Sel. math., New ser. 11 (2005) 9 — 36

1022-1824/05/010009-28 ©Birkhiuser Verlag, Basel, 2005
DOI 10.1007/500028-005-0002-0
Published online July 4, 2005 | Selecta Mathematica, New Series

Orbital variety closures and the convolution product in Borel—-
Moore homology
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Abstract. This paper settles a twenty-year-old conjecture describing the inclusion relations be-
tween orbital variety closures. The solution is in terms of the top Borel-Moore homology of the
Steinberg variety and mirrors the way in which the Verma module multiplicities determine the
inclusion relations of primitive ideals. It thus gives a link between geometry and representation
theory which is more precise than what one would obtain by a naive application of the orbit
method. Unlike the primitive ideal case which uses Duflo involutions, the geometric result ex-
ploits a link between correspondences and the moment map pertaining to the cotangent bundle
on the flag variety. Krull equidimensionality is needed to ensure that all correspondences are
recovered from the homology convolution product.
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1. Introduction

1.1. The aim of this paper is to prove a twenty-year-old conjecture [J3, 9.9] on
inclusions of orbital variety closures. The description of inclusions of orbital variety
closures is a very difficult problem and even in type A an extensive analysis [M1,
M3] has not yet provided a complete solution (see 6.7). Our solution is in terms
of certain (as yet unknown) geometric data analogous to Verma module multiplici-
ties. It was motivated by the analogy between geometry and representation theory
as expressed by the so-called orbit method sometimes referred to as quantization.
When one passes to the semisimple case this method encounters a number of dif-
ficulties because coadjoint orbits and unitary representations (or primitive ideals)
do not quite match up. We have suggested [J5, 1.5] a coherent way out of this
difficulty. Namely, certain attributes of the geometric and representational pic-
tures can be compared and then their detailed description is to be given by exactly
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the same algorithms in each case but using slightly different data. In this fashion
the characteristic polynomials of orbital varieties were defined [J3, Sect. 2] and
conjectured [J3, 9.8] to be expressable in terms of geometric data, just as Goldie
rank polynomials are given in terms of Verma module multiplicities. Several proofs
were later given [R, J5, V]. This result also described the geometric cells, that is,
the fibres of the Steinberg map, in terms of the above geometric data and gave a
way to classify nilpotent orbits so that their relation to primitive ideals becomes
transparent. Our present results deepen and refine this relationship describing in
particular the geometric cones which determine orbit and orbital variety closures.
Its interest may well go beyond semisimple Lie algebras as there is an analogue of
the Steinberg variety in the theory of path algebras, see [Re, BN] for example.

1.2. In more detail let g be a complex semisimple Lie algebra and fix a Cartan
subalgebra f. In 1977 Duflo [D] showed that every primitive ideal of the enveloping
algebra U(g) is the annihilator of a simple highest weight module, thus giving a
surjective map from §* to Prim U(g). A basic qilestion was to determine the fibres
of the Duflo map. Using the centre of U(g) and the Harish~Chandra isomorphism
one is reduced to studying fibres of maps from the Weyl group W to Prim U(g). It
was natural to believe this to have a combinatorial solution. Shortly after Duflo’s
work we noted that Verma module multiplicities should play a key role. This can
be expressed by assigning to each w € W an appropriate Verma module, so that
the simple highest weight module s gave a second basis (noted a(w) : w € W in
[J1, 5.7] and see 6.2) of QW. We noted that this change of basis gives a flag of
left ideals of QW and suggested that the inclusion relations between them should
exactly describe the inclusion relations of primitive ideals (see 6.8). This was partly
established [J1, 5.8(ii)] and the proof completed by Vogan [V] almost immediately
afterwards. It was a key motivation for the work of Kazhdan and Lusztig [KL1]
who conjectured a purely combinatorial algorithm to determine the a(w), whose
validity was established shortly afterwards by several authors [BB, BK].

1.3. Identify g* with g through the Killing form and let g = n @ @ n™ be a
triangular decomposition. A coadjoint orbit O is said to be nilpotent if @ N n
is non-empty. After Spaltenstein O N is equidimensional [S1] and one calls its
irreducible components orbital varieties. One may show [J3, 7.5] that an orbital
variety is Lagrangian with respect to the Kirillov—Kostant symplectic form on @
and hence a natural object to quantize. Despite earlier optimism not all orbital
varieties can be quantized giving eventually a primitive ideal [J6, 1.3]; but to
determine those which can be quantized is a key open problem on which some recent
progress has been reported [B, JM, P]. Here we just view an orbital variety as the
natural geometric analogue of a primitive ideal. In this framework the Steinberg
map replaces the Duflo map and the conormals of Bruhat cells in the cotangent
bundle on the flag variety are viewed as the geometric analogues of simple highest
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weight modules. Finally the base change in QW, necessary to give an analogous
description of inclusion of orbital variety closures, is provided through the W action
on the Borel-Moore homology of the “conormal variety”. Here the fundamental
classes of the conormals form the required basis A(w) : w € W of QW needed to
describe the geometric analogues of cones and cells. That this is the appropriate
identification is made particularly evident by the integral formula of [J2, 4.7].

1.4. Once one has understood how to make the correct constructions based on
these analogies the proof of our main Theorem 5.5 describing orbital variety closures
follows relatively easily from known results and techniques. A basic ingredient
is that the top Borel-Moore homology on the Steinberg variety has an algebra
structure making it isomorphic to QW. This was noted in particular by Ginzburg
[G]. Here we further note that the top Borel-Moore homology on the conormal
variety is a module for this algebra and that both are naturally isomorphic as W
modules. The relationship between them is analogous to the Bernstein—Gelfand
equivalence [BG] between the Harish-Chandra and highest weight categories. This
leads to a geometric analogue of the Enright functor which plays a significant role
[J2, 5.7, 5.8] in describing primitive ideal inclusions. Indeed this is how we obtain a
right action on the conormal variety rather than the left action which is inherent in
Hotta’s work [H]. A key observation in our work is that orbital variety closures can
be expressed in terms of set theoretic convolution of irreducible components of the
Steinberg variety with conormals. It then remains to show that multiplication in
homology “sees” all the irreducible components of set theoretic convolution. This
is & delicate point as intersections fail to be proper. However enough intersections
are proper and furthermore a required equidimensionality results. This result is
rather fortuitous in that one cannot hope to obtain explicit formulae. It results
from Krull’s theorem in a manner analogous to Spaltenstein’s proof [S1] of the
equidimensionality of @ Mn. From these things combined our proof results. We
remark that in our work we shall only rely on Ginzburg’s formalism [G] as presented
in [CG, Sect. 3.4]. This means that A(w) is determined by the transition matrix
defined in [CG, 3.4.13). This avoids having to make any comparison with the
approaches of Kazhdan-Lusztig [KL2] or Rossmann [R]. However see the remark
in 5.3.

2. A review of the Steinberg variety

2.1. Let G be a connected, simply-connected complex semisimple algebraic group.
Fix a Borel subgroup B of G. Recall that Ng(B) = B and that the set B of all
Borel subgroups of G is a single G orbit under conjugation. Thus B identifies with
G/B. In this it is convenient to let gB denote either the right B coset defined by
g € G or the B conjugate gBg !, which we may sometimes also write as 9.B.

Jed
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2.2. Set g = Lie G with triangular decomposition g=n"®h @S n, where h dn =
Lie B. Let N7, H,N be the corresponding connected subgroups of G. Let A
(resp. A*) denote the set of root (resp. positive, negative roots) defined by this
decomposition and = C AT the corresponding set of simple roots. For each o € T,
let sy be the corresponding reflection and W the subgroup of Aut §* they define,
and z, a root vector of weight a. Of course W identifies with Ng (H)/H and we
simply use w € W to also denote a representative in Ng(H).

2.3. Recall [C, Chap. 8] the Bruhat decomposition

G= ]] BuwB.
weW
Using bar to denote Zariski closure one has

BwB = H ByB,
y<w
where < denotes the Bruhat order. The Bruhat cell X,, :== BwB/B in G/B has a
similar closure property. Again dim X,, = £(w), where £(-) denotes reduced length.
In particular dim G/B = [A™| =: n.
Take o € m. Recall [C, Prop. 8.2.4] that

BsaBwB = BsawB, if sqw > w,
Bs,BwB = BwB, if s,w < w.

For each o € w, let F, denote the parabolic subgroup it defines. One has
P, = BsaB = BsoB]] B. Set p, = Lie P,. Its nilradical m, has codimension 1
in n. Let P, denote the set of all Borel subgroups contained in P,. It identifies
with P, /B and is isomorphic to the projective line P1.

For each w € W, let YN (resp. “n) denote the w conjugate of N (resp. “n) and
set Ny, = “N N N. One has Lie Ny, = nN* n. In particular N, is the unipotent
radical of P, and nN% n = m,.

2.4. Set N' = Gn which is the cone of nilpotent elements of g. After Dynkin, N'/G
is finite. Bach O € N/G is identified with a G orbit in A, called a nilpotent orbit.

Fix O € N/G. After Spaltenstein, O N n is equidimensional [S1] of dimen-
sion —J:;dim 0. Each component V of O Nn is called an orbital variety (associated
to O). They have the following remarkable description due to Steinberg, see [S2]
for example.

Fix w € W. Then G(nN¥n) is irreducible and a finite union of nilpotent orbits,
hence admits a unique dense orbit O(w). Set V(w) = O(w) N B(nn¥n). Tt is
an orbital variety and every orbital variety can be obtained in this fashion. The
map St : w— O(w) (resp. Str : w— V(w)) is called the Steinberg (resp. right
Steinberg) map. Observe that w € St~1(0) if and only if @ N nN¥ n is dense in
nN¥ n. In particular w € St™H0) <= w! € St~H(O).
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2.5. View B x B as a G set under diagonal action and set Z,, = G(B,*B) which
is'a G orbit in B x B. Through the Bruhat decomposition one has

BxB= ]_[ Zw
weWw

and

Zw =[] 2, (%)

y<w

In particular the Z,, are locally closed in the Zariski topology.

2.6. Set S = {(z,B1,B2) € N x Bx B | z € Lie B; N Lie By}. Tt is called the
Steinberg variety. Let 7; : ¢ = 1,2, 3 be the projection of the i-th component of S
and set m = 71,7’ = mg X m3. Similarly, the cotangent bundle 7'= T*(B) = G xZn
of B identifies with

{(E,Bl) eN xB | x € Lie B]_}

In this presentation the projection of T to the first factor identifies with the moment
map. In this fashion S identifies with the fibre product T xr T'. For each w € W,
set Sy = 7' "I(Zw). It is an irreducible locally closed subset of S of dimension 2n
and identifies with the conormal to Z,; in T*(B x B). Thus the S, : w € W are
just the irreducible components of S which is hence equidimensional.

2.7. For each @ € N/G, set S(O) = #~10O). It is a locally closed subset of
dimension-2m—88t S, (0) = S(0) N S,. Their disjoint union is S(O). One has
w € St71(0), if and only if S,,(O) = §,,. Since S(O) is equidimensional [S2] the
latter are just the irreducible components of S(O).

2.8. Set Y = {(z,B1) e nx B | z € Lie By} and let m : i = 1,2, be the
projection of the i-th component of Y. Of course Y identifies with =3*(B) C S.
In this manner Y further identifies with the fibre product T' x  n.

For each w € W, set Y,, = 7y }(X,,). It is an irreducible locally closed subset
of Y. It identifies with the conormal {(b(n """ n),bwB) : b € B} of BwB in T*(B)
and so has dimension n. Thus the Y, : w € W are just the irreducible components
of Y which is hence equidimensional. We call ¥ the conormal variety.

3. The conormal variety
3.1. We investigate some properties of the conormal variety ¥ defined in 2.8.

3.2. It is convenient to identify ¥ with (¥,B) C S and ¥, with (Y, B) C Sy-1.
Clearly ¥ (resp. S) is B (resp. @) stable under diagonal action and S = GY =
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G xBY, Sy-1 = GYy = G xB Y,,. Moreover §,-1 = GY,, = G xF ¥, since G/B
is complete.

3.3. For each locally closed subvariety W of n set Y (W) = 7#=1(W). By definition
Y =Y(n). For each O e N/G, we W,set Y,,(nNO) =Y, NY(nNO). Identify
Y (mNO) with (Y, (nNO), B) in Sy-1(0). Then Stabg(Yy(nNO), B) = Ng(B) =
B and G(Y,,(nNO), B) = S5,-1(0). Consequently

dim Y,,(n N Q) = dim S,,-1(O) — n. (*)

Lemma. For all O € N/G one has
() Ymno)= [] Yurn o).
weW
@ Ymno)= [ Yu®no).
weSt—1(0)
(iil) Y{nN O) is equidimensional with irreducible components Y,(nNO):
w € St71(0) of dimension n.

Proof. (1) is trivial. For (ii) observe that Y (nNO) and Y,,(n N O) are B stable and
recall that G/B is complete. Thus

GFmNO) =Gy (nn o),

=S(O)7

= |J 5.0, by 27,

weSt—1(0)

= U %®enoy.
weSt—1(0)

Since all these sets are B stable and Ng(B) = B one obtains (ii) by taking
intersection with 73 *(B).

Recall that w € St~1(0) if and only if nN¥ nN O is dense in n N¥ n. Thus if
w € St71(0) it follows that ¥, (nNO) = B(nN¥nNO,wB) is irreducible. Moreover
in this case we obtain from (%) that

dim Y, (nNO) =dim S,—:(0) —n=n.
Hence (iii). O

3.4. Since ¥, D Y, (O Nn) is irreducible of dimension n, we obtain the

Corollary. The Yy, : w € St71(O) are the irreducible components of Y (n N O).
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3.5. Set
DC(w) = St™Y(St(w)), DC(w) = St~ (St(w)).

These are subsets of W called the geometric double cells (resp. cones). As we shall
see DC(w) naturally defines a two-sided ideal in the group algebra QW. Moreover
we show that the resulting W x W module structure determines the form of St(w).
Observe that DC(w) = DC(w™1).

Set

C(w) = Str=Y(Str(w)), Clw) = Str—*(Str(w)).

These are subsets of W called the right geometric cells (resp. cones). As we shall see
C(w) naturally defines a right ideal of QW. Moreover we show that the resulting W

module structure determines the form of Str(w). Through the dimension estimate

in 2.4 one has C(w) = DC(w) N C(w). Through the Steinberg variety one checks
(see [J3, 9.5] for example) that

pcw)y= J] <) ()

yeC(w1)

Lemma. For eachy € C(w™"), there ezists a subset C, C DC(w) such that the
Y. : z € Cy are the irreducible components of Y(V(y)).

Proof. Let Y(V(y)); : i = 1,2,..., sy, be the irreducible components of ¥ (V(y)).
Let O = O(w). By (+) one has

nno= U V(y).
yeC(w™1)
It follows that
Sy
Yono)= | UYVw))

yeC(w=1) i=1

= |J %, by 34
z€DC(w)

Then the assertion follows by uniqueness of decomposition into irreducible compo-
nents. O

3.6. It follows in particular from 3.5 that Y (V(y)) is equidimensional. More
precisely we obtain the

Proposition. For allw e W,
(i) The irreducible components of Y (V(w)) are the ¥y, : y € C(w).
(ii) The irreducible components of Y (V(w)) are the ¥, : y € C(w).
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Proof. Consider (ii). Since B is projective, 7 is a closed map. Hence m(Y,) is closed,
contains B(n N¥ ) and is contained in B(n ¥ n). Thus we obtain

(%) = V(). (+)
Now by 3.5

U % =Y0Vw)) c Y(Vw)),
y€Cuy

and so

V(y) C (Y (V(w))) = V(w).

By definition this gives y € C(w) and so C,, C C{w) N DC(w) = C(w). On the
other hand V(y) = V(w), for ally € C(w) and since C,, # 0, this forces G, D C(w).
Hence (ii).

The proof of (i) is similar. First,

Ymnow)= |J Ymnok),

Yet n N O(y) = UzEC(y"l) V(z) and so there exists a subset D,, C DC(w) such

that the V(z) : z € Dy, are the irreducible components of n N O(w). Since
dim V(y) = %dim O(w) if ye DC(w)

and

dim V(y) < %dim O(w) if y € DC(w)\ DC(w)

we may deduce that D, D DC(w) 3 w. Then as in 3.4 uniqueness of decomposition
into irreducible components gives a subset C,, C DC(w) such that the ¥y, : y € Gy
are the irreducible components of Y_(?_@) Through (*) we conclude as in (i) and
the definition of C(w) that Cy, = C(w). O

3.7. We see from 3.6 that Y (V(w)) and Y (V(w)) are both equidimensional of
dimension n. One may remark that V(w) is badly behaved in that it is not in
general a union of orbital varieties, see [T] and [M, 4.2.5]. {On the other hand by
[J3, 7.4] any closed irreducible B stable involutive subvariety V of n is the closure
of an orbital variety corresponding to the unique dense orbit in GV). In this sense
Y (V(w)) is better. o

Since Y (V(w)) = =} (V(w)) = 7~1n(¥,,), we can obtain from 3.6 a homolog-
ical approach to the description of C(w). Similarly 7~!7(S,) = 7~(O(w)) =

S(O(w)). Then 2.7 gives a homological approach to the description of DC(w).
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4. Set theoretic convolution

4.1. Let X be a set. Asin [CG, 2.7.5] we may define a convohition product on
subsets of X x X as follows. Let p; ; : X x X x X — X x X be the projection onto
the 4, j-th factor. Given Y, Z C X x X, set

Yo Z :=pis(pr; (Y) Np3s (2)).

We call it the convolution product of ¥ with Z. It is associative but not commu-
tative. Clearly the diagonal A C X x X is the identity for this product.

4.2. Our interest in the convolution product comes from the following easy but
crucial result. Take X = T := T*(B) and view S, Y as closed subsets of T x T.
Recall the moment map m : T*(B) — N.

Lemma. For any A C S (resp. C CY) one has
(i) So Ao S =n"1r(A).

(ii) So C=n"1n(C).

(iii) The formula C — GC = G xB C defines a one-to-one correspondence
between B invariant subsets C CY and G invariant subsets of S. IfFAC S
is G invariant and C CY is B-invariant, one has

AoGC =G(AC).
In particular,
S o (GC) = G(r~1n(C)).
Moreover all the above sets are closed if A is closed in S, and C is closed in' Y and
is B stable.

Proof. Recall that S = T xn T = {(t1,ts) € T x T | w(t1) = 7(ta)}. Thus
min(A) = {(s,t) € S | Har,a2) € A | m(s) = n(a1) = 7w(az) = =(t)}. On
the other hand (s,t) € S0 Ao S means that we can find (a1,as) € A such that
s € w7 w(a;),t € m'm(az). Comparison with the previous formula gives (i).

Recall that ¥ = {(,z) € T x n | n(t) = z}. Thus 7~'7(C) = {(s,z) € Y |
3(t,z) € C with 7(s) = z}. On the other hand (s,z) € S o C means that we can
find (t,z) € C such that s € 7~ 7 (t). Hence (ii).

Since S = G xP Y, the assignment A — ANY from the set of G invariant
subsets of S to the set of B-invariant subsets of Y is inverse to the map C — GC.

Suppose A = {{a1,a3)} C S and C = {(t,z)} C Y. Then

Aol = (a1,z) 1if ag ='t,
0 otherwise.

Recall that the group G acts diagonally on T' x T. The above formula implies
that for any g € G g(A o C) = g(A) o g(C). Therefore,

G(AoC)=Ao0GC
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if A is G invariant. In particular S o (GC) = G(S o 0), so the last formula of the
lemma follows from (ii).

The last claim of the lemma follows from the fact that 7 is a closed continuous
map and G/B is complete. O

Remark. Note that the correspondence described in (iii) assigns Sy, to Y,,-1.
4.3. It is instructive to first make some computations with T replaced by B.

Lemma. Toke z,y € W such that E(:ﬂ) +£y) = Lzy). Then Zyo Zy = Zy.
Moreover the intersection piy (Zy) Npgg (Zy) is transversal and the restriction

P13 : Pz (Ze) NP3 (Zy) — Zay

15 a birational isomorphism.

Proof. One has Pl_z( z) = {(¢9B,9zB,B’) | g € G,B' € B} and p3}(Z,) =
{(B”,g’B d'yB} | ¢ € G,B" € B}. Now (¢9B,gzB,B') = (B, ¢'B, g'yB) implies
that g='g’ = xb, for some b € B. Then this common element equals 9{B,zB, zbyB)
which has image g(B,zbyB) under pi3. Since {(z) + £(y) = £(zy) implies that
BzByB = BxyB we conclude that Z,0Z, = Z,,

Given w € W, set S(w) = {a € At | wa € A~}. Under the hypothesis that
lengths add, it follows that

S((zy)™1) = z5( —1)]_[5 (z71).

Thus Lie(zyN~(zy)~' N N) is the direct sum of Lie z(yN~y~! N N)z=! and
Lie(zN~z71 N N). On the other hand for any w € W the multiplication map
induces an isomorphism (wN~w™! N N) x wB/B onto BwB/B and the tan-
gent space at wB/B is just Lie(wN " w™! N N). It follows that the multiplica—
tion map mduces an isomorphism of (zN~z"1 N N) x z(yN~-y~' N N)z~! onto
zyN~ (zy)~1 NN and hence an isomorphism of BzB x ByB onto BzyB (as is well
known).

Now recall that the multiplication map induces an isomorphism of N~ x B onto
its image N~ B which is open dense in G. Then N~ (B, zB, Bz ByB) is open dense
in piy (Z2)Npas (Zy) and isomorphic to N~ x (B, BzB, Bz ByB) which maps under
3 to N~ x (B, BzByB). By the result of the paragraph above this restriction of
P13 is an isomorphism.

Flnally the tangent space to the point (B, zB, zbyB) in p1_2 (Z4) =2 Z; x B (resp.
in py3 (Zy) = B x Z,) is by the above isomorphic to n™ @ *n~ Nn @ “%¥n— (resp.
nTe%nT éme(yn Nn)). Its intersection is n= @ (* n Nn) ®=® (yn Mn) which has
dimension n+£(z) + £(y). Slnce this equals dim p73 (Z,) + dim pa3' (Z,) —dim B x
B x B, the intersection piy (Z;) Npag (Z,) is transversal. O

4.4. Recall that S; is just the conormal to Z; in T*(5 x B). Then by [CG, 2.7.26)
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applied to 4.3 or directly we obtain

Corollary. Tuke z,y € W such that £(z) + £(y) = £(xy). Then Sy o Sy = Sgy.
Moreover the intersection piy (Ss) N pas (Sy) is transversal and the restriction

P13 Pia (Su) Npgg (Sy) — Sy

s a birational isomorphism.

4.5. It is easy to see how the conclusion of 4.3 is modified if lengths do not
add. Define a new associative product on W through = * y = zy if lengths add
and sq * 8¢ = Sq, for all @ € w. (This is just the Hecke algebra multiplication
defined as in say [KL1] at ¢ = 0.) Then Z;0Z, = Z,.,, the corresponding
intersection is still proper and the restriction of p;3 has generic fibre of dimension
£(z) + £(y) — £(z * y). Moreover one may directly check that S; 0 Sy = Sguy-
However the corresponding intersection is not proper having a dimension which is
too great by £(x) + £(y) — £(x * y) which is also the dimension of the generic fibre.

4.6. By 4.2 the set Z, o Z, is closed and its precise form can be read from
2.5(%), 4.4 and 4.5. However the determination of S, o Sy is a much more subtle
question and indeed it takes a much more complex form. For our purposes it
is enough to compute this convolution product when = = s, for some o € .
The simplification that results is due to the fact that we can precisely determine
Ss.. Indeed Y;, = B(**nnn,s,B) = (Mg, BseB), since m, is B stable. Then
Ys, = ma x P,. Finally S;, = G xB ¥,_, since G/B is complete. It follows in
particular that S, is smooth.

4.7. Suppose A, A’ C S. The following consideration is convenient in computing
the intersection pyy (A) N pzz (A’). Since S identifies with T xx T C T x T, the
intersection p7; (S) N payy (S) identifies with T' x o T x v T which is the collection
of quadruples

{(z,B1,B32,B3) e N x Bx B x B |z € Lie(B,) N Lie(Bz) N Lie(B3)}.

Fix o € 7 and write s, simply as s.
Lemma. Suppose w € W satisfies sw < w. Then S50 5, = 5,,.

Proof. One has pi3(Ss) = G(my x {B} x Py x B) whilst
Py (8w) = G(B(n ™ n, B, {B}, {wB})).

In the second term B may be taken out of the closure operation. Then, as in 4.3,
matching the second and third entries we conclude that the resulting intersection
is the G saturation set of (my X {B} x Py x B) N Py(B(nN¥ 1, Py, {B}, {wB})).
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Under the hypothesis of the lemma nN¥ n C m,. Thus this intersection is just the
right hand factor in which the second entry is reduced to {B}. Its G saturation
set maps under pi3 to Sy, as required. O

4.8. Let A /A’ C S be closed subvarieties. We shall say that A o A’ is proper if
the intersection py; (4) ﬁp23 (A") is proper. If sw < w, then S, o Sy, is not proper.
Indeed the corresponding intersection has dimension Wthh exceeds the value to be
proper by 1.

Proposition. Suppose w € W satisfies sw > w. Then S;08,, is proper. Moreover
S, 0 8, is equidimensional of dimension 2n, up to components of codimension 1

in Sy,

Proof. As in 4.7 matching the second and third entries the corresponding intersec-
tion is just the G saturation set of (mex{B}XPexB)NFy(B(nN¥ n,Py,{B},{wB})).
In calculating this intersection we may ignore the second and third entries. Then
this intersection is just the P, saturation set of (mg X B)N B(nN® n, {wB}). Now
B(nn®n,{wB}) = Y, lies in n x B in which m, x B has codimension 1. Under
the hypothesis of the proposition n N* n ¢ m, and so ¥, ¢ m, x B. It follows by
Krull’s theorem (associated primes of a principal ideal have height at most one)
that this intersection is equidimensional of codimension one. Let Cy,Cs,...,C,
be its irreducible components. These are obviously B stable and have dimension
dm ¥, —-1=n-1

Suppose P,C; 2 C;. Then P,C; which is closed, irreducible, lies in ¥ and has
dimension n, must be some ¥ : z € W, by 2.8. Now consider the reinsertion of the
second and third ignored entries. The third ignored entry will be modified by the
action of P,; but this is of no consequence since it is eliminated on applying pis.
Reinsertion of the second ignored entry which is {B} and the G saturation of the
result give 5, again up to the irrelevant third entry. Thus this component, namely
C; gives a contribution 5, to 85 05,.

Finally suppose P,C; = C;. Then C; C ¥, and has codimension 1. Reinsertion
of the third ignored entry and applying P, will replace it by P,. This increases
the dimension to n. Finally reinserting the second ignored entry which is {B} and
acting by G will further increase the dimension to 2n. Applying p13 yields a closed
irreducible subvariety of S,,. Since py3 is G equivariant it follows as in 4.3 that py3
has generic fibre isomorphic to P, (coming from the third entry). Thus C; gives a
contribution to an irreducible subvariety of Sy, of codimension 1. O

4.9. We can make 4.8 more precise as follows.
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Lemma. Suppose w € W satisfies sw > w. There ezists a subset Fs,, C {z €
w [ z < w,sz < z} such that

5,08, =50 U § (+)

ZEFs w

up to components of codimension 1 in Sy,.

Proof. Already Ss 08, D 5; 0 S, = Squ, by 4.4. The remaining terms in () come
from Sy, \ S, which has codimension > 1 in §,,. Now 5, C '~ *(Z,) and so this
complement lies in U S, by 2.5, (*). Consider X := 5, N S, and suppose sz > =
zW
with z # w. Then 50X = S,0XUX and Sy0X C 5,08, = S, by 4.4. Already
dim X < 2n—1 and we claim that dim S;0X < 2n—1. Asin 4.7 we may match up
the second and third entries of piy (Ss) and pyy (X) to deduce that their intersection
is just the G saturation set of (my X {B} xPy x B)N Py (B(n N¥ n, Py, {B}, {wB})N
B(nn*n, Py, {B}, {zB})). As before we may ignore the second and third entries in
calculating this intersection which then becomes P, ((mq x B) N (¥, NY;)), which
is B stable. Since the action of G increases dimension by at most dim G/B =n
(actually exactly by n in view of the second ignored eutry) it is enough to show
that (mg x B) NY,, NY,, which is B stable, has dimension < n — 2. Yet sw > w
and sz > z, so both 1 "% n and nN? n contain Cz,. Consequently ¥, NY, which
has dimension < n—1 contains Cz,, and so intersection with m,, X B further drops
the dimension by 1, as required. It follows that such terms give no contribution to
the right-hand side of (*).
Finally suppose X is a closed irreducible component of S, NS, with sz < z

Then S;0X € 5,085, = 5,, by 4.8. Since z < w, the right-hand side of (%) may
obtain a term of the form S, : z € F y, as requlred. O

4.10. Now we can give the corresponding result for the ¥, : w € W.

Theorem. For allw € W,«a € 7 one has
(1) If wse < w, then Sy oY, =7,
(i) If wse > w, then Sy oY, is proper and

Ssa o l_fw = }_/ U U ?2—1

z€F,

sq,w—1

up to components of codimension 1 in Yy,,.

Proof. Applying Lemma 4.2(iii) to A = S, and C = ¥,, we immediately deduce the
result from 4.9. O
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4.11. The set Fy_ 4, is far from empty and in general difficult to determine. We
shall see that it is determined implicitly by singularity data — combine 5.3, 5.7
and 5.12.

5. Convolution in Borel-Moore homology

5.1. In what follows the coefficient ring is assumed to be Q and topological spaces
are assumed locally compact. For such a space let H(X) denote its i-th sin-
gular homology space and X = {X, 00} its one-point compactification. The i-th
Borel-Moore homology space H;(X) of X is defined to be the i-th relative singular
homology spaces, that is )

Hi(X) := HS (X, 0).

5.2. Let X be a complex algebraic variety of complex dimension m considered in
its complex topology. Let {X;}ses,, denote the set of irreducible components of
X having complex dimension m. Their fundamental classes [X,] : ¢ € Ty, form a
basis for Ham(X), that is

Hom(X) = €D QX].

TEXm

5.3. Recall that the Steinberg variety S has complex dimension 2n, where n =
|A*|. Moreover S is equidimensional and its irreducible components are the S,
w € W. Then by 5.2

Hun(S) = €D QIS
weW
According to Ginzburg [G, CG, 3.4] the algebra Hy,, (S) identifies with the group
algebra QW. For w € W we will denote by the same letter the correspondmg
element of Hy,(S). The unit of Hy,(S) is given by the class 1 = [5;].
Thus, the vector space Hyn(S) admits two bases, the one {w | w € W}, and
the other {[S,] | w € W}, and so one may look at the coefficients of the transition

matbrix _
[Sul = ) Alw,y)y.
yew

They satisfy A(w,w) = 1 and A(w,y) = 0 unless y < w. According to the last
paragraph in 3.4.13 of [CG], the coeficients of the inverse matrix are positive
integers.

Remark. Kazhdan and Lusztig [KL2] had previously given a topological con-
struction of a W x W action on Hy,(S), making it isomorphic to QW with S,
corresponding to e. To obtain Ginzburg’s result is enough to show that this left W
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action commutes with the right multiplication in Hy,(S). Rossmann [R], whose
work relates to both [G] and [KL2], clarified the geometric nature of the coefficients
A(w,y). He proved that for y <w

A(w,y) = (1)1~ Eu, (Sy)

where BEu,(S,) is the Euler number of the point (y,0) € S, (see also [Dub,
Mac, K]). It is a strictly positive integer if y < w, and equal to 1 if (y,0) is a
smooth point.

Note the following.
Lemma. One has [S5] = s — 1, for any simple reflection s.

Proof. Since S; 08, = 5, the class [5,] should be idempotent up to a constant.

The properties of A(w, ) imply that [S;] = s + ¢ where c is a negative integer and

only ¢ = —1 gives (s + ¢)? proportional to s +c. 0O
The lemma also follows from Rossmann’s formula since S, is smooth.

Through the involution (z,y) — (y,z) on B x B one obtains
Aw,y) = Ay w™). (%)

5.4. As noted in the introduction, following our theory of Prim U(g) concerning
in particular order relations and Goldie rank polynomials, it was rather natural to
conjecture that the presence of two such bases for QW should lead to similar results
for orbital varieties. Thus in [J2, Sect. 2] we described “characteristic polynomials”
for orbital varieties and conjectured [J2, 9.8] that their precise form should be
given in terms of the basis A(w) := Z A(w, y)y of QW. This conjecture was first
yeW

established by Rossmann [R, Sect. 11]. Different proofs were given in [J5] and in
V]

5.5. The conjecture [J2, 9.8] (which is now the theorem below) for the ordering
(by inclusion) of orbital variety closures can be expressed as a description of the
right geometric cones. This goes as follows. Given any subset C' C Hy,(S), let [C]
denote the smallest subset of W such that

cc > QS
we[C]

It is sometimes convenient to view [C] as the right-hand side above. Our main
result is the following.

Theorem. Forallw e W
Yy € [[Sw|]W] <>y € C(w).
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5.6. As in the case of the ordering of primitive ideals, the implication == is
much easier, though we did not realize this at the time. Indeed an intelligent
reading of [KL2, Sect. 6] using in particular the short exact sequence of [KL2, (2.2)]
gives the implication y € [W[S,|W]| => y € DC(w). Replacing the Steinberg
variety S by the conormal variety ¥ gives, by a similar analysis using the rather
messy deformation retraction arguments of Kazhdan and Lusztig, the implication
y € [[Sw]W] = y € C(w). We shall not give this in detail as we obtain a second
proof below.

The opposite implication in the primitive ideal set-up was obtained by Vogan
[Vo] in his immediate response to our conjecture. He first noted that if I C Jis an
inclusion of primitive ideals of U(g), then one has a surjection of U(g)/I—U(g)/J
of quotient algebras. Of course there is a corresponding surjection of the algebras
of regular functions on the orbital variety closures. At first this approach appears
fruitless in the geometric context. Indeed unlike the primitive ideal case these
algebras are not Artinian. Moreover one can interpret Vogan’s second step as the
rebuilding of U(g)/I from its socle using the Enright functor [J2, 5.7]. This itself
has no obvious analogue in the geometric context. However the functorial process
itself can be interpreted as convolution in Borel-Moore homology. Then the key
observation was that the analogue of building up from the socle is just 3.7 combined
with 4.2. We shall see how this works out below.

5.7. Let AC S, C CY be closed subvarieties of top dimension. Then as in [CG,
(2.7.9)] there is a bilinear map

H4n(A) X HQH(C) e Hgn(A o] C)

This makes Ha,(Y) a left convolution module for the convolution algebra Hyn(S).

5.8. Following 3.7 and 4.2 we know that the components of ¥ are relevant to the
description of inclusion relation of orbit variety closures.

The following observation allows one to avoid the appearance of H(Y') in the
formulation of the main result 5.5.

Lemma. The map [Sy] — [Yy-1] extends linearly to an isomorphism Hyn(S) —
Hy, (V) of left W modules.

Proof. This is a formal consequence of the base change for convolution product, see
Appendix, A2. In fact, the embedding n = n x {B} — T induces a map

TxTxn—TxTxT

satisfying the conditions of Proposition A2.3. Therefore, a homomorphism Hyy, (S)
— Hy,(Y) of Hypn(S) modules is induced. It remains to check that it carries the

class [Sy] to the class [¥,,-1]. Lemma A2.2 (the base change for BM homology)
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applied to the cartesian square

Y1 —— Y

| !

Sy —— 8

implies that the image of [S,,] is a multiple of [¥,,—1]. The coefficient is one since
the map Y,,—1 — S, looks locally as the zero section of a complex vector bundle.
O

5.9. We may now give a second proof of the implication == of Theorem 5.5.
Indeed B B
@W[Yw] = H4n(5)[Yw]; by 5.3
C Hyn(SoV,), by5.7

= Hon(r™'n(Ye)), by 4.2(i1)

= P [¥,), by36(i) and 3.7.
yeClw)

Since QW[¥y,] C [W[¥w]], the required assertion follows from 5.8 and 5.3(%).

5.10. To obtain the implication <= of our theorem it would be enough to show
that Hyn(S)[¥w] = Han(S o ¥,,). Of course this is too much to expect and indeed
even in the better understood primitive ideal set-up the existence of enough cyclic
elements of W (namely those satisfying QW[Y,] = [WYy)) is unproven. (The
longest element in each Weyl subgroup is cyclic; but these fail to exhaust all the
cones.) It is a deep fact [J4] that the Duflo involutions provide cyclic elements in
the left cells (that is to say after one has factored out the cones corresponding to
lower dimension).

On the other hand it is natural to ask if the inclusion [Hun (S) (Y]] C Han[So Y]
is an equality. This would follow if we could show that [[Sy][Y.]] = Hn(8y 0
Y,),V y € W. This amounts to showing that the fundamental class of every
irreducible component of S'y o Y, of complex dimension n occurs with non-zero
coefficient in the convolution product [Sy)[Yw]. By a theorem of Serre it would be
enough to show that Sy 0¥,, is proper in the sense of 4.8, see Appendix Al. Of course
we have already seen that properness fails and so may its anticipated conclusion,
but we show that the required conclusion is sufficiently close to being true (see
Proposition 5.14) by analyzing the products when y is a generating reflection.
This will prove the theorem.

5.11. _Let us ﬁrst_ consider the “bad” case when y =S 0 ET and ws, < w.
Here S, oY,y = Y,,. Properness would imply that [Ss.)[Ya] is a strictly positive
multiple of [¥,,]. Rather we have the
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Lemina. Suppose o € w1, w € W, satisfy wsq < w. Then
{S’sa][?w] = “Z[Yw]~

Proof. By 4.7 we must have
[Ss.][Sw-1] = ¢[Sy-1]

for some ¢ € Q. Yet [Ss,]? = (5o — 1) = —2(sq — 1) = —2[Ss,], by 5.3. This forces
¢ = —2. Then 5.8 gives the required assertion. O

5.12. Recall the notation of 4.10.

Proposition. Suppose o € m and w € W satisfy wse > w. Then

[Ssa][?W] = [szm] + Z Cz[le]y
2€F,

Sex ,w_‘1

where the ¢, are strictly positive integers.

Proof. The formula follows from properness in 4.10(ii) and Lemma A1.2 from the

appendix. The coefficient of [Yys,] is one by virtue of 4.4 and A1.1(5). O

Remark. One may define a second action of Hy,,(S) on Han(Y) so that s, comes
out on the left in the formula describing the action of [S,,] on [Y,]. This ac-
tion changes the resulting orbital varieties and is essentially what occurs in [KL2,
Sect. 7], [J3, Sect. 4], [H, Thm. 1], [BBM, 4.14].

The above situation is the precise analogue of the enveloping algebra one. Here
the coherent continuation functors give a right action of W on the O category, but
one which changes annihilators. Via the equivalence of categories in [BG] they are
transformed to the Enright functors which do not alter annihilators and implement
a left action of the Weyl group [J3]. That the roles of left and right are interchanged
on passing from representation theory to geometry is natural from [J2, Sect. 5] and
from 6.2(x%). '

5.13. We see from 5.11, 5.12 that the convolution product by [S;, ] recovers all
the components of the set theoretic convolution except those of codimension 1.

However by 4.10(iii) in a sense these are eliminated when we replace [S;_ ] by
[Ss.] + [S1], which by 5.8 represents so. This will be made precise below.

‘We remark that whereas the behaviour of the lower dimensional components
in 4.10 is crucial to our work, it was of no concern to the authors referred to in
Remark 5.12.

Proof of 5.5. The implication = in 5.5 was already proved in 5.9. The proof of
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the other implication is given in 5.13-5.14.
Recall some notions from [J1]. Let V be a finite-dimensional vector space over
R or Q having a fixed basis {v1,...,vn}.

Definition. (a) An element v € V is called positive (convex in [J1]) if v = 3" a;v;
with a; > 0.

(b) A vector subspace U C V is called positive if it is generated by the set Upos
of its positive elements.

For a positive vector v € V, v =) a;u;, one defines it support as
Supp(v) = {¢ | a; > 0}.
One has clearly Supp(v; + v2) = Supp(v1) U Supp(ve). Furthermore, one defines
SuppU = U Supp(v).
VEUpos

It is clear for any positive U there exists z € Upqs such that Supp U = Supp(z).
We are interested in the vector space Hon(Y) = @uewQ[Y,] with the basis
{[¥w]} Recall that H,(Y) is a Hyp(S) module. We fix w € W.
For each y € W define

V(y) = ) QlS:][Y.)]

=<y
Lemma. V(y) is a positive subspace of Hy,(Y) for ally € W.

Proof. Induction on £(y). The case y = 1 is obvious. Suppose V(y) is positive and
let ¢ = sy > y for a simple reflection s. Then

z<sy z<y =<y
w<sz
But Q[Ssz] = Q[S][S:] modulo 3, . Q[S;] for z satisfying sz > z. On the other
hand, if sz < z, Q[S;][Yw] C V(y). Thus,

V{y) C V() C V() +[S]V(y).
Since on the other hand V(y') is [S;] invariant, we have
V) =Vy) + SV ().
This latter is positive since [S;] can be equally substituted by [S,] + 2 which pre-

serves positivity. O

5.14. For any closed subvariety Y’ of ¥ let Comp (Y”) denote its set of components
of dimension n = dim Y.
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Proposition. Suppose Y, € Comp (S, 0 ¥,,). Then [¥;] € Supp V(y).

Proof. Induction on £(y). The case y = 1 is clear. Now replace y by ¢’ = sy > y
where s is a simple reflection. Then

¥, € Comp (S, 0 ¥,,) C Comp (Ss 0 5y 0 ¥y,).

Three cases can occur.

(1) ¥, € Comp (5, o Y,,) with sz < z. In this case the result follows from 5.11
and the induction hypothesis.

(2) ¥; € Comp (Sy 0 ¥y), Ss 0 Y; is proper, and 271 € {st71} U F ;1.

(3) C is a component of a smaller dimension in 5, o ¥,, and ¥, is a component
of 5,00C.

In the second case choose v € V(y)pos such that Supp V(y) = Supp(v). Let
v =73 ¢[V;,] with ¢; >0, t; =¢. Then

([5s)+ 3y = Y cil[Ss] + 3)[¥a)-

The right hand side of the equality contains [¥;] with a strictly positive coefficient
since [Ss][Y;] contains it and no cancellations are possible. This implies that

[¥,] € Supp(v) U Supp([SsJv) C Supp V(y) U Supp [S]V (y) = Supp V(1/).

In the thh;d case C is a component of S’y oY, of a complex dimension smaller
than n, and Y, is a component of 5; o C. In this case C is a component of

Sslo"'gsnoyw

where y = 51 « - - 8, is & reduced decomposition. By 4.10(iii) this implies that C lies

in an n-dimensional component ¥; of S, o ¥,, for some x < y. Then ¥, has to be a

component of S, o ¥; as well and the induction hypothesis implies the result.
Theorem 5.5 is proved. O

Remark 1. As a consequence Y. QI[S,] is a right ideal of QW. This can be
yeC(w)

shown directly using the positivity in 5.12 and 5.11 by an argument similar to that

in [J1, 4.5]. Yet the essence of the latter has already been incorporated in the above

proof.

Remark 2. Combining the last paragraph of 3.7, 4.2 and 4.10 gives a second proof
of equidimensionality in 3.6(1). Yet in essence both turn on equidimensionality of
hypersurface intersection.

5.15. A similar argument based on 4.2(i) gives the

Theorem. For allw e W ~ -
y € [W{[Syu]W] <=y € DC(w).
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6. The work of A. Melnikov

6.1. A. Melnikov [M1-M3| has made a detailed study of the inclusion of orbital
variety closures in type A. We examine some features of this below in the light of
Theorem 5.5.

6.2. Take A € b* and let M()) (resp. L()\)) denote the Verma (resp. simple
highest weight) module with highest weight A € h*. Let p be the half sum of
the positive roots and set w.A = w(A + p) — p, V w € W. Let Oy denote the full
subcategory of modules in O annihilated by a power of the augmentation ideal Z of
the centre Z(g) of U(g). Set M, = M (w.(—2p)), Ly = L{w.(—2p)) : w € W. The
corresponding classes [My), [Lw] : w € W both form Z bases of the Grothendieck
group of Op. Identify [M,] with w € W C ZW. Then [L,] identifies with an
element a(w) € ZW. The resulting basis {a(w) : w € W} of QW is the one
mentioned in 1.2 and described in [J1]. It has now been determined by the truth
[BB, BK] of the Kazhdan-Lusztig conjectures [KL1].

Given any finitely generated U(g) module L one may define its associated variety
V(L) C g*. Asis well known V(E ® L) C V(L) for any finite-dimensional U(g)
module E. Recall that Jantzen translation (or coherent continuation) on Oy is just
tensoring by some finite-dimensional U(g) module E followed by projection onto
Oy defined by primary decomposition with respect to Z(g). Through the above
identifications it implements a right action of W on QW.

Set Vo(w) = V(L.,). It is a union of orbital varieties closures (see [J3, 4.4] for
example) but is not necessarily irreducible. Through the remark above it follows
exactly as in [J1] that

y € [a(w)W] = Vo(y) C Vo(w). (*)
‘We are unable to show that < holds.

6.3. Now assume g simple of type A. Then Melnikov has shown [M2] that Vo(w) :
w € W is irreducible. (Incidentally V(L(A)) may fail to be irreducible even in type
A if A is not integral. Examples may be read off from [JM, 4.7].) Consequently
by [J3, 8.15] one has Vo(w) = V(w). Thus Melnikov obtains the

Proposition. Assume g simple of type A. Then

y € [a{w)W] = V(y) C V(w).

6.4. It is already clear from say [J5, 4.9] that a(w) # A(w) in general. However in
type A, Kazhdan and Lusztig conjectured [KL2, Sect. 7} that equality holds. This
early optimism was crushed by Kashiwara and Saito [KS]. So we still do not know
if <= holds in 6.3.
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6.5. Assume g simple of type A. Although it is not yet known if the right
cones defined by the a(w) : w € W coincide with those defined by the A(w),
the corresponding cells do coincide and indeed are given explicitly through the
Robinson-Schensted correspondence. Melnikov [M1, M3] has attempted to describe
right cones in terms of this correspondernce, more specifically in terms of moving
numbered boxes in standard tableaux of size n (which naturally enumerate the
V(w) : w € W) according to a Robinson-Schensted type algorithm.

6.6. Suppose a € m,w € W satisfy ws, > w. Then from 5.5 and 5.12 it fol-
lows that V(wse) C V(w). (Actually this has an elementary proof noted by N.
Spaltenstein about 25 years ago.) This fact combined with the description of the
right cells implements an order relation on standard tableaux called the induced
Duflo order (in view of an analogous order relation on primitive ideals pointed out
by Duflo [D]). Despite earlier optimism, Melnikov [M1, M3] showed that this or-
der relation is strictly weaker than that implied by the inclusion of orbital variety

closures.

6.7. After Spaltenstein, orbital varieties (in type A) may be viewed as chains of
nilpotent orbits. Then the known order relations on nilpotent orbit closures imply
an order relation on orbital varieties. This is described purely combinatorially as a
“chain order” on standard tableaux. Melnikov [M1, M3] has shown it to be strictly
stronger than that implied by orbital variety closures.

There is a way to refine by the induced Duflo order and the chain order through
the Vogan calculus (cf. [J3, 9.10]). Melnikov has shown that these refined orders
sandwich the order defined by orbital variety closures. Hopefully these combinato-
rially defined orders can be shown to coincide!

6.8. Finally let wg be the unique longest element of W. After Vogan [V] one
has y € [Wa(w)] <= Ann L, D Ann L,. From this a symmetry property of
{a{w) : w € W} implies that the map Ann Ly, ~+ Ann Ly, is an order-reversing
inclusion on the set {P € Prim U(g) | P D Z;}. In general this map fails to be an
order-reversing involution even for nilpotent orbit closures, though this does hold in
type A. Again (in type A) it is not known if V(w) — V(wuwyg) is an order-reversing
involution on the set of orbital variety closures.

Obviously all these considerations together with our main theorem strongly
motivates the computation of the A{w) : w e W.

Appendix Al: Convolution product for proper intersection

Al1.1. The notation here follows [CG], 2.7. Let M;, i = 1,2,3, be smooth
complex algebraic varieties, Z;; C M; x M;, (4,7) = (1,2),(2,3), be Zariski
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closed irreducible subsets and let p;; : My x Ma x Mz — M; x M; be the standard
projections.
Denote

Z1 0 Z3 = p13(piz (Z12) N P33 (Z23))-
‘We assume that the restriction of p;3 to the intersection
P12 (Z12) N pag (Zos) = Z1o X psy Za3

is proper so that in particular Zis o Zyg is closed in M7 x Mj.
Let d; = dim M;, d;; = dim Z;;. We are interested in the convolution map

Hygy, (Z12) ® Hogyy (Za3) — Hadyy (Z12 0 Za3) (1)

where
diz = dig + daz — da. (2)

Since Zy5 and Zaz are irreducible,

Hod,,(Z12) = Q[Z13],  Hadyy(Z23) = Q[ Zas).

Thus, the convolution product (1) is defined by the coefficients ¢; in the formula

k
[Z12] - [Zas] = ) _ ci[Ci] (3)
i=1
where C1,...,C} are the irreducible components of Z13 o Za3 of dimension di3.

Al.2.

Lemma. Assume the intersection of piy (Z1a) with py; (Zos) is proper, that is that
all components of the intersection

piz (Z12) N pas (Z23)
have dimension diz as in (2). Then all the coefficients c; in (3) are positive integers.
Proof. According [F], Cor. 19.2(a), the product of [py3 (Z12)] with [p33 (Z23)] can be

calculated in the Chow group defined in [F], 8.1. Since the intersection is proper,
the result is a linear combination

Z ai[ D) (4)
=1

where D; are the components of pl_gl(Zlg) N p;31(223) of dimension di3 and a; are
positive integers (Serre’s intersection numbers), see [F], 8.2. In particular, a; =1
if piy (Z12) and pay (Zo3) intersect transversally at D;.
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Now the convolution product in (1) is the composition of the cup product with
(p13)+. Since

O, dim plg(Di) < d13
* Di = . 5
(pra)+(1i]) {degwi/pw(Di»ma(Dm, dim pro(Ds) = dyg, )
the assertion of the lemma follows. O

Appendix A2: Base change for convolution product

A2.1. Sheaf-theoretic formulation of BM homology. In the study of base
change for Borel-Moore homology one has to use its bivariant and sheaf-theoretic
nature.

In what follows we denote by DT (X) the derived category of bounded below
complexes of sheaves of Q vector spaces on a locally compact space X. Recall that
for a continuous map f: X — Y of locally compact spaces the (derived) functor
fi : D¥(X) — D*(Y) of direct image with proper support is defined. Moreover,
if fy has a finite cohomological dimension, a right adjoint functor

i DHY) — DT(X)

is defined. The bivariant homology theory for locally compact spaces assigns to a
map f: X — Y of a complex (or the collection of its homology groups)

H(f) = RHom(Ry, f'(Ry)),

where Ry denotes the constant sheaf on X corresponding to R, see [FM], 1.7.3.
Borel-Moore homology H(X) is a fragment of this bivariant theory, namely, it
is described as H(f) where f : X — # is the map from X to a point. The
functoriality of Borel-Moore homology is deduced from this interpretation:

o Push-forward: any proper map f: X — Y gives rise to a degree zero map
fo t HX) — H(Y).

o Pull-back: any map f : X — Y together with a degree d class o € H{f)
defines a degree d map f : H(Y) — H(X).

Classically considered pullbacks for Borel-Moore homology are special cases
of the one described above, with the element o being defined by a “canonical
orientation” of f. For example, any morphism f : X — Y of smooth complex
varieties admits a canonical orientation o € H(f) of degree dim ¥ — dim X.

Another important ingredient of bivariant theory is the following. Let

T % .z
l gl (6)

y £, x
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be a cartesian diagram. Then a map f*: H(g) — H(v) is defined.

A2.2. The following result is a direct consequence of the base change theorem for
locally compact topological spaces, see [KSch], Prop. 2.5.11.

Lemma. (Base change for BM homology). Suppose that in the cartesian dia-
gram (6) the map f is proper. Let o € H(g) and denote 8 = f*(a). Then

Gfe = wvh  HY) — H(Z). (7)

A2.3. Application to convolution product. Lemma A2.2 is a purely formal
claim. It becomes meaningful in the case where both « and 8 correspond to
“canonical orientations” of g and of v, respectively.
Let M;, Z;; beasin Al.l. Let f; : M/ — M; be morphisms with M, smooth
complex algebraic varieties. Define
Zi; = (fi x f3) " (Zs5).

‘We wish to compare two convolution products,

H(Z12) ® H(Z23) — H(Z12 0 Za3) (8)
and

H(Z15) ® H(Z35) — H(Z15 0 Zyy). )

The maps f; x f;, (4,3) = (1,2) or (2,3), admit a canonical orientation since
these are map of smooth oriented manifolds. Thus, the induced maps

fij 2 Zij — Zy
admit an induced orientation. Thus, one has the maps
f:; : H(Z'L'j) — H(Zz{j)1 (ZaJ) = (172) or (2) 3)' (10)

The inverse image maps (10) can be descibed also using the inverse image maps
in cohomology if one identifies H.(Z;;) with the cohomology H™*(M; x M;, M; X
M;\ Zy;) and similarly for H(Z};).

Similarly, the map f1 X fs: M{ x M} — M; x M3 induces the map

fis : H(Z12 0 Za3) — H(Z15 0 Z13),

where fi3 is the restriction of f; x fs.

We will say that base change holds for the convolution product if the diagram

H(Zy5) @ H(Zp3) —— H(Z1g 0 Za3)
8t | i (11)
H(Z1) ® H(Zb3) —— H(Zjy0 Z)

comimutes.
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Proposition. Suppose fo : My — My is an isomorphism. Then base change
holds for the convolution product.

Proof. The convolution product is defined as a composition of the inverse image
Pis ® p5s and the direct image pis.. The inverse image obviously commutes with
the base change. Thus it remains to check that the left square of the commutative
diagram

Z1a Xy Zog —TB s Ziyo Zhy ——— MY x Mj
flzszal flal f1><f3J( (12)

Zlg XM, Z23 -———E—l—s———) Z12 OZ23 ———— ]\{[1 X ]\/_[3

induces the commutativity relation

(ha)s(F12 X f33) = Fa(pra)s-

Since f» is an isomorphism, the left commutative square in the diagram (12) is
cartesian. Therefore, by Lemma A2.2, we have just to check that the canonical
orientations used for construction of the inverse images f{y x fiz and fi3, are
compatible.

This amounts to checking that in the cartesian diagram

M s My x My —22 M] x M)}
flezxfal fleal
My x My x Mz —22 My x M;

the canonical orientations of fi x fa x f3 and of f; X f3 are compatible. This is
obvious since fs is an isomorphism. [
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