = ¢, f(§) = y, and p, q are geodesic paths.

We now use our analysis of the folded triangles (polygons) to relate them to the
Littelmann triangles (polygons).

5 Littelmann polygons

5.1 LS paths

Let R be aroot system on a Euclidean vector space V', W = Wy, be the finite Coxeter
group associated with R, let W,¢; denote the affine Coxeter group associated to R.
This root system R is actually the coroot system for the one considered by Littelmann
in [L2]. Accordingly, we will switch weights to coweights, etc. We pick a Weyl chamber
A for W, this determines the positive roots and the simple roots in R. We get the
Euclidean Coxeter complex (A, W), where A is the affine space corresponding to
V. Given x € A let W, denote the stabilizer of x in W,.
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Suppose we are given a vector A € A C V, a sequence of real numbers
a=(ap=0<a; <..<a,=1),
and a sequence of vectors in WA
v=(v1,...,), sothat vy >..>,
with respect to the order in Definition B0l

Definition 5.1. The pair (v,a) is called a real (billiard) path of the A-length A.

Definition 5.2. (P. Littelmann, [L2]) A real path of A-length X\ is called rational if
A is a coweight and all numbers a; a rational.

Remark 5.3. Littelmann uses the notion path of type X rather than of the A-length
A.

Set a} := a; — a;—1, i = 1,2,...,r. The data (v,a) determines a PL path p € P
whose restriction to each interval [a;_1, a;] is given by

i—1
p(t) = ap + (t — ai1)vit € [a1, ai). (5)
k=1

Our interpretation of real and rational paths is the one of a broken (oriented)
geodesic L in V. Each oriented geodesic subsegment of L is parallel to a positive
multiple of an element of WA, thus L is a billiard path. The break points of the
above path are the points

/
T =a1Vi,...,T; = Ti—1 + V4, ...

Since ) . a; =1, is clear that

lengtha (L) = A,
in the sense of the definition in section X0 This justifies our usage of the name
A-length X in the above definitions, rather than Littelmann’s notion of type.

Observe that given a PL path p(t) € P (parameterized with the constant speed)
one can recover the nonzero vectors v; € V' and the numbers a; and a}.

Definition 5.4 (P. Littelmann, [I.2].). A rational path p(t) is called an LS path®
if it satisfies further integrality condition:
For each i =1,...,s—1 there exists an a;-chain for the pair (v;,v;11) (in the sense
of Definition [ZZ]).
Observe that, since
n>T &= —T > -1,

it follows that p is an LS path if and only if p* is.

3a Lakshmibai-Seshadri path
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Theorem 5.5. (P. Littelmann, [L9, Lemma 4.5]) Each LS path belongs to Pz joc.

Our next goal is to give a more geometric interpretation of the LS paths. Suppose
that p € P is a billiard path given by the equation (H), with the vertices

0= Loy L1y eeey L

At each vertex point x;,0 < i < r, we have unit tangent vectors &, u; which are
tangent to the segments 7;x; 1, T;7;11. Note that at each vertex z;,0 < ¢ < r we have
the restricted and unrestricted spherical Coxeter complexes; the positive chamber A
in V determines positive chambers A; in the restricted spherical complexes (S;,, Wo,).

Theorem 5.6. A billiard path p(t) of A-length A\ € P(RY) is an LS path if and only
if it is a Hecke path which satisfies the maximal chain condition (cf. Definition[5227):
At each vertex x;,0 < i < r there exists a (Sy,, Wy,, —A;)-chain between —&; and u;
and this chain is mazimal as a (Sy,, W)-chain.

Proof: Recall that given a nonzero vector v € V', v denotes its normalization v/|v].

0]

Figure 7: Unbending a path.

It is easy to see (and left to the reader) that if p(¢) is a satisfies the above chain
condition and A = lengtha(p) is a coweight, then all numbers a; are rational.
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Consider the first break point x; = x¢ + a1v; of the broken geodesic path p(t).
Observe that
vy ==&,V = i1 € 9,
According to Proposition B22H, existence of an aj-chain for the pair (v, 1) is equiv-
alent to existence of an (S, W,,, A1)-chain, which is maximal in the unrestricted

Coxeter complex,
(U1 = 11,0,M01, -, Msy = D).

Thus the path p satisfies the maximal chain condition at the first break point x; if
and only if it satisfies the integrality condition as in Definition B4, at the point x;.

We now proceed to the next break point xs = x1 + ahr,. We identify normalized
vectors vy, o with unit vectors in S,,. Note that if p(¢) is an LS path of the A-length
A, then there exists an element wy € W,, which sends 74 to 7. The same is true if p
is a Hecke path.

Set x4 := w; (x3). Observe that, in both cases of an LS path and a Hecke path,

Tox1 U212
is a geodesic segment zgx}; the corresponding directed segment represents the vector
asvy. Let w) € Wiy, denote the linear part of wy. Set zj := wj(z4). We translate the
—_—

vectors iy, U3 to the unit tangent sphere S,y. The directed segment xory represents
the vector asvs. See Figure [

We are now again in position to apply Proposition with a = as: There exists
a maximal chain

(T2 = 12,0, M2,15 -+, N2,s0 = U3)

if and only if there exists an ap-chain for the pair (v, v3). The product wyo(w}))™!is a
translation in W, s; which carries o back to x2. Therefore it induces an isomorphism
of the restricted Coxeter spherical complexes

(Sxé’v Wxé’) - (S$27 ng)
which carries positive chamber to positive chamber. Hence this translation sends the
chain (7,) to a maximal chain in (S,,, Wy,).
We continue in this fashion: On the ¢-th step we “unbend” the broken geodesic

Tolq U..Ux, iz

to a directed geodesic segment a?z’z representing the vector a;vq, then apply an ap-
propriate element w;_; € W, to transform segment 707} to zo2”; finally, appeal to
Proposition B2H to establish equivalence between the maximal chain condition and
the LS path axioms. O

As a corollary of Theorem we obtain
Corollary 5.7. Let T = [z,z,y] C X be a geodesic triangle and f = Fold,, A be a
folding into the Weyl chamber. Set 5 := da(z,y). Assume that T' = f(T) is such
that f(x), f(y) and all break-points of the broken geodesic f(Ty) are special vertices.

Then f(zy) is an LS path of the A-length k3. Here k is the conformal factor of the
dilation h.
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5.2 Root operators

With each simple root a € &, Littelmann [L.2] associates raising and lowering root
operators e, and f, acting P as follows.

Recall that given a path p(t) and a root o we have the hight function h,(t) :=
a(p(t)). The number m, is the minimal value of h, on [0, 1].

If m, > —1 then e, is not defined on p. Otherwise let ; be the minimal ¢ for
which h,(t) = m, and let ty € [0,%;] be maximal such that h,(t) > m, + 1 for all
t e [0, to].

The operator e, will not change the path p for ¢ € [0,¢y] and, as far as [t,1] is
concerned, the path p|[t;, 1] will change only by a translation in W, s, along the line
L,, parallel to the vector . Thus it remains to describe the path ¢ = e, (p) on [to, t1].
If hq were not to have any local minima on [to,¢;] then g|y, ) would be obtained by
the reflection

Q|[t0,t1} = Ta Op|[t0,t1}

and we would set
q = p|[0,t0] * Tq © p|[t0,t1] * P|[t171}-

(Here we treat the paths resulting from the restriction of p to subintervals of [0, 1] as
elements of P, according to the convention in section B1)

Life, however, is not that simple: Call a subinterval [s,u| C [to,?1] a dip if it is a
maximal interval satisfying

ha(s) = ha(u) = min(hy |[s, u]).

Thus ha‘ [to, 1] is decreasing on the complement to the union of dips. The restriction
of ¢ to each dip is obtained from p by a translation along L,. The restriction to
each subinterval disjoint from a dip is obtained by a reflection. To be more precise,
subdivide the interval [to, ;] into

[to, 81] U [81, 82] U..u [Sk,tl],

where the dip and non-dip intervals alternate. Observe that [to, s1], [sk,t1] are not
dips. Then

q = p|[0,to] * Ta(p‘[to,SH) *]9|[sl,52} * ok Ta(pl[Skm]) *p‘[tl,ll'

Note that the operator e, changes the geometry of the path p by an isometry near
every point p(t) which is neither a point of local minimum for h,, nor is a point where
ho(t) = ma — 1. Otherwise the local change is done by a “bending” with respect to
a hyperplane parallel to H,. These hyperplanes are not necessarily walls of Ws.
However, if all local minimal values of h, belong to Z, these hyperplanes are indeed
walls and we obtain:

For each path p € Py, for each simple root «, the path ¢ = e,(p) satisfies the
following: The interval [0, 1] can be subdivided into subintervals [s;, s;11] such that
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the restriction ¢|[s;, s;+1] is obtained from the restriction of p by post-composition
with an element of W.

The lowering operators f, are defined analogously to the raising operators, we
refer the reader to [L.2] for the precise definition. (See however Property 1 below.)
At this stage we note only that f, is undefined on p iff m, > h,(1) — 1. Let £ be
the semigroup generated by e,’s, F be the semigroup generated by f,’s and A be
the semigroup generated by all root operators. The semigroups contain the identity
operator by default. For each ¢ € A let Dom(¢) denote the domain of ¢.

Remark 5.8. In fact, Littelmann extends the operators f,, e, to the entire P by
declaring fo(p) = 0 for all p for which f, is undefined. However we will not need this
extension in the present paper.

Below we list certain properties of the root operators. Most of them are either
clear from the definition or are proven in [L2]. Most proofs that we present are slight
modifications of the arguments in [L.2].

Property 1. (P. Littelmann, [L2, Lemma 2.1 (b, e)].)
€q © fa(p) =p, if p€ Dom(.fa)>

faoea(p) =p, if p€ Dom(ey),
ea(p”) = (fa(p))",  (ealp))” = fa(p"),
the latter could be taken as the definition of f,.

Property 2. (See [L2, Lemma 2.1].) For each p € Dom(e,) NP,

ma(ea(p)) = ma(p) + 1,

N
«a

p € Dom(e,) <= N < |mal.

Property 3. Suppose that p is a path in Pz which does not belong to the domain
of any ey, € ®. Then p is contained in A. Indeed, for each simple root o we have
to have m,(p) > —1. Since p € Pz, my(p) = 0. Thus p € PT.

Property 4. (See [L.2, Proposition 3.1 (a, b)].) For each a € ®, Dom(f,) NPy
is open and f,|Py is continuous.

Property 5. (See [L2, §7, Corollary 1 (a)].) Let p € P™ and ¢ be a composition
of lowering operators defined on p. Then ¢(p) € Py .

Property 6. Combining Properties 4 and 5 we conclude that for each f € F,
Dom(f) NPT is open and f|P* is continuous.

Property 7. (See [L.2, Corollary 3, Page 512].) p is an LS path of the A-length
A if and only if there exists f € F such that

p=f(m)
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Property 8. (See [L2, Corollary 2(a), page 512].) The set of LS paths of the
given A-length is stable under A.

Property 9. Suppose that p € P, t € [0,1], « € ® and x := p(t) satisfy
alz) € Z, p_(t) Zw, P.(t).

Then the path ¢ = e, (p) also satisfies
q_(t) 2w, ¢, (1),

for y = q(t).

Proof: If ho(t) # me, ma—1, the germs of the paths p and ¢ at ¢ differ by a translation.
Thus the conclusion trivially holds in this case. The same argument applies if h,(t) =
me — 1 and

a(pl(t)) = 0,a(p/(t)) < 0.
The nontrivial cases are:

L. ha(t) =ma — 1, a(p’_(t)) <0, a(p/.(t)) < 0. In this case the assertion follows
from Lemma B with v = p’ (t), u =/, (1).

2. ho(t) = ma, a(p’_(t)) <0, a(p/ (t)) > 0. In this case the assertion follows from
Lemma with v = p’ (t), u = p/, (). 0O

Property 10. Suppose that p = p; * p» where p; € P*. Then for each e € £
defined on p we have

e(p) = p1 * e(pa2).

Proof: Tt suffices to prove this for e = e,, @ € ®. In the latter case it follows directly
from the definition of the operator e,. O

The next property is again clear from the definition:

Property 11. Suppose that
e=ep, 0...0€g
where 3; € ®, p € Dom(e). Set
pii=eg o..0ez(p),i=1,.,m.
Then for each T € [0, 1], the sequence of vectors

(P(T), (p1) (1), ooy (P) (1)),

after deleting equal members, forms a chain.

Lemma 5.9. Given a path p there are only finitely many operators e € £ which are
defined on p.
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Proof: Break the path p as the concatenation

P1* ... X% Dg.

of geodesic paths each of which is contained in a single alcove and let T; € [0, 1] be
such that p(T;) = p;(1/2); set Ty := 0. Then for each e, € £ defined on p there exists
i such that the derivatives of e,(p) and p at T; are not the same. Moreover,

q= ea(p> ={q1* ... % (s,
where each ¢; is a geodesic path contained in an alcove. Consider the vector
L(p) := (£(p'(0)), €(p'(T1)), ..., L(P'(T}))) € (NU {0})*+,

where N**! is given the lexicographic order and £ is the length function on W,,-orbits
induced from the word metric on Wy, as in Lemma Then, by combining Lemma
and Property 11 above, for each a € ®,

L(ea(p)) < L(p).

Lemma follows. O

5.3 Generalized LS paths

In this paper we will need two generalizations of the concept of an LS path; the first
one will be needed for the proof of the saturation theorem (section [), the second
will be used in section for the proof of the unfolding theorem. Although we will
use the name generalized LS path for both generalizations, it will be clear from the
context which generalization is being referred to.

1. Suppose we are given a collection of LS paths p; of the A-length \; € ANP(RY),
1=20,...,m. We will use the notation

A= Aoy ey Am)

and

Remark 5.10. Actually, for our main application it will suffice to consider \;’s which
are multiples of the fundamental coweights w;.

Definition 5.11. The concatenation

D =DPo*P1*k..*xDny

will be called a generalized LS path with lengthA(p) =\, if for each i =0,....m —1

pi(1) 2 pis1(0).

The set of such generalized LS paths will be denoted LS.
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This definition is a very special case of the one used by Littelmann in [L3] under
the name of a locally integral concatenation.

Recall that according to the definition of A-length,
A = lengtha (p).
Observe that each LS path p satisfies the above definition, since for each 7

pi(1) = pi14(0).

Example 5.12. Suppose that u,v are dominant coweights. Then p = m, * 7, is a
generalized LS path.

2. Suppose that p;, ps € P appear as
plzﬁl\[oﬂ}, 0<a<l,

D2 2152\[1),1], 0<b<1,

where py, py are LS paths, a,b € Q. (See section for the definition of p|j,4 and
P2l
Assume that
pi(1) & p5(0).
Definition 5.13. The concatenation p = py * po will be called a generalized LS path
if the concatenation point pi(1) is a reqular point* of (A, W) and p(1) € P(RY).
The set of such generalized LS paths will be denoted LS,.

Example 5.14. Suppose that w € A;v € V are such that u,v € P(RY) @ Q, u +
v € P(RY)NA and the head of the vector w is a regular point in (A, Wyyss). Then
p=m,*m, € LS.

This definition is again a very special case of the one given by Littelmann in [[.2
5.3]. Littelmann does not assume that p;(1) is regular, but instead imposes certain
chain conditions at this point.

Properties of generalized LS paths:
Property 0. If p € LS; then p* is also in LS.

Proof: Represent p as a concatenation pp * ... * p,, of LS paths as in the Definition

BETI Then
p* = (pp) * .. * (p7),

where each path p! is again an LS path. Now the assertion follows from Lemma

B19 O

4L.e. it does not belong to any wall.
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Property 1. LS, is stable under the root operators; see [L2, Lemma 5.6, 2-nd
assertion]. In particular, suppose that p is as in Example T4l Then for each f € F
(defined on p), f(p) is a generalized LS path of the A-length A = u + v.

Property 2. LS; is stable under the raising and lowering root operators.

Proof: Suppose that p = p; % ... % p,,, is a concatenation of LS paths as above and e,
is a raising operator. In particular, for each ¢ we have a vector u; so that

pi(1) = ui ~ iy, (0).

For each i, e, (p;) is again a Littelmann path. Therefore e, (p) is a concatenation of
LS paths ¢ * ... ¥ ¢,,. We have to verify that for each ¢ there is a vector v; € V so
that

(1) = vi ~ qi14(0).
This however follows from the Property 9 in the previous section. To check that £S;
is preserved by f, we use that ¢ € LS, < ¢" € LS, and

fa(p) = (ealp”))”. O

Property 3. LS, and LS, are contained in Py o.. For LS, it is immediate since
the set of LS paths is contained in Pz .. (see Theorem BH). For £S, it is a special
case of [L2, Lemma 5.5].

Property 4. Suppose that p € £LS;. Then there exists an element e € £ defined

on p such that ¢ = e(p) € P™.

Proof: If mq, (p) < —1 then we apply a power €' to p so that ¢, := e (p) satisfies
Ma,(q1) > —1. However, since e’;ll (p) € LS1 C Prioc, it follows that ¢ € Pz o and
SO Ma, (q1) = 0. We then apply a power of e, to g1, etc. According to Lemma B9,

this process must terminate. Therefore, in the end we obtain a path

e(p) =q

which does not belong to the domain of any raising operator. Since ¢ € Pz o it
follows that ¢ is entirely contained in A. O

Recall, see [Ba, Chapter VI, section 10] that if a root system R spans V' then each
dominant coweight A € A is a positive integer combination

l
A= E n;t;,
i=1

where to; are fundamental coweights. This assertion (as it stands) is false without
the above assumption on V. In the general case we have

l
A= )\/ + Zniwi,

i=1

where X € V', n; € NU{0}. As an alternative the reader can restrict the discussion
to semisimple groups only, when V' = 0.
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Convention 5.15. From now on we will be assuming that in Definition [ 11
A =kjwm;, k€N,
for each j =1,...,m, where w; is the j-th fundamental coweight, and
X €V
Then the subpath py is necessarily geodesic.

Lemma 5.16. Suppose that p € LS NPT is a generalized LS path with lengthA (p) =
A. Then

D =Ty * ... ¥ Ty,

Proof: Represent p as the concatenation of maximal LS subpaths, p = pg * p1... * pp,.
The geodesic subpath py clearly equals ,,. Since p; is an LS path and p}(0) € A,
we see that p; is a geodesic path (see Corollary BI0) which therefore equals y,.
Moreover, because
pi(1) = w1 ~ p5(0),

it follows that u; = pj(1) and thus p{(1) = A\ ~ p5(0). Let x; := p1(1); this point
lies on the boundary face of A which does not contain Ay. Note that the vector p,(0),
regarded as an element of T, (A), points inside the Weyl chamber A (for otherwise p
is not contained in A). On the other hand, since A\; ~ p,(0), the vector p,(0) belongs
either to A or to the Weyl chamber

782 (A)

adjacent to A. Since p € PT, it is clear that p,(0) € A. Thus p, is the geodesic path
T\,- Continuing in this fashion we conclude that

D = Ty * Ty, * ...k Ty U

m*

Theorem 5.17. Suppose that p is a generalized LS path with lengthA(p) = A (satis-
fying convention[I4). Then there exists £ € F such that

p = f(ﬂ-)\() ¥k ﬂ-)\m)

Proof: If p € Pt then we are done. Otherwise, by combining Lemma with the
Property 4, we find an e € &,
e= efj}l o ---622
such that p € Dom(e) and e(p) = ¢ € P*. Therefore
g = Tixg Ty * ... kT,

and thus the composition
_ rkn k
f=fino.. fh
satisfies p = fe(p) = f(my, * my, * .7z, )- O
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5.4 Path model for the representation theory of Lie groups

Suppose that
p(t) c £81 U £82

is a generalized LS path with lengtha(p) = 8 and
length , (p) = A.
Suppose that a € P(RY) is such that a+ p(t) is contained in A. Then « and p define
a polygon
P:=0oyoU(p+a)Uy,0 C A
where o = 0y, Yy, = @ +p(1). Let v denote the vector oy,; then « is also a dominant

coweight. Recall that the contragredient dominant coweight v* € A is obtained by
projecting the vector —v to the Weyl chamber A by the projection P: V' — A.

Definition 5.18. 1. A polygon P above will be called a (broken) Littelmann polygon
with the A-side lengths o, (3, v*.

2. If p(t) is an LS path then P will be called a (broken) Littelmann triangle with
the A-side lengths o, 3, ~*.

Pick a lattice L such that
Q(RY) C L C P(RY).

Then there exists a unique connected semisimple complex Lie group GV with the root
system RY and the character lattice L of the maximal torus TV C GV. Recall that

irreducible representations V of GV are parameterized by their dominant weights,
V=V, e AnL.

Pick a path ¢ € P* such that ¢(1) = . Then, according to [L2, Decomposition
formula, Page 500] we have

Theorem 5.19 ([L2]). The tensor product V, &V} contains V., as a subrepresentation
if and only if there exists a path p € F(q) such that m, x p € Pt and mq * p(1) = .

Remark 5.20. Littelmann works with simply-connected group G and weights o, 3,
in P(RY). The statement for non-simply-connected groups trivially follows from the
simply-connected case.

In particular, since p is an LS paths of the A-length f if and only if p € F(ng), it
follows that

Theorem 5.21 ([L1], [L2]). The tensor product V, @ Vg contains V, as a subrep-
resentation if and only if there exists a (broken) Littelmann triangle in A C 'V, with
the A-side-lengths o, 3, ~*.

In other words, V., C V, ® V3 if and only if there exists an LS path p of A-length
0B such that

1. myxp € PT.
2. p(1) +a=r.
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We will apply Theorem BT9 as follows. Represent the vector 3 as the integer
linear combination of fundamental coweights

=1

We reorder the fundamental coweights so that k; > 0 for all ¢ = 1,...,m and k; =
0, >m+ 1. Set \; := kyw;, 1 <i <m andlet A = (\,..., \;,). Therefore the path

T) = T % T,
belongs to £S; and (1) = 8. Then

Corollary 5.22. The tensor product V, ® Vi contains V, as a subrepresentation if
and only if there exists a generalized LS path p so that

1. length  (p) = A.
2. maxp e PT.
3. mo xkp(l) = 1.

Proof: Set
q=T A-
According to Theorems BI7 and Property 2 of generalized LS paths (section B3],

p € P is a generalized LS path with length | (p) = Aif and only if p € F(q). Now the
assertion follows from Theorem BTA. O

Combining Corollary EE2T Theorem (.6 and Theorem B2l we obtain

Corollary 5.23. Suppose that X is a thick Euclidean building modeled on the Coxeter
complex (A, Waysr). Let a, B,7* € L be dominant coweights. Suppose that a C A is
an alcove containing a special vertex o, T = [0, x,y] C X is a geodesic triangle with
the special vertices and the A-side lengths a, 3,~v*. Assume also that the broken side
Fold, A(Ty) of the folded triangle

FOld(LA(T)

has breaks only at the special vertices of A. Then
1. The folded triangle T' = Fold,qn(T) C A is a Littelmann triangle.
2.V, CV,®Vj.

Proof: Indeed, according to Corollary EEZT], the folded triangle 7" satisfies the chain
condition. Each break point x; on the broken side of 7" is

1. Either a special vertex, in which case it satisfies maximal chain condition by
Remark B2, or

2. Fold, A(Ty) is geodesic at the point corresponding to z;, so the chain at z; can
be chosen to be maximal by Proposition ELT9.
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Hence Theorem implies that 7" is a Littelmann triangle. The second assertion
now follows from Theorem B2T1 O

Of course, the assumption that the break points occur only at the special vertices
is very restrictive. In section [l we will to get rid of this assumption at the expense of
dilation of the side-lengths.

6 Unfolding

The goal of this section is to establish an intrinsic characterization of folded trian-
gles as the broken billiard triangles satisfying chain condition. We first prove this
characterization for Littelmann triangles and then, using this, give a general proof.

Throughout this section we assume that X is a thick locally compact Euclidean
building modeled on the Coxeter complex (A, W), A C A is a Weyl chamber with
the tip 0. Let g : X — A denote the folding Folda.

Let T C A be a billiard triangle which is the composition
T = oz UrUyo,

where r(t) = p(t) + @, o = o and p € P is a Hecke path. Thus 7 has the geodesic
sides o7, 0y and the broken side 7. We set v := oy and let 3 € A denote A-length of
the path p.

6.1 Unfolding Littelmann triangles

Theorem 6.1. Suppose that, in addition, T is a Littelmann triangle, 7.e. o,y € L C
P(RY) and p is an LS path. ThenT' can be unfolded in X, i.e. there exists a geodesic
triangle T C X such that g(T) =T.

Proof: Here is the idea of the proof: We know that billiard triangles in A satisfying
simple chain condition can be unfolded to geodesic triangles in X, see Corollary
E23 Littelmann triangle 7' is billiard, satisfies chain condition, but not necessarily
simple chain condition. Out goal is to approximate T by Littelmann polygons P.,
lim. o P. = T, which satisfy simple chain condition. We then unfold each P. to a
geodesic quadrilateral 7, € X. Since X is locally compact, there is a convergent
sequence T, ¢, whose limit is a geodesic triangle T which folds to 7. Below is the
detailed argument.

Consider the geodesic path m5 = ob € P*. Since p is an LS path with the A-
length 3, according to Property 7 in section B2, there exists a composition ¢ € F of
lowering operators so that

o(ms) = p.

Let ¢ C A denote an alcove which contains the germ of the segment ob at b.
Pick a point u in the interior of ob N c¢. Then for each ¢ > 0 there exists a point
ue € int(c) N P(RY) ® Q such that
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Figure 8: Approximation.

1 Ju—u <e.

2. The segments otg, ub do not pass through any point of intersection of two or
more walls (except for the end-points of these segments).

Observe that u, is a regular point in (A, W,ss), i.e. it does not belong to any wall.

In other words, the path L

De := ou Jub € P

is generic. Parameterize p. with the constant speed so that p.(t.) = u.. See Figure B

Then the path p. belongs to P*; clearly it is also a generalized LS path: p. € LS,.
Moreover,

iy =

Therefore, according to Property 6 of the root operators (see section B.2]), the operator
¢ is defined on all p, for e sufficiently small and

lim ¢(p.) = 6(ms) = p.

Set p. := &(p.). Since p. was generic, the path p, is generic as well. By construction,
for each sufficiently small e,
pe(1) = p(1).

Observe also that the germ of the path p. at the point p.(t.) is isomorphic (via an
element of Wysf) to the germ of p. at u. (since w, is regular). Similarly, p. is the
composition of the path p.|[0,t.] with the path that belongs to the W s-orbit of u.b.

For each € we form a new polygon P, by replacing the broken side r(t) = a + p(t)
(in 7”) with the path a + p.(t). Clearly,

limP. ="1T.

e—0

To simplify the notation we now fix € > 0 and let ¢ := p..
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Lemma 6.2. For all sufficiently small €, the polygon P, is contained in A.

Proof: Suppose that A is a simple root which is negative at some point of the path
a+q(t).

Since A is nonnegative on the limiting path a + p, the minimum of the function
JA(t) := Aq(t)),t € [0,1], converges to zero as € — 0. However, as a generalized LS
path, ¢ belongs to Pz (see Property 5 in section 52). Since a € P(RY), it follows that
the minimum of J,(¢) is an integer. Hence it has to be equal to zero for all sufficiently
small values of e. Contradiction. O

Since each ¢ is a generalized LS path and P, C A, the polygon P, is a Littelmann
polygon. Moreover, since ¢ is generic, the polygon P. satisfies the simple chain
condition. Thus

1. For each t € [0,¢,) either ¢ is smooth at t or

(¢_(t), ¢} (1))
is a chain of length 1: At m = ¢(¢) the above tangent vectors are related by a single

reflection in W,,. The fixed-point set of this reflection is the unique wall passing
through m.

2. The subpath ¢([t, 1]) in ¢ is a geodesic segment and
d(€) := L(ucd,ub) = m — Z(q_(t(e)), ¢, (t(€)))-

Now we are in position to apply Corollary and unfold P. in X: For each €
there exists a geodesic quadrilateral T, (with one vertex at o) in X such that

g(Te) = Pe-

Let Z = Z. denote the point of 7, which maps to z = ¢(t.) under the folding map f.
Since z is a regular point, the point Z is regular as well and the angle between the
sides of T, at 7 is the same as the angle between the sides of P, at z, i.e. equals d(e).

Since the building X is locally compact, the sequence of quadrilaterals 7. subcon-
verges to a geodesic quadrilateral 7" C X which is a geodesic triangle since

limd(e) = 7.

By continuity of the folding g : X — A,
g(T) = lirrol P =T O
In the above proof we assumed that the polygon 7' is entirely contained in A. This
assumption can be weakened. Let f : X — A denote the folding Fold, 4 into the

apartment A, where a is an alcove containing o. Suppose that 7" C A is as above, so
that o,y € P(RY), pis a billiard path, r = p+a. Define two subsets J, J' C I = [0, 1]:

J=cl(r~int(A))), J :=cl(r int(V \ A))).

Clearly, I = JU J" and the set J N J’ is finite.

We assume that for each t € J the germ of p at t satisfies the maximal chain
condition, and for each t € J' the germ of p at t is geodesic.
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Theorem 6.3. Under the above assumptions the polygon T can be unfolded to a
geodesic triangle in X wvia the retraction f.

Proof: Recall that unfolding of 7" is a local problem of behavior of the path r at the
break-points (Lemma ELH), which in our case all occur inside A.

We first replace T with the polygon P = P(T'), where P = P, is the projection of
A to the Weyl chamber A. Then, analogously to the proof of Proposition EETY, the
new polygon P still satisfies the maximal chain condition. Therefore, according to
the previous theorem, the polygon P unfolds in X via the folding map g = Folda :
X — A. However this means that the unfolding condition (stated in Lemma E))
is satisfied at each break-point of the polygon T (since the germs of r and of P(r)
are the same). Hence the original polygon 7" unfolds to a geodesic triangle in X via
f: X — A O

Let G be a connected split semisimple algebraic group with the root system R
and the cocharacter lattice L of the maximal torus T C G. We let GV denote its

Langlands’ dual and set
GY = GY(C).

We assume that «, 3,7* € L are dominant weights of GV such that
(Va® V3@ V,)¢ #0,

equivalently,
V«/ C Va & Vﬁ.

As a corollary of Theorem we get a new proof of

Theorem 6.4 (Theorem 9.17 in [KLM3]). Under the above assumptions, in the
thick Euclidean building X there exists a geodesic triangle with special vertices and
the A-side-lengths o, 3, v*.

Proof: Since
V'\{ C Va ® VIB,

according to Littelmann’s Theorem B.ZT], there exists a Littelmann triangle 7" C A,
as in Theorem Bl Let p € P denote the LS path (of the A-length ) representing
the broken side of T7"; p = ¢(mg), where ¢ € F is a composition of lowering operators.
Thus, by Theorem ], there exists a triangle 7' = [0, x,y] C X such that Folda(T) =
T'. Therefore, by the definition of folding,

dref(0> [L’) - dref(oa ZL’I) =, dref(0> y) = dref(0> y/) =7.

Since we assumed that o, 5 € L C P(RY) then z,y are special vertices of z. Since
folding preserves the A-length,

da(z,y) = lengtha(p) = 8. O
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6.2 Characterization of folded triangles

The goal of this section is to extend the results of the previous one from the case of
Littelmann triangles to general broken triangles satisfying chain condition.

Theorem 6.5. Suppose that p € P is a Hecke path, o = ot € A is such that the path
q := a+ p is contained in A. Define the billiard triangle T' :=ouU qU q(1)o. Then
T’ can be unfolded in X .

Proof: The idea of the proof is that the set of unfoldable billiard paths is closed, thus
it suffices to approximate p by unfoldable paths. We first prove the theorem in the
case when o does not belong to the image of the path ¢.

According to Lemma L8, unfolding of a path is a purely local matter. Therefore
the problem reduces to the case when ¢ has only one break-point, x = ¢(¢;). If p were
an LS path, we would be done. In general it is not, for instance, because it might
fail the maximal chain condition. We resolve this difficulty by passing to a smaller
Cozeter compler and a smaller building.

Let R, denote the root subsystem in R which is generated by the roots corre-
sponding to the walls passing through x. This root system determines a Euclidean
Coxeter complex where the stabilizer of the origin is a finite Coxeter group W, ,
which is conjugate to the group W, via the translation by the vector oz. Let A,
denote the positive Weyl chamber of (V, W/ ) (the unique chamber which contains
A). Let &, 1 and ¢ denote the normalizations of the vectors —p' (t1), p/, (t1), 0.

Then, since p satisfies the chain condition, there exists an (S, W,, A,)-chain
(V()a"'aym)a V():_ga Vm =1, Vi:Ti(Vi—l)a 1 Slﬁm

Our first observation is that although this chain may fail to be a maximal chain
with respect to the unrestricted Coxeter complex (S, Wy,p), we can assume that it is
maximal with respect to the restricted Coxeter complex (S, W,.).

Next, the initial and final points of ¢ may not belong to P(R}). Recall however
that rational points are dense in S, see Lemma P24k therefore, there exists a sequence
of rational points (with respect to R,) & € S which converges to . Thus, using the
same reflections 7; as before, we obtain a sequence of rational chains (1/2] ),i=0,...,m,
where 1 = —&;, 0], =n;. We set (; := (.

Hence for each j there exists a number ¢ = ¢; € Ry so that the points
rj=x+c, yj=x+cn;
belong to P(RY). We define a sequence of paths
¢ =Tz UTY; € P.

Our next goal is to choose the sequence §; so that the germ of each g; at x is contained
in A. If z belongs to the interior of A then we do not need any restrictions on the
sequence &;. Assume therefore that = belongs to the boundary of A. Let F' denote
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the smallest face of the Coxeter complex (V, Ws,,) which contains the point = and let
H denote the intersection of all walls through the origin which contain z. It is clear
that I’ is a convex homogeneous polyhedral cone contained in H and x belongs to
the interior of F' in H. If w € W, is such that w(—¢§) = n then w fixes H (and F)
pointwise.

By Lemma Z4], applied to the root system R,, there exists a sequence of unit
rational vectors §; and positive numbers €; converging to zero so that points x & €;§;
belong to inty(F); therefore the sequence w(x + €;¢;) is also contained in inty (F).

Using this sequence &; we define the paths g;; clearly the germ of ¢; at x is
contained in inty(F) C A C A,.

Remark 6.6. Note that, typically, the sequence (c;) is unbounded and the paths g;
are not contained in A\,.

We let p; € P denote the path g; —¢;(0). Then each p; is an LS path with respect
to the root system R,: Integrality and the maximal chain condition now hold. Set

A; := lengthp (p;).
Remark 6.7. Observe that, B )
hm >\j =)A€ A,
j
where X is the A,-length of p.

Therefore, according to Theorem for each j the path g; is unfoldable in a thick
Euclidean building X, modeled on the Coxeter complex

(A, W(iff)’ where Wt;ff =V K Wm

This means that there exists a geodesic path ¢; in X, whose A,-length is \;, and
which projects to ¢; under the folding X, — A.

Let z; € ¢; be the points which correspond to the point  under the folding map
4 — G-

Thus the “broken triangle” [{;, ¢, n;] in S, unfolds in X, (X, ) into a triangle [éj, fj, ;]
such that

dref(§j> C]) = dref(§j> CJ)’
dref(ﬁ]aéj) = dyes(nj, C])?
d(ﬁjv@) =m

Observe that the metric distance from o to z; is uniformly bounded. Since X,
is locally compact, the sequence of buildings X, (X,) subconverges to the link of a
vertex u € X, C X.

Remark 6.8. The spherical buildings 3. (X,), Xu(X.) have to be modeled on the
same spherical Coxeter complex (S, W), since the structure group can only increase
in the limit and the structure group at z; was already maximal possible, i.e. W.
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Accordingly, the triangles [éj, fj, 7] subconverge to a triangle €, ¢, 7] whose refined
side-lengths are

dref(€7 C)a dref(<7 77)7 .

This shows that the triangle [£, (, 7] can be unfolded in a building which is modeled
on (S, W,). We now apply the locality lemma to conclude that the path ¢ can be
unfolded in X to a geodesic path. Thus the broken triangle 7" unfolds to a geodesic
triangle as well.

If 0 belongs to the image of ¢ we argue as follows. The path ¢, as before, has only
one break point, which in this case occurs at the origin:

q=7oUay.

There exists an element w € Wy, which sends the vector n = —¢ to &, where 7 is the
normalization of the vector oy. Then consider the geodesic path

G :=zo Uw(oy).

It is clear that g(q) = P(q) = q. O
By combining Theorem and Corollary EE2T] we obtain the following

Theorem 6.9 (Characterization of folded triangles). A polygon P C A of the
form
oz U (p+ a)Ugo, where a = 0Z,y = oy € A,

can be unfolded to a geodesic triangle in X if and only if p is a Hecke path, i.e. a
billiard path which satisfies the chain condition.

6.3 Counting unfoldings

Let K be a local field with discrete valuation and finite residue field k of the order
q. In this section we will be considering an algebraic group G and groups G := G(K)
and K := G(O), the latter is a maximal compact subgroup in G as in section 26

Let X be the Euclidean (Bruhat-Tits) building associated with the group G. This
building has thickness ¢ + 1 (i.e. the number of half-apartments adjacent to a wall
is ¢ + 1) since the order of a root subgroup in G(k) equals ¢, see [Ron]. The point
o € X is a distinguished special vertex stabilized by K.

Suppose that a, 3,7 are elements of P(RY) N A. Define
T =Top(v)

to be the set of triangles T' = [0, Z, y] C X with special vertices and the A-side lengths
o, 3,7, where o = 7.

Theorem B9 gives a necessary and sufficient condition (in terms of Hecke paths)
for existence of a triangle T" € 7. The goal of this section is to count the number of
such triangles 7" under certain genericity hypothesis on 3 and .
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We will assume the following:

1. The vector « is regular, i.e. it does not belong to any wall passing through the
origin.

2. The vector ( is generic, i.e. the path mg[(0,1) does not cross more than one
wall in (A, W,s) in any given point.

In what follows it will be conventient to count the number of triangles |o,y, Z]
rather than [0, Z, y|. Each such triangle maps (under the folding f = Folda : X — A)
to a Hecke triangle T,, C A which has geodesic sides 0y, 7o (where a = oz) and the
broken side represented by a Hecke path p(t) = f(yz). Therefore, let p : [0,1] — A
denote a Hecke path such that p(0) =y, p(1) =z and

lengtha (p) = 37

Consider the spherical building Y = 3, X; it is modeled on the Coxeter complex
(Sys Wepn). Let v € S, C Y denote the normalization of the vector p'(0). Let K,
denote the stabilizer of the segment oy in GG, in other words, it is the stabilizer of y in
K. Recall that in section B.Jl we have defined a length function ¢ on the Wj,,-orbits
in V.

Lemma 6.10. The orbit K,-v has cardinality g

of Y.

, where we regard v as an element

Proof: The positive chamber A in V' determines a positive chamber § in (S, Wi,).
Then the vector ¢ € S, tangent to yo belongs to the interior of the negative chamber
—0. The vector v € S, belongs to the interior of a chamber w(—J), where w € W,, =
Wsph. Therefore —v € w(d) and thus the length [ of w in the word metric of Wy,
equals ¢(—v), by the definition of the the length function /.

The image of the homomorphism
Y K, — Aut(Y)

is contained in the minimal parabolic subgroup B C G(k) C Aut(Y). The group B
is the stabilizer of the chamber —§ in G(k). Then there exists a (finite) unipotent
subgroup U C B which acts simply-transitively on the orbit

B - w(=9).
The group U admits a decomposition as
Upy-...- U

where Uj; are certain root groups in G(k), see [Ronl, Pages 75, 76]. Each root subgroup
U; fixes the initial direction of the segment 7o, hence it extends to a root subgroup
U/ C G which fixes the entire segment oy. It follows that U/ C K, and therefore

(K (~w(9)) = U(=w(9)).
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Since the cardinality of each root group U; is ¢ we obtain
#B )= =
Lemma follows. O
Consider the set
J={te€(0,1):36; € R" sothat Bi(p(t)) € Z}.
The set J consists of the values of ¢ such that p(t) is a singular point of the Coxeter
complex (i.e. belongs to a wall). We list the elements of J in the increasing order
0<ty <tg.. <ty <L

Define the function € = €(t;) by:

1. If p is geodesic at t; then

la. If B;(p'(t;))) < 0 then €(¢;) = 1.

1b. If B;(p'(t;)) > O then €(t;) == q.

2. If p is not geodesic at t; then

2a. If p(t;) is not a boundary point of A then €(t;) := g — 1.

2b. If p(t;) belongs to the boundary of A then €(¢;) := q.
Observe that the definition of a Hecke path implies that if p(¢) is a break-point of p
then t € J and G;(p’_(t;)) < 0.

Remark 6.11. The set J depends only on the vector 3 and is independent of the
path p, since each Hecke path p is the image of a geodesic path congruent to 7y under
the folding f : X — A. However the function € depends on p as well.

Theorem 6.12. 1. The number of points & € X such that f(xT) = p equals

2. The cardinality of T equals

(2

Z g7 () H e(t;),
p

where the sum is taken over all Hecke paths of A-length 5* in A connecting y to x.

Remark 6.13. The proof of this theorem is not meant to be a substitute to the proof
of Corollary [{.23; we urge the reader to read the proofs of Corollary [f.29 and of
Propositions [{.13 and [{.1] before reading the proof below.

Proof: The space 7T fibers over the set of Hecke paths of A-length 5* with fiber over
each path equal to

{lo,y,2] C X : f(yz) = p}-
Therefore it suffices to prove the first assertion of Theorem. We will count the number
of unfoldings of the path p, i.e. the number of geodesic paths p satisfying p(1) = v,

f(p) =p.

We begin by making few observations:
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Remark 6.14. 1. Since B is assumed to be generic, the path p is generic as well.
2. Since the restriction p| (tiv1,t;) is disjoint from the walls of X, each path in X
which folds to p|(ti+1, t;) has to be geodesic.

Set x; := p(t;), i =1, ..., m. For an unfolding p of p we let z; := p(t;).
We argue inductively analogously to the proof of Proposition T3
The unfoldings of the germ (p,y) are in 1-1 correspondence with points of the
orbit
K, -v.
This orbit has cardinality

qﬁ(—p’(O))

according to the previous lemma. Suppose that there are

i—1
g7 (@) e(ty).
1

j
ways to choose the (geodesic) unfoldings p ‘ 0,¢;] of p‘ [0, ¢;].
Pick one of the unfoldings ]5’ [0,%;] and let us count the number of ways it can be
extended to [0,%;41]. For each such unfolding ]5’ 0,2;11] set x; := p(t;).
Given an unfolding
5110, ti1] = 5[0, 6] UTF i,
we define the unit tangent direction & € ¥, X to the segment Z; 7 1.

Then the unfolding ]’5‘ [0, #;41] is uniquely determined by the choice of the &. The
image of & under df is the vector & = P, (t;). Proposition implies that there are
exactly €(t;) ways to choose &;.

Remark 6.15. The tangent direction to &; € S,, correspond to the pointsy’ andy" in
Proposition[f.1] (depending on the case 1a, 1b, 2a, 2b in the definition of the function
€ we take either y' or y") the direction of T;0 corresponds to a generic point in the
chamber a = A~. The points y in Proposition [[.1] correspond to different choices of
the direction él

Thus the path p|[t;+1, 1] can be unfolded in

ways and we are done by the induction. O

We now use the above results to compute the structure constants m, g(7y) in the
Hecke ring H. Recall that

#T = Map (7)7
see section Therefore, by applying Theorem B12, we obtain
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Corollary 6.16. Suppose that « = 02,y = oy € A, and 3 € A are dominant weights.
Assume that (3 is a generic vector and 7y is a regular vector. Then

map(v) =Y " PO [T eta),
p

(2

where the sum is taken over all Hecke paths p : [0,1] — A of A-length 3 which are
connecting x to y.

As an example consider the root system R = A;. Let @w denote the fundamental
coweight for R. Every element A € P(RY) has the form A\ = nyw, where ny € N. The
triangle inequalities for this root system are the ordinary triangle inequalities: Given
elements o, 3,7 € P(RY) let a, b, ¢ denote n,, ng, n, respectively. Then (o, 3,7) € D;
iff

a+b<cb+c<ac+a<b
The condition o + 5+ v € Q(RY) is equivalent to d := (a +b—¢)/2 € N. Let
m := Mma (7). Observe that there exists a unique Hecke path p of the A-length
connecting « to . This path has at most one break point. Moreover, one of the
triangle inequalities satisfied by the triple (a, (3,7) is non-strict if and only if either p
is a geodesic path or its break-point is on the boundary of the Weyl chamber, i.e. at
o. Therefore, by applying Corollary we obtain:

Proposition 6.17. Suppose that (a, 3,7) € D3 N P(Ree) is such that o+ [+ v €
Q(RY). Then:

1. m = q% iff the triple (o, 3,7) belongs to the boundary of Ds, i.e. if one of the
triangle inequalities is actually an equality.

2. m = (q— 1)¢% 1 iff all triangle inequalities satisfied by the triple (a,b,c) are
strict.

7 Proof of the saturation theorem

Let X be a (thick) Euclidean building of rank » modeled on a discrete Coxeter complex
(A,W). Let T = [Z, 9, Z] be a geodesic triangle in X where Z, 7, Z are vertices of X
and whose A-side-lengths are elements of P(RY).

Recall that there exists an apartment A C X which contains the segment zj. We

let W denote the affine Weyl group operating on A. Our first step is to replace the
geodesic triangle T" with a geodesic polygon

P .= [Za:i' = :i'la ...,fi'n,:i'n—i-l = g]

as follows. We now treat the point # as the origin in the affine space A. Let A C A
be a parallel translate of a Weyl chamber in (121, W), so that A has its the tip at &
and 7y C A (observe that T is not necessarily a special vertex, so the boundary facets
of A are not necessarily contained in the walls of (4, W)).
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Consider the vectors wr, ..., w, € A which are the fundamental coweights of our
%
root system. Then the vector zy is the integer linear combination

Accordingly, we define a path p in A with the initial vertex # and the final vertex §
as the concatenation

]5:7TA:7T)\1...*7T>\T:]51U..U]5r,

where \; :== n;w;, A = (A1, ..., \). Observe that the path p satisfies the assumptions
of Theorem ELT6

Next, let A C X be an apartment containing 22, a C A be an alcove containing
Z; consider the retraction f = Fold, o : X — A. This retraction transforms P to
a polygon P := f(P) C A which has geodesic sides f(%), f(7Z). Note that the
break-points in

p=fp)=pU..Up,

are the images of the vertices #; of P which are break-points p, but in addition we
possibly have break-points within the segments f(p;). The latter can occur only at
the values of t for which the geodesic segments of p; intersect transversally the walls
of (fl, W) Since each p; is contained in the 1-skeleton of X, such break-points are
automatically vertices of A. We subdivide the path 5 so that all break-points of p are
the images of the vertices of P.

Let k = kgr be the saturation constant of the root system R. Then, according
to Lemma B9 for each vertex v € A, the point kv € A is a special vertex of A.
Therefore, applying a dilation h € DZZ(A ,W) with the conformal factor k to the
polygon P, we obtain a new polygon k - P = h(P), whose vertices are all special
vertices of A. Thus we can identify the Weyl chamber A with a chamber in A whose
tip o is at the vertex h(Z) and which contains the geodesic segment h(Z7).

Lastly, let P = IP’(k:P) = g(P ) denote the projection of the polygon kP to the
Weyl chamber A, where g = Fold,,a. We set x := ¢g(Z),y = ¢(9),z; = g(Z:),
p:=g(p), etc.

Proposition 7.1. P =0z UpU7¥yo s a Littelmann polygon such that
length , (p) = k - length  (p).

Proof: We have to show that the path p satisfies the chain condition with maximal
chains at each vertex.

The chain condition at each vertex of the path p follows immediately from Theo-

rem ET6l

The maximality condition is immediate for the break-points which occur at the
special vertices of A, in particular, for all break-points which are images of the break-
points of p. The remaining break-points are the ones which occur at the points P(z;),
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where Z; are smooth points of kp at which this path transversally intersects the walls
of A passing through o. However at these points the maximality condition follows
from Proposition EET9.

The second assertion of the proposition was proven in Lemma O

Remark 7.2. Observe that in the case when [3 is the sum of minuscule fundamental
coweights and the geodesic triangle T already has special vertices, the multiplication
by k in the above proof is unnecessary since all the vertices of the polygon P (and
hence P = P(p)) are already special. Thus, in this case, the polygon

P = Folda(P)

1s a Littelmann polygon.

As an application of the above proposition we get

Theorem 7.3. Let X be the (Bruhat-Tits) Fuclidean building associated with the
group G(K), where K is a local field with discrete valuation and finite residue field, G is
a connected semisimple split algebraic group with the root system RY and cocharacter
lattice L C P(RY) of the mazimal torus T C G. Suppose that (o, 3,7v) € D3(X)N L3
and a+ 4+~ € Q(RY). Then for k = kg the triple k(a, 3,7) satisfies

(Via ® Vig ® ka)gv(c) # 0.

Proof: First of all, the conditions (a, 3,7) € D3(X)NP(RY)? and a+ 3+~ € Q(RY)
imply that there exists a geodesic triangle T = [z,y,2] C X whose vertices are
vertices of X and A-side lengths are o« = da(z,y),0 = da(y, z),y = da(z,z), see
Theorem ZT8 The previous proposition shows that this geodesic triangle yields a
Littelmann polygon P C A C A, which has two geodesic sides having the A-lengths
ko, kv and the concatenation of the remaining sides equal to a generalized LS path of
the A-length k3. Therefore, according to Littelmann’s theorem (see Theorem B.2T]),

(Vka X Vkﬁ ® V]W)Qv((c) 7’é 0. O

As a corollary we obtain

Corollary 7.4. Suppose that o, 3,7 € L C P(RY) are dominant weights for the
complex semisimple Lie group GY(C), such that o+ 3+~ € Q(RY) and that there
exists N € N so that

(Viva ® Vg ® Vv, )€ © £ 0.

Then for the saturation constant k = kr we have

(Via ® Vig ® ka)gv((c) # 0.
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Proof: Let X be the Euclidean (Bruhat-Tits) building associated to the group G(K).
The inequality ,
(Viva ® Vivg ® Vv, )& @ #£0

implies that (Na, N3, Nv) belongs to D3(X) (see [KLM3l, Theorem 9.17], or [KLM3,
Theorem 10.3|, or Theorem E4l). Since D3(X) is a homogeneous cone and N > 0,
(a, B,7v) € D3(X) as well. Moreover, according to Theorem I8 since «, 3,7 €
P(RY) and a+3+v € Q(RY), there exists a triangle T' C X with the A-side-lengths
a, (3,7, whose vertices are also vertices of X. Now the assertion follows from theorem
Lol ]

Using Remark [ we also obtain:

Theorem 7.5. Let X be a building as above. Suppose that T = [x,y, z] is a geodesic
triangle in X with the A-side-lengths (a, 3,7), which are dominant weights of G¥ and
so that one (equivalently, all) vertices of T are special and at least one of the weights
a, 3,7 is the sum of minuscule weights. Then

V@ Vs V.)€ © 2.
8 ol

This theorem was originally proven by Tom Haines in the case when all coweights
a, 3, are sums of minuscules.

Conjecture 7.6. (T. Haines) Suppose that «, 3,y are sums of minuscule weights.
Then, in the above theorem, the assumption that one vertex of T is special can be
omitted.

Note that (among irreducible root systems) the root systems Gy, Fy, Fs have no
minuscule weights, B,,, C,,, E7 have exactly one minuscule weight and the root systems
A, D, Fg have more than 1 minuscule weights. For the root system A, Haines
conjecture follows from the saturation theorem. For D,, and Fjy it would follow from
the affirmative answer to Question [C2.

Proposition 7.7. Suppose that the root system R has exactly one minuscule coweight
A. Then the above conjecture holds for R.

Proof: Let (A, W) denote the Euclidean Coxeter complex corresponding to the root
system R and let X be a thick Euclidean building modeled on (A,W). Given
(o, B,7) € D3(X) such that o, 3,7 € P(RY),a+ [+~ € Q(R") we have to construct
a geodesic triangle T' = [o,z,y] C X with special vertices and the A-side lengths
(cr, B,7). Clearly, it suffices to treat the case when the root system R is irreducible
and spans V. Therefore R has type B, C,, or E;. In particular, the index of con-
nection ¢ of R equals 2 and —1 € Wy;,. Let A denote the unique minuscule coweight
of R and let A denote the span in A in V.

Observe that A does not belong to the coroot lattice Q(R") and thus, since i = 2,

N-ANQ(RY)=2N"\.
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Figure 9: A Hecke path which does not satisfy the integrality condition.

Suppose now that a = a\, 3 = bA,y = b\, where a,b,c € NU {0} and

(a,ﬁ,v)GDg(X), a+ﬁ+7€Q(RV)

Thus a + b+ ¢ is an even number and the triple (a, b, ¢) satisfies the ordinary metric
triangle inequalities.

Let (A", W’') = (R,2Z x Z/2) denote the rank 1 Coxeter complex; its vertex set
equals Z. The positive Weyl chamber in (A, W) is R, and we can identify A’-
distances with the usual metric distances. Let X’ denote a thick building which is
modeled on (A", W) (i.e. asimplicial tree with edges of unit length and thickness > 3).
Then the above properties of a, b, ¢ imply that X’ contains a triangle 7" = [0/, 2, ¢/]
with the metric side-lengths a, b, c¢. If this triangle is contained in a single apartment
A" C X' wesend T" to a geodesic triangle T C X via the isometry A’ - A — A — X.
If not, we obtain a folded (Hecke) triangle P = f'(T") = [o/, 2/, u/, f'(y')] C A’. Note
that the unit tangent directions &', n' € S, (A’) to the segments w'a’,u'f(y') are
antipodal. Now embed the apartment A’ into A C X via the isometry ¢ that sends A’
to A, 0’ to o, 1 to A (the latter is a special vertex). Then the point u := ¢(u') is also
a special vertex in A. We claim that the resulting broken triangle [0, x,u,y] C A is a
Hecke triangle in A. Indeed, the directions &, n at 3, which are images of &', " under
¢ are antipodal and n € A. Therefore, since u is a special vertex and —1 € Wy,
according to Lemma BT3 & > n. Thus Tu U uy is a Hecke path. It follows that
the broken triangle [0, x,u,y] is a Hecke triangle and hence it unfolds to a geodesic
triangle 7" in X. The triangle T" has special vertices and A-side lengths (a, 3, 7).

Below is an alternative to the above argument. Let ¥ C A% denote the collection
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of triples of dominant weights 7,7, u such that
(V@ V, @V, #0,

where GV is assumed to be simply-connected. This set is an additive semigroup, see
for instance the Appendix in [KLM3]. It suffices to prove that (a, 3,7) € 2.

Set t := 1(a +b —c¢). (The number t is the metric length of the “leg” of the
geodesic triangle 77 C X’ in the above argument, the leg which contains the vertex
x’.) Since a + b+ ¢ is even, the number ¢ is an integer. Set

a; ‘= a — t, bl =b— t, C1 ‘= C, a1 = 0,1)\, ﬁl = blﬁ, Y1 = C17Y.

Then ¢; = ay 4+ b; and the metric triangle inequalities for a, b, ¢ imply that ¢ > 0, a; >
0,b; > 0. Thus aq, 81,7 are still dominant weights of G and they satisfy

M=o+ B

Then, since —1 € Wy, and v = 77, we have: (aq, £1,71) € . Moreover, (tA,tA,0)
also clearly belongs to ¥ and we have

(a>ﬁa7) = (abﬁl/}/l) + (t)‘>t)‘70) = (a’ﬁa’}/)‘ O

Example 7.8. There exists a Hecke path p € P such that p(1) € P(R"), however for
the saturation constant k = kg, the path k - p is not an LS path.

Proof: Our example is for the root system As, in which case k = 1. We will give an
example of a Hecke path p € P such that p(1) € P(R") but p does not belong to Ps.
Since, according to Theorem B3, each LS path belong to Pz, it proves that p is not
an LS path.

The Hecke path p in question has A-length w; 4+ wy, where wy, wy are the funda-
mental coweights; the break-point of p occurs at the point —(w; + wsy)/2. Thus, for
the simple roots o and 3, the minimum of the functions a(p(t)), 5(p(t)) equals —1/2.
See Figure O
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