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tIn symmetri
 groups, a two-sided 
ell is the set of all permutationswhi
h are mapped by the Robinson-S
hensted 
orresponden
e on a pairof tableaux of the same shape. In this arti
le, we show that the set of per-mutations in a two-sided 
ell whi
h have a minimal number of inversionsis the set of permutations whi
h have a maximal number of inversions in
onjugated Young subgroups. We also give an interpretation of these setswith parti
ular tableaux, 
alled reading 
olumn tableaux. As 
orollary, wegive the set of elements in a two-sided 
ell whi
h have a maximal numberof inversions.Mathemati
s Subje
t Classi�
ation: 05E10.Author keywords: Robinson-S
hensted 
orresponden
e, number of inversions, two-sided 
ells .1 Introdu
tionIn this arti
le, we 
onsider the symmetri
 group Sn. For w 2 Sn, the length ofw, denoted `(w), is the number of inversions of w.The Robinson-S
hensted 
orresponden
e [17℄ is the well-known bije
tion � :w 7! (P (w); Q(w)) between Sn and pairs of standard tableaux of the sameshape (a partition of n). For ea
h partition � of n, we denote by T � the set ofall permutations whi
h are mapped by � on a pair of tableaux of shape �. Inthe Kazhdan-Lusztig theory, whi
h we use in this arti
le, the sets T � are 
alledtwo-sided 
ells (see [9℄, [20℄, [1℄) . 1



Our goal is to des
ribe, for any partition � of n, the set T �min of elements ofminimal length in T � and the set T �max of elements of maximal length in T �.For ea
h 
omposition 
 = (n1; : : : ; nk) of n (with ni � 1), the Young subgroupS
 = Sn1 � � � � � Snk 
ontains a unique permutation �
 of maximal length. Itis well-known that �
 is an involution, 
alled the longest element of S
. Denote�(
) the unique partition of n obtained by reordering in de
reasing order theni. It is well-known that two Young subgroups S
1 and S
2 are 
onjugated inSn if and only if �(
1) = �(
2).S
h�utzenberger [19℄ has shown that the map T 7! wT = ��1(T; T ) is a bije
-tion between the standard tableaux of shape a partition of n and the involutionsof Sn.A standard tableau T is a reading 
olumn tableau if it has the followingproperty: for any 1 � p � n, either p is in the �rst line of T , or if p is in the ithline of T (i > 1) then p� 1 is in the (i� 1)th line of T .As example, the 
olumn superstandard tableaux (whi
h are tableaux num-bered from the bottom to the top of ea
h 
olumn, from left to right) are reading
olumn tableaux. These parti
ular tableaux are an analog of the reading (row)tableaux de�ned by Garsia and Remmel in [6℄. Our main result is the following:Theorem 1.1. Let � be a partition of n and T � be its asso
iated two-sided 
ell,then T �min = f�
 j�(
) = �tg= fwT jT is a reading 
olumn tableau of shape �g;where �t denotes the 
onjugated partition of �.Example. Consider the partition � = (3; 2; 1; 1) of 7; �t = (4; 2; 1). Then thereading 
olumn tableaux of shape � areT1 = 432 61 5 7 ; T2 = 652 41 3 7 ; T3 = 543 71 2 6T4 = 432 71 5 6 ; T5 = 762 51 3 4 ; T6 = 763 51 2 4the 
orresponding involutions arewT1 = 43 2 1 6 5 7 = �(4;2;1) ; wT2 = 21 6 5 4 3 7 = �(2;4;1)wT3 = 15 4 3 2 7 6 = �(1;4;2) ; wT4 = 43 2 1 5 7 6 = �(4;1;2)wT5 = 21 3 7 6 5 4 = �(2;1;4) ; wT6 = 13 2 7 6 5 4 = �(1;2;4)2



and T (3;2;1;1)min = f�(4;2;1); �(2;4;1); �(1;4;2); �(4;1;2); �(2;1;4); �(1;2;4)g.Let � be a partition of n and T be a standard tableau of shape �. TheS
h�utzenberger eva
uation of T , denoted by ev (T ), is a tableau of shape � [18℄(see also [16, p.128-130℄). The eva
uation illustrates the 
onjugation and the left(and right) multipli
ation by �(n). In parti
ular, S
h�utzenberger has shown, forany w 2 Sn, that Q(w�(n)) = ev (Q(w)t) and T ��(n) = �(n)T � = T �t . Denoted
 = w(n)w
. As `(�(n)w) = `(�(n))� `(w), we obtain the following 
orollary:Corollary 1.2. Let � be a partition of n and T � be its asso
iated two-sided
ell, thenT �max = fd
 j�(
) = �g= fw j ev (Q(w)t) = P (w�(n)) is a reading 
olumn tableau of shape �tg:In the theory of Coxeter groups, the element d
 is well-known as the uniqueelement of maximal length in the set of minimal right 
oset representatives ofS
 [7, Chapter 2℄.As a byprodu
t of our proof, we obtain, in Se
tion 3, that if w is an involu-tion, the Kazhdan-Lusztig polynomial Pe;w = 1 if and only if w is the longestelement of a Young subgroup (where e denotes the identity of Sn). More pre-
isely, we show that an involution w avoids the pattern 3412 and 4231 if andonly if w is the longest element of a Young subgroup of Sn.To our knowledge, our results are the �rst results relating the Robinson-S
hensted transformation and the length fun
tion (number of inversions) of apermutation. There is no evident link between both. Our proof is non 
ombina-torial and uses heavily the a�fun
tion of Lusztig. Trying to �nd a 
ombinatorialproof (whi
h is a 
hallenge) leads �rst to the following diÆ
ulty: for any permu-tations w; x in a two sided-
ell T �, there are permutations w1; : : : ; wk 2 T � su
hthat w1 = w, wk = x and wi+1 is obtained from wi by a Knuth or a dual-Knuthrelation (see [16℄). But a permutation w may be "lo
ally minimal", that is, wand w�1 may avoid the sequen
es 312 and 231 (so that no elementary Knuthrelation in
reases its length), without being of minimal length in its two-sided
ell. For example, 
onsider the involution � = 632541 2 S6, of length 11, whi
havoids the sequen
es 312 and 231. The minimal elements of the Knuth 
lass of� are 326541 and 632154, of length 9.It would be interesting to �nd a purely 
ombinatorial proof of the mainresult. It is apparently an open problem to read the length of a permutation wdire
tly on the pair of tableaux �(w) (however, see [15℄, where the author givesa way to read the signature on the pair of tableaux). Fortunately, the Lusztiga-fun
tion gives us a way to avoid this problem.
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2 Consequen
es of the main resultWe denote a partition of n by � = (�1; : : : ; �k), with �1 � � � � � �k � 1. Ourreferen
e for the general theory of the symmetri
 group is [16℄.For any partition � = (�1; : : : ; �k) of n, we de�ne, for i > 0,mi(�) = jfj j�j = igj :The number mi(�) is 
alled the multipli
ity of i in � (see [14℄). Observe thatmi(�) = 0 for all i > n, sin
ePi �i = n. It is well-known that the multinomial
oeÆ
ient � m1(�) +m2(�) + � � �+mn(�)m1(�);m2(�); : : : ;mn(�) �is the number of 
ompositions asso
iated to �. Hen
e, we obtain the following
orollary.Corollary 2.1. Let � be a partition of n, then??T �min?? = � m1(�t) +m2(�t) + � � �+mn(�t)m1(�t);m2(�t); : : : ;mn(�t) � ;whi
h is the number of 
ompositions 
 of n su
h that �(
) = �t.The minimal elements in two-sided 
ells are linked to an another importantnumber in 
ombinatori
s n(�) = kXi=1 ��ti2� ;see [14, p.2-3℄.Corollary 2.2. Let � be a partition of n and write �t = (�t1; : : : ; �tk). Then`(w) = n(�) for all w 2 T �min.Proof. Let 
 be a 
omposition of n su
h that �(
) = �t. Then `(�
) = `(��t .Let wi be the longest element of the Young subgroup S�ti , then `(wi) = ��ti2�.Therefore `(��t) = kXi=1 ��ti2�sin
e ��t = w1 : : : wk (seen as a word on the letters 1; : : : ; n) and that theletters in wi+1 are greater than the letters in wi. The 
orollary follows fromTheorem 1.1.As for the 
ase of minimal elements, we have the following 
orollaries:Corollary 2.3. Let � be a partition of n, then??T �max?? = � m1(�) +m2(�) + � � �+mn(�)m1(�);m2(�); : : : ;mn(�) � ;whi
h is the number of 
ompositions 
 of n su
h that �(
) = �.4



Corollary 2.4. Let � = (�1; : : : ; �k) be a partition of n, then`(w) = �n2�� kXi=1 ��i2�for all w 2 T �max.Proof. As `(�(n)) = �n2� and `(�(n)w) = `(�(n)) � `(w), for any w 2 Sn, the
orollary follows from same arguments than in the proof of Corollary 2.2.3 Proof of Theorem 1.1The following proposition implies thatf�
 j�(
) = �tg = fwT jT is a reading 
olumn tableau of shape �g � T �:Proposition 3.1. Let � be a partition of n; then the following 
onditions areequivalent:i) T is a reading 
olumn tableau of shape �;ii) wT = �
, where 
 is a 
omposition of n su
h that �(
) = �t.Example: Consider the partition � = (3; 2; 1; 1) of 7, as above, andT = 763 51 2 4a reading 
olumn tableau of shape �. We de
ompose the steps of the inverse ofthe Robinson-S
hensted 
orresponden
e:763 51 2 4 ; 73 61 2 5 ; 3 71 2 6 ; 31 2 7 ; 31 2 ; 1 3 ; 1763 51 2 4 ; 63 51 2 4 ; 3 51 2 4 ; 31 2 4 ; 31 2 ; 1 2 ; 1Therefore, we obtain the involution, seen as a word, wT = 1 3 2 7 6 5 4 whi
his the longest element of the Young subgroup S1 � S2 � S4; and �t = (4; 2; 1).5



Proof. Re
all that the longest element of a Young subgroup is an involution,sin
e it is unique.Assume (i). As T is a reading 
olumn tableau, if n is in the row Ti, one has1 � p � n � 1 su
h that p + 1 is in the �rst row of T , p + i = n and p + j isat the end of the row Tj , for all 1 � j � i. One applies the i �rst steps of theinverse of Robinson-S
hensted 
orresponden
e, hen
ewT = wT 0 n : : : p+ 1:where T 0 is the standard Young tableau obtained by deleting p + 1; : : : ; n inT . Thus wT 0 is a permutation on the set f1; : : : ; pg. Observe that T 0 is also areading 
olumn tableau. The shape of T 0 is denoted by �0. By indu
tion on n,wT 0 is the longest element of the Young subgroup S
0 , where �(
0) = �0. ThenwT is the longest element of the Young subgroup S
0 � Si. Let 
 = (
0; i); it isnow easy to see that �(
) = �t.Conversly, let 
 = (n1; : : : nk) and use indu
tion and similar arguments withdire
t Robinson-S
hensted 
orresponden
e on the permutationwT = n1 : : : 1 w0;where n1 : : : 1 is the longest element of the Young subgroup Sn1 and w0 is thelongest element of the Young subgroup Sn2 � � � � � Snk .Now, it remains to prove that f�
 j�(
) = �tg = T �min, to end the proof ofTheorem 1.1.The Lusztig a-fun
tion: We 
onsider the symmetri
 group Sn as a Coxetersystem (W;S) of type An�1 with W = Sn and generating set S 
onsisting ofthe n � 1 simple transpositions �i = (i; i + 1), where i = 1; : : : ; n � 1. Then`(w) is also the length of w as a word in the elements of S. A 
lassi
al bije
tionbetween subsets of S and 
ompositions of n is obtained as follow: Let I � Sand S n I = f�i1 ; : : : ; �ikg with 1 � i1 < i2 < � � � < ik � n � 1. Set n1 = i1,n2 = i2 � i1 + 1, : : : , nk = n � ik, then ni are non-negative integers. By thisway, we have obtained a unique 
omposition 
I = (n1; : : : ; nk) of n asso
iatedto I . Moreover, WI = Sn1 � � � � � Snk :Therefore, as is well-known the Young subgroups of Sn are pre
isely the paraboli
subgroups of Sn (see [7, Proposition 2.3.8℄).Our basi
 referen
es for the work of Kazhdan and Lusztig are [9℄, [13℄ (seealso [4℄). We denote by � the Bruhat order on Sn.Let A = Z[q1=2; q�1=2℄ where q1=2 is an indeterminate. Let H be the He
kealgebra over A 
orresponding to Sn. Let (Tw)w2Sn be the standard basis of Hand ( eTw)w2Sn the basis de�ned as follows:eTw = q�`(w)=2Tw:6



In [9, Theorem 1.1℄, Kazhdan and Lusztig have shown that there is a basis(bw)w2Sn of H, 
alled the Kazhdan-Lusztig basis, su
h thatbw = Xy�w(�1)`(w)�`(y)q(`(w)�`(y))=2Py;w(q�1) eTy;where Py;w 2 A are the Kazhdan-Lusztig polynomials. Moreover, they havede�ned three equivalen
e relations on Sn, with equivalen
e 
lasses that are 
alledleft 
ells, right 
ells and two-sided 
ells. In our 
ase, the following result of Voganand Jantzen result on Sn [8, 20℄ gives the link with the Robinson-S
hensted
orrespondan
e (see also [1℄): the set T � is a two-sided 
ell for all partitions �of n; and any two-sided 
ell of Sn arises by this way.FollowingLuzstig [12, 13℄, let hx;y;w be the stru
ture 
onstants of the Kazhdan-Lusztig base (bw)w2W , that isbxby = Xw2W hx;y;w bw:Denote Æ(w) the degree of the Kazhdan-Lusztig polynomial Pe;w as a poly-nomial in q. Write u = q1=2. Let a(w) be the smallest integer su
h that forany x; y 2 Sn, ua(w)hx;y;w 2 A+, where A+ = Z[u℄ (this is well de�ned for anyWeyl group). In [12, 13℄, Lusztig has shown the following properties about thea�fun
tion:a) a(w) � `(w)� 2Æ(w) ([13, Se
tion 1.3℄);b) The a�fun
tion is 
onstant on two-sided 
ells ([12, Theorem 5.4℄).
) For any I � S, a(�
I ) = `(�
I ) ([13, Corollary 1.9 (d) and Theorem 1.10℄).In other words, for any 
omposition 
 of n, a(�
) = `(�
).d) Let D = fw 2W j a(w) = `(w)� 2Æ(w)g, then ea
h element in D is aninvolution, 
alled a Du
o involution ([13, Proposition 1.4℄). In symmetri
groups, all involutions are Du
o involutions. Indeed, ea
h left 
ell 
ontainsa unique Du
o involution [13℄; left 
ells are pre
isely dual-Knuth 
lasses[1℄, and ea
h dual-Knuth 
lass 
ontains a unique involution.Let � be a partition of n and T � be its asso
iated two-sided 
ells. Properties(b) and (
) implie that a� := a(��t) = a(w), for all w 2 T �. Therefore, by (a),`(�
) = a� = a(w) � `(w);for any w 2 T �. Thus f�
 j�(
) = �tg � T �min:Now, let w 2 T �min, then a(w) = a� = `(��t) = `(w), sin
e ��t 2 T �min.Property (d) implies that w is a Du
o involution and Æ(w) = 0.By Proposition 3.1, �
 2 T � implies �(
) = �t Therefore, Theorem 1.1 isa dire
t 
onsequen
e of the following result, whi
h gives a surprising 
riterionabout the degree Æ(w) of the Kazhdan-Lusztig polynomial Pe;w, for w 2 Sn aninvolution. 7



Proposition 3.2. Let w 2 Sn, then the following 
onditions are equivalent:i) w is an involution and Æ(w) = 0;ii) w = �
, for some 
omposition 
 of n.KL Polynomials and smoothness of S
hubert Varieties: We say thata permutation w 2 Sn, seen as a word w = x1 : : : xn, avoids the pattern 4231(resp. avoids the pattern 3412) if there is no 1 � i < j < k < l � n su
h thatxl < xj < xk < xi (resp. xk < xl < xi < xj). In other words, there is nosubword of w with the same relative order as the word 4231 (resp. 3412).Here, we link these de�nitions with Kazhdan-Lusztig polynomials by theway of the following well-known 
riterion: Let w 2 Sn, then(�) Pe;w = 1 () w avoids the patterns 4231 and 3412:Indeed, on one hand, Lakshmibai and Sandhya have shown that a S
hubertvariety X(w), w 2 Sn, is smooth if and only if w avoids the pattern 3412 and4231 ([10℄ or see [2, Theorem 8.1.1℄).On the other hand, Deodhar [5℄ has shown a useful 
hara
terisation of thesmoothness by the way of Kazhdan-Lusztig polynomials: Let w 2 Sn thenPe;w = 1 if and only if X(w) is smooth.Proof of Proposition 3.2: By the above dis
ussion, Proposition 3.2 is adire
t 
onsequen
e of the following lemma.Lemma 3.3. Let w 2 Sn an involution, then the following statements areequivalenti) w avoids the patterns 4231 and 3412;ii) there is a 
omposition 
 of n su
h that w = �
;Proof. (ii)) (i) is readily seen by indu
tion on n, sin
e �(n) avoids the patterns4231 and 3412.(i)) (ii): one sees w = x1 : : : xn as a word on the letters 1; : : : ; n.One pro
eeds by indu
tion on n. Therefore, one may suppose that (i)) (ii)for all proper Young subgroups of Sn. If n � 4, it is readily seen. Supposesn > 4.If x1 = 1, then w 2 S1 � Sn�1, and the lemma follows by indu
tion.If n > x1 = p > 1, then xp = 1 and 1 � xi � p, for all 1 � i � p. Otherwise,there is 1 < i < p su
h that xi > p. In other words, there is 1 < i < p < xi su
hthat xp = 1 < xxi = i < x1 = p < xi, that is, w has the pattern 3412 whi
h isa 
ontradi
tion.Hen
e w 2 Sp � Sn�p and the lemma follows by indu
tion.If x1 = n, then xn = 1 one just has to show that w = w0. Otherwise, thereis 1 < i < n�1 su
h that xi < xi+1 (sin
e if i = 1, x1 = n < x2 and if i+1 = n,xn�1 < xn = 1 whi
h are 
ontradi
tions). Thus there is 1 < i < i + 1 < nsu
h that xn < xi < xi+1 < x1, that is, w has the pattern 4231 whi
h is a
ontradi
tion. 8
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