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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 313, Number 2, June 1989

REMARKS ON CLASSICAL INVARIANT THEORY

ROGER HOWE

ABSTRACT. A uniform formulation, applying to all classical groups simultane-
ously, of the First Fundamental Theory of Classical Invariant Theory is given
in terms of the Weyl algebra. The formulation also allows skew-symmetric as
well as symmetric variables. Examples illustrate the scope of this formulation.

0. INTRODUCTION

(N.B. This introductory discussion is somewhat breezy. We will be more
careful beginning in §1.)

In Hermann Weyl’s wonderful and terrible ' book, The classical groups [W],
one may discern two main themes: first, the study of the polynomial invariants
for an arbitrary number of (contravariant or covariant) variables for a standard
classical group action; second, the isotypic decomposition of the full tensor
algebra for such an action. It may be observed that the two questions are more
or less equivalent. (Indeed, Weyl exploits one direction of this equivalence.)
Further, it is not hard to see that both questions are equivalent to an apparently
simpler one, namely the description of the invariants in the full (mixed) tensor
algebra of such an action. (These equivalences are not a priori clear. It is
the cleanness of the answers that allow one to make the connections.) Thus if
Weyl had first established the result on tensor invariants, then proceeded to the
other two topics, his presentation would have been considerably streamlined
and presumably more acceptable to modern taste. A plausible explanation for
his failure to proceed along that route is that he saw no way of establishing the
result on tensor invariants except through the result on polynomial invariants.
To produce the latter, he had the machinery of 19th century invariant theory
available, in particular “the mysterious Capelli identity” (see [ABP, p. 324).
This, together with the fact that polynomials can be thought of as functions,
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540 ROGER HOWE

hence are more tangible than general tensors, perhaps led Weyl to choose the
path he did.

There was one case, however, namely for Gl , in which the theorem on
tensor invariants was directly available, by a beautiful argument (due to Schur)
using the double commutant theorem. Weyl did not neglect to present this; in
fact, it was a favorite of his. In itself, however, it would not serve as a basis
for the general case, so could only be presented for its intrinsic merits, and led
to greater heterogeneity in the book instead of unity. Recently, however, it was
shown in [ABP] how the result on tensor invariants for orthogonal groups O,
could be reduced by a fairly quick argument to the result for Gl,. A similar
argument goes through for the symplectic groups Sp,,. Thus the description
of tensor invariants for a standard classical action may now be considered to
be available from first principles, and may be used to provide an efficient and
unified treatment of a large portion of the material in [W].

The main purpose of the present discussion is to point out that this unified
viewpoint is in fact capable of considerable extension. We note the following
specifics.

(a) The argument used to pass from tensor invariants to polynomial (e.g.,
symmetric tensor) invariants in many variables applies equally well to the de-
scription of mixed algebras of partially symmetric, partially antisymmetric ten-
SOrS.

(b) By means of a process of “doubling the variables”, the result in (a) yields
a description of the endomorphisms (of a certain reasonable type) commuting
with a classical action on such an algebra.

(c) The result of (b) may be viewed as a “duality theorem” for commuting
subalgebras of a certain naturally occurring graded Lie algebra.

(d) Particular cases of the above general scheme yield many classical compu-
tations in multilinear algebra, often with additional structure and insight. We
will give as examples the following:

(i) the full isotypic decomposition of the polynomials in k variables for
a classical action (after the archetypal case, this may be referred to as the theory
of spherical harmonics);

(i) the exactness of the polynomial de Rham and Dolbeault complexes,
and the homotopy between the identity and projection onto the constants (used
as in [J] to prove the Hilbert Syzygy Theorem);

(iii) the algebra behind the structure of the cohomology of Kahler mani-
folds (sometimes called Hodge Theory) as a special case of the analogue of (i)
for exterior algebras (see [Wi]);

(iv) the cohomology of the unitary group;

(v) the invariants of the adjoint action of the classical groups;

(vi) elucidation of the Capelli identity.

These computations are not usually mentioned in the same breath and cer-
tainly are not all considered as part of classical invariant theory (though dis-
cerning eyes have perhaps noticed connections). Thus it seems fair to say that



REMARKS ON CLASSICAL INVARIANT THEORY 541

the result on tensor invariants forms the basis for a unified development of a
considerable tract of algebra. Perhaps not least important, the results on duality
make precise in a strong way the striking analogy, remarked on by a number
of authors, between the Clifford algebra and the spin representation on the one
hand and the Weyl algebra and the oscillator or (Segal-Shale) Weil or metaplec-
tic or... representation on the other (or as physicists would say, the canonical
anticommutation relations and canonical commutation relations).
This matter should emerge clearly in the body of the paper.

1. INVARIANTS

We will always work over C, the complex numbers. Let ' be a complex
vector space, and let ( , ) be a bilinear form on V. We call the pair (V,(, ))
a formed space. Sometimes we may speak of the formed space V', with (, )
being implicit. The group of isometries of (V,(, )) will be generally denoted
by G(V,{, )). There are three main cases we wish to consider and each has
its particular symbol.

(a) If (, ) is trivial, then G(V,(, )) = GL(V) is the general linear group
of V, consisting of all invertible linear transformations of V.

(b) If (, ) is nondegenerate and symmetric, then G(V,(, )) is called an
orthogonal group and denoted O = O(V,(, )).

(c) If (, ) is nondegenerate and skew symmetric, then G(V,(, )) is called
a symplectic group and denoted Sp = Sp(V, (, )).

The isomorphism classes of these groups depend only on » = dim V', so
we will sometimes write GL(V) = GL,. Similarly O(V,(, )) = O, . For
Sp(V,(, )) to exist, we must have n even: n = 2m. Thus we usually write
Sp(V,(, )) = Sp,,,. The groups GL,, O, , and Sp,, are referred to collec-
tively as the classical groups (over C). The action of a classical G(V,(, )) on
V is called a standard classical action, and V is the standard or basic module
for G.

The first thing to do is to describe the tensor invariants of a standard classical
action. The case of GL, differs slightly from those of O, and Sp,,, , and we
deal with it first.

Let V" be the vector space dual of V. We let GL(V) act on V" in the
usual contragredient manner, so as to preserve the natural pairing between V
and V*. Thusif g€ GL(V), veV,and v* € V", then we define g(v*) by
the formula

gw)(w) =v" (g~ (V)

Consider a tensor product V,, = (®k V)® (®1 V*) made from k copies of
V and [ copies of V*. We let GL(V) act on this by the linear extension of
the obvious formula

gV, ®v,® QU @V, ® - ®V,)
=g(v)®g(,)® - ®g(v,)®gw)® - ® &)
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It is clear that there can be no invariants for this action unless k =/ since if
g = al, ,where 1, istheidentityon V and a € C, then g(f) = o't for any
t € V,,. Thus assume k = /. Consider the canonical identification i,: V]
End(V), where End(V) is the algebra of linear transformations on ¥ . This
gives rise to an identification i, : V), ~ ®k End(¥) of k-fold tensor products.
Let Ad be the action of GL(¥) on End(V) by conjugation: Ad g(7T) = ng"1
for g€ GL(V) and T € End(V'). Then i, identifies the action of GL(}) on
V|, with Ad. That is

i\(g(t) = Adg(i (1)) forteV,,.

Thus il"l(l,,) is an invariant for GL(V') acting on V;,, and ®k(il'l(l,,)), its
k-fold tensor power, is an invariant for GL(V) acting on V,, . Denote it by
0, .

Observe that we may permute among themselves the factors of V,, isomor-
phic to V. Similarly we may permute the factors of ¥,, isomorphic to V*.
Thus if S, is the symmetric group on k letters we have an action of S, xS,
on ¥V, , and this action commutes with the action of GL(V) on V,, . Thus
the GL(V)-invariants form a module for S, x S, . We see that 6, is invariant
under the diagonal subgroup of S, x S, .

1 ~

Theorem 1A. Translates of 0, by S, x S, span the GL(V)-invariants in V,, .

This is in Weyl [W]. Notice that V,, ~ End(¥,,) and the action of GL(}V")
on ¥V, is just the conjugation action coming from its action on V. Thus the
GL(V) invariants in ¥}, are just the endomorphisms of V,, commuting with
GL(V). Further S, actson V,,,so S, C End(¥,,) and the above action of
S, xS, on ¥V, corresponds to pre- and post-multiplication by S, in End(V,,) .
Also 6, corresponds to the identity operator on V,,. Therefore Theorem 1A
says that permutations of the factors of V,, yield all operators commuting with
GL(V). This is the form of the result of Weyl.

Now pass to consideration of O, and Sp,, . Denote one of these by G
and let V' be the standard module for G, with form (, ). We have the
isomorphism #: ¥V — V given by

ﬂ(vz)(vl) = (vl ,1)2).
The map # commutes with the natural actions of G on ¥ andon V™, so these

spaces define isomorphic G-modules. Thus here it is unnecessary to explicitly
consider mixed tensors, a slight simplification compared with GL, . Therefore,

consider V, = ®k V. Note that (, ) forms an invariant for G in ¥, which
we may identify with V,. Call this invariant 6,. If k is even, say k = 2j,
then we may choose an isomorphism

. J

B Ve (V) =Q V.
Specifying i, amounts to pairing off the factors of ¥V, . In (V}) ; we have the
invariant ®j 6,. Thus in ¥, we have the invariant 6, = i;'(@j 6,). On V,
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we again have the action of S, permuting the factors. We see 6, is invariant
up to sign by the subgroup of S, which preserves the pairing used to define i, .

Theorem 1B. If k is odd, there are no G-invariants in V, . If k is even, the
translates of 6, by S, span the G-invariants in V, .

This may also be dug out of Weyl. As mentioned in the introduction, a fairly
quick proof, using 1A, is given in [ABP] for O, . One may argue similarly for
Sp,,, -

We wish to transfer the above results to the context of certain other algebras.
We would like to remark that the basic objects to be defined here and in §2 have
also been defined independently and more elegantly by Tilgner [T] as Z,-graded
objects. The reader with a refined taste is referred to his article for comparison.

Let U and W be two complex vector spaces. Let & (U,W) be the asso-
ciative algebra with 1 generated by U and V subject to the conditions that (i)
elements of U commute with everything and (ii) elements of W anticommute
among themselves. It is not hard to see that

A (U, W) =SU)e A(W),

where S indicates the symmetric algebra and A the exterior algebra. We may
give & a grading by using the sum of the gradings on S(U) and A(W), so
& is a graded algebra.

Next, consider a classical group G acting on its basic module V. Choose
positive integers k,,/,, i=1,2,and put U = (@k' V)® (Q)" V*) and W =
@ V)e@"V"). (For G=0, or Sp,, , the explicit inclusion of ¥* in U
and W is unnecessary.) Both U and W may be regarded as G-modules in
the obvious way. Therefore we have on &/ (U, V) a natural G-action by alge-
bra automorphisms. The invariants of this action therefore form a subalgebra
containing the identity. In the algebra of invariants, the elements of total order
two are easy to describe. They are simply the span of the canonical pairings
between the various copies of ¥ and V*. The extension of the First Funda-
mental Theorem of Classical Invariant Theory to the present context may be
stated as follows.

Theorem 2. Let G be a classical group, and let U and W be G-modules formed
by taking direct sums of the basic module for G (and, if G = Gl,, of the
contragradient module). Consider the resulting action on &/ (U ,W). Then the
algebra of G-invariants is generated by the invariants of degree 2.

Proof. If U = V¥ @ V*' and W = V* @ V*" as indicated above, then
& (U, V) is isomorphic as a G-module to the tensor product

(@"' S(V)) ® (®" S(V*)) ® (®"2 A(V)) ® ( g A(V*)) .

Each factor, S(V), A(V), etc., has on it a natural grading, and the degree on
& (U,V) is formed by taking the sum of all these partial gradings. Thus if
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& (U,V)" is the space of degree m in &/ (U,V), we see & (U,V)" is a
direct sum of the spaces of the form

xS es) oS eSF ) e AV,

where S(V)* is the space of degree a, in S(V), and so forth, and } o, +
2 B;+2 7,426, =m. The decomposition of & (U, V) into these subspaces
is clearly a decomposition into submodules for G . Therefore the G-invariants
will be the direct sum of the invariants contained in the spaces (*). We therefore
look at such a space.

A space of the form () is a subspace of (R’ V)® (R V"), where p =
2 a;+> 7, and ¢ =) 8,4+ 9,. Hence we may apply Theorems 1A and 1B.
To ease the discussion, let us assume G =~ O, or Sp,, . The case of G ~Gl,
is similar. Thus we take f, = ¢ ; = 0. From Theorem 1B we know that a
G-invariant on ®” V is a sum of those obtained by pairing the factors in some
way and taking the tensor product of the degree 2 invariants in the various
(V'®V)’s thus formed. We are only interested in the restriction of these invari-
ants to the subspace (x). This means that, after selecting a pairing, we then sym-
metrize with respect to the appropriate blocks of «; factors and antisymmetrize
with respect to the various blocks of y | factors. Since the symmetrization and
antisymmetrization operations correspond to one-dimensional representations
of the symmetric groups of the blocks, two pairings which are transformed into
one another by the action of the symmetric groups of the blocks defining (*)
give the same restriction (up to sign) to (x). Further, there are some taboos
to observe with regard to matching within given blocks. That is, if G~ O,
then the invariant corresponding to a pairing is symmetric in each pair in the
pairing so if both members of a given pair belong to a block which gets anti-
symmetrized, then the invariant dies on restriction to (*). Upon inspecting the
invariants that are left after taking these restrictions into account, we find that
they are indeed accounted for by products of the invariants of degree two. This
concludes our proof.

2. QUANTUM ALGEBRA

Take two vector spaces U,W, and form & (U,W). Since & (U,W) is
an algebra it acts on itself by (left) multiplication, so there is a natural embed-
ding of ./ in End(&). In particular, for every x in U or W we have the
multiplication operator

(1) M. :.y—xy.

There is also an action of U* and W"* on & (U, V). This is not completely
simple to describe and our treatment will be rather homely. Again see Tilgner
[T] for greater elegance.

Consider " € U* first. Write keru” = U, and let L be a line complemen-
tary to U, in U. We have an isomorphism &/ (U,W) ~ S(L)® % (U,,W).
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If x € L is nonzero, then &/ (U,W) is the span of elements x"y with
y €& (U,,W). We define an operator D,. on &/ (U,W) by the formula

2) D,.(x"y) = nu"(x)x""y.
It is easy to check that D,. is well defined and that it is a derivation, that is
(3) D,(yz)=D,.(y)z+yD,.(z) foranyy,ze o (U,W).

If &/(U,W) is regarded as the A(W)-valued polynomials on U*, then D,.
is just the directional derivative in the direction of u*. A direct computation
shows the D,. commute among themselves. Moreover, if [AB] = AB — BA is
the commutator of 4 and B, we have the commutator relation

[D,..M]=u"(u)l foru'eU anduecU.

We may reformulate (3) as follows. Put U = U@ U" and let (, )~ be the
antisymmetric extension to U of the pairing between U and U* . Explicitly,

(4) (g +uy uy +uy)" = uj(u,) ~ uy(u,).

The direct sum of the maps u — M, and u — D,. defines an embedding

(5) i: U— End(¥ (U, w)).
With these conventions we have the formula
(6) [i(x),i]=(x,»)"1 forx,yeU.

Thus if we set # = i(U) ® C, where C is identified to multiples of 1 in
End(&/ (U, W)), we see # is a two-step nilpotent Lie algebra, with C as
center.

We can perform a similar construction using W , but the result is a Jordan
algebra rather than a Lie algebra. If w* € W", we may construct D . in
exactly the same manner as we used for »* in U”, even to the extent of using
formula (2), providing we remember 7 is restricted to zero and 1 in this case.
This endomorphism D , is usually called inner multiplication, at least in the
case where U = {0}, so & reduces to an exterior algebra. It is not quite a
derivation. Rather, it satisfies a law like

(7) D,.(xyz) = x(D,.(»)z + (-1)?yD,.(2)

forx e S(U), ye N' (W), ze (U, W).
Such a law is said to define an antiderivation or graded derivation. The law
(7) makes it congenial to consider anticommutators rather than commutators.

Define {4,B} = AB + BA. Then it is easy to check that there is an anticom-
mutation relation

(8) {D,.,M,}=w"(w)l forweW andw" eW".

Put W=WeW" andlet (, )~ (note the round parentheses) be the symmetric
extension to W of the pairing between W and W”*. That is,

w*

9) (w, +wy ,w, + w,)” = w;(w,) +w; (w,).
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Again, let
(10) i: W — End(& (U,W))

be the direct sum of the D and M maps. Then, taking into account the
anticommutativity of the D, .’s among themseives, and of the M, ’s, we see

(11) {i(x),i(y)} = (x,»)"1 forx,yeW.

Thus if we put 7 = i(W) ® C, we see that J is a two-step nilpotent Jordan
algebra, with C as center.

Thus, using the maps M and D, we have built in End(/ (U, W)) a Lie
algebra # and Jordan algebra .9 . It is easy to see that # and .7 commute
with each other. Denote by End® (% (U, W)) the subalgebra of End(& (U, W))
generated by # and I . 2 Clearly & (U, W) is embedded in End®(&/ (U, W))
via the left multiplication. Let /: &/ (U, W) — End°(&/ (U, W)) denote this
embedding. Also let [*: &/ (U",W") — End’(&/ (U, W)) be the homomor-
phism extending the above defined embedding of U* @ W . The following is
a straightforward inductive computation using formulas (4) and (8), or (6) and
(11), above.

Theorem 3. The map m: & (U,V)® & (U",V") — End* (& (U,V)) defined
by m(x ®y) = [(x)I"(y) is a linear isomorphism. Further End’ is isomorphic
to the free algebra generated by i(U)®i(W) subject to the relations (6) and (11)
(plus commutativity between i(U) and i(W)).

Remark. From the universal description of End° given in Theorem 3, it is clear
that Sp(U,(, )™)x O(W,(,)™) acts as a group of automorphisms on End’
and preserves the generating subspace i(U) @ i(W). It will be important for us
to know that this action is essentially inner, and to compute it. These are our
immediate goals.

We observe next that End® has a natural filtered structure. Indeed, we put
End®? = C, and End®"" = # + .97, and inductively write

End”"*Y = End®” . End"" = {Z xy: x e End™" ,y e Endo(l)} .

Then in general End®™ -End®™ = End°"*™ . Consider End”®/End°!". This
is isomorphic to S*(i(0)) & (U ® W) & A*(i(W)).

Theorem 4. The subspace S*(i(U)) ® A*(i(W)) = g of End"®/End”" has
a structure of Lie algebra. Precisely, the commutator relation [g, End°(")] -
End°"™ holds.®> The Lie algebra structure is the obvious one arising from this

2 A proper appelation for End® is problematical. Tilgner [T] calls it a graded Weyl algebra. It
might as well be called a graded Clifford algebra. Or more symmetrically, Clifford-Weyl algebra or
Weyl-Clifford algebra. These abbreviate to CW and WC respectively, each with its own drawbacks.
Perhaps, after the manner of its generation, it could be termed the Ho-Jo algebra. The label I favor
is quantum algebra. Tt has a certain aura, and it is consistent with other terminology inspired by
physics. But I am not insisting yet.

3 Here is one point where a thorough-going graded formulation would help a lot. We could
assert [End°™,End®"] C End°"+"~2)  where [, ] would signify the graded commutator.
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(e.g., put n =2). Further the resulting action of g on End”"/End®? ~ U W
identifies S2(i((7 )) with the Lie algebra of the isometry group of {, )~ , and
identifies A? (i(W)) with the Lie algebra of the isometry group of (,)".
Proof. All these facts are straightforward from formulas (4) and (8) or (6) and
(11). In fact, if we verify the action on End®" is as it should be, the rest will
follow. For example, take a,b,c in i(W). Then [a,b] = ab—ba € Az(i(W)) ,
and we compute
[la,b],cl=1[b,[c,all +[a,[b,c]]
= bca — bac — cab + acb + abc — acb — bca + cbha
={b,cta—-b{a,c} - {a,c}b+a{b,c}
=2a(b,c)” —2b(a,c)”.
To check this transformation is an infinitesimal isometry of ( , )~ we compute
(2a(b,c0)” =2b(a,c)”,d)” =2((a,d)"(b,c)” - (b,d)"(a,c)").

The right-hand side of this is antisymmetric in ¢ and 4, as it should be. The
argument for U is similar.

On the basis of the above theorem, we will denote S2(i(¥7)) by sp(U) = sp,
and denote A’(i(W)) by o(W) = o. It is implicit in the computation given
above, that if we take sp to be the span of the anticommutators of elements of

i(U), and take o to be the span of commutators of elements of i(W), then
[9,i(0) +i(W)] = i(0) +i(W),

where now g = sp@o. Thus g exists not merely inside End°®/End*" but

as an actual Lie subalgebra of End’. Because taking commutators with g pre-

serves the filtration on End®, we can exponentiate the resulting derivations. We
state these facts formally.

Theorem S. The Lie algebra g = sp@®o may be embedded as a Lie subalgebra of
End°®, and so acts as a Lie algebra of derivations of End® , preserving the subspace

i(U)®i(W) and the filtration {End°(k)} . Thus g may be exponentiated to obtain
an action by automorphisms of Sp(U,(, )~)x SO(W,(, )™) on End°.

Now let us compute this action explicitly. From the filtration on End® we
may form the associated graded algebra
oo
GrEnd® = @) End"" /End”" .
n=0
The multiplication on GrEnd® is formed by taking the direct sum of the maps
: (End”™ /End”"™") x (End’" /End”™ ") — End""*™ /End°" "V

where 7 is the map induced by multiplication in End°. The next result is
again an obvious consequence of formulas (4), (8), (6) and (11).
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Theorem 6. The map i: U W ~ End°! / End®? extends to an isomorphism
of algebras

GrEnd’ (& (U, W)) ~ (U, W).

Moreover, the action of Sp(U) x O(W) on GrEnd® induced from the action by
automorphisms on End’ is identified to the natural action of Sp(U) x O(W) on
(U, W).

Remark. It was convenient for our purposes to begin with &/ (U, W) and con-
struct the endomorphism algebra End°(&/ (U, W)). However, we could if we
wished regard End° as a primary object, an algebra attached to a pair U, W of
spaces, the first carrying a symplectic structure, the second an orthogonal struc-
ture. From such a point of view, how do we recapture U and W ? The answer
is that .o/ (U, W) provides an irreducible module for End® of a particular type.
Suppose (U, ,U,) is a pair of subspaces of U such that U = U, @ U, and each
U, is isotropic for (, )7, i.., the restriction of (, )~ to U, is identically
zero. Let (W, W,) be a similar pair of subspaces of W . Then it is not hard
to check that the subalgebra (with 1) B, of End’® generated by UeW, isa
copy of & (U,,W,) and that End° ~ B, ® B, via multiplication. Thus, if L,
is the left ideal generated by U, ® W, , we see End°/ L, ~ B, , so the natural left
action of End® on End°/L, can be interpreted as an action on B, , with B,
acting on itself by multiplication. Clearly the procedure we have gone through
is precisely opposite to this.

Note further that by the above we have in particlar an action of g =sp®o
on B, . Since the action of o takes place essentially on the finite-dimensional
space & (W) ~ A(W),), this action will exponentiate to a group action. As is
well known, the resulting group is not SO(W), but its simply connected 2-fold
cover Spin(W). This is the standard construction of Spin(#). The associated
representation is called the Spin representation.

It turns out that the action of sp will not exponentiate to a group action
on B,. However, the space B, may be embedded in a larger space, with a
natural realization as a space of smooth (form-valued) functions (a seemingly
intrinsically transcendental object), and the action of sp may be suitably ex-
tended so that it does exponentiate to a group action. Over C, where we are
now, the resulting group is Sp(U), as it must be since Sp(U) is simply con-
nected. However, a parallel construction may be carried out for any local field,
and over all fields except C, the result is a group which is a 2-fold cover of
the usual symplectic group over the field. This construction was discovered by
Segal, Shale and Weil [Sh, Wi2] and many terms are now used to describe it,
e.g., Weil representation, Shale-Weil representation, metaplectic representation,
harmonic. I would like to propose yet another term which seems to me more
satisfactory than the above choices. I would refer to this representation as the
oscillator representation, and the associated group as the oscillator group. Usu-
ally it is not necessary to justify terminology at length, it being arbitrary, etc.,
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but because there is such a current welter of names, I note the following points
in favor of this new one.

(a) The spin and oscillator representations are clearly intimately related, and
in fact appear as two aspects of the same phenomenon.

(b) The term spin is colorful and is inspired by a physical phenomenon,
namely the “spin” of the elementary particles, which the spin representation
describes mathematically.

(c) The algebra associated with the oscillator representation also describes an
important physical system, namely the (quantum mechanical) harmonic oscil-
lator. (Indeed, the fact that the exponentiated representation (over R) requres
a 2-fold cover of Sp is physically interpreted as the existence of “zero-point
energy”, a basic phenomenon, and one that causes the first need to “renormal-
ize” in quantum field theory.)

(d) The terms “spin” and “oscillator” are clearly consonant.

3. DuALITY

To return to business, let us recall that, with g ~ sp @& o, we have
End"?/End’" ~ g& (U ® W).

We know we can realize g as an actual subspace of End°?. Then End°?
is a module for g and we can find a subspace isomorphic to U ® W . Thus
the whole space g @ (U ® W) = gr may be regarded as a subspace of End’,
where g is a Lie subalgebra under the induced bracket operation, and U ® W
is g-invariant. It turns out gt has further structure. Namely, if you take the
anticommutator of two elements of U ® W, the result belongs to g. This may
again be easily checked using formulas (4), (8), (6), and (11). We cannot resist
recording the relevant identity:

{a®c,b®d}=1i(a,b]®[c,d]+{a,b}®{c,d}).

The resulting structure on gv is called a graded Lie algebra structure. (We note
End°"! is also a graded Lie algebra in a trivial sort of way.) Some physicists are
quite interested in graded Lie algebras these days. Simple graded Lie algebras
have been classified by Kac [K] and gt is on his list. Again, we note that
this realization of gt has also been noticed by Tilgner [T] and described more
elegantly.

Write gr, = g and gr, = U ® W. By a subalgebra of gr we will mean a
linear subspace I" of gt such that

I'=sTngy)eTngey) =TT,
Iy, Tcry, [M,,I[1cr, and {T,,I}CT,.
If T and I are two subalgebras, then we say I" and I commute if all pos-

sible brackets with one element from ' and one from I" are zero. If T is a
subalgebra, let I’ be the set of all elements commuting with I'. We call I the
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centralizer of T in gr. It may be checked that I"” is a subalgebra of gr. (Ac-
tually, there are some identities involved here, called graded Jacobi identities.
These are
la,[b,cll=[c,[b,all +[b,[a,cll,
la,{b,c}]1={b,la,cl} +{c,[a,b]}
=[{a,c},bl+[{b,a},c].
We already know that gr, = g actson i (O)®i(W) by the usual commutator
action. We can also define an action of gr, on i(U) @ i(W) by defining

yuow)={y,w}ely,ul foryeg,, uci(l), wei(W).

It may be checked, again using the graded Jacobi identities, that the actions of
gr, and gr, fit together to form a representation of gr, in the sense that all the
relevant commutator and anticommutator relations are satisfied. If I’ C gr isa
subalgebra, we will say T is reductive if T acts reductively on i(U) @ i(W).

Let (I',I”) be a pair of subalgebras. We say I" and I" are in duality or
form a dual pair if T is the centralizer of T and vice versa. We say (I',I") is
a reductive dual pair if (I, T”) is a dual pair and each of I',T” is reductive.

We will give three examples of reductive dual pairs, corresponding to the
three classical groups. It seems most likely that these are essentially the only
examples of reductive dual pairs in gv, but this result is not crucial to our
development and would take us too far afield into graded Lie algebras. (It is
fairly easy to show these exhaust irreducible pairs (I',I”) such that I'C %)

First, observe that GL(U) x GL(W) = GL acts on End’ (& (U,W)) by
automorphisms. For GL acts on &/ (U, W) by automorphisms, and if x €
End®°(#/ (U,W)) and g € GL, then gxg_1 , the conjugate of x by g, is
again in End°. Indeed, it is clear that conjugation by g preserves the space
i(U) x i(W) . More particularly, one has relations like

-1 -1
gM.g =M, gDg =D

&)
for xeU®W and y e U" @ W", where g(x) and g(y) are the standard
actions of g € GL on U@ W and U* @ W". Thus we have an embed-
ding GL — Sp x 0 given by conjugation as above. There is a corresponding
infinitesimal embedding gl(U) x gl(W) — sp x 0 = gr,. In fact, this embed-
ding already arises from an embedding of gl = gl(U) x gl(W) in End°? .
Indeed, if we differentiate the action of GL on &/ (U, V'), the endomorphisms
of &/ (U,V) describing the resulting action of gl are easily seen to belong to
End°®? , and conjugation by GL on End° is the inner action arising from expo-
nentiating the bracket action by this image of gl. As a complement, note that
sp~ SXU) ~ S2(U) e (U U*) @ S*(U*). Of course U® U* =~ gl(U) as Lie
algebras, and indeed U® U" is precisely the image of the above embedding of
gl(U).

Now consider a classical group G with standard module V. Put U =
@ V)o@ V)=Ver" andput W =V2e V™. Let G acton
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U @ W by the direct sum action. This gives an embedding G — GL. If T
is the Lie algebra of G, then according to the preceding discussion, we have a
corresponding inclusion I' < gr,. Let I" be the centralizer of T in gr. Then
we claim (I,I”) forms a reductive dual pair. We will show this by giving a
more complete discussion which will yield an explicit description of I" .

We consider the groups one at a time. First take G = GL(V). Then we may
write U~ (V®D,)® v ®E,), where D, and E, are auxiliary spaces of the
appropriate dimensions. Similarly, we have W ~ (V ® D)) ® Ve E,). Then

U=UeU =(VeD)s(V'®E)®(V'®D;)a(VeE])

=Ve(D eE)eV ®[D oE) =UaeU".
It is immediate from the definition of the form (, )™ that GL(D,®E/) is inside
Sp(U). In fact, if x € GL(U) commutes with GL(V), it preserves U’ and
U™, and X,y must belong to GL(D, EBE; ). For x to preserve (, )~ , we must
also require that X\ yyre be the inverse transpose of Xy - Thus GL(D, ® Er) is
the full centralizer of GL(V) in Sp(U). Since the situation is symmetric in V
and D, ®E", we see that GL(V) is the centralizer of GL(D, ®E}) in Sp(U).
Thus we could say that GL(V) and GL(D, & Er) form a reductive dual pair
in Sp(U). Indeed, if W = {0}, then gr reduces to sp(U) and we are just
discussing the infinitesimal version of this pair. That is, gi(¥) and gl(D, EDET)
are mutual centralizers in sp.

Next considering W ~ (VeD,)® (V'®E,), we find in a similar manner
that gi(V') and gl(D, ® E;) are in duality in o = o(W). Thus if T = gl(V),
we have I' = 1'“0 @ l"'1 and we have determined that I'J0 ~ gl(D, @ Er)@
gl(D, @ E;) .

We turn to the computation of I', . We have g, = U ® W ~ Hom(U , W) ~
Hom(W , U). The action of SpxO on gr, is the tensor product of the standard
actions, and the bracket operation of gr, >~ sp@o on gr, is just the infinitesimal
version of this action. Thus if we write gr, as Hom(U', W), then clearly 1"'l
may be thought of as the GL(V)-intertwining operators between U and V. In
terms of the above discussion, this would be

I, ~Hom(D, ® E; , D, ® E;) ® Hom(D} ® E,, D; & E,).

Finally, we can see that ' = g1 (V) is the full centralizer of I" . It is evident
that the centralizer of l";) in spdo is gl(V)®gl(V). Inside this algebra only
the diagonal can also centralize any nonzero element of l"'1 . Thus '=gl(V) =
(I')g - Since I, is the direct sum of two algebras, one acting trivially on W and
without fixed points on U, and vice versa for the other, we see (I')] = {0}.
Thus indeed T is the centralizer of I", and (I',I”) are a reductive dual pair
in gr.

We now consider G = Sp(V'). Then again we may write U = V' ® D, where
D, is an auxiliary space. (We can leave V" out of it.) Then

U=UeoU =(VeD)eo (V' ®D)~VeD, aDj).
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Furthermore, the symplectic form (, )~ on U can be written as the tensor
product of (, ), the given form on V', with the natural symmetric form ( , ),
on D, ®Dr . From this factorization of U it is easy to see that the centralizer of
Sp(V) in Sp(U) is O(D,®Dj,( , ),) and that Sp(V) and O(D, & D;) form
a reductive dual pair in Sp(U). This construction may be refined somewhat.
Instead of taking U = V ® D,, we may write directly U ~ ¥V ® D], where
D’1 is a space with a symmetric bilinear form on it. Here too it is easy to see
that Sp(V) and O(D'l) are mutual centralizers in Sp(U). This procedure is
equivalent to the old one if D'l is isomorphic to D, & D’f for some D, . Since
we are working over C, this will be the case if dimD| is even, but if dim D]
is odd, it will not be so.

Next write W =V ®D,, so that W ~ V @ (D,®D;). If we puton D,& D,
the natural symplectic structure (, ),, then we have (, )" =(, )®(, ),.
Thus now we see Sp(}') and Sp(D, ® D'z) are a reductive dual pair in O(W).

Taking the infinitesimal analogs, we find that if I" C gr, is the Lie algebra of
Sp(V) embedded in the manner indicated above, then

Iy~ o(D)) ®sp(D, ® D;).

Again I'| is the space of Sp(¥) intertwining maps from U to W, and is
isomorphic to D'l ® (D, ® D;) ; and again (T, ') form a reductive dual pair.

Finally, we sketch the situation for an orthogonal group. Again write U =~
VoD, and W~V ®D,;then U~V ® (D, &D]) and W~V (D,®D;).
Now (, )~ on U may be regarded as the tensor product of the symmetric
form (, ) on V and the natural antisymmetric form on D, @Dr ,and O(V)
and Sp(D, ® D}) form a dual pair in Sp(U). Similarly, (, )~ on W is the
tensor product of ( , ) on ¥V and the natural symmetric form on D, © D; ,
and then O(V) and O(D,®D;) are in duality in O(W). Again we may note a
refinement. If dim V' is even, then O(DZGBD;) may be replaced by any O(D;) ,
where D; is a space with symmetric form, of odd or even dimension. Then
if o(V)~T C gry, we see Ty~ sp(D, ® D})@o(D;). Again I" is the space
of O(V) operators from U to W, essentially isomorphic to (D, ® D}) ® D, .
Again T and I" are in duality.

In sum then, we have constructed a set of reductive dual pairs (I',I") at-
tached to classical groups. We will refer to them as the classical dual pairs. Note
that in the general case, with neither U nor W trivial, there is a certain amount
of asymmetry in the pairs as constructed. Indeed, in all the pairs I" C gt,, and
I', = T is a simple Lie algebra (if we ignore the center of GL) while 1_41 is
nontrivial, and I'J0 is the sum of two simple factors. However, if U or W is
trivial, then the relation between I and I" is essentially symmetric.

Having constructed the classical reductive dual pairs, we should now state a
theorem about them.
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Theorem 7. Let (T,I") be a classical reductive dual pair, with T C gr, ~ spdo.
Let G C Sp x O be the classical group corresponding to T'. (That is, G is the
subgroup of Sp x O leaving T' pointwise fixed.) Then the associative subalgebra
of End® generated by T is the full algebra of G invariants in End°.

Proof. Consider the isomorphism GrEnd® ~ .o/ (U, W) given by Theorem 6.
This isomorphism is (Sp x O)-equivariant. From the description of reductive
dual pairs given above, it is evident that the action of G induced on GrEnd°,
when transferred to a(U, W), becomes the action of G attached to the direct
sum of copies of the standard module for G or its contragredient. Thus by
Theorem 2, the G-invariants in GrEnd® are generated by the degree 2 invari-
ants. But under the identification gr ~ End*? / End’" | the degree 2 invariants
are just I'. Now the result follows by a straightforward induction. Suppose
I" generates all the G-invariants inside End°*’. Take a G-invariant x in
End’**"; then the image X of x in End®**"/End°® can be written

YZZJ_’:'EN

where the y; are in I" and the Z; are G-invariants in End°*~" /End
We can lift the Z; to G-invariants z; in End°*~Y . Then clearly x — 3 y,z;

belongs to End°* and so by induction belongs to the algebra generated by I'" ,
as do the-z;. Hence so does x, and we are done.

o(k—2)

If G is connected (i.e., if G is not an orthogonal group), then the G-
invariants in End® are the same as the algebra commuting with I'. In any
case, the algebras generated by I' and I" commute with each other, and are
close to being mutual commutants. In such a situation, one expects a dual re-
lationship between the actions of the two algebras—a matching up of isotypic
components, joint irreducible actions, and so forth. This is indeed true here.

Recall that for a given representation of a group on a vector space, an isotypic
component is the sum of all subrepresentations isomorphic with some given
irreducible representation of the group.

Theorem 8. Let G be a classical group with standard module V. Let U and
W be direct sums of copies of V and V", and consider the resulting action of
G on & (U,W). Let

oo

o (U W)=@P1I,

j=0
be the decomposition of &/ (U , W) into isotypic components for G. Let T C gr
be the image of the Lie algebra of G corresponding to this action, and let T' be
the centralizer of T in gr. Then the joint action of G and T' on any I ;s
irreducible, and 1 ; has the form

Ij:a'j®‘tj,
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where o, isa finite-dimensional representation of G and t ; isan irreducible

module for T'. Moreover, o and t ; determine each other, so the correspon-

dence 0,1, IS bijective.

Proof. If End°(&/ (U, W)) were the full endomorphism ring of &/ (U,W),
this would be immediate from Theorem 7. Instead we need the following easy
technical lemmas.

Lemmal. If X C &/ (U, W) is afinite-dimensional subspace, then the restriction
map r: End’(&/ (U, W) — Hom(X ,& (U, W)) is surjective.

Lemma 2. Let #(G) C End’ (& (U, W)) be the operators commuting with G .
Then there is a linear projection operator T — T* of End® onto #(G) with
the following properties:
() (STH =s*1".
(i) if X C & (U, W) is a G-invariant subspace and T € End’ leaves X
invariant and commutes with G on X, then fo =Ty

The proof of Lemma 1 is straightforward. The proof of Lemma 2 is by the
well-known “unitarian trick” of averaging over the maximal compact subgroup
of G.

The theorem now follows directly from these facts. For let X C I. be
a finite-dimensional G-invariant subspace. Then the joint action of G and
the commutant of G in End(X) is irreducible on X by the usual double
commutant theorem. But the above lemmas imply that .#(G) restricted to
X includes the commutant of G in End(X). Since X was arbitrarily large,
this means the joint action of #(G) and G on [, is irreducible. Similarly, if
I #I, and X C I, and Y C I, are finite dimensional and G-invariant, then
agam by the lemmas there is an element of .#(G) which is the identity on X
and zero on Y. Hence the representations of .#(G), and thus of T" on I, f
and I, are distinct. This concludes the proof of the theorem.

It turns out that the I"-modules occurring in %/ (U, W) have a characteristic
structure which we will now describe. Recall the isomorphisms gr, ~ S2(l7 ) ®
A*(W) and gr, ~ U® W . Furthermore, U~U@U* and WWaW*, so
that

= (S UeU)e S’ U e (N W) e (WeW ) e A (W)}
and gr, ~ (U W)o (U W aUeW)a (U @ W"). We define
a?? ~ S (e AU e (Us W),
g2 UeUYeWeW oUW aU W),
gt (02 ~S2(U*)@A2(U*) U e W),
It may be checked that gt(z ) etc. are subalgebras of gr. Moreover gt 2.9 and

gt t? are abelian, in the sense that all brackets are zero. Also gt(o 2) and gt(z 0
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are normalized by gt“ 1)

in the sense that they are invariant under bracketing
(1,1)

In terms of the action on gr on &/ (U,W), the elements of
gv”"" raise degree in & (U, W) by 2. Elements of g(o 2 lower degree by 2,
and elements of g(l 1 preserve degree.

If (T,T7) is a classical reductive dual pair in gr such that I" arises from a
sum of actionson U@ W , then I' = I'?? o 'V g 0  where 'O =
I' nge®?, etc. Further, observe that T'®% is essentially the space of degree
2 invariants for G in &/ (U, W), whereas 2 might be thought of as the
G-invariant “constant coefficient differential operators” of degree 2. (This is
true in the traditional sense if W = {0}.) In any case, we will define

X ={xes/(U,W);T(x)=0forall T e "},
We will refer to # as the harmonics, or the I”-harmonics.

Theorem 9. Let G act on & (U, W) as in Theorem 8. Let
(o] (o]
LU W) =PI, ~Po, 1,
Jj=0 Jj=0

be the decomposition of & (U, W) into irreducible joint (G, T')-modules. Let
I, be the G-invariants, and ¥ the I"-harmonics. Then
(i) The map I,® % — o/ (U, W) given by multiplication is surjective.

(il) If Z = Z N1, then # = @2, % and Z, # {0} for any j. Also
I, = IOZ? %; consists of the elements in I f of lowest degree.

(iii) FEach 27; is invariant under T'"Y | and SJorms an irreducible module
for the joint action of G and T'"V . The resulting correspondence be-
tween G-modules and T'""V-modules is again bijective. Furthermore,
27} Sforms a cyclic subspace for I f under the action of o, (Thus
these are modules for T' with “highest weights”.)

Proof. Since every element of &/ (U, W) is eventually killed by successive ap-
plications of elements from "2 , and since each I f is T’ ‘2)-invariant, we
see %} # {0} . Indeed, the elements of I ; of lowest possible degree must be in
27} . Also, since I"*? commutes with G, we know #Z will be G-invariant.
This proves the first statement of (ii).

Let 720 , U and £ pe algebras in End®(&/ (U, W)) generated
by "9 D and T respectively. By virtue of the bracket relations in
gr, we may write

F(G) = F PO 71D 70D

(This is the easy half of PBW.) Since I'""") normalizes I'**? it is clear that %,

is invariant under I""'*V , hence under .#"*" . Thus the above decomposition
of .#(G) implies I =7 @ ’O)Zj . This proves the third statement of (iii). Since
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as we have noted #?% ~ I, this also proves (i) and the second statement of
(i1). Now suppose X C Zj is a homogeneous subspace invariant under G and

under T""Y | Then by the irreducibility of the joint (G,I”)-action, we have
I, = F(G)- X = F20 . x But F@9Y. X = X @Y, where Y consists
of elements of degree greater than the degree of X, since multiplication by
elements of I'®? raises degree. Thus X must consist of all elements of 7 ;
of minimum degree. The rest of the theorem follows, except for bijectivity of
G-modules and T'""*"-modules defined by the #Z, . But it is easy to see that
rtb generates the subalgebra of End(/#) commuting with G and coming
from End°. So we are done.

4. EXAMPLES

(a) Classical theory of spherical harmonics. Let G = O, (C) be the isometries of
the inner product Y/ _, zf on C". This may be regarded as the complexification
of the action of the compact group O, (R) on R" . Consider the induced action
on the polynomials on C". This is just &/ (U, W) when U = C" and W =
{0}. The function P = E;’:o zf is by definition an invariant polynomial.
According to Theorem 2, it generates the algebra of O, invariants. Thus

1,(0,) ~ {p(rz) , D a polynomial} .

The .Laplacian A= Z;;l 62/62f is an O, -invariant differential operator.
The commutator

(A rz]—zi 22,9, —4izi+2n
AT P 0z, 0z;7') P 9z, ’

Here 3" 2,0 /0z; = E is Euler’s degree operator. Thus A,r* and 4E +2n
together span a Lie algebra isomorphic to sl,, which is the appropriate I for
this action. We see I'**? is spanned by r*, I'%? by A, and T’V by
4E + 2n . In particular I'""") is abelian.

Now put # = kerA. Thus # are the classical “spherical harmonics”.
Let #, be the spherical harmonics of degree m. Then 4E + 2n acts on
#,, as the scalar operator 4m + 2n. Thus each #, must be irreducible for
O, by Theorem 9(iii). Further, an easy computation shows that (z, + izz)'"
is harmonic for all n, so #, # {0}. Specializing the rest of Theorem 9 to
this case we have the following basic facts of the classical theory of spherical
harmonics.

(i) The spherical harmonics #, of each degree n form an irreducible O,-
module. The #, are mutually distinct.

(ii) Every irreducible O, submodule of polynomials is isomorphic to some
Z, .

(iii) Every polynomial may be written as a sum EPi(rz)hi , where the P,

l
are polynomials in one variable and the A, are harmonic. (In this case, the
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expression is easily seen to be unique.) More precisely, if &, is the space of
polynomials of degree m, then

2k
gm @ r %;n—Zk

0<2k<m

1

is the decomposition of & into irreducible O,-modules.

(b) The Hodge decomposition theory. Let V' = J; be a real vector space of
dimension 2xn. Let J be a complex structure on V' ; that is, J is an operator
on V such that J* = —1. An inner product (,) on V is said to define a
compatible Hermitian structure for J if

(Jx,y)=—(x,Jy).

Such inner products exist. Choose one and denote it by ( , ). The form
y(x,y) = (Jx,y) is called the Kdhler form attached to J andto (, ). Itisa
symplectic form on V.

Now consider V. >~ V ®, C. We see that V. = Vt® V™ where V¥ is the
+/—1 eigenspace for J. Extend ( , ) to a symmetric, complex bilinear form
on V.. Then for x,y € V", we compute

i(x,y)=(ix,y) = (Jx,y) = —(x,Jy) = =(x,iy) = —i(x,y).

Hence V" is isotropic for (, ). Similarly V™ is isotropic for ( , ). So vt
and V™ are in duality via ( , ). Thus the subgroup of the isometry group of
(, ) preserving V' and V™ is isomorphic by restriction to GL(V'") (or to
GL(V7)).

We are interested in the relation between the Kéhler form y and the action
of GL(V") on the exterior algebra A( Vc) . We note the decomposition

AV =AVH)OAV )= @ ANFHeA (V).

0<p.g<n

Write A’(V") ® AY(V™) = AP?. Evidently the A?*? are invariant under
GL(V?). In fact the partial degree operators deg” and deg™ , which multiply
AP by p and g respectively, obviously commute with the action of GL(V'™).
We can get two other operators commuting with GL(V'*) from the Kihler form
y. We note that y € A2(VC* ). However, by means of ( , ) we can identify V
and VC* , S0 that we may also consider that y € AZ(VC) . In fact, since v are
isotropic for y, we will have y € A"!. Since y 1is clearly GL(V+)-invariant
we can get two more operators commuting with GL(V*). Namely, let A be
the operation of multiplication by y when we consider y € A" Let L be
the operation of inner multiplication, or contraction, with y, when we consider
y € AZ(VC* ). It is not hard to compute that

[L,A] =deg" +deg” — n
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so that L A, deg" +deg” —n, and deg’ —deg™ together form a Lie algebra,
isomorphic to gl,, with deg” —deg™ the central operator, and the other three
forming an sl, .

Referring back to Theorem 7, we recognize that we are here in the situation of
G=GL(V"), U={0} and W~ V" @ V" . We know therefore that the gl,
constructed above generates the full commuting algebra of GL(V'*). Taking
into account the known structure of g1,-modules [Se], and the particular form
of [L,A], we make the following assertions.

(i) Let °A"? = (ker L) N A”*%. Then A*:°A”“ — AP*F9%% i an isomor-
phism for p+q+k <n, and zero for p+qg+k >n.

(ii) Put *A”? = A*CA?*97%). Then A" = @, A" and these “A”*
are irreducible mutually inequivalent modules for GI(V'™).

(iii) In particular, each irreducible GL(¥'*) submodule of A(V,) is isomor-
phic to °A?”*? for unique p and q.

The above facts, with GL(V+) suppressed, are usually referred to as the
Hodge decomposition for forms. Chern [Ch] noticed that the Hodge decompo-
sition was representation theoretic in character, and Serre [Se] pointed out that
the operators A and L generated an s1,. However, I do not know if the full
duality has been recognized before.

Actually GL(V™") is not usually considered in this context. Rather, by virtue
of the real structure underlying Ve, one has on V. a complex conjugation
operator, which interchanges ¥* and ¥~ . The subgroup GL(¥") commuting
with complex conjugation is U, the unitary group. The group U will also leave
Vg invariant, and on ¥V, we may identify U to the group leaving ( , ) fixed
and commuting with J. Since the representation of GL(V") on A(Ve) is
holomorphic, the irreducible constituents will still be irreducible on restriction
to the real form U. So the Hodge decomposition may also be regarded as a
decomposition according to U-modules. In any case, the analogy with spherical
harmonics is clear. The °A”*? | analogs of harmonic polynomials, are generally
referred to as primitive forms.

(c) The de Rham complex. For a vector space V, the algebra & (V*, V") ~
S(V*)®A(V™) is the algebra of polynomial-valued exterior forms on V¥, so we
may term it the polynomial de Rham complex. We have the obvious action of
GL(V™) on it. In terms of §3, this is the case G = GL(V*), U=W = V",
Here I is four dimensional. It contains the exterior derivation operator d ,
given by
]
d= Z dxia—x—i
in coordinates, and the co-differentiation

d" =) xi(dx,),
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where i(dx;) indicates a contraction or inner multiplication operator. A
straightforward computation shows that d*=d?=0 , and

2{d,d"} = deg, +deg,,

where deg, is the polynomial degree, or Euler operator, and deg, is the exterior
degree operator. Thus on S*(V*) @ A'(V"), deg, is multiplication by k and

deg, is multiplication by /. Thus on the space &, ,_,, Sk(V*) ®AI(V*) , the
space of forms of total degree m, we see degp +deg, acts as the scalar m.

Thus the operator
) dd” +d°d —1-pP,
degp +deg,

where 1 is the identity and P is projection onto the constants, which are
S°® A’ . In other words, we have an explicit construction of a chain homotopy
between 1 and P. The existence of such a homotopy is useful for homological
algebra. For example, it is used in [J] as a basic step in the proof of the Hilbert
Syzygy Theorem.

The explicit module structure of & (V*, V™) is fairly pretty. It is not hard
to show that except for S°®A° all the irreducible submodules of % for the I”
spanned by d,d", deg, and deg, are 2 dimensional. From this, one concludes

each GL(V")-module occurs twice, once in S'®AF as the space of closed forms
and once in S @ A¥™! as the space of co-closed forms. The Poincaré lemma
follows. Using Young’s diagrams, another product of Theorem 1A, as explained
in [WI], we may be very concrete about these modules. The Young’s diagram
for S is

Lll=== 111 (ces

while the Young’s diagram for AF s

ey
—

(k cells)

.
b

In forming the tensor product S’ ® A¥ these diagrams may be abutted in two
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ways. Diagrammatically, we may write

[+ 1 cells 1 cells
] [T 1]
I ] o |k cels ~ ] o []
(I cells) k — 1 cells )
- k cells
L

The third and fourth diagrams represent the closed and co-closed forms respec-
tively. The Dolbeault complex may be handled in a parallel manner.

(d) Cohomology of the unitary group. In the cases G = GL(V') and the algebras
S(Vk) or A(Vk)——that is, when only covariant tensors of a given symmetry
type occur—the situation is particularly simple. In this case, we may write
vk~veD , where D is an auxiliary vector space of dimension k. Thus
GL(D) acts in an obvious way on S(¥ ® D) or A(V ® D), and Theorem 8
just says that gl(}) and gl(D) generate each other’s commutant inside the
appropriate Weyl or Clifford algebra. Thus S(V ® D) breaks up into a sum
of irreducible GL(V') x GL(D) modules, each occurring once, and there is
established thereby a bijection between certain representations of GL(}') and
certain representations of GL(D). The correspondence may be conveniently
described in terms of Young’s diagrams. Although the computations which
justify this description are not difficult, we will leave them out.

The representations of GL(}') occurring in the full tensor algebra over V
may be described by Young’s diagrams with at most dim V' rows. Similarly,
representations of GL(D) are described by diagrams with at most dim D rows.
In the joint action on S(V ® D) it may be seen that precisely those rep-
resentations of GL(V) or GL(D) occur which have diagrams with at most
min(dim ¥, dim D) rows. The only plausible possibility for matching is to
match those representations of GL(V) and GL(D) which have the same
Young’s diagram, and this is indeed what happens.

The case of A(V ® D) is more interesting. Here representations of GL(V)
occur whose Young’s diagrams have at most dim D columns. Similarly, rep-
resentations of GL(D) occur whose Young’s diagrams have at most dim V/
columns. A representation of GL(V) and a representation of GL(D) are
matched if their Young’s diagrams are obtained from each other by flipping
them over the diagonal. Thus for example, representations with diagrams

[ 1

and

correspond.
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This circumstance may be used to compute the cohomology of the unitary
group. As is well known [W] the cohomology of a compact Lie group is the
algebra of invariants for the adjoint action in the exterior algebra of the Lie
algebra of the group. For the unitary group, we may complexify and consider
the action by conjugation of GL(V) on A(V ® V*). The action of GL(V)
by conjugation results from the diagonal embedding of GL(V') into GL(V') x
GL(V) acting by left and right translations. The action of GL(V') x GL(V)
decomposes into a direct sum of irreducible representations p ® g , where p is
a representation of the first factor and o a representation of the second factor.
The fixed points for the diagonal group will arise when p = ¢. There will
be one fixed vector for each such coincidence. From the above discussion, we
know the pairs {p,c} which can possibly occur. There will be one coincidence
p = o for each Young’s diagram, of at most » rows and n columns, which
is symmetric across the diagonal. Among such diagrams there is an obvious
collection from which the others can be generated. These are best described by
writing down the first several:

D | || ||| etc.

L

This description allows us immediately to write down the Poincaré polynomial
of U, . A closer look would reveal that this description also yields the multi-
plicative structure of the cohomology, the above diagrams corresponding to the
so-called “primitive generators”.

One can give a similar description of the cohomology of the orthogonal and
symplectic groups. That is somewhat trickier, but follows from considerations
like those in topic (e) below. One can also calculate cohomology of Grassmann
varieties in this manner.

(e) Symmetric invariants for classical Lie algebras. We can compute the invari-
ant polynomials for the adjoint action of the classical groups. For GL(V),
considerations as for cohomology yield the result easily. For O and Sp a certain
amount of exercising with Young’s diagrams is necessary, and this derivation
is probably more difficult than better known ones. It does seem to have some
interest, however, so we give it. We will use Sp as our example.

First, let us note that in principle Theorems 1A and 1B would permit com-
putation of the invariants for any action of a classical group. Indeed, let the
classical G acton V by an action. Then ¥ may be broken up into irreducible
components and its symmetric algebra (for example) may be expressed as a sum
of tensor products of the symmetric powers of the irreducible summands. Each
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of these summands may then be embedded somewhere in the mixed tensor al-
gebra of the standard module. Given such an embedding, Theorems 1A and
1B allow computation of the invariants in such a summand. Transferring this
information back to S(¥) and putting it all together, you get a description of
the polynomial invariants on V. Of course this principle is a very abstract one,
for the individual steps in the above process can be very difficult. In particu-
lar, embedding the symmetric powers of even one irreducible module into the
tensor algebra in an explicit way will be very difficult. However, precisely the
above scheme yielded our basic Theorem 2, and it may also be applied in the
case at hand.

Let the vector space V' be given a symplectic form and let Sp be the isometry
group of this form. The adjoint action of Sp on its Lie algebra is isomorphic
to the action on S* (V). The Young’s diagram of S? is just OO. We want to
compute S"(SZ(V)) as a subspace of the tensor algebra of V.

Proposition 1. As a GL(V)-module, S"(S*(V)) breaks up into a sum of one
copy each of representations corresponding to Young’s diagrams of 2n cells and
an even number of cells in each row.

Proof. Let S,, be the symmetric group on the numbers {1,2,...,2n}. Par-
tition these numbers into n pairs {2i —1,2i} for 1 <i<n. Let B, be the
subgroup of S,, which preserves this partition. According to the calculus of

Young’s diagrams, the GL(¥)-modules in S”" (SZ(V)) have the same Young’s
diagrams as the S, -modules occurring in the permutation representation of
S,, on S, /B, . The intertwining algebra for this representation is the Hecke
algebra #(S,,//B,) of B, double cosets in S, , with convolution for multi-
plication.

n?’

Let us compute the B, double cosets in S,, . Take any g € S,, . Then g
will take the pairs {2/ — 1,2i} to some other collection of pairs. Let {a,,a,}
be a pair of the first partition. Then in the second partition, there will be a
pair {a,,a,}. Possibly a, = a, but likely not. Thus in the first partition
there will be a pair {a;,a,}. We can continue in this fashion linking pairs by
alternating between partitions until a, finally reappears in a pair of the second
partition. This will complete the chain and we will have to start over again. By
operating front and back with B, we see we can change the individual numbers
in a given chain at will. What we cannot change is the lengths of the chains.
These lengths form a partition of the number #. Thus the double coset space
B,\S,,/B, isin natural correspondence with the partitions of n. The partitions
of n also parametrize the conjugacy classes in S, . In fact, if we embed S,
into §,, by letting S, permute all the even numbers, then we see we have a
direct correspondence between B, double cosets and conjugacy classes in S, .
Since each conjugacy class in S, is self-inverse, each B, double cosetin S, is
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also self-inverse. Therefore the Hecke algebra #(S,,//B,) is commutative. 4

Thus the representation of S, acting on LZ(SZn /B,) decomposes simply, each
irreducible component occurring only once. Since the representations we claim
occur are also clearly parametrized by partitions of 7, to complete the proof it
remains only to show that the desired representations actually do occur.

To demonstrate occurrence, it is simplest to return to the algebra S(SZ(V))
and exhibit highest weight vectors corresponding to the desired GL(})-modules.
(To produce these highest weight vectors is also of interest in its own right.) This
is most easily done by introducing coordinates on ¥, which will give rise to
coordinates {x;; =x;:1<i,j<dimV} on SZ(V) . Given these coordinates,
it is easy to check that the determinants

X X2 Xg3
- —det|™1 *12| s -4
0, =x,, 0,=det X, ;=det|x;, X5, Xy, etc.
X3 X3 X33

are highest weight vectors for GL(V'), and that monomials in the 6, provide
highest weights of all the desired kinds. This concludes the proof of Proposition
1.

Next, we consider the Sp invariants. According to Theorem 1B, the Sp
invariants on ®2" V' are all obtained by applying permutations on the factors
to the particular invariant 6,, . Let s again denote the signum character of S,, .
We observe that 6,, is actually an eigenvector for B, , with eigencharacter the
restriction of s to B, . Thus under S,,, we see 6,, generates (a quotient of)
the induced representation

indy" s ~ s ® (indy" 1) ~ s ® L*(S,,/B,) .

n b

Since tensor product with s has the effect of flipping a Young’s diagram over
its diagonal, we see that the Young’s diagrams which contribute to the S,,
module generated by 6,, are diagrams with an even number of elements in
each column, at most one each.

On the other hand, we know that 6, € S" (AZ(V)) . Since 6, generates a
(Zariski) open and dense GL(V') orbit in A?, we see that the GL(V')-module

generated by 6, must span S"(AZ(V)). Combining Proposition 1 and the
preceding paragraph, we may assert:

Proposition 2. As a GL(V')-module, S"(AZ(V)) breaks up into a sum of one
copy each of representations corresponding to Young’s diagrams of 2n cells with
an even number of cells in each column.

Since 6,, generates S”" (AZ(V)) , We see every possible Young’s diagram con-
tributes to the S,,-module it generates. Therefore, we may conclude that each

irreducible GL(V) submodule of ®*" V of ®*" V' given by a Young’s diagram

4 This fact was told to me a long time ago by N. Iwahori, and this analysis was prompted by
questions he raised.
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with columns of even length contains precisely one Sp invariant. In particular
there is one Sp invariant for each Young’s diagram consisting of two columns
of even length. These of course give the well-known “basic invariants” which
are easy to write down. Since they are obviously algebraically independent, a
counting argument shows they generate all invariants.

(f) The Capelli identities. For our last application of the results of §3, we will try
to provide insight into the mechanics of Weyl’s treatment of classical invariant
theory. The crux of his proofs is the Capelli identity, which is a fairly compli-
cated object in itself. As we will see, this identity essentially describes the action
of the center of the universal enveloping algebra of GL(V) on & (Vk ,{0}).
Therefore we begin the discussion with some general remarks about how the
center of the universal enveloping algebras behave under duality.

Consider & (U, W), where either U or W is trivial, so that actually &/ =
S(U) or & = A(W). In this case gv = gr, = g is either sp(U ® (7) or
oW ® W) . Further, a classical dual pair in g consists of a pair (I',I") of
classical Lie algebras. We will give notation for various objects associated to I";
notation for I" will be parallel. Let A(I") be the subalgebra of End® generated
by I'. Let G be the classical group whose Lie algebra is I"'. We may think of G
as acting by automorphisms on End°. Then A(I”) is the algebra of invariants
for G.

Let Z(I') be the universal enveloping algebra of I" considered as an abstract
Lie algebra. The inclusion of I" in End’ as a Lie subalgebra defines a homo-
morphism a: Z(I') — A(I'). Let Z(I') be the invariants in %(I") under the
adjoint action of G. (If G = GL,,Sp,,, or O,,_,, then Z(I') is just the
center of Z(I'), butif G = O,,, it is properly inside the center.) Since G acts
reductively on #%(I'), the image of .Z(I') under « is precisely the space of G
invariants in A(T"), that is

a: Z([) - AD)NAT)

is surjective. Similarly o is surjective from Z(I") to A(I) N A(T"). Thus
a(Z () =o' (Z (")) = A(T) N A(T’). This equality enforces a certain corre-
spondence between characters of .Z'(I') and of .Z'(I") arising from submodules
of &/ (U,W). This correspondence must clearly be compatible with the corre-
spondence of Theorem 8. In fact, each determines the other.

Now consider the Capelli identity. We will first state it in its simplest form.
Consider a matrix {4, % 1 <i,j < n} of noncommuting variables. By the
determinant of this matrix, we mean the sum

> (&) Ay Agap Agiun-
#€5,

Thus we take one element from each column, multiply together keeping the
order indicated by the columns, and sum with appropriate signs. Thus for
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example

A A
det (A;A;) =44, - A,A,.

Now consider the n x m matrices M, , (C). Let GL, acton M, by mul-
tiplication on the left. The “polarization” operators n;d , 1 <k,l <m, are

defined by
' - )
Ty = Z Xik ’ax_[ .
i=1 i

These operators commute with GL,, and in fact they form the dual algebra
I for it, which in this case is simply the (Lie algebra of) GL, acting by right
multiplication. The basic Capelli identity says
a )
axiajb ’

where the sum is over all pairs of m-tuples 1 < [, <iy<--<i, <n. Thus
in particular, if m > n the left-hand side is zero, and if n = m it is equal to

(©) det(my, + 8, (m — k) =Y det(x, , ) det (

Q= det(x,;) det (%—) .
1
This is known as the Cayley Q-process [W].

In any case, the right-hand side of (C) is visibly invariant under conjugation
by GL, , while the left-hand side, being formed from polarizations, commutes
with GL, . In terms of the general discussion above, we see that the Capelli
identity gives us an explicit construction of elements of A(I') N A(I”) for this
particular pair. It is interesting that from knowledge of these elements, it is
possible to recover the complete invariant theory.

To prove equation (C), we take our cue from the interpretation just given, and
commence by showing the left-hand side, considered as an element of %/( sl,),
is central. For this we need only the commutation relations in gl,,, not the
specific form of the operators.

First note some formal properties of det{A4, j} for arbitrary 4, ;- From the
definition, it is clear that det{4, j} is antisymmetric in its rows, just as normal
determinants are. Thus, the usual column expansion is good for the first column.
Also various expansions relating to partitioning of the columns are valid, so long
as the columns are kept in their proper order. In particular, take the ith column,
and partition the columns into the set preceding i, the set following i+ 1, and
the pair {i,i+ 1}. Then we have

A, A
det{Ajk} = Z (ZBadet (Ah_ AI "+1 ) Ca) ’
I<m a mi m i+l

where o runs over all (i — 1) tuples of rows not containing the /th or mth,
and B is the determinant of the matrix defined by these rows and the first
i —1 columns, and C_ is the determinant of the matrix determined by the
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remaining n — i — 1 rows and columns. This formula allows us to study the
effect of reversing two columns. We note the pleasant identity

A B B A A A B B
det(C D)+det(D C>=det(D D)+det(c C)'

Thus we may say: the sum of the determinants of {4, .} and the matrix obtained
by interchanging two adjacent columns is equal to the sum of the determinants
of the two matrices obtained from {A4 j «} by putting both columns equal to one
of them.

The commutator relations of the n:. ; are

[”;j ) ";cz] = 5jkn:'l - ‘511'7’;:,' .
Denote the matrix whose determinant is the left-hand side of (C) by I1. From
these commutator relations one sees that all the 2 x 2 matrices formable from
two copies of column i of IT have zero determinant except the matrices
! . 1 .
:h(nii+,n_l nii+,n—l), 1<j<n, j#i,
Tji ji

which have determinants n; ;- Thus the matrix obtained from IT by replacing
column i+ 1 with a second copy of column i has the same determinant as the
matrix obtained from IT by replacing column i+ 1 by a column which is zero
except for 1 in the ith row.

Consider now the effect on detII of the adjoint action of the permutation
matnx o, which transposes i and i + 1. Because the diagonal entries of II
are 7t ;+n—1i and not simply 7t the action of g, is not simply to transpose
the tth row and column of II. A computatlon Wthh is easier to perform than
to describe succinctly shows that the actual effect of o; on II is just right to
cancel out the noncommutativity of columns i and i+ 1 as described in the
preceding paragraph. Thus II is actually invariant under o;, hence under the
whole permutation group.

To finish the proof that detl'I is central in #(gl,,), it suﬂices to show that
it commutes with any given n, ., with i # j. We select nn \n- Another
formal property of our determmant is that [B, det{A -}] is the sum of the
determinants of the matrices obtained from {A -} by selectmg some column
and replacing each element in the column by its commutator with B . For each
column except the (n — 1)th, taking commutators with nn | Kills everything
but the bottom entry nn D which gets replaced with nn 1 In the (n — 1)th
column 7’ in—1 is replaced with —z’. , except for nn n—1 Which gets replaced

with nn {n—1 n:m , and nn Lnel + 1, which gets replaced with -7, _, .
Using linearity in the (n — 1)th column, then in the nth row, we see that these
n determinants can be combined to form three determinants, one of a matrix
gotten from IT by replacing the nth row with a copy of the (n — 1)th row, one
gotten by replacing the (n—1) th column by the negative of the nth column, and

the third gotten by replacing the (n— 1)th column by zeros except for —1 in the
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nth row. The determinant with the repeated row vanishes trivially. According
to our remarks above, the remaining two determinants cancel each other, so the
net result is zero. Thus detII is indeed central in % (gl,,).

We can now prove (C). In fact, we will give an explicit description of A(gl N

A(gl,,).
Proposition 3. Let
n m
' 0 0
”jk=injW and ”jk=ijiW
i=1 ik i=1 ki

be the standard basis elements for T = gl, and T = gl respectively. Then
AT) N A(T") is a polynomial algebra on the generators

= Zdet{najak +0, (1=} =3 det{ny , +5,(—j)}
@ B
= Zdet(xajﬂk)det (8

3 )
a,p xafﬁk

Here o runs over all [-tuples from the numbers 1 through n and B runs through
[-tuples of the numbers 1 through m . The operator Y, iszeroif | > min(m,n).

Proof. We have shown that the first expression for y, is in the center of A(I),
hence in 4(I') N A(I") . Similarly for the second expression. The third is easily
shown to be in 4(T)NA(I") by an argument like that given in §4(d), and in this
form the y, are obviously the classically known free generators for 4(I)NA(I”).
To finish, we need to show that, say, the first expression equals the third.

To do this, the most direct method seems to be to write down all the joint
highest weight vectors for the action of Gl, xGL,, on M, .m and verify that
the two operators do the same to each. Th1s is actually not too hard to do. Let

6k=det{x<.} for1<i,j<k.

Then the highest weight vectors for GL, x GL, have the form [Z] Alp;) =
87 85? - --d7¢ for arbitrary nonnegative mtegers p; . This assertion is fairly easy
to verlfy One simply computes to show they are joint highest weight vectors,
then observes that the modules they represent exhaust all possible isotypes.

It remains to show that the actions of the various expressions for Y, agree
on the A(p,). By an inductive argument, the main point to verify is that all
expressions for y, kill A(p;) if p, =0 for i > /. For the third expression for
the », this is clear. For the first two expressions, the crucial observation is that
since the A(p;) are highest weight vectors, i.e., 7 ,k(A( p))=0= n}k(A(pi)) if
j < k, we have the equation

i
det{m, , +3d, (- /)}AP)) = (H(ﬂ%al +1- j)) (A(p;))-
j=1
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The last factor in [[}_,(n, , +{—j) is 7, . Since a; > I, this will kill
any expression which involves only x; ; with i,j </, as is the case with A(p;)
if p;=0 for i >1[. This concludes Proposition 3.

There is an analogue of Proposition 3 for the pair (sp,o0). We leave its details
as an exercise for the reader.

5. CONCLUDING REMARKS

(a) The theory of reductive dual pairs also makes sense in a transcendental
context, that of the oscillator representation of symplectic groups over local
fields. In that context, one considers a pair (G,G) of reductive subgroups
which are mutual centralizers in Sp. When the field is R, and one of G or G
is compact, the theory presented here may be applied directly to obtain a duality
between certain unitary representations of G and of G' . If G is compact and
G’ is not, then G’ will always have a Hermitian symmetric structure, and the
representations of G’ will be of holomorphic type, i.€., will have highest weights.
Essentially this line of attack has been followed by several authors [Ge, G-K,
K-V, Sa] to obtain examples in various cases of holomorphic representations.

When neither G nor G is compact, essentially the same duality phenome-
non occurs, but the situation is technically more complicated, and the algebraic
results given here do not apply directly. However, it should be noted that the
homomorphism of §4(f) between centers of enveloping algebras of I" and r
still exists and controls the infinitesimal characters of corresponding representa-
tions. This information on infinitesimal characters, along with some qualitative
features, should essentially determine the duality correspondence.

(b) In his book, Weyl discusses two Main Theorems of Classical Invariant
Theory. In this paper we have been exclusively concerned with the First Main
Theorem, a list of generators for the ring of invariants. The Second Main Theo-
rem describes the relations between these invariants. In a recent discussion with
Michéle Vergne, a use for the Second Main Theorem was proposed. Consider a
reductive dual pair (G,G’) in Sp,,(R), with G compact and G' noncompact.
By means of Theorem 9, one can embed the representations of G’ occurring in
the restriction of the oscillator representation in certain spaces of holomorphic
functions on the symmetric space of G’ . These embeddings are not in general
surjective, so there is a problem to describe their range. Using the Second Main
Theorem, one can write down some additional differential equations (i.e., ad-
ditional to the Cauchy-Riemann equations) satisfied by functions in the range
of such an embedding. These systems should be fairly interesting examples for
P.D.E. fans.

Conversely, the representation-theoretic point of view provides insight into
the varieties defined by the Second Main Theorem. In the notation of Theorem
9, these varieties must just be the orbits of G"'"") acting on ' 2
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The results in this paper have been several years in formation. I am indebted
to many people for helpful conversations or other stimulation. I would like to
mention in particular Steve Gelbart and Howard Garland.

POSTSCRIPT

When writing this paper, the author hoped that the viewpoint it took, and
the general Theorems 7, 8, 9 were new. On the other hand, the examples (a)
through (f) of §4 were understood to be individually well known, and the point
was to discuss them from the uniform viewpoint provided by §3. In the years
since the paper was written, the author has learned much more precisely how its
contents connect with specific parts of the literature. We summarize here some
of these connections. The book [L] has many formal identities, some of which
can be seen to be equivalent to various of the decompositions of the algebras
& (U,V) described in Theorems 8 and 9. In particular, the decomposition
of the polynomials on the n x n matrices under the action of GL, xGL,, is
equivalent to “Cauchy’s Lemma”, a 19th century identity. Weyl [W, pp. 202-
207] makes use of this identity without seeming to be conscious of its geometric
import. The book of Zhelobenko [Z] treats the action of GL, x GL,, on the
nxm matrices in a similar spirit to this paper, and gives formulas for the highest
weight vectors, from which our formulas in §4(f) derive. Seshadri [Sh] espouses
a point of view toward the Capelli identities similar to ours. The “polynomial
de Rham complex” is widely known as the Koszul complex. Several papers of
Kostant treat several of the examples of §4, and also some of the machinery of
§§1, 2, sometimes from a similar point of view [Ksl, Ks2, Ks3]. In particular,
the descriptions of S"(S*(V)) and S"(AX(V)) of §4(e) are examples of his
result about actions of Levi components on enveloping algebras of nilradicals.
They also are examples of Helgason’s theorem on representations with K-fixed
vectors [He]. An early reference for S” (S2(V)) is [Th]. Finally, several special
cases of Theorems 7, 8, 9 have appeared in the physics literature, some before
and some after this paper was written. See [Hol] for some references.
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