Minimal and maximal elements in two-sided cells
of S,, and Robinson-Schensted correspondence

Christophe Hohlweg
Institut de Recherche Mathématique Avancée,
Université Louis Pasteur et CNRS,
7,rue René Descartes
67084 Strasbourg, France
hohlweg@math.u-strasbg.fr

December 1, 2003

Abstract

In symmetric groups, a two-sided cell is the set of all permutations
which are mapped by the Robinson-Schensted correspondence on a pair
of tableaux of the same shape. In this article, we show that the set of per-
mutations in a two-sided cell which have a minimal number of inversions
is the set of permutations which have a maximal number of inversions in
conjugated Young subgroups. We also give an interpretation of these sets
with particular tableaux, called reading column tableaux. As corollary, we
give the set of elements in a two-sided cell which have a maximal number
of inversions.
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1 Introduction

In this article, we consider the symmetric group S,. For w € S,,, the length of
w, denoted £(w), is the number of inversions of w.

The Robinson-Schensted correspondence [17] is the well-known bijection 7 :
w +— (P(w),Q(w)) between S, and pairs of standard tableaux of the same
shape (a partition of n). For each partition \ of n, we denote by 7> the set of
all permutations which are mapped by 7 on a pair of tableaux of shape A. In
the Kazhdan-Lusztig theory, which we use in this article, the sets 7 are called
two-sided cells (see [9], [20], [1]) .



Our goal is to describe, for any partition A of n, the set 7,2, of elements of
minimal length in 7* and the set 7,),, of elements of maximal length in 7.

For each composition ¢ = (n1,...,n;) of n (with n; > 1), the Young subgroup
Se = Sp, x+++ xSy, contains a unique permutation o, of maximal length. It
is well-known that o, is an involution, called the longest element of S.. Denote
A(c) the unique partition of n obtained by reordering in decreasing order the
n;. It is well-known that two Young subgroups S., and S., are conjugated in
Sy if and only if A(c1) = A(c2)-

Schiitzenberger [19] has shown that the map T +— wr = 7= (T, T) is a bijec-
tion between the standard tableaux of shape a partition of n and the involutions
of S,,.

A standard tableau T is a reading column tableau if it has the following
property: for any 1 < p < n, either p is in the first line of T, or if p is in the i*®
line of T (i > 1) then p — 1 is in the (i — 1)*® line of T

As example, the column superstandard tableauz (which are tableaux num-
bered from the bottom to the top of each column, from left to right) are reading
column tableaux. These particular tableaux are an analog of the reading (row)
tableaux defined by Garsia and Remmel in [6]. Our main result is the following:

Theorem 1.1. Let ) be a partition of n and T> be its associated two-sided cell,
then

Toin = f{ocIA(e) =2}
= {wr|T is a reading column tableaw of shape \},

where X\t denotes the conjugated partition of \.

Ezample. Consider the partition A\ = (3,2,1,1) of 7; \* = (4,2,1). Then the
reading column tableaux of shape A are

4 6 5
3 5 4
hi=4 4 P Te= oy v Ii= g o
1 5 7 1 3 7 1 2 6
4 7 7
3 6 6
o=y 4 P =g 5 v To= 3 5
1 5 6 1 3 4 1 2 4

the corresponding involutions are
wT1=4321657=0(4,2’1) 3 ’LUT2=2165437=O'(2,4’1)

’LUT3=1543276=O'(1,4’2) ; ’LUT4=4321576=O'(4,1’2)
’LUT5=2137654=O'(2,1’4) ; ’LUT6=1327654=O'(1,2’4)



and 7—7513;;127171) ={04,2,1),7(2,4,1), T(1,4,2), T(4,1,2), T(2,1,4), T(1,2,4) }-

Let A be a partition of n and T be a standard tableau of shape \. The
Schiitzenberger evacuation of T, denoted by ev (T'), is a tableau of shape A [18]
(see also [16, p.128-130]). The evacuation illustrates the conjugation and the left
(and right) multiplication by o). In particular, Schiitzenberger has shown, for
any w € Sy, that Q(wo(,)) = ev (Q(w)?) and T)‘a(n) = a(n)T)‘ = 7*". Denote
de = Wip)we. As (o (nyw) = £(0(n)) — £(w), we obtain the following corollary:

Corollary 1.2. Let )\ be a partition of n and T> be its associated two-sided
cell, then

Tnéaz = {dc | A(C) = >‘}
{w|ev (Q(w)") = P(wo(,)) is a reading column tableau of shape \'}.

In the theory of Coxeter groups, the element d, is well-known as the unique
element of maximal length in the set of minimal right coset representatives of
Se [7, Chapter 2].

As a byproduct of our proof, we obtain, in Section 3, that if w is an involu-
tion, the Kazhdan-Lusztig polynomial P, ,, = 1 if and only if w is the longest
element of a Young subgroup (where e denotes the identity of S,,). More pre-
cisely, we show that an involution w avoids the pattern 3412 and 4231 if and
only if w is the longest element of a Young subgroup of S,,.

To our knowledge, our results are the first results relating the Robinson-
Schensted transformation and the length function (number of inversions) of a
permutation. There is no evident link between both. Our proof is non combina-
torial and uses heavily the a—function of Lusztig. Trying to find a combinatorial
proof (which is a challenge) leads first to the following difficulty: for any permu-
tations w, z in a two sided-cell 77, there are permutations w1, ..., w; € 7> such
that wy = w, wy = x and w;4 1 is obtained from w; by a Knuth or a dual-Knuth
relation (see [16]). But a permutation w may be ”locally minimal”, that is, w
and w~! may avoid the sequences 312 and 231 (so that no elementary Knuth
relation increases its length), without being of minimal length in its two-sided
cell. For example, consider the involution o = 632541 € Sg, of length 11, which
avoids the sequences 312 and 231. The minimal elements of the Knuth class of
o are 326541 and 632154, of length 9.

It would be interesting to find a purely combinatorial proof of the main
result. It is apparently an open problem to read the length of a permutation w
directly on the pair of tableaux 7(w) (however, see [15], where the author gives
a way to read the signature on the pair of tableaux). Fortunately, the Lusztig
a-function gives us a way to avoid this problem.



2 Consequences of the main result

We denote a partition of n by A = (A1,...,Ag), with Ay > --- > A > 1. Our
reference for the general theory of the symmetric group is [16].
For any partition A = (A1, ..., \;) of n, we define, for 7 > 0,

mi(A) = i A; =}

The number m;(\) is called the multiplicity of ¢ in A (see [14]). Observe that
m;i(A) =0 for all i > n, since ), \; = n. It is well-known that the multinomial

coefficient
( mi(A) +ma(A) + -+ my () )
mi(A),ma(N),...,mu(A)

is the number of compositions associated to A. Hence, we obtain the following
corollary.

Corollary 2.1. Let A be a partition of n, then

(MmN +ma (M) - ma (N
|7—72m|—< m1 (D), ma(AY), ..., m,(A}) )7

which is the number of compositions ¢ of n such that \(c) = \!.

The minimal elements in two-sided cells are linked to an another important

number in combinatorics .
2\t
=3 (5).
i=1

see [14, p.2-3].

Corollary 2.2. Let A\ be a partition of n and write X' = (X\i,...,\L). Then
L(w) =n(N\) for allw € T},

Proof. Let ¢ be a composition of n such that A(c) = At. Then £(c.) = £(ox:.
Let w; be the longest element of the Young subgroup S):, then {(w;) =

Therefore i

o) =3 (3)

i=1
since oyt = w;...wy (seen as a word on the letters 1,...,n) and that the

letters in w;; 1 are greater than the letters in w;. The corollary follows from
Theorem 1.1. O

As for the case of minimal elements, we have the following corollaries:

Corollary 2.3. Let A be a partition of n, then

_ () +ma() + e ma(X)
|Tn§az|—< mi(\),ma(N), ..., mn() )

which is the number of compositions ¢ of n such that A(c) = A.



Corollary 2.4. Let A = (\y,..., ) be a partition of n, then

w-(0)-£0)

for allw € T,y

Proof. As l(o(y)) = (g) and L(opyw) = L(o(y)) — L(w), for any w € Sy, the

corollary follows from same arguments than in the proof of Corollary 2.2. O

3 Proof of Theorem 1.1

The following proposition implies that
{o.|X(c) = M} = {wr | T is a reading column tableau of shape A} C T>.

Proposition 3.1. Let A be a partition of n; then the following conditions are
equivalent:

i) T is a reading column tableau of shape A;
i) wr = 0., where c is a composition of n such that \(c) = \!.

Ezample: Consider the partition A = (3,2,1,1) of 7, as above, and

T =

—w o

5
2 4

a reading column tableau of shape A. We decompose the steps of the inverse of
the Robinson-Schensted correspondence:

7

6 7

35 36 * 37 3 3 ’ ’
1 2 4 1 2 5 1 2 6 1 2 7 1 2 1 3
7

6 6

35 35 * 35 " 3 3 ’ ’
1 2 4 1 2 4 1 2 4 1 2 4 1 2 1 2

Therefore, we obtain the involution, seen as a word, wr =13 2 7 6 5 4 which
is the longest element of the Young subgroup S; x So x Sy; and A\t = (4,2, 1).



Proof. Recall that the longest element of a Young subgroup is an involution,
since it is unique.

Assume (7). As T is a reading column tableau, if n is in the row T, one has
1 < p<n-—1such that p+ 1 is in the first row of T, p+i =n and p+ j is
at the end of the row T}, for all 1 < j < i. One applies the 7 first steps of the
inverse of Robinson-Schensted correspondence, hence

wr=wpr n ... p+ 1.

where T’ is the standard Young tableau obtained by deleting p + 1,...,n in
T. Thus wr is a permutation on the set {1,...,p}. Observe that 7" is also a
reading column tableau. The shape of T" is denoted by ). By induction on n,
wr is the longest element of the Young subgroup S.r, where A(¢’) = A’. Then
wr is the longest element of the Young subgroup S. x S;. Let ¢ = (¢,4); it is
now easy to see that \(c) = \!.

Conversly, let ¢ = (n1,...nx) and use induction and similar arguments with
direct Robinson-Schensted correspondence on the permutation

!

wr=n1 ... Lw,
where n; ... 1 is the longest element of the Young subgroup S,,, and w' is the
longest element of the Young subgroup Sy, X -+ x S, . (]

Now, it remains to prove that {o.|A(c) = At} = T,}.,., to end the proof of
Theorem 1.1.

The Lusztig a-function: We consider the symmetric group S,, as a Coxeter
system (W, S) of type A,_1 with W = S,, and generating set S consisting of
the n — 1 simple transpositions 7; = (i, 7 + 1), where i = 1,...,n — 1. Then
£(w) is also the length of w as a word in the elements of S. A classical bijection
between subsets of S and compositions of n is obtained as follow: Let I C S
and S\I = {Til,...,Tik} with 1 <4y <is < -+ < i <n—1. Set n; = 11,
ne =i —i1 + 1, ..., ny = n — iy, then n; are non-negative integers. By this
way, we have obtained a unique composition ¢; = (n1,...,n;) of n associated
to I. Moreover,
W[ :Sn1 X +ee X Snk

Therefore, as is well-known the Young subgroups of S,, are precisely the parabolic
subgroups of S, (see [7, Proposition 2.3.8]).

Our basic references for the work of Kazhdan and Lusztig are [9], [13] (see
also [4]). We denote by < the Bruhat order on S,.

Let A = Z[q'/?,q /%] where ¢/? is an indeterminate. Let H be the Hecke
algebra over A corresponding to S,. Let (Ty)wes, be the standard basis of H
and (T)wes, the basis defined as follows:

T, = gt



In [9, Theorem 1.1], Kazhdan and Lusztig have shown that there is a basis
(bw)wes, of H, called the Kazhdan-Lusztig basis, such that

by = Z (_1)5(1@—f(y)q(f(w—é(y))ﬂp%w(q—l)Ty’
y<w

where P, ,, € A are the Kazhdan-Lusztig polynomials. Moreover, they have
defined three equivalence relations on S,,, with equivalence classes that are called
left cells, right cells and two-sided cells. In our case, the following result of Vogan
and Jantzen result on S, [8, 20] gives the link with the Robinson-Schensted
correspondance (see also [1]): the set 7> is a two-sided cell for all partitions A
of n; and any two-sided cell of S,, arises by this way.
Following Luzstig [12, 13], let h; ,, ., be the structure constants of the Kazhdan-

Lusztig base (by)wew, that is

baby = > by bu.

weWw

Denote é(w) the degree of the Kazhdan-Lusztig polynomial P, ,, as a poly-
nomial in ¢. Write u = ¢/2. Let a(w) be the smallest integer such that for
any z,y € Sy, ua(“’)hm’y’w € AT, where AT = Z[u] (this is well defined for any
Weyl group). In [12, 13], Lusztig has shown the following properties about the
a—function:

a) a(w) < £(w) — 26(w) ([13, Section 1.3]);
b) The a—function is constant on two-sided cells ([12, Theorem 5.4]).

c) Forany I C S, a(oc,) = £(0c,) ([13, Corollary 1.9 (d) and Theorem 1.10]).
In other words, for any composition ¢ of n, a(c.) = £(o¢).

d) Let D = {w € W]a(w) = €(w) — 26(w)}, then each element in D is an
involution, called a Duflo involution ([13, Proposition 1.4]). In symmetric
groups, all involutions are Duflo involutions. Indeed, each left cell contains
a unique Duflo involution [13]; left cells are precisely dual-Knuth classes
[1], and each dual-Knuth class contains a unique involution.

Let ) be a partition of n and 7> be its associated two-sided cells. Properties
(b) and (c) implie that ay := a(ox:) = a(w), for all w € T*. Therefore, by (a),

L(o;) = ax = a(w) < L(w),

for any w € 7*. Thus
{oc|A(e) = X'} C Ty

Now, let w € T}, then a(w) = ay = l(ox:) = L(w), since oxt € T
Property (d) implies that w is a Duflo involution and §(w) = 0.

By Proposition 3.1, 0. € T* implies A(c) = A* Therefore, Theorem 1.1 is
a direct consequence of the following result, which gives a surprising criterion
about the degree §(w) of the Kazhdan-Lusztig polynomial P. ,,, for w € S, an
involution.



Proposition 3.2. Let w € S,,, then the following conditions are equivalent:
i) w is an involution and é(w) = 0;

ii) w = o, for some composition c of n.

KL Polynomials and smoothness of Schubert Varieties: We say that
a permutation w € S,,, seen as a word w = 1 ...2Z,, avoids the pattern 4231
(resp. avoids the pattern 3412) if there isno 1 <i < j < k <! < n such that
z < z; <z < z; (resp. zp < 2 < & < z;). In other words, there is no
subword of w with the same relative order as the word 4231 (resp. 3412).

Here, we link these definitions with Kazhdan-Lusztig polynomials by the
way of the following well-known criterion: Let w € S,,, then

(0) P.., =1 <= w avoids the patterns 4231 and 3412.

Indeed, on one hand, Lakshmibai and Sandhya have shown that a Schubert
variety X (w), w € Sy, is smooth if and only if w avoids the pattern 3412 and
4231 ([10] or see [2, Theorem 8.1.1]).

On the other hand, Deodhar [5] has shown a useful characterisation of the
smoothness by the way of Kazhdan-Lusztig polynomials: Let w € S, then
P, , = 1if and only if X (w) is smooth.

Proof of Proposition 3.2: By the above discussion, Proposition 3.2 is a
direct consequence of the following lemma.

Lemma 3.3. Let w € S, an involution, then the following statements are
equivalent

i) w avoids the patterns 4231 and 3412;

ii) there is a composition ¢ of n such that w = o;

Proof. (it) = (i) is readily seen by induction on n, since o(,,) avoids the patterns
4231 and 3412.

(¢) = (i1): one sees w = 1 ...z, as a word on the letters 1,...,n.

One proceeds by induction on n. Therefore, one may suppose that (i) = (i7)
for all proper Young subgroups of S,,. If n < 4, it is readily seen. Supposes
n > 4.

If 1 =1, then w € S; X S,,—1, and the lemma follows by induction.

Ifn>zy=p>1,thenz,=1and 1 <z; <p,forall 1 <i<p. Otherwise,
there is 1 < ¢ < p such that z; > p. In other words, there is 1 < ¢ < p < z; such
that z, =1 < z,, =% < z; = p < z;, that is, w has the pattern 3412 which is
a contradiction.

Hence w € Sp, X S;,—p and the lemma follows by induction.

If 1 = n, then x,, = 1 one just has to show that w = wg. Otherwise, there
is1 <7 <n—1suchthat z; < z;41 (sinceifi =1,z =n < zp and if i + 1 = n,
ZTp—1 < Zp, = 1 which are contradictions). Thus thereis 1 < i <i+1 < n
such that z, < z; < x;41 < 1, that is, w has the pattern 4231 which is a
contradiction. O
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