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NILPOTENT ORBITS OF LINEAR AND CYCLIC QUIVERS
AND KAZHDAN-LUSZTIG POLYNOMIALS OF TYPE A

ANTHONY HENDERSON

Abstract. The intersection cohomologies of closures of nilpotent orbits of
linear (respectively, cyclic) quivers are known to be described by Kazhdan-
Lusztig polynomials for the symmetric group (respectively, the affine symmet-
ric group). We explain how to simplify this description using a combinatorial
cancellation procedure, and we derive some consequences for representation
theory.

1. Introduction

This paper is concerned with formulas for the intersection cohomologies of clo-
sures of nilpotent orbits of linear and cyclic quivers. By fundamental results in
geometric representation theory, these intersection cohomologies control certain fea-
tures of the representations of affine Hecke algebras and quantum affine algebras.
There is a well-known formula in the linear case due to Zelevinsky, using Kazhdan-
Lusztig polynomials of the symmetric group; there is an analogous formula in the
cyclic case due to Lusztig, using Kazhdan-Lusztig polynomials of the affine symmet-
ric group. The main point of this paper is that both formulas can be rewritten in
terms of Kazhdan-Lusztig polynomials for different (potentially smaller) symmetric
or affine symmetric groups, by applying a combinatorial “cancellation” procedure
due to Billey and Warrington. The rewritten formulas in the linear quiver case
have already appeared, in a representation-theoretic guise, in the work of Suzuki
and others; in the cyclic quiver case they are new.

In the remainder of the introduction we will survey the main results and their
representation-theoretic consequences; the other sections give the proofs, concen-
trating on the combinatorial side of the story. Sections 2 and 4 are purely combina-
torial, explaining the concept of “cancellation” for the symmetric group and affine
symmetric group respectively. Most (perhaps all) of the results in Section 2 are
known, but we will go over them in detail to provide a reference for the generaliza-
tions to the affine case in Section 4. Sections 3 and 5 connect these combinatorial
results to the problem of computing intersection cohomology.

Throughout the paper, all vector spaces, algebras and varieties are over C.
Consider the linear quiver of type A∞, with vertex set Z and arrows i → i + 1

for all i ∈ Z. Finite-dimensional representations of this quiver are parametrized
by multisegments : a segment is a nonempty finite interval [i, j] in Z, and a multi-
segment is a finite formal sum of segments. Now fix a Z-graded finite-dimensional
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vector space V =
⊕

i∈Z Vi. Let di = dimVi, d = dimV . A representation of the
quiver on V is simply an element of

NV = {ϕ ∈ End(V ) |ϕ(Vi) ⊆ Vi+1, ∀i ∈ Z}.

Two such representations are isomorphic if they are in the same orbit for GV =
{g ∈ GL(V ) | g(Vi) = Vi, ∀i}, acting on NV by conjugation. Since all elements of
NV are nilpotent as endomorphisms of V , we call these nilpotent orbits. They are
clearly in bijection with M(di), the set of multisegments such that each i occurs di

times as an element of a segment. For m ∈ M(di), let Om denote the corresponding
orbit in NV . We put a partial order � on M(di) by setting m � m′ if and only if
Om is contained in the closure Om′ of Om′ .

The extent to which Om′ is singular at the points of Om is measured by an
intersection cohomology polynomial ICm,m′ ∈ N[q], defined by

ICm,m′ =
∑

i

dimH2i
mIC(Om′) qi,

where IC(Om′) is the intersection cohomology complex of Om′ , and H2i
m denotes

the stalk at a point of Om of the (2i)th cohomology sheaf (it turns out that all odd-
degree cohomology sheaves of IC(Om′) vanish). Note that ICm,m′ is nonzero if and
only if m � m′, and is 1 if m = m′. Hence the inverse matrix (IC

〈−1〉
m,m′)m,m′∈M(di)

of (ICm,m′)m,m′∈M(di)
has entries in Z[q]; moreover, IC

〈−1〉
m,m′ is zero unless m � m′,

and is 1 if m = m′.
From the viewpoint of geometric representation theory, the poset M(di), together

with these IC polynomials, is a model for certain “blocks” of representations of
Lie-theoretic algebras of type A. More concretely, the algebras listed below each
have a collection of finite-dimensional standard modules {Mm |m ∈ M(di)} and a
collection of finite-dimensional simple modules {Lm |m ∈ M(di)}, which are related
by the following (equivalent) equations in the Grothendieck group of modules:

[Mm] =
∑

m′∈M(di)

ICm,m′(1) [Lm′ ], ∀m ∈ M(di),

[Lm] =
∑

m′∈M(di)

IC
〈−1〉
m,m′(1) [Mm′ ], ∀m ∈ M(di).

(1.1)

So the sum of the coefficients of ICm,m′ is a composition multiplicity of a standard
module; the individual coefficients record the composition multiplicities in a certain
Jantzen-like filtration. For each algebra, the general definition of standard modules
allows segments of arbitrary complex numbers, not just integers; but the problem
of computing composition multiplicities can be reduced to the integer case. The
algebras in question, and references to the definitions and results, are as follows.

(1) The affine Hecke algebra Ĥd attached to GLd, specialized at a parameter
which is not a root of unity (as in [5, Definition 12.3.1]). The standard and
simple modules were defined by Zelevinksy in [24], and (1.1) was conjec-
tured in [25] (see also [19]). Ginzburg proved (1.1) for standard modules de-
fined in a geometric way (see [6, Theorem 8.6.23]). The fact that Ginzburg’s
standard modules coincide with Zelevinsky’s in the Grothendieck group
is usually deduced from the Induction Theorem of Kazhdan and Lusztig
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(see [2]; nowadays the best version of the Induction Theorem to use is [15,
Theorem 7.11]), though it should be regarded as a comparatively easy case
of that result.

(2) The corresponding degenerate affine Hecke algebra (as in [5, Definition
12.3.2]). The definitions of standard modules (as in [21, Section 2.2]) are
analogous to case (1), and indeed (1.1) in this case can be deduced from
case (1) by the results of Lusztig in [11]—he also gave a proof specific to
this case in [13].

(3) The quantum affine algebra Uε(ŝlr), specialized at a parameter ε which is
not a root of unity (as in [5, Section 12.2A]). Here the standard modules
are tensor products of fundamental evaluation modules corresponding to
the segments, so we need r to be greater than or equal to the length of
the longest segment involved (otherwise, we could just stipulate that any
module indexed by a multisegment containing a segment of length > r is
zero). Equation (1.1) can be deduced from case (1) by Frobenius-Schur
duality (see [5, Section 12.3D]). Alternatively, with a geometric definition
of standard modules, (1.1) was proved by Ginzburg and Vasserot (see [23,
Theorem 3]). It then follows that the two kinds of standard modules are
the same in the Grothendieck group (see [23, Proposition 18]), which can
presumably also be proved directly.

(4) The Yangian Y (slr) (as in [5, Section 12.1A]). The standard modules as
defined by Drinfeld in [7] are analogous to those in case (3), and (1.1) in
this case can be deduced either from case (3) or case (2) using the results
in [7].

This profusion of representation-theoretic meanings of the polynomials ICm,m′ and
IC

〈−1〉
m,m′ is the main reason to be interested in computing them; but it is also why,

in this paper, the clear-cut geometric definition is given greater prominence.
A classic result of Zelevinsky ([26, Corollary 1], see Theorem 3.2 below) identifies

the polynomials ICm,m′ with Kazhdan-Lusztig polynomials of the symmetric group
Sd. More precisely, it provides an isomorphism of posets between M(di) and a lower
ideal M ′

(di)
of the poset of maximal-length representatives of S(di)–S(di) double

cosets (under Bruhat order), where S(di) is the parabolic (i.e. Young) subgroup
of Sd determined by the composition d =

∑
i di; and the polynomials attached

to these posets (IC polynomials for M(di), and Kazhdan-Lusztig polynomials for
M ′

(di)
) coincide under this isomorphism. Zelevinsky’s proof is geometric, embedding

the nilpotent orbits Om as open subvarieties of certain Schubert varieties, and using
the fact that the intersection cohomologies of the latter are described by Kazhdan-
Lusztig polynomials; but the point is that the poset M ′

(di)
and its Kazhdan-Lusztig

polynomials can be defined (and, in principle, computed) purely combinatorially.
More recent work of Suzuki ([21]) implicitly generalizes this result, provid-

ing a family of poset isomorphisms between various upper ideals of M(di) and
combinatorially-defined posets. To explain this we adopt the notation of [17], which
views multisegments as “generalized skew-shapes”. For λ, µ ∈ Zk, write λ ⊇ µ if
λi ≥ µi for all 1 ≤ i ≤ k, and if this holds define a multisegment

(1.2) λ/µ =
k∑

i=1

[µi − i + 1, λi − i],
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where any “empty segments” of the form [s + 1, s] are ignored. The reason for the
notation is that if λ and µ are partitions, i.e. λ1 ≥ · · · ≥ λk ≥ 0 and similarly for
µ, then the segments are exactly the rows of the skew-shape diagram usually called
λ/µ, where each box is replaced by its content. Since the order of terms in (1.2) is
unimportant, λ/µ = (w · λ)/(w · µ) for all w ∈ Sk, where the “dot action” of Sk on
Zk is defined as usual by

(1.3) (w · λ)i − i = λw−1(i) − w−1(i).

A fundamental domain for this dot action is

Dk := {λ ∈ Zk |λ1 − 1 ≥ λ2 − 2 ≥ · · · ≥ λk − k},
so we can write any multisegment in the standard form

(1.4) λ/(w · µ) where
{

λ, µ ∈ Dk, w ∈ Sk, λ ⊇ w · µ, and
w has maximal length in WλwWµ.

Here Wλ and Wµ are the stabilizers of λ and µ for the dot action, which are
clearly parabolic subgroups of Sk. Note that this expression in standard form
is not uniquely determined by the multisegment, but rather by the multisegment
together with a chosen multiset of empty segments.

Example. Let m be the multisegment [1, 2] + [2, 2] + [3, 3]. The most economical
way to express this in the form (1.4) is to take k = 3, λ = (4, 4, 5), µ = (3, 3, 3),
and w to be the transposition (2, 3). Another way is to take k = 4, λ = (4, 4, 5, 5),
µ = (3, 3, 4, 4), and w to be the transposition (2, 4); this effectively adds the empty
segment [2, 1].

If λ, µ ∈ Dk, we define

Sk[λ, µ] = {w ∈ Sk |λ ⊇ w · µ} and

Sk[λ, µ]◦ = {w ∈ Sk[λ, µ] |w has maximal length in WλwWµ}.
These are posets under Bruhat order; in fact we will see that Sk[λ, µ] is a lower ideal
of Sk, so in particular Sk[λ, µ] 	= ∅ ⇔ λ ⊇ µ. With this notation, the generalized
form of Zelevinsky’s result can be stated as follows.

Theorem 1.1. Let λ, µ ∈ Dk be such that λ ⊇ µ, λ/µ ∈ M(di).
(1) The map w �→ λ/(w · µ) is an isomorphism of posets between Sk[λ, µ]◦ and

{m′ ∈ M(di) |λ/µ � m′}.
(2) For w, w′ ∈ Sk[λ, µ]◦, ICλ/(w·µ),λ/(w′·µ) = Pw,w′ , a Kazhdan-Lusztig poly-

nomial of Sk.

Zelevinsky’s original result is the special case where k = d, λ is such that each
integer i occurs di times in (λ1 − 1, · · · , λd − d), and µ = λ − (1, 1, · · · , 1). In this
case λ/µ is the trivial multisegment

∑
i di[i, i] (corresponding to the zero orbit), so

the image of the isomorphism in part (1) is all of M(di); the parabolic subgroups
Wλ and Wµ both equal S(di), and Sd[λ, µ]◦ is the poset M ′

(di)
mentioned above.

The fact that Theorem 1.1 is true in general means that in expressing m and m′

as λ/(w ·µ) and λ/(w′ ·µ), any of the empty segments which occur in the Zelevinsky
case can be “cancelled” without changing the Kazhdan-Lusztig polynomial (or,
indeed, new ones can be added). For example, at the extreme, Theorem 1.1 shows
that ICm,m′ can be identified with a Kazhdan-Lusztig polynomial of Sk(m), where
k(m) is the number of segments of m (smaller than d, unless m is trivial). In
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Section 3 we will use a result of Billey and Warrington, which provides for just
such cancellations in Kazhdan-Lusztig polynomials of symmetric groups, to deduce
Theorem 1.1 from Zelevinsky’s theorem. The essence of the result is stated in
Theorem 3.3, using some matrix notation which will be introduced in §2.

As already mentioned, Theorem 1.1 cannot be considered new, since in the con-
text of the representation theory of the degenerate affine Hecke algebra (case (2)
above) it follows from Suzuki’s results in [21]. With notation as in Theorem 1.1,
he defines an exact functor Fλ from the category O of representations of glk to
the category of finite-dimensional modules for the degenerate affine Hecke algebra
associated to GLd, and shows that it takes the Verma module M(w · µ) to the
standard module Mλ/(w·µ) and the simple module L(w · µ) to the simple module
Lλ/(w·µ) for all w ∈ Sk[λ, µ]◦. Part (1) and the q = 1 specialization of part (2) of
Theorem 1.1 then follow from the known Kazhdan-Lusztig conjecture for glk (com-
bine [21, (5.2.1) and (5.2.2)]; the historical remarks following [21, (5.2.3)] properly
apply only to the Zelevinsky case). Moreover, by [21, Theorem 5.3.5] the Kazhdan-
Lusztig polynomials Pw,w′ for w′ ∈ Sk[λ, µ]◦ record multiplicities in a Jantzen-type
filtration of Mλ/(w·µ), whose definition clearly depends only on the multisegment
(i.e. not on the empty segments); since (2) of Theorem 1.1 is true in the Zelevinsky
case, it must be true in general. (As well as [21], see [17] and [1] for the analogous
results in the case of the affine Hecke algebra and Yangian respectively).

One corollary concerns those multisegments λ/µ where λ, µ ∈ Dk satisfy Wλ =
Wµ = {1}, i.e. λ1 ≥ λ2 ≥ · · · ≥ λk, µ1 ≥ µ2 ≥ · · · ≥ µk (these are the “placed
skew-shapes” of [18]): for such λ/µ, it follows from Theorem 1.1 that

(1.5) IC
〈−1〉
λ/µ,λ/(w·µ) = ε(w), for all w ∈ Sk[λ, µ],

where ε denotes the sign character. Thus the corresponding simple modules (called
calibrated for the affine Hecke algebra in [18] and tame for the Yangian in [16]) can
be written as an alternating sum of standard modules in the Grothendieck group.
Representation-theoretically, this reflects the existence of a BGG-like resolution
of these simple modules (transferred by the appropriate functor from the BGG
resolution of the glk-module L(µ)); see [21, Theorem 5.1.1] and [17, (4.13)].

The justification for reproving Theorem 1.1 in §3 below is that the combinatorics
involved generalizes immediately to the case of cyclic quivers, as we will now explain.

Fix a positive integer n, and consider the cyclic quiver of type Ãn−1, with vertex
set Z/nZ and arrows ī → i + 1 for all ī ∈ Z/nZ. Finite-dimensional nilpotent
representations of this quiver are parametrized by multisegments as before, except
that there is no difference between segments [i, j] and [i′, j′] when i′− i = j′− j is a
multiple of n. Fix a (Z/nZ)-graded finite-dimensional vector space V =

⊕
ī∈Z/nZ Vī,

and set di = dim Vī, d = dim V . We define

NV = {ϕ ∈ End(V ) |ϕ(Vī) ⊆ Vi+1, ∀ī ∈ Z/nZ, ϕ nilpotent},

and consider GV -orbits in NV . These are in bijection with M(di),n, the set of
multisegments (in this modulo n sense) such that each congruence class ī occurs
di times among the elements of the segments. For m ∈ M(di),n, let Om denote
the corresponding nilpotent orbit, and define a partial order � and polynomials
ICm,m′ ∈ N[q] and IC

〈−1〉
m,m′ ∈ Z[q] in the same way as before.

These polynomials too have representation-theoretic significance. The special-
ized quantum affine algebra Uζ(ŝlr), where ζ2 is a primitive nth root of 1, has
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a collection of standard modules {Mm |m ∈ M(di),n} and a collection of simple
modules {Lm |m ∈ M(di),n}, satisfying the equivalent equations

[Mm] =
∑

m′∈M(di),n

ICm,m′(1) [Lm′ ], ∀m ∈ M(di),n,

[Lm] =
∑

m′∈M(di),n

IC
〈−1〉
m,m′(1) [Mm′ ], ∀m ∈ M(di),n.

(1.6)

(See [23, Theorem 3]—again, for small r we have to disregard multisegments con-
taining a segment of length > r.) The same is true for the affine Hecke algebra Ĥd

specialized at a primitive nth root of unity, except that there the simple modules
are parametrized by the smaller set of aperiodic multisegments (see [10, Section 2]),
so we have to set [Lm] = 0 if m is not aperiodic. Vasserot has now proved a similar
result for the double affine Hecke algebra.

The analogue of Zelevinsky’s result for cyclic quivers was proved by Lusztig
in [12, §11] (it is stated below as Theorem 5.2). This identifies ICm,m′ with a
Kazhdan-Lusztig polynomial of the affine symmetric group S̃d (the Coxeter group
of type Ãd−1). In Section 4, we will show that a version of Billey and Warrington’s
cancellation works for the affine symmetric group. As a consequence, we get an
analogue of Theorem 1.1 in this setting.

To state it requires extending the dot action of Sk on Zk to S̃k, so that the extra
Coxeter generator s0 acts by

(s0 · λ)i =

⎧⎨⎩ λk − k + 1 + n, if i = 1,
λi, if 2 ≤ i ≤ k − 1,

λ1 − 1 + k − n, if i = k.

It is then clear that (w · λ)/(w · µ) = λ/µ for all w ∈ S̃k, where the multisegments
are now interpreted in the modulo n sense. A fundamental domain for the action
of S̃k on Zk is

D̃k := {λ ∈ Zk |λ1 − 1 ≥ λ2 − 2 ≥ · · · ≥ λk − k ≥ λ1 − n − 1},

and the corresponding standard form for multisegments is

(1.7) λ/(w · µ) where

{
λ, µ ∈ D̃k, w ∈ S̃k, λ ⊇ w · µ, and
w has maximal length in W̃λwW̃µ,

where W̃λ and W̃µ denote the stabilizers of λ and µ in S̃k (proper parabolic sub-
groups, hence finite). For λ, µ ∈ D̃k, we define

S̃k[λ, µ] = {w ∈ S̃k |λ ⊇ w · µ} and

S̃k[λ, µ]◦ = {w ∈ S̃k[λ, µ] |w has maximal length in W̃λwW̃µ}.

We will see in §5 that, as in the symmetric group case, S̃k[λ, µ] is a (finite) lower
ideal of S̃k for Bruhat order. We can now state a generalization of Lusztig’s result.

Theorem 1.2. Let λ, µ ∈ D̃k be such that λ ⊇ µ, λ/µ ∈ M(di),n.

(1) The map w �→ λ/(w · µ) is an isomorphism of posets between S̃k[λ, µ]◦ and
{m′ ∈ M(di),n |λ/µ � m′}.
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(2) For w, w′ ∈ S̃k[λ, µ]◦, ICλ/(w·µ),λ/(w′·µ) = Pw,w′ , a Kazhdan-Lusztig poly-
nomial of S̃k.

(An alternative statement using matrix notation is given in Theorem 5.3.) The
work of Arakawa, Suzuki, and Tsuchiya provides a representation-theoretic functor
which conjecturally “explains” this theorem.

As in the linear quiver case, Theorem 1.2 implies that ICm,m′ can be identified
with a Kazhdan-Lusztig polynomial of S̃k(m), where k(m) is the number of segments
of m; this immediately implies the main result of [8], that ICm,m′ = 1 when
m � m′, k(m) = 2.

Another consequence of Theorem 1.2 is an analogue of (1.5), concerning those
multisegments λ/µ where λ, µ ∈ D̃k satisfy W̃λ = W̃µ = {1}; this means that
λ1 ≥ λ2 ≥ · · ·λk ≥ λ1 − n + k, µ1 ≥ µ2 ≥ · · · ≥ µk ≥ µ1 − n + k. For such λ/µ, it
follows from Theorem 1.2 that

(1.8) IC
〈−1〉
λ/µ,λ/(w.µ) = ε(w), for all w ∈ S̃k[λ, µ].

So once more the corresponding simple modules can be written as an alternating
sum of standard modules in the Grothendieck group; probably this indicates a
BGG-like resolution.

Theorems 1.1 and 1.2 combine well with the method used by Varagnolo and
Vasserot in [22] to determine the decomposition numbers of Uζ(glr) where ζ2 is a
primitive nth root of 1. Suppose we want to compute the multiplicity of the simple
module Lζ(µ′) in the Weyl module Vζ(λ′), where λ and µ are partitions with at
most k parts all of size ≤ r, and λ′ and µ′ are the transpose partitions (regarded
as dominant integral weights for glr). By definition, Vζ(λ′) is the specialization
at ζ of the simple module Vq(λ′) for the generic Uq(glr). Now using a suitable
normalization of the evaluation map Uq(ŝlr) → Uq(glr), we can regard Vq(λ′) as
the simple Uq(ŝlr)-module Lλ/0 (see [22, Section 12.2]). By (1.5), we have the
equation

(1.9) [Lλ/0] =
∑

w∈Sk[λ,0]

ε(w) [Mλ/(w·0)].

Now let wλ, wµ, w0 ∈ S̃k be such that wλ · λ, wµ · µ, w0 · 0 ∈ D̃k. As noted
in [22, Section 12.3], the specialization at ζ of the standard module Mλ/(w·0) is
nothing more than the Uζ(ŝlr)-standard module of the same name, which in stan-
dard form is M(wλ·λ)/(wλww−1

0 )◦·(w0·0), where (wλww−1
0 )◦ is the longest element of

W̃wλ·λwλww−1
0 W̃w0·0. So in the Grothendieck group of Uζ(ŝlr)-modules,

(1.10) [Vζ(λ′)] =
∑

w∈Sk[λ,0]

ε(w) [M(wλ·λ)/(wλww−1
0 )◦·(w0·0)].

Now as noted in [22, Section 12.2], Lζ(µ′) regarded as a simple Uζ(ŝlr)-module
is Lµ/0 = L(wµ·µ)/(wµw−1

0 )◦·(w0·0), where (wµw−1
0 )◦ is the longest element of

W̃wµ·µwµw−1
0 W̃w0·0. Using Theorem 1.2, we obtain

[Vζ(λ′) : Lζ(µ′)] =

{ ∑
w∈Sk

ε(w) P(wλww−1
0 )◦,(wµw−1

0 )◦(1), if µ ∈ S̃k · λ,
0, otherwise.

(1.11)
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In the first case, summing over all of Sk rather than just Sk[λ, 0] introduces no new
terms, since (wµw−1

0 )◦ ∈ S̃k[wµ ·µ, w0 ·0] = S̃k[wλ ·λ, w0 ·0], so the Kazhdan-Lusztig
polynomial can only be nonzero when wλww−1

0 ∈ S̃k[wλ · λ, w0 · 0], i.e. λ ⊇ w · 0.
In the special case that λ and µ have trivial stabilizers in S̃k (i.e. λ1−1, · · · , λk−k

have different residues modulo n, and similarly for µ – this requires k ≤ n, which
automatically implies w0 = 1), (1.11) becomes

[Vζ(λ′) : Lζ(µ′)] =
{ ∑

w∈Sk
ε(w) Pwλw,wµ

(1), if µ ∈ S̃k · λ,
0, otherwise.

(1.12)

This is the form of the answer given by Soergel in [20, Conjecture 7.1] for the
equivalent problem of computing tilting module multiplicities for Uζ(glk).

2. Cancellation for the symmetric group

In this section we explain the combinatorial result of Billey and Warrington on
which our approach depends. Fix a positive integer d, and let Sd be the group
of permutations of [1, d] = {1, · · · , d}. For i ∈ [1, d − 1], we define si ∈ Sd to be
the transposition interchanging i and i + 1; as everyone knows, s1, · · · , sd−1 form
a set of Coxeter generators for Sd of type Ad−1. Thus we have a length function
� : Sd → N, a Bruhat order ≤, and Kazhdan-Lusztig polynomials Py,w ∈ N[q] for
y, w ∈ Sd (which are nonzero iff y ≤ w). Good references for Kazhdan-Lusztig
polynomials are [9, Chapter 7] and [20] (where the notation is somewhat different).

The length function and the Bruhat order have well-known combinatorial de-
scriptions. Define the inversion statistics

invi(w) = |{i′ < i |w(i′) > w(i)}|, Invi(w) = |{i′ > i |w(i′) < w(i)}|,
for any w ∈ Sd and i ∈ [1, d]. These are related by Invi(w) = invi(w) + w(i) − i.
Then

(2.1) �(w) =
∑

i∈[1,d]

invi(w) =
∑

i∈[1,d]

Invi(w).

A special case of Bruhat order is that for all i ∈ [1, d − 1],

(2.2) wsi < w if and only if w(i) > w(i + 1).

The general description, due to Deodhar, is as follows:

Proposition 2.1. If y, w ∈ Sd, y ≤ w if and only if for all i, j ∈ [1, d],

|{i′ ≤ i | y(i′) ≥ j}| ≤ |{i′ ≤ i |w(i′) ≥ j}|.

In other words, for all i ∈ [1, d] and m ∈ [1, i], the mth largest element in y[1, i]
is less than or equal to the mth largest element in w[1, i]. If y ≤ w, we write [y, w]
for the Bruhat interval {x ∈ Sd | y ≤ x ≤ w}.

We now come to the key definition.

Definition. If y ≤ w in Sd, we say that i ∈ [1, d] is cancellable for the interval
[y, w] if y(i) = w(i), invi(y) = invi(w), and Invi(y) = Invi(w). (Clearly any two of
these conditions imply the third.)

The reason for the name “cancellable” is that Bruhat order and Kazhdan-Lusztig
polynomials are preserved under the operation of “cancelling the common action
on i” from the permutations in question, in the following sense. For all i ∈ [1, d],
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let σi : [1, d] \ {i} → [1, d− 1] be the unique order-preserving bijection. For w ∈ Sd,
we define wî ∈ Sd−1 by

wî = σw(i) ◦ w ◦ σ−1
i .

It is clear from either formula in (2.1) that

(2.3) �(wî) = �(w) − invi(w) − Invi(w).

The following result combines Lemmas 17 and 39 of [3], but we will spell out the
proof for later reference.

Proposition 2.2. Suppose that i is cancellable for [y, w].

(1) For any x ∈ [y, w], x(i) = y(i) and invi(x) = invi(y). Hence i is cancellable
for any sub-interval of [y, w].

(2) x �→ xî is an isomorphism of posets between [y, w] and [yî, wî], which re-
duces all lengths by the same amount.

(3) For any u, v ∈ [y, w], Pu,v = Puî,vî .

Proof. Set j = y(i) = w(i), m = invi(y)+ 1 = invi(w)+1, and suppose y ≤ x ≤ w.
Now y[1, i] and w[1, i] each have exactly m elements ≥ j and m − 1 elements > j.
By Proposition 2.1, the same is true of x[1, i]. Similarly, y[1, i − 1] and w[1, i − 1]
each have exactly m − 1 elements ≥ j and m − 1 elements > j, so the same is
true of x[1, i − 1]. Thus x(i) = j and invi(x) = m − 1, proving (1). Moreover,
it is clear from Proposition 2.1 that yî ≤ xî ≤ wî. The construction of the map
[yî, wî] → [y, w] : x �→ x̃ inverse to x �→ xî is easy:

x̃(i′) =
{

j, if i′ = i,
σ−1

j (x(σi(i′))), if i′ 	= i.

This proves the isomorphism part of (2), and the statement about lengths follows
from (1). In light of parts (1) and (2), it clearly suffices to prove (3) in the case
u = y, v = w. We prove this by induction on �(w), it being trivial if w = 1. Choose
one of the Coxeter generators, say s, such that ws < w. We now have three cases.

Case 1: s = si−1. This means that w(i − 1) > j, so w[1, i − 2] has only m − 2
elements > j. Therefore the same is true of y[1, i − 2], so y(i − 1) > j, i.e. ys < y.
Moreover, ws[1, i − 1] has only m − 2 elements > j, so y 	≤ ws. Under these
circumstances we have (see (2.5) below)

(2.4) Py,w = Pys,ws.

Obviously i− 1 is cancellable for [ys, ws], so by the induction hypothesis, Pys,ws =
P

(ys)̂i−1,(ws)̂i−1 . But (ys)î−1 = yî and (wsi−1)î−1 = wî, so we have the result.
Case 2: s = si. This means that w(i + 1) < j, so w[1, i + 1] has only m − 1

elements > j. Therefore the same is true of y[1, i + 1], so y(i + 1) < j, i.e. ys < y.
Moreover, ws[1, i] has only m − 1 elements ≥ j, so y 	≤ ws. The proof proceeds as
in Case 1, with i + 1 in place of i − 1.

Case 3: s 	= si−1, si. The fundamental recursive property of Kazhdan-Lusztig
polynomials ([9, Section 7.11, (23)]) tells us that

(2.5) Py,w = Py′,ws + qPy′s,ws −
∑

y≤z<ws
zs<z

µ(z, ws) q(�(w)−�(z))/2Py,z,



104 ANTHONY HENDERSON

where µ(z, ws) is the coefficient of q(�(ws)−�(z)−1)/2 in Pz,ws, and y′ is the minimum
of y and ys in Bruhat order. All the nonzero Kazhdan-Lusztig polynomials involved
in the right-hand side are indexed by elements of the interval [y′, ws], for which i is
cancellable. By the induction hypothesis, they can all be replaced by the analogous
polynomials for the interval [(y′)î, (ws)î], and the result follows. �

Remark. Part (3) of this proposition can also be proved geometrically. If
⋃

y,w

denotes the transverse slice to the Schubert cell indexed by y in the Schubert
variety indexed by w, then we have an isomorphism

⋃
y,w

∼=
⋃

yî,wî .

We now recall (and extend slightly) the matrix notation used in [26]. Let
(bi)i∈[1,n] be an n-tuple of nonnegative integers whose sum is d, and let (cj)j∈[1,n′]

be an n′-tuple of nonnegative integers whose sum is also d. To avoid notational
clutter, we make the convention for the rest of this section that the range of the
variables i and i′ will be [1, n] unless otherwise specified, and that of the variables
j and j′ will be [1, n′]. We will use boldface letters such as m and m′ for the
(n×n′)-matrices whose entries are written with the corresponding ordinary letters
mi,j and m′

i,j . Let M(bi);(cj) be the set of all (n × n′)-matrices m satisfying:
(1) mi,j ∈ N, for all i, j,
(2)

∑
j mi,j = bi, for all i, and

(3)
∑

i mi,j = cj , for all j.
If any bi or cj is 0, the corresponding row or column must always be zero and is
therefore irrelevant, but it will be convenient to allow this possibility. We will use
an obvious notation for the sums of various sectors of a matrix:

m≤i,≥j =
∑
i′≤i
j′≥j

mi′,j′ , m≤i,j =
∑
i′≤i

mi′,j , mi,≥j =
∑
j′≥j

mi,j′ ,

and similarly m≥i,≤j , etc. Note that for m ∈ M(bi);(cj),

m≥i,≤j = c1 + c2 + · · · + cj − m≤i−1,≤j

= c1 + · · · + cj − b1 − · · · − bi−1 + m≤i−1,≥j+1.
(2.6)

The matrices in M(bi);(cj) parametrize double cosets of Sd with respect to certain
parabolic subgroups. Namely, write [1, d] as the disjoint union of blocks B1, · · · , Bn

such that all elements of Bi are less than all elements of Bi+1, and |Bi| = bi. (Be-
cause we are allowing some bi to be zero, some of these blocks could be empty.) Let
S(bi) be the subgroup of Sd which preserves each Bi separately; this is a parabolic
subgroup isomorphic to Sb1 × · · · × Sbn

. Similarly define blocks Cj of sizes cj , and
the parabolic subgroup S(cj). We define a surjective map ψ : Sd → M(bi);(cj) by

ψ(w)i,j = |w(Bi) ∩ Cj |.
The fibres of ψ are exactly the double cosets S(cj)wS(bi), so ψ induces a bijection
S(cj)\Sd / S(bi) ↔ M(bi);(cj). For m ∈ M(bi);(cj), let wm ∈ Sd be the longest element
in the corresponding double coset.

Note that in the case when n = n′ = d and all bi = cj = 1, the parabolic
subgroups are trivial, and we have merely passed from elements of Sd to the corre-
sponding permutation matrices (or their transposes, depending on your convention).
In general, the permutation wm can be constructed from the matrix m as follows:
assuming that the images of Bi′ for i′ < i have been determined, we send successive
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various-sized sub-blocks of Bi to the various Cjs, according to the entries of the
ith row of m read from right to left. Within each sub-block, we successively take
the largest element of Cj still unused. More formally, if a is the sth element of Bi,
then wm(a) ∈ Cj where j is maximal such that mi,≥j ≥ s. Specifically, wm(a) is
the tth largest element of Cj where

(2.7) t = m≤i−1,j + s − mi,≥j+1.

Example. Take d = 9, n = n′ = 4, and define bi, cj so that

B1 = {1}, B2 = {2, 3, 4, 5}, B3 = {6, 7, 8}, B4 = {9},
C1 = {1, 2}, C2 = {3, 4, 5}, C3 = {6, 7, 8}, C4 = {9}.

Let us construct wm where

m =

⎛⎜⎜⎝
1 0 0 0
1 2 1 0
0 1 2 0
0 0 0 1

⎞⎟⎟⎠ .

The first row tells us that wm(1) is an element of C1; we take the largest element,
namely 2. The second row tells us that wm(B2) consists of one element of C3, two
elements of C2, and one of C1, in that order. Taking the largest elements not yet
used, we set wm(2) = 8, wm(3) = 5, wm(4) = 4, and wm(5) = 1. Continuing in
this way, we see that wm is the permutation 285417639 (in “one-line” notation).

We define a length function � : M(bi);(cj) → N by �(m) = �(wm), and a partial
order on M(bi);(cj) by

m ≤ m′ ⇔ wm ≤ wm′ .

These can be described as follows.

Proposition 2.3. Let m,m′ ∈ M(bi);(cj).

(1) �(m) =
∑

i,j mi,jm≤i,≥j −
∑

i,j

(
mi,j+1

2

)
.

(2) m ≤ m′ if and only if, for all i, j,

m≤i,≥j ≤ m′
≤i,≥j .

(3) m ≤ m′ if and only if, for all i, j,

m≥i,≤j ≤ m′
≥i,≤j .

Proof. Let a be the largest element of Bi ∩ w−1
m (Cj). Then for 1 ≤ k ≤ mi,j ,

a − k + 1 is the kth largest element of Bi ∩ w−1
m (Cj). Clearly

(2.8) inva−k+1(wm) = m≤i,≥j − k.

Summing this over all i, j, and 1 ≤ k ≤ mi,j gives (1). To prove (2), fix i and j, and
let b be the largest element of

⋃
i′≤i Bi′ and c the smallest element of

⋃
j′≥j Cj′ . If

m ≤ m′, then by Proposition 2.1, we have

|{a ≤ b |wm(a) ≥ c}| ≤ |{a ≤ b |wm′(a) ≥ c}|,
which exactly says that m≤i,≥j ≤ m′

≤i,≥j . Conversely, suppose we know that
m≤i,≥j ≤ m′

≤i,≥j and m≤i−1,≥j ≤ m′
≤i−1,≥j . For all 1 ≤ k ≤ bi, we have

(2.9) |{a ≤ b − k + 1 |wm(a) ≥ c}| = max{m≤i,≥j − k + 1, m≤i−1,≥j}
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and similarly for m′, so our assumption implies

|{a ≤ b − k + 1 |wm(a) ≥ c}| ≤ |{a ≤ b − k + 1 |wm′(a) ≥ c}|.

Combining these statements for all j tells us that for all m, the mth largest element
of wm[1, b−k+1] lies in a block Cj prior or equal to that containing the mth largest
element of wm′ [1, b− k + 1]. Remembering how wm and wm′ are constructed from
m and m′, this implies that for all m, the mth largest element of wm[1, b − k + 1]
is less than or equal to the mth largest element of wm′ [1, b − k + 1]. Letting i and
k vary, we get wm ≤ wm′ by Proposition 2.1, so (2) is proved. One way to deduce
(3) from (2) is to use (2.6). Another way is to recall that wm ≤ wm′ if and only
if w−1

m ≤ w−1
m′ ; clearly the inverse of wm is the permutation wmt associated to the

transpose matrix mt ∈ M(cj);(bi), and the condition in (3) is the transpose of the
condition in (2). �

We can also define Kazhdan-Lusztig polynomials indexed by pairs of elements
of M(bi);(cj): Pm,m′ = Pwm,wm′ . By definition we have

(2.10) Pm,m′ 	= 0 ⇒ m ≤ m′, and Pm,m = 1.

So the inverse matrix (P 〈−1〉
m,m′)m,m′∈M(bi);(cj ) of (Pm,m′)m,m′∈M(bi);(cj) has entries in

Z[q] which also satisfy (2.10). In fact, we can express these entries in terms of those
of the original matrix, as follows. Recall the Kazhdan-Lusztig inversion formula
([9, Section 7.14, (24)]):

(2.11)
∑
x∈Sd

ε(xy) P
xw

(d)
0 ,yw

(d)
0

Px,w = δy,w,

where ε(z) = (−1)�(z) and w
(d)
0 is the longest element of Sd. Using the fact that

Px,wm′′ = Px′,wm′′ for all x′ ∈ S(cj)xS(bi) ([9, Section 7.14, Corollary]), we get

(2.12) P
〈−1〉
m,m′ =

∑
x∈S(cj )wm′S(bi)

ε(xwm) P
xw

(d)
0 ,wmw

(d)
0

.

A general Kazhdan-Lusztig polynomial Py,w, y, w ∈ Sd, can be expressed in
the form Pm,m′ in various ways. The most trivial takes n = n′ = d and all
bi = cj = 1, so that there is no difference between permutations and matrices. At
the other extreme of usefulness, we can take (Bi) to be the collection consisting
of the maximal intervals on which w is decreasing, and (Cj) the same as for w−1.
With these choices, w is clearly the longest element in its double coset S(cj)wS(bi),
so Py,w depends only on the double coset of y; in other words, Py,w = Pψ(y),ψ(w)

where ψ : Sd → M(bi);(cj) is as above.

Example. Let y = 128456379 and w = 587429316 in S9. The blocks Bi and Cj

determined by w are exactly those used in the previous example. Indeed, w = wm′

where

m′ =

⎛⎜⎜⎝
0 1 0 0
1 1 2 0
1 1 0 1
0 0 1 0

⎞⎟⎟⎠ .

Now ψ(y) is the matrix m from the previous example, so the permutation wm =
285417639 found there is the longest element in the double coset S(cj)yS(bi). Using
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the criteria in Proposition 2.3, it is easy to check that m ≤ m′. The above principle
means in this case that

Py,w = Pm,m′ = Pwm,w.

The advantage of the latter form is that 2 is cancellable for [wm, w]. Since w2̂
m =

25417638 and w2̂ = 57428316, we get Py,w = P25417638,57428316.

In order to be able to perform such a cancellation directly on matrices, we note
the following.

Proposition 2.4. Let m ∈ M(bi);(cj), a ∈ Bi ∩ w−1
m (Cj). Let e be the matrix with

ei,j = 1, and all other entries zero.
(1) wâ

m = wm−e.
(2) �(m) − �(m − e) equals each of the following:

m≤i,≥j + m≥i,≤j − mi,j − 1 = m≤i−1,≥j + m≥i+1,≤j + bi − 1
= m≤i,≥j+1 + m≥i,≤j−1 + cj − 1.

Proof. Part (1) is clear from the explicit construction of wm given above, and (2)
follows easily from (1) of Proposition 2.3. �

Definition. If m ≤ m′ in M(bi);(cj), we say that (i, j) ∈ [1, n]× [1, n′] is cancellable
for the interval [m,m′] if

(1) mi,j ≥ 1.
(2) m≤i−1,≥j = m′

≤i−1,≥j , or equivalently m≥i,≤j−1 = m′
≥i,≤j−1.

(3) m≤i,≥j+1 = m′
≤i,≥j+1, or equivalently m≥i+1,≤j = m′

≥i+1,≤j .
These equivalences follow from (2.6).

Proposition 2.5. Suppose that m ≤ m′ in M(bi);(cj) and (i, j) is cancellable for
[m,m′]. Let e be the matrix with ei,j = 1, all other entries zero.

(1) For any m1 ∈ [m,m′],
(a) m1

i,j ≥ mi,j,
(b) m1

≤i−1,≥j = m≤i−1,≥j, and
(c) m1

≤i,≥j+1 = m≤i,≥j+1.
Hence (i, j) is cancellable for any sub-interval of [m,m′].

(2) The map m1 �→ m1 − e is an isomorphism of posets between [m,m′] and
[m − e,m′ − e], which reduces all lengths by the same amount.

(3) For any m1,m2 ∈ [m,m′], Pm1,m2 = Pm1−e,m2−e.
(4) For any m1,m2 ∈ [m,m′], P

〈−1〉
m1,m2 = P

〈−1〉
m1−e,m2−e.

Proof. Let m1 ∈ [m,m′]. By (2) of Proposition 2.3, we have

m≤i−1,≥j ≤ m1
≤i−1,≥j ≤ m′

≤i−1,≥j = m≤i−1,≥j ,

which proves (1b), and (1c) is similar. It follows that

m1
i,j − mi,j = (m1

i,j + m1
≤i−1,≥j + m1

≤i,≥j+1) − (mi,j + m≤i−1,≥j + m≤i,≥j+1)

= (m1
≤i,≥j + m1

≤i−1,≥j+1) − (m≤i,≥j + m≤i−1,≥j+1)

= (m1
≤i,≥j − m≤i,≥j) + (m1

≤i−1,≥j+1 − m≤i−1,≥j+1)
≥ 0,
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by Proposition 2.3 again. So (1a) is proved. Thus m1 − e ∈ M(b̃i);(c̃j)
, where

b̃i′ = bi′ − δi,i′ , c̃j′ = cj′ − δj,j′ .

Given this, the first part of (2) is obvious from either description of the partial
order given in Proposition 2.3, and the second part from (2) of Proposition 2.4. To
prove (3), let a be the largest element of Bi ∩ w−1

m (Cj), i.e. the (mi,≥j)th element
of Bi. We want to show that a is cancellable for [wm, wm′ ]. Let

δ = m′
i,≥j − mi,≥j = m′

≤i,j − m≤i,j = m′
≤i,≥j − m≤i,≥j ≥ 0.

(These are equal because (i, j) is cancellable, and nonnegative because m ≤ m′.)
By the above chain of equalities applied to m1 = m′, we have

m′
i,j − mi,j = δ + (m′

≤i−1,≥j+1 − m≤i−1,≥j+1) ≥ δ,

so
m′

i,≥j+1 = m′
i,≥j − m′

i,j = mi,≥j + δ − m′
i,j < mi,≥j ≤ m′

i,≥j ,

which means that wm′(a) ∈ Cj . From (2.7) we see that wm′(a) = wm(a). Moreover,

inva(wm) = m≤i,≥j − 1 = m′
≤i,≥j − δ − 1 = inva(wm′),

so a is cancellable for [wm, wm′ ]. In particular, for any m1 ∈ [m,m′], wm1(a) ∈ Cj ,
which by (1) of Proposition 2.4 implies wâ

m1 = wm1−e. Then part (3) follows from
(3) of Proposition 2.2, and part (4) follows formally from parts (2) and (3). �

Example. With matrices m, m′ defined as in previous examples, (2, 3) is can-
cellable for [m,m′], corresponding to the fact that 2 is cancellable for [wm, wm′ ].
Performing the cancellation directly on the matrices, we get

m − e =

⎛⎜⎜⎝
1 0 0 0
1 2 0 0
0 1 2 0
0 0 0 1

⎞⎟⎟⎠ , m′ − e =

⎛⎜⎜⎝
0 1 0 0
1 1 1 0
1 1 0 1
0 0 1 0

⎞⎟⎟⎠ .

The reader can check that these matrices correspond to the permutations 25417638
and 57428316 found earlier.

3. Nilpotent orbits of the linear quiver

We now return to the set-up of the first part of the introduction, so V is a d-
dimensional Z-graded vector space, with di = dim Vi. For convenience, we adjust
the grading so that di 	= 0 ⇒ i ∈ [1, n], for some positive integer n (so we are
effectively considering the linear quiver of type An). Throughout this section, the
variables i, j range over [1, n] unless otherwise specified.

We saw in §1 that the GV -orbits in NV are in bijection with the set M(di) of
multisegments in which i occurs di times as an element of a segment. Following [26],
we change this parametrization by multisegments to a parametrization by matrices.
We identify each m ∈ M(di) with the (n × n)-matrix (mi,j), where

(3.1) mi,j =

⎧⎨⎩ multiplicity of the segment [i, j], if i ≤ j,
number of segments [k, l] where k ≤ j, l ≥ i, if j = i − 1,

0, if j < i − 1.



NILPOTENT ORBITS AND KAZHDAN-LUSZTIG POLYNOMIALS 109

It is clear that this matrix lies in the set M(di);(dj), as defined in the previous section.
So we have identified M(di) with a subset of M(di);(dj), which can be described as
follows.

Proposition 3.1. Let M ′
(di)

= {m ∈ M(di);(dj) |mi,j = 0, ∀j < i − 1}.
(1) M ′

(di)
is a lower ideal of the poset M(di);(dj).

(2) If m ∈ M ′
(di)

, then for all i ≥ j, m≤i,≥j = dj + dj+1 + · · · + di.
(3) For m,m′ ∈ M ′

(di)
, m ≤ m′ if and only if m≤i,≥j ≤ m′

≤i,≥j for all i < j.
(4) If m ∈ M ′

(di)
, then for all i ∈ [2, n], mi,i−1 = m≤i−1,≥i.

(5) M ′
(di)

= M(di).

Proof. An element m ∈ M(di);(dj) lies in M ′
(di)

if and only if m≥i,≤j = 0 for all
i, j such that j < i − 1, so (1) follows from (3) of Proposition 2.3. For (2), since
m≥i+1,≤j−1 = 0, (2.6) gives

m≤i,≥j = d1 + · · · + di − d1 − · · · − dj−1 = dj + · · · + di,

as required. Part (3) then follows from (2) of Proposition 2.3. For (4), we have

mi,i−1 = di − mi,≥i = m≤i,≥i − mi,≥i = m≤i−1,≥i.

From (4) and the i = j case of (2) it follows that every matrix in M ′
(di)

arises from
a multisegment in M(di) by the rule (3.1), whence (5). �

As mentioned in the introduction, the identification of M(di) with M ′
(di)

is a poset
isomorphism: the geometrically-defined partial order � on M(di) is the restriction of
the partial order ≤ on M(di);(dj). This is part of Zelevinsky’s result [26, Corollary 1],
which we can state (with some supplementary detail) as follows.

Theorem 3.2. Let m,m′ ∈ M(di).

(1) dimOm = �(m) −
∑

i

(
di

2

)
.

(2) Om ⊆ Om′ ⇔ m ≤ m′.
(3) HiIC(Om′) = 0 for i odd.
(4) ICm,m′ = Pm,m′ .
(5) IC

〈−1〉
m,m′ = P

〈−1〉
m,m′ .

Proof. For reference in §5, we recall Zelevinsky’s proof. Define the partial flag
variety B(di) to be the set of collections of subspaces (Wi)i∈[0,n] of V such that
W0 = 0, and for all i ∈ [1, n], Wi−1 ⊂ Wi and dimWi/Wi−1 = di; this is naturally a
nonsingular projective variety of dimension

(
d
2

)
−

∑
i

(
di

2

)
. We define a “base-point”

(Ui) in B(di) by Ui = V1 ⊕ · · · ⊕ Vi. Relative to this base-point, B(di) decomposes
into Schubert cells Bm for m ∈ M(di);(dj). Explicitly, Bm consists of those (Wi)
such that for all i, j ∈ [1, n],

dim
Wi ∩ Uj

Wi ∩ Uj−1 + Wi−1 ∩ Uj
= mi,j .

The analogues of (1)–(4) for these Schubert cells (for all of M(di);(dj)) are well
known. Let B′

(di)
be the closed subvariety of B(di) defined by requiring Wi ⊃ Ui−1;

from the description of M(di) as M ′
(di)

, it is easy to see that B′
(di)

=
⋃

m∈M(di)
Bm.

Now we define a morphism NV → B′
(di)

: ϕ �→ (Wi(ϕ)) by the rule

Wi(ϕ) = Ui−1 ⊕ {v + ϕ(v) + ϕ2(v) + · · · + ϕn−i(v) | v ∈ Vi}.
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An easy check shows that this morphism maps Om into Bm for all m ∈ M(di).
Moreover, it gives an isomorphism between NV and the open subvariety of B′

(di)

defined by requiring

Wi ∩
⊕
i′>i

Vi′ = 0, ∀i ∈ [1, n].

Hence each Om is embedded as an open subvariety of the Schubert cell Bm, and (1)–
(4) follow. Since M(di) is a lower ideal of M(di);(dj), (5) is an automatic consequence
of (4). �

In view of (3) of Proposition 3.1, part (2) of Theorem 3.2 says that Om ⊆ Om′

if and only if for all i < j, m≤i,≥j ≤ m′
≤i,≥j . Now if ϕ ∈ Om, then for i ≤ j,

m≤i,≥j = rk ϕj−i|Vi
. So we recover the well-known fact that Om ⊆ Om′ if and

only if for all i < j, rk ϕj−i|Vi
≤ rk (ϕ′)j−i|Vi

for any ϕ ∈ Om and ϕ′ ∈ Om′ . (Of
course the “only if” direction is obvious.) We can define an element mmax ∈ M(di)

uniquely by the requirement that for i ≤ j, mmax
≤i,≥j equals the maximum possible

rank, namely min{di, di+1, · · · , dj}. It follows that m ≤ mmax for all m ∈ M(di),
and the orbit Ommax is dense in NV .

As foreshadowed in the introduction, Theorem 3.2 is only one of many possible
ways to express a particular ICm,m′ as a Kazhdan-Lusztig polynomial: the below-
diagonal entries prescribed by (3.1) correspond to one particular choice of “empty
segments”. A more general statement is the following.

Theorem 3.3. Let b1, · · · , bn, c1, · · · , cn ∈ N be such that

b1 = d1, cn = dn, and di − bi = di−1 − ci−1, ∀i ∈ [2, n].

Define an (n × n)-matrix a by

ai,j =
{

di − bi, if j = i − 1,
0, otherwise.

Let M
(bi);(cj)

(di)
= {m ∈ M(di) |mi,i−1 ≥ di − bi, ∀i ∈ [2, n]}.

(1) M
(bi);(cj)

(di)
is an upper ideal of M(di).

(2) The map m �→ m − a is an isomorphism of posets between M
(bi);(cj)

(di)
and

{m̃ ∈ M(bi);(cj) | m̃i,j = 0, ∀j < i − 1}.
(3) For any m′,m′′ ∈ M

(bi);(cj)

(di)
, ICm′,m′′ = Pm′−a,m′′−a.

(4) For any m′,m′′ ∈ M
(bi);(cj)

(di)
, IC

〈−1〉
m′,m′′ = P

〈−1〉
m′−a,m′′−a.

Proof. For m ∈ M(di), mi,i−1 equals m≥i,≤i−1, so (1) follows from (3) of Proposition
2.3. For (2), the fact that the given map is a bijection is obvious, and by Proposition
2.3 it preserves partial orders. Now this map is the composition of maps of the form
m �→ m−e as in Proposition 2.5 and their inverses m �→ m+e, where the positions
which are being altered are all of the form (i, i − 1). Since all matrices involved
have zero entries in positions (i, j) where j < i − 1, conditions (2) and (3) of the
definition of cancellability always hold. So Proposition 2.5 implies (3) and (4) with
Pm′,m′′ and P

〈−1〉
m′,m′′ in place of ICm′,m′′ and IC

〈−1〉
m′,m′′ , and Theorem 3.2 gives the

result. �
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Corollary 3.4. For m ∈ M(di), define an (n × n)-matrix m− by

m−
i,j =

{
mi,j , if j = i − 1,
0, otherwise.

Let 〈m〉 = {m′ ∈ M(di) |m ≤ m′} = [m,mmax].

(1) For all m′ ∈ 〈m〉, m′ − m− ∈ M(di−mi,i−1);(dj−mj+1,j).
(2) The map m′ �→ m′ − m− is an isomorphism of posets between 〈m〉 and

[m − m−,mmax − m−].
(3) For any m′,m′′ ∈ 〈m〉, ICm′,m′′ = Pm′−m−,m′′−m− .
(4) For any m′,m′′ ∈ 〈m〉, IC

〈−1〉
m′,m′′ = P

〈−1〉
m′−m−,m′′−m− .

Proof. Apply Theorem 3.3 with

bi = di − mi,i−1, ci−1 = di−1 − mi,i−1

for all i ∈ [2, n], and restrict to the upper ideal 〈m〉 of M
(bi);(cj)

(di)
. �

Note that the polynomials Pm′−m−,m′′−m− in (3) are Kazhdan-Lusztig polynomials
for Sk(m), where k(m) is the number of segments of m, which is also the sum of
the entries of m − m−.

Finally, we have to connect Theorem 3.3 to the notation of the introduction, in
order to prove Theorem 1.1. We have elements λ, µ ∈ Dk; we can clearly assume
that all λs − s, µs − s + 1 for 1 ≤ s ≤ k lie in [1, n]. Define

bi = |{s |µs − s + 1 = i}|, cj = |{s |λs − s = j}|.

Then the subgroups S(bi) and S(cj) of Sk are exactly the conjugates under w
(k)
0 of

the dot stabilizers Wµ and Wλ (this reversal comes about because the sequences
(λs − s) and (µs − s) are decreasing). The map ψ : Sk → M(bi);(cj) as defined in
the previous section satisfies

(3.2) ψ(w(k)
0 ww

(k)
0 )i,j = |{s |µs − s + 1 = i, λw(s) − w(s) = j}|.

So Sk[λ, µ] = {w ∈ Sk |ψ(w(k)
0 ww

(k)
0 )i,j = 0, ∀j < i − 1}, which shows that it is

indeed a lower ideal of Sk. Moreover, w �→ ψ(w(k)
0 ww

(k)
0 ) gives an isomorphism

of posets between Sk[λ, µ]◦ and {m̃ ∈ M(bi);(cj) | m̃i,j = 0, ∀j < i − 1}, and the
polynomials attached to these posets correspond, since

(3.3) Pw,w′ = P
w

(k)
0 ww

(k)
0 ,w

(k)
0 w′w

(k)
0

= P
ψ(w

(k)
0 ww

(k)
0 ),ψ(w

(k)
0 w′w

(k)
0 )

for all w, w′ ∈ Sk[λ, µ]◦. Now as in Theorem 1.1, assume that λ/µ ∈ M(di); it
follows immediately that (bi) and (cj) satisfy the conditions of Theorem 3.3. By
(3.2), for all w ∈ Sk[λ, µ]◦, the multisegment λ/(w ·µ) when viewed as a matrix has
the same diagonal and above-diagonal entries as ψ(w(k)

0 ww
(k)
0 ); hence λ/(w · µ) =

ψ(w(k)
0 ww

(k)
0 ) + a where a is as in Theorem 3.3. Thus Theorem 1.1 follows from

Theorem 3.3.
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4. Cancellation for the affine symmetric group

We now want to extend the results of §2 to the affine symmetric group. Again
fix a positive integer d. Let Ŝd be the group of permutations w of the set Z such
that w(i + d) = w(i) + d, for all i ∈ Z. An element w ∈ Ŝd is determined by its
window (w(1), w(2), · · · , w(d)), which can be any collection of representatives of
the congruence classes mod d, in any order. The subgroup of Ŝd which preserves
[1, d] is clearly isomorphic to Sd.

The group Ŝd is the “extended” affine symmetric group: it can be written as a
semi-direct product 〈τ 〉 � S̃d, where

S̃d = {w ∈ Ŝd |
d∑

i=1

w(i) =
d∑

i=1

i}

is the actual affine symmetric group, and τ is the element of infinite order sending
i to i + 1 for all i ∈ Z. In general, w ∈ τa(w)S̃d where

a(w) =
1
d
(

d∑
i=1

w(i) −
d∑

i=1

i).

Note that for any i ∈ Z, the set w(−∞, i] can be obtained from (−∞, i + a(w)]
by changing finitely many elements (keeping distinctness). In other words, for m
sufficiently large, the mth largest element in w(−∞, i] is i + a(w) − m + 1.

If d = 1, S̃d is the trivial group and Ŝd = 〈τ 〉. If d ≥ 2, we define si ∈ S̃d for all
i ∈ Z by

si(j) =

⎧⎨⎩ j + 1, if j ≡ i mod d,
j − 1, if j ≡ i + 1 mod d,

j, otherwise.

Thus si = si′ iff i ≡ i′ mod d. It is well known that s0, s1, · · · , sd−1 form a set
of Coxeter generators for S̃d of type Ãd−1. Thus they determine a length function
� : S̃d → N, a Bruhat order ≤ on S̃d, and Kazhdan-Lusztig polynomials Py,w ∈ N[q]
for y, w ∈ S̃d, all of which are invariant under conjugation by τ . We extend these
to Ŝd in the standard way:

�(w) = �(τ−a(w)w),

y ≤ w ⇔ a(y) = a(w), τ−a(y)y ≤ τ−a(w)w,

Py,w =
{

Pτ−a(y)y,τ−a(w)w, if a(y) = a(w),
0, otherwise.

We define inversion statistics as in the finite case

invi(w) = |{i′ < i |w(i′) > w(i)}|, Invi(w) = |{i′ > i |w(i′) < w(i)}|,

for any w ∈ Ŝd and i ∈ Z (these sets are finite, even though i′ runs over Z.) Clearly
invi+d(w) = invi(w), Invi+d(w) = Invi(w), and

Invi(w) − invi(w)

= |(−∞, w(i)] \ w(−∞, i]| − |w(−∞, i] \ (−∞, w(i)]|
= |(−∞, w(i)] \ (−∞, i + a(w)]| − |(−∞, i + a(w)] \ (−∞, w(i)]|
= w(i) − i − a(w).
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The formula for � on Ŝd is analogous to that for Sd (see [4, Proposition 4.1(ii)]):

(4.1) �(w) =
∑

i∈[1,d]

invi(w) =
∑

i∈[1,d]

Invi(w).

We also have

(4.2) wsi < w if and only if w(i) > w(i + 1),

and a general description of Bruhat order along the lines of Proposition 2.1 (this is
a rephrasing of [4, Theorem 6.5], trivially extended from S̃d to Ŝd):

Proposition 4.1. If y, w ∈ Ŝd, y ≤ w if and only if for all i ∈ Z,

|{i′ ≤ i | y(i′) ≥ j}| ≤ |{i′ ≤ i |w(i′) ≥ j}|, ∀j, with equality for j � 0.

In other words, for all positive integers m, the mth largest element in y(−∞, i] is
less than or equal to the mth largest element in w(−∞, i], with equality for m � 0.
It suffices to check this for i ∈ [1, d].

The definition of cancellability is identical to the finite case:

Definition. If y ≤ w in Ŝd, we say that i ∈ Z is cancellable for the interval [y, w]
if y(i) = w(i), invi(y) = invi(w), and Invi(y) = Invi(w). (Clearly any two of these
conditions imply the third, and i is cancellable for [y, w] iff i + d is.)

However, the process of cancellation is not as uniquely defined as in the finite case:
we need to choose order-preserving bijections σī : Z \ ī → Z for all congruence
classes ī mod d. Then for any w ∈ Ŝd, we define wî ∈ Ŝd−1 by

wî = σw(i) ◦ w ◦ σ−1
ī

.

Note that using different σ’s would have the effect of multiplying wî on the left and
right by powers of τ . Independently of the choice, we have

(4.3) �(wî) = �(w) − invi(w) − Invi(w).

Example. Take d = 3, y = τs1s2 and w = τs2s1s0s2. Then y has window (3, 4, 2)
and w has window (0, 7, 2). Since inv3(y) = inv3(w) = 2, 3 is cancellable for [y, w].
If we normalize σ2̄ and σ3̄ by requiring that they preserve 1, then y3̂ and w3̂ are
the elements of Ŝ2 with windows (2, 3) and (0, 5), namely τ and τs1s0.

We can now extend Proposition 2.2 to the affine case.

Proposition 4.2. Suppose that i is cancellable for [y, w].
(1) For any x ∈ [y, w], x(i) = y(i) and invi(x) = invi(y). Hence i is cancellable

for any sub-interval of [y, w].
(2) x �→ xî is an isomorphism of posets between [y, w] and [yî, wî], which re-

duces all lengths by the same amount.
(3) For any u, v ∈ [y, w], Pu,v = Puî,vî .

Proof. The proof of part (1) is identical to that of part (1) of Proposition 2.2, with
[1, i] replaced by (−∞, i] and so on, and of course using Proposition 4.1 instead of
Proposition 2.1. Similarly with part (2), where the inverse map [yî, wî] → [y, w] :
x �→ x̃ is now defined by

x̃(i′) =

{
y(i) + kd, if i′ = i + kd,

σ−1

y(i)
(x(σī(i′))), if i′ 	∈ ī.
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The proof of (3) is also mostly unchanged. Apart from replacing [1, i] by (−∞, i]
and so on, the only change is that in Case 1, we need not have (ys)î−1 = yî and
(ws)î−1 = wî, but rather we have

(ys)î−1 = τayîτ b, (ws)î−1 = τawîτ b for some a, b ∈ Z,

which still implies P
(ys)̂i−1,(ws)̂i−1 = Pyî,wî as required. �

We now introduce some affine matrix notation very similar to that in [14]. Let
(bi)i∈Z be a Z-tuple of nonnegative integers, periodic with period n ≥ 1, such that∑n

i=1 bi = d; and let (cj)j∈Z be another such tuple, with period n′ ≥ 1, such that∑n′

j=1 cj = d. Our notational convention now is that the range of the variables
i, i′, j, j′ is all of Z unless otherwise specified. Let M(bi),n;(cj),n′ be the set of all
(Z × Z)-matrices m satisfying:

(1) mi,j ∈ N, for all i, j,
(2) mi+n,j+n′ = mi,j , for all i, j,
(3)

∑
j mi,j = bi, for all i, and

(4)
∑

i mi,j = cj , for all j.

It is easy to see that for m ∈ M(bi),n;(cj),n′ , mi,j = 0 for |j − i| � 0; so sums of the
form mi,≥j , m≤i,j , m≤i,≥j and m≥i,≤j are finite. We have the following substitute
for (2.6). For fixed i, m≥i,≤j0 = 0 for all j0 sufficiently negative, and for j greater
than such j0,

(4.4) m≥i,≤j = cj0+1 + · · · + cj − m≤i−1,≥j0+1 + m≤i−1,≥j+1.

The matrices in M(bi),n;(cj),n′ parametrize double cosets of Ŝd with respect to
proper parabolic subgroups of S̃d. Namely, write Z as the disjoint union of (possibly
empty) blocks Bi such that all elements of Bi are less than all elements of Bi+1, and
|Bi| = bi. It follows that Bi+n = Bi+d. Note that the collection (Bi) is determined
by (bi) up to translation (i.e. a power of τ ). Let S(Bi) be the subgroup of Ŝd which
preserves each Bi separately; this is a parabolic subgroup of S̃d isomorphic to
Sb1 × · · · × Sbn

. (It is determined by (bi) up to conjugation by a power of τ .)
Similarly, define blocks Cj of sizes cj and the parabolic subgroup S(Cj). We define
a surjective map ψ : Ŝd → M(bi),n;(cj),n′ by

ψ(w)i,j = |w(Bi) ∩ Cj |.

The fibres of ψ are exactly the double cosets S(Cj)wS(Bi), so ψ induces a bijection
S(Cj)\Ŝd / S(Bi) ↔ M(bi),n;(cj),n′ . For m ∈ M(bi),n;(cj),n′ , let wm ∈ Ŝd be the longest
element in the corresponding double coset.

The permutation wm can be read off the matrix m by exactly the same pre-
scription as in the finite case (remembering that i, i′, j, j′ now range over all of
Z).

Example. Let d = 7, n = 2, n′ = 3, and define

bi =
{

3, if i ≡ 1 mod 2,
4, if i ≡ 0 mod 2, cj =

⎧⎨⎩ 3, if j ≡ 1 mod 3,
2, if j ≡ 2 mod 3,
2, if j ≡ 0 mod 3.
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Let m ∈ M(bi),2;(cj),3 be the following matrix:

. . .
...

...
...

...
...

...
2 0 0 0 0 1 0 0 0 0 0 0

· · · 0 2 0 0 0 1 0 0 0 0 0 0 · · ·
1 0 0 2 0 0 0 0 1 0 0 0

· · · 0 0 0 0 2 0 0 0 1 0 0 0 · · ·
0 0 0 1 0 0 2 0 0 0 0 1

· · · 0 0 0 0 0 0 0 2 0 0 0 1 · · ·
0 0 0 0 0 0 1 0 0 2 0 0

...
...

...
...

...
...

. . .

where the 0 is the (1, 1) entry. We choose (Bi) and (Cj) so that B1 = C1 = {1, 2, 3}.
The row containing 0 tells us that wm(B1) consists of one element of C6 = {13, 14}
and two of C2 = {4, 5}, in that order. Since the (0, 6) entry is 1, the largest element
of C6 “has already been used” in wm(B0), so we set wm(1) = 13, wm(2) = 5,
wm(3) = 4. Treating the next row similarly, we find that wm is the element of Ŝ7

with window (13, 5, 4, 21, 10, 9, 1).

We define a length function � : M(bi),n;(cj),n′ → N by �(m) = �(wm), and a
partial order on M(bi),n;(cj),n′ by

m ≤ m′ ⇔ wm ≤ wm′ .

Since the map m �→ wm depends on the choice of (Bi) and (Cj) only modulo left
and right multiplication by fixed powers of τ , these definitions are independent of
this choice. Indeed, they can be described in an analogous way to Proposition 2.3:

Proposition 4.3. Let m,m′ ∈ M(bi),n;(cj),n′ .

(1) �(m) =
∑

i∈[1,n],j mi,jm≤i,≥j −
∑

i∈[1,n],j

(
mi,j+1

2

)
.

(2) m ≤ m′ if and only if, for all i ∈ Z,

m≤i,≥j ≤ m′
≤i,≥j , ∀j, with equality for j � 0.

(3) m ≤ m′ if and only if, for all j ∈ Z,

m≥i,≤j ≤ m′
≥i,≤j , ∀i, with equality for i � 0.

Proof. The proof is mostly identical to that of Proposition 2.3, using (4.1) and
Proposition 4.1 instead of (2.1) and Proposition 2.1. In the proof of (3), the
argument using (2.6) no longer makes sense, but the argument using transposes
does. �

As in §2, we define Pm,m′ = Pwm,wm′ for m,m′ ∈ M(bi),n;(cj),n′ . From (2) of
Proposition 4.3 it is clear that each interval [m,m′] in the poset M(bi),n;(cj),n′ is
finite, so the inverse matrix (P 〈−1〉

m,m′)m,m′∈M(bi),n;(cj),n′ of (Pm,m′)m,m′∈M(bi),n;(cj),n′

is well defined.
The matrix definition of cancellability is identical to the finite case.

Definition. If m ≤ m′ in M(bi),n;(cj),n′ , we say that (i, j) ∈ Z × Z is cancellable
for [m,m′] if

(1) mi,j ≥ 1.
(2) m≤i−1,≥j = m′

≤i−1,≥j , or equivalently m≥i,≤j+1 = m′
≥i,≤j+1.
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(3) m≤i,≥j+1 = m′
≤i,≥j+1, or equivalently m≥i+1,≤j = m′

≥i+1,≤j .
These equivalences follow from (4.4), bearing in mind (2) of Proposition 4.3. Clearly
(i, j) is cancellable iff (i + n, j + n′) is.

Proposition 4.4. Suppose that m ≤ m′ in M(bi),n;(cj),n′ and (i, j) is cancellable
for [m,m′]. Let e be the matrix with ei+kn,j+kn′ = 1 for all k, all other entries
zero.

(1) For any m1 ∈ [m,m′],
(a) m1

i,j ≥ mi,j,
(b) m1

≤i−1,≥j = m≤i−1,≥j, and
(c) m1

≤i,≥j+1 = m≤i,≥j+1.
Hence (i, j) is cancellable for any sub-interval of [m,m′].

(2) The map m1 �→ m1 − e is an isomorphism of posets between [m,m′] and
[m − e,m′ − e], which reduces all lengths by the same amount.

(3) For any m1,m2 ∈ [m,m′], Pm1,m2 = Pm1−e,m2−e.
(4) For any m1,m2 ∈ [m,m′], P

〈−1〉
m1,m2 = P

〈−1〉
m1−e,m2−e.

Proof. Completely analogous to the proof of Proposition 2.5, using the analogue of
Proposition 2.4. �

5. Nilpotent orbits of the cyclic quiver

We now return to the set-up of the latter part of §1, so V is a d-dimensional
Z/nZ-graded vector space, and di = dim Vī for all i ∈ Z. We saw in §1 that the GV -
orbits in NV are in bijection with the set M(di),n of multisegments (in the modulo
n sense) such that each congruence class ī occurs di times among the elements of
the segments. As in §3, we will identify each m ∈ M(di),n with a matrix (mi,j),
this time in M(di),n;(dj),n; the definition of mi,j is exactly the same as (3.1). The
resulting subset of M(di),n;(dj),n is described as follows.

Proposition 5.1. Let M ′′
(di),n

= {m ∈ M(di),n;(dj),n |mi,j = 0, ∀j < i − 1}.
(1) M ′′

(di),n
is a lower ideal of the poset M(di),n;(dj),n.

(2) For all m ∈ M ′′
(di),n

, there is some f(m) ∈ Z such that

m≤i,≥j + f(m) = dj + · · · + di, ∀i ≥ j.

(3) For m,m′ in M ′′
(di),n

, m ≤ m′ if and only if f(m) = f(m′) and m≤i,≥j ≤
m′

≤i,≥j for all i < j.
(4) M ′

(di),n
={m ∈ M ′′

(di),n
| f(m)=0} is a lower ideal of the poset M(di),n;(dj),n.

(5) If m ∈ M ′
(di),n

, then mi,i−1 = m≤i−1,≥i for all i.
(6) M ′

(di),n
= M(di),n.

Proof. As in the finite case, (1) is immediate from (3) of Proposition 4.3. (2) comes
from the fact that for i ≥ j,

m≤i,≥j = dj + · · · + di−1 + m≤i,≥i = dj+1 + · · · + di + m≤j,≥j .

Using this, (3) comes from (2) of Proposition 4.3, and (4) is an immediate conse-
quence of (1) and (3). (5) is proved in the same way as (4) of Proposition 3.1. From
(5) and the i = j case of (2) it follows that every matrix in M ′

(di),n
arises from a

multisegment in M(di),n, whence (6). �
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We can now state Lusztig’s affine analogue of Theorem 3.2:

Theorem 5.2. Let m,m′ ∈ M(di),n.

(1) dimOm = �(m) −
∑

i∈[1,n]

(
di

2

)
.

(2) Om ⊆ Om′ ⇔ m ≤ m′.
(3) HiIC(Om′) = 0 for i odd.
(4) ICm,m′ = Pm,m′ .
(5) IC

〈−1〉
m,m′ = P

〈−1〉
m,m′ .

Proof. As with Theorem 3.2, (5) follows from (4) because M(di),n is a lower ideal
of M(di),n;(dj),n. Parts (1)–(4) were proved by Lusztig in [12, §11], but since the
conventions there are slightly different, a sketch of a proof along the lines of the
above proof of Theorem 3.2 may be helpful.

Form V = C((t))⊗C V , and consider lattices (free C[[t]]-submodules of rank d) in
V . Define B̂(di),n to be the set of collections of lattices (Mi)i∈Z such that for all
i ∈ Z:

(1) Mi−1 ⊂ Mi,
(2) dimC Mi/Mi−1 = di, and
(3) Mi−n = tMi.

It is well known that B̂(di),n has the structure of an increasing union of projective
varieties. We define a base-point (Li) in B̂(di),n as follows. For any i ∈ Z, let Vi

denote tkVī where k is defined by i + kn ∈ {1, · · · , n}. Define

Li =
⊕̂
j≤i

Vj , ∀i ∈ Z,

where
⊕̂

denotes completed direct sum. Relative to this base-point, B̂(di),n decom-
poses into affine Schubert cells B̂m for m ∈ M(di),n;(dj),n. Explicitly, B̂m consists
of those (Mi) such that for all i, j ∈ Z,

dimC

Mi ∩ Lj

Mi ∩ Lj−1 + Mi−1 ∩ Lj
= mi,j .

The analogues of (1)–(4) for these affine Schubert cells (for all of M(di),n;(dj),n)
are well known. Let B̂′

(di),n
be the closed subvariety of B̂(di),n defined by requiring

Mi ⊇ Li−1, dimC Mi/Li−1 = di. From the description of M(di),n as M ′
(di),n

, it is

easy to see that B̂′
(di),n

=
⋃

m∈M(di),n
B̂m.

Now we define a morphism NV → B̂′
(di),n

: ϕ �→ (Mi(ϕ)) by the rule

Mi(ϕ) = Li−1 ⊕ {v + ϕ(v) + ϕ2(v) + · · · | v ∈ Vi},
where ϕ : Vj → Vj+1 is defined in the obvious way. (Since ϕ is nilpotent, this sum
is actually finite.) An easy check shows that this morphism maps Om into B̂m for
all m ∈ M(di),n. All that remains is to verify that it gives an isomorphism between
NV and the open subvariety of B̂′

(di),n
defined by requiring

Mi ∩
⊕
i′>i

Vi′ = 0, ∀i ∈ Z.

The “dual” statement to this is proved in [12, §11]. �
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Note that in contrast to the situation in §3, the poset M(di),n may have more than
one maximal element.

We now come to the affine analogue of Theorem 3.3, a generalization of Theorem
5.2.

Theorem 5.3. Let bi, cj ∈ N be such that

bi+n = bi, cj+n = cj , and di − bi = di−1 − ci−1, ∀i, j ∈ Z.

Define a (Z × Z)-matrix a by

ai,j =
{

di − bi, if j = i − 1,
0, otherwise.

Let M
(bi);(cj)

(di),n
= {m ∈ M(di),n |mi,i−1 ≥ di − bi, ∀i ∈ Z}.

(1) M
(bi);(cj)

(di),n
is an upper ideal of M(di),n.

(2) The map m �→ m − a is an isomorphism of posets between M
(bi);(cj)

(di),n
and

{m̃ ∈ M(bi),n;(cj),n | m̃i,j = 0, ∀j < i − 1}.
(3) For any m′,m′′ ∈ M

(bi);(cj)

(di),n
, ICm′,m′′ = Pm′−a,m′′−a.

(4) For any m′,m′′ ∈ M
(bi);(cj)

(di),n
, IC

〈−1〉
m′,m′′ = P

〈−1〉
m′−a,m′′−a.

Proof. Completely analogous to the proof of Theorem 3.3, using Proposition 4.3,
Proposition 4.4, and Theorem 5.2 in place of Proposition 2.3, Proposition 2.5, and
Theorem 3.2. �

Corollary 5.4. For m ∈ M(di),n, define a (Z × Z)-matrix m− by

m−
i,j =

{
mi,j , if j = i − 1,
0, otherwise.

Let 〈m〉 = {m′ ∈ M ′
(di),n

|m ≤ m′}, and let mmax
1 , · · · ,mmax

t be the maximal
elements of 〈m〉.

(1) For all m′ ∈ 〈m〉, m′ − m− ∈ M(di−mi,i−1),n;(dj−mj+1,j),n.
(2) The map m′ �→ m′ − m− is an isomorphism of posets between 〈m〉 and⋃t

s=1[m − m−,mmax
s − m−].

(3) For any m′,m′′ ∈ 〈m〉, ICm′,m′′ = Pm′−m−,m′′−m− .
(4) For any m′,m′′ ∈ 〈m〉, IC

〈−1〉
m′,m′′ = P

〈−1〉
m′−m−,m′′−m− .

Proof. Apply Theorem 5.3 with

bi = di − mi,i−1, ci−1 = di−1 − mi,i−1

for all i ∈ Z, and restrict to the upper ideal 〈m〉 of M
(bi);(cj)

(di),n
. �

Note that the polynomials Pm′−m−,m′′−m− in (3) are Kazhdan-Lusztig polynomials

for S̃k(m), where k(m) is the number of segments in m, which is also the sum of
the entries in rows 1 to n of m−m−. As a corollary, we recover the main result of
[8]:

Corollary 5.5. If m ≤ m′ in M(di),n, and k(m) = 2, then ICm,m′ = 1.

Proof. In S̃2 all nonzero Kazhdan-Lusztig polynomials are 1. �
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Example. Let d = 6, n = 3, d1 = d2 = d3 = 2. Let m ∈ M(di),3 be the
multisegment [1, 2] + [2, 3] + [3, 4]. Then 〈m〉 has three maximal elements,

mmax
1 = [1, 6], mmax

2 = [2, 7], and mmax
3 = [3, 8].

Displaying only the rows indexed by 1, 2, 3, we have

m =

⎛⎝· · · 1 0 1 0 0 0 0 · · ·
· · · 0 1 0 1 0 0 0 · · ·
· · · 0 0 1 0 1 0 0 · · ·

⎞⎠ ,

mmax
1 =

⎛⎝· · · 1 0 0 0 0 0 1 · · ·
· · · 0 2 0 0 0 0 0 · · ·
· · · 0 0 2 0 0 0 0 · · ·

⎞⎠ ,

m − m− =

⎛⎝· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·

⎞⎠ ,

mmax
1 − m− =

⎛⎝· · · 0 0 0 0 0 0 1 · · ·
· · · 0 1 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·

⎞⎠ ,

where the 0 is the (1, 1)-entry. Setting Bi = {i} and Cj = {j − 1}, so that
wm−m− is the identity of S̃3, we find that wmmax

1 −m− has window (5, 0, 1), and is
therefore s1s0s2s1. Similarly, wmmax

2 −m− = s2s1s0s2 and wmmax
3 −m− = s0s2s1s0.

So m′ �→ wm′−m− is an isomorphism between 〈m〉 and [1, s1s0s2s1]∪ [1, s2s1s0s2]∪
[1, s0s2s1s0]. Moreover,

ICm,mmax
1

= P1,s1s0s2s1 = q + 1,

and similarly ICm,mmax
2

= ICm,mmax
3

= q + 1, while

IC
〈−1〉
m,m′ = P

〈−1〉
1,wm′−m−

= ε(wm′−m−)

for all m′ ∈ 〈m〉 (an example of (1.8)).

Finally, we must prove Theorem 1.2. We have elements λ, µ ∈ D̃k; define λs and
µs for all s ∈ Z by the rule

λs+k = λs + k − n, µs+k = µs + k − n.

Then λs − s ≥ λs+1 − (s + 1) for all s ∈ Z, and similarly for µ; also,

(w · µ)s − s = µw−1(s) − w−1(s), ∀w ∈ S̃k, s ∈ [1, k].

Define
Bi = {−s |µs − s + 1 = i}, Cj = {−s |λs − s = j}.

Then the subgroups S(Bi) and S(Cj) of S̃k are exactly the images of W̃µ and W̃λ

under the automorphism τ : Ŝk → Ŝk defined by τ (w)(i) = −w(−i). The map
ψ : Ŝk → M(bi),n;(cj),n as defined in §4 satisfies

(5.1) ψ(τ (w))i,j = |{s ∈ Z |µs − s + 1 = i, λw(s) − w(s) = j}|.

So S̃k[λ, µ] = {w ∈ S̃k |ψ(τ (w))i,j = 0, ∀j < i− 1}, which shows that it is indeed a
lower ideal of S̃k. Moreover, w �→ ψ(τ (w)) gives an isomorphism of posets between
S̃k[λ, µ]◦ and

{m̃ ∈ M(bi),n;(cj),n | m̃ ≥ ψ(1) and m̃i,j = 0, ∀j < i − 1},
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and the polynomials attached to these posets correspond, since

(5.2) Pw,w′ = Pτ(w),τ(w′) = Pψ(τ(w)),ψ(τ(w′))

for all w, w′ ∈ S̃k[λ, µ]◦. Now make the assumption of Theorem 1.2, that λ/µ ∈
M(di),n; it follows immediately that (bi) and (cj) satisfy the conditions of Theorem
5.3. By (5.1), for all w ∈ S̃k[λ, µ]◦, the multisegment λ/(w · µ) when viewed
as a matrix has the same diagonal and above-diagonal entries as ψ(τ (w)); hence
λ/(w · µ) = ψ(τ (w)) + a where a is as in Theorem 5.3. Thus Theorem 1.2 follows
from Theorem 5.3.
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Boston, 1997. MR1433132 (98i:22021)

[7] V. G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl., 20
(1986), pp. 67–70. MR831053 (87m:22044)

[8] A. Henderson, Two-row nilpotent orbits of cyclic quivers, Math. Z., 243 (2003), pp. 127–143.
MR1953052 (2003k:16025)

[9] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1990.
MR1066460 (92h:20002)

[10] B. Leclerc, J.-Y. Thibon, and E. Vasserot, Zelevinsky’s involution at roots of unity, J.
Reine Angew. Math., 513 (1999), pp. 33–51. MR1713318 (2001f:20011)

[11] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc., 2 (1989),

pp. 599–635. MR991016 (90e:16049)
[12] , Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3

(1990), pp. 447–498. MR1035415 (90m:17023)
[13] , Cuspidal local systems and graded Hecke algebras II, in Representations of Groups

(Banff, AB, 1994), no. 16 in CMS Conf. Proc., Amer. Math. Soc., 1995, pp. 217–275.
MR1357201 (96m:22038)

[14] , Aperiodicity in quantum affine gln, Asian J. Math., 3 (1999), pp. 147–177.
MR1701926 (2000i:17027)

[15] , Bases in equivariant K-theory II, Represent. Theory, 3 (1999), pp. 281–353.
MR1714628 (2000h:20085)

[16] M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand-Zetlin bases, J.
Reine Angew. Math., 496 (1998), pp. 181–212. MR1605817 (99c:17030)

[17] R. Orellana and A. Ram, Affine braids, Markov traces and the category O, to appear in
the Proceedings of the International Congress 2004, held at Tata Institute of Fundamental
Research.

http://www.ams.org/mathscinet-getitem?mr=1706920
http://www.ams.org/mathscinet-getitem?mr=1706920
http://www.ams.org/mathscinet-getitem?mr=1443748
http://www.ams.org/mathscinet-getitem?mr=1443748
http://www.ams.org/mathscinet-getitem?mr=1990570
http://www.ams.org/mathscinet-getitem?mr=1990570
http://www.ams.org/mathscinet-getitem?mr=1392503
http://www.ams.org/mathscinet-getitem?mr=1392503
http://www.ams.org/mathscinet-getitem?mr=1300632
http://www.ams.org/mathscinet-getitem?mr=1300632
http://www.ams.org/mathscinet-getitem?mr=1433132
http://www.ams.org/mathscinet-getitem?mr=1433132
http://www.ams.org/mathscinet-getitem?mr=831053
http://www.ams.org/mathscinet-getitem?mr=831053
http://www.ams.org/mathscinet-getitem?mr=1953052
http://www.ams.org/mathscinet-getitem?mr=1953052
http://www.ams.org/mathscinet-getitem?mr=1066460
http://www.ams.org/mathscinet-getitem?mr=1066460
http://www.ams.org/mathscinet-getitem?mr=1713318
http://www.ams.org/mathscinet-getitem?mr=1713318
http://www.ams.org/mathscinet-getitem?mr=991016
http://www.ams.org/mathscinet-getitem?mr=991016
http://www.ams.org/mathscinet-getitem?mr=1035415
http://www.ams.org/mathscinet-getitem?mr=1035415
http://www.ams.org/mathscinet-getitem?mr=1357201
http://www.ams.org/mathscinet-getitem?mr=1357201
http://www.ams.org/mathscinet-getitem?mr=1701926
http://www.ams.org/mathscinet-getitem?mr=1701926
http://www.ams.org/mathscinet-getitem?mr=1714628
http://www.ams.org/mathscinet-getitem?mr=1714628
http://www.ams.org/mathscinet-getitem?mr=1605817
http://www.ams.org/mathscinet-getitem?mr=1605817


NILPOTENT ORBITS AND KAZHDAN-LUSZTIG POLYNOMIALS 121

[18] A. Ram, Skew shape representations are irreducible, in Combinatorial and Geometric Rep-
resentation Theory (Seoul, 2001), no. 325 in Contemp. Math., Amer. Math. Soc., 2003,
pp. 161–189. MR1988991 (2004f:20014)

[19] J. D. Rogawski, On modules over the Hecke algebra of a p-adic group, Invent. Math., 79
(1985), pp. 443–465. MR782228 (86j:22028)

[20] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Repre-
sent. Theory, 1 (1997), pp. 83–114. MR1444322 (98d:17026)

[21] T. Suzuki, Rogawski’s conjecture on the Jantzen filtration for the degenerate affine Hecke
algebra of type A, Represent. Theory, 2 (1998), pp. 393–409. MR1651408 (2000b:22016)

[22] M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur
algebra, Duke Math. J., 100 (1999), pp. 267–297. MR1722955 (2001c:17029)

[23] E. Vasserot, Affine quantum groups and equivariant K-Theory, Transform. Groups, 3
(1998), pp. 269–299. MR1640675 (99j:19007)

[24] A. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Sci. Ecole Norm.
Sup., 13 (1980), pp. 165–210. MR584084 (83g:22012)

[25] , p-adic analogue of the Kazhdan-Lusztig hypothesis, Funct. Anal. Appl., 15 (1981),
pp. 83–92.

[26] , Two remarks on graded nilpotent classes, Russian Math. Surveys, 40 (1985), pp. 249–
250. MR783619 (86e:14027)

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: anthonyh@maths.usyd.edu.au

http://www.ams.org/mathscinet-getitem?mr=1988991
http://www.ams.org/mathscinet-getitem?mr=1988991
http://www.ams.org/mathscinet-getitem?mr=782228
http://www.ams.org/mathscinet-getitem?mr=782228
http://www.ams.org/mathscinet-getitem?mr=1444322
http://www.ams.org/mathscinet-getitem?mr=1444322
http://www.ams.org/mathscinet-getitem?mr=1651408
http://www.ams.org/mathscinet-getitem?mr=1651408
http://www.ams.org/mathscinet-getitem?mr=1722955
http://www.ams.org/mathscinet-getitem?mr=1722955
http://www.ams.org/mathscinet-getitem?mr=1640675
http://www.ams.org/mathscinet-getitem?mr=1640675
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=783619
http://www.ams.org/mathscinet-getitem?mr=783619

	1. Introduction
	2. Cancellation for the symmetric group
	3. Nilpotent orbits of the linear quiver
	4. Cancellation for the affine symmetric group
	5. Nilpotent orbits of the cyclic quiver
	Acknowledgements
	References

