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Abstract

It is known that any square matrix A over any field is congruent to its transpose: AT =
STAS for some nonsingular S; moreover, S can be chosen such that S2 = I , that is, S can be
chosen to be involutory. We show that A and AT are ∗congruent over any field F of charac-

teristic not two with involution a �→ ā (the involution can be the identity): AT = S
T
AS for

some nonsingular S; moreover, S can be chosen such that SS = I , that is, S can be chosen
to be coninvolutory. The short and simple proof is based on Sergeichuk’s canonical form for
∗congruence [Math. USSR, Izvestiya 31 (3) (1988) 481]. It follows that any matrix A over F

can be represented as A = EB, in which E is coninvolutory and B is symmetric.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We work over a field F of characteristic not two with involution a �→ ā, that is, a
bijection (perhaps the identity) on F such that

a + b = ā + b̄, ab = āb̄, ¯̄a = a.
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For each matrix A = [aij ] over F, we define A∗ = A
T = [āj i]. If S∗AS = B for

some nonsingular matrix S, then A and B are said to be ∗congruent (or congruent if
the involution a �→ ā is the identity). Except for (8), all our matrices are over F.

In 1980, Gow used Riehm’s classification of bilinear forms [4] to show that any
nonsingular square matrix A over any field is congruent to its transpose: AT = STAS

for some nonsingular S; moreover, Gow showed that S can be chosen such that
S2 = I , that is, S can be chosen to be involutory [3]. Independently at about the
same time, Yip and Ballantine obtained the same theorem without the hypothesis
of nonsingularity [8]. Apparently unaware of [3,8], Ðoković and Ikramov (using
Riehm’s classification again [4,5]) showed in 2002 that A and AT are congruent [1].

We are interested in a broader result: Over F, any square matrix A is ∗congruent to
AT; moreover, a matrix S that gives the ∗congruence can be chosen such that SS = I ,
that is, S can be chosen to be coninvolutory. Since the involution on F can be the
identity, our result includes that of [8] except for the case of a field of characteristic
two.

2. A canonical form for ∗congruence

Our proof that A and AT are ∗congruent over F is based on the classification
of matrices for ∗congruence (up to classification of Hermitian matrices) that was
obtained in [6, Theorem 3].

A matrix M is a ∗cosquare if M = A−∗A for some nonsingular A; A−∗ denotes
(A∗)−1. If M is a ∗cosquare, every matrix C such that C−∗C = M is called a ∗co-
square root of M; we choose any ∗cosquare root and denote it by ∗√

M .
For a polynomial f (x) = a0x

n + a1x
n−1 + · · · + an ∈ F[x] we define

f̄ (x) = ā0x
n + ā1x

n−1 + · · · + ān, and
f ∨(x) = ā−1

n (1 + ā1x + · · · + ānx
n) if a0 = 1 and an /= 0.

Every square matrix is similar to a direct sum of Frobenius blocks

Fpt =




0 0 −cn

1
. . .

...

. . . 0 −c2
0 1 −c1


 , (1)

in which p(x)t = xn + c1x
n−1 + · · · + cn is an integer power of a polynomial p(x)

that is irreducible over F.
If A = [ai,j ] is any n × n matrix over F, a calculation using the special form

of the Frobenius block Fpt reveals that the upper left (n − 1) × (n − 1) principal
submatrix of F ∗

pt
AFpt is [ai+1,j+1]n−1

i,j=1. Combining this observation with the results
in [6, Lemma 9 and Theorem 7] gives the following basic lemma.
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Lemma 1. Let p(x) be irreducible over F and let Fpt be the n × n Frobenius block
(1).

(a) If A is an n × n matrix over F and A = F ∗
pt
AFpt , then A is a Toeplitz

matrix, that is,A = [αi−j ]ni,j=1 for some scalars α1−n, . . . , α−1, α0, α1, . . . , αn−1
in F.

(b) If A is a ∗cosquare root of Fpt , then A = A∗Fpt = F ∗
pt
AFpt , and so it is

a Toeplitz matrix. Moreover, it has the special form

A =




a0 a1 a2 · · · an−1
ā0 a0 a1 · · · an−2

ā1 ā0 a0
. . .

...
...

...
. . .

. . . a1
ān−2 ān−3 · · · ā0 a0



. (2)

(c) Fpt is a ∗cosquare if and only if

p(x) /= x, p(x) = p∨(x), and
if the involution on F is the identity then also p(x) /= x + (−1)n+1.

}
(3)

(d) Suppose p(x) satisfies the conditions (3) and let m denote the integer part
of (n − 1)/2. Then one may take ∗√Fpt to have the form (2), in which a0 = · · · =
am−1 = 0,

am =



1 if n is even and p(x) /= x − n−1
√

1,
p(−1)t if n is odd and p(x) /= x + 1,
b − b̄ for any b ∈ F such that b /= b̄, otherwise,

and am+1, . . . , an−1 are determined by the identity ∗√Fpt = ( ∗√Fpt )
∗Fpt , i.e.,




ā0 a0 · · · an−2

ā1 ā0
. . .

...
...

. . .
. . . a0

ān−1 · · · ā1 ā0


 · Fpt =




a0 a1 · · · an−1

ā0 a0
. . .

...
...

. . .
. . . a1

ān−2 · · · ā0 a0


 . (4)

Suppose Fp(x)t is a ∗cosquare. Since p(x) = p∨(x), the field

F[κ] = F[x]/p(x)F[x], κ := x + p(x)F[x], (5)

possesses the involution

f (κ) �→ f (κ)◦ := f̄ (κ−1). (6)
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It was proved in [6, Lemma 7] that if f (κ) ∈ F[κ] and f (κ) = f (κ)◦, then f (κ) is
uniquely representable as f (κ) = ϕ(κ), in which

ϕ(x) = b̄rx
−r + b̄r−1x

−r+1 + · · · + b0 + · · · + br−1x
r−1 + brx

r , (7)

r is the integer part of (degp(x))/2, b0, b1, . . . , br ∈ F, b0 = b̄0, and if degp(x) is
even then

br =



0 if the involution b �→ b̄ is the identity,
b̄r if b �→ b̄ is not the identity and p(0) /= 1,
−b̄r if b �→ b̄ is not the identity and p(0) = 1.

Theorem 2 [6,Theorem 3]. Let F be a field of characteristic not two with involution
(the involution can be the identity). Every square matrix A over F is ∗congruent to a
direct sum of matrices of the three types:

(i) a singular Jordan block Jn(0);
(ii) ∗√Fpt ϕ(Fpt ), in which Fpt is the n-by-n Frobenius block (1), p(x) satisfies (3),

and ϕ(x) is a nonzero function of the form (7);
(iii)

[
0 In
Fpt 0

]
, in which p(x) /= x and p(x) does not satisfy (3).

Any matrix of type (ii) is a ∗cosquare root of Fpt and hence is a Toeplitz matrix.
The summands are determined by A to the following extent:

Type (i) uniquely.
Type (ii) up to replacement of the whole group of summands

∗
√
Fpt ϕ1(Fpt ) ⊕ · · · ⊕ ∗

√
Fpt ϕs(Fpt )

with the same p(x)t by

∗
√
Fptψ1(Fpt ) ⊕ · · · ⊕ ∗

√
Fptψs(Fpt )

in which each ψi(x) is a nonzero function of the form (7) and the Hermitian matrices

diag(ϕ1(κ), . . . , ϕs(κ)) and diag(ψ1(κ), . . . , ψs(κ)) (8)

over the field F[κ] defined in (5) with the involution (6) are ∗congruent.
Type (iii) up to replacement of Fpt by F(p∨)t .

In a canonical form for similarity, one may choose as the direct summands (canon-
ical blocks) any matrices that are similar to the Frobenius blocks (1). Over some
fields, this freedom of choice can make it possible to achieve a pleasantly simple and
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convenient canonical form for ∗congruence. For example, if F = C is the field of
complex numbers, then the irreducible polynomials are all of the form p(x) = x − λ,
and F(x−λ)n is similar to the n-by-n Jordan block Jn(λ) with eigenvalue λ. The con-
ditions (3) tell us that when the involution on C is complex conjugation, then F(x−λ)n

is a ∗cosquare if and only if |λ| = 1; for the identity involution on C, F(x−λ)n is a
cosquare if and only if λ = (−1)n+1.

Define the n-by-n matrices

�n =




0 q
1 q

−1 −1
1 1

−1 −1
1 1 0



, �n =




0 1
q i

1 q
1 i 0


 .

Then �−∗
n �n is similar to Jn((−1)n+1) and �−∗

n �n is similar to Jn(1). Thus, for
complex matrices we have the following canonical forms for congruence and for
∗congruence with respect to complex conjugation:

(i) Every square complex matrix is congruent to a direct sum, determined uniquely
up to permutation of summands, of matrices of the form

Jn(0), �n,

[
0 In

Jn(λ) 0

]
,

in which λ /= 0, λ /= (−1)n+1, and λ is determined up to replacement by λ−1.
(ii) Every square complex matrix is ∗congruent to a direct sum, determined uni-

quely up to permutation of summands, of matrices of the form

Jn(0), λ�n,

[
0 In

Jn(µ) 0

]
,

in which |λ| = 1 and |µ| > 1. Alternatively, one may use the symmetric matrix �n

instead of �n.

3. ∗Congruence of A and AT

The problem of showing that A and AT are congruent has been said to be dif-
ficult. In [1], the authors write, “In spite of its elementary character, the proof of
this result is quite involved.” In [2] we read that “The proofs. . . are rather compli-
cated.” However, the difficulty has been in the methods, not in the results. The canon-
ical forms in Theorem 2 permit us to give a short and simple proof of a broader
result.
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Theorem 3. Over any field F of characteristic not two with involution a �→ ā (the
involution can be the identity), every square matrix A is ∗congruent to its transpose.
Moreover, there is a coninvolutory matrix S over F such that AT = S∗AS.

Proof. Let Acan = S∗AS be a canonical form of A for ∗congruence, that is, a direct
sum of matrices of the three types described in Theorem 2. If Acan is ∗congruent to
AT

can, then A is ∗congruent to AT since R∗AcanR = AT
can implies

(SRS
−1
)∗A(SRS−1

) = AT.

Hence it suffices to prove that all matrices of the three types described in Theorem 2
are ∗congruent to their transposes, and that R can be chosen to be coninvolutory.

Matrices of types (i) and (ii) are always ∗congruent to their transposes since they
are Toeplitz matrices, and for any Toeplitz matrix B we have

0 1
q

1 0


B


0 1

q
1 0


 = BT.

Notice that the congruence is achieved via an involutory matrix.
For each matrix of type (iii) we have

[
0 S−1

S∗ 0

]
·
[

0 I

F 0

]
·
[

0 S

S−∗ 0

]
=

[
0 F T

I 0

]
=

[
0 I

F 0

]T

,

in which S is any nonsingular matrix such that S−1FS = F T. However, S always
can be chosen to be symmetric [7], and if we do so then

S =
[

0 S

S−∗ 0

]
=

[
0 S

S
−1

0

]

and SS = I . �

It was proved in [3, p. 329] that any nonsingular matrix over a field can be repre-
sented as A = EB, in which E is involutory and B is symmetric. As an immediate
consequence of Theorem 3, we have the following factorization theorem.

Corollary 4. Over any field F of characteristic not two with involution a �→ ā (the
involution can be the identity), any square matrix A can be represented as A = EB,

in which E is coninvolutory and B is symmetric.

Proof. Theorem 3 ensures thatA = EATE∗ for some coninvolutory matrixE. There-

fore, EA = EEATE∗ = ATE
T = (EA)T ≡ B is symmetric and A = EB. �
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