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Abstract

It is known that any square matrix A over any field is congruent to its transpose: AT =
STAS for some nonsingular S; moreover, S can be chosen such that S2=1 , that is, S can be
chosen to be involutory. We show that A and AT are *congruent over any field F of charac-
teristic not two with involution @ +— a (the involution can be the identity): AT = ETAS for
some nonsingular S; moreover, S can be chosen such that SS = I, that is, S can be chosen
to be coninvolutory. The short and simple proof is based on Sergeichuk’s canonical form for
*congruence [Math. USSR, Izvestiya 31 (3) (1988) 481]. It follows that any matrix A over [
can be represented as A = E B, in which E is coninvolutory and B is symmetric.
© 2004 Elsevier Inc. All rights reserved.

AMS classification: 5A21

Keywords: Congruence; Sesquilinear forms; Canonical forms

1. Introduction

We work over a field F of characteristic not two with involution a + a, that is, a
bijection (perhaps the identity) on [F such that

a+b=a+b, ab=ab,

Qi

=d.
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For each matrix A = [a;;] over F, we define A* = KT =la;;]. If S*AS = B for
some nonsingular matrix S, then A and B are said to be *congruent (or congruent if
the involution a > a is the identity). Except for (8), all our matrices are over [F.

In 1980, Gow used Riehm’s classification of bilinear forms [4] to show that any
nonsingular square matrix A over any field is congruent to its transpose: AT = STAS
for some nonsingular §; moreover, Gow showed that S can be chosen such that
S2 = [, that is, S can be chosen to be involutory [3]. Independently at about the
same time, Yip and Ballantine obtained the same theorem without the hypothesis
of nonsingularity [8]. Apparently unaware of [3,8], Pokovi¢ and Ikramov (using
Riehm’s classification again [4,5]) showed in 2002 that A and AT are congruent [1].

We are interested in a broader result: Over [, any square matrix A is *congruent to
AT: moreover, a matrix S that gives the *congruence can be chosen such that S§S=1,
that is, S can be chosen to be coninvolutory. Since the involution on F can be the
identity, our result includes that of [8] except for the case of a field of characteristic
two.

2. A canonical form for *congruence

Our proof that A and AT are *congruent over [ is based on the classification
of matrices for *congruence (up to classification of Hermitian matrices) that was
obtained in [6, Theorem 3].

A matrix M is a *cosquare if M = A~* A for some nonsingular A; A™* denotes
(A*)~1.If M is a *cosquare, every matrix C such that C™*C = M is called a *co-
square root of M; we choose any *cosquare root and denote it by ~/M.

For a polynomial f(x) = apx" + aix" '+ ... 4+ a, € Flx] we define

f(x) =aox" +ajx"~'+--. +a,, and
)y =a,'d+ax +---+apx") ifag=1 and a, # 0.

Every square matrix is similar to a direct sum of Frobenius blocks

0 0 —c,
. .
Fp = , (1)
0 —c
0 1 —C]

in which p(x)" = x” + c1x"~! 4+ .- 4+ ¢, is an integer power of a polynomial p(x)
that is irreducible over [F.

If A =1{a;;]is any n x n matrix over [F, a calculation using the special form
of the Frobenius block F reveals that the upper left (n — 1) x (n — 1) principal
submatrix of F;, AFpyis a1, j+1]Z;l |- Combining this observation with the results
in [6, Lemma 9 and Theorem 7] gives the following basic lemma.
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Lemma 1. Let p(x) be irreducible over [ and let F i be the n x n Frobenius block

1.

(@) If o/ is an n x n matrix over F and o/ = F;,MFPI, then o/ is a Toeplitz
matrix, that is, o/ = [ai_j]l’.’)jzlforsome scalars oy, ... , 001,00, O], .., C0p_]
in.

(b) If o is a *cosquare root of Fpy, then of = o/ *Fy = F;‘,Jz/Fpt, and so it is
a Toeplitz matrix. Moreover, it has the special form

ao aj aj T ap—1
ao ao aj e ap—2
o=\ a a  ap - c . )
) . .
ap—2 dp—3 -+ 4o ao

(¢) Fpi is a *cosquare if and only if

p(x) #x, pkx)=pYx), and }

if the involution on [ is the identity then also p(x) # x + (—1)*+1. 3)

(d) Suppose p(x) satisfies the conditions (3) and let m denote the integer part
of (n — 1)/2. Then one may take J/Fy to have the form (2), in which ap = --- =
am—1 = O’

1 ifnis even and p(x) #+ x — "V/1,
am = p(—l)’ ifnisoddand p(x) # x + 1,
b—b forany b € F such that b #+ b, otherwise,

and apy1, - . ., an—1 are determined by the identity J/ Fpi = (/ Fpt)*F ‘0, l.e.,

a ap -+ ap— ap  ar - Ay
ap agp ap ap
Fpe= ] ‘ . “4)
ap : - - ap
ap—1 -+ a4y aop ap—p -+ 4 ag

Suppose F,(yy is a *cosquare. Since p(x) = p"(x), the field
Flel = Flxl/p()F[x], & :=x + p(0)Flx], &)
possesses the involution

f) = f0)° = fc™h). (6)
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It was proved in [6, Lemma 7] that if f (k) € Flx] and f(x) = f(«k)°, then f(k) is
uniquely representable as f(x) = ¢(k), in which

o) =bx "+ b x T by b X T X (7)

r is the integer part of (deg p(x))/2, bo, b1, ..., b, € F, bg = bo, and if deg p(x) is
even then

0 if the involution b > b is the identity,
by = {b,  if b > bisnot the identity and p(0) # 1,
—b, if b — b is not the identity and p(0) = 1.

Theorem 2 [6, Theorem 3]. Let F be a field of characteristic not two with involution
(the involution can be the identity). Every square matrix A over [F is *congruent to a
direct sum of matrices of the three types:

(i) a singular Jordan block J,(0);
(ii) 3/ Fpr @ (Fpi), inwhich Fy is the n-by-n Frobenius block (1), p(x) satisfies (3),
and @(x) is a nonzero function of the form (7);

(iii) |:?: (I)"] , in which p(x) # x and p(x) does not satisfy (3).
p[

Any matrix of type (ii) is a *cosquare root of F, and hence is a Toeplitz matrix.
The summands are determined by A to the following extent:

Type (i) uniquely.
Type (ii) up to replacement of the whole group of summands

y Fpt(D](Fpt) D---D */Fpt(ps(Fpt)

with the same p(x)' by
TEp U1 (Fpt) @ -+ @ Fprihs (Fpr)
in which each i (x) is a nonzero function of the form (7) and the Hermitian matrices

diag(g1(k), ..., @s(k)) and  diag(Y1(x), ..., ¥y(K)) ®)

over the field Fk] defined in (5) with the involution (6) are *congruent.
Type (iii) up to replacement of F i by F(,vy:.

In a canonical form for similarity, one may choose as the direct summands (canon-
ical blocks) any matrices that are similar to the Frobenius blocks (1). Over some
fields, this freedom of choice can make it possible to achieve a pleasantly simple and
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convenient canonical form for *congruence. For example, if F = C is the field of
complex numbers, then the irreducible polynomials are all of the form p(x) = x — A,
and F(,_;)» is similar to the n-by-n Jordan block J, (1) with eigenvalue A. The con-
ditions (3) tell us that when the involution on C is complex conjugation, then F,_»
is a *cosquare if and only if [A| = 1; for the identity involution on C, F(y_yy is a
cosquare if and only if A = (—1)"*+1.

Define the n-by-n matrices

0
1 0 1
-1 -1 i
L= 1 1 ’ An = 1
-1 -1 1 i 0
0

Then I',*I', is similar to J, (=)™t and A% A, is similar to J,(1). Thus, for
complex matrices we have the following canonical forms for congruence and for
*congruence with respect to complex conjugation:

(i) Every square complex matrix is congruent to a direct sum, determined uniquely
up to permutation of summands, of matrices of the form

0 I,
Jn(O)’ rn’ I:Jn()\t) 0]1

in which A # 0, A # (=1)"*!, and A is determined up to replacement by A~
(ii) Every square complex matrix is *congruent to a direct sum, determined uni-
quely up to permutation of summands, of matrices of the form

0 I,
AN [Jn(m O]

in which |A| = 1 and |u| > 1. Alternatively, one may use the symmetric matrix 4,
instead of I'},.

3. *Congruence of A and AT

The problem of showing that A and AT are congruent has been said to be dif-
ficult. In [1], the authors write, “In spite of its elementary character, the proof of
this result is quite involved.” In [2] we read that “The proofs. .. are rather compli-
cated.” However, the difficulty has been in the methods, not in the results. The canon-
ical forms in Theorem 2 permit us to give a short and simple proof of a broader
result.
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Theorem 3. Over any field F of characteristic not two with involution a +— a (the
involution can be the identity), every square matrix A is *congruent to its transpose.
Moreover, there is a coninvolutory matrix S over [ such that AT = §*AS.

Proof. Let Acan = S*AS be a canonical form of A for *congruence, that is, a direct
sum of matrices of the three types described in Theorem 2. If A¢y, is *congruent to

AT, then A is *congruent to AT since R* AcanR = AL, implies

(SRS Y*A(SRS ') = AT,

Hence it suffices to prove that all matrices of the three types described in Theorem 2
are *congruent to their transposes, and that R can be chosen to be coninvolutory.

Matrices of types (i) and (ii) are always *congruent to their transposes since they
are Toeplitz matrices, and for any Toeplitz matrix B we have

0 1 0 1
B = BT.
1 0 1 0
Notice that the congruence is achieved via an involutory matrix.
For each matrix of type (iii) we have

0 s fo 1[0 s]_[o FT]_Jo 17"

S* 0 F 0 S™ 0| |1 O] |F 0f"
in which § is any nonsingular matrix such that S~' FS = FT. However, S always
can be chosen to be symmetric [7], and if we do so then

0 S 0 S
= [s* o} = [E‘ 0]
and & =1. O

It was proved in [3, p. 329] that any nonsingular matrix over a field can be repre-
sented as A = E B, in which E is involutory and B is symmetric. As an immediate
consequence of Theorem 3, we have the following factorization theorem.

Corollary 4. Over any field F of characteristic not two with involution a +— a (the
involution can be the identity), any square matrix A can be represented as A = E B,
in which E is coninvolutory and B is symmetric.

Proof. Theorem 3 ensuresthat A = E AT E* for some coninvolutory matrix E. There-
fore, EA = EEATE* = ATE' = (EA)T = Bissymmetricand A = EB. [
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