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0. Introduction

Suppose G(C) denotes the complex points of a connected semisimple linear
algebraic group defined over Q. Let o be the action on G(C) of the nontrivial
element of the Galois group Gal(C/R) = {1,0}. Let G(R), or, for short, G, denote
the o4-fixed points of G(C). In [3], Arthur considered the problem of formulating
some of the principles of functoriality with respect to L-groups in such a way as
to be valid for non-tempered representations, making a number of conjectures.
This paper proves a special case of these principles (although base change was not
mentioned in [3]).

In [7], Clozel investigated stable base change C/R for tempered representations
of G. The irreducible tempered representations of G are partitioned into L-packets
(see (3.3)), also called tempered. These tempered L-packets are classified by
Langlands parameters, which are (equivalence classes of) admissible homo-
morphisms ¢:W,—LG, where W, denotes the Weil group of R and G is a
(non-connected) complex group. The L-packet parametrized by ¢ will be denoted
I,, in spite of the confusion that arises. Every IT, gives rise to an irreducible
tempered representation of G(C) by means of an operation called base change
lifting. (The L-packets of a complex group are sets with a single element.) Call this
representation IT. The operation can be characterized in two independent ways,
which are proven to be equivalent. The first is the base change lift of parameters:
given ¢, one may regard W, =C™ (the Weil group of C) as a subgroup of Wy;
the L-groups of G(C) is the connected component of the identity of LG, denoted
LG° Hence ¢| w, is a Langlands parameter for G(C), and parametrizes the (L-packet
of the) representation IT.

On the other hand, suppose given IT a representation of G(C). We say ITis o
stable if, defining I7° to be the representation of G(C) on the same space as IT but
given by IT°(g) = I1(o4(g)) for geG(C), we have that IT is equivalent to IT°. Let
A, denote an intertwining operator yielding this equivalence. If IT is ¢-stable and
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irreducible (or at least if Schur’s lemma holds) then we can require that (4,)? = 1.
Then we can define the twisted character of IT as follows. One can extend I7 to a
representation IT* of G(C) xGal(C/R) by letting o act by A,. Clozel (see also
Bouaziz [5]) has shown that the character of IT* is a locally L' function. When
restricted to G(C) x {o} this character can be regarded as a function on G(C), is
denoted ¥ 7, and is called the twisted character of 71. (Note that there is an ambiguity
of sign in this definition.)

If ITis the base change lift of JT, then IT is o-stable. But it is not the case that
every o-stable irreducible tempered representation has a parameter coming from
G(R) as described above. Those that do are called stably o-stable. In this paper,
as in [7], we treat all parameters coming from G(R). When the parameter IT does
come from the parameter ¢ for G(R), the twisted character of IT is related to the
usual character yx, of the representation of G(R),

Yon
nelly
as follows. Assume for simplicity that G(C) is simply connected. The intersection
of a regular conjugacy class of G(C) with G(R) is called a stable conjugacy class.
There is a norm “map” N from suitably nice elements of G(C) to stable conjugacy
classes of G(R) — N(g) can be taken to be any element in the stable conjugacy class
which is the intersection of the conjugacy class of gos(g) in G(C) with G(R). Then
under the foregoing hypotheses, Clozel has established the (stable) base change
character identity,

©.1) T n(g)= x x4(N(g)).

This is an example of L-functoriality, which (for local fields) asserts the existence
of (specific) character identities between representations whose Langlands
parameters are connected by suitable homomorphisms between L-groups (the
homomorphism is described in Sect. 3).

For non-tempered representations this precise formulation cannot be correct,
for reasons discussed by Arthur in [3]. For example, the ambiguity in the definition
of N(g) requires that y, take the same value on the different elements in the stable
conjugacy class of N(g). If ¢ (i.e. IT,) is non-tempered, this may fail. Thus the
formulation of the stable base change character identity should use Arthur’s
(conjectured) enlarged packets, see [3]. These are packets fIw, parametrized by
Arthurian parameters, no longer disjoint. Arthur’s conjectures, in the case of a
local field, include the following (let’s assume the field is archimedean). Under a
simple condition on ¥, ﬁ, contains only unitary representations. There exist
integers c;, specified in a simple way by ¢, such that

Z CiXm
mell,
(here x, denotes the usual character of a representation =) is a stable distribution,
ie. is well-defined on stable conjugacy classes. Analogous results should hold for
the enlarged packets to the results which Shelstad [14-16] has established for
tempered L-packets, i.e. the cases of L-functoriality applied to endoscopic groups.
In [2], Adams and this author defined enlarged packets for a certain class of
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derived functor modules, and verified some of the above conjectures (unitarity is
due to Vogan [14] and, independently, Wallach [26]). This is the same class that
is studied in this paper, so let us review here the definition of this class. In [22],
Kumaresan and [25], Vogan—Zuckerman classified all irreducible unitary modules
affording non-zero (g,, K)-cohomology (here K is a maximal compact subgroup
of G, g, is the Lie algebra of G, and g is the Lie algebra of G(C)). These modules
are called A,(4)’s, for various parabolic subalgebras q = g and unitary characters
A of q, and are constructed by a derived functor construction. This is the class for
which [2] verifies Arthur’s conjectures.

The aim of the present paper is to formulate and prove an analogue to (0.1)
for these enlarged packets (when the infinitesimal character of such a representation
AQ(I) of G(C) is the same as that of FQF, F an irreducible finite-dimensional
representation of g,, it will be shown that A4,(4) is stably o-stable). The method
has some similarities to the method of [2]. The enlarged packets have character
formulas expressing the stable character associated to the packet in terms of
pseudo-L-packets. Then there are two questions.

The first one is similar to that of [2]: (note that Clozel has shown that an
analogue of (0.1) holds for pseudo-L-packets). It is, do these character formulas
behave well under base change? The answer is as follows. On identifying a
representation with its character, we have from [9] that

02) A=Y (-n™x,

weW()
where T is the Levi factor of §, W(i) is the Weyl group of T,#(w) is the length of w,
and X, is a pseudo-L-packet (again, a singleton) associated to w of representations
of G(C). Then there is g, a parabolic subalgebra of Lie(G(R))®,C, and A such
that, putting ﬁw as the enlarged packet defined by (note, not “containing” since
this wouldn’t be unique) (4,(4), g, 1), we have, firstly,

03) Y (= 1"= T (- 1)X,
neﬁ* neT

where T is a certain set of parameters of pseudo-L-packets (analogous to w(D)),

£(n) means the length of n, and X, is the (character of the) pseudo-L-packet

associated to 5, and secondly, the base change lifting of parameters matches

bijectively the set T with {we W(l):X,, is o-stable}.

The second one is not similar. It is, is there an analogue to (0.2) for twisted
characters? Of course all the preceding is useless without this. In particular, Schur’s
lemma does not hold for the right hand side of (0.2), so the ambiguity in the
definition of twisted character is much worse than that of a single sign. In this
paper it is shown, firstly, that the intertwining operators can be chosen such that
the twisted character of the left hand side of (0.2) is equal to the twisted character
of the right hand side of (0.2). Secondly, it is shown that with this choice, one has
also, for each we W(i) such that X, is g-stable, for nice geG(C),

(0.4) Tx.(9) = £ 24(N(g))-(— 1)+
for a unique neT, with the sign independent of w and #. It is then clear that
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combining (0.4, 0.3), and the typographically horrible twisted analogue of (0.2), we
have the appropriate analogue of (0.1).

The outline of the body of the paper is as follows. In Sect. 1 we introduce some
of the notation in use throughout. In Sect. 2 we recall the definitions and results
of Clozel needed to formulate the (stable) base change character identity. In Sect. 3
we recall the definitions of the pseudo-L-packets that play a role, the so-called
standard modules (which occur in the Langlands classification), and reformulate
the Langlands parameter formulation of base change in terms of Vogan’s Z/2Z
character data.

In Sect. 4 we show that the intertwining operators can be chosen consistently
for our purposes. We are forced to make a different choice of signs than Clozel’s,
in order to obtain a twisted character formula. To do this, we need to treat of the
trivial representation in great detail. We rely heavily on an analogue for
Harish-Chandra modules of the BGG resolution of a finite dimensional module,
established in [10], and the related character formulas for 4 (4)’s.

In Sect. 5 we recall the stable base change character identity proved by Clozel
for tempered L-packets, and in fact, for pseudo-L-packets, including the ones
intervening in Sect. 4 and the rest of the paper. We reformulate all this in terms
of Z/2Z character data, which is more convenient for the proofs of this paper. We
show that the base change lift of a Z/2Z character data parameter depends only
on a positive root system together with an involution, in the sense of (10.9) of [21].
Finally, in Sect. 6 we simply combine all these results and deal with the question
which was similar to that of [2].

1. Some notation

Let G be a connected reductive linear algebraic group defined over R. Then G(C)
will denote its complex points, and a4, the action of o, the nontrivial element of
the Galois group of C over R, on G(C). Let G(R) be the o4-fixed points of G(C).
We will sometimes denote G(R) by G. Every such group has a quasisplit inner
form, and it will be obvious that the results of this paper behave well under inner
twistings. For simplicity, then, we will assume G is quasisplit. Let G= R¢ /RG
(notation of [19 p. 12]; cf[18 p. 399]) be the algebraic group obtained by considering
G as defined over C and then restricting scalars to R. We may take G concretely
as follows: G(C) = G(C) x G(C). Now G is defined over R, and the action of ¢ on
G(C) is denoted oz and is given by g5(x, y) = (04y, 06X), x, yeG(C). Then G(R) =
{(x,04%):xeG(C)} and G(C)> G(R):x+—(x, 56x).

Let g, be the (real) Lie algebra of G. Let g = g, ®,C, and similarly for other
groups, including G(R). Then the isomorphism of G(C) with G(R) yields an
isomorphism (of real Lie algebras) of the Lie algebra of G(C), identified with g,
with the Lie algebra of G(R), which is §,. Then §= g x g by the usual map which
satisfies two properties: firstly, giving § the complex structure from § = g, ®,C,
and giving g x g the product of the complex structures of g and g (from g, ® zC and
8o ®gC, respectively), this map is an isomorphism of complex Lie algebras.
Secondly, identifying g with §, — § via the preceding, the map sends xeg to (x, ogx):
note this is fixed under oz. Here g acts on g in the way induced by its action on
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G(C), and similarly 6;. Now the map o transferred to G(R) via this isomorphism
is in agreement with an algebraic automorphism o of G(C) restricted to G(R),
al(x, y) = (y, x)-

We will always let H denote a fixed maximally split Cartan subgroup of G.
For any reductive group, similar notation to the above holds, thus oy = 65y,
oy acts on b, etc. Then h = b x b by the above isomorphism.

Given two choices A/, i=1,2, of positive systems for the roots of b in g,
denoted A(g,b), we let (Al ,43) be the positive system for A(g, b) defined by
{(2,0): €A} U{(0,a): x€A; } where (¢, 0)eh* x h* b* has the obvious meaning.
Similarly for other Cartan subgroups H' of G, i =l x Iy, etc. If u is any subspace
of g normalized by by, let A(u,})’) denote the set of roots of §y in u, and p(u) or
p(A(u, b)) denote

12) Y o

acd(u,by)

similarly, p(A;"). Let

i= @ ¢

—acA(u)

if u as above is a subalgebra of g. Then
A() = — A(u).

Let W, be the Weil group of R. That is, let Wy =C*utC* where 12 = —1
and tzt~! = Z, the complex conjugate of z. Let W, = C* < W, in the obvious way.
Let I'={1,6} = Gal(C/R). Then W, is equipped with a projection homomor-
phism Wy — I sending 7 to ¢ and making

1-C*>Wy—-T-1

an exact sequence. We write t=1 x a.

For unexplained notation, see [4, especially p. 29f]: LG° is the connected
complex group defined there; the inner equivalence class of G defines an action of
I' and hence of W, on LG° by what is notated ug, we denote the action of ¢ on
LG® by Lo; or simply kg, this is algebraic, and G =LG® x W, via this action.
(If G is split, this action is trivial.) If G is considered as a group over C, then we
denote its L-group by “G. to avoid confusion, by definition “G, =2G°® x W=
LG® x C*. If necessary to av01d confusion, we will notate LG as “G,. We have
LGe LGy

We let K be a maximal compact subgroup of G such that if @ is the corresponding
Cartan involution of G and g, then H (and b) is #-stable. Similarly for K, 6, and .

2. Base change character identity

We also denote by o the dual automorphism of “G = (*G° x “G°) x Wy, which sends
(x,y) x w to (y,x) x w, x, ye-G°, weW,,. Here 1, or o, acts on “G°® x LG° via Lo;
(or L&) (x, y)— (*o(y), La(x)). Recall that a Langlands parameter for G(R) is the
equivalence class under conjugation by elements of “G° of an admissible homo-
morphism ¢: W, — LG, denoted {¢}. (Later in the paper we ignore the brackets.)
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That is, p(w) =g x w if weWy, for some ge*G°. Similarly, taking G for G. A
Langlands parameter for G(C) as a group over C is an (equivalence class of an)
admissible homomorphism from W into “G.. These parametrize the L-packets
of irreducible admissible Harish—Chandra modules of their respective groups. (For
G(C) and G(R) these packets are singletons. Since G(C) = G(R) as Lie groups, we
have two ways of parametrizing the same representations.) Suppose {¢} is a
parameter for G(R). We say that {¢} is a-stable if {a°¢} = {¢}. We say that, if {¢'}
is a parameter for G(C), that {¢'} is o -stable, or g-stable, if, putting ¢'°(z) = Lo 5¢'(Z)
we have {¢'} = {¢"’}.

Let us agree to call {¢} stably a-stable if there exists a Y €{¢} such that = aoy.
if {@} is stably a-stable then {¢} is “from G(R)” in the following sense: with i as
above we have that y factors through the “diagonal embedding” 1:*G — LG given
by i(g x w)=(g,9) x w for ge’G® and weWpg. In general, not every a-stable
parameter is stably a-stable, but Shelstad [18] has shown that every a-stable
parameter factors through an a-twisted endoscopic group. In this paper we treat
all derived functor modules in our class whose parameters are from G(R).

Given a parameter {¢} for G(R) we define its base change lift to be {], } a
parameter for G(C), or equally, {4)01} a parameter for G(R), and denote (elther)
by LiftS¢ or simply Lift ¢. The precise form which the Langlands classification
takes when restricted to the Harish—-Chandra modules (with a fixed infinitesimal
character) which occur in the resolution of a finite dimensional irreducible module
will be recalled in Sect. 3. However, we here wish to recall some of the form. Via
the Langlands classification, Lift ¢ determines a standard representation (see Sect.
3, under our assumptions, this means induced from a discrete series representation
of a cuspidal parabolic in such a way that the Langlands subquotient is the unique
irreducible submodule) of G(C) or G(R), denoted X (Lift ¢). Let yr: W, c— "G yield
a parameter for G(C). Then {¢} is ag-stable precisely when the parameter
é: Wha —LG which parametrizes the same standard representation as X(y) is
a-stable, and {«p} {&lw,} for some ¢ precisely when @ is stably a-stable.

Suppose I7 is an irreducible representation of G(C) (or G(R)). Then we call 17
o-stable (or a-stable) when, defining IT%(g) = II(c4(g)) (or IT*((g, h)) = II((h, g))) we
have IT = IT° (or IT = IT% via an intertwining operator 4,. We normalize 4, by
requiring A2 = 1, as we may by Schur’s lemma. Repka and Clozel have shown that
if IT is tempered then it is g-stable (or a-stable) if and only if its parameter is. Then
A, is determined up to a sign.

On the other hand, suppose X =Ind§,,v(m;® 1) is a standard module with
infinitesimal character the same as some finite dimensional module of G(C), with
75 a representation of M A in the discrete series. Since X has a unique submodule
X,X is og-stable if X is. Suppose the parameter {¢} for X is from G(R). Then
Clozel and Repka have shown the following. The representation =, is ¢, ,-stable,
so there exists a (normalized) intertwining operator for 74, 4,,, ,. But this induces
an operator on the space of X, called Ind(4,,,,). Let A be the operator on
the space of X (realized as functions on G) such that (4f)(g) = f(csg). Then
A,= A°Ind 4, , is an intertwining operator for X and X and so X is o4-stable.
Now if X is not o ¢-stable, then 7 is not, so let 7, = ,”4. Then X° =Ind,, (y(7; ®1)
is not equivalent to X and so X° + X.
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Note that since the standard modules possess unique irreducible submodules,
A, is again determined up to a sign simply by the conditions of being a normalized
intertwining operator.

If = is a representation then yx, denotes the locally L!-function which is its
character (under the hypothesis that x is an admissible Harish—Chandra module
of finite length). Sometimes, to avoid typography, we will identify a representation
with its character, and, indeed, an L-packet (or pseudo-L-packet) with the sum of
the characters of the elements of the packet (or even enlarged packet). If IT is a
o-stable representation of G(C) and A, is a choice of normalized intertwining
operator then, under mild assumptions on IT (admissibility, finite length which
conditions we suppress, once and for all), Clozel has shown that the distribution
on G(C) defined by f+> Trace(A4,°n(f)), for f eCX(G(C)) and

n(f)= [ n(g)f(g)dg

9€G(C)
in the usual way, can be represented by a locally L' function which we denote by
%~ This depends on the choice of A4,. If IT is reducible then, for example, different
choices of 4, could make j, sometimes zero, identically, or sometimes a multiple
of the twisted trace of an irreducible. When I7 is either irreducible or standard we
will always use a specified (in Sect. 4) choice of A,, and hence j,, which differs
from Clozel’s by a sign which will be discussed in detail later. When IT is one of
the direct sums of standard modules occurring in, for example, the BGG resolution,
we will need to choose A, carefully, see Sect. 4.

We will show later that an a-stable standard module’s parameter is stably
a-stable provided that the infinitesimal character is one of the type which we
consider, namely, that of an a-stable finite dimensional module of G(IR).

We will need later the exact relationship between ¢ and ¢ when ¢ is a Langlands
parameter for G(C), X(¢) denoting the standard module parameterized by ¢,
similarly for ¢ a parameter for G and X(¢), when X(¢)= X(¢) and @ factors
through the diagonal :. This is, as is easy to see, that ¢ can be taken to be (after
conjugation) Lift  where ¢ =1.y.

With y now any parameter subject to our assumptions on infinitesimal
character for G(R), we denote by X(y) the pseudo-L-packet (4.2 of [2]) parame-
trized by y: recall that this means the set of standard modules whose (unique, by
assumption) Langlands submodules make up the usual L-packet parameterized
by ¢. As remarked above, we will also use X(y) to denote both

W= 2 X
neX(¥)

and

@D =

neX(¥)

Let G* =G(C) xI" where o acts on G(C) as g (this group is sometimes
called the base change group). A representation IT of G(C) extends to a
representation of G* if and only if IT is o-stable and there exists a choice of
normalized intertwining operator 4,. Then IT can be extended by taking any such
choice of A, and defining IT(1 x 6) = A,. Then
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1m9) = xn(g x 0)

(cf. Bouaziz, [5]). This point of view will be used at one point.

Shelstad [17, 2.5] has defined a norm map in general for our G. Given xeG(C)
such that (o0gx)-x is regular semisimple (in G(C)) (such x are called o-regular),
N(x)eG(R) is defined up to stable conjugacy in G(R). We omit the definition of N
in general, but recall it in two cases: if G is semisimple and simply-connected then
the conjugacy class in G(C) of o4(x) x is defined over R, so, by a theorem of
Steinberg, meets G(R), by definition this is a stable conjugacy class of G(R) any
element of which may be called N(x); if G is a torus then N(x) = 64(x) xeG(R) is
well-defined; the general case is a combination of these.

It is proved in [7, 2.4.3] that every Cartan subgroup T of G satisfies: every
regular element in the connected component of the identity of T is a norm of some
o-regular, o-semisimple x.

Clozel has proved the following character identity:

@1 T n(9) = emx4(N(g))

for geG(C) o-regular, ¢:Wy— G a tempered Langlands parameter, IT=
X (Liftﬁ ¢) and g, = +1 is determined when A, is chosen in a specific fashion
which we do not recall since it differs from ours (to be specified later) by a sign.
(Note that since ¢ is tempered, the notions of pseudo-L-packet and L-packet yield

the same representation.)
Furthermore, suppose that F is an irreducible finite dimensional representation

of G(R) and that ¢ is such that
0-F—X(¢)

(in particular ¢ is not tempered). Then there is an irreducible finite dimensional
representation Lift(F) of G(C) with

0- Lift(F) - X (Lift ¢)
and we have

2.2) iLift(F) (9) = 1e(N(g9)).

In fact, identifying § with g xg and G(R) with G(C), Lift F=F®F, with
A,(x®y) = (y ® x). Clozel does not deduce this from (2.1), it is an easy calculation.

In fact, Clozel has proved that (2.1) holds for ¢ arbitrary, since we have used
the symbol denoting pseudo-L-packets in the formulation of (2.1). But the form of
(2.1) does not allow one to even formulate a base change character identify for I7
an irreducible non-tempered representation, as remarked in the introduction to
this paper. We will formulate and prove an analogue for the class of irreducible
unitary modules affording non-zero (g, K)-cohomology.

3. Base change of parameters

We recall the definition of standard modules, but impose for our own purposes
an extra condition, “a)” below, not present in the standard definition (and allowing
us to reformulate conditions b) and c)).
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(3.1) Definition. Any module X which satisfies the following three conditions is
called a standard module.

a) The infinitesimal character of X is the same as F, some finite dimensional
representation of G.

b) There exist a cuspidal parabolic subgroup P of G with Langlands decompo-
sition P = M AN, a discrete series representation-n; of M, and a character v of A,
such that

X = Ind§ y(1;@v® 1).

¢) The module X has a unique irreducible submodule, denoted X, which
contains the lowest K-type of X (and hence is the Langlands subquotient of X).

As in [22, p. 99] and [20, p. 387f7], we can parametrize the distinct standard
modules with the same infinitesimal character as F by Z/2Z character data.

(3.2) Definition. A set of Z/2Z character data is (with an implicit choice of F) the
G-conjugacy class of a triple (H,, A *, x) such that H, is a #-stable Cartan subgroup,
A* < A(g,b,) is a choice of positive system, and y: H,/HS—Z/27Z is a character.
The standard module parametrized by (H,, A", x) is denoted X(H,, A", ) and
its unique submodule, by X(H,,A%, y).

Then the Langlands classification of irreducible admissible Harish—Chandra
modules with infinitesimal character the same as F says that every such module
is isomorphic to some X(H, A *, y) with the conjugacy class of (H,, A *, y) uniquely
determined.

(3.3) Definition. An L-packet of representations with infinitesimal character the
same as F is a set of the form {X:X = Ind§;, 4.n, (s ® vo ® 1) and =, has the same
central character and infinitesimal character as 7, } where MA4oN,,m;,, and v,
are chosen fixed such that w,, is a discrete series representation of M, such that

XO = IndglvoNo(néo ® vO ® 1)
is a standard module with the same infinitesimal character as F.

(3.4) Definition. A pseudo-L-packet of representations with infinitesimal character
the same as F is a set of the form

{X a standard module: X eIT}

where IT is an L-packet as above.

The pseudo-L-packets are disjoint, and so the unique pseudo-L-packet contain-
ing X is denoted I7(X).

We need to use the connection between (P,d,v) and (H,,4*, x), deb¥, given by

(.5) I (Ind§ v (m, @ v® 1) = IT(X(H,, A7, %)),

at least when y =1 and F =C. (Here b, is the fundamental Cartan of MA and
0 ®v is the Harish—Chandra parameter of n;®v.) It is:

(3.6) a) H, is the fundamental Cartan in M A, so H, = TA where T is a compact
Cartan subgroup of M;
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b) p(4%)|,=;
c) p(A7)|,=dv,
where dv is the differential of v, also written v;
d) the central character of m; is chosen so that the central character of
Indf (1, @V 1)
is the same as that of C.

Note that, as we will prove later (5.3), we can ignore condition d if we are only
interested in the values of the characters on the image of the norm map.

We will also need (part of) the connection between Langlands parameters and
Z/2Z character data. Given (H,,A ™, y) define (P, 3, v) as above. Then I1(n,® v) is
a discrete series L-packet and thus determines an admissible homomorphism
¢: Wa— (M A). By [4], we have that for zeC* = W,

(3.7 d(z)=2z"z" x ze"HY x {z}

with v =La,wu, p = p(A*), and we W(g,b,) chosen so that Lg,,ow is the automor-
phism of h¥ which is —1 on the span of the roots of M in h¥, and 1 on the center
of m@a. Here Lo, is the action of t on X(MA)° defining the L-group of MA,
restricted to “H° and transferred to h* the Lie algebra of “HY. Since p is in the span
of these imaginary roots, then Lo\ wu = 045, u where g, is the Galois action of o
on H,(C) inherited by

(3.8) b= ) RH,®xC
acA(g,bh1)
and transferred to h¥ via the map which sends H 1.e> the a-root-vector, to the root
aeh¥. We will not need to know ¢(z).
All the preceding concepts are defined with G in place of G. In this case,
At =(A},A}), and so X(H,(A],A2), 1) corresponds to an admissible homo-
morphism

(3.9) ¢ Wo—LG =(*G° x LG%) x W,

such that, putting a superscript zero on a parameter to denote the projection onto

LGO L0

G® or “G°,

(3.10) $°(z)= 247470 505(0(4]1.47) (LGO

by the above, for here H = M A is abelian, and so ‘o) = ¢ and w= 1.
Identifying h* x h* with b* in the obvious way, we can rewrite 3°(z) as

(3 11) , (ZPMl )soupld7) zP(Az )z oypldy ))ELGO GO,

using the fact that ag(h,, hy) = (oyh,,04h,). We may also assume & = LA with

L embedded in G as a Levi factor.
We wish to determine when ¢ is a-stable. It is clear that @ is equivalent to ¢“

if and only if the characters of determined by the factorization of é and ¢°
through “H are such as, when induced from B* (respectively B*) to G, yield the
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same representation (standard) of G (here B is a Borel subgroup of G containing
H and defined over R, which was notated P in (3.5)). For this to be true, it must be
the case that ¢° and (¢%)° are conjugate under the real Weyl group of H, and
furthermore this suffices. Thus, to determine whether or not ¢ and $* are conjugate,
it suffices to check their values on C*, since the fact that H is connected implies
that the value of ¢(r) doesn’t affect the characters we are considering (see [15,4.1]).

Now ¢%z) = x°¢(z), and this is, by the above, the parameter associated to X(H,
(A5,47),1). Then ¢* is conjugate to @, ie. X(H,(AF,4;}) 1) is equivalent to
X(H,(A],A),1), if and only if (4], A7) is conjugate under the real Weyl group
of H, denoted W(G, H), to (A5, A}). If G is split, this is equivalent to saying that
(A, A)are in the same relative position as (45, A7), or, writing A = wA}, with
weW(g,b), that A} =wAS,ie. w?=1.If G is not inner-to-split, an element of the
real Weyl group does not act diagonally, but with a twist. Suppose ve W(g, b) is
represented by geG(C). The image of g in G(R) is (g,049) so this conjugates
(Af,47) to (vA],06(vosA5)). Then (A}, wA])s being conjugate to (wA], A])
is equivalent to having

(3.12) ogwagwA; =Af,
which in fact implies
(3.13) (ogw)’Af =A}

for A] any positive system. We abbreviate the relation 3.13 by writing
(3.14) (ogw)* = 1.

Given a (conjugacy class of a) triple y=(H,,4%, ) as above, we recall from
[22, 8.1.4], that the definition of length of the standard module is defined to be

(3.15) Definition.
£(y) = (3)(dim (h, Np) — dim A°) + 3#{eeA] :0a¢A]}.

This is an integer. Here H* is the fundamental Cartan subgroup of G and if H, is
any 0-stable Cartan subgroup of G we write H;= T;A; where T;=H;nK and
A;=H;nexp(p,) is a vector group, with g =1+ p the Cartan decomposition. See
[11] for the fact that length is constant on pseudo-L-packets (and hence on
L-packets, if we put £(X(y)) = £(y)). Length is not necessarily constant on Arthur’s
enlarged packets.

4. Compatible B.G.G. resolution

If Yis an admissible module of finite length, let JH(Y) denote its Jordan-Holder
series (as a set with multiplicities), and for n a set of Z/2Z character data, let m(y, Y)
denote the multiplicity of X(n) in JH.(Y). In the special case of a complex group
G, we have, if n = (H,(A*,wA"), 1) that £(7) = n — ¢(w) where n is the length of the
longest element of W = W(g,h). Suppose q =1+ u is the Levi decomposition of a
6-stable parabolic subalgebra of g (in the sense of [22, 5.2.1]). Let 4 *(I) be a choice
of positive system for A(L,h,) for b, a 6-stable Cartan subgroup of I. Suppose there
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is a fixed choice of isomorphism (defined over C) of b, with b, sending A(g, ,) to
A(g,b). Let S be the image of A(u) under this isomorphism, and A4," be the image
of A*(1). We define “/(n) to be £(w) if n=(H, (A" US, wA;" U(—S), 1) for some
weW() < W(g,b), and be undefined if no such w exists. Let max JH(Y) = {Z/2Z
character data #:#(y) is maximal in {£(u): X(u)eJH(Y)} and X(n)eJH(Y)}.

Define £(Y)=¢(n) for any neMax JH(Y).

In [9], an analogue of the BGG resolution of a finite dimensional module, C,
say, was constructed. In this paper, we will refer to this as the BGG resolution.
(In fact, for G(R), it is the dual of the usual BGG resolution)) In [9], this was
constructed by showing that X(n) has a universal mapping property relative to
X(n), in the full subcategory, denoted #(/(n)), of admissible Harish—Chandra
modules Y of finite length with infinitesimal character the same as that of C, and
satisfying Z(Y) < Z(n). We recall this:

(4.1) Theorem. Let Ye%(¢(n)). Suppose
0-XmdY

is an injection. Then there exists a map h making the following diagram commutative:

(IS ES ¢

|/
X(n)
where g is the inclusion of X(n) into X(n) as unique irreducible submodule. Furthermore,
dim Hom,, (Y, X(1)) = m(, Y).
We recall two of the most important properties of the standard modules [22]:

4.2) £(X(m)=<(n);
(4.3) if £(n;)2¢(n) then m(n,,X(n))=0
unless #, = n, in which case m(n, X())= 1.
Now write '
X'= P X@).
y=H'4%*,1)
Zy)=n—i

Then for any real group G (including G) it is shown in [10] that there exist maps
f* such that

(44) 0-C L2 X (o) Lo X101 5. 5 X650

is an exact sequence, where c is the length of any Z/2Z character data of minimal
length, and y, is the (unique) Z/2Z-character data such that y, =(H,A%,1) and
£(yo) is maximal among the lengths of Z/2Z character data. (Equivalently,
C = X(70).) It was shown that each X" is in fact a sum of pseudo-L-packets [11]:

X‘=”$Dm (X (n))
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for I'(i) some set of Z/2Z character data. -
If we unstitch the exact sequence (4.4) with G for G, we obtain

i i+1
(5) 0-K;~> @ X() L= K, >0
nel(i)
where f7 is obtained from f by factoring the latter through the cokernel of f~1,
£étc., and taking I(i) to be
{y:x=1and £(y) =n—i}
so that, of course,

X'= @ X().

nel (i)

It was proved in [10] that K;e%(i) and that, writing
F=11 7

nel (i)
where f":K,— X(n) (and similarly, f = [1/™, each 1" could be arbitrarily varied
by a scalar but was determined up to this scalar by the universal mapping property
(4.1) since it was also shown that m(y, K;) = 1. (Varying f" by a scalar of course
changes K;,; and hence (4.5) taking i + 1 for i.)

Write I(i) = A(i)v B(i)u C(i) where
A(i) = {nel(i): X (n) is o-stable}
neB(i)<>X(n)° = X(r') for some n'eC(i)
and the union is disjoint. Let
XA()= @ X(n)
neA()

and if 4, , is any choice of normalized intertwining operator for all ne A(i), as in
Sect. 3, set

For neB(i) set

B, - X(n) @ (X ()"~ X(m D (X(m))

to be A,lyy® A,lxey) composed with interchange of the two factors where
A,:X(yo)— X(y,) is the canonical intertwining operator of X (y,) with X(y,)° (i.e.,
when X(y,) is realized as functions on G(C) which are invariant under a Borel
subgroup, defined over R, then A,f = f°os), X(n) and X(n') are regarded as
quotients of X(y,) (by passing to the usual BGG resolution), and X(y')=
A, (X(n)) ~ X(n)°. Then let

m=( BM>@AP
neB(i)

act on X' in the obvious way.
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Now regard X' as G*-modules (more precisely, as the analogues of Harish—
Chandra modules for G*).

(4.6) Lemma. The BGG resolution of C (i.e., 4.4) can be chosen so that the maps
St commute with the operators A’, provided that for each i and each ne A(i),

Agn=Aslxem-

Such a BGG resolution is called in this paper a compatible BGG resolution.
More loosely expressed, one could say “is a resolution of C as a G*-module.”

(4.7) Corollary.
Xe= }:( -1yt 1ix,w)-
Proof of Corollary. Clearly the twisted character of C is the alternating sum of

the twisted characters of the X* in a compatible BGG resolution. But the twisted
character of X (n)® X(n)° for (neB(i)) is zero. QED

Proof of Lemma. Clearly, if the analogous statement is true for each exact sequence
(4.5), where (4.5) is viewed with the inherited choices of f% f* and intertwining
operators, then we are done. Now if i =0 the analogous statement is clear, by
definition of inherited: i.e.

(4.8) 0=C 2L X(y0)—» K, —0

it is clear, since C has the inherited intertwining operator from X (y,), that f° = f°
commutes with this intertwining operator; by definition, K, inherits the quotient
G*-module structure (and f° can still be varied by a complex scalar).

Now assume by induction that the analogous statement holds for all sequences
(4.5) with i< j, and hence that K; has inherited the intertwining operator from
X/~1, Consider the exact sequence

49) 0K, 25 XI5K,,, —0.

It is not true that the intertwining operator on K is inherited from X7, unless we
choose 7 to make this true. For this, it suffices to define f” and hence f7 for nel(j)
so that each map of

nnr
4.10) K, =M @ X() LK, 0
nel(j)

commutes with the intertwining operators. There are two cases.

If neA(j), then as is easily seen, both {7 and fg = A,of"o A1 are (§, K)-module
homomorphisms from K to X(#) and so differ by a scalar (here A, is regarded as
acting on X(n) as follows: Schur’s Lemma holds for X(n) and so we only have to
choose the sign of A,; this sign is determined by the action of 4, on the highest
weight space of X(n); denote by M(n) the Verma module with the same highest
weight as X(n), similarly M(y,), then M(n) embeds into M(y,), on which A, acts
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naturally, and on M(n), inheritedly, and so on the highest weight space of M(n)
with a definite sign, the one we choose for X(n)). -

This scalar can be determined by considering the action of 7" and f” on a
highest weight vector, v, of X(1): both maps take v to a highest weight vector of
X(n). Now A, preserves the space of highest weight vectors of X(#) and acts as a
sign ¢ = + 1. But since K; is a quotient of X/~* (in fact a factor sub-H-module),
the sign ¢ = + 1 with which A4, acts on v is the same as the sign for the action of
A7~ on the image s(v)e X’~* where s is any §-splitting section s:K;— X7~ *. But
then ¢ is the same as the sign of the action of A’ restricted to any non-zero
component v’ of s(v), v'e X(¢). We may take v’ to be killed by n, and so v =v up
to a scalar. Any such sign is again inherited from X(y,) in the same way as before,
and so ¢ =¢. But then

1) = A,(f1(47 ') = ¢'ef"(v) = f(v)

which takes care of the first case.
If ne B(j) then we may choose f7 arbitrarily and put, if X(1)* = X ('),

J"=A4,°f74i"1. QED
It requires an argument to know whether, if
X()= Y, mw,)X(H,(A%,wA*),1)

weW

(only as (§, K)-modules), then

Txn= X MWV Txidia* wa*yn
weW
(ow)2=1
assuming X(y) is o-stable. Certainly this is false unless the correct choice of
intertwining operators is made. The previous Lemma showed which choice of
intertwining operators made this equation true for X(y) = C. In order to reach the
point where a completely similar argument (which will be omitted, of course), for
exactly the same choice of intertwining operators, will work for X(y) a unitary
representation affording non-zero (g, K)-cohomology, we will need to first recall
the construction of [10] of their resolutions by direct sums of standard modules
and then show that the maps constructed there satisfy the same universal mapping
properties as above (this was not treated in [10]).

In [25], Vogan and Zuckerman classify all irreducible unitary modules # such
that H*(g, K;n® F*) #+ 0 for F an irreducible finite dimensional representation of
g. Firstly, » must have the same infinitesimal character as F, secondly the = come
in coherent families so we may reduce to the case F = C, and finally, in this case
(due to Kumaresan, [12]), each = can be written n = 4 (C) where q =1+ u is the
Levi decomposition of a -stable parabolic subalgebra of g; this means = is the
module obtained by applying the cohomological parabolic induction functor
(in a certain degree) from (I, LnK)-modules to (g, K)-modules to the trivial
representation of L. Furthermore, the Langlands parameters of A, (C) are
calculated. In the notation of Z/2Z character data this amounts to

A,(C)=X(H,,45,1)
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where H, is the maximally split Cartan subgroup of L, and (H,, 45 , 1) is of maximal
length among the set of all Z/2Z character data (H', A*’,1) such that H' = H, (even
H’ = L) and A*’ 2 A(ii). One may take Aj = A§ () U A(il) where X(H, A7 (1),1) is
the trivial representation of L: i.e. 647 () = — A4 (1) if L is quasisplit. From now
on we switch notation and write 44(C) for 4;(C) (or else write q =1 + ii).

In [10] it was shown that any 4 (C) has a resolution by direct sums of standard
modules
@11) 0> X(Ho A3, 1)- X(Ho, A5, )» D X@¢)—--— P X(1)-0,

yeQ(m—1) yeQ(r)

where Q(i) = {Z/2Z character data y=(H,A*,1): HS L,A* 2 A(u), and #(y) =i},
m={¢(H,,Ag,1), and r = minimal length of all Z/2Z character data for G. It is
constructed by taking the BGG resolution for C as a representation of L, and
applying the cohomological parabolic functor (in a certain degree) which is, as it
happens, an exact functor on the modules in question.

We now wish to rewrite this in the special case of a complex group, i.e. taking
G for G. We will determine a criterion for a derived functor module with infinitesimal
character the same as that of a finite dimensional representation, F, of G to be
stably o-stable (i.e. stably a-stable). Assume first that F =C.

(4.12). Proposition. Suppose that §=1-+1i is the Levi decomposition of a O-stable
parabolic. Then A;(C) is a-stable.

Proof. 1t clearly suffices to show that X (H, ZJ , 1) is. We wish to show, then, that,
writing A¢ = (A],wA]) with weW(qg,}), we have (ogw)? =1 since by 3.14 this

implies cx-stablhty

Since § is 6-stable (by Definition 5.2.1 of [22]) there exists Zeit} such that
AT, !)) = {ae A8, b): (A a) =0} and A(i, b) = {2eA(§, b): (o, 1) > 0} (since Aelt
{a, 1)eR). Identify t* with T via the Killing form. Then = (), — 644) for some
ieb, and since Zeil,, we have ich,, the real span of the roots. Suppose
@ =(2;,0)€A®). Then <{a,1)=<a;,A>>0. But if a=(a,,0)eAd), (ai>=0.
Therefore, putting S < A(g, b), the projection on the first factor of A(ii, §), we have

that
DI

acd(h)us
is a parabolic subalgebra whose Levi factor is [, where A(l) is defined as
{BeA(g,h):(B, O)GA(T)}, whence the notation: L is the complexification of L a Levi
subgroup of G. Now as was shown in 2.5 of [2], we may vary L among the inner
forms in G of L, and thus may assume that L is quasisplit, since G is.
Now let ¢, be a Cayley transform of H to H, the fundamental Cartan subgroup
of G. If

cl_lHﬂcl = Hp'y KGA(Q’ b)s ﬂGA(g, bc),

then define X'ely by <X, B> = (A, ). In fact, since 1eif, we have A'eit;. Thus A’
defines a 6-stable parabolic subalgebra q of g, whose Levi factor may as well be
identified with I, and with A(u) = Adc¢,(S) if g =1+ u. Then

A1) = (Aw), — 054(u)) = (A1), 660, A(1)).
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Then the Z/2Z character data of 4 (C) is (H',A*()ucyc, S, 1) where H' is a
maximally split Cartan subgroup of L (f-stable of course), A*(l) is any o4 and o,
stable choice of positive system for A(l,l’)—for example, c,c, A" (I) in the usual
notation, the ambiguities in the choices of ¢, and ¢, make no material difference—,
¢, is a Cayley transform within L(C) of H° to H' and hence preserves u, and
c,¢.8 = Al by).

There exists we W(g, ') such that

4.13) WAt (Ducye;S)=A4*Duaglcei(—8)) =ogog(Ar(Huc,c,S).

We may take w to be, see Lemma 5.14, ¢; !¢, if G is split, and c; !¢, followed by
some element of W(I) if not. Then it is clear that (64;w)? =1 since w(A(l)) = A()
and so wA(u) = — A(u). But, transferring w to A(g,b) via c, and c,, we find that

w(A*(HuS)=ag(A* U — 8).
Now we are reduced to the following lemma:
(4.14). Lemma. The Z/2Z character data of A,(C) is
(4.15) (H,(A*(huUS,o5(A* YU —8)), 1) = (H,(A* ) US, 650, (AF (HUS)), 1).
Proof. Since L= R¢rL, then
C=X(H (A*1),0,4* (1), 1)

for any choice of positive system for A(l,})’). Then by [10], the Z/2Z character data
for A,(C) is

(H',(4* (1), 0,4 ()L A([, §), ).
Of course we may arrange that g, A" (I) = A*(I). Now
A, ) = Ad (c2¢1, 6,81 A([, B) = Ad (¢¢1, E;6,)(S, o 0xS).
If we conjugate
(H',(A*(UAd(cycy)S, AT (HUAA(E,¢,) (0 049)), 1)
to H via Ad(c]'c; !,é71¢; 1) we obtain
Ad(ci L, er YAd(c; L, e )H (AT )UAd e, Ad ¢, S, AT ()UAd (E,) Ad (€, oy S), 1)
=(H,(Ad(cy te; AT (US,AA @G Lé; DAY (uay 048),1).

Now if we identify A*(I) with Ad(c; 'c; ')A* (1) and transfer oy to H(C) via this
identification, we may rewrite this as

(H,(A*()US,Ad(E1 ' ¢; *eze)) AT Doy 0y S), 1).

On applying Lemma 5.14 twice, and noting that ¢, and oy commute, and that
Only, = 06 by definition, we obtain that the Z/27Z character data of 4,(C) is

(H,(A*(I)US, ooy At (Nuoy.oy8),1)= (Il(A*(l)uS, as(A*(Hu —9)),1)
since 6.S= —S and g5 A*()=4%(1). QED

We now wish to rewrite (4.11) in the special case of a complex group, and then
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prove analogues of (4.6) and (4.7). Taking G for G in (4.11) and using Lemma 4.14,
we obtain

(4.16)
0- 4,(C) 25 X (@, (A*()US, A* (DU (= ), 1) 2 @ X(H,A*0)
weW(l)
f(w)=1

fl(wo)

US, WA (U(=9S)), 1) L. L0, X(F,(A* ()US, — A* (H)u(= S)),1)=O.

We need to establish that each map f, of (4.16) is a direct product of maps
which are provided by the universal mapping property of the standard modules.
Let £X(n) be £(w) if n = n(w) which we define by

n(w)=(H,(A* US,wA* U(-8)), 1)
with A* = A* (), we W(l), and let £*(n) be undefined if no such w exists. Let Q, be
the cokernel of f, and Q_, = 4;(C). Write
fn = H fwa

weW(l)
Z(w)=n

where

for @D X))~ X(n(w)),

veW(l)
f(v)=n—1

and similarly

=11 -
weW(l)
{(w)=n

with f, the map induced by f,, on @, _ , (n is now a variable, and not fixed as before).

(4.17). Lemma. a) If nemax (J.H.(Q,)) then £ (n)=n+ 1.

b) If (X(n)=n+ 1 then m(n,Q,) = 1.

) The map f,, is obtained by the universal mapping property of standard modules
if {w)=n+ 1.

Proof. These are true for n = — 1 by inspection. We now proceed by induction on
n, assuming the results true for all Q;,i < n— 1. Consider the following short exact
sequences, obtained by unstitching (4.16):

4.18) 0-0, 1 2> @ X@w) 250,-0
( by
(4.19) 050,25 @ X(w) 2225 0, 0.
Z(wy=n+1
weW (1)

Suppose that ZL(u)=n+ 1. The £(u)=/7(X(n(w))) for any weW(l) such that
Z(w)=n+ 1, and so X(u) cannot occur in the Jordan—Holder series of any X (y(w))
with £(w) = n + 2, and hence cannot occur in JH (im (f,, ;. ;)). (Note that £(X (n(v))) =
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—£(v) + ¢ for some constant c.) But X(u) does occur in

JH ( @D X(ﬂ(W)))

{W)y=n+1
weW(l)
precisely once (by a standard property of standard modules) and hence m(y, @,) = 1,
which proves b.
Now suppose pemax JH(Q,). If i’ is such that £(i') > (X (n(w))) for £(w)=n + 1
then m(y,im (£, , ,)) = 0 and hence m(y, Q,) = 0. It follows that £(Q,) < £(1(w)) for
£(w)=n+ 1. But since Q, is a submodule of

D Xw),

we W(l)
Ziw)=n+1

it must contain one of the unique submodules X(5(w)) in its composition series
(and none of these more than once), say X (1(v)). Som(n(v), @,) = 1,50 £(Q,) = £(n(v)),
and hence n(v)emax JH(Q,). Then £(n(v)) = £(x). But then, by 4.3, X(u) does not
occur in JH (X (#(v))) unless u = n(w). But X(u) must so occur, for some we W(¢)
with £(w)=n + 1. Hence u = n(w) for some w as above. Then #%(p) is defined and
equal to n + 1, which proves a. Now ¢ follows at once a and b, since Q, is evidently
iné(c—n—1). QED

(4.20) Lemma. The {f,} can be varied by multiplication by scalars, in the obvious
sense.

Proof. Either the same as in [9] for the BGG resolution, or notice that the f,, are
obtained by applying an exact functor to any BGG resolution of C as an L-module.
QED

Note that this lemma is in sufficient for the application we have in mind, ¢ of
Lemma 4.17 is needed.

(4.21) Theorem. With the same choices of intertwining operators as in (4.6), we have

(4.22) Tgo= = (=D Ty
weW(l)
(agw) =1

Proof. Repeating the same arguments as in the proofs of (4.6) and (4.7), we obtain
a resolution of A,(C) compatible with the intertwining operator. QED

5. Determination of a sign

In this section we determine the sign which appears in 0.4 when the intertwining
operators are chosen as in (4.6). This sign differs from ¢,, defined by Clozel. We
first indicate how to reduce the general case of Theorem 6.6 to the case where all
modules in it have infinitesimal character the same as C.

In [7, 8.6], Clozel has shown that the infinitesimal character of Liftj(n)
depends only on that of x (at least for n-tempered, but it follows immediately for
n a pseudo-L-packet and hence for stable combination of 4,(C)’s). But by (2.2), if
= has infinitesimal character the same as F a finite dimensional irreducible module
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of G(R), then Lift () has infinitesimal character the same as Lift (F) = F® F. So if
A;(C) = X(F,) is such that X(J,) is stably stable and has infinitesimal character
the same as a finite dimensional representation of G, then there exists F a finite
dimensional representation of G such that 4,(C) has infinitesimal character the
same as FQF.

As is remarked in 4-2-9 Bouaziz, [6], it is easy to see from this that the coherent
continuation (without crossing any walls) by F followed by base change lift is the
same as base change lift followed by coherent continuation by F ® F. So we may
as well assume F =C.

We next recall the twisted character formula for induced representations of
Repka [13] and Clozel [7, 8.1], analogous to Hirai’s character formula for principal
series representations. Suppose n™ is a stable combination of (characters of)
irreducible representations of M where M N is the Levi decomposition of a cuspidal
parabolic P of G. Suppose further that IT™ is a representation of M(C) (or M(R))
which is Galois stable, and that ITM is either irreducible or at any rate that the
only M(C) self-intertwining operators of ITM are scalars (this is well known for
standard modules). Suppose further that 4, is an intertwining operator from IT™
to (IT™)°™ (where g, is the Galois action of M(C)), normalized so that (4,,)* = 1.
Suppose further that both IT™ and A,, are such that, for some ¢= +1 or — 1,

(5.1 eX rm(g) = X (N(9))

for suitable ge M(C). Writing A; = A°Ind(A4,,) as defined previously (4,, Sect. 2)
(cf. Clozel, [7], 8.1 and not 8.7) we have, as remarked before, that A; is an
intertwining operator for

= Indgf((cc)w((:) (IT"®1)
and (4g)? =1. Let
7 = Indjp ve (T¥ ®1).
Then 8.1 of [7] says
(5.2 X o(9) = Xc(N(g))
for suitable ge G(C).

(5.3) Lemma. The functions y,c(g) are linearly independent functions (on the set
of regular elements in a suitable connected neighborhood of the identity of G(R))
when the modules n° run over the set B of pseudo-L-packets occurring in the BGG
resolution of C.

(5.4) Corollary. The left hand sides of (5.2) are linearly independent functions, on
the set of o-regular elements of G(C) in a suitable neighbourhood of the identity of
G(C), when the modules IT® run over any set C of the same cardinality as B and
such that every element of C satisfies (5.2) for some element of B. Furthermore, C
may be taken to be the set | | A(i), notation as in the discussion following (4.5).

(5.5) Corollary. Lift(IT(X(y,))) # Lift IT(X(y,)), y:€B, 7, F7,.
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Proof of Lemma 5.3. It is well known that the characters of standard modules form
a basis (of some vector space). It is easy to see from this that the characters of
pseudo-L-packets also form a linearly independent set. In spite of this, suppose
the contrary, and that there is a non-trivial dependence. Since all but those of Z/2Z
character data involving the fundamental Cartan subgroup H* are induced from
a proper subgroup, hence vanish on H, one must have a dependency relation between
the IT(X(H, A +,x,))|,,m But there is always a simple explicit formula for any
H(X(H;, A, 1)) He, whnch follows from Osborne’s conjecture [8], see also Vogan,
[23], and 4.7 of [20] (Or, alternatively, Shelstad’s formula for the stable sum
of discrete series on any Cartan of M;, and Hirai’s induced character formula,
5.2 of [14].) But this implies that this restricted dependence is trivial. So no
II(X(H, A7, x;)) occur in the original dependence. Now arguing by induction
on the dimension of the split component of H;, we are done.

The next claim is that the characters of IT(X (H,, 4, x;)) and IT(X(H,, A, x,))
agree on the connected component of the identity in H, (R), denoted H, (R)°. This
follows from Osborne’s conjecture and 4.7 of [20] as well (or, again alternatively,
Hirari and Shelstad): on H,(R)° it is immediate. But, in fact the exponents of the
characters on other Cartan subgroups are determined by those on H,(R)° by the
Harish—Chandra matching conditions since on every Cartan not conjugate to H,,
the leading exponents are zero, by 4.7 of [20]. And the restrictions of the exponents
to H,(R)° are determined by the restrictions of the matching exponents to
(Ad(c)(H'))(R)® (where c is the appropriate Cayley transform). So, in fact this holds
for the connected component of the identity in any Cartan subgroup.

Now it follows from this, using the same sort of induction as before, that if we
take y = 1 always, but restrict to regular elements each of which is in the connected
component of the identity of some Cartan subgroup, we still have linear
independence. But this is precisely the set B. QED

Proof of Corollary 5.4. More precisely, the neighbourhood of (5.3) can be chosen
to be a neighbourhood of the identity; every regular element of which is a norm:
it is well known that for any H,,H,/H{ is a two-group, so squares of regular
elements lie in HY(R). But by Corollary 2.11 of Clozel, [7], every norm is in
the stable conjugacy class of a regular square. Corollary 54 now follows
immediately. QED

We now give a sketch of a new proof of Clozel’s Theorem 2.1, which we include
because we will need later some of the observations.

We know from [7, Chap. 4] that the twisted character is represented by a
locally L' function. So we are justified in regarding fy47 .4 @s @ function. We
also know that (5.2) holds whenever (5.1) holds. We know (5.1) holds for finite
dimensionals. By induction on the dimension of G we may assume that (5.1) holds,
for, say, discrete series of M whenever MN is a proper parabolic. Then (5.2) holds
for all standard modules except discrete series (so we may as well assume G is
equal rank). So we are reduced to showing that (5.1) holds for discrete series when
M=aG.
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Now we have already established the existence of a compatible BGG resolution
of C—we assume now that the signs in the ambiguity of signs in the choices of
A,, and hence A; are chosen as specified in Sect. 4. Hence the twisted character
of C is a linear combination of twisted characters of standard modules. These are
linearly independent, expect possibly for the one standard module of minimal
length. But at least the twisted character of C is linearly independent of the twisted
characters of all standard modules except that of minimal length, since these last
are not supported on {geG(C)o-regular: N(g) is elliptic}. Hence, writing i, for the
minimum length,

(5.7) iXA(io)(g) = Z (- i)iix,ui)(g) + %c(9)

shows that the left hand side depends only on N(g). Assume now Lemma 5.16.
Then the right hand side can be rewritten as

(5.8) Z (— ey nxayN@) + xc(N(9))

by the inductive hypothesis, (5.15) and (5.5). It remains only to show
(59) (—1)¢0g; = (—1).

We omit the proof of this.

In order to prepare for the proof of (5.9) which will be included in this paper,
we next calculate Lift I7(X(X,,4%,1)), in the sense of base-change lifting of
parameters. Note that, by the agreement on connected components of Cartans,
Lift IT(X(H,,A",y)) is independent of y. Because of this, we need not keep track
of images of 7 in what follows.

Consider ¢: W, — LG associated to (H,,4%,1) as in Sect. 3. It follows that,
writing ¢ = Lift ¢ we have
(5.100 $(z)= (zpm*)z-a,,,pm*)’ zpm*)z—o,,,pm*)) — Z(PBT1p(87 ) S0y, AT ) op, A7)

By Sect. 3, this corresponds to X(H,,(4*,A%),1). However, the Z/2Z data of
standard modules for G in the compatible BGG resolution of C are all more
conveniently written with respect to our fixed Cartan H. We wish, then, to conjugate
"the data (H 1,(4*,4%), 1) to data, the first element of which is H.

If s is a Cayley transform such that sH,(C)s~! = H(C) then (5,5)H,(s™!,5 ™ !) =
H over C and over R, respectively. Hence

X(H,,(A%,4%),1)= X(H,(Ad(s)A*,Ad()4 *), 1).
Using Ad(s) as a sort of pseudo-diagonalization (Shelstad [16]) identify A* with
Ad(s)A*. Then
(5.11) . O X(H,,(A*,4%),1)=X(H,(A*,AdGEs)A ), 1).
Now, by Lemma 5.14, Ad(5s~ ') acts on p(A*)ehg the same way as does the
transfer of oy, to H(C) (via this pseudo-diagonalization), and this is represented

by an element of the Weyl group w = 3s~! (with w? = 1) if G is split. Hence, if G
is split,

(5.12) X(H,,(AY,A4%),1)=X(H,(A%,wA*), 1)
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or

(5.13) Lift X(H,,A*,1)= X(H,(A*, 04,4 %),1).
For general quasisplit G, we prove

(5.14) Lemma. Ad(5s™)p(A*) = ogoy,p(47).

Proof. We may assume s is a standard Cayley transform through a set of strongly
orthogonal real roots of H. (Recall H is maximally split in G, quasisplit.) Then s
is a product of commuting Cayley transforms through one root at a time. So we
may assume s is a standard Cayley transform through one real root o of H, and
that sH,(C)s~! = H(C). The following considerations reduce this to the case of
SL,(R), which is clear: now b, breaks up into an orthogonal direct sum of three
spaces: V,, the subspace of anly, orthogonal to a; V,, that spanned by «; and
Vy=tnbg But 4oy, is 1 on V,, 1 on V5, and —1 on V,. It is clear that Ad(ss~!)
is 1 on V; and V,, and the calculation of it on V, is the case of SL,(R). QED

So in general, (64w)? = 1, which is compatible with Sect. 3, and we have
(5.15) Lift X(H,A*,1)= X(H,(4*,064054,4*),1).

By the stable base change character identity, it follows that, with our choice
of intertwining operators,

ixu?,m *o6om,4 *)_1)(9) = e(W)XX(Hl,A * )(N 9)

where we W(g, b) is chosen so that wA* =L, A*, and ¢(w) = + 1 (and was called
¢or ¢ in (5.2) and (5.9)). We can rewrite (5.9) to obtain +e(w) = (— 1™ (= 1y#:4"D
where the sign is dependent only on G, and we will prove this using the following
lemma.

It was shown in Sect. 3 that every a-stable standard module is of the form
X(H,(A*,wA*),1) for w such that (cow)? = 1.

(5.16) Lemma. Every a-stable standard module is stably a-stable.

Proof. It suffices to show that for every we W(g, b) such that (6gw)? = 1, there exists
a B-stable Cartan subgroup H, such that for some positive system A* < A(g,b),
wp(A*)=0404,p(A") upon transferring o, to H(C). Recall that such transference
is via a pseudo-diagonalization of H,, i.e. an identification of the abstract Cartan
in the sense of [21] with the concrete Cartan }, and a choice of positive system.

Consider the twist of a; by w. This means let § be the involution of A(g,b)
such that 6 = ggow. Using Lemma 10.9 of [21] let a4. be the involution of G(C)
agreeing with 6 on }. This defines an inner form of G, called G’: in fact G’ is an
inner form of G since if geG(C) represents w, then og.c05°Adg™! is an
automorphism of g which is 1 on b, and so cannot (by 2.14 of [19]) be an outer
automorphism. Since w preserves H, o acts on H(C), call the resulting group
defined over R, H'. Take A < A(g', ') to be the same set as the given A* < A(g,b)
used in the definition of Lo, i.e. it is stable under 6. Then

Loog A =LoogoAd(g)A =LoogwA* =wA*
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since Loag is 1 on by [g, g]. Since G’ is an inner form of G, the Cartan subgroup
H' is isomorphic over R via an inner automorphism of G(C) with some Cartan
subgroup H, of G. Since the isomorphism is defined over R, it respects the actions of
06 |avc) and 0y, = 6¢ly, - Replacing Ay by its image contained in A(g,b,) we
obtain the desired H{ and A{. QED

Now by the remarks preceding (5.9), note that there we assume the truth of
(2.1), we have already shown that the twisted character of C can be expressed by
either of two expressions:

(5.17) + ZK(~1)"“’ix(y.)(g)

Vi€
where K is the set of Z/2Z character data of Galois stable standard modules, and
the sign is + if the number of positive roots is even, —, otherwise; and, since
%c(g) = 2(N(g))
(5.18) + Y (- 1)Y"™HI(X(n))

nieB

with the sign + if the maximal length of Z/2Z character data is even, -, otherwise.
Hence, in particular, these signs depend only on G.

Furthermore, in (5.18) each term is linearly independent of the others. But each
7;€K satisfies

(5.19) me)(g) =g Xn(:))(N(9))

for some n(y;)eB, by Clozel’s Theorem (2.1) and (5.16). It is clear from (5.19) and
linear independence (5.4 and 5.5) that y;—IT(X(n(y;))) is a well defined function
on K, and is a left inverse of Lifts: B— K. So it is a bijection. So, using (5.4)
again (applied to equating (5.18) with (5.19)) we conclude

(5.20) Proposition. +¢; = (— 1)’%)~“™)) with the sign depending only on G.
We will need this in the next section.

6. Conclusion

The calculation of the base change lift of an enlarged packet of A,(C)’s is easy,
now that (5.20) and (4.21) are available. We will proceed as follows. The stable
linear combination of the characters in the enlarged packet will be written down
in (6.1). Using Theorem 4.21 the twisted character of 4(C) will be written as a
linear combination of twisted characters of standard modules, each of which in
turn can be rewritten, using (5.20) and (5.2), as a (stable) pseudo-L-packet for G(R)
composed with the norm map. This will be compared with (6.1) and the desired
theorem, (6.6), will be established.

Let H be a fundamental Cartan subgroup of G, as before, f-stable. Given a
B-stable parabolic subalgebra q=1+u, we define, for we W(G(C), H{(C))’ (the
elements of the Weyl group which commute with 6)

qw=( 6_) gwa>®bc=lw®uw

aed(q)
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and L, is then the normalizer in G(R) of q*. Let y(w) = 3)dim (L,,/L,,n K). (When
G(R) is connected this theorem is due to Zuckerman). It was proved in [2] that
the following is a stable combination of A4,(C)’s:

(6.1) ZS(— 1)'™A4.(C)=¢ Zr(— 1Y"X (n)

where ¢, which depends only on {q":weW} is +1,
S = W(G, H)\W(G(C), H(C))’/W(L(C), H(C)),
and I'= u I', where I',, is the set of Z/2Z character data n=(H,A*,1) with

weS
HcL,and A* 2A4Au")

In fact the right hand side of (6.1) is a linear combination of pseudo-L-packets,
each coefficient being + 1. Furthermore, it follows that, putting E to be a set of
representatives in I” for the pseudo-L-packets in the right hand of (6.1), we may
arrange that E < B (notation as in (5.18)).

(This formula conceals a trivial subtlety. In [2] it was only proved that the left
hand side of (6.1) was stable, and in [10] it was shown that 4 «(C) was an alternating
sum over I',, but with £(n) defined differently: as the length, here we will notate it
Z(n), of (H,A™ nA(l), 1) as a parameter for L,,, if neTI,,. But one can easily see that
£.(n) + p(w) is independent of w, and that the parity modulo 2 of £,.(n) + p(w) — £(n)
is independent of 7.)

By redefining length to shifted by a constant, we can arrange that ¢ = 1.

On the other hand, we have, rewriting (4.21)

(6.2) iAﬁ(C) = Z ZX(I?,(A;‘,aGa,_wA,* 1)
weW(l)
(ew?Af =470

where A is a fixed choice of positive system such that A{ contains the projection
on the first factor of h* of A(#i, §), and A N A(l) is stable under o;. (The only point
to consider about this rewriting is that ogzo,wA; should run over all positive
systems A5 such that both AJ contains the projection on the second factor of
A(i,§), i.e. —S (in the notation of Sect. 4) and (H,(4],A45), 1) is a-stable.)

Now suppose (H, (AF,47),1) is one of the representatives of Z/2Z character
data occurring in (6.2). Then, by (5.15), we know that it is the stable base change
lift of X(H,,A{,1) for some Cartan subgroup H, of G satisfying ogoy, A{ =A;
(making appropriate identifications via some implicit pseudo-diagonalization,
which depends on A3). Then agoy, A{ 2 0640,4(1) = 05A(ii) by hypothesis on 45 .
Since L is defined over R, 65 and oy, preserve A(l) (same for any L,): hence

(6.3) oy, A(n) = A(i1).
Now it was shown in [11] that the pseudo-L-packet containing X(H,,A{,1)is
IT(X(Hy, A7, 1)) = {X(H,,wA{, 1):weW(m,,h,)}

where H, = T, A, asusualand M, = Centg(A4,). By Sect. 10 of [2], we may represent
weS by we W(m¢, k). Furthermore, it was shown in [2] that every L,, occurring
in (6.1) is an inner form of a fixed Le{L,} which is quasisplit. So every Cartan
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subgroup occurring in the ne I is actually isomorphic over R to a Cartan subgroup
of L.
We wish to show

(6.4) Lemma. Under the above hypothesis H, can be taken to be a Cartan subgroup
of L.

Proof. By the above remarks, it suffices to show that H,(C) can be taken to be a
complex Cartan subgroup of L(C). (It is necessary to make this observation, since
in what follows, the implicit pseudo-diagonalizations obviously cannot preserve
the property of being a non-compact imaginary root.)

We have gy A =0, wA{. Let H® be the fundamental Cartan subgroup of L
(and hence of G) and be 6-stable. Then H, is a Cayley transform of H¢ through
some set of strongly orthogonal non-compact imaginary roots. It suffices to show
that all these roots belong to L. Let « be one. Then oy, a = a. If aeA(u) then (6.3)
shows that o, a€A(ii) which is a contradiction. Similarly a¢ A(i1), so we conclude
aeA(l). QED

(6.5) Lemma. Suppose H, < L is a Cartan subgroup and (H,,A{,1) is an arbitrary
set of Z/2Z character data subject to this condition on H, and the condition that
A} 2 A(u). Then Lift IT(X(H,,A{,1)) occurs in the right hand side of (6.1).

Proof. 1t suffices to show that A} =ago,,4{ occurs in (6.2), provided we take
A} there to be the same as A{ here, by choosing an appropriate pseudo-
diagonalization. So it suffices to show that A; 2 05A(il), i.e. 6oy, 47 2 054(i).
Since H, € L,oy4, = 0,, but since A(u) is defined by the condition that aeA(u)
whenever Re{a, 1) > 0 for a fixed Aeit5*, we have 6,4 =L, 4= —Aeb), (since A is
in the (image of the) center of I (under the Killing form), 4 is in any Cartan
subalgebra of I) so oy, A(u) = 4(ii). QED

Now for every nel there exists n'el”, such that IT(X(n)) = II(X(n’)). Hence

the right hand side of (6.1) may be rewritten, after relabelling if necessary,

e Y (—1Y" I(X()
nekE,

with E, a set of representatives in I"; for the pseudo-L-packets. (Even though it
is not immediately apparent from (6.4) that n = (H},A{ ", 1) is G(R)-conjugate to
some (H,,A{,1) with H, = L and A{ 2 A(u), it is clear that 5 is G(C)-conjugate
to some such, and moreover, so, via a conjugacy which respects the Galois actions
on H) and H,. But then Liftn and Lift(H,,A;, 1) agree by (5.15). Hence, finally,
by (5.5), we must have IT(X(n))=II(X(H,,A,1)), and so we may as well have
assumed n =(H,,47,1).) :

But we have already shown, in the proof of (5.20), that the correspondence
between B and K given by Lift is bijective: and in (6.1) and (6.2) we have subsets
of these, so (6.4) and (6.5) together imply that Lift gives a bijection between E, and
{weW(l): (o,w)*A;} (I)= 4] (I)}. But (5.20) shows that the signs in the base change
character identities for these pseudo-L-packets are consistent with the signs in (6.1)
and (6.2). So we have proved
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(6.6) Theorem. F,(9) ==t Y, (—1)™4C)(N(g)).

weS
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