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NILPOTENT ORBITS OF LINEAR AND CYCLIC QUIVERS
AND KAZHDAN-LUSZTIG POLYNOMIALS OF TYPE A

ANTHONY HENDERSON

ABSTRACT. The intersection cohomologies of closures of nilpotent orbits of
linear (respectively, cyclic) quivers are known to be described by Kazhdan-
Lusztig polynomials for the symmetric group (respectively, the affine symmet-
ric group). We explain how to simplify this description using a combinatorial
cancellation procedure, and we derive some consequences for representation
theory.

1. INTRODUCTION

This paper is concerned with formulas for the intersection cohomologies of clo-
sures of nilpotent orbits of linear and cyclic quivers. By fundamental results in
geometric representation theory, these intersection cohomologies control certain fea-
tures of the representations of affine Hecke algebras and quantum affine algebras.
There is a well-known formula in the linear case due to Zelevinsky, using Kazhdan-
Lusztig polynomials of the symmetric group; there is an analogous formula in the
cyclic case due to Lusztig, using Kazhdan-Lusztig polynomials of the affine symmet-
ric group. The main point of this paper is that both formulas can be rewritten in
terms of Kazhdan-Lusztig polynomials for different (potentially smaller) symmetric
or affine symmetric groups, by applying a combinatorial “cancellation” procedure
due to Billey and Warrington. The rewritten formulas in the linear quiver case
have already appeared, in a representation-theoretic guise, in the work of Suzuki
and others; in the cyclic quiver case they are new.

In the remainder of the introduction we will survey the main results and their
representation-theoretic consequences; the other sections give the proofs, concen-
trating on the combinatorial side of the story. Sections 2 and 4 are purely combina-
torial, explaining the concept of “cancellation” for the symmetric group and affine
symmetric group respectively. Most (perhaps all) of the results in Section 2 are
known, but we will go over them in detail to provide a reference for the generaliza-
tions to the affine case in Section 4. Sections 3 and 5 connect these combinatorial
results to the problem of computing intersection cohomology.

Throughout the paper, all vector spaces, algebras and varieties are over C.

Consider the linear quiver of type A, with vertex set Z and arrows ¢ — ¢ + 1
for all ¢ € Z. Finite-dimensional representations of this quiver are parametrized
by multisegments: a segment is a nonempty finite interval [¢, j] in Z, and a multi-
segment is a finite formal sum of segments. Now fix a Z-graded finite-dimensional
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vector space V = @iez Vi. Let d; = dimV;, d = dimV. A representation of the
quiver on V is simply an element of

Ny = {p € End(V) | (Vi) C Vit1, Vi € Z}.

Two such representations are isomorphic if they are in the same orbit for Gy =
{g € GL(V)|g(V;) = V;,Vi}, acting on Ny by conjugation. Since all elements of
Ny are nilpotent as endomorphisms of V', we call these nilpotent orbits. They are
clearly in bijection with M4,), the set of multisegments such that each i occurs d;
times as an element of a segment. For m € M(q,), let Oy, denote the corresponding
orbit in Ny,. We put a partial order < on M4, by setting m < m’ if and only if
Om is contained in the closure Opy of Oy

The extent to which Oy, is singular at the points of Oy, is measured by an
intersection cohomology polynomial ICp m' € Nlg], defined by

where IC(Oyy) is the intersection cohomology complex of Op,, and H2 denotes
the stalk at a point of Oy, of the (2¢)th cohomology sheaf (it turns out that all odd-
degree cohomology sheaves of IC(Oyy,) vanish). Note that ICpy m is nonzero if and

only if m < m’, and is 1 if m = m’. Hence the inverse matrix (Icfn_z/)m,m’eM(d.)

of (ICm,m’)m,m’GM(di) has entries in Z[qg]; moreover, IC’fr:rlgl, is zero unless m < m’,
and is 1 if m = m’.

From the viewpoint of geometric representation theory, the poset Mq,), together
with these IC polynomials, is a model for certain “blocks” of representations of
Lie-theoretic algebras of type A. More concretely, the algebras listed below each
have a collection of finite-dimensional standard modules {Mm |m € M4,)} and a
collection of finite-dimensional simple modules { Ly, [ m € M4, }, which are related
by the following (equivalent) equations in the Grothendieck group of modules:

[Mm] = Y ICmm(1) L], Ym € M),
m/GM(di)
(1.1) -
Lml = > ICy (1) [Mu], Ym € Mg,).
m’€Ma,)

So the sum of the coefficients of ICy, m is a composition multiplicity of a standard
module; the individual coefficients record the composition multiplicities in a certain
Jantzen-like filtration. For each algebra, the general definition of standard modules
allows segments of arbitrary complex numbers, not just integers; but the problem
of computing composition multiplicities can be reduced to the integer case. The
algebras in question, and references to the definitions and results, are as follows.

(1) The affine Hecke algebra 7/-(\(1 attached to GLg4, specialized at a parameter
which is not a root of unity (as in [5, Definition 12.3.1]). The standard and
simple modules were defined by Zelevinksy in [24], and () was conjec-
tured in [25] (see also [19]). Ginzburg proved (L)) for standard modules de-
fined in a geometric way (see [6l, Theorem 8.6.23]). The fact that Ginzburg’s
standard modules coincide with Zelevinsky’s in the Grothendieck group
is usually deduced from the Induction Theorem of Kazhdan and Lusztig
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(see [2]; nowadays the best version of the Induction Theorem to use is [15]
Theorem 7.11]), though it should be regarded as a comparatively easy case
of that result.

(2) The corresponding degenerate affine Hecke algebra (as in [B, Definition
12.3.2]). The definitions of standard modules (as in [21, Section 2.2]) are
analogous to case (1), and indeed (L)) in this case can be deduced from
case (1) by the results of Lusztig in [II]—he also gave a proof specific to
this case in [13].

(3) The quantum affine algebra U, (5/[:), specialized at a parameter ¢ which is
not a root of unity (as in [5, Section 12.2A]). Here the standard modules
are tensor products of fundamental evaluation modules corresponding to
the segments, so we need r to be greater than or equal to the length of
the longest segment involved (otherwise, we could just stipulate that any
module indexed by a multisegment containing a segment of length > r is
zero). Equation (II) can be deduced from case (1) by Frobenius-Schur
duality (see [5, Section 12.3D]). Alternatively, with a geometric definition
of standard modules, (I.I]) was proved by Ginzburg and Vasserot (see [23,
Theorem 3]). It then follows that the two kinds of standard modules are
the same in the Grothendieck group (see [23] Proposition 18]), which can
presumably also be proved directly.

(4) The Yangian Y (sl.) (as in [B Section 12.1A]). The standard modules as
defined by Drinfeld in [7] are analogous to those in case (3), and (L)) in
this case can be deduced either from case (3) or case (2) using the results
in [7].

This profusion of representation-theoretic meanings of the polynomials /Cy, m’ and

1 Cfn_ 21, is the main reason to be interested in computing them; but it is also why,
in this paper, the clear-cut geometric definition is given greater prominence.

A classic result of Zelevinsky (|26, Corollary 1], see Theorem 3.2 below) identifies
the polynomials /Cy, m’ with Kazhdan-Lusztig polynomials of the symmetric group
Sa. More precisely, it provides an isomorphism of posets between M4,y and a lower
ideal M(’ ) of the poset of maximal-length representatives of S4,)—S(4,) double
cosets (under Bruhat order), where S(4,) is the parabolic (i.e. Young) subgroup
of Sq determined by the composition d = ), d;; and the polynomials attached
to these posets (IC polynomials for M,,), and Kazhdan-Lusztig polynomials for
M (’ di)) coincide under this isomorphism. Zelevinsky’s proof is geometric, embedding
the nilpotent orbits Oy, as open subvarieties of certain Schubert varieties, and using
the fact that the intersection cohomologies of the latter are described by Kazhdan-
Lusztig polynomials; but the point is that the poset M (’ ) and its Kazhdan-Lusztig
polynomials can be defined (and, in principle, computed) purely combinatorially.

More recent work of Suzuki ([2I]) implicitly generalizes this result, provid-
ing a family of poset isomorphisms between various upper ideals of M,y and
combinatorially-defined posets. To explain this we adopt the notation of [I7], which
views multisegments as “generalized skew-shapes”. For \,u € Z*, write A D p if
A > p; for all 1 <4 <k, and if this holds define a multisegment

k
(1.2) Mp=>[pi—i+ 1, —i,

i=1
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where any “empty segments” of the form [s + 1, s] are ignored. The reason for the
notation is that if A and p are partitions, i.e. Ay > --- > A\ > 0 and similarly for
1, then the segments are exactly the rows of the skew-shape diagram usually called
A/, where each box is replaced by its content. Since the order of terms in (I2)) is
unimportant, A/p = (w - X)/(w- ) for all w € Sy, where the “dot action” of Sy on
ZF is defined as usual by

(1.3) (W A)i —i= A1y — w(0).
A fundamental domain for this dot action is
Dp:={A€ZF|\ —12>X—2>--- >\, —k},

so we can write any multisegment in the standard form

(1.4) A/(w - u) where {

Here W) and W, are the stabilizers of A\ and p for the dot action, which are
clearly parabolic subgroups of Si. Note that this expression in standard form
is not uniquely determined by the multisegment, but rather by the multisegment
together with a chosen multiset of empty segments.

A€ Dy, we Sy, A\Dw-pu, and
w has maximal length in WwW,,.

Example. Let m be the multisegment [1,2] + [2,2] + [3, 3]. The most economical
way to express this in the form (4] is to take &k = 3, A = (4,4,5), p = (3,3,3),
and w to be the transposition (2,3). Another way is to take k = 4, A = (4,4,5,5),
w=(3,3,4,4), and w to be the transposition (2,4); this effectively adds the empty
segment [2, 1].

If A\, u € Dy, we define
Se[A p] ={w € S| A Dw-p} and
SkA, p]° = {w € Sk[A, ) | w has maximal length in WywW,}.

These are posets under Bruhat order; in fact we will see that Si[A, p] is a lower ideal
of S, so in particular Sk[\, u] # 0 < X DO p. With this notation, the generalized
form of Zelevinsky’s result can be stated as follows.

Theorem 1.1. Let A\, € Dy be such that X D p, N/ € Mg,y.

(1) The map w— A/ (w - p) is an isomorphism of posets between Si[A, u]° and
{m" € Mg, [ A/p=m'}.

(2) For w,w" € Sp[\p]°, 1C\/(w-pyr/(w'-p) = Pww, a Kazhdan-Lusztig poly-
nomial of Sk.

Zelevinsky’s original result is the special case where k = d, A is such that each
integer 7 occurs d; times in (A\; — 1,--- , Ay —d), and p= A — (1,1,---,1). In this
case A\/pu is the trivial multisegment . d;[i, ] (corresponding to the zero orbit), so
the image of the isomorphism in part (1) is all of M4,); the parabolic subgroups
Wy and W, both equal S(4,), and Sg[X, u]° is the poset M(’di) mentioned above.

The fact that Theorem [[T]is true in general means that in expressing m and m’
as A/(w-p) and A/(w’-u), any of the empty segments which occur in the Zelevinsky
case can be “cancelled” without changing the Kazhdan-Lusztig polynomial (or,
indeed, new ones can be added). For example, at the extreme, Theorem [Tl shows
that /Cm m' can be identified with a Kazhdan-Lusztig polynomial of Sy (), where
k(m) is the number of segments of m (smaller than d, unless m is trivial). In
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Section 3 we will use a result of Billey and Warrington, which provides for just
such cancellations in Kazhdan-Lusztig polynomials of symmetric groups, to deduce
Theorem [ from Zelevinsky’s theorem. The essence of the result is stated in
Theorem [B.3] using some matrix notation which will be introduced in §2.

As already mentioned, Theorem [[[T] cannot be considered new, since in the con-
text of the representation theory of the degenerate affine Hecke algebra (case (2)
above) it follows from Suzuki’s results in [2I]. With notation as in Theorem [I]
he defines an exact functor F) from the category O of representations of gl to
the category of finite-dimensional modules for the degenerate affine Hecke algebra
associated to GLg, and shows that it takes the Verma module M(w - i) to the
standard module M) (,.,) and the simple module L(w - p) to the simple module
L j(w.p for all w € Sp[A, p]°. Part (1) and the ¢ = 1 specialization of part (2) of
Theorem [[T] then follow from the known Kazhdan-Lusztig conjecture for gl (com-
bine [21), (5.2.1) and (5.2.2)]; the historical remarks following [21], (5.2.3)] properly
apply only to the Zelevinsky case). Moreover, by [2I, Theorem 5.3.5] the Kazhdan-
Lusztig polynomials P, . for w’ € Si[A, p]° record multiplicities in a Jantzen-type
filtration of M} /(y..), whose definition clearly depends only on the multisegment
(i.e. not on the empty segments); since (2) of Theorem [[T]is true in the Zelevinsky
case, it must be true in general. (As well as [21], see [I7] and [I] for the analogous
results in the case of the affine Hecke algebra and Yangian respectively).

One corollary concerns those multisegments A/u where A\, u € Dy satisfy Wy, =
W, =A{1},ie. Ay > Xg > - > A, 1 > po > -+ > py (these are the “placed
skew-shapes” of [18]): for such \/pu, it follows from Theorem [[1] that

-1
(1.5) Icﬁx/u?/\/(ww) = ¢e(w), for all w € Si[A, ul,

where € denotes the sign character. Thus the corresponding simple modules (called
calibrated for the affine Hecke algebra in [I8] and tame for the Yangian in [16]) can
be written as an alternating sum of standard modules in the Grothendieck group.
Representation-theoretically, this reflects the existence of a BGG-like resolution
of these simple modules (transferred by the appropriate functor from the BGG
resolution of the gl -module L()); see [21, Theorem 5.1.1] and [I7, (4.13)].

The justification for reproving Theorem [[.T]in §3 below is that the combinatorics
involved generalizes immediately to the case of cyclic quivers, as we will now explain.

Fix a positive integer n, and consider the cyclic quiver of type 11;,/1, with vertex
set Z/nZ and arrows i — i+ 1 for all i € Z/nZ. Finite-dimensional nilpotent
representations of this quiver are parametrized by multisegments as before, except
that there is no difference between segments [7, j| and [i/, j/] when ¢’ —i = j —jis a
multiple of n. Fix a (Z/nZ)-graded finite-dimensional vector space V' = B;cz/n7 Vi
and set d; = dim V5, d = dim V. We define

Ny ={p € End(V) |¢(V;) C Vigg, Vi € Z/nZ, ¢ nilpotent},

and consider Gy-orbits in Ny,. These are in bijection with Mq,),n, the set of
multisegments (in this modulo n sense) such that each congruence class i occurs
d; times among the elements of the segments. For m € M), let On denote
the corresponding nilpotent orbit, and define a partial order < and polynomials
ICm,m' € N[g] and IC&:}TZ, € Z[q] in the same way as before.

These polynomials too have representation-theoretic significance. The special-
ized quantum affine algebra U¢(sl.), where (% is a primitive nth root of 1, has
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a collection of standard modules {Mm|m € Mg,),} and a collection of simple
modules { Ly, | m € Mg,)}, satisfying the equivalent equations

[Mm] = Z ICm,m’(]-) [Lm’]a Ym € M(di),na
mIEM(dj),n
(1.6) 1
L= Y ICL 2. (1) [Mw], Ym e My, .
m’'€Ma;),n

(See [23, Theorem 3]—again, for small » we have to disregard multisegments con-
taining a segment of length > r.) The same is true for the affine Hecke algebra 7/-{\65
specialized at a primitive nth root of unity, except that there the simple modules
are parametrized by the smaller set of aperiodic multisegments (see |10 Section 2]),
so we have to set [Ly,] = 0 if m is not aperiodic. Vasserot has now proved a similar
result for the double affine Hecke algebra.

The analogue of Zelevinsky’s result for cyclic quivers was proved by Lusztig
in [12] §11] (it is stated below as Theorem [£.2). This identifies JCpm m’ with a
Kazhdan-Lusztig polynomial of the affine symmetric group S’; (the Coxeter group
of type Z;,/l) In Section 4, we will show that a version of Billey and Warrington’s
cancellation works for the affine symmetric group. As a consequence, we get an
analogue of Theorem [[.T] in this setting. N

To state it requires extending the dot action of Sy, on ZF to Si, so that the extra
Coxeter generator sy acts by

Me—k+1+4n, ifi=1,
(SO'A)i: /\i7 1f2§l§]€—1,
M—14+k—n, ifi=k

It is then clear that (w - A)/(w-pu) = A/ for all w € Sy, where the multisegments
are now interpreted in the modulo n sense. A fundamental domain for the action
of Si, on Z* is

Dp={AeZF|\ =120 2> 2N —k>X\ —n—1},
and the corresponding standard form for multisegments is

Aaue-’D\;a ’LUEE;, )\;)U/Ma and
w has maximal length in W wW,,,

(1.7) A/(w - ) where {

where fV[\/; and fV[\/; denote the stabilizers of A\ and p in g; (proper parabolic sub-
groups, hence finite). For A, u € Dy, we define

Sk ) = {w € Sp| A 2w~ p} and
SkIA, 1]° = {w € Sg[A, 4] | w has maximal length in fI/I\/;wfV[\/;}

We will see in §5 that, as in the symmetric group case, 3;[)\, u] is a (finite) lower
ideal of Sy for Bruhat order. We can now state a generalization of Lusztig’s result.

Theorem 1.2. Let A\, u € 5; be such that X\ D p, A/ p € Mym-

(1) The map w— A/(w - p) is an isomorphism of posets between E;[)\, p° and
{m/ € M(di),n | )‘/,U' = ml}'
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(2) For w,w' € g;[)\,u] IC) ) (w-p) 2/ (w'-p) = Pww s a Kazhdan-Lusztig poly-
nomial of Sk.

(An alternative statement using matrix notation is given in Theorem [5.3l) The
work of Arakawa, Suzuki, and Tsuchiya provides a representation-theoretic functor
which conjecturally “explains” this theorem.

As in the linear quiver case, Theorem implies that ICp m/ can be identified
with a Kazhdan-Lusztig polynomial of g;;r:) , where k(m) is the number of segments
of m; this immediately implies the main result of [§], that /Cmm' = 1 when
m =< m’, k(m) = 2.

Another consequence of Theorem [I.2]is an analogue of (A, concerning those
multlsegments A/p where A\ p € Dk satlsfy WA = W = {1}; this means that

M>X> A > A —n+ kg > ps > Zuk2u1—n+k. For such A\/u, it
follows from Theorem [I.2] that
(1.8) IC, o = (w), for all w € SpX, pl.

So once more the corresponding simple modules can be written as an alternating
sum of standard modules in the Grothendieck group; probably this indicates a
BGG-like resolution.

Theorems [T and combine well with the method used by Varagnolo and
Vasserot in [22] to determine the decomposition numbers of U (gl,.) where ¢? is a
primitive nth root of 1. Suppose we want to compute the multiplicity of the simple
module L¢(¢') in the Weyl module V;(X'), where A and p are partitions with at
most k parts all of size < r, and X and g’ are the transpose partitions (regarded
as dominant integral weights for gl.). By definition, V;(\’) is the specialization
at ¢ of the simple module V,(\') for the generic U,(gl,). Now using a suitable

normalization of the evaluation map U,(sl.) — U,(gl,.), we can regard V,(X\) as

the simple Uq(s/[:)—module Lyjo (see [22, Section 12.2]). By (LH), we have the
equation

(1.9) [Lxjo] = Z e(w) [M)(w-0))-

wESk[A,0]

Now let wx,w,,wy € 3; be such that wy - A, w, - p,wo -0 € 5; As noted
n [22, Section 12.3], the specialization at ¢ of the standard module M} (,.0) is

nothing more than the U (;[:)-standard module of the same name, which in stan-

)

dard form is M, .\ /(uwywws?)o-(we-0)> Where (wywwy *)° is the longest element of

/—\_//—\_/

wa.,\wAwwolewo 0- So in the Grothendieck group of U (s sl »)-modules,

(1.10) [VZ()\ )] = Z &(w) [M(wx)\)/(w,\wwgl)o~(w0~0)]'
wESk[)\,O]

Now as noted in [22] Section 12.2], L¢(n') regarded as a simple UC(H/[\T)—module

is Ly where (w,wy')° is the longest element of

—_ - Lw)/(wwwgl)o'(woﬂ)’
qu-uwuwo_leo-O- Using Theorem [[.2] we obtain
(1.11)

Ve(X) : Le()] = { Lwesi €0) Pluyunghye e (s 3 1 € Si- X

0, otherwise.



102 ANTHONY HENDERSON

In the first case, summing over all of Sy, rather than just Si[A, 0] introduces no new
terms, since (w,wy )° € g;[w,“u, wo-0] = Si[wx- A, wp-0], so the Kazhdan-Lusztig
polynomial can only be nonzero when wkwwo_l € SZ[U)A - A wg - 0], ie. A D w- 0.

In the special case that A and p have trivial stabilizers in 3; (ie. A1 =1, Np—k
have different residues modulo n, and similarly for p — this requires k < n, which
automatically implies wg = 1), (III)) becomes

1.12 N = | Swes, €W) Puyww, (1), if g€ S\,
(11D 0 L = { ) othervise

This is the form of the answer given by Soergel in [20, Conjecture 7.1] for the
equivalent problem of computing tilting module multiplicities for Ue(gl,,).

2. CANCELLATION FOR THE SYMMETRIC GROUP

In this section we explain the combinatorial result of Billey and Warrington on
which our approach depends. Fix a positive integer d, and let Sy be the group
of permutations of [1,d] = {1,---,d}. For i € [1,d — 1], we define s; € S4 to be
the transposition interchanging ¢ and i 4+ 1; as everyone knows, si,---,84_1 form
a set of Coxeter generators for Sy of type Ag_1. Thus we have a length function
¢:Sq — N, a Bruhat order <, and Kazhdan-Lusztig polynomials P, ,, € Ng| for
y,w € Sy (which are nonzero iff y < w). Good references for Kazhdan-Lusztig
polynomials are [9, Chapter 7] and [20] (where the notation is somewhat different).

The length function and the Bruhat order have well-known combinatorial de-
scriptions. Define the inversion statistics

invi(w) = [{i' <i|w(@) > w(@)}, Invi(w) = [{i' > i |w(i’) < w(@)}],

for any w € Sg and i € [1,d]. These are related by Inv;(w) = inv;(w) + w(i) — i.
Then

(2.1) Lw)= Y invi(w) = Y Invi(w).
i€[1,d] i€[1,d]
A special case of Bruhat order is that for all ¢ € [1,d — 1],
(2.2) ws; < w if and only if w(i) > w(i + 1).
The general description, due to Deodhar, is as follows:
Proposition 2.1. If y,w € Sy, y < w if and only if for all i,j € [1,d],
{i' <ily(@’) = 3} < {i' < ifw(@) > j}.

In other words, for all ¢ € [1,d] and m € [1,1], the mth largest element in y[1, 7]
is less than or equal to the mth largest element in w(l,d]. If y < w, we write [y, w]
for the Bruhat interval {z € Sy |y < z < w}.

We now come to the key definition.

Definition. If y < w in Sy, we say that ¢ € [1,d] is cancellable for the interval
[y, w] if y(i) = w(i), inv;(y) = inv;(w), and Inv;(y) = Inv;(w). (Clearly any two of
these conditions imply the third.)

The reason for the name “cancellable” is that Bruhat order and Kazhdan-Lusztig

polynomials are preserved under the operation of “cancelling the common action
on ¢’ from the permutations in question, in the following sense. For all i € [1,d],
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let 0; : [1,d] \ {i} — [1,d — 1] be the unique order-preserving bijection. For w € Sy,
we define w® € Sy_1 by

w% = Oy(i) OW 00;1.
It is clear from either formula in ([21]) that
(2.3) U(w') = £(w) — inv;(w) — Inv; (w).

The following result combines Lemmas 17 and 39 of [3], but we will spell out the
proof for later reference.

Proposition 2.2. Suppose that i is cancellable for [y, w].
(1) For any x € [y, w], (i) = y(i) and inv,;(z) = inv,;(y). Hence i is cancellable
for any sub-interval of [y, w].
(2) x — x' is an isomorphism of posets between [y, w] and [y, w'], which re-
duces all lengths by the same amount.
(3) For any u,v € [y,w], Py, =P,

ut, vt

Proof. Set j =y(i) = w(i), m = inv;(y) + 1 = inv;(w) + 1, and suppose y < = < w.
Now y[1,] and w1, ] each have exactly m elements > j and m — 1 elements > j.
By Proposition 1] the same is true of x[1,4]. Similarly, y[1,¢ — 1] and w1, — 1]
each have exactly m — 1 elements > j and m — 1 elements > j, so the same is
true of z[1,7 — 1]. Thus z(i) = j and inv;(z) = m — 1, proving (1). Moreover,
it is clear from Proposition 2] that y* < z* < w*. The construction of the map
[y', w'] — [y,w] : & — T inverse to x — z° is easy:

~ eIy ja if i/ = ia
“”—{a;@wmwy if i £,
This proves the isomorphism part of (2), and the statement about lengths follows
from (1). In light of parts (1) and (2), it clearly suffices to prove (3) in the case
u =y, v=w. We prove this by induction on ¢(w), it being trivial if w = 1. Choose
one of the Coxeter generators, say s, such that ws < w. We now have three cases.

Case 1: s = s;_;. This means that w(i — 1) > j, so w[l,7 — 2] has only m — 2
elements > j. Therefore the same is true of y[1,i — 2], so y(i — 1) > j, i.e. ys < y.
Moreover, ws[l,i — 1] has only m — 2 elements > j, so y £ ws. Under these
circumstances we have (see (Z3)) below)

(24) Py,w = Pys,wS‘

Obviously 7 — 1 is cancellable for [ys, ws], so by the induction hypothesis, Pys s =

Py 7T (w1 But (ys)ﬁT =y and (wsi_l)i/’T = wi, so we have the result.

Case 2: s = s;. This means that w(i + 1) < j, so w[l,7 + 1] has only m — 1
elements > j. Therefore the same is true of y[1,i + 1], so y(i + 1) < j, i.e. ys < y.
Moreover, ws[1,4] has only m — 1 elements > j, so y € ws. The proof proceeds as
in Case 1, with ¢ + 1 in place of ¢ — 1.

Case 3: s # s;_1,8;- The fundamental recursive property of Kazhdan-Lusztig
polynomials ([9, Section 7.11, (23)]) tells us that

(2.5) Pyw =Py ws +qPysws — Z w(z,ws) q(é(w)—é(z))/QPy’Z7

y<z<ws
zs8<z
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where (2, ws) is the coefficient of ¢(/(ws)=4(z)=1/2in P, . and ¢/ is the minimum
of y and ys in Bruhat order. All the nonzero Kazhdan-Lusztig polynomials involved
in the right-hand side are indexed by elements of the interval [y, ws], for which 7 is
cancellable. By the induction hypothesis, they can all be replaced by the analogous
polynomials for the interval [(y')?, (ws)?], and the result follows. O

Remark. Part (3) of this proposition can also be proved geometrically. If Uy’w
denotes the transverse slice to the Schubert cell indexed by y in the Schubert
variety indexed by w, then we have an isomorphism Uy)w = Uy;)w; :

We now recall (and extend slightly) the matrix notation used in [26]. Let
(bi)ie[1,n) be an n-tuple of nonnegative integers whose sum is d, and let (c;);e[1,n]
be an n’-tuple of nonnegative integers whose sum is also d. To avoid notational
clutter, we make the convention for the rest of this section that the range of the
variables ¢ and ¢’ will be [1,n] unless otherwise specified, and that of the variables
j and j' will be [1,n/]. We will use boldface letters such as m and m’ for the
(n x n')-matrices whose entries are written with the corresponding ordinary letters
m; j and m; ;. Let M, y,(c;) be the set of all (n x n')-matrices m satisfying:

(1) m;; €N, for all 4,7,

(2) >2;mij = bi, for all 4, and

(3) >, myj = cj, for all j.
If any b; or c¢; is 0, the corresponding row or column must always be zero and is
therefore irrelevant, but it will be convenient to allow this possibility. We will use
an obvious notation for the sums of various sectors of a matrix:

m<i,>j = E :mi’,j’a m<ij = E :mi’m mi>j = E :mi,j’v

i'<i i'<i 3"z
i'>j
and similarly m>; <;, etc. Note that for m € My,
M>i<j =C1+ e+ +¢ —M<i-1,<;

2.6
(2.6) =c+ e —b——bio Fmaior >4

The matrices in M(y,),(;) parametrize double cosets of S; with respect to certain
parabolic subgroups. Namely, write [1, d] as the disjoint union of blocks By, - , B,
such that all elements of B; are less than all elements of B;;1, and |B;| = b;. (Be-
cause we are allowing some b; to be zero, some of these blocks could be empty.) Let
S(,) be the subgroup of Sq which preserves each B; separately; this is a parabolic
subgroup isomorphic to Sy, x --- x S, . Similarly define blocks C; of sizes c;, and

the parabolic subgroup S(.;). We define a surjective map v : Sq — M(y,);(c,) by
P(w)i; = [w(Bi) N Cjl.

The fibres of ¢ are exactly the double cosets S(.,)wS(,), s0 1 induces a bijection
Se)\Sa /Sy > Mb,)i(c;)- For m € My, (c,), let wm € S4 be the longest element
in the corresponding double coset.

Note that in the case when n = n’ = d and all b; = ¢; = 1, the parabolic
subgroups are trivial, and we have merely passed from elements of Sy to the corre-
sponding permutation matrices (or their transposes, depending on your convention).
In general, the permutation wy, can be constructed from the matrix m as follows:
assuming that the images of By for i’ < ¢ have been determined, we send successive
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various-sized sub-blocks of B; to the various Cjs, according to the entries of the
ith row of m read from right to left. Within each sub-block, we successively take
the largest element of C; still unused. More formally, if a is the sth element of B;,
then wm(a) € C; where j is maximal such that m; >; > s. Specifically, wm(a) is
the tth largest element of C; where
(2.7) t=m<i—1;+S—MmMi>jr1.
Example. Take d =9, n =n' =4, and define b;, ¢; so that

B, = {1}a By = {2,37435}3 B3 = {Ga 7>8}a By = {9}’

Cy ={1,2}, Cy={3,4,5}, C3 ={6,7,8}, Cy ={9}.

Let us construct wy, where

1000
Lot 2 1o
01 20
0001

The first row tells us that wy, (1) is an element of Cy; we take the largest element,
namely 2. The second row tells us that wp(Bs2) consists of one element of C, two
elements of Cy, and one of (', in that order. Taking the largest elements not yet
used, we set wm(2) = 8, wm(3) = 5, wm(4) = 4, and wm(5) = 1. Continuing in
this way, we see that wy, is the permutation 285417639 (in “one-line” notation).

We define a length function ¢ : M),y — N by £(m) = £(wm), and a partial
order on M4,):(c;) by
m<m & wy < W
These can be described as follows.
Proposition 2.3. Let m,m’ € M) (,)-
(1) &(m) =3, smimeiz; — S5 (M),
(2) m <m’ if and only if, for all i, j,
m<i>j < m/gi,zj-
(3) m < m’ if and only if, for alli,j,
Mzi<j < Mo <

Proof. Let a be the largest element of B; N wg! (C5). Then for 1 < k < my
a —k+ 1 is the kth largest element of B; N wy,!'(C;). Clearly

2J

(2.8) vy g+1(Wm) = m<i>j — k.

Summing this over all 4, j, and 1 < k < m, ; gives (1). To prove (2), fix ¢ and j, and
let b be the largest element of | J;, <; Bir and c the smallest element of Uj'zj Cy. If
m < m’, then by Proposition 2.1}, we have

{a <blwm(a) > c}| < [{a < bwm(a) > ¢},

which exactly says that m<; >; < m’, ;. Conversely, suppose we know that
M<i>; < mlgi,zj and m<;_1,>; < mlgi—l,zj' For all 1 < k < b;, we have

(2.9) Ha <b—Fk+1|wm(a) > c}| =max{m<;>; —k+1,m<i_1>;}
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and similarly for m’, so our assumption implies
Ha<b—k+1|wm(a) >cH <{a<b—k+1|wm(a)>c}.

Combining these statements for all j tells us that for all m, the mth largest element
of wm[1,b—k+1] lies in a block C; prior or equal to that containing the mth largest
element of wy,[1,b— k + 1]. Remembering how wy, and wy, are constructed from
m and m’, this implies that for all m, the mth largest element of wm[1,b — k + 1]
is less than or equal to the mth largest element of wy,[1,b — k + 1]. Letting ¢ and
k vary, we get wy < wyy by Proposition 21 so (2) is proved. One way to deduce
(3) from (2) is to use (2.6). Another way is to recall that wm < wy if and only
if wy! < wr_n}; clearly the inverse of wy, is the permutation wy,: associated to the

transpose matrix mt € Mc,):(b;), and the condition in (3) is the transpose of the

condition in (2). O

We can also define Kazhdan-Lusztig polynomials indexed by pairs of elements
of M(bi);(cj): Pmm' = Py, - By definition we have

(2.10) Pnm #0=m <m’, and Ppm = 1.

. . -1 oo
So the inverse matrix (Pril,nz/)m,m’GM@);(cj) of (Pm,m’)m,m/GM@);(cj) has entries in
Z|qg] which also satisfy (ZI0). In fact, we can express these entries in terms of those

of the original matrix, as follows. Recall the Kazhdan-Lusztig inversion formula
([9, Section 7.14, (24)]):

(2.11) > elay) P o Pow = Sy,
rE€ESy

where £(z) = (—=1)/*) and wéd) is the longest element of S;. Using the fact that
Py = Pur o, for all 2’ € S xSy, ([9, Section 7.14, Corollary]), we get

m’/

(212) Pn<’l_,i’i/ = Z s(xwm) P (d) (d) -

TWy  ,Wm Wy
mES(Cj)wm/S(bi)

A general Kazhdan-Lusztig polynomial P, ., y,w € Sg, can be expressed in
the form Py m in various ways. The most trivial takes n = n’ = d and all
b; = ¢; = 1, so that there is no difference between permutations and matrices. At
the other extreme of usefulness, we can take (B;) to be the collection consisting
of the maximal intervals on which w is decreasing, and (C;) the same as for w™!.
With these choices, w is clearly the longest element in its double coset S(Cj)wS(bj),
so P, ., depends only on the double coset of y; in other words, Py = Py(y)p(w)
where ¢ 1 Sg — M, (c;) 18 as above.

Example. Let y = 128456379 and w = 587429316 in Sg. The blocks B; and C}
determined by w are exactly those used in the previous example. Indeed, w = Wy
where

010 0
o2
1 10 1
0010

Now ¢ (y) is the matrix m from the previous example, so the permutation wy, =
285417639 found there is the longest element in the double coset S(.,)yS(,). Using
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the criteria in Proposition 23] it is easy to check that m < m’. The above principle
means in this case that

Pyw=Pmm = Py, w-
The advantage of the latter form is that 2 is cancellable for [wm,w]. Since w?n =
25417638 and w? = 57428316, we get P, ., = Pasi17638 57428316

In order to be able to perform such a cancellation directly on matrices, we note
the following.

Proposition 2.4. Let m € M, y(c,), @ € B;N w(C)). Let e be the matriz with
ei,; = 1, and all other entries zero.
(1) wd = wm-—e-
(2) 4(m) — ¢(m — e) equals each of the following:
M<i>j +Mi<j —Mij —1=Mgio1,>5 +Mit1,<5+bi — 1

=M<i>jr1 +M>i<j1+¢ — 1.

Proof. Part (1) is clear from the explicit construction of wy, given above, and (2)
follows easily from (1) of Proposition [Z3] O

Definition. If m < m’in My,).(,), we say that (i, j) € [L,n] x [L,n'] is cancellable
for the interval [m, m’] if

(1) mi,j Z 1.

(2) m<i—1,>5 = ml;_y >, or equivalently m>; <;_1=m%, -, ;.

(3) m<i>jt1 = mlgi,Zj-i-l? or equivalently ms;q1.<; = m/2i+1,§j'

These equivalences follow from (2-6]).

Proposition 2.5. Suppose that m < m’ in M), and (i,3) is cancellable for
[m, m’]. Let e be the matriz with e; ; = 1, all other entries zero.
(1) For any m! € [m, m’],
(a) mzl,j > My j,
(b) m&; 55 =m<io1>j, and
(c) m1§i72j+1 =M< >j4+1-
Hence (i,j) is cancellable for any sub-interval of [m, m’].
(2) The map m' — m' — e is an isomorphism of posets between [m, m’] and
[m — e, m’ — €], which reduces all lengths by the same amount.
(3) For any m',m? € [m,m'], Pyt m2 = Pm1_om?—e-
(4) For any m', m? € [m, m’], Px<r:1,1:>n2 = Pé;lje)mke.
Proof. Let m' € [m, m’]. By (2) of Proposition 23] we have
m<i—1,>j < mlgi_l,zj < mlgi_lvzj = M<i-1,>j
which proves (1b), and (1c) is similar. It follows that

m!

3G m; 4t m<z 1,>j T m<z 1) — (Mij +m<im1>5 +m<i >j1)

= (
=(mlis;+mbi 1 5500) — (mais; +mais1>41)
(m<z 5= M<izg) + (ME_ 1 5541 — M<io13541)

7
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by Proposition 23] again. So (1a) is proved. Thus m! — e € M(z?-) ) where

(e
bi' = bi' — 6i,i'7 é\JJ/ = Cj' — 6],]/
Given this, the first part of (2) is obvious from either description of the partial
order given in Proposition 23] and the second part from (2) of Proposition 24l To
prove (3), let a be the largest element of B; Nwy,!'(C;), i.e. the (m; >;)th element
of B;. We want to show that a is cancellable for [wy, wm’]. Let

6= My > = Mi>j = Me; 5 —M<ij = Mo >5 — MG >5 2 0.

(These are equal because (i,7) is cancellable, and nonnegative because m < m’.)
By the above chain of equalities applied to m! = m’, we have

i /
my;—mij =0+ (M1 541 — M<i—1,>j41) > 0,

S0
m) =mls:—m, . =mi>;+06—mi . <mi>; <m)
6241 = M >5 M = i, > hg < Mz <My s
which means that wy (a) € C;. From ([2.1) we see that wm(a) = wm(a). Moreover,
. 12 .
inve(wm) = m<i>j —1=mg; ;=6 — 1 =inve(wm),
so a is cancellable for [wm, W] In particular, for any m' € [m, m’], wy,:(a) € Cj,

which by (1) of Proposition 24 implies w? ;, = w1 _. Then part (3) follows from
(3) of Proposition 2.2 and part (4) follows formally from parts (2) and (3). O

Example. With matrices m, m’ defined as in previous examples, (2,3) is can-
cellable for [m, m’], corresponding to the fact that 2 is cancellable for [wmy, w].
Performing the cancellation directly on the matrices, we get

10 00 01 00
m_ e 1 2 0 0 m— e — 1110
1o 1 2 0} 11 01
0 0 01 0 010
The reader can check that these matrices correspond to the permutations 25417638

and 57428316 found earlier.

3. NILPOTENT ORBITS OF THE LINEAR QUIVER

We now return to the set-up of the first part of the introduction, so V' is a d-
dimensional Z-graded vector space, with d; = dim V;. For convenience, we adjust
the grading so that d; # 0 = i € [1,n], for some positive integer n (so we are
effectively considering the linear quiver of type A,,). Throughout this section, the
variables 7, j range over [1,n] unless otherwise specified.

We saw in §1 that the Gy-orbits in ANy are in bijection with the set M, of
multisegments in which ¢ occurs d; times as an element of a segment. Following [26],
we change this parametrization by multisegments to a parametrization by matrices.
We identify each m € M4,y with the (n x n)-matrix (m; ;), where

multiplicity of the segment [i, j], if i < j,
(3.1) m,;; =« number of segments [k,{] where k <j, 1>, ifj=i—-1,
0, if j <i—1.
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It is clear that this matrix lies in the set M(q,);(q4,), as defined in the previous section.
So we have identified M4,y with a subset of Mq4,);(a;), which can be described as
follows.

Proposition 3.1. Let M{;, = {m € M4,),(4;) | mi; =0, Vj <i—1}.
(1) My, is a lower ideal of the poset M(q4,);(d;)-
(2) If me My, then for all i > j, m<i>; = dj + djr1 + -+ d;.
(3) Form,m’ € M(’di), m <m' if and only if m<;>; < ml; -, foralli <j.
(4) Ifm e M('di), then for all i € [2,n], m;i—1 = M<i—1,>;.
(5) (di) — Mq,).
Proof. An element m € Mq,).(q,) lies in M(’di) if and only if m>; <; = 0 for all
i,7 such that j < ¢ — 1, so (1) follows from (3) of Proposition For (2), since
Mm>it1,<j—1 =0, 20) gives
Meisj=di++di—dy——dj_1 =dj +---+ds,
as required. Part (3) then follows from (2) of Proposition 23l For (4), we have
Miie1 = A — My >i = M<i, > — My, >3 = M<i—1,>i-
From (4) and the i = j case of (2) it follows that every matrix in M,  arises from
a multisegment in M4,y by the rule (.1I), whence (5). O

As mentioned in the mtroductlon, the identification of M4,y with M(’di) is a poset
isomorphism: the geometrically-defined partial order =< on Mg, is the restriction of
the partial order < on M(g,),(4,)- This is part of Zelevinsky’s result [26, Corollary 1],
which we can state (with some supplementary detail) as follows.

Theorem 3.2. Let m,m’ € My,).
) dim Op, = £(m) — ZA@-
) O - Om/ &S m < m'.

) HIC(Opr) = 0 for i odd.
) IC’m m/ = P -

) I _ P<—1>

m,m’ "’

(1
(2
(3
(4
(5

Proof. For reference in §5, we recall Zelevinsky’s proof. Define the partial flag
variety B4,y to be the set of collections of subspaces (W;)ic[o,n) of V' such that
Wo =0, and for all ¢ € [1,n], W;,_; C W, and dim W, /W;_1 = d;; this is naturally a
nonsingular projective variety of dimension (£) — >, (%). We define a “base-point”
(U;) in Bg,) by Uy = V1 @ --- @ V;. Relative to this base-point, B4,y decomposes
into Schubert cells By for m € My,),(q;)- Explicitly, By consists of those (W;)
such that for all 7,7 € [1,n],
di W;NU;
S AT T T

The analogues of (1)-(4) for these Schubert cells (for all of Mg,),a,)) are well
known. Let BE i) be the closed subvariety of B4, defined by requiring W; O U;_1;

from the description of M4, as M(’di), it is easy to see that Bzdi) = UmeM(di) Bm-

Now we define a morphism Ny — By, o ¢ — (Wi(p)) by the rule

Wi(e) =Uis1 @ {v+ o(v) + @*(v) + - + " *(v) v € V;}.
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An easy check shows that this morphism maps Oy into By, for all m € My,.
Moreover, it gives an isomorphism between Nj and the open subvariety of BE o)
defined by requiring

Win@Pvi =0, vie [1,n].
i >
Hence each Oy, is embedded as an open subvariety of the Schubert cell By, and (1)-

(4) follow. Since Mq,) is a lower ideal of M(4,).(4,), (5) is an automatic consequence
of (4). O

In view of (3) of Proposition B} part (2) of Theorem B2 says that O € O
if and only if for all ¢ < j, m<;>; < mlﬁi,zj' Now if ¢ € O, then for i < j,
m<i>; = rk@?“i|y,. So we recover the well-known fact that Op, C Opy if and
only if for all i < j, tk /7%y, < 1k (') 7y, for any ¢ € Op and ¢’ € Opy. (Of
course the “only if” direction is obvious.) We can define an element m™** € Mg,
uniquely by the requirement that for ¢ < j, mZ%; equals the maximum possible
rank, namely min{d;,d;11,--- ,d;}. It follows that m < m™** for all m € M,),
and the orbit Opmax is dense in Ny .

As foreshadowed in the introduction, Theorem is only one of many possible
ways to express a particular /Cp, m' as a Kazhdan-Lusztig polynomial: the below-
diagonal entries prescribed by (B correspond to one particular choice of “empty
segments”. A more general statement is the following.

Theorem 3.3. Let by, -+ ,b,,c1,---, ¢, € N be such that
b1 = dl, Cp = dn7 and d; —b; = d;_1 — Ci_1, Vi € [2,’[7,].
Define an (n X n)-matriz a by

P di —bi, ifj=i-1,
by 0, otherwise.

Let MG) — fm e My, |miiq > di — by, Vi € [2,n]}.

(1) M(b i) s an upper ideal of Mqg,y.

(2) The map m — m — a is an isomorphism of posets between M((b )) ) gnd
{m e Mu,yc,) | mi; =0,Vj <i—1}.

(3) For any m’,m" € M((sjg;(cj) IC mu = Pm/'—am’—a-

(4) For any m’,m" € M((ss i(es) Lol = pitb

m’, m” ~ "m’—am’ —-a-’

Proof. Form € Mg,), m;—1 equals m>; <;_1, so (1) follows from (3) of Proposition
For (2), the fact that the given map is a bijection is obvious, and by Proposition
it preserves partial orders. Now this map is the composition of maps of the form
m — m—e as in Proposition and their inverses m — m+e, where the positions
which are being altered are all of the form (i,i — 1). Since all matrices involved
have zero entries in positions (7, j) where j < i — 1, conditions (2) and (3) of the
definition of cancellability always hold. So Proposition implies (3) and (4) with
P/ m and Pm, my place of ICp/ m» and IC’m, m» and Theorem gives the
result. (]
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Corollary 3.4. For m € My,), define an (n x n)-matriz m~ by

_{mi’j, ij:Z—17

m; ;= .
] 0, otherwise.

Let (m) = {m’ € M(g,)|m < m'} = [m, m™*].
G—M41,5)

The map m’ — m’ —m~ is an isomorphism of posets between (m) and
max

(1) For allm’ € (m), m" —m™ € Mg, _m, ,_,)(d
2)

[m—m-,m™ —m~].
(3) For any m’,m" € ICh/m" = Pm/—m— m/—m- -

o, =Py

(m),
(4) For any m',m"” € (m), IC,,, 1. m-.m/ —m-"

Proof. Apply Theorem with
by =d; —my i1, Ci—1 = di—1 — My i1

for all ¢ € [2,n], and restrict to the upper ideal (m) of M((sz));(cj). O
Note that the polynomials Py —m- m»—m- in (3) are Kazhdan-Lusztig polynomials
for Sj(m), where k(m) is the number of segments of m, which is also the sum of
the entries of m — m™.

Finally, we have to connect Theorem to the notation of the introduction, in

order to prove Theorem [[LTI We have elements A, u € Dy; we can clearly assume
that all As — s, pts —s+ 1 for 1 <s <k lie in [1,n]. Define

bi=Hslps —s+1=1i}], ¢;=[{s|As =5 =}

Then the subgroups S,) and S, of Sy are exactly the conjugates under wék) of
the dot stabilizers W), and W (this reversal comes about because the sequences
(As — s) and (ps — s) are decreasing). The map 1) : Sp — My,);(c,) as defined in
the previous section satisfies

(3.2) Dl ww)i s = {8 s — 541 =i, Mgy — w(s) = 7}.

So Sk[\ ] = {w € Sk | Y(w(Pww?);; =0,V < i — 1}, which shows that it is
indeed a lower ideal of Sj. Moreover, w — w(w(()k)ww(()k)) gives an isomorphism
of posets between Si[A, u]® and {m € My,).(c,)|mij = 0,Vj < i— 1}, and the

polynomials attached to these posets correspond, since
(3.3) Py = ng“wwg’“),wg’“)w/wg’” = P¢(wgk>wwgk>),w(wg’“w/wé"'))

for all w,w’" € Sk[A, pu]°. Now as in Theorem [[I] assume that A\/p € Mg,; it
follows immediately that (b;) and (c;) satisfy the conditions of Theorem B3l By
B2), for all w € Sk[A, p]°, the multisegment A\/(w- ) when viewed as a matrix has
the same diagonal and above-diagonal entries as ¢(wék)wwék)); hence A\/(w - p) =
w(wék)wwék)) + a where a is as in Theorem Thus Theorem [[T] follows from
Theorem B3]
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4. CANCELLATION FOR THE AFFINE SYMMETRIC GROUP

We now want to extend the results of §2 to the affine symmetric group. Again
fix a positive integer d. Let g; be the group of permutations w of the set Z such
that w(i +d) = w(i) + d, for all i € Z. An element w € Sg is determined by its
window (w(l),w(2),--,w(d)), which can be any collection of representatives of
the congruence classes mod d, in any order. The subgroup of 3’; which preserves
[1,d] is clearly isomorphic to Sy.

The group 3’; is the “extended” affine symmetric group: it can be written as a
semi-direct product () x 5’;, where

s 4 d
Sa=A{we Sa| > wi)=>i}
i=1 i=1
is the actual affine symmetric group, and 7 is the element of infinite order sending
i1to i+ 1 for all i € Z. In general, w € T“(w)S’Vd where
14 d
a(w) = = (Y wli) = 3.
i=1 i=1
Note that for any i € Z, the set w(—00,4] can be obtained from (—o0,i + a(w)]
by changing finitely many elements (keeping distinctness). In other words, for m
sufficiently large, the mth largest element in w(—o0,4] is i + a(w) — m + 1.

Ifd=1, 5‘; is the trivial group and g; = (7). If d > 2, we define s; € §; for all

1 € Z by
j+1, ifj=imodd,

si(j)=14 J—1, ifj=i+1modd,
Js otherwise.
Thus s; = sy iff i = ¢/ mod d. It is well known that sg,s1, - ,84—1 form a set

of Coxeter generators for g; of type Z;,/l. Thus they determine a length function
¢:S; — N, a Bruhat order < on Sy, and Kazhdan-Lusztig polynomials P, ., € N[q|
for y,w € 3;, all of which are invariant under conjugation by 7. We extend these
to 3; in the standard way:

E(U}) = g('y-_a(w)u])7
Y <w<& a(y) = CL(’LU),Tia(y)y < T*a(w)w’

po_ Pratwyy r—atwry,  if a(y) = a(w),
yw 0, otherwise.

We define inversion statistics as in the finite case
inv;(w) = [{i’ <i|w(@)>w(@)}, Inv;(w) = {i’ >i|w(@’) <w()},
for any w € 3; and i € Z (these sets are finite, even though i’ runs over Z.) Clearly
inv;q(w) = inv;(w), Inv,yg(w) = Inv,;(w), and
Inv;(w) — inv; (w)
= I(=00, w(i)] \ w(—o0,1]| — [w(~00, ] \ (—00, w(d)]
= (o0, w(@)] \ (=00, i + a(w)]| = (=00, + a(w)] \ (=00, w(i)]]

=w(i) — i — a(w).
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The formula for £ on Sy is analogous to that for Sy (see [4, Proposition 4.1(ii)]):
(4.1) Lw)= Y invi(w) = Y Inv(w).

i€[1,d] i€[1,d]
We also have
(4.2) ws; < w if and only if w(i) > w(i+ 1),
and a general description of Bruhat order along the lines va Proggsition 21 (this is
a rephrasing of [4, Theorem 6.5], trivially extended from Sy to Sg):

Proposition 4.1. Ify,w € SZ, y < w if and only if for all i € Z,
{i' <ily(i’) = g} < {i' <ilw(@) =}, Vi, with equality for j < 0.

In other words, for all positive integers m, the mth largest element in y(—o0, 7] is
less than or equal to the mth largest element in w(—o0, 7], with equality for m > 0.
It suffices to check this for 7 € [1,d].

The definition of cancellability is identical to the finite case:

Definition. If y < w in Sy, we say that i € Z is cancellable for the interval [y, w]
if y(i) = w(i), inv;(y) = inv;(w), and Inv,(y) = Inv,;(w). (Clearly any two of these
conditions imply the third, and i is cancellable for [y, w] iff i + d is.)

However, the process of cancellation is not as uniquely defined as in the finite case:
we need to choose order-preserving bijections o; : Z \ ¢ — Z for all congruence
classes ¢ mod d. Then for any w € Sy, we define w* € S;_; by

7 1

w ZO'WO’UJOO'E .

Note that using different o’s would have the effect of multiplying w' on the left and
right by powers of 7. Independently of the choice, we have

(4.3) ((w') = £(w) — inv(w) — Tnv, (w).

Example. Take d = 3, y = 75152 and w = T528180582. Then y has window (3,4, 2)
and w has window (0,7,2). Since invs(y) = invg(w) = 2, 3 is cancellable for [y, w].
If we normalize o5 and o3 by requiring that they preserve 1, then 3* and w?® are
the elements of Sy with windows (2,3) and (0, 5), namely 7 and 751 0.

We can now extend Proposition to the affine case.

Proposition 4.2. Suppose that i is cancellable for [y, w].
(1) For any x € [y, w], (i) = y(i) and inv;(z) = inv;(y). Hence i is cancellable
for any sub-interval of [y, w].
(2) = +— 2% is an isomorphism of posets between [y,w] and [y*, w'], which re-
duces all lengths by the same amount.
(3) For any u,v € [y, w], Puw =P ;.
Proof. The proof of part (1) is identical to that of part (1) of Proposition 2.2, with
[1,1] replaced by (—o0,i] and so on, and of course using Proposition ] instead of
Proposition 21 Similarly with part (2), where the inverse map [y, w'] — [y, w] :
x +— T is now defined by

L y(i) +kd, it i’ =i+ kd,
= o), it g
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The proof of (3) is also mostly unchanged. Apart from replacing [1,] by (—o0, 7]

—

and so on, the only change is that in Case 1, we need not have (ys)'~! = y% and

(ws)"~1 = w', but rather we have

— —

(ys)' ™! = rayirb, (ws)™1 = 79w'7? for some a,b € Z,

P

ys)T=T, (ws)=T — L yi wi @S required. O

which still implies P(
We now introduce some affine matrix notation very similar to that in [I14]. Let

(b;)icz be a Z-tuple of nonnegative integers, periodic with period n > 1, such that
i b; = d; and let (¢;);ez be another such tuple, with period n’ > 1, such that
Z;;l c; = d. Our notational convention now is that the range of the variables
i,i',j,j" is all of Z unless otherwise specified. Let M,y ni(c,)n’ De the set of all
(Z x Z)-matrices m satisfying:

(1) m;; €N, for all ¢, 7,

(2) Mitn,jtn = myj, for all i, 7,

(3) >2;mij = bi, for all 4, and

(4) Zi mi,; = Cy, for all ]
It is easy to see that for m € M,y ni(c;),n» Mij = 0 for [j —i| > 0; so sums of the
form m; >, m<;;, M<;,>; and mx; <; are finite. We have the following substitute
for ([26]). For fixed ¢, m>; <j, = 0 for all jy sufficiently negative, and for j greater
than such j,

(4.4) M>i<j = Cjop1 + -+ Cj —M<io1,>jo+1 + M<im1,>54+1-

The matrices in My, n;(c,;),n’ Parametrize double cosets of 3”; with respect to

proper parabolic subgroups of S;. Namely, write Z as the disjoint union of (possibly
empty) blocks B; such that all elements of B; are less than all elements of B; 1, and
|B;| = b;. It follows that B;1,, = B;+d. Note that the collection (B;) is determined
by (b;) up to translation (i.e. a power of 7). Let S(p,) be the subgroup of Sy which
preserves each B; separately; this is a parabolic subgroup of 5‘; isomorphic to
Sp, X -+ x Sy . (It is determined by (b;) up to conjugation by a power of 7.)
Similarly, define blocks C} of sizes ¢; and the parabolic subgroup S(¢;). We define

a surjective map v : S’; — M) ni(c;)n bY
Y(w)i; = [w(B;) NGyl

The fibres of ¢ are exactly the double cosets S(c;)wS(p,), so ¢ induces a bijection
S(Cj)\gz/S(Bi) — M(bi)7n;(6j)7n" Form € M(bi)m;(cj),n’a let wy, € g; be the longest
element in the corresponding double coset.

The permutation wy, can be read off the matrix m by exactly the same pre-

scription as in the finite case (remembering that 4,4', 7, ;' now range over all of
7).

Example. Let d =7, n =2, n’ = 3, and define

3, if 7=1mod 3,

b@':{i’ iziégggg ¢;=1{ 2, ifj=2mod3,
’ - ’ 2, if j =0 mod 3.
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Let m € M, 2,(¢;),3 be the following matrix:

2000010O0O0O0O0TO0
0200010O0O0O0TO0TGO0
100 2 00O0O0OT1O0O0O0
0000 20O0O0T1O0TO0TGO0
0001 002 0O0O0O0°1
0000 O0O0OO0OTZ2U0001
0 00O0O0O0OT1TO0OO0OZ2TO0O0

where the 0 is the (1,1) entry. We choose (B;) and (C};) so that By = C; = {1,2,3}.
The row containing 0 tells us that wpy (B1) consists of one element of Cs = {13,14}
and two of Cy = {4,5}, in that order. Since the (0, 6) entry is 1, the largest element
of Cg “has already been used” in wwy(By), so we set wm(l) = 13, wm(2) = 5,
wm(3) = 4. Treating the next row similarly, we find that wp, is the element of S';
with window (13, 5,4, 21,10,9,1).

We define a length function £ : M) ni(e;),nw — N by £(m) = (wm), and a
partial order on My, n:(c;),n' bY
m<m’ e wy, < wyy.

Since the map m — wy, depends on the choice of (B;) and (C;) only modulo left
and right multiplication by fixed powers of 7, these definitions are independent of
this choice. Indeed, they can be described in an analogous way to Proposition 2.3k

Proposition 4.3. Let m,m’ € M) n:(c;),n-
(1) £(m) = Zie[l,n],j My, jM<,>5 — Zie[l,n],j (m“é'“)-
(2) m <m’ if and only if, for all i € Z,
m<i>j <M, Vi, with equality for j < 0.
(3) m <m’ if and only if, for all j € Z,
M>i<j < MS; <4, Vi, with equality for i < 0.
Proof. The proof is mostly identical to that of Proposition 23 using (41 and
Proposition 1] instead of (2I) and Proposition 21 In the proof of (3), the

argument using (2.6]) no longer makes sense, but the argument using transposes
does. O

As in §2, we define Pmm' = Pupw,, for mm’ € My, pic;),n- From (2) of
Proposition [£3] it is clear that each interval [m, m’] in the poset My,) nic,)n 18

. . . -1
finite, so the inverse matrix (Primrz/)m,m’EM(bi),n;<cj),n/ of (Pmm’)m;m’GM(bi),n;(cj),n/
is well defined.

The matrix definition of cancellability is identical to the finite case.

Definition. If m < m’ in M) pi(c,)n/> We say that (i,j) € Z x Z is cancellable
for [m, m’] if

(1) mi,j Z 1.

(2) m<i—1,>5 = ml;_y 5, or equivalently m>; <j11=m%; oy
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(3) m<i>j41 =mL; 5,1, or equivalently m>;11,<; =mb, 1 <.
These equivalences follow from ([@4]), bearing in mind (2) of Proposition[d3l Clearly
(i,7) is cancellable iff (i +n,j+n') is.

Proposition 4.4. Suppose that m < m’ in M,y n:(e;)n and (i,7) is cancellable
for [m,m’]. Let e be the matriz with €;{pn jyrn = 1 for all k, all other entries
zero.
(1) For any m' € [m, m/'],
(a) mi; >mij,
(b) mlgz;l,zj =m<i-1,>j, and
(€) ML >jq1 =M<i>j+1-
Hence (i,j) is cancellable for any sub-interval of [m, m’].
(2) The map m' — m' — e is an isomorphism of posets between [m, m’] and
[m — e, m’ — €], which reduces all lengths by the same amount.
(3) For any m',m? € [m,m’], Ppi m2 = Pmi—em?—e-

(4) For any m',m? € [m, m’], piy = pb

m! ,m? m!—em?2—e’

Proof. Completely analogous to the proof of Proposition 2.5 using the analogue of
Proposition 241 O

5. NILPOTENT ORBITS OF THE CYCLIC QUIVER

We now return to the set-up of the latter part of §1, so V is a d-dimensional
Z/nZ-graded vector space, and d; = dim V; for all i € Z. We saw in §1 that the Gy -
orbits in Ny are in bijection with the set M(q,) , of multisegments (in the modulo
n sense) such that each congruence class 7 occurs d; times among the elements of
the segments. As in §3, we will identify each m € M, ,, with a matrix (m; ;),
this time in M4, n;(d,),n; the definition of m; ; is exactly the same as ([B.I). The
resulting subset of M4, n;(a,),n is described as follows.

Proposition 5.1. Let M(’fii),n ={m € M@, n;(d;)m|mij; =0,Vj<i—1}.

(1) M(’l’ji) . 18 a lower ideal of the poset M4, ni(d;)n-
(2) For allm € M{, , . there is some f(m) € Z such that
meizj+ f(m) =dj + -+ di, Vi > j.
(3) For m,m’ in M(’éi) o m<m’ if and only if f(m) = f(m’) and m<; >; <
me; s foralli < j.

(4) My, ,={me MG, . | f(m)=0}is alowerideal of the poset M(q4;) ni(d;),n-

(5) ]fm S M(/dl) n then MG i—1 = M<i—1,>i fO?” all 3.

(6) M(g)n = Mas),n-
Proof. As in the finite case, (1) is immediate from (3) of Proposition[£3 (2) comes
from the fact that for ¢ > j,

Mei>j=dj+ -+ dioy+mei>i =djpr+ -+ di +mg >

Using this, (3) comes from (2) of Proposition [£3] and (4) is an immediate conse-
quence of (1) and (3). (5) is proved in the same way as (4) of Proposition Bl From
(5) and the i = j case of (2) it follows that every matrix in M,  arises from a
multisegment in Mq,) ,,, whence (6). O
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We can now state Lusztig’s affine analogue of Theorem
Theorem 5.2. Let m,m’ € M) .

1) dim O, = £(m) = 3y, (5).
) Om € Oy & m < m'.
) HIC(Om) =0 for i odd.
) ICm,m’ = Pm,m/'
5) 1050, =P

m,m’ mm’’

(
2
(3
(4
(

Proof. As with Theorem B.2, (5) follows from (4) because M4,y is a lower ideal
of M(4,).n;(d;)m- Parts (1)-(4) were proved by Lusztig in [I2, §11], but since the
conventions there are slightly different, a sketch of a proof along the lines of the
above proof of Theorem may be helpful.

Form V = C((t)) ®c V, and consider lattices (free C[¢t]-submodules of rank d) in
V. Define f)’\(di))n to be the set of collections of lattices (M;);ez such that for all
1€ 7

(1) M;_1 C Mi,

(2) dime M;/M;_1 =d;, and

(3) M;—p, =tM,.
It is well known that B\(di),n has the structure of an increasing union of projective
varieties. We define a base-point (£;) in g(di)’n as follows. For any i € Z, let V;
denote t*V; where k is defined by i + kn € {1,--- ,n}. Define

Li=Epv;, viez,
J<i
where @ denotes completed direct sum. Relative to this base-point, B\(di),n decom-

poses into affine Schubert cells Em for m € M(4,) n;d,),n- Explicitly, Em consists
of those (M) such that for all i,j € Z,

M;NL;
MiNLj_ g +Mi_1NL;
The analogues of (1)-(4) for these affine Schubert cells (for all of M4,y ni(d;)n)
are well known. Let BE ) be the closed subvariety of B(q4,),, defined by requiring
M; 2 Ly, dime M;/L; 1 = d;. From the description of Mg,),, as M(/di)7n7 it is

easy to see that B, = UmeMmi),n B

dimc =Mmy; .

Now we define a morphism Ny — B\Edi)>n i — (M;(9)) by the rule
Mi(p) = Lia @ {v +¢(v) + ¢*(0) + -+ [v € Vi},

where ¢ : V; — Vj41 is defined in the obvious way. (Since ¢ is nilpotent, this sum

is actually finite.) An easy check shows that this morphism maps Oy, into gm for
all m € M4, ,. All that remains is to verify that it gives an isomorphism between

Ny and the open subvariety of EE 4;),n defined by requiring
M@ Vi =0, Vi€ Z
>0
The “dual” statement to this is proved in [12] §11]. O
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Note that in contrast to the situation in §3, the poset M(q4,), may have more than
one maximal element.
We now come to the affine analogue of Theorem [3.3] a generalization of Theorem

Theorem 5.3. Let b;,c; € N be such that
bitn = bi, Cjyn =cj, and d; —b; = dj—1 — c;—1, Vi,j € Z.
Define a (Z x Z)-matriz a by

o di—bi, ifj=i-1,
by 0, otherwise.

Let M((s:))‘ffj) ={m e Mg, n|mii—1>d; —b;, Vi € Z}.
(1) M((sz));ffj) is an upper ideal of Mg,y .
(2) The map m — m — a is an isomorphism of posets between M((sjg;icj) and

{ffl S M(bi,),n;(cj),n "IT’LZ'J' =0, V] <1-— 1}

(3) For any m’,m" € M((Sj));(:j)’ ICwm' m" = Pm/—am’—a-

(4) For any m’,m" € M );7(:1); ey = pieb

i
(ds) m’m’” — “m’/’—am’ —a"

Proof. Completely analogous to the proof of Theorem [3.3] using Proposition A3
Proposition [£.4] and Theorem in place of Proposition 2.3] Proposition 2.5 and
Theorem |

Corollary 5.4. For m € M,y ,, define a (Z x Z)-matriz m~ by
_ { mi g, ifj=i—1,

Mij = 0, otherwise.

Let (m) = {m' € M{;,  |m < m'}, and let my™, .- mi"™™* be the mazimal
elements of (m).

(1) For allm’ € (m), m" —m™ € M4, —m, ,_\)mni(d;j—mjs1.,)m-

(2) The map m’' — m' — m~ is an isomorphism of posets between (m) and

U’;:l[m —m- ,m™ —m~].

(3) For any m’,m” € (m), ICm' m” = Pm/—m-,m”—m- -
(4) For any m',m"” € (m), ey = pib

m’,m’’ m' —m~-,m’’—m~ "’

Proof. Apply Theorem with
by =d; —my i1, cio1 = di—1 — My i1

for all ¢ € Z, and restrict to the upper ideal (m) of M((sf));r(lcj). O

Note that the polynomials Py _m- m»—m- in (3) are Kazhdan-Lusztig polynomials

for S/kz:) , where k(m) is the number of segments in m, which is also the sum of

the entries in rows 1 to n of m —m™. As a corollary, we recover the main result of
[B]:

Corollary 5.5. If m <m’ in M(g,),, and k(m) = 2, then [Cymm' = 1.

Proof. In 5; all nonzero Kazhdan-Lusztig polynomials are 1. O
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Example. Let d = 6, n = 3, d; = d2 = d3 = 2. Let m € My, 3 be the
multisegment [1,2] + [2,3] + [3,4]. Then (m) has three maximal elements,
mp* = [1,6], my'™ = [2,7], and m5** = [3,8].

Displaying only the rows indexed by 1,2, 3, we have

1 01 0 0 0O
m = 0101000 ,
0 01 01 00
10 00 0 01
m"* = 02 00000 ,
0 020000
0 0100 O0O
m-m = 0001 000 ,
0 0001 00
0 000 O0O01
m™ —m~ = 01 000O00O ,
0 01 00 O0O0

where the 0 is the (1,1)-entry. Setting B; = {i} and C; = {j — 1}, so that
Wm_m- is the identity of S3, we find that wpymaex_p- has window (5,0,1), and is
therefore s1s9s2s1. Similarly, wypex - = s2515052 and Wymax_m- = $0525180-
So m’ — Wy _ - is an isomorphism between (m) and [1, s1508281]U[1, $2815082] U
[1, s0825150]. Moreover,

-[C’m,mi“HLX = P1,51505251 =q+ ]-,
and similarly ICm mpax = 1 C’m,mgmx =g+ 1, while

e =P = ()

for all m’ € (m) (an example of (LJ])).

Finally, we must prove Theorem [[.21 We have elements \, u € bvk; define A\s and
s for all s € Z by the rule
Astk =As +k—n, psir =ps +k—n.
Then Ay — s > A1 — (s+ 1) for all s € Z, and similarly for y; also,
(W p)s =5 = floy-1(s) — wl(s), Yw € Sk, s € [1, k).

Define
Bi={-s|pus—s+1=i}, C;j={-s|As —s=j}

Then the subgroups S(p,) and S(c,) of S; are exactly the images of ﬁ/; and /VI\/;

under the automorphism 7 : Sy — Sy defined by 7(w)(i) = —w(—i). The map
Y Sk = M) ny(c;),n as defined in §4 satisfies
(5.1) P(T(w))ij =Hs €Z|ps — s +1 =1, Au(s) —w(s) = j}.

So 5;;[)\,;1] ={we S | Y(1(w))i; =0, Vj < i— 1}, which shows that it is indeed a
lower ideal of S;. Moreover, w — ¢ (7(w)) gives an isomorphism of posets between
Sk, 1]° and

{ﬁl S M(bi),n;(cj),n | m > w(l) and ﬁliyj =0,Vj<i— 1},
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and the polynomials attached to these posets correspond, since
(5.2) P = Pr(w),r(w) = Ppirw)) wir(w))

for all w,w’ € Sy [A, 1]°. Now make the assumption of Theorem [[L2] that \/u €
M(4,),n; it follows immediately that (b;) and (c;) satisfy the conditions of Theorem

53 By (1), for all w € Si[X, p)°, the multisegment A/(w - 1) when viewed
as a matrix has the same diagonal and above-diagonal entries as ¢ (7(w)); hence
A (w - p) = (r(w)) + a where a is as in Theorem 53] Thus Theorem follows
from Theorem [5.3]
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