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TOWARDS THE KAZHDAN-LUSZTIG CONJECTURE (*)

By O. GABBER anp A. JOSEPH

ABSTRACT. — Let U (g) be the enveloping algebra of a complex semisimple Lie algebra g. Many questions
concerning U (g) (for example the ordering [14] in Prim U (g)) can be answered in terms of the multiplicities in the
composition series of the Verma modules. The main result of this paper shows that a conjecture of Jantzen
([9], 5.18) concerning a certain filtration of the Verma modules implies precisely the formula for these multiplicities
which was recently conjectured by Kazhdan and Lusztig ([10], Conj. 1.5). Its proof requires a study of the
appropriate generalizations of the so-called Bernstein-Gelfand-Gelfand @ category which arise when the base field is
replaced by a commutative ring (defined over the integers). Several results on the corresponding extension groups
are also obtained.

0. Introduction

Let g be a complex semisimple Lie algebra. A basic problem in the representation theory
of g is the determination of the composition series for the Verma modules. Let}) be a Cartan
subalgebra of g, h* the dual of h, R = h* the set of non-zero roots and B = R a basis
forR. Then for each Aeb* the quadruplet g, b, B, A determines a Verma module
M (A). Denote its unique simple quotient by L (A). For each a€R, denote by s, € Aut h*
the corresponding reflection, S : = {scl ToE B} and W the subgroup of Aut h* with generating
set S. For the moment to simplify matters assume that —2 (A, a)/(a, o) is a positive integer
for each aeB. Then after Verma each M (wX) : we W has finite length with composition
factors amongst the L (w’ L) : w'e W. Furthermore after Bernstein-Gelfand-Gelfand (in
short, BGG) the simple factor L (w'A) occurs in M(wA) if and only if w Sw
where < denotes the Bruhat ordering on W. (For further details see [6], Chapt. 7.) Thus
it remains to determine the multiplicity of each factor —a problem on which important
progress was made by Jantzen ([8], [9]).

(*) Shortly after the communication of this paper, we learnt that J. L. Brylinski and M. Kashiwara ([16], [17]) had
just announced a proof of what we consider here to be a special (but important) case of the Kazhdan-Lusztig
conjecture, namely for A integral. (This generalization is so natural for representation theory that like Vogan [14]
we gave it without comment.) At the same time a similar result was announced by A. A. Beilinson and
I. N. Bernstein [15]. These authors establish an equivalence with a geometric problem solved for what corresponds
to the integral case by D. A.Kazhdan and G. Lusztig [11] using the hard Lefschetz theorem developed by
P. Deligne. This method does not at present resolve the case when B, (seetext) cannot be conjugated
into B. Again there has still to be a geometric interpretation of the Jantzen filtration in order to obtain the more
refined and important (cf. [19], Sect. 4) information concerning the multiplicities in each step of the Jantzen filtration
(cf.4.9). More recently the possibility of this more refined data was conjectured by S.Gelfand and
R. MacPherson [18] who refer to it as the generalized Kazhdan-Lusztig conjecture.
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262 0. GABBER AND A. JOSEPH

Recently, Kazhdan and Lusztig ([10], Sect. 1) have associated to each pair w, w'e W a
polynomial P, . (¢) in an indeterminate q. This is determined by an algorithm involving
only the pair (W, S) viewed as a Coxeter group. Let w, denote the unique maximal element
of W under the Bruhat order. They conjecture ([10], Conj. 1.5) that L (w’A) occurs
precisely P, ,, ., (1)timesin M (w X). This was motivated by the role of the Hecke algebra
in ““correcting” the failure of Poincaré duality on Schubert cells [11]. Again during the
preparation of this work, Vogan remarked that their conjecture is equivalent to the formula:

P, . (@)=Y q'®~"=972dim Ext* (M (w}), L (w'1)).
k=0

[Here Ext refers to the @ category of BGG and [ (.) denotes the reduced length
of weW.] Vogan further showed ([13], Sect. 3) that this was equivalent to a conjec-
tured semisimplicity of a module U,L(w\) defined as follows. To each simple root o
there is defined an exact functor 6, on (. Furthermore one has a
complex 0>L(wA)—>0,L(wA)>L(wX)—>0 and U,L(wk) is defined to be its
cohomology. (See 3.3, 3.11 for further details.)

The present work recalls an even earlier conjecture of Jantzen and shows that it implies the
semisimplicity of U, L (w)). Actually a more precise resultis obtained. Firstrecall thatin
the work of Jantzen ([9], Chapt. 5) a certain contravariant form is used to define a filtration
on Verma modules. With respect to the embedding of M (w’ L) in M (w ) for w’ < w and
up to a shift determined by ! (w)—1I(w’), Jantzen’s conjecture ([9], 5.18) asserts that this
filtration ought to be hereditary. Now 0, M (w), which is an extension of M (wl) by
M (ws, ), also admits a filtration via Jantzen’s construction. This leads to two identities
relating the multiplicities in gr M (w ) and in gr M (ws, &). The first [4.3(v)], which is
independent of the conjecture, can be viewed as an analogue of a corresponding identity
relating dim Ext* M (wA), L (w’ L)) to dim Ext* (M (ws, A), L (w’ L)) given w's, < w’
derived in [7], 2.2, and shown there to imply the BGG resolution for L (w, A). Now
assuming this Jantzen conjecture, a second deeper relation [4.8 (iii)] (which has also a
dim Ext* analogue)is obtained and taken together with the first determines the multiplicities
in each filtration step. These multiplicities which can also be specified by the polynomials
P, . (q) are found to be consistent with the Jantzen sum formula ([9], 5.3) obtained from the
determinant of the contravariant form (4.10). At the same time the conjecture is shown to
imply the semisimplicity of gr M (w)). Itis also noteworthy that we are able to recognize a
Hecke algebra in Jantzen’s work (1.10.6 and 3.7).

Finally the Vogan method is used to  partially compute
dim Ext* (M (wA), M (w’'L)). One of the expected relations is obtained precisely (5.2.1),
the second deeper relation, up to an inequality (5.2.3).

We should like to thank D. A. Kazhdan and G. Lusztig for advance knowledge of their
conjecture. One of us (A.J.) benefited from the hospitality of the Sonderforchungsbereich,
Bonn and many stimulating discussions with J.-C. Jantzen. The results of this paper were
presented at a meeting on non-commutative harmonic analysis held in Marseille-Luminy
during 16-20 June 1980. We should also like to thank the referee whose careful reading of
the manuscript eliminated many ambiguities (due to one of us).
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KAZHDAN-LUSZTIG CONJECTURE 263

1. The BGG category over a commutative ring

1.1. SumMarY. — In the light of the work of Jantzen ([9], Chapt. 5) the indeterminate
present in the Kazhdan-Lusztig conjecture motivates the replacement of the base field by a
commutative ring A. It is therefore natural to try to carry over the notion of the ¢ category
of BGG (see [1], [2], [5]) to this situation. This is not entirely straightforward and we felt the
results may be of independent interest. Thus this rather long first section develops in a little
more detail than we actually need most of the natural generalizations. The main results
include: a comparison theory of Ext in various categories (1.5, 1.8.9), its relationship with
n* cohomology (1.5.8), a change of ring formula (1.6), primary decomposition when A is a
local ring (1.8.4), a comparison of Ext with Ext in specialization when A is a discrete
valuation ring (1.9), and the definition of a symbol (1. 10.5) for modules with a p-filtration.

1.2. THE CHEVALLEY BASIS.

1.2.1. Define g, b, R, B as in the introduction. One can choose an involutory
antiautomorphism o of g satisfying 6 (H)=H for all Hel. For each aeR pick a basis
vector X, in the corresponding root space such that o(X,)=X_, and set
H,=[X,, X-,. Let g, be the additive subgroup of g with basis (X,), ., (H,) Then
8z ®;C x g and g, is a Lie algebra. Set R* =NBnR and

b,=Y ZH,, =Y ZX,, b,=bh,®b;

aeB aeR*

aeB*

which are Lie subalgebras of g,.

1.2.2. If A#0 is any commutative ring and a, any Lie algebra, we define
a,=A®;a,. We shall always assume that A is a Q algebra. Define U (a,) to be the
enveloping algebra of a, and let Z (a,) denote its centre. Let S (a,) denote the symmetric
algebra over a,.

1.2.3. Let p be the half sum of the positive roots. For each Aeb¥,let A, be the U (b,)
module which is A as an A module and in which any H el acts through multiplication by
(A, H). Extend A, to a U (b,) module by letting Xen, act by zero. Define the U (g,)
module M (A):=U (g,) ®y,) Ar-,- Itisa free rank one U (n, ) module with canonical
generator which we denote by v, _  (or simply, v). Itis called a Verma module over U (g, ).

1.2.4. Set QR) :=ZR. Seta’®=20a/(a, «) and define
PR)={rebf: (A, a")eZ}.

Define an ordering on P (R) through p < vgiven v—peNB.
1.2.5. f M is a U(h,) module and peb}, we define

M,:={meM | Hm=(u, Hymy¥ Heb,}

to be its p weight submodule. In particular p is called a weight of M if M, #0 and we
let Q(M) denote the set of all weights of M. For example, Q(M(A))=A—p—NB.
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264 0. GABBER AND A. JOSEPH

Define:
MQA) =@, MA),—p-

1.3. Tue HArRiSH-CHANDRA HOMOMORPHISM.

1.3.1. Onehasg, =b, @b, ® n, and all these algebras are free over A. Then by PBW
the A homomorphism u ® h ® v uhv of U (n) ) ® U (h,) ® U (n, ) into U (g,) is bijective
and we have a direct sum decomposition U (g,)=U (h,) ® (ny U(g,)+U (g,)n,)). LetP
denote the projection of U (g,) onto U (§,) defined by this decomposition. Define an
automorphism t : U (h,) = U (h,) of A algebras through 1 (X)=X—p (X) for xeb, and set
P'=1P. ‘ :

1.3.2. Consider U(g,) as an b, module through the adjoint action. Since b, is
commutative U(h,)=S(h,). By taking contragradient action, W acts on b, and hence

on b,, by, S(bA)'

Lemma. — (i) P(U(g,),)=0if p # 0.

(i) The restriction of P to U (g,), is an A-algebra homomorphism.

(iii) The rest/riction of P’ to Z(g,) is injective with image S (h,)".

(i), (ii) follow as in case when A is a field ([6], 7.4.2,7.4.6). For (iii) we apply A ® to the
case A=Q), noting the isomorphisms Z(gq ®aq A)x Z(g,) and

S (ho)" ®q A >S(bhy)".

1.3.3. Extend o to an antiautomorphism a+ o (a) of U(g,). Let M be a U(g,)
module. A symmetric bilinear form m x n— &% (m, n) on M with values in a commutative
ring A’ is said to be contravariant if # (am, n)=% (m, o (a) n) for all m, neM, aeU (g,).

1.3.4. Since o interchanges i, and n, and operates by the identity on U (b,), it follows
that P(o(z))=P(z) for all zeU(gy). Then Z (a,b):=P(c(a)b) is a symmetric
bilinear contravariant form on U (g,) with values in S (b, ).

1.3.5. If Aeb¥ then A defines an epimorphism e, : S (h,) — A through e, (H)=(A, H) for
all Heb,. Define an A module homomorphism X;: U(g,) > A by X, =e, P'. Set
Yr =% lz(gp)> which by 1.3.2(ii) is an algebra homomorphism. Asin([9], 1.5) we obtain:

LemmAa. — For all aeU (g,), zeZ (g,), me M (A):

(i) av—=X, (@)veM(X)".

(il) zm=X, (z) m.

1.3.6. CoroLLARY. — Set ¥, (a, b)=X;(c(a)b). Then &%, is a symmetric bilinear
contravariant form on U (g,) with values in A. It defines by passage to the quotient a
contravariant form &, on M (L).

The first part follows from 1.3.4. Then if acAnnv we have by 1.3.5 (i) that
X, (U(ga) @)=0 and so &; (U(ga), a)=0 as required.

1.3.7. We call &, the canonical contravariant form defined on M (A). It is determined
uniquely as a contravariant form by the property #, (v,_,, v,-,)=1.
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KAZHDAN-LUSZTIG CONJECTURE 265

1.4. CATEGORIES.

1.4.1. If C = b is of the form A+ P (R) for some A eb¥, define K/’ to be the category of
U (g,) modules M such that: ’

Let K(. be the full subcategory of all M e ObK( such that for each meM, U (n) ) m is
finitely generated as an A module. Let K. be the full subcategory of K/ consisting of
modules which are finitely generated over U (g,). For example, if C=A+P (R), then
M ()eObK,.

1.4.2. Let A’ be any commutative ring and {J;},.; a family of ideals of A’ such that
J;+J;=A’, whenever i #j. Let K be the category of A’ modules M=) M,, where

iel

M;:={meM|Vxe], Eln.‘ef\‘l+ s. t. x"'m=0}. Observe that each M; is a A’ submodule.

LemMMAa. — M e ObK if and only if for each me M there exists a finite set F < 1 such that for
all x;el;: ieF, one has n;e N satisfying:

[ x¥m=0.

ieF
Necessity is clear. Sufficiency is by induction on card F.
1.4.3. Retain the hypotheses of 1.4.2.

-LEmMMA. — (1) If MeObK, then M & @, M,.
(i1) K is closed under subquotients.
(iil) M—M, is an exactfunctor on K.
(i) Suppose F =1 is finite and 0=) m;: m;eM;. We must show that m;=0. The
ieF
proof is by induction on card F.
(ii) is an immediate consequence of 1.4.2 (iii) follows from (i), (ii).
Remark. — 1.4.2 and 1.4.3 still hold (and are easier to prove) when we define
M;={meM|J;m=0}.
1.4.4. In1.4.2 and 1.4.3 take A'=U (b,) and set J,=Kere,.

CoroLLARY. — If MeObK//, then:
i) ME@,c_, M,.

(i) M—M, is an exact functor on K(.

(i) K is closed under subquotients.

(iv) K(l'is closed under arbitrary direct sums.

Itis enough to check that J, +J, =U (h,) when p,, p, are distinct elements of C—p. By
By hypothesis p,—p,eP(R)—{0} and so we can find Hebh, such that
(1, (H)—H)—(p, (H)—H)=(p, —p,) (H)e Z— {0} (that is an invertible element of A).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



266 0. GABBER AND A. JOSEPH

1.4.5. For each peC, we set Q (n):=U (g,) ®up,) A,_,€ObK/{. If Misany U(g,)
module, the map fi— f (1 ® 1) of Hom (Q (u), M) into M,,_, is a natural isomorphism of A
modules. Thenby1.4.4(ii), Q (u)is projectivein K'and by 1.4.4 (iv)each MeObK(isa .
quotient of a projective object. Again by 1.4.4 (iii), (iv) it follows that K'is closed under
direct limits and by 1.4.4 (ii) it follows that Hom (Q (n), — ) commutes with direct limits.

1.4.6. LemMa. — If M e ObK[, then M e ObK(. if and only if for all me M, there exists
seN such that (n))* m=0.

Sufficiency follows from the fact that ny and hence (n))* is finitely generated
over A. Conversely take me M. By hypothesis N:=U (n,) ) m is a finitely generated A

module. Then there exists a finite subset F = C such that N < z M,. Since
neF—p

X, M, = M,,, for all aeR™, the assertion follows easily.

1.4.7. CoroLLarRY. — K( is closed under subquotients and arbitrary direct sums.

1.4.8. LemMa. — If MeObK,, then M is a finitely generated U (n, ) module.
This is immediate from U (g,) & U (1, )® U (h,) ® U (n).

1.4.9. LemMma. — IfM e Ob K, then M has a finite filtration with quotients isomorphic to
quotients of the M (n): neC. ‘

By 1.4.8 we can assume M to be of the form:

W

Y Umy)o,,, v,eM
i=1

where we choose the labelling to satisfy iSj=W K. Set

t
FF='tM= Y U)o,
j=1

For each aeR™, one has X,v;eM, ,,. If i<j, then (U(ny)vy), ,,=0, for other-
wise we should have p;>p;. It thus follows from 1.4.4 (i) that X,v;eF/*'M. That is
each F/M is a U(g,) module and if we let 7; denote the image of v; in F/M/F/*'M,
then X,v;=0 for all aeR*. Hence F/M/F/*'M is isomorphic to a quotient
of M(i;+p) and { F/M } 5_, is the required filtration.

1.4.10. CoroLLARY. — I[fMeObKq, then each M, : neQ (M) s finitely generated as an
A module.

By 1.4.9 the assertion is reduced to the case M =M (u) [or equivalently for U (n, )] for
which it holds easily.

1.5. Comparison oF Ext IN K{ aND K¢. — Throughout this section we fix a P(R) coset
C c h*. By Ext we mean Ext K

1.5.1. Define categories K¢ (b), etc., of U(b,) modules by replacing g, by b,. It is
immediate that these satisfy assertions analogousto 1.4.4,1.4.6,1.4.7,1.4.8. Again if
peC,then Qy(n) : =U(b,)®y o) Au-p is projective in Ob K[ (b) and satisfies the assertions
of 1.4.5.
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KAZHDAN-LUSZTIG CONJECTURE 267

1.5.2. LEMMA. — Suppose NeOb K¢ (b) and as a U (b, ) module is a finite direct sum of
some A, _ :p;eC. ThenN has a projective resolution (X*, €,) in K¢ (b) such that each Xiis
a finite direct sum of the Q,(v) : ve C and satisfies Q(X’) = Q(N)+NB.

For each je N, the wedge product A/ n)” considered as an f), module for adjoint action
is a finite direct sum of the A,:veNB. Consider the standard resolution
(Y*,e): Y=Um)®,(A'n)) of A as a U(n;') module. Endow Y’ with a b, module
structure by identification with U (b,)®y,) Ainy. Apply the functor R - R®, N on
U (b,) modules which is exact because N is a free A module to get a resolution (X*, g;)
of N. For any U(h,) module M we have a bijection of U (b,) modules:

U (bA)®U(bA) M@, N |U(bA)) - (U (bA)®U(bA) M)®, N,

defined by the universality of the tensor product.

It follows that X’ is isomorphic to the direct sum of the Q, (u+Vv) : pe Q(N), ve Q(A/n,).

Hence the assertion of the Lemma. '

1.5.3. FixpeC. ForeachseN™ let Q*(n) be the quotient of Q (1) by the submodule L*
with generator (n) )*(1®1). »

Let M be a U(g,) module. From the surjection Q(u)—> Q*(n) we obtain a
monomorphism:

g: h_Irl HomU(gA) (Q'(1),M) - HomU(gA) (Q (1), M).

LemMMA. — Suppose MeOb K(. Then & is surjective.

Given g e Homy,,(Q(n),M),setu=¢(1®1). SinceMeOb Kionehasby1.4.6,seN
such that 0=(n; )*u=0 N (1®1)) and so ¢ is in the image of .

1.5.4. LemMa. — Suppose MeOb K.. Then for all s sufficiently large, one has
Ext!(Q*(n), M)=0 :i>0.

Since Q(u) is projective in K¢ we have a surjection

Ext'"! (L%, M) — Ext'(Q°(n), M).

Let N°* be the U (b,) submodule of Q, (n) with generator (n, )*(1®1). Let (X*,€,) be the
projective resolution of N* in K{/(b) defined through the conclusionof 1.5.2.  Since U(g,)is
a free right U(b,) module we have LS;U(gA)®U(bA)N‘ and (U (gA)®U“,A)X*, I1®e,)is a
projective resolution of L*® in K¢ Since MeObK. applying 1.4.9 gives
(Q(N*)+NB)nQ(M)=0, for all s sufficiently large. For such a choice of s we have by
1.5.2 that:

Homy,,,(U (gA)®U(bA)Xi, M)=Homy,, (X', M)=0, for all i=0.
Hence the assertion of the Lemma.
1.5.5. CoroLLARY. — Suppose MeQOb K(.. Then:
| lim Ext/(Q* (), M)=0,  i>0.

s

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Asin1.5.4itfollows from 1.5.2 that Q*(u) has a projective resolution (Y*, €)in K{ such
that each Y/ is a finite direct sum of the Q(v) : veC.

Choose £ e Ext' (Q*(n), M) : i>0. Since Hom (Q(v), — ) commutes with direct limits we
can find a finitely generated submodule M; of M and &, € Ext' (Q®(u), M, ) such that & is the
image of &, under the map Ext'(Q*(n), M, ) — Ext'(Q*(n), M). Now M, eOb K, so for
all ¢ sufficiently large we have by 1.5.3 that Ext'(Q*(n), M;)=0. From the commuting
square:

Ext'(Q°(n),M) — Ext'(Q'(n),M)

f f

Ext'(Q*(0),M;) - Ext'(Q"(n),M,)

it follows that the image of & in Ext'(Q'(p), M) is zero, as required.

1.5.5. Let M be any U(g,) module. We denote by Tt M the unique largest submodule
of M such that tMeObK{. Given NeObK{, we denote by n N the unique
largest submodule of N such that n NeOb K. Fix an injective A module J and for
each MeObK[{ consider Hom,(M,J) as a U(g,) module through the action
(c(a).@) (m)=0(am),¥Y aeU(g,), meM. Given peC, set I(p)=1t(Hom,(Q(n), J)).
Through the natural isomorphism:

Homy,, (M, Hom, (Q(n), J))=Homy,,, (Q(n), Hom, (M, J)),

we obtain for each M e Ob K{ a natural isomorphism:
HomU(gA)(M, I(n))=Hom,(M,_,,J).

Hence I (1) is injective in K 'and each M € Ob K has an injective hull consisting of a possibly
infinite direct sum of the I(p) : p—peQ(M).

1.5.7. ProposSITION. — Suppose M, NeOb K. Let 0->N->I,->1, - ..., be an
injective resolution of N in K. :

Then:

(i) 0> N->nl,->nl, > ..., is an injective resolution of N in K_.

(i) Ext¥. (M, N)=Ext¥_ (M, N). '

Itis standard that the n I, are injective in K_. By definition of Ext and sincen M =M we
have:

(%) Extf, (M,N);Hiv(Hom M, 1 L))

4° SERIE — TOME 14 — 1981 — N° 3



KAZHDAN-LUSZTIG CONJECTURE 269

Now for each peC and all i>0, we have:
H'(nL,),-,)=H (Hom(Q(w),n L,)), by 1.4.5,

~H'(lim Hom(Q*(),n 1)), by 1.5.3,

s

~lim H'(Hom(Q*(n), n L)), by exactness of direct limit,
—

N

=lim Ext'(Q*(w), N), - applying (x) to M=Q*(u),

N

" =0, by 1.5.5.

Hence (). Combined with (x) we pbtain (ii).
1.5.8. Given NeOb K(, then H* (n,, N)is by the standard complex a semisimple U (b, )

module with weights in C—p. Furthermore:
LemMA. — For all LeC, one has:
Ext*(M(}), N)=H*(n,, N), _,.

Set Y/=(U (ba)®u,) A nf)®,A,_,. Then (Y* ¢)is a projective resolution of A, _,
[considered as a U (b,) module by letting X en," act by scalars] in K¢ (b). It follows that
(U (gA)®U(bA)Y*, 1®¢) is a projective resolution of M (1) in K¢ and since: -

HomU(gA) (U (gA)®U(bA) Y*, N)gHomU(bA) (A* nf ®,A,_,, N),
~H*(nS, N),_,,
the required assertion follows easily. ' '

1.6. CHANGE OF RINGS

1.6.1.Letp:A— Abea homoemorphism of (non-zero) Q algebras. » F’.ix_a‘P(R,) caset C
in h¥ and let C be its image in h¥. Since X@AU(gA) 3 U(gy), the functor o -

M TM.=U(g))®u g M T e b
sends K. to K¢ and the forgetful functor M — T'M : =M luga) sendsiKg to K. The map
to : Homy g (TM,N) — Homy,,(M, T'N) -

defined by to (f)=(m . f(1®@m))is an isomorphism of A modules. *Since T’ is right exact,
it follows that if P is projective in K, then TP is projective in K¢.

1.6.2. Let (X*, €) be a projective resolution of MeOb K{. By 1.6.1, TX* is a
projective complex over TM. If (i*,E)isaresolution inKé’of TM then [4], Prop. 11, p. 76,
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. F* ~
there exists a map TX* — X* of complexes such that:

;o OTX* —E X*

' Tx ’A
™

commutes and furthermore any two such F* are homotopic. We take (X*, €) to be a

projective resolution of TM. Then for each Ne Ob K¢ the map Hom (F*, N) of complexes
Hom (X*, N) - Hom (TX*, N) gives on taking cohomology a map

t: Ext;;é(TM,N) — H'(Hom (TX*,N)) = H'(Hom (X*, T'N))=Ext, (M, T'N).

to

One checks that the map ¢, is independent of the projective resolution taken and is natural.

LemMMA. — If M or Aisa flat A module, then t, is an isomorphism of A modules.

It is enough to show that either hypothesis implies that (TX*, T¢) is acyclic. Let Q be
projective in K. We show that Q is A projective. Since both g, and b, are free A modules
it follows from PBW that Q(u) : peCis a free A module. By 1.4.5 Q is an image (and
hence a direct summand) of a suitable direct sum of the Q(un) : peC. Hence Q is A
projective. It follows that (X*, €) is also a projective resolution of M in the category of A
modules, so the i-th homology of TX* is Tor® (M, A). The latter vanishes if i>0 and if
either M or A is A flat.

1.7. SimpLE MODULES. — Fix Aebh¥ and set C=A+P(R).

1.7.1. LeMMA. — Suppose pebj:

(1) If N = M (n) is a maximal submodule, then there exists a unique maximal ideal m = A
such that mM (p) = N.

(ii) If m = A is a maximal ideal, there exists a unique maximal submodule N of M (1) such
that mM (u) = N. -

(i) Set L=M(pn)/N. AsL#0,theimagevofv,_,in Lisnon-zero,soL,_ #0. By the
exactness of the functor Mi—» M, _ in K¢, it follows that L, is the image of M,,_, and so
equals Ap. Pick m > Ann, v maximal. Then Av & A/Ann, v and mv & m/Ann, v, so
mv#Av. Hence mL#L, so mL=0 because L is simple. This proves existence.
Uniqueness is obvious.

(ii)) One has (mM(p)),_,=mv,_, EAv,_,.
Thus m M(p) is a proper submodule. Because M (p) is finitely generated, m M (p) is
contained in a maximal submodule N. By the maximality of mv, _, as an A submodule of

Av,_, it follows that N, _,=mv From this property, the uniqueness of N follows
easily.

u—p

1.7.2.If peC and m < A is a maximal ideal, we let M (m, p)’ denote the unique maximal
submodule of M (1) containing m M (n) and set L (m,p)=M (u)/M(m, p)’. If A is a local
ring, we simply write M (n)" and L ().
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1.7.3. LemMA. — In K(, every simple module L is isomorphic to some L(m, p) with
(m, pn)eMax A x C, and the pair (m, p) is uniquely determined by L.

Obviously LeOb K. and so L is isomorphic by 1.4.9 to a simple quotient of some
M(u) : peC. By 1.7.1 one further has L~L(m, n) for some me Max A. Finally note
that p is the unique maximal element of Q(L) and m=Ann, L (m, p).

1.7.4. If D= C we let Ky (resp. Kp) denote the full subcategory of K¢ (resp. K)
consisting of all those modules whose simple subquotients are amongst the
L(m, p) : (m, p)e Max A xD.

1.7.5. LemMa. — Suppose D=C. Then:

(i) Ky is closed under subquotients.

(i) If MeOb K¢ and M= Y M; : M;eOb Ky, then Me ObKy,.

iel
(1) Follows from the definition and 1.4.7. If F is a subset of I, set M=) M,;. Let
ieF
N,; =N, <=M be submodules of M with N,/N; simple. Given ve N,\ N, choose FcI
finite such that ve M. Then N; " My#N, "M and we assume F minimal with this
property. Choose i€ F and set F’=F\{i]. Then N; nMg=N, nM{ and so by the
Zassenhaus Lemma, N, /N, is isomorphic to a simple subquotient of M;. Hence (ii).

1.7.6. Lemma. — If 0—>M1——>M—>M72-—>0 is an exact sequence in K¢ and My,
M, e Ob Ky, for some D<=C, then Me Ob K.

By 1.4.6itis obvious that Me ObK¢. Nowlet N; = N, = M be submodules of M with
N, /N, simple. Through the Zassenhaus Lemma N, /N, is a subquotient of either M or of
‘M, and so MeObKj,.

1.8. PRIMARY DECOMPOSITION.

1.8.1. In this subsection we assume that A is a local ring with m its unique maximal ideal
and k=A/m its residue field. For any A module M we denote by mm the canonical
projection (specialization) M - M/mM. Identify h¥/mb¥ with b¥. Recall that the Weyl
group W acts on b} and observe that wh=w)\, for all weW, Le bX. Given peb¥, set
R = {oeR : 2(a, f)/(x, )€ Z}. Thisisitselfa root system with Weyl group W; generated
by the s, : aeRy.

Lemma [3]. — Wy={weW :wp—peQ(R)}.

1.8.2 Fix pebf and set C=p+P(R). Call D a block if D: ={A:1eD}isa W
orbit. Since A —peP(R) for all e C, it follows that D is also a W orbit.

LemMa. — LetD be a block. Then there exists Leb}, vemh¥ such that:

(i) s,A—AeZa, for all aeR;.

(i) D=W;si+v. , ‘

(i) Let AW denote the semidirect product W x Q(R). Define an action of AW on b
through (w, §) n=wn+&. Pick A,eD and let AW (XI) denote the stabilizer of A, in
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AW. By1.8.1,projection onto the first factor gives an isomorphism AW (XI ) Wi . Set:

1 ' '
= Y y)\ and v=A; —A.
Card AW (A) yeAW(L,) ; .

By construction X=XI and so vemb¥. Again for all ye AW(XI) one has yA=\A. By
1.8.1, this gives (i).

(ii) Take A;eD and define A as in (i). Pick A,eD. By definition of a block,
A1 —A,€P(R) and there exists we W; such that why=Ah,. SetA;=wA+v.

Then X'Zsz:le. Again A, =wA—A+A, where we have wA—AeQ(R) [since it is
modulo m and trivially wA—AeQ(R)]. Now for fixed we Wj there is at most one element
of A, + P(R) equal to wA modulo m. Hence Ay =A; € Wi A+v, as required.

1.8.3. LEeMMA (notation 1.3.5). — Suppose A, peC are contained in distinct
blocks. Then Ker y, +Ker y,=Z(g,).

Consider X, E as elements of hf. The hypothesis implies that Ker y;, Ker y;; are distinct
.maximal ideals of Z(g,). Hence Ker y, +Kery,+mZ(g,)=2Z(g,). It follows that we can

“choose zeKer X, such that x, (z) =1. Since A is local ring, x,(z) is a unit in A. Hence
x..(Ker x,)=A and so Ker x, +Ker x,=Z(g,).

1.8.4. Let D < C be a block and set J,= () Ker Y- Given M a U(g,) module define

AeD
M, with respectto Jyasin1.4.2. We call My, the primary component of M with respect to

the block D. Observe that C= 1L D,, that is C is a countable disjoint union of its distinct
iel

blocks. When D=D,; we simply write J,, M; for J,, Mp,.

ProrositionN (primary decomposition). — Given M e ObK(. then M=®,_M,. All but
finitely many M; are zero if MeObK,. ‘

Take A'=Z(g,)in1.4.2. By1.8.3theJ;satisfyJ,+J;=A’ifi#j. Thenby1.4.2and
1.4.3 it is enough to prove the second assertion, that is to show that M € Ob K. satisfies the
hypothesis of 1.4.2. This follows easily from 1.4.9 and 1.3.5 (ii).

1.8.5. CoroLLARY (notation 1.7.4). — Let DcC be a block. Then:

(i) MeObK,<>MeObK_ and M=M,,.

(i) MeObKy, <MeObK, and J; M =0, for all s sufficiently large.

For (i) it suffices to show that if 02 M = M, then it admits a simple factor Le ObK,,. Itis

enough to take M finitely generated and then the assertion follows from 1.4.9 and
1.7.1. Then (ii) follows from (i), 1.4.9 and 1.3.5 (ii).

1.8.6. LetD=Cbeablock.By 1.8.4,1.8.5 we have a functor Fj, : K. — K, defined by
primary decomposition. It is exact on K¢, If Me Ob K, then F;, M e ObK,,.

1.8.7. LeMMA. — For each AeC, D<C the module ¥, Q*()\) is independent of s for s
sufficiently large.
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Since Fy, is exact it is enough to show that Fy(Q**(1)/Q*(A))=0, for all teN and s
sufficiently large. Now the w,eC, in the conclusion of 1.4.9 applied to Q***(L)/Q%(}),
clearly lie in the set A+s B+N B. If D is fixed, then Dn(A+sB+N B)= g, for s suffi-
ciently large. In fact it is enough to prove the corresponding statement in k and this
is well-known. By 1.3.5 (ii) it establishes the required assertion.

1.8.8. Given LeC, DcC we set Q(A, D)=Ilim F; Q*(A) (which is defined by

1.8.7). Then Q(A, D)eObK,,.

1.8.9. Fix LeC, D=C and recall once again that A is a local ring.

ProposiTioN. — (i) If MeObK( one has a natural isomorphism of A modules
HomU(gA)(Q (A, D), M)=(My),.

(i) Q(A, D)is projective in K., and every M e Ob K¢ (resp. Ob K.) is the image of a direct
sum (resp. finite direct sum) of the Q(A, D).
(i) Extg (M, N)=Extg (M, N), for all M, Ne ObK,.

(i) Hom(Q(%, D), M)=Hom (lim Fp Q*(A), M), by definition,

;Er_rlHom (Fp, Q*(1), M), by exactness of direct limits,

N

;ianom (Q*(A), Fpb M), by 1.8.6,

~Hom(Q(A), F, M), by 1.5.3,
~(Mp),, by 1.4.5.

The first part of (ii) follows from (i). Thesecond partby 1.4.9and 1.8.7. (iii) follows
from (ii). )

1.9. CompraRrisoN oF Ext witH Ext IN SPECIALIZATION.

1.9.1. In this subsection we assume that A is a discrete valuation ring over Q. LetneA
be a generator of the maximal ideal, k=A/n A and A i A denote specialization. Fixa P (R)
coset Cch¥. By Ext* we shall mean Ext;ﬁ,c, [ef. 1.5.7 (ii), 1.8.8 (iii))]. By W we shall

mean Extzé (where C denotes the image of C in b¥).

1.9.2. Call XGI),’:‘ dominant (resp. regular) if (I, a)=0 [resp. o, a)#0] for all
aeRf : =R;nR*. Suppose Eeb¥ [eN, and define differential operators
0% eEnd, S(b,) by identification of coefficients of ¢' (¢ an indeterminate) in the expression
(notation 1.3.5): '

ey+,g(x)=§0r'ey(ag”(x», yebt, xeS(b,).

1.9.3. LEMMaA. — Ifgebf is regular and 0+ z eb¥, then there exists xS (h,)V such that
ez (0(x)) #0.
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We can take:

x=3y wy,

weW

for some yeS(h,) and then we require that:

Z ew"E (6w"i (y));éo

weW

Set J,=Ker e,-i;, which is a maximal ideal of S(b,). Since E is regular, the points
{w™1E},.waredistinct and so .Jw +J,=1)ifw#w’. Nowthemap f, : ¢ e,-;(0,-;())
of S(b,) to k is non-zero and vanishes on J2. Then by say 1.4.3 we can choose ye S (b,) so
that all but one of the numbers f,(y) : we W vanish.

1.9.4. Let D=C be a block. By 1.8.2 we can write D=W;A+vn for some A,

veb¥. Ablock is called semi-regular if the stabilizer of vin W7 is trivial and called regular if

in addition A is regular. Observe that if D = C is semi-regular, then every sub-block of C is
semi-regular.

Example. — Take A=Cl[t],, and A, deb*. Set A=A ®1, 6=5®1 and take
C=A+03t+P(R). Then D=Wj;+0tcCissemi-regular if 8 is regular and regular if both
A, & are regular.

LEMMA. — Let D be a semi-regular block. If A,, A, €D are distinct, then there exists
x€S(h,)" such that e, (x)#e, (x).

If e (x)=e¢ (x) for all xeS(H,)Y then A,=wl; for some weW. Write
AMi=wA+nv:w,eWs,i=1,2. Then w; ' t(wv—v)=w; ' ww, A—AeQ(R) and so both
sides must vanish. It follows that wv—v=0and we W;. By semi-regularity w=1 and so
M=%

1.9.5. ProrosiTioN. — Let D<=C be a regular (resp. semi-regular) block. Suppose A,
A, €D are distinct and set J=Ker x;, + Ker x,,. Then for all je N;

(i) melJ (resp. n'el : | sufficiently large). :

(ii) Ext/(M(X,), M(A,)) is annihilated by w (resp. ' : | sufficiently large).

(iii) Hom(M (A,), M(A,))=0."

@iv) If D is regular, there is a short exact sequence of k modules:

0 — Ext/(M (%), M(};)) » Ext/ (M(X,), M(&,)) » Ext/ * 1 (M (1), M(%,)) - 0.
(i) If zeZ(g,), then:
=, (@)= (=%, @) =1, (D) — X, () =83, (P" (2)) — ¢, (P' (2)).

By 1.3.2(ii) it is then enough to show that t=(e,_ (x)—e, (x))u[resp. ! =(e,,(x)—e, (x))u:
I sufficiently large] for some unit ue A and some xeS(h,)¥. Thus the assertion for D semi-
regular follows from 1.9.4. For D regular we write A; =w; A+71v, A,=w,A+nv. Then
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1

setting v;=w; 'v :i=1, 2 and using the W invariance of x, we obtain:

&, (X) =, (X)=€ r, (X) =1, (X) = ¥ nle, (00 (x) - 0D (x)).
1=0
It hence remains to show that ; (0; 5 (x))#0. Now v, —V,=w; 'V—w; ' V#0, by the
hypothesis of regularity. Then since Ais regular the required assertion follows from 1.9.3.

(i) Let M, NeObK_. Take a projective resolution (X*, &) of M. The terms
Homy,, (X4, N) admit a Z (g, ) module structure coming either from the action of Z(g,) on
X/, oron N. Thus Ext/(M, N)is a Z(g,) module, where the Z (g, ) action is the one defined
by functoriality of Ext’ using the Z(g,) action on M oron N. By 1.3.5(ii), Ker ; acts by
zero on M();) : i=1, 2. Hence J annihilates Ext/(M, N) and so (ii) follows from (i).

To prove (iii), (iv), consider the short exact sequence:

0—>M(%;) > M(h,) > M(1,) =0,

in K¢, This given an injection:
0 - Hom (M (A,), M (%)) = Hom (M (1), M(1,))

and so (i) implies (iii). Again if D is regular, then the long exact sequence for Ext/ (M (X,),
-) Qecomposes by (ii) into short exact sequences:

0 - Ext/(M(A,), M(A;)) > Ext/(M(A,), M (%)) » Ext/ "1 (M (L), M(R;)) >0

of A modules and hence, by (ii) again, of k modules. Now M (A,)is a free A module and so
taking ¢ to be specialization in 1.6.2 we can replace the middle term by W(M (Il),
M(IZ)). Hence (iv).

1.9.6. LeMmMma. — Let D, D' <=C be distinct blocks. Then:

(i) Ext*(M, N)=0 for all MeObK, NeObKj,.

(i) For each jeN, Ext/(M, N) : M, NeObK,, is a finitely generated A module.

(i) Asin 1.9.5 (ii) this follows from 1.8.3 on taking account of the action of Z(g,) on

Ext*(M, N). Since any discrete valuation ring is Noetherian, (ii) follows from 1.4.10 and
1.8.9.

1.9.7. CoRrOLLARY. — Suppose Ext/ (M (X—l),M(X—Z))=0,for someh;, A, €C,jeN. Then
Ext/ (M (k,), M(4,))=0.

The short exact sequence 0—>M(X2)—">M(7»2)->M(X2)—>0, gives the long exact
sequence :

- Ext/(M(A,), M(),)) 5 Ext/(M(%,), M(),)) = Ext/ (M (),), M(Xz)) —.

Under the hypothesis and 1.5.2, it follows that = is surjective. The assertion then follows
from 1.9.6 (ii) and Nakayama’s Lemma.
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1.9.8. Let D be a regular block. Then 1.9.5 and 1.9.7 reduce the determination of
Ext*(M (A, M(X,)) : X4, A, €D as an A module to the determination of Ext* (M (Xl),
M (Xz)) asakvectorspace. In5.2weshall show how to get quite precise information on the
latter. For the moment we note that 1.9.5, 1.9.7 can be used with ([6], 7.6.23) to
determine Ext' (M (X,), M(X,)).

When Homy,,(M(A;), M(X,))#0 we write &, <A,. By ([6], 7.6.23) < is a partial
ordering on C.

LEMMA. — Let D<C be a regular block. For each Ly, h, €D one has:

. I, M#ky, A <A
: 1 _ > 1 2> 1 2s
dim Ext' (M (A,), M(X,))= { 0 S ormise

Suppose A, #A,. By 1.9.5 (iii) one has Hom(M (A, ), M (A,))=0. Then by 1.9.5 (iv)
with j=0, we obtain the required conclusions. If A, =A,, apply 1.9.7 observing the
obvious fact that Ext' (M(X,), M (r,))=0.

1.9.9. The Lemma fails for non-regular blocks; but we still have vanishing. This follows
from the corresponding result in specialization (cf. [S], Thm. 4) and 1.9.7.

LEmMMA. — Let:D<C be a block. For each A, A,€D and all j>0 one has:

Ext/(M(A,), M(X,))=0  unless A #k, and Ay <A,.

1.10. MODULES WITH A p-FILTRATION. — We assume from now on the hypotheses of 1.9 on
A. ’

1.10.1. FixaP (R)coset C and take M e Ob KC A p-filtration of M (if it exists) is a finite
decreasing filtration {F/M }j.= , with factors isomorphic to Verma modules. Given an
exact sequence 0 > M’ > M — M (un) —» 0 we obtain an exact sequence:

Tor} (k, M(1) > k@M’ =k ® M -k ®, M(p) - 0.

Since M(u) is A free, the term on the extreme left is zero. Again one has

k®,Mu)=M (ﬁ). Thus if M admits a p-filtration, so does k ® , M. Fix a p-filtration of
M and let [M : M (p)] : peC denote the number of factors isomorphic to M (p).

From our previous observation [k ® , M : M(E)]=[M :M(u)]. Now given p,, p,eC
onehasp, —p, e P(R)and so El =EZ ifand only i, =p,. Hence[M : M (p)]is independent
of the p-filtration chosen, since this result holds for a field ([1], Sect. 6).

1.10.2. Let E be a finite dimensional simple U(g) module. Let 0#veE be a highest
weight vector and set E;=U(gz)v. One has E;=U (n; ) v and since (n7 ) v=0 for all
sufficiently large, it follows that E, is a-finitely generated torsion free and hence free Z
module. ThenE, : =A ®,E,isafree Amodule of rank equaltodim E. Since A ~A** as
an A module, E, ~E}*. -
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1.10.3. Let K" denote the category of all U (g, ) modules. Given M e ObK'"”, we define
E, ®, MeObK"" through the diagonal action of U(g,) and let 8; denote the functor
M—E, ®,M. Since Q(E,)=P(R) one has 6 MeOb K. whenever Me Ob K.

Lemma. — If M eOb K. admits a p-filtration, then so does 6; M.

Since 0y is exact, it suffices to prove to the assertion when M~ M (p). This obtains exactly
as in [6], 7.6.14.

1.10.4. Suppose MeObK. admits a p-filtration. If M=M, dM,, then
M;eObK,:i=1,2 admit p-filtrations because any Verma module is
indecomposable. Now suppose that M itself is indecomposable. By primary
decomposition (1.8.4) it follows that M e Ob K, for some block D=C. Recall that the

map A—>A of Dto D is injective and define a partial order < on D through A, <A, given
A, <A,. By 1.9.9 we obtain the:

LEmMMA. — Suppose M e Ob K, admits a p-filtration. Then M admits a finite filtration
{F'M}i_; such that FF'M/F""'M>MQ\,)" : n,eN" with the \; pairwise distinct and
satisfying h; > h;=i>].

1.10.5. In the remainder of section 1.10 we assume that the blocks of C are all semi-
regular (1.9.4). Let D=C be a (semi-regular) block. We can write D=W; A +nv for
some A, veb¥ and we let W (L) denote the stabilizer of A in W (equivalently in Wy). To a
module M eObK with a p-filtration and equipped with a non-degenerate contravariant
form # we associate a symbol p(M, #)eN|[r, n~']W;/W (L) defined as follows. Let
{F'M}i_, be a p-filtration of M satisfying the conclusion of 1.10.4 and set
Ai=w;A+7nv. By 1.9.9 each factor F'M/F'*'M is a direct sum of n; copies of
M (w; A+ nv) and we denote their canonical generators by v; , : r=1,2,...,n,. By1.9.5
(ii) we can choose [ sufficiently large so that 7~ ' F!M is a direct sum of the Verma modules
M(w;A+nv) :j=i. This allows us to choose v,eF'M, vjeF'*'M such that
v, =vj,+7n 'v] is a canonical generator for M (w; A+nv) and a representative of v;,.
Since the A; are pairwise distinct it follows from 1.9.5 (ii) that the A module V,; generated
by the v;, is uniquely determined by the following properties. One, V;is a free A submodule
oft 'FiMofrank n,, Two,each veV,is a highest weight vector of weight A;,—p. Three,
the image of V; in n=' F'M/n™'F'*'M is just the A submodule generated by the
v, :r=1,2,...,n,. The form & extends to n~'F'M and we consider its restriction to
V.. Letusshow that this restriction is non-degenerate. SetII={n':leN}. Itsufficesto
show that ITT"* M=@®II~! M(A,)"is an orthogonal direct sum for #. By contravariance
it is enough to consider the restriction of & to weight subspaces. Suppose u belongs to a
highest weight subspace of M (A;)" and v to a weight space of M(A;)" : A;#; having the-
same weight. The latter cannot be a highest weight space and so there exists ae U (ny ), 5,
such that v=av’ for some highest weight vector v'e M(A;)%. Then o(a)u=0 and so
0=F(c(a)u,v')=F (u,av’)=% (u,v). We conclude that F (u, M(X;)")=0 and so
Z (ML), M(X;)")=0, as required. .

We can now define the symbol p(M, #). Since A is a principal ideal domain and in fact
every ideal of A has the form (n') : [e N, we can choose bases {x;, }, { y;,} (see [9], 5.1 for
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example) for V; such that:

Lo r=s
eg:(x' H y )= { ’ ’
ir is 0, r#s,

with m;, € Z. We define:

M, #)=) " w,.

1.10.6. Let E bea finite dimensional simple U (g) module. Since E is a simple quotient of
a Verma module it inherits a non-degenerate contravariant form from the canonical
contravariant form defined (1.3.7) on the latter. This form restricts to E, and extends to a
non-degenerate contravariant form &' on E,. Now suppose M € Ob K. has a p-filtration
and is equipped with some non-degenerate contravariant form #. Then #' ® & is defined
as a non-degenerate contravariant form on E, ®, M. By contravariance, primary
decomposition (1.8.6)is an orthogonal direct sum with respect to ¥’ ® & and so we obtain
a non-degenerate contravariant & ; on each primary component M; by restriction. Since
each M; admits a p-filtration, the symbol p(M,;, &) is defined. A basic problem is to
compute the p(M,, %) from p(M, #). A formula of Jantzen ([8], Sect. 5, formula for a,)
does just this in certain ‘“‘multiplicity free” cases. It leads to operators defining a Hecke
algebra—a fact which we believe to be the key to understanding the Kazhdan-Lusztig
conjecture. Let 0 be some product of the 6; and F,. When & defined on 6 M (w A) obtains
from the canonical contravariant form on the Verma module M (w A) by applying the above
procedure we simply write p(6 M (wl)) for p(OM (w ), F).

1.10.7. For any A e C we consider (asin 1.2.3) A, _, as a U(b,) module. Let N be a
U (b,) module admitting a finite filtration with factors amongst the A, _, : AeC. Since
U(ga) is a free right U (b,) module M : =U(g,) ®y,) N admits a p-filtration with factors
amongstthe M(A) : AeC. Inparticular Q*(A)(notation 1.5.3)admits a p-filtration and by
" 1.8.7s0does Q (A, D) for any block D= C. Then by 1.8.9 every module projective in K¢

admits a p-filtration. Now choose A e C so that A is dominant and let Q be the projective
cover of M(A) in K.. By 1.9.9 and the above, one has Ext!'(M(A), Q)=0 and so
Qx=M(\). Thus M (ML) is projective and so is O M () for any finite dimension simple
module E. By [6], 7.6.14 which extends easy to the present situation it follows that every
indecomposable module projective in K¢ is a direct summand of the B M(A) : AeC, A
dominant and E finite dimensional. Again by 1.10.4,0; M () has a p-filtration and by [6],
7.6.14[6: M(A) : M(p)]=dimE, _ for all A, pe C. Assuming E dominant implies M (u)
projective and hence the

LemMmAa. — For all A, peC: E dominant, one has an isomorphism Homy,,(M(n),
0 M(A))=(E, ), -, of A modules.

[.10.8. Take AeC and set Z(A):={z—y,(z):z€Z(gs)}. By 1.3.5 we have
Ann M (A)>U(g,)Z (1) and we show that equality holds. Let .# denote the image in U (g)
of the harmonic elements of S(g). One has U(g)=Z(g) ®, A ([6], 8.2.4). Let { A}
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denote the filtration of #" which derives from the canonical filtration { U(g) } of U(g). By

([6], 8.4.3) A acts faithfully on M(X). Choose teN such that (ad'n”)g=0. An
elementary argument shows that a U"(n")7=0 : ae U'(g) implies aU(n")5=0. Hence
A" acts faithfully on Hom, (U"(n™)7, U'*D(wm~)7). It follows that the free finitely
generated A module X" ®,A acts faithfully on the free finitely generated A module
Hom, (U"(n; )v, U'“* Y (n; )v) and so # ®, A acts faithfully on M (}).

Since U(g,)=U(g,)Z(A) ® (A ®,A) this proves the required equality. Thus
U): =U(g,)/Ann M (A)isafree Amodule. Furthermore considered asa U (g,) module
for adjoint action it is a direct sum of the E, and by Kostant’s Theorem ([6], 8.3.11) we
obtain the

LEMMA. — For each \.€ C one has an isomorphism Homy ) (E,, U (A)) = (E}), of A modules.

1.10.9. We extend to case of a ring a result of Bernstein and Gelfand [2], 3.5. Let K}’
denote the full subcategory of all M e Ob K"’ satisfying Z (L) M =0, and 0 (1) the restriction
of 0 to Ky ’. Call a functor K;'" — K"’ a projective A-functor if it is isomorphic to a direct
summand of 0 (A) for some finite dimensional U (g) module E.

1.10.10. Let 0,, 0, be projective A-functors. Define a homomorphism:

i, : Hom(8y, 6,) > Hom (6, M(2), 6, M (1)),

via i, (9)=@yq, Where Qyq) 1 0, M(A)—0, M (1) is the value of the functor morphism
¢:0,—~0,on M(A).

Consider Ex,®,U(A) (notation 1.10.9) as a left U(gy) module and a right U(A)
module through (eQu)v=e®uv and X(e@u)=Xe®@u+e®@X u for all Xeq,, ceE,.
u,ve U(A). As in the case of a field ([2], 3.5) we obtain the:

ProrposiTiON. — If A is dominant, then i, is an isomorphism.
Asin ([2],3.5)itis enough to prove the assertion for 8; =0g (L), 0, =6 (A) with E, E’ finite
dimensional simple U(g) modules. Now:

Homy,, (0 M(2), 8 M(A))=Homy,, (M), (EX®,EL) @M (1)),
=(Ex®,E4)e, by 1.10.7,
=Homy,,(EX*®,E,, U(L)), by 1.10.8,
=Homy,,(Es, Ex®,U (1)),
=Homy,, o (Ex®,UM),EL®,U()), by (2], 2.2),
~Hom (0;(A), 0. (X)), by ([2], 1.3),
since obviously 8; M=~E, ®,U(A)®yu M, for all Me Ob K;'".

2. The Kazhdan-Lusztig polynomials

2.1. Let W be a Weyl group with generating set S and length function /(.). Following
Kazhdan and Lusztig [10] we define for each x, ye W a polynomial R, ,in anindeterminate g
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through the following relations valid for all s€S:

. 1, x=1,

(1) : R.1 (q)={ 0, otherwise,

) 0 Rn(@), 10D +Isx)=1(x)+1(sy),
(i) Rx, y((/) = { (q-1) Rx, o (@) +q Rsx’ sy(q)’ otherwise.

Let # denote the matrix with entries R, ,. Then #(1) is the identity matrix and
R, ,#0 < x<y,thatis Z is upper triangular (with respect to a basis {x;} of C W satisfying
x;<x; = i<j) with ones on the diagonal. We call such a matrix unipotent. Let prime
denote differentiation. For the choice of the set of positive roots R* defined with respect
to S one has for all xe W, aeR " that I(s,x)>x < x ' aeR".

2.2. LEMMA. — For each x, ye W one has:

, 1, y=s,x, a€R™, I(s,x)>x,
R y(l)_{ 0, otherwise.

The proof is by induction on I(y). By (i) it holds if /(y)=0. Noting that R,  (1)=0

unless x=y, (ii) gives:

il

R, ,,(1),  1y)+1(sx)=1(sy)+1(x),
R, o, (D+R, (1), otherwise.

sx, sy

(%) RL, 0=

Assume [(y)>I(sy). IfR, (,(1)#0, then x=sy [which implies that /(x)<I(sx)] and so
R;, s,(1)=0. Then (x) gives the assertion for R;, ,(1). Now assume x#sy. Then

sy, y

R} ,(1)=R}, ,,(1)and by the induction hypothesis the right hand side equals 1 if and only if

sy=s,sx for some a€R* such that (sx)" ! aeR*. Yet y=ss,sx=s,,x and saeR™* (for
otherwise s=s, and x=sy) and x ! (s «)eR ™ which proves the assertion in general.

2.3. For each x, yeW, set S, (q)=q"®7'OV2R (q) and write q=t2,
p=t—t~'. From the defining relations for R, , it follows that each S, , is polynomial in p
and that the matrix & with entries S, is unipotent. Then J : =log ¥ is defined and has
entries polynomial in p. From the definition ([6], 2.1 (i)) of £ one has that
F(p)¥(—p)=Id and so 7 (p)+7 (—p)=0. Hence we may write in a unique fashion
T (p)=7"(t)— ¥ (t~ ') where ¥ is a strictly upper triangular matrix with entries polynomial
in t. Define strictly upper triangular matrices ¥"V : ie N with entries polynomial in ¢
inductively though ¥ =¥ and:

exp(¥ D (t)—=7 Dt ) =exp—? V() exp(¥ V()= V(" ))exp ¥ D (7).

(Note that by Baker-Campbell-Hausdorff the right-hand side takes the form exp & where by
triangularity & hasentries polynomialin t,t ! and satisfies Z (t})= — 2 (t ~!).) Eventually
¥ =0 and we set 2=exp ¥V exp ¥ @ ...exp ¥ which is a unipotent matrix with
entries Q, , polynomialint. By construction ¥ (p)=2(r)(£(¢ ")) "and 2(¢)isuniquely
determined by this relation and the requirement that it be polynomial in t with Q,  (1)=1.-
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V.xeW. Thus the expressions P, ,(t) : =t!@~!1®Q_ (t~!)are polynomial in ¢, t ! of
degree <I(y)—I(x), satisfy P, ,(1)=1, xe W and the relation:

(%) : P.,@ Mg Y=Y ¢'“R,.(@ P,

zeW
By the construction these properties determine the matrix 2 with entries P_  (q)
completely. From the last relation P, , is polynomial in ¢ and coincides with the
polynomial defined through ([10], 2.2c¢).

LemMA. — For all x, ye W, one has: -

2P, , (=0 —=1(x) P, ()= R ()P, (1)

zeW

Differentiate (x) and apply 2.2.

3. Operators of cohérent continuation

3.1. We work from now on in the context of example 1.9.4. That is we take A=C[{],,,
and A, 6 eh* regular with C=L1+8t+P(R). (For convenience the bars have been omitted
and we identify A with A®1.) Then the blocks of C are at least semi-regular. Assume
further that —A is dominant.

3.2. Foreachpeb*defineR,, W asin1.8.1. SetR;=R* nR,andletB,cR} bea
set of simple roots. SetS,={s,:aeB,}. We view the pair (W,,S,) as a Coxeter group
and define the length function and Bruhat ordering accordingly. Let w, be the unique
maximal element of W ,.

3.3. Given ve P(R), let E(v) denote the unique up to isomorphism simple U (g) module
with extreme weight v. Now recall that for each o€ B, we can choose v, € P(R) such that
At v, is dominant and that (B, —A+v,)=0:BeR™ is equivalent to f=a. That is
(—A+v,) “lies on the a-wall”. Set D=W, A+6t,D,=W, (A —v,)+5¢t. Define an exact
functor s, on K. through:

Y, M= FD, (E(=V)a®,\Fp M).
It is called the translation functor to the a-wall. Define an exact function ¢, on K. through:
¢, M=Fp (E(v,)A®@aFp M).

It is called the translation functor from the a-wall. Finally define an exact functor 6, on K.
through 0,=¢,V,. It is called the reflection functor (coherent continuation) across the
a-wall. '

3.4. Let M, N be U(g,) modules. We have a natural isomorphism
Homy,,(E,®,M, N)=Homy,,,(M, Ef®,N) of A modules. Since E(v,)f=E(~v,), it
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follows that ¢, is a left and a right adjoint to {,. In particular on taking projective -
resolutions of any pair M,NeObK. we obtain the natural isomorphism
Ext*(0, M. N)=Ext*(M, 06, N). Set A,=X—v,.

3.5. In the remainder of Section 3, we fix a pair we W,, ae B, such that ws,>w. By
1.10.3 the module ¥, M (w A + 8¢) has a p-filtration and as in ([9], 2. 3) it follows that for all
weW,, [V, M(wA+38t): M(w’ A,+8t)]=dim E(—v,)_,, where v'=w A—w’A,. By([9],
2.9) the latter equation has the unique solution namely w’ A,=w A,andv'=w v,. A similar
calculation applies to {, M (ws, A +8¢) and so we obtain:

(1) VY, M(wA+3t)=M(w(h—v,)+0t),
) U, M (ws, A+8t)=M (ws, (A —v,)+8t).

Since A—v,=s,(A—v,) the modules on the right hand sides coincide and we denote the
common module by M. Since 8 is regular, the canonical contravariant forms on
M (w A+8t) and on M (ws, A+ 8t) are non-degenerate. '

Now the procedure described in 1.10.6 defines via (i): i=1,2, a non-degenerate
contravariant form &%; on M. Letw denote the image ofw (or of ws,) in
W, /W (k—v,). Since the p filtration of M is multiplicity-free Jantzen’s formula (for a,, [8],
Sect. 5) determines p(M, &) : i=1,2, as below.

Takei=1. Weshow thata, (wA+8t—p)isaunitin A. Its numerator gains a factor of
t" : n=dim E(—V,) —wv,-rp. for each r : =2(B, wL)/(B,B)eN* and each BeR ™.

Set v'=s3(w v,—r B). Then:

(%) WA=V =wA—sgWVv,—rB=SgWA—SaWV,=SgWA,.

AFOI“H?'O, (%) has the unique solution sywA,=w, (as above) and so spw=uws,.
Since ws,>w, this gives w™ ' BeR™ and so (B, w A)<0 which contradicts the positivity
of r. The denominator gains a factor of t":n=dimE(-v,)_ (. _,p for
each r=-2(B, w(r—v,)/(B,B)eN* and each BeR*. Set v'=wv,—rpB. Then
wh—v'=wir—v,)+rp=s,wh,. For n>0, this has (as above) the unique solution
v'=wyv, and so r=0. This contradicts the positivity of r, so the required assertion is
proved. .

Takei=2. Weshow thata, (s, 7. +d1—p)=tu, where uisa unitin A. Its numerator
gains a factor of t" : n=dim E(—V,) -ws,v.—r®)foreachr : =2(B, ws, 1)/(B,B)eN* and each
BeR™. Setv'=sgz(ws,v,—rB). Then:

WSy A—V' =S, A—Sa WS, Vu—T B=55wS, A—SgWS, Vo, =55 WSy Ay

For n>0 we obtain the unique solution s; ws, A, =w A, and so spw=ws,. Since ws,>w,
this gives w™! p=a and so 2(B, ws, A)/(B,B)eN*. As v'eW v, we have n=1, so the
numerator has a factor of ¢. A similar calculation to the above shows that the denominator
" has no factor of t and so we have proved the required assertion. (We remark that of course
these computations are embedded in Jantzen’s work.) We conclude that:

1) pM, #)=w; " '

2) pM, F,)=tw.
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3.6. Retain the above notation and set X=M (ws, A +6t), Y=0, X, Z=M (w A+ 6t).

Lemma. — (1) 0, X=0,Z=xY.

(i) 0, L(ws,\)=

(ii1) There is exact sequence 0 - X - Y - Z — 0.

(iv) Y has a unique simple quotient. This is isomorphic to L (w \).

(v) 0, L(wX)#0. In particular @, is faithful.

(vi) 6;=0,86,.

(1) Obtains from 3.5. For (ii) observe that L (ws,\) is a quotient of M (ws,A)/M (w )
and apply (i) (for t=0) using the exactness of §,. Set p=A—v,. By 1.10.3 the module
¢, M(w p+0t) has a p-filtration and as in [9], 2.3, it follows that for all w'eW,,
[0, M(wp+06t) : M(w' A +6t)]=dim E(v,), where v'=w’A—wp. By[9], 2.9, the latter
equation has just two solutions namely w'=w, v'=w v, and w’'=ws,, v'=ws, v,. In both
cases v’ is an extreme weight of E (v,) and hence occurs with multiplicity one. Thus Y hasa
two-step p-filtration with factors X, Z. Fmally by 1.9.8it follows from ws,>w that Zis a
quotient of Y. Hence (iii).

By (iii), L(w ) is a simple quotient of Y and by 1.7.1 any other simple quotlent is
isomorphic to L(ws, A). Yet by 3.4 and (ii), one has:

-~ : " Hom 0,X,L(ws, \))~Hom (X, 8, L (ws, 1))=0.
Hence (iv). Furthermore we also see that 0, L (w L) #0. -Since every simple object in K, is
isomorphic to some Y, L (w L) with ws,>w we obtain (v). By 1.10.10 it is enough to
show for (vi) that 0,Y =Y ®Y where Y =0, M(u+dt) and p+06teC withp
dominant. --Applying 0, to (iii) and using (i) -we obtain an exact sequence
0-Y -0,Y >Y - 0. Yet M(p+0¢)and hence Y’ is projective in K¢ (1..10.7) and
so this sequence splits.
3.7. Define M, Y asin3.5,3.6. Let %} i=1,2, be the form on Y which obtains from
the form & ; on M defined (in 3.5) by applymg the procedure of 1.10.6. Jantzen’s formula
for a, ([8], Sect 5) gives as in 3.5: : ‘

1) plY, F))=ws,+t 'w
(2) p(Y, F5)=tws,+w.

3.8. We can 1nterpret 0, as a linear map éa on N [t,t '] W, defined as follows:

%) ~ vs,+t " o vs, >0,
* _ =
* 408, 1 VS, <V.

Set T, = t8,—1and g=1t2. Then from (%) we obtain (T,,—q)(T,,+1)=0. GivenweW,
with reduced = decomposition w=s;s,...s, ~where s;=s,:0,€B, we set
T,=T,T,...T,. From (x)itis a simple exercise to show that T, is independent of the
reduced decomposition chosen. It follows that the T, : we W, generate over Q[q, ¢" '] a
Hecke algebra in the sense of [10], Sect. 1. Set 6,=60, 6, ...0,; 6,,———5&] 6{,2 e 6&, and
M, : =0,M(w, A+ 3t) which is projective in K. An open question (Q1) is to show that
pM_)=08,w,. We have shown this for the case =1 and it also holds if the o, are pairwise
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distinct. Indeed the “‘only” difficulty in the proof that can arise is that at some step M,
admits two non-isomorphic factors in its p-filtration which on translation to the appropriate
wall become isomorphic. Unfortunately this difficulty is a very real one since by (%) one has
02=1t8,+t718,. Owing to the factor of 1! one cannot have say:

PO MwA)=02w=t0, w+t ' 0, w=1tp(O, M(w L))+t ' p(6, M(wA)).

Indeed this would contradict the splitting 2 M (w A)=0, M (w 1)®0, M (w A) implied by
3.6 (vi) and in fact p(02Mw A))=2p(0,M(wL)). Any proof of (Q1) must thus take
account of the fact that M (w, A+ ¢) is projective and w is reduced.

3.9. For each we W, let P(w A+ 5t) denote the projective cover of L(w A)in Ob K. It
follows from 3.6 (iii) that M, admits P (w, w ™! A+ 8t) as an indecomposable summand and
furthermore the remaining summands are just the P(w,w’ ' A+38t):w' <w (with
appropriate multiplicities). A further open question (Q2) is to show that this sum is an
orthogonal direct sum for the form on M. If we further assume the truth of the Kazhdan-
Lusztig conjecture (which would determine the above multiplicities) positive answers to (Q1)
and (Q2) would give the following result which we state as a conjecture.

CoNJECTURE. — For each ye W, one has:

p(P(yA+3t))= Y wt!7tOP, (@)

weW,

Observe thatif p (P (y A+ 8t))is so given thenit is polynomialin t and the coefficient of ¢° is
just y. Conversely if (Q1) and (Q2) hold then this property determines the p(P (y A+ d¢t))
uniquely and implies the Kazhdan-Lusztig conjecture.

3.10. Let MeOb Kz. Give M* a U(g) module structure through (am,n)=(m, o (a)n)
for all meM, neM*, aeU(g).. Let 86(M) denote the submodule of M* of all by finite
elements. (It is sometimes known as the ® dual of M.) Then §(M)eObKz. IfM
admits a non-degenerate contravariant form then 8 (M)=~M. In particular § (L (n))= L (n),
for pea By 1.4.9 and [6], 7.6.1, each M e ObKg has finite length and we let [M : L]
denote the number of times the simple factor L occurs in M. Clearly

[8(M) : L(u)]=[M : L(n)] for each peC.

3.11. Take A, w,aasin3.1,3.5. Let # denote the non-degenerate contravariant form
defined on L(wA) through the canonical form on M(wA+38t) and passage to
quotient. Let %' be the non-degenerate contravariant form defined on 6, L (w 1) by the
procedureof 1.10.6. By 3.6(iii),(iv) the module 6, L (w A) admits a unique simple quotient
and this is isdmorphic to LwA). By 3.6 (vi), L(w\) cannot be all of 6, L(wA). Let
(0, L(w X))’ be the unique maximal non-zero submodule of 8, L (w A) which results. By
3.100nehasd(6, L (wA))=6, L (wA)andso (0, L (w 1))’ admits a unique simple submodule
and this is isomorphic to L(wA). Set U,L(wX)=(6,L(w\))'/L(w A) which inherits a
non-degenerate contravariant form from % '.
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Lemma (Vogan [12], 3.7). — (i) 6,(U,L(wA))=0. =~

(i) [U,L(wA) : L(y M)] >0, implies l(y'):—“l(w)gl and y =ws, if equality holds, otherwise
ly)<l(w).

(iii) Fix ye W, such that y>ys,. Then:

Hom (L (y 1), U, L (w A))~Ext! (L(y &), L( 1))
(iv) [U,L(wA): L(ws,A)J=1

Wecantaket=0in3.6. Then (i) follows from 3.6 (vi). (i1),(iv)follow from 3.6 (iv), the
exactness of 8, and [6], 7.6.23. (iii) follows from [12], 3.9 ¢, and 3.6 (ii).

Remarks. — Vogan has conjectured ([12], 3.15) that U, L (w 1) is always semisimple and
has shown ([13], 3.5) that this conjecture implies the truth of the Kazhdan-Lusztig
conjecture. We shall show that both are also implied by the Jantzen conjecture
(Sect. 4). At present it is not even known if L(ws,A) is a direct summand of
U,L(wA). Vogan pointed out that the Ilatter would give the implication
Ext/(M(y 1), L(w A))#0 = [(w)—I(y)—j even.

3.12. Fix MeObK.. From the natural isomorphisms:

Hom (Y, M, y, M)=Hom (¢, ¥, M, M)=Hom (M, @, ¥, M),

the identity map Id on {,M induces maps I;, : M—->0,M, I};: 6,M -> M (or simply
I, 17).

LemMma. — (i) Ker Iy, is the largest submodule N of M satisfying 6, N=0.
(ii) Coker I is the largest quotient Q of M satisfying 6, Q=0. ,
Let N be a submodule of M. By functoriality we have the commuting square:

Hom(y,M,¥y,M) 5 Hom((M,6, M)
w,N—»w,Mi NoM
Hom (Y, N,y,M) S Hom(N,O M).

From this it easily follows that I;; N=0 <>, N=0. Smce ©, 1s falthful [3.6(v)] we
obtain (i). A similar argument gives (ii).

Remark. — A corresponding result holds in KZ.
3.13. Define X, Y, Z as in 3.6.

LeMMA. — The sequence:

Ix 17
0-X->Y>Z->0 is exact.

By 3.6 (iv), (v) and 3.12 (i), I} is surjective. Since Y is n, free either I3 =0, or I} is
injective. Now 6, X#0 by 3.6 (i), so I} is injective by 3.12 (i). In particular Im I has a
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unique simple quotient and this is isomorphic to L (ws, A). Yet L (ws, A)is not a subquotient
of Z and so I;I3=0. By 3.6 (iii) it remains to show that (ImI),_,#0. Since @, V¥
commute with specialization we have (Im 1), - o =Im Iy, ;)= M (ws, 1) #0, as required.

a

3.14. Assume —Aeb* dominant and regular. Take w, w'e W, with w<w’ and set
X=M(w'A+8t), Z=M(wkr+8t). A non-zero homomorphism J, , of M(w})
into M (w’ 1) defines by 1.9.5 (iv) a non-split extension Y of X by Z. By 1.9.5 (ii) we can
identify Y with a submodule of t 7! X@®Z. The precise submodule is given by the following
lemma in which a a denotes specialization at t=0.

LEMMA: L
Y={(t""a, b)eXxZ:]J, ,(b)=a}.

Let P be a projective cover of Z. We have a commutative diagram:

=‘

)
)

l =

Ny
O N g — 7 «—O

with row and column exact and f; =f|y. By1.9.5 (i), Ext! (Z, X)is annihilated by ¢, so tf;
can be extended to a map f’ of P into X. Given yeY we can choose peP such that
n'(p)=n(y). Then the map g:y—y—f(p)—t 1f'(p) of Y into ¢t~* X is independent of
the pe P chosen and coincides on X with the identity on X. Consequently the map
h:y—(g (), n(y)) of Y into t"! X@Z is injective. Set a’=—f'(p), b=n'(p). If b=0,
then peNand a'= —tf, (p),soa’=0. Thuswehaveamapj:b+—a’ of Zinto X/tX. Itis
non-zero for otherwise f' (p) e t X and we should have Y @ X®Z." Obviously Ker jotZand
so j defines by passage to the quotient an embedding j:M@wA)—Mw'A). If
(t Ya,b)elm h, then writing b=n'(p)=n(y), we must have a=t(y—f(p))+a. Then
j(b)=a'=a. The converse obtains on noting that y—f (p)e X<Im h. Finally jidentifies
with J, , through the definition of the extension Y.

3.15. Take w'=ws,in 3.14. Since [1.9.5 (ii), 1.9.8] Ext'(Z, X) is a k vector space of
dimension one we may regard Y to be the extension constructed in 3.6. Let & denote the
canonical contravariant form defined on X or on Z and &) the form on Y defined
in 3.7. Then with respect to the presentation of Y givesin 3.14 we may reformulate 3.7 (1)
through the:

LEMMA; — For all x=(a, b), y=(a’, b’)eY one has:

Fi(x,y)=F (a,a )+t F (b, b").
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3.16. Assume —Aebh* dominant and regular.

LemMa. — For all w, w' e W,;
(1) Ext*(L(wA), L(w'A))=Ext*(L(w'A), L(w))).
(ii)) For w#w' the natural map:

Ext! (L(wA), L(w'A)) = Ext*(MwA), L(w'})) -
is injective.
(iti) Ext'(L(wA), L(w’'L))=0, unless w<w' or w>w'.
(iv) If w&w', then (notation 1.7.2):

Ext' (L(wA), L(w' l))gHom M), L(w'A)).

(i) obtains by duality and the isomorphism S(L(n)=L(u): uea. From the exact
sequence:

0->M@wA) >M(wA)—> L(wk)—0
we obtain the exact sequence:

(%) —»Hom(M(wA\), L(w'\)) > Hom (M (w)’, L(w'A)) -

'

- Ext' (L(w\), L' L)) - Ext! (M(w)), L' 1)) —.

Under the hypothesis of (ii) the second term in (x) vanishes and gives (ii). Then (iii)
obtains from (i), (ii) and [5], Thm. 4. Under the hypothesis of (iv) the first and last terms
of (%) vanish ([6], 7.6.23; [5], Thm. 4). Hence (iv).

Remark. — Take w’'=ws,; but reverse the roles of w, w’ in (iv). By 3.6 one has
dim Ext' (M (wA), L(ws,A))=1 and in fact equality holds. Then by 3.11 (iii) the map
defined in (ii) is bijective <> L (ws, A) is a direct summand of U, L (w X) <> L (w})is a quotient
of M(ws,A)’. The latter is an obvious consequence of assuming the Jantzen filtration
(see Sect. 4) to be hereditary (see Sect. 4).

4. The Jantzen conjecture and main Theorem

As in 3.1 we take A=C[t],, and C=X+8t+P(R) with both A, d eh* regular and —A
dominant. Bar denotes specialization at t=0.

4.1. Given MeK_. equipped with a contravariant form F we define
M/:={aeM: F(a,M)e(t/)}. Then {M’}, .y is a filtration of M by - U(gs)
moduies. Define a filtration of M: =M/t M through M/=M//(t M A MJ). Itiscalled the

Jantzen filtration of M relative to the form #. If M is a Verma module we shall always
assume that & is its canonical form (1.3.7). ’ 3
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4.2. For each we W,, the filtration { M(wL)’},_ of M (w}) is defined through 4.1 and
the identification M (wA)=M (wA+06¢). As suggested by Deodhar ([9], 5.3) one expects
" the M (wL)’ to be independent of the choice of § regular; but this is still an open question.

Now fix aeB,, weW, such that ws,>w. By [6], 7.6.23, there is an embedding
Joous,: M(wA) — M (ws, )) unique up to a scalar ([6], 7.1.8). Identify M(wi) with a
submodule of M (ws, A).

CoONJECTURE. — For each je N, one has:
(%) MwA)Y =M (ws, L) P AM(@w)).

We take J, . (or simply, J) to define the extension Y of M (ws,A+8¢t) by M(wh+81)
in 3.14.

(%) is an old conjecture ([9], 5. 18) of Jantzen who suggested in fact that equality should
hold. In this stronger form the conjecture is equivalent to either:

M () =M (w; Ay 71 A M (w ),
for all jeN, we W,, or:

M (wr)Y =M (s,wh)*t AMwA),

for all je N, we W, and a€ B, such that s,w>w. It islatter which should prove the easiest
to establish. Here we shall show that (%) implies the Kazhdan-Lusztig conjecture for the
multiplicities of compositio‘n factors of M(w)) and Vogan’s conjectural semisimplicity
of U,L(wh).

We set M(wi);=M(wA)/M(wi)’** on which the induced form is non-degenerate
(91, 5.3).

4.3. (Notation 3.3, 4.1, 4.2). — With v, asin 3.3. Set p=A—v,..

LEMMA. — Suppose M e Ob K. admits a contravariant form, define a contravariant form

on [y, M, @, M through the procedure of 1.10.6. Then for alljeN, ye W, : y <ys, one has:
@) (W, M)y =y, M.

(ii) (6,M) =0, M-,

(i) Y,M@wA+3t) =M (wp+3t). :

(iv) Y M @ws,A+8t) ' =M (wp+5t).

(v) M (ws, Y "1 L(y MI=[M(w ) :L(y ).

(i), (i1) are immediate from the definition of the forms on y, M, 6, M.  Then (iii), (iv) follow
from (i) and 3.5 (1), (2). Since y,L(yA)=L(yp), when y<ys, ([9], 2.11) we obtain (v)
from (iii), (iv). ' :

Remarks. — (v) expresses the fact that (¢) holds with respect to the simple factors which are
not annihilated on ' passage to - the oa-wall. It easily follows ° that
M(@wA)' ™ =Soc M(wA)~M (). This is an old result of Jantzen ([9],.5.3).. .One has
M(zA)o=L(z)X), zeW, (9], 5.3). Then by (iv) V¥, L(ws,2)=0. The proof of the
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corresponding result in positive characteristic needed Jantzen’s formula ([8], Sect. 5) for the
behaviour of the contravariant form, whereas in zero characteristic we already have this

result (¢f. 3.6 (ii)); so Jantzen used to say that there was no. need of his formula in
characteristic zero!

4.4. Define X,Y,Zasin3.6. Let & be the canonical form defined on X oron Z. Let
&1 the form on Y defined in 3.7 (1). In all three cases we shall simply denote the form

by  , ). Both canonical surjections Y — Z, Y - Z will be denoted by © which then

commutes with specialization. We use (%) to denote that conjecture 4.2 is assumed to
hold.

LemMMAa. — For each jeN one has:
) n(Y)<zi.
(i) Xt e Y/,
@) (iii) 27+ cn(Y).
(%) (iv) Y/ A X=X
Recalling 3. 14, consider Y as a submodule of t ! X@®Z. If y: =(x, 2)e Y/, 3.15 gives
(x, X' D+t71{z,z">e(t)) for all (x, z’)eY. Now for each z'€Z one has by 3.14 that
(0, tz')e Y and so < z, z' > e(t/), which gives ze Z/ and hence (i).
If xeX/* we have (x, 0)eY by 3.14 and < (x, 0), (t "' x’, /) >=t"'(x, x' Y e(t)), by
3.15. Hence (ii).
If zeZ/*1, then by () we have J(z)eJ(Z/*')=X/*2, so there exists xe X/*2 such that
J(z)=Xx. By3.l14wehave(t !x, z)eY and so by 3.15 we obtain for all x' e X, z’€ Z, that:

Lt x,2), ¢ %, 2)>=t"2{x, x’>+t“1.<z,Az’>e(tf).
Hence (t™' x, z)e Y/ and éo zen(Y?), which is (iii).
Now take x € X such that:
xeYi=Y//(tY nY).
By 3.14,(x, 0)€ Y and there exists (™! x,,z,)€ Y/ such that (x— "' x,, ,)€ ¢ Y. By3.14

again, there exist x, € X, z, € Z such that x, =1x,, z; =tz, and J(z,) =X —X,. By 3.15, we
have: '

%0, 20, (710, 7)) =71 g, XD 420, ¥ D (),

for all x'eX, z’€Z such that J(z')=%. Taking x'=tx", x"eX, z'=0 gives
x,eX/. Taking x'=0, z'=tz"; z’€Z gives z,€Z’"' and so by(#¥) we have
J(z,)eJ(Z'"')=X’. Through our previous observations we may conclude that X e X, as
required.

4.5. Assume that () holds. We set: ‘e
Xe, =XITYYIT AX), X, =Y X)X,
Yi=(Y/ nX)/(Y/ "' nX),
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which give the exact sequences:
(1) 0-Xl, =X,y > X%, -0,
) 0-X%,->Y;>X-0.
Again we set Z;:;:(?f)/if“ and:
Zb, =Z*m(YtY),  Yi=n(Yl)/n(YI*Y),

which give the exact sequences:

3) 0—’2;+1‘*z,’+1—’23+1—’0,
4) 022, > YisZ%-0,
(5) 0->Yi=Y; > Yin0.

From (2),(4), (5) we get a four-step filtration (see p. 300) on ?j. We wish to relate this to
the non-degenerate form on Y (denoted by { , ) defined by passage to quotient.

(¢) LEmMA. — For all jeN:

(1) <{X$:+1, Y7)=0.

(i) (X2, ,, Ker (Y;—Z)>=0.

Take ieijﬂr LYE ?;‘. Let x (resp. y) be an element of X’ * ! (resp. Y/ n X) whose image in
X4,y (resp. Y7) is x (resp. y). By 3.14 we have (x,0), (y,0)eY and by 3.15 that
{(x,0),(y,0)>=<{x,y>e(ti™1), since xe X/*!. Hence { x,y>=0, which proves (i).

For (ii) we fix X, x as in (i). By (i) it is enough to take zeZ?H and to show that
(x,7)»=0. Choose zeZ/*' whose image in Z®, , is Z. By 4.2 (iii) there exists x'e X/ *2
such that (t "' x’,z)eY. Then by 3.15 we have

((x,0), (17 x",z2) )=t 1 x,x"Ye(t!™).
That is ¢ x, z)=0, which proves (ii).

4.6. Take MeOb K. Since 0, is exact we may define M * (resp. M ™) to be the smallest
(resp. largest) submodule of M such that ,(M/M*)=0(resp.0, M~ =0). Weremark that
by 3.6 (ii), (v), 0, L =0 for a simple object L e Ob 5 is equivalent to L~ L (y ) with ye W,
and y>ys,.

(¢) Lemma. — For each jeN™:

Q) z; =z-.

(ii) X; =X2.

By 4.3 (ii), (iii) we may identify 0,(Z7) with Y/ and then the map 5t Y/ > ZJ defined by
restriction of © and 4.4 (i) identifies with the map I7; defined in 3.12. By 3.12 (ii),
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n(Y/)=(Z’)*. Hence (i). Again by 4.3 (ii), (iv), we may identify 0,(X’*1) with Y/ and
then the map X/*! — Y/ defined by 4.4 (i) identifies with the map I%,.. defined in 3.12
(¢f- 3.13). Thus (ii) follows from 3.12 (i).

4.6.1/2. Take MeObKy. Call M a-plus (resp. a-minus) decomposable if every
simple factor L of M™ (resp. of M/M™) satisfies 0,L#0, and set M_=M/M™
(resp. M, =M/M7). Recall the definition of §(M) given in 3. 10.

LeMMA. — (i) M is both a-plus and a-minus decomposable if and only if the exact sequence:
0-M*"->M->M_-0
splits. '
(i1)) M is a-plus decomposable if and only if 8 (M) is a-minus decomposable.
(i) M=~38(M) if M admits a non-degenerate contravariant form.

These are immediate from the definitions and 3.10.

4.7. When 4.6.1/2 (i) holds we call M a-decomposable. Note that we can then identify

M~ with M_. Extend U,(3.11) to any finite direct sum M of simple objects Le Ob K5
satisfying 6, L #0 through U,(M@N)=U,M@U,N.

(¢) ProrosiTION. — For each jeN, assume that Zj is a-decomposable. Then:
i) 2b=Z;.

(i) X j 18 a-decomposable and i;‘=§f

If in addition Zf is semisimple, then UaZf is defined and:

(i) X}, ,=Z7,
and:

(iv) There is an exact sequence:

0—»?; - Uj; -Z;,—0.

The hypothesis and 4.6 (i) gives (i). Through the non-degenerate form on ?J- and 4.5 (i1)
it follows that §j+ , is isomorphic to a submodule of & (Zf ). Thus every simple factor L of
§§+ , satisfies8, L#0. Thenby4.6.1/2 (ii), it follows that -)Zj +1 Is a-minus decomposable,
which through the non-degenerate form on X j+1 and 4.6 gives (ii)). Consequently
X% =X}/, 8(Z}) through 4.3 (v). The semisimplicity of Z then implies (iii). By
3.5 (ii), 4.3 (ii) and a-decomposability one has 8, Zj =0, Zf :?r Since Zf is semisimple
by hypothesis we obtain from 3.11 a complex 0 - Z] - 6,Z] - Z - 0 with
cohomology U, Z;L satisfying 6, (U, Zj )=0. Thus(iv) results from (iii) and the middle two
terms of the four-step filtration of ?J—.

" 4.8. We may now give our main result. Recall that —Aebh* is dominant, regular. .

(¢) THEOREM. — Suppose — A eb* is dominant and regular. Then for eachwe W ,, a.€B,
satisfying ws,>w one has:
(i) U,L(wA\) is semisimple.
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For each jeN:
(il) M(wL); is semisimple.
For each ye W, such that y>ys,:

(i) [U,M@wh);: Ly A} =[M(ws,A);: L(yM)] +IM@wA)je; Ly M)

The proofis by induction on [(w). Recalling that M (1) is a simple module, take [e N and

assume that (i) [resp. (ii)] holds for all we W, such that I(w) <[ [resp. [(w)<!]. Under tHis

hypothesis each Z ;1s semisimple and so the conditions of 4.7 are satisfied. By 4.7 (iv) we
obtain the exact sequence:

0 L(ws,A)— U,L@wk)>Z; —0.

By 3.11 (iv) and the non-degenerate form on U, L (w 1), it follows that the above sequence
splits, from which (i) results. Again since the simple factors L (z 1) of M (w ) satisfy z <w, it
follows by (i) and the hypothesis on Zj that each UaZ; is semisimple. By 4.6 (ii),
4.6.1/2 (i), 4.7 (i), M (ws,1);=X,;=X; ®X;. By 4.7 (iii) and the induction hypothesis
i;' is semisimple. By 4.7 (iv) and the semisimplicity of Uj; it follows that ij' is
semisimple. Hence M (ws, 1); is semisimple. Finally (iii) obtains from 4.7 (iv).

4.9. It is clear that 4.3 (v) and 4.8 (iv) determine the composition factors of each
M(wA);. More precisely let g be an indeterminate and set:

Py (@)= .ZO gt =IO M) Ly )]
e

(¢) CoroLLARY. — The P, ,(q):y, weW, are the polynomials in q defined in
2.3 or equivalently by the recurrence relations ([10], 2.2c). In particular
Py, (D=[M@X):L(y\)] takes the form proposed by Kazhdan and Lusztig ([10],
Conjecture 1.5b).

By 4.3 (v) we obtain:
(%) P,y @=Pu @ i y<ys,

Now suppose y>ys,. Given ze W, : zs,>z we define
H(wyzwy p)=[M(z ), : L(y 1))
By 4.8 (iii) with j=0 and recalling that M (w l)ogL(w A) we obtain:
[U,L(z2):L(yM)]=[Lizs, M) : Ly M)]+p(w) 2, wy p)-
Resubstitution in 4.8 (iii) gives:

Py, wy @ +aPy 0, (Q)
= Z H(wxz,wxy)q“/z’(””“””“’Pwlw,wxz(CIH”Pw;w,wkysu(q)-

zeW,|zs,>z
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Now set x =w, w and replace w, y (resp. w, z) by y(resp.z). Then (%)can be incorporated
into the above equation to give for all ye W, :ys, >y,

P . @=4"P, ,(@+q ""P (@) = ¥ p(zy)g"PeO-t@rnp g

zeW,|zs, <z

1, XS,> X,
u=
0, XS, <X.

where:

This is just ([10], 2.2¢). Since M (w; A)o=L(w, ) and [M(w2);:L(w, A)]=0 unless
w=w, and j=0 we also obtain:

1 x=1
P = ’ ’
%1@) { 0, otherwise.

These lead to the correct boundary conditions on P (g), so the corollary is proved.

4.10. We may regard 4.9 as a conjecture for the multiplicities in each filtration step of
M (w?2). Letusshow that this is consistent with the Jantzen sum formula ([9], 5.3). Using
prime to denote the derivative we obtain:

2 (lw)—=1ly)—j
Py (= ¥ WD ) L),

_ (M)P%W,wﬂ(l)—% ¥ IM@hY: L)L
i=1

J

Substituting from 2.3:

Z,l IM@A):L(yM]= Y Ry (D Py, 4, (1),

zew,

= Z PS,,wlz,wAw(l)’ by 22,

aeR;} :w 'w,0eR”
Y [M(s,wX):L(yA)], as required.
aeR} :w taeR"
4.11. Thelast result of this section would also be an immediate consequence of the truth of
4.9; but we show that it holds even without assuming the Jantzen conjecture.

LEMMA. — Assume —\eb* dominant and regular. Then for all w, ye W,, one has:
@) j>1w)=1(y)=[M(@wi);:L(y1)]=0.

(i) If j=1l(w)~1(y), then [M(wi);:L{yA)]=1.

The proofis by inductin on [ (w). Itistrivialif/(w)=0. Choosea e B, suchthatws,>w
and assume the assertion holds for M (wA) and establish it for M (ws,A). If y <ys, then the
assertion follows from 4.3 (v) and the induction hypothesis. Assume y>ys,.

Set M=M(wp):p=A—v, (notation 3.3) and fix a composition series
M=My2M,;2...2M,,;=0. Each factor M;/M,;,; is isomorphic to some
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Y, L(x\):xeW,, x<xs,. Then {¢,M,}i1§ is a normal series for 6, M (w ) with factors
isomorphic to the 6, L(xA). Set N;:=(@,M;)n M (ws, 7).

Then { N, }:2{ is a normal series for M (ws, 1) with each quotient N;/N;, , , isomorphicto a
submodule Q; , of some 6,L(x1).

Set N/:=((¢,M;) n M (ws,A))/(9,M;) "M (ws,L)’*!). For each j, {N/}iti is a
normal series for M (ws, 1); with each quotient Q/*! being a subquotient of Q; ,. Assume
that Q/*! is a submodule of Q; ,. We show that:

0, Jj2lw)—-IKx),

(*) [Qi,xiL(xSa“P{ <t j=lw)-lx)-1.

Set X=M (ws, 1), Q=QI*}. By the hypothesis SocQ~L(x1). Since X admits a non-
degenerate contravariant form we have 6X=~X and this module admits 6Q as a
subquotient. Now 86Q admits L(xA) as its unique quotient and so arises from the
embedding M (wA)c,M (ws, ). Furthermore this L(x ) arose from M (ws, A)'*! and so
as in 4.3 (v) it follows that 8Q is isomorphic to a subquotient of M (w\). (Observe that
M (ws Ay /i(M@wA)):L(wA)]=0.) Then

[Q: L(xs,\)]=[6Q : L(xs,\)]<[M(wA) : L(xs; )]
Since I(xs,)=1(x)+ 1, we obtain (x) from the induction hypothesis.

Now consider (i). Suppose Q!"' is a subquotient of M(ws,X);,+,. If Q{%} is not a
submodule of Q; , we must have [M(ws,A)’*2:L(xA)]>0. Then by 4.3 (v) and the
induction hypothesis j+1=I(w)—I(x). By 3.11 (ii), [Q{%':L(yA)]>0 gives either,
I(y)<l(x) and so j+1<I(ws,)—I(y) or, y=xs, and j+1=I(ws,)—I(y). If Q!*! is a
submodule of Q;,, then j<I(w)—I(x). If the inequality is strict we argue as
above. Otherwise we use (%) to show that [Q{*':L(yA)]>0 implies /(y)<I(x) and so
j+1<l(ws,)—1(y). This gives (i). Finally we observe that' j+ 1=I[(ws,)—I(y) only if
j+1=Il(w)—I(x) and y=xs,. This gives (ii).

Remarks. — This result can be interpreted as saying that P, (q) defined through 4.9 is
polynomial in g*/2. For the corresponding expression defining Ext*(M (w)), L(y L)) (see
introduction) the corresponding assertion is that the non-vanishing of this Ext group implies
k=ZI(y)—I(w). The latter is a result of Casselman and Schmid (cf. [5], Thm. 4). When
equality holds in (ii) it is clear that the unique smallest submodule of M (w1); admitting
L(y ) as a factor is isomorphic to M(yA). The question of equality in (ii) is apparently
quite deep for it would lead to a considerable simplification in the proof of ([9], 5.17).

5. Extensions of Verma modules

5.1. Apjoints. — In this first subsection we develop a property of 6, used by Vogan ([13],
Sect. 4) in his analysis of the Kazhdan-Lusztig conjecture.

5.1.1. Let K be an exact category. Given X, YeObK, let Hom (X, Y) denote the set of
all morphisms X - Y. Take ZeObK. Given feHom(X, Y) we denote by S*f the

4° SERIE — TOME 14 — 1981 — N° 3



KAZHDAN-LUSZTIG CONJECTURE 295

covariant morphism functor S% f : g f,g of Hom(Z, X) to Hom(Z, Y) and by S, f the
contravariant morphism functor S, f:g+ g, f of Hom(Y, Z) to Hom (X, Z). ’

5.1.2. Let ¥ be a functor on K with left adjoint @. That is we have a functorial
isomorphism:

J"(, ) Hom( , ¥( ))>Hom(e( ), ).

Lemma. — Given morphisms X Ly VZ of objects of K one has:
() 0", Z2)g)e@(f)=I"(X, Z)(g /).

(i) goI" (X, V)V (N))=0"WX), ¥(Z) V(g f).

(i) By functoriality the diagram:

1(Y,2) ’
Hom(Y, ¥ Z) Hom(o Y,Z)
1 Syz/ Syz o))
1"(X,2)
Hom (X, ¥ Z) Hom (o X, Z)

commutes. Then:

(Y, Z2)g) oo (f)=yz @ (/) (" (Y, Z)9)=((Syz ¢ (/) I (Y, Z)) g
=("(X, Z)o(Syz /) g= "X, Z)o((8yz /) 9)=T"(X, Z)(g o f).

(i1) Follows similarly.

5.1.3. Let | be a functor on K with right adjoint @. That is we have a functorial
isomorphism:

J'(,): Hom(Y( ), )3 Hom( , @()).

LEMMA. — Given morphisms ¥ X EA Y3z of objects of K one has:

() 0@) (V' X, Y) )=V (X, Z)(go ).

i) @' (Y, WZ)¥(9))of =T (WX, YZ)¥ (g0 f)-

(i) By functoriality (S* @ (g))oJ' (X, Y)=J (X, Z)(S*g).

Applied to the element f'e Hom (V X, Y), this gives (i). (ii) follows similarly.

5.1.4. From now on we suppose that | is a functor on K with left and right
adjoint @. Set 6=0V.

LemMma. — Fix X, Y, X', Y eObK. If the diagram:

k g

p
X - Y
b
X’ - Y’
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commutes, then so does: s
X - Y
V' (X¥ X') ¥ (k) l l J (Y, ¥ Y)¥(9)
06X - 0Y’
o)

By 5.1.3:
F VYN (@G) o f=T X, VYW (gf)=T' (X, ¥ Y') (k)
=V X VY)W D) oy (k) =0(1) (' (X, Y X' )Y (k)).

5.1.5. Given XeObK, we define (as in 3.14) I;:X - 0X by J(X, ¥X)1ldx and
17:0X > X by Iy =1" (U X, X)Id.

LemMMA. — For all X, YeEObK, feHom (Y X, VY) the diagram:

J X Y)f

lxl

06X ——
WX Y)f

0Y

Is

commutes.
By 5.1.2(i), 0" (W Y,Y) Id,y)o0(f)=J"(W X,Y)/. ByS5.1.3 (),
Q(f) e (WX, ¥ X)Id )=V (X, ¥ Y)f.

Hence
"X, Y) f)ok=I{o@(f) o Ix=1 o (J'(X, VY) f).
5.1.6. CoroLLARY. — For all X, YeObK, the diagram:

Hom($ X, ¥ Y) —2*" . Hom(X,0Y)
FWX,Y) lsxw
Hom (0 X,Y) Hom (X, Y)

commutes.
For each f e Hom (¥ X, {Y) one has:
(S*IY) e I X, W Y)) f=F o (X, ¥ Y) /)=0"(¥ X, Y) f)oIy, by5.1.5,
=By )" (WX, Y)) f.

5.1.7. Take MeObK. From now on M — 6 M (resp. 8 M —» M) denotes I}, (resp. I};)
and the functors S,,, SM are to be understood. Composing J', J' we have a functorial
isomorphism: ‘

J(,): Hom(,0())Hom(®(), ).
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Now assume that K has enough projectives. Taking projective resolutions we obtain a
functorial isomorphism Ext*( , 0( )) = Ext*(0( ), ) which we also denote by J( , ).

5.1.8. Take M, NeObK. Assume that V, ¢ (hence 0) are exact functors on K with ¢ a
left and a right adjoint to . Assume that K has enough projectives.

ProrosITION. — There is a commuting diagram of maps:

- Ext/(N,0M) - Ext/(N,Im(06M —~ M)) — Ext/*!(N,Ker(®M — M)) —

J(N,M) & &
- Ext/(0N,M) — Ext/(Coim(N - 8N),M) — Ext/"!(Coker(N —» 6 N),M)—

with the rows exact. If Ker(N —-0N)=0, then £,=Im(O6M -» M) > M.

Let X* be a projective resolution of N. Then 0 X* is a projective resolution of 6 N.  Set
C*=Coker (X* - 0 X*), D*=Coim (X* - 0 X*). By 5.1.4 the diagram:

X* - N - 0

b

6X* - ON - 0

has exact rows and commutes, so C* (resp. D*) is a resolution of Coker (N — 0 N) [resp.
Coim(N - 6N)]. Let:

0-E*>F*->G*->0
be a projective resolution of the exact sequence:
0— Coim(N - 8N)— 6N — Coker(N - 6N) - 0.

By [4], Prop. 1.1, p. 76, we obtain for any M e ObK the commuting diagram:

0 — Hom(C*,M) — Hom(0X*,M) — Hom(D* M)

o

0 -» Hom(G*,M) - Hom(F*¥M) — Hom(E*M) — 0

with exact rows.
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By 5.1.6 and the projectivity of X* we obtain the commuting diagram:

0 — Hom(X*,Ker®M —» M)) —» Hom(X*,6 M) - Hom(X*,Im(®6M - M))—> 0

(%) IHX‘»W “ blmlBM—-»Mj - M
0 - Hom(C*,M) - Hom(0X*,M) — Hom(X* M)

with exact rows. It follows that J(X*, M) defines by restriction an isomorphism
Hom (X*, Ker (M — M)) = Hom (C*, M). Composing the diagrams (*), (**) gives
through ([4], Prop. 4.1, p. 85) the conclusion of the proposition.

5.2. With the conventions of Section 3, take C=A+3t+P(R): A, debh* with —A
dominant and regular. For the moment we do not assume 8 regular. Fixw, ye W,,aeB,
satisfying ws,>w, ys,<y. We apply 5.1 with K=K, =0, (notation 3.1). Set s=s,.

5.2.1. LEMMA:
Ext/ (M (y A +8t), M (ws A+ 8t)) = Ext/ (M (ys A+ 8t), M (w A+ 8t)).

By 3.13 we have the exact sequences: ’

©) 0= M(yh+8t)—>OM(yA+8t)— M (ysh+5t) -0,

M) 0 — M (w5 +8) = 8 M (s A +5t) — M (w h+8¢) — 0.

TakeM =M (wA+6t), N=M(yA+6t)in5.1.8. SinceJ(N, M)is an isomorphism and &,
is the identity map, it follows that &, is required isomorphism.

5.2.2. The exact sequences ({), (n) of 5.2.1 are of couse equally valid in specialization
(equivalently setting 8=0). Recalling 3.6 (i) we let:

¢ Ext/(OM(yA), M(wi)) —» Ext/(M(y1), M(w))),
n': Ext/(M(ys)A), OM(wi)) - Ext/(M(ysA), M(w})),
be the resulting natural maps.
LEmMMA. — For each j one has:
dim Ker ¢/ <dim Ker /.

Recall that we have an embedding J
OM@pyr) =00

s,y - M(ysh)—>M(yA) and by 3.6 (i) that
M(ys\)). By functoriality the diagram:

ys, y
My h)

M(yA) — 6M(yr)

sy 1 IQJ” ,

M(ysi) . — OM(ysh)

M (s )
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commutes and as in 3.13 one checks that both maps I’ are injective. Apply the functor
Ext/(—,M(w)\)). AgaintakeM=Mw)),N=M(ysA)in5.1.8. Together these give the
commuting diagram:

Ext/(M(ysA),0 M(w))) —»> Ext/(M(ys), M(w 1))
J(M(ys Ay, M(w 1)) Id

Ext/(0 M(ysA), M(wA)) — Ext/(M(ys ), M (w 1))
]

0., . )

¥soy

L

Ext/(OM(yA), M(w)) — Ext/(M(yA), M(w L))

Up to identifications defined by the 1somorphlsms JM(ysA), M(w2)),0]
J,s ,6/=m’. Hence the Lemma.

vs, y» 1d we have

5.2.3. CoroLLARY. — For all je N one has:
dim Ext/*! (M (ys L), M (wsA))—dim Ext/(M(ysA), M(w}))
>dim Ext/* ! (M(ysA), M (wL))—dim Ext/(M(y1), M(w})),
with equality if and only if Ker {/=Kern/, Ker {/*!=Ker n/**.
Applying the functor Ext/(—, M(w2)) to () (with §=0) gives:
dim Ext/*1 (M (ysA), M (wA))—dim Ext/(M(yL), M (wA)) =dim Ker ¢/*! —dim Im ¢/.
Applying the functor Ext/(M (ysA), —) to (1) (with 8=0) gives:

dim Ext/*! (M (ys L), M (wsA))—dim Ext/ (M (ys)), M (w}))
=dim Ker n

jt1

—dim Im n’.
Since ¢/, i)/ act on isomorphic modules we have:
dim Im n/+dim Ker n/=dim Im {/+dim Ker {/

and so by 5.2.2 the required assertion.

5.2.4. By the choice of w, y, s one has ysSw<>ys<ws, so by [6], 7.6. 23, 7.1.8, the
validity of 5.2.3 extends to j= —1 if we set Ext™!'=0. We define:

R; (@)=Y ¢’(=1)'?7'® 7 dim Ext/(M(x}), M(y})).
j=0

LeMMA. — The expression R}, ,(q) satisfies 2.1 (1) and the first relation in 2.1 (ii). The
second relation is equivalent to equality in 5.2.3.
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By say 1.5.8 one has:

(x) Ext/(M(x4), M(A)=H/(n*, M(A)),, - ,=H/(n", SMM))% _,.
YetM(A)~L(A)andsod(M(A))=M (L) whichisn™ free. Hence2.1(i).

The first relation
in 2.1 (ii) obtains from 5.2.1 and the second from equality in 5.2.3.

5.2.5. Now take 8 regular and set (recalling 1.9.5):
R, ,@)= Y ¢ (—=1)})®~'®~idim Ext/ (M (x A+5t), M (y A+5t)),
j=-1

where we have formally defined:

1 x=y
. _1 t‘ — 2 b
dim Ext™' (M (x A +8t), M (y A+ 0t)) { 0, otherwise.
Lemma. — R, ,(9)=q ' (g— )R/, ,, for all x, ye W,.
Apply 1.9.5 (iv) with A, =x A +8¢, Ay =y A+ 1.
5.2.6. We may regard 5.2.3 as a lower bound on dim Ext/** (M (ys), M (ws)) and

ultimately a lower bound on Ext/*! (M (xA), M(w, A)). By (*) of 5.2.4, equality holds if
and only if dim H/(n*, M (w, 1)) equals precisely this lower bound.

n(?ju)
!
?,wz ___i,wz
L
Y3 —
_ Zjb'+1
Y;
y: | X]
X4

Schematic presentation of the filtration of the modules X=M (ws,A+6t), Z=M (wA+05t) derived from the

conclusion of Lemma 4.4 and of the four-step filtration of Y;. The module Y is the extension of X by Z. Bar
denotes specialization, superscripts (resp. subscripts) denote filtration (resp. gradation).
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Index of notation

Symbols used frequently are given below in order of appearance. In addition, N*
denotes {1,2, ...} and N=N* U {0}.

0. g, b, b*, R, B, M(A), 1.8.8. Q(A, D).
L), 5, S, W, w,. 1.10.1. [M : M (w)].

1.2.1. o,X, H,R",g,. 1.10.2. E,.

1.2.2. A, a,, U(a,), Z(a,), S(ay). 1.10.3 6.

1.2.3. p, Ay, M), 1, . 1.10.5 p(M, Z).

1.2.4. QR), P(R). 1.10.6. p(M).

1.2.5. M, Q(M). 2.1. R,

1.3.1. P,P. 23. P,

1.3.5. e, %1 3.2. R, B, w,.

1.3.6. #,. 3.3, E(v), U, 0,0,

1.4.1. K¢, K. Ke. 3.6 XY, Z

1.4.5. Q(u). 3.9, Pwh+50).

1.5.1. KZ(b), Qy(n). 3.10.  §(M).

1.5.3. Q'(n). 3.11. (0,L(w))), U,L(w).

1.7.4. Kj, Ky, 3.12. I, I

1.8.1. k Ry, Wi 3.4, Ty

1.8.6. Fy. 42, MY, M),
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