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Introduction

The existence of certain irreducible unitary representations, often called unipotent represen-
tations, was conjectured by Arthur, Barbasch and Vogan. Precise predictions about the
representation-theoretic invariants associated with these representations was given in [Ar83], [BV8H],
[VOR9] and [Ax]. The goal of this article is to verify the existence of unipotent representations

for O(p,q) and Mpa,(R) in the sense of Vogan. The construction of unipotent representations

for other classical groups of type I can be carried out in the same spirit.

Unipotent representations play a crucial role in the representation theory of real reductive
groups and in the theory of automorphic forms. Constructing unipotent representations is one
core part of Vogan’s program to classify the unitary duals of real reductive groups ( [VOS6]).
For general linear groups over Archmidean fields, unipotent representations can be produced
by parabolic induction and the classification of unitary duals was carried out by Vogan himself
in [VoR6]. For complex semisimple groups, unipotent representations were constructed and
studied by Barbasch-Vogan ( [BV&5]). Later, Barbasch proved the unitarity of these represen-
tations which led to his classification of the unitary duals of complex classical groups ( [B89]).
For other types of real reductive groups, Adams, Barbasch and Vogan gave certain descriptions
about special unipotent representations in Arthur packets ( [ABV] and [Ax]). The unitarity
and construction of these representations remain open problems.

In this paper, we propose a different way of obtaining unipotent representations that will auto-
matically be unitary. The motivation came from the work of Segal-Shale-Weil on the oscillator
representations and the work of Howe, Li, Przebinda and many others on theta correspondences.
In [Heq|, we defined the concept of quantum induction as composition of theta correspondences
(see [HoR9]) within a certain range. Moreover we proved that quantum induction, if nonvanish-
ing, preserves unitarity. In this paper, we further study quantum induction in the framework of
the orbit method ( [VO86], [VO94]). Using quantum induction, we attach to certain real rigid
nilpotent orbits O a packet of irreducible unitary representations, N (O). Each irreducible
representation satisfies the characterizations given in [VOS9].



Let me illustrate our construction by an example. Let Op be a real nilpotent coadjoint
orbit of Sp3p(R), with D =

[-]

[ [H-[H -1+
H-T+
+
H-T+

][] [£]

[+]

Notice that Op is not special in the sense of Lusztig ( [Lus], [CM]). Let j be a positive integer.
Define D — j to be the Young diagram obtained by deleting the first j columns from the left.
Let p; be the number of + in D —j and ¢; be the number of — in D —j. Construct the sequence

[(p0, q0), (P1,q1), (P2, q2), - -],

obtaining
[(15,15),(10,11),(7,7),(5,4),(2,2), (1,0)].

Let x be a unitary character of O(1). Define

Q(30;10,11;14;5,4;4;1)(x)
=05(0(10,11), Mp3o(R))0s(Mp14(R), O(10,11))05(O(5,4), Mp14(R)) (1)
0s(Mps(R),0(5,4))05(0(1,0), Mps(R))(x)-

where 05 is the theta correspondence in the semistable range (see Definitions [ and 22). As
proved in [Heq|, this is a genuine irreducible unitary representation of Mpso(R) if it does not
vanish (see Theorem and Theorem BT7). In Chapter 4, we prove that Q(x)(x) # 0. Thus
Q(*)(x) is an irreducible unitary representation of Mpsy(R). Then in Chapter 5 and 6, we
compute the infinitesimal character and the associated variety of Q(*)(x) based on the results
obtained by Przebinda ( [PR96], [PR93]). We further prove that the associated variety of
Q(x)(x) is indeed the closure of the complexified orbit Oc.

Here is one of the highlights in this paper.

Theorem 0.1 Let G = Spa,(R) or G = O(p,q) with p + q even. Let Oq be a special rigid
nilpotent adjoint orbit of Gc parametrized by the partition d (see Ch 6.3,7.3 [CM)]). Let O be
a real adjoint orbit of G in Oq. Then there exists a nonempty set N'(O) of irreducible unitary
representations of G such that for every m € N(O) the associated variety of w, V(Annm) =
cl(Oq). Let At = (my1 > mg > m3 > ... > ...) be the transpose of d (considered as a Young
diagram). Then the infinitesimal character Z(m) only depends on d.

o IfG= Spgn(R), I(ﬂ-) = (p(sme (C)),p(O(TRQ,(C)),p(SpmS (C)),p(O(TTL4,(C)), i ');
e If G=0(p,q), Z(r) = (p(o(m1,C)), p(spm, (C)), p(o(ms, C)), p(spm, (C)), . . .).-



Here p(g) is the half sum of the positive roots of g.
Let me make a few remarks here.

Remark 0.1 1. Assuming Oq4 to be special and rigid implies that all m; must be even. Thus
all m; in Theorem are assumed to be even. On the one hand, a rigid orbit is defined
to be an orbit that is not induced. Roughly, Oq is rigid if d’ is multiplicity-free. The
classification of rigid orbits for classical Lie algebras is due to Kempken and Spaltenstein,
and can be found in [CM]. Special nilpotent orbits, on the other hand, are defined by
Lusztig in [Lus]. For Lie algebras of type C' and D, Ogq is special if any odd number in
d? occurs with even multiplicities (see [Lus] also Proposition 6.3.7 [CM]). Therefore, Oq
being rigid and special forces m; to be even for all 4.

2. It is generally understood that representations attached to special nilpotent orbits should
be representations of the linear group G. Theorem [Tl certainly reinforces this under-
standing. According to Barbasch and Vogan, the representations in Theorem [ should
really be called special unipotent. These representations are attached to special nilpotent
orbits in the sense of Lusztig. They are unitary representations of the linear group G.
Needless to say, there are unipotent representations of the covering of GG that are not
special.

3. As illustrated by the example for Mpso(R), our construction of N'(Q) goes beyond special
rigid orbits. It produces non-special unipotent representations as well. The most well-
known examples of unipotent representations that are not special, are the two irreducible
constituents of the oscillator representation, also called the Segal-Shale-Weil representa-
tion. The representations constructed in this paper can be regarded as derivations of the
oscillator representations.

4. Some of the representations in this paper have been known in one way or another. For
example, minimal representations, the representations attached to minimal orbits, are
studied by Brylinski-Kostant in a series of papers ( [BK]) and by Binegar-Zierau for
O(p, q) ( [BZ]) from a different angle. Beyond that, representations attached to a perhaps
wider class of small rigid orbits have also been studied by Kashiwara-Vergne, Howe, Li,
Sahi, Tan, Huang, Zhu and others (see [KV], [Ho84], [Sahi], [HT], [ZH], [HL] and the
references within them). Our approach is a generalization of the latter.

5. The intrinsic connection between coadjoint orbits and the unitary dual of a Lie group was
first explored by Kirillow and Kostant. It is now known as the orbit method. One core part
of the orbit method for real reductive Lie groups is to construct unipotent representations
attached to rigid nilpotent orbits. Once we know how to attach representations to rigid
nilpotent orbits, there are various ways to attach unitary representations to induced orbits
(see [NO94], [VOKT]). What we have accomplished in this paper is the construction of
some unipotent representations attached to special rigid orbits and some other nonspecial
nilpotent orbits. It is not clear whether our list of A/(O) exhausts all special unipotent
representations. At least for some special rigid orbits, it does. I tend to believe that
N (0O) is exhaustive for special rigid orbits.



Also included in this paper is a theorem concerning the relationship between quantum induction
and parabolic induction. Based on a theorem of Kudla-Rallis [KR] and of Lee-Zhu [L.Z],
we decompose certain parabolic induced representation I%(m) of Mpa,(R) into direct sum of
quantum induced representations Q(p,q)(7) with p + ¢ = n+ 1 and a fixed parity on p (see
Definition P4 Theorem EHand Theorem ER). Each Q(p, ¢)(n) is either irreducible or vanishes.
This is the limit case for which quantum induction can be constructed from parabolic induction.
Correspondingly, there is a decomposition theorem for the wave front set of I%(7), namely

WF(I*(1)) = Uptg=ntip cven WEF(Q(p, q)(T)).

On the one hand, WF(I%(r)) is computable and consists of finite number of irreducible com-
ponents. On the other hand, the wave front set of each Q(p, q)(mw) possesses certain distinctive
characteristic that can be derived from [PR93] and [PAN]. Under certain hypotheses on m,
we sort out the occurence of WF(Q(p,q)(w)) in WF(I*(m)) completely. This provides us with
one nonvanishing theorem for 05(p, ¢)(7) and for Q(p, q)(x).

Let me also point out one advantage of our construction related to the theory of automorphic
forms. Theta correspondence originated from the studies of theta series (see [Si], [WEGH],
[We65], [Ho79]). As pointed out to me by Jian-Shu Li, theta correspondence should map au-
tomorphic representations to automorphic representations (see [Ho79], [Ra&87], [Li94]). Thus
representations in N (Q) should all be automorphic. In the final part of this paper, along the
lines of [VOS6], we make some conjectures regarding the automorphic dual in the sense of
Burger-Li-Sarnak [BLS].

I wish to acknowledge my gratitude to Monica Nevins, Shu-Yen Pan, Tomasz Przebinda and
David Vogan for some very helpful e-mail communications and to Bill Graham for his help in
making this paper more readable. I also wish to thank the referee for his very valuable com-
ments. In the midst of revising this paper, my father Decai He, passed away. My father had
always encouraged and inspired me in my mathematical endeavors. I would like to dedicate
this paper to him.
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Chapter 1

Invariants

In mathematics, classification problems are often approached by constructing invariants. In
this chapter, we will attach invariants to the equivalence classes of irreducible Hilbert represen-
tations of a reductive group G. One hopes that these invariants could shed some light on the
classification and construction of irreducible unitary representations. Our purpose here is not
to give a historical account of these invariants, but rather, to review some basic facts we need
concerning these invariants. The main references are [KN] and [Wallach].

1.1 Notation

Reductive groups and semisimple groups in this paper are assumed to have at most a finite
number of components. Let G be a Lie group. We adopt the following notation:

1. Gy—the identity component of G;
2. g—the real Lie algebra of Go;
3. gc—the complex Lie algebra of Gy;
4. U(g)—the complex universal enveloping algebra;
5. Z(g)—the center of U(g);
Let GG is a reductive real group. We adopt the following notation:
1. K—a maximal compact subgroup of G;

2. TI(G)—the set of equivalence classes of irreducible (g, K)-modules, or equivalently, the
set of infinitesimal equivalence classes of irreducible Hilbert representations;

3. IL,(G)—the set of equivalence classes of unitarizable (g, K )- modules, or equivalently, the
set of equivalence classes of irreducible unitary representations of G.

4. (,)—an invariant quadratic form on g such that (,)[¢ is positive definite;

5. p—the orthogonal complement of ¢ with respect to (,);



6. a—a maximal Abelian Lie subalgebra of p;
7. A—the connected Abelian group generated infinitesimally by a.

8. KAK—a Cartan decomposition.

Let V be a finite dimensional space over F. We use V* to denote Hom p(V,F). Let G be a real
reductive group.

Notation 1 Let (m,H) be a Hilbert representation of G. Fiz a mazximal compact subgroup K.
Let V(7) be the space of K-finite vectors in H.

Then V(7) is a (g, K)-module. 7 is said to be admissible if each K-type occurs in V(7) with
finite multiplicity. If, in addition, V(7) is finitely generated as U(g)-module, V() is often
called a Harish-Chandra module.

An irreducible Hilbert representation of a reductive Lie group is always admissible. If 7 is
unitary and irreducible, then the Hilbert norm is unique up to a scalar multiplication. So,
equivalence classes of irreducible unitary representations are in one-to-one correspondence with
irreducible unitarizable Harish-Chandra modules.

All unitary representations in this paper, unless otherwise stated, are taken as
suitable unitarized Harish-Chandra modules.

This convention is consistent with the way we construct unitary representations. First, we will
construct a (g, K)-module (7, V). Then we will show that V' is an irreducible (g, K)-module.
Hence V is a Harish-Chandra module. Finally, we will prove the existence of an invariant inner
product on V. By a Theorem of Harish-Chandra, 7 is an irreducible unitary representation of
G. For simplicity, we use w to denote the group action, the Lie algebra action and sometimes
the (g, K)-module. We define three involutions in the category of Harish-Chandra modules:

1. 7*, the contragredient representation;
2. ¢, the representation 7w equipped with the conjugate complex linear structure;
3. 7", the Hermitian dual representation of .

h o

We have (7*)¢ = 7. If 7 is unitary, then 7" = 7.

Notation 2 Suppose a,b € R*. Write a < b if and only if for every 1 < k < n,

k k
Zaj SZZ)],

define a < b if and only if

The ordering < is a partial ordering.



1.2 Infinitesimal Character and Harish-Chandra Homomorphism

Let g be a complex reductive Lie algebra. Let h be a Cartan subalgebra of g. Let W (g, h) be
the Weyl group generated by the root system (g, ). Let U ()" (@) be the space of W (g, h)-
invariant vectors in U(f). Then the Harish-Chandra homomorphism

HC : Z(g) — U(h) V1o

is an algebra isomorphism (see [KN], Chapter VIII. 5 or [Wallachl). Identify U(h) with the
symmetric algebra of h. For each vector A in the complex dual space of b, define a character

xa of Z(g) by
xa(@) = A(HC(z)) = HC(z)(A)  (x € Z(g))

It is well-known that every character of Z(g) can be obtained this way and that A is unique up
to the action of W(g,h). In short, Spec(Z(g)) = b*//W(fg,h). Here the categorical quotient
h*//W (g,b) coincides with the geometric quotient since W (g, ) is finite.

Let G be a connected real reductive Lie group with Lie algebra g. Let K be a maximal
compact subgroup of G. Let (7, H) be an irreducible Hilbert representation of G. Let V(7) be
the Harish-Chandra module of (7, H), consisting of all the K-finite vectors in the Hilbert space
H. We retain = for the infinitesimal action of U(g) on the smooth vectors of (7, H). Since 7 is
irreducible, V() is an irreducible (U(g), K)-module. Since G is connected, Z(g) = U(g)“. By
Schur’s lemma, Z(g) acts on V(7) by a character

x:Z(g) — C.

Thus there exists a A such that Z(g) acts on V(7) by xa. For simplicity, we call A a infinites-
imal character of 7.

Let G be a real reductive group with a finite number of components. Let h be a complex
cartan subalgebra in gc. Then U(g)®° = Z(g). Let U(g)® be the G-invariant vectors in U(g).
Consider the adjoint action of G/G¢ on Z(g). Each element in G/Gy acts on Z(g) as an alge-
bra automorphism. Furthermore, U(g)® is precisely the subalgebra of Z(g) invariant under the
action of G/Gp. By the Harish-Chandra homomorphism, G/Gj acts on

U ()W (ec:h)
as algebra automorphisms. This action induces an action of G/Ggy on
Spec(U(h)"#0).
Since G/Gy is finite, by invariant theory
Spec(HO(U(g)%))
is precisely in one-to-one correspondence with the G/Gg-orbits in

Spec(U(h)"#0).

Let 7 be an irreducible (g, K)-module. By Schur’s lemma, U(g)® must act by a character &.



Definition 1 Let §h be a Cartan subalgebra of gc. We say that A € h* is an infinitesimal
character of 7 if Xaly(go = §-

A is unique up to the action of G/Gy and W (gc,h). For semisimple Lie group G, the ac-
tion of G/Gy on h*//W(gc,b) is fairly easy to understand. Let ¢ be the action of G/Gy on
h*//W(gc,h). Then ¢ induces an action of G/Gy on any closed Weyl chamber, consequently
on the positive root system. Hence ((G/Gq) can be regarded as automorphisms of the Dynkin
diagram of gc. The automorphisms of the Dynkin diagram are easy to classify.

The infinitesimal character is one of the main tools used in the literature to study irreducible
admissible representations. In fact, there is only a finite number of infinitesimal equivalence
classes of irreducible representations with a fixed infinitesimal character.

Notation 3 Let IT5(G) be the set of infinitesimal equivalence classes of irreducible representa-
tions of G with infinitesimal character A.

1.3 Leading Exponents of Irreducible Representations

Let G be a real reductive Lie group. Fix a maximal compact subgroup K. Unless otherwise
stated, matrix coefficients in this paper are assumed to be K-finite. Fix a nondegenerate real
invariant bilinear form (,) and a maximal Abelian Lie subalgebra a of p as in (1.1). Let r be
the real dimension of a. We call r the real rank of G. Let (g, a) be the restricted root system.

Fix a positive root system X7 (g, a). Let p(G) be the half sum of all positive roots in X(g, a).
Let M be the centralizer of a in K. Let W(G, a) be the normalizer of a in K modulo M. We
call W(G, a) the real Weyl group. Let W (g, a) be the Weyl group generated by the root system.
Clearly, W(g,a) C W(G,a).

For Spo,(R), a is isomorphic to R™. The real Weyl group W (Sp2,(R),a) is generated by
permutations and sign changes on n variables. For O(p, ¢), a is isomorphic to R™in{p.a} The
real Weyl group W (O(p, q), a) is also generated by permutations and sign changes on min{p, ¢}
variables.

Attached to each irreducible admissible representation 7 of a connected G of real rank r, is
a finite number of r-dimensional complex vectors, called leading exponents. Leading exponents
are vectors in the complex dual of a. They are the main data used to produce the Langlands
classification (see [LA], [KN], [Wallachl]). I shall emphasize that leading coefficients depend
on the choice of ¥ (g,a). For a disconnected group G, we define the leading exponents of
7 € II(GQ) to be the leading exponents of = with respect to Go.

Leading exponents are closely related to the infinitesimal character. For an irreducible finite
dimensional representation 7 of a real reductive group GG with real rank equal to complex rank,
leading exponents are just the highest weights of m with respect to a maximally split Cartan
subgroup. In this situation, finite dimensional representation theory says that a highest weight

10



v has the property that
v+ p=wA

for some w in W(G,bh). A similar statement holds for leading exponents for any irreducible
admissible representation of a real reductive group. By Theorem 8.33 from [KNJ, we have

Theorem 1.1 Let b be a Cartan subalgebra of m. Take
h=adhb.

Suppose 7 is an irreducible admissible representation of a real reductive group G. Let v be a
leading exponent v of m. Then there exists an infinitesimal character A of m in b such that

v+ p(G) = Ala.

Notice that for non-split groups, v is in af and A is in (a @ b)g. By Theorem [Tl for any
m € II,, the set of leading exponents is finite.

Notation 4 Let v be a complex vector. Denote the real part of v by R(v).

Leading exponents are extracted from a certain expansion of the matrix coefficients at oc.
Therefore, they control the growth of matrix coefficients. We cite the following estimate from
[KN].

Theorem 1.2 Let m be an irreducible admissible representation of a real reductive group G.
Let vy be in the real dual of a. Let a(g) € AT be the middle term of the KAK decomposition
of g. If every leading exponent v of w satisfies

(vo—R(W))(H) >0 (Vv Heah), (1.1)

then there is an integer ¢ > 0 such that each K -finite matriz coefficient of m is dominated on
by a multiple of

exp(volog a(9))(1 + (log a(g), log a(g))?)".

The converse also holds.

Theorem provides a uniform bound for matrix coefficients for all 7 € II5(G). Let 7 be
a unitary representation in I (G). If A is “small 7, we can easily find a vg to dominate the set

{wA|a = p(G) | w € W(G, be)}-

By Theorem [[2 we gain fairly good control over the growth of the matrix coefficients for all
m € IIx. If A is large, then the convex cone spanned by the set

{wA]a = p(G) | w e W(G, be)}

is widely spread. The uniform bound from Theorem does not yield any useful information.
In fact, for unitary representations in II(G), the matrix coefficients are all bounded by constant
functions. Theorem [[Z] then implies

11



Corollary 1.1 Let G be a real reductive group. If m € 11,(G), then every leading exponent v
of m satisfies
R)(H) <0V H € a™).

In this paper, we will mostly deal with small A. To give a broader picture of the importance of
IT,(G) with small infinitesimal character, we recall one definition from [VOO0] and [SV].

Definition 2 A wunitary representatation m € A (G) is called "unitarily small” if A is in the
convex hull spanned by

{w(p(gc)) |w e W(g,h)}

Salamanca-Vogan conjectured that any irreducible unitary representation of G not small may
be constructed by parabolic or cohomological induction from an irreducible unitarily small rep-
resentation of a reductive subgroup of G.

It is precisely for ”unitarily small” representations that Theorem will produce useful in-
formation about matrix coefficients beyond what is stated in the corollary. One goal of this
paper is to study some unitarily small representations far away from the tempered unitary
representations.

1.3.1 Example I: The groups Mp,,(R) and Sp,,(R)
Let G be either Mpa,(R) or Spa,(R). Fix

a = {diag(ai,as,...an,—ai,—ag,... —ay)}.

Then the Weyl group W (G, a) is generated by permutations and sign changes on {a;}} ;. Fix
positive roots ¥ = {e; £ e; | i < j;4,j € [1,n]}. Then

p(G)=(n,n—1,...,1)

and
at ={a1>ay>... >a, >0}

Clearly,
A+ = {diag(Al,Ag,...An,Al_l,Agl,...AT_LI) | A1 > A2 > An > 1}

Finally, ([Tl) is equivalent to
vo = R(v)

(see Notation Band 4).

1.3.2 Example II: The Groups O(p,q)
Let G = O(p, q) with ¢ > p. Here O(p, q) is the isometry group of

p q—p
(z,y) = Z TiYp+i + Tp+ilYi + Z L2p+iY2p+i-
i=1 j=1

12



Fix
a = {diag(ai, az,...ap, —ai, —az,... — a,,0,0,...0) | a; € R}.

Then the Weyl group W (G, a) is again generated by permutations and sign changes on {a;}}_;.
Notice for p = q, W (G, a) is bigger than W (g, a).

Fix restricted positive roots

and
ST ={e;xe;|i<jyi,jel,p} ifp=gq
Then
p
_ptq—2p+tqg—4 q—p
p(G) = ( T 2)-

Fix a Weyl chamber
Cl+ :{a1 Zag > oL Qp > 1}.

(CT) is again equivalent to vy < R(v). Notice that for O(p, p), the Weyl chamber is not uniquely
determined by X% due to the action of O(p,p)/SOy(p,p).

1.4 Global Characters

The global character is also known as the Harish-Chandra character. For each irreducible

Hilbert representation 7 of G and a compactly supported smooth function f(g) on G, define
O(m)(f) to be the "trace” of

w(f) = / f(g)m(g)dg.

©(m) is a distribution on G. A theorem of Harish-Chandra states that ©(m) can be identified
with a locally integrable function (still denoted by ©(7)) and O(7) is real analytic on the set
of regular semisimple elements of G(see [HC]).

For 7 unitary, Mili¢i¢ defined a notion of the rate of growth of ©(m) which we will not re-
call here. We will state one theorem relating v to the matrix coefficients of = (see [MI]).

Theorem 1.3 (Mili¢i¢) Let 7 € I1,(G). Let =(g) be Harish-Chandra’s E function. Then the
following are equivalent:

1. ©(m) has the rate of growth v € R;

2. the K-finite matriz coefficients of m are bounded by

C=()(1 + [log(a(@)])*  (C.s = 0,a(g) € AT):

13



3. every leading exponent v of m satisfies

R)(H) < (v=1)p(G)(H) (Y Hea").

So v =0 if 7 is tempered and v = 1 if 7 is trivial. For G = Mp,(R) or G = O(p, q), the last
statement is equivalent to

R(v) = (v = Dp(G).
1.5 Associated Variety, Asymptotic Cycle and Wave Front Set
Recall that U(g) has a natural filtration

C = Uy(g) C Ui(g) C Ua(g) C®Us(g) C...CUpn(g) C....

1.5.1 Annihilator and Associated Variety

Let m be an admissible irreducible representation of a reductive group G. Let V(m) be the
Harish-Chandra module of w. Then V(7) is a U(g) module. Consider the annihilator of m,

Ann(V(m)) ={D € U(g) | D-V = 0}.

Ann(V(m)) is an ideal of U(g) and inherits a filtration from the standard filtration of U(g).
It follows that the induced graded algebra gr(Ann(V (r))) is an ideal of gr(U(g)) = S(g) and
necessarily commutative.

Notation 5 Let V(Ann 7) be the associated variety of gr(Ann(V)).

Theorem 1.4 (Borho-Brylinski) Suppose G is a connected semisimple group and 7 is an
irreducible representation of G. Let g* be the linear dual space of g. Then V(Ann ) is the
closure of a single nilpotent orbit in g*.

Notation 6 From now on, we will identify g* with g using a fixed invariant bilinear form on
g.

Thus V(Ann 7) will be the closure of one single nilpotent adjoint orbit.

For G having a finite number of components, V(Ann 7) will be the closure of a finite number
of nilpotent adjoint orbits of equal dimension. In fact, G/Gq acts on the set of nilpotent ad-
joint orbits. The associated variety V(Ann m) will be the closure of the union of one nilpotent
orbit with its translations under Ad(G/Gp). For a detailed account of associated varieties of
Harish-Chandra modules, see [VOS9.

1.5.2 Asymptotic Cycle and Wave Front Set

Let G be a semisimple Lie group with finite many components. Let us consider the global
character ©(m). One can lift O(7) to an invariant distribution D on go. There exists a Taylor
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expansion of D near 0,
o
D(f(tx)) = Y t'Di(f(x)).
i=—7
In [BVS&0], Barbasch-Vogan proved that the Fourier transform b\z is supported on the nilcone
of g.
Definition 3 Define the asymptotic cycle AS(m) as the closure of the union of supports ofl/?\i.

Theorem 1.5 (Barbasch-Vogan) Suppose G is a connected semisimple Lie group. Then the
real dimension of AS(w) is equal to the complexr dimension of V(Ann m). AS(mw) is a union
w. Then D_, is the lowest

nonzero term of the Taylor expansion of D and supp(ﬁjr) is of mazimal dimension in AS(r).

of milpotent orbits contained in go N V(Ann w). Let r =

This theorem holds for G with a finite number of components. See [BVSI.

Another notion similar to AS(r) is the wave front set of 7 defined by Howe ( [Ho81]). Originally,
W F(m) was defined as a closed subset of the cotangent bundle 7*G. Because of the G-action,
W F(m) can be regarded as a closed subset of g*. Howe then showed that for = irreducible
W F(7) is in the characteristic variety of g*. For G semisimple, this is to say that W F(7) is in
the nilpotent cone of g*. Howe further studied the behavior of wave front sets W F(7) under
restrictions to certain subgroups (see [HoS1]).

Suppose that 7 is irreducible and unitary and G is reductive. Rossmann proved that W F(m)
and AS(m) are identical (see Theorem C, [?]). In what follows, we will not distinguish between
W F(m) and AS(m) as long as m € II,,(G). There are two basic facts the reader should keep in
mind. The first fact is that W F(m) lies in the real Lie algebra g. The second fact is that the
algebraic closure of W F(m) is exactly the associated variety V(Ann ).
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Chapter 2

Nilpotent Orbits

An element x in a Lie algebra g is called nilpotent if ad(x) is nilpotent. Let G be a Lie group with
Lie algebra g. If z is nilpotent and g € G, then Ad(g)z is also nilpotent. It follows that under
the adjoint action of GG, nilpotent elements are grouped into G-orbits. Each G-orbit is called
a nilpotent adjoint orbit. For semisimple Lie groups, there are finitely many nilpotent orbits
and the classification of nilpotent adjoint orbits is completely known. We cite Collingwood-
McGovern’s book [CM]| as the main reference for this chapter. Unlike in [CM], nilpotent
orbits in this paper depend on the Lie groups, not just on the Lie algebra. In particular, for
the orthogonal groups, a nilpotent orbit may not be connected. For our convenience, we state
the Springer-Steinberg theorem slightly differently than in [CM]. The reason for doing this is
given in Theorem

2.1 Young Diagrams and Complex Nilpotent Orbits
A sequence of positive integers

d=(d1 >dy>...>dr1>dp >0=1dy41)
is said to be a partition of n if n = Z;zl dj. Write |d| = n.

Notation 7 In this paper, a partition of n will be represented by a Young diagram of n boxes,
arranged as follows:

[LTTTTT]
[IT]

[]

[]

with the i — th row of length d;. The transpose of d is denoted by d'.

In our notation, the Young diagram above can be written as d = (7,3,1,1) and its transpose
dl =(4,2,2,1,1,1,1).
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Definition 4 If d; is odd for every j < r, we say d is very odd. If d; is even for every j <,
we say d is very even. If the nonzero d; are all distinct, we say d is multiplicity free. A row of
even length is called an even row. A row of odd length is called an odd row.

2.1.1 Complex Nilpotent Orbits of Sps,(C)

Definition 5 A Young diagram d is said to be a symplectic Young diagram of size 2n if odd
rows occur with even multiplicity and ||d|| = 2n. We use YD _(2n) to denote the set of sym-
plectic Young diagrams of size 2n.

A symplectic group is the linear group that preserves a nondegenerate skew-symmetric form.

Theorem 2.1 Nilpotent coadjoint orbits of Spe,(C) are in one to one correspondence with
YD_(2n).

We denote the nilpotent coadjoint orbit corresponding to d by Oq(—). For our convenience,
we denote the symplectic group Spa,(C) by G(O4(—)). The group Spa,(C) is thus attached
to the orbit implicitly. The subscript — is used to indicate that the group G is defined with
respect to a skew-symmetric form.

2.1.2 Complex Nilpotent Orbits of O(n,C)

Definition 6 A Young diagram d is said to be an orthogonal Young diagram of size n if even
rows occur with even multiplicity and ||d|| = n. We use YDi(n) to denote the set of all
orthogonal Young diagrams of size n.

An orthogonal group is a linear group preserving a nondegenerate symmetric form.

Theorem 2.2 Nilpotent coadjoint orbits of O(n,C) are in one to one correspondence with

YDy (n).

We denote the nilpotent coadjoint orbit corresponding to d by Oq(+). If the orbit Oq(+) is
known to be orthogonal, we will simply denote it by Oq. In this context, the orthogonal group
O(n,C) is denoted by G(Oq(+)) or G(Oq). The script + is used to indicate that the group G
preserves a symmetric form.

Depending on the context, Oq can refer to either Ogq(+) or Og(—).

2.1.3 Algorithm —1

Definition 7 Let d be a Young diagram of size n. Define d — 1 to be the new Young diagram
obtained by deleting the first column of d. Define d —1i to be the new Young diagram obtained
by deleting the first i columns of d.

Consider d = [32,2!,12]. The Young diagrams d, d — 1 and d — 2 are listed as follows

17



-
OB
L]

Notice that d is a symplectic Young diagram, d — 1 is an orthogonal Young diagram, and d — 2
is a symplectic Young diagram.

Theorem 2.3 Ifd is a symplectic Young diagram, then d—1 is an orthogonal Young diagram.
If d is an orthogonal Young diagram, then d — 1 is a symplectic Young diagram.

2.2 Signed Young Diagrams and Real Nilpotent Orbits

Type I classical groups are subgroups of the general linear groups that preserve certain sesquilin-
ear forms (see [LIRY)] for the definition). Let G be a real classical group of type I. Real nilpotent
orbits of G are simply nilpotent G-orbits in the real Lie algebra g. For type I classical groups, the
real nilpotent orbits for GG are parameterized by equivalence classes of signed Young diagrams.

Definition 8 ((see [CM] 9.3)) Signed Young diagrams are Young diagrams with + or — la-
beling the boxes in such a way that signs alternate across rows . Two signed Young diagrams are
considered to be equivalent if one signed diagram can be obtained from the other by interchanging
the rows of same lengths.

Let D be a signed Young diagram. We will use D" to denote the number of positive boxes
in D and D~ to denote the number of negative boxes in D. We call (D', D) the signature of D.

In this chapter, we are only interested in the nilpotent orbits of Spy,(R) and O(p, q).

Notation 8 For the sake of our discussion, we fir a matriz realization for each G. So the
group O(p,q) and Spa,(R) in this paper, will come with a fized sesquilinear form.

The correspondence between signed Young diagrams and real nilpotent orbits depends on the
sesquilinear form. I would like to thank the referee for pointing this to me.

2.2.1 Real Orbits of Sps,(R)

Theorem 2.4 (Springer and Steinberg) Nilpotent adjoint orbits of Span(R) are parametrized
by the equivalence classes of signed Young diagrams with the following properties:

e the signature of D is (n,n);

e for every s, rows of length 2s + 1 must occur with even multiplicity and must have their
leftmost boxes labeled
_7+7_7+7"'7_7+

from the highest row to the lowest row.

18



Clearly, the signed Young diagrams that satisfy our second condition must have signature (n,n).
So, the first condition is redundant. In the second condition, the choice of the sign pattern of
rows of odd lengths is artificial. In fact, it suffices that there are same number of boxes labeled
+ and — in the rows of length 2s + 1. Nevertheless, I have included this in Theorem B4l for
two purposes. The first is to maximize the analogy with Theorem The second is to make
the signed young diagrams easy to manipulate.

We denote the set of signed Young diagrams in Theorem 4 by YD_(n,n). The following
signed Young diagrams are in YD _(n,n):

[-]
H-TH-TH

Notice that M pa,(R)-adjoint orbits coincide with Spa,(R)- adjoint orbits.

Notation 9 We denote the nilpotent orbit corresponding to D by Op(—) or simply Op if D
is specified to be symplectic. We denote the group Mpo,(R) by G(Op).

Definition 9 Define

@=( 2 )= (0 %) weomm

(o %) 05 o) (o) = ()

and changing the symplectic form <, > to — <, > results in the same group Sps,(R). Therefore
7 defines an involution on sp,,(R) and on Spy,(R). By sorting out the signs in the proof of
Lemma 9.3.1 in [CM], we obtain

Notice that

Lemma 2.1 1. 7 defines an involution on the real Lie algebra sp,,, (R).

2. T induces an involution on the set of nilpotent orbits, namely
T(OD) = OT(D)‘

Here 7(D) is the signed Young diagram obtained by switching the signs (+ < —) for the
even rows of D.

3. Op is geometrically identical to Or(p).

The proof is left to the reader.

Notice that the odd rows of 7(D) remain the same as those of D. For example, 7:
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-] -]

[ [-]

[+]
[+]

One can further explore the involution 7 on the Lie group level.

Definition 10 1. Define 7 on Spa,(R) by

tw=(5 % )e( 50 )

Clearly T defines an involution on Spe,(R). 7T is a topological homeomorphism and an
isometry with respect to certain left invariant Riemannian metric.

2. Lift T to an involution on Mpe,(R). The lift T exists and is unique. By abusing notation,
denote this involution by T.

3. Let m € II(Mpa,(R)). Define a new representation (77, Hy) by

Lemma 2.2 m — n7 defines an involution on II(Mpa,(R)) and on I1,(Mpa,(R)).

2.2.2 Real Orbits of O(p,q)

Theorem 2.5 (Springer & Steinberg) Nilpotent coadjoint orbits of O(p,q) are parametrized
by equivalence classes of signed Young diagrams with the following properties

e the signature of D is (p,q);

e for every s, rows of even length 2s must occur with even multiplicity and must have their
leftmost boxes labeled
+7_7+7_7"'7+7_

from the highest row to the lowest row.
Again, the choice of sign patterns for rows of even length is artificial. We denote the set of

signed Young diagrams in Theorem by YD (p,q). The following signed Young diagrams
are in YD (7,9):

= - - HEEEE
HEEEEE -1 -]
HE=E HEEE

[-]

]
I+
L]
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Notation 10 We use Op to denote the nilpotent orbit corresponding to D € YD, (p,q). We
use G(Op) to denote the group O(p,q). Any D in this paper is interpreted as a signed Young
diagram in a previously chosen set YD_ or YDy. The orbit Op refers to either Op(+) or
Op(—) with the understanding that + or — is implicitly known once D is given.

Of course, if D is specified to be in YDy or YD _, the notation Op causes no confusion.

2.3 Nilpotent Orbits of Class U/

Notation 11 Let Op be a real nilpotent orbit. We use d to denote the Young diagram obtained
from D by removing the signs.

Every real nilpotent orbit O induces a complex nilpotent orbit O¢ by considering the complex
group Ggq acting on O in g. This map is simply

Op — Oq
for orthogonal groups and symplectic groups.

Definition 11 Let D be a signed Young diagram. Define D —1 to be the signed Young diagram
obtained from D by deleting the first column.

Theorem 2.6 —1 defines an operation from YD (p,q) to the disjoint union
Un<min(p.) YD~ (1, 1)

—1 also defines an operation from YD _(n,n) to the disjoint union
Unax(p,g)<nY D+ (P, q)

By Theorem B4 and Theorem EA —1 induces an orbital correspondence from real nilpotent
orbits of symplectic groups to real nilpotent orbits of orthogonal groups, and conversely.

Definition 12 We say that Op (or Oq) is pre-rigid if d* is multiplicity free.

This amounts to saying that every integer between 1 and d; appears in the partition d. In
other words, the partition d is of the following form

([dl]m17 [dl - 1]m27 [dl - 2]m3’ R [1]md1)
with each multiplicity m; > 1.
Definition 13 (Nilpotent orbits of Class i)

1. U consists of a class of real nilpotent orbits Op, yet to be defined. First, for technical
reasons, we exclude from U those D whose last 2 columns are of the same length and
are of the following forms
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-]+

2. LetD € YD_(n,n) and d’ = (my > mgo > ... > my,). The nilpotent orbit Op of Spa,(R)
is said to be in U(Spa,(R)) if d* satisfies the following three conditions:
(a) At is either very even or very odd;
(b) For every i, mg; > maijt1 and maiy1 > Maita;
(c) (1).
3. Let D € YD_(p,q) and
dt:(ml 2m2 > ... zmdl).
The nilpotent orbit Op is said to be in U(O(p,q)) if d* satisfies the following three con-
ditions:
(a) At is either very even or very odd;

(b) For every i, mo; > majr1 and Mo > Maiy2;

(¢) (1)
Here are two D, one in U(Sp3p(R)), the other in U(O(15,22)).
-1 -] HEEEE
£ - [H-]
[-] [-]
[-]

The condition (b) amounts to saying that all multiplicities of d except perhaps the first are
even. The condition (c) is weaker than saying d? is multiplicity free. Recall

Lemma 2.3 (Theorem 7.3.5 and Proposition 6.3.7, [CM]) If Oq4 is rigid, then Oq is
pre-rigid. If Oq is special and rigid, then dt must be either very even or very odd and must be
multiplicity free.

Corollary 2.1 Special rigid orbits of O(p,q) and Spa,(R) are contained in U.

By Theorem @ we have

Corollary 2.2 If Op is in U(Mp), then Op_q is in U(O). If Op is in U(O), then Op_1 is
in U(Mp).
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2.4 Induced Orbits

2.4.1 Complex Induced Orbits

Let g be either o(n,C) or sp,,(C). Let p = [ @ n be a parabolic subalgebra. Let O be a
nilpotent orbit in [.

Definition 14 Define Ind?O[ to be the nilpotent G-orbit that intersects O(+n in an open dense
set.

Our definition differs slightly from in Ch. 7.1 from [CM] as we require IndfO be a G-orbit
and G may not be connected. In any case, Oy is the G-orbit of the "generic” elements in O;+n.
In addition, Ind?O[ only depends on [, not on the choice of p (see Ch. 7.1 [CM]).

Lemma 2.4 (Proposition 7.1.4 [CM]) Letl; and [ be two Levi subalgebras of g and Iy C
lo. Then
Ind (Ind?Oy,) = Ind O,

Thus orbital induction is ”associative”.

Nilpotent orbits of SL(n,C) are parametrized by partitions of n in terms of the Jordan form.

Lemma 2.5 Let n = nj +ny. Let g = sl(n,C). Let | be the block-diagonal matrices of size
(n1,n2) in g. Let Og and Oy be nilpotent orbits in sl(n1,C) and sl(ng, C) respectively. Then

IndyOs x Op = Oq

with
dj = sj+1t; (V7).

We call d the merging of s and t. For G = O(n,C) or G = Spa,(C), computation of induced
orbits is slightly more complicated that simply a ”"merging”. One needs the concept of ” collapse”
(see Ch. 6 [CM]). For the sake of simplicity, we will not introduce the concept of ”collapse”.
We only state one special result concerning Sps,(C). The general result can be found in [CM]
( Lemma 6.3.3 ) and is due to Gerstenhaber.

Lemma 2.6 Let G = Sp2,(C) and L = Sp,,(C) x GL(n —m,C). Let Og be a nilpotent orbit
of Spam(C) such that the number of rows in s is less than or equal to n —m. Then

Ind®Og x {0} = Oq4

with
dj =542 (V1<j<n-—m).

So under the assumption that the number of the rows in s is less or equal to n — m, d is the
merging of s with two copies of 1”. d remains symplectic since s is symplectic.
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2.4.2 Induced Real Orbits

Let G be a reductive Lie group and L be a Levi subgroup. Let P = LN be a parabolic subgroup
of G. Let Oy be a nilpotent orbit in [.

Definition 15 Define Indf’O[ to be the union of the nilpotent G-orbits Oéi) that contain an
open subset of O+ n.

Implicit in the notation is the fact that I nali3 does not depend on the choice of n. The proof of
this fact is essentially the same as the proof for the complex orbits (see Theorem 7.1.3 of [CMI]).
I ndf’O[ for a classical group of type I may no longer be a single nilpotent orbit. Nevertheless,
it is contained in a single complex nilpotent orbit.

Lemma 2.7 We have the following commutative diagram:

complex orbit
—_——

Oy O
llnd l]nd (2.1)

I’I’Ld?@[ complex orbit I’I’LdgCCO[C
Let Og be a nilpotent orbit in sp,,(R). By the lemma above,

n(R)
Ind g R)@eps,, @10} % Os

must be contained in the complex induced orbit

n(C)
Indgll)fn—m,C)EBﬁme((C){O} X Os.

Under the assumption in Lemma [0 this complex induced orbit is parametrized by d with
dj :Sj—|—2 (Vl §]§n—m)
It is an linear algebra exercise to show that

n(R)
Ind g R)@eps,, @10} % Os

is the intersection of O4 with spa,(R). Thus we obtain

Theorem 2.7 Lets= (s> s3> ...> 8 >0) be in YD_(m,m). Suppose that n —m > r.
Then ®
SPon __ . n—m-—r
Indgsom 2)waps,, ) 10} X Os = Uizg™ " Opo-
Each DY) € YD_(n,n) is uniquely defined as follows:
1. merge one column of length n —m to S from the left;

2. merge one column of length n —m to S from the right;

3. extend the signs of S for rows of even lengths;
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4. fill in the n —m — r rows of length 2 in DU fwithj sandn—m—r—j s.

The signs of DY) for rows of odd length are uniquely dictated by the rules we set for YD _ (n,n),
thus not subject to change.

Example Given t, S, t,
[] (- [+ - -] []
[] H-TH -1+ []
[] -+ -1 []
[] []
[] [- T+ []
[] []
[] []
one obtains three symplectic nilpotent orbits corresponding to
- - T - [H -1 - (= [H - T =+ -
[H - - -1 - H - - H - -
H - H -] = H -1 -] - H -1+ -]
[H -] [+ -] [+ -]
[H -+ -] [+ -] [+ -]
H-] +H-] [-[F]
[+ -] [-]F] [-[+]

respectively. These three signed Young diagrams are D), DM and D@,

Corollary 2.3 Lett =[1"]. Then

Inde S0,

is the union of n + 1 orbits consisting of all Op) with d) = [27].
Theorem 2.8 Let Og be a nilpotent orbit of Spam(R). Then

W (B)
Ind g™ ®)sgin—m,z)(0s) x {0}

is a union of nilpotent orbits Op) and each DU) can be obtained by
e merging two copies of [1"~™] to S from the left;
e cxtending the signs of S;

e filling the n — m — r rows of length 2 in DY with j [-1Hand n — m —r — j [#H-].

The proof is omitted.



Chapter 3

Theta Correspondences and
Quantum Induction

Fix a dual pair (O(p,q), Sp2n(R)) in Spaypiq)(R) (see [HoTI]). Let Mpo,(piq)(R) be the
metaplectic covering of Spay(p+q)(R). Let {1,¢} be the preimage of 1 € Spyy(piq)(R). For any
subgroup G of Spay,(p44)(R), let MG be the preimage of G under the metaplectic covering. Fix a
maximal compact subgroup K for Mp,,+q)(R) such that KN MO(p, q) is a maximal compact
subgroup of MO(p,q) and K N M Spy,(R) is a maximal compact subgroup of M Spy,(R). Let
w(p,q;2n) be the oscillator representation of Mpa,(p4q)(R) equipped with a fixed dual pair
(O(p,q), Sp2n(R)). If the parameters (p, q;2n) are apparent, we will write w. Let V(w) be the
Harish-Chandra module. Unless otherwise stated, any representation m of MG in this paper
satisfies m(e) = —1. Very often, this assumption reduces our discussion to the representation
theory of the linear group.

Notation 12 Let (G1,G2) be a dual pair in Sp. Let R(MG,w) be the equivalence classes of
irreducible Harish-Chandra modules of MG that occur as quotients of V(w).

Theorem 3.1 (Howe, [Ho89)]) Let (G1,G2) be a dual pair in Sp. Then R(MG1G2,w) yields
a one-to-one correspondence between R(MG1,w) and R(MG2,w).

This correspodence is often called (local) theta correspondence, Howe’s correspondence or
duality correspondence. Let 6(p,q;2n) be the theta correspondence from R(MO(p,q),w) to
R(MSpan(R),w) . Let 6(2n;p,q) be its inverse. If the parameters (p, q;2n) are apparent, we
will just write . The description of the sets R(MO(p, q),w) and R(M Spa,(R),w) is not known
in general.

For p + ¢ odd, M Sps,(R) is the metaplectic group Mps,(R) and MO(p,q) splits; for p + ¢
even, MSpa,(R) = Spa,(R) x {£1} and MO(p, q) splits. In both cases, § can be regarded as
a one-to-one correspondence between a certain subset of II(Mps,(R)) and a certain subset of
II(O(p, q)). Since this is the viewpoint in some literature (for example [KR]), we will also take
this viewpoint if necessary.
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3.1 Theta Correspondence in Semistable Range

We adopt the notation from (1.3.1) and (1.3.2). Let n be the constant vector (n,n,n,...,n) of
a fixed dimension.

Definition 16 An irreducible representation © of M O(p, q) is said to be in the semistable range
of 0(p, q;2n) if and only if every leading exponent v of ™ satisfies

R(v) —n+2p(O(p,q)) < 0.

An irreducible representation m of M Spa,(R) is said to be in the semistable range of 6(2n;p, q)
if and only if every leading exponent v of m satisfies

+
R(v) = B+ 2p(Spaa(R)) < 0.
We denote the semistable ranges by Rs(MO(p, q),w) and Rs(M Span(R),w) respectively.

Definition 17 ( [LIR9], [He00]) Consider (G1,G2) = (O(p,q),Span(R)) or (G1,Ga) =
(Sp2n(R),O(p,q)). Let m € Rs(MG1,w). Define a bilinear form (,)r on V(w) ® V(x°)

(P@u,p @v)y = / (w(g)d, ) (v, m(g)u)dg (¢, € V(w),u,v € V(m)).

MG,

Let R be the radical of (,)x. Define
Os(MG1, MG3)(m) = V(w(MG1, MG2)) @ V(7°) /R .

0s(MG1, MGy)(r) inherits an infinitesimal MGs action from w(M Gy, MGs). It is a (g, K)-
module of MGs.

Theorem 3.2 ( [He00]) Suppose 7 is a unitarized Harish-Chandra module in the semistable
range of (M Gy, MGs). Then (,)r is well-defined. If (,)r # 0, then 0,(MG1, MG2)(r) is an
irreducible Hermitian Harish-Chandra module of MGy and 05(M Gy, MG2)() is equivalent to
O(MGy, MGs)(r).

This theorem basically says that if (, ), is well-defined and nonvanishing, then 6 is Howe’s corre-
spondence ( [Ho89]) on the Harish-Chandra module level. By Howe’s Theorem, 05(MG1, M Gs)()
is an irreducible Harish-Chandra module of M Gs. The notation (, ), is essentially due to Jian-
Shu Li ( [LIR9)).

In [He(Tl], we proved the following nonvanishing theorem.

Theorem 3.3 ( [HeO01]) Suppose p+ q <2n+ 1. Suppose 7 € Rs(MO(p,q),w). Let det be
the lift of the determinant of O(p,q) to MO(p,q), i.e.,

ker(det) = M SO(p, q).

Then either 05(p, q;2n)(mw) # 0 or O5(p, ¢; 2n) (7 ® det) # 0.
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3.2 Unitarity and Strongly Semistable Range
In [Heu], we proved the unitarity of f(m) for 7 in the strongly semistable range.

Definition 18 An irreducible admissible representation m is in Rss(MO(p, q),w) if every lead-
ing exponent of w satisfies

R(v) (0~ 229 4 p(0(p.0)) = 0. (31)

An irreducible admissible representation w of M Span(R) is in Rss(M Span(R),w) if every leading
exponent of w satisfies

R(v) — (% “n— 1)+ p(Span(R)) < 0.

We call Rss the strongly semistable range.

Notice that Rs(M Spa,(R),w) and Rss(MO(p,q),w) only depend on p + ¢, not on a particular
pair (p,q). Since

R(v) =+ 20(0(p, ) < R(v) — (0~ 22%) 4+ p(0(p,0))

and

R(o) = P23+ 2p(Span (R)) < R(v) — (B0 d =0 — 1) + p(Span(R)),

by the definition of semistable range, Rss C Rs. Thus 6, in the strongly semistable range is the
same as the original 6.

Theorem 3.4 ( [Heu]) Suppose
e pt+qg<2n+1;
o ™€ Res(MO(p,q),w);
e T is unitary;

Then (,)r is positive semidefinite. If O5(p,q;2n)(mw) # 0, then O4(p, q;2n)(7) is an irreducible
unitary representation of M Spa,(R).

Theorem 3.5 ( [Heul]) Suppose
e n<p<gq
o T € Rss(MSpan(R),w);
e T is unitary;

Then (,)r is positive semidefinite. If O5(2n;p,q)(w) # 0, then O5(2n;p,q)(7) is an irreducible
unitary representation of MO(p,q).
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Strictly speaking, 65(x)(m) is an irreducible unitarizable Harish-Chandra module. Notice that
(,)r can be regarded as an inner product on 6,(x)(w). We can simply complete (, ), to obtain
the Hilbert space of Os(x)(m). In general, invariant inner product on an irreducible Harish-
Chandra module is unique up to the multiplication of a constant.

Theorem B.4land Theorem provide us the basis to construct unitary representation through
the theta correspondence in the strongly semistable range.

3.3 Quantum Induction QO

Let £(p' + q,¢' + p;2n) be the representation of O(p' + ¢,¢’ + p) studied by Zhu-Huang in
[ZH]. Tt is essentially 6(2n;p’ + q,q + p)(trivial) restricted to the O(p’ + ¢,q’ + p) component
in MO(p' + q,4' + p). Notice here that MO(p’' + q,q' + p) splits into O(p' + q,¢' + p) and
O +4q,4 +p)e

Definition 19 Suppose
p4+q>2n+1, p+q¢ >2n+1, p+q=p +q¢ (mod?2).
Let m € II(O(p, q)) be such that

(11 @ o1, 3 @ v3) = / (€0 i) (gn )l )y
O(p,q

converges absolutely for every ui,us € V(E(P' + ¢, ¢ + p;2n)) and every vi,ve € V(w). Let R
be the radical of (,) as a Hermitian form on V(E(p' + ¢q,¢' + p;2n)) @ V(w). Then

(V(EW +a,d +p;2n)) @ V(m))/R
inherits an infinitesimal O(p', ¢')-action. Define

Qp, ¢;2n;p', ¢ )(m) = V(EW + q,4' + p; 2n)) @ V(7)/R.

Q(p,q;2n;p',q') () is a (g, K)-module of O(p',¢'). The representation £(p’ + q,q' + p;2n) is
denoted by , in [ZH].

Conjecture 1 If Q(p,q;2n;p’, ¢ )(7w) # 0, then Q(p,q;2n;p’,¢)(7) is an irreducible admissible
representation of O(p',q"). If © is unitary, then Q(p,q;2n;p’,q')(7) is also unitary.

For p+q <n+n +1, put E2n+ 2n';p,q) = 0(p,q;2n + 2n')(trivial). If p+q¢ < n+n/,
E(2n 4+ 2n/;p, q) is unitary according to Howe-Li’s theory on stable range dual pairs ( [Ho84],
[LIR9)). If p+q = n+n'+1, £(2n+2n’; p, q) is unitary according to Przebinda’s results on almost
stable range dual pairs (see Lemma 8.6 [PR93]). £(2n + 2n/;p, q) is a genuine representation
of Mpapion(R) if p+ ¢ is odd.

Definition 20 Suppose n+n’'+1 > p+q. Let ™ be an irreducible representation of Mpa,(R)
such that the following Hermitian form (,) on V(E(2n + 2n';p,q)) @ V(7) converges:

(p@u,s®@v) = /MS ®) (E2n +2n';p,9)(9)p, ) (7(g)u, v)dg
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YV @, e V(ERn+2n;p,q));u,v € V(m).

Define Q(2n; p, q; 2n') () to be V(E(2n; p, q; 2n"))QV (1) modulo the radical of (,). Q(2n;p, q;2n’) ()
inherits an infinitesimal M Spay,(R)-action from E(2n + 2n';p,q). It is a (g, K)-module of
MSpZn’(R)'

Conjecture 2 If Q(2n;p,q;2n')(7) # 0, then Q(2n;p,q;2n')(w) is an irreducible admissible
representation of Mpo, (R). If 7 is unitary, then Q(2n;p, q;2n')(7) is also unitary.

We call Q(x) quantum induction.

3.4 Unitary Quantum Induction @)

In [Heq], we study the leading exponents of 04(x)(7). Under certain assumptions, one can
compose s with another 6. Surprisingly, the strongly semistable range plays a crucial role
in the composability of #;. By identifying Q with a certain composition of 6, we established
the unitarity and irreducibility of Q(m) for 7 in the strongly semistable range. Unitary quan-
tum induction then enables us to construct certain irreducible unitary representations whose
existence has been conjectured by Arthur and Barbasch-Vogan.

Theorem 3.6 ( [Hedq]) Let 7 be an irreducible unitary representation in

Rss(MO(p, q),w(p,q;2n)).

Suppose
o ¢ >p >n;
ep+q¢d —-2n>2n—(p+q) +2>1;
ep+qg=p+¢ (mod 2).

Then
1. 05(p, q;2n)(T) € Rss(MSpan(R),w(p’, ¢';2n));
2. Q(p,q;2n;p', ¢')(7) = 05(2n;p', ¢')0s(p, ¢; 2n)(7);

8. If Q(p, q;2n;p', ¢') () # 0, then Q(p,q;2n;p',¢')() is unitary.
Let me say a few words about the proof of this theorem. (1) is proved in [Heqg] through an
estimate on the matrix coefficients of 05(p, ¢; 2n) (7). By (1), 05(2n;p', ¢')0s(p, q; 2n) () is well-

defined. In fact, by Definition [ the Harish-Chandra module of 64(p, ¢;2n)(m) consists of
?distributions” of the following form

/ o, 20)(91)6 ® (g )udgy (6 € V(w(p.g;2n))u € V().
MO(p,q)
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For the same reason, the Harish-Chandra module of 6,(2n;p’, ¢')0s(p, ¢; 2n) () consists of ”dis-
tributions” of the following form

/ w(p', q';2n)(g2)Y@05(p, ¢; 2n) (1) (go)vdge (¢ € V(w(p',¢';2n)),v € V(0s(p, q;2n)(T))).
MSpan(R)

Combining these two statements, V(05(2n;p’, ¢ )0s(p,q;2n) (7)) consists of ”distributions” of
the form

/ / (P 5 20) (92) © w(p, @ 20)° (9201) © (g1 Judg gy
g2€M Sp2n(R) Jg1€MO(p,q)
(¥ € V(w(p',q;2n)),¢ € V(w(p,q;2n)),u € V(m)).
Notice that w(p, ¢; 2n)¢ = w(q, p; 2n) and
w(p',q's2n) @ w(g, p;2n) = w(p' +q,¢ + p;2n).

Furthermore, by the theorems of Howe-Li,

{ wp' +q,¢ +p;2n)(g2) (Y ® ¢)dgs | ¥ € V(w(p',q';2n)), ¢ € V(w(g,p;2n))}
92€M5p2n(R)

can be identified with the Harish-Chandra module of £(p’ + ¢, ¢ + p; 2n). Therefore,
V(0s(2n; 9", ¢")0s(p, ¢;2n) (7))
is equivalent to

b,q

We have assumed that 7(e) = —1 from the beginning. The integral over M O(p, q) is just twice
the integral over O(p, q). It follows that V(65(2n;p’, ¢')0s(p, q; 2n) (7)) is equivalent to

{/0( )5(19’ +¢,q' +p;2n)(g1)n @ (g1 )udgy | n € VEW + q,¢ + p;2n)),u € V(m)}
p,q

which is exactly Q(p, q;2n;p’,¢')(7). The absolute convergences proved in [Heq| allow us to
change the order of the integrals. (2) is proved. (3) follows easily by Theorems Bl and

Definition 21 Under the hypotheses in Theorem [38, define
Q(p,g;2n;0', ¢') () = 05(2n; 0, ¢')0s(p, ¢; 2n) (7).

We call @ unitary quantum induction. By Theorem BH, Q(p,q;2n;p’,¢')(r) is well-defined
and equivalent to Q(p, ¢;2n;p’,¢')(7). A similar statement holds for Q(2n;p, ¢; 2n’) (7).

Theorem 3.7 ( [Heq]) Let m be a unitary representation in Rss(MSpa,(R),w(p,q;2n)).
Suppose
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e 2n' —p—q>p+q—2n-2;
e n<p<yq.
Then
1. 05(2n;p, q)(m) € Rss(MO(p,q),w(p, q;2n'));
2. Q(2n;p,q;2n")(m) = 0s(p, ¢;2n')05(2n; p, ) (7);

3. if Q(2n;p,q;2n')(w) # 0, then Q(2n;p, q;2n) () is unitary.
Definition 22 Under the hypotheses of Theorem [3, define
Q(2n;p, q;2n")(7) = 0s(p, ¢: 2n")0s(2n; p, 4) (7).
By Theorem BT, Q(2n;p,q;2n')(w) is well-defined and equivalent to Q(2n;p, q; 2n’)(7).

In summary, Q is a generalization of ) = 05 0 6,. The advantage of introducing Q will be
manifested when we begin to relate unitary quantum induction to parabolic induction. Based
on the studies on parabolic induction, we will establish the nonvanishing of 6,(2n; p, ¢)(7) under
some restrictions. The nonvanishing of 6,(2n;p, ¢)(7) is otherwise very hard to establish if p or
q is less than 2n.

3.5 Moment Map and O(Gy, G2)
From now on, let G; = O(p,q) and Gy = Spa,(R). Write
Gic =0(p+4q,0C), Gac = Span(C).

Let Mat(p 4 ¢;2n) be the set of p + g by 2n real matrices. Let
(0 I, (I, 0
v=( ) w8

Definition 23 Define the moment maps
my:x € Mat(p+ q,2n) — I, 2Wya' € o(p, q),

ma : x € Mat(p+ q,2n) — Woa'l, . € spo, (R).

We say that x is nilpotent if mq(x) is nilpotent.
Observe that

Lemma 3.1 m(x) is nilpotent if and only if ma(x) is nilpotent.
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Thus we obtain a set of nilpotent Spa, (R) x O(p, ¢)-orbits in Mat(p+gq,2n). Clearly, m; induces
a map from the nilpotent orbits in Mat(p + ¢,2n) to nilpotent orbits in g;.

Similarly, we define the complex moment maps, still denoted by m;. This should not cause
any notational problem. For example, the usage of D usually points to the complex moment
map and the usage of d usually points to the real moment map.

For a complex nilpotent orbit O; in g,, consider the closure of
ma(mi* (Closure of Oy)).

By a Theorem of Daszkiewicz-Kraskiewicz-Przebinda, the closure of
ma(m; ! (Closure of O))

is the closure of a unique nilpotent orbit in g, (see [DKP]). This yields a correspondence
between certain nilpotent orbits in g; and certain nilpotent orbits in go. We denote this corre-
spondence by ©(G1¢, Goc). Similarly, we define ©(Gac, Gic). The reader must be warned that
©(Gic, Gac) is NOT the inverse of ©(Gac, Gic). For the nilpotent orbits we are concerned
with, ©(G1c, Gac) and O©(Gac, Gic) are quite easy to describe ( [DKP]).

Lemma 3.2 ( [DKP]) Let Op € U be a nilpotent orbit of either O(p,q) or Spa,(R). Con-
struct an alternating sequence of complex orthogonal orbits and complex symplectic orbits
Od,0d-1,04-2; ... Od—d, +1
and a corresponding alternating sequence of complex orthogonal groups and symplectic groups:
G(Od) = G(dl)(C7 G(dl - 1)((:7 vy G(l)(c
Then V 7,
O(G(dr — J)e Gldr — j + 1))(Cl(Oay 1)) = cl(Oa,_j4).

We define ©(Ga, G1) and ©(G1, Ge) for real nilpotent orbits in the same fashion. Pan showed
that ©(G2, G1)(Op) is the closure of at most two real nilpotent orbits (Theorem 8.11 [PAN]).
We give two lemmas that can be easily deduced from the descriptions of ©(Ggz,G1) and
©(G1,G2) in [PAN].

Lemma 3.3 Suppose p+ q < 2n. Then the real nilpotent orbit Op occurs in the image of mo
if and only if G(Op-1) = O(r,s) with r < p and s < q.

Lemma 3.4 Let Op € U be a real nilpotent orbit of either O(p,q) or Spa,(R). Construct an
alternating sequence of real nilpotent orbits of symplectic groups and orthogonal groups
Op,0p-1,0p-2,...Op_d,+1
and a corresponding sequence of real groups
G(dy),G(dy —1),...,G(1).

Then V 7,
O(G(d1 — j),G(dr — j +1))(cl(Op-j)) = cl(Op-—jt1)-
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3.6 Przebinda’s Results on V(Ann 6(r))

In [PRO3], Przebinda proved that under some conditions, the following diagram commutes:

™ LN O(MG, MG')(r)

lAss lAss (3.2)

o(G,G")
e

V(Ann 7) V(Ann (MG, MG')(r))

We state Przebinda’s theorem for O(p, q) and Mpa,(R). Recall from Theorem III.1 [MI] that
7 has the rate of growth ~ if and only if for every leading exponent v of ,

R(v) = (v = D)p(G).

Theorem 3.8 ( [PR93]|) Let 7 be an irreducible unitary representation of O(p,q). Suppose
1. 2n+1>p+gq;
2. ©(m) has rate of growth y with

+1< 2n
! p+q—2
[Equivalently, every leading exponent v of m satisfies
2n
p+q—2
(see Theorem III.1 of Milicié, Theorem 8.48 of [KNJ and Theorem 4.5 of [PRY3])];

R(v) < ( 2)p(O(p, q))

3. (,)r converges and does not vanish;
4. (,)r is positive semidefinite;

5. there exists a full rank element x € Mat(p + q,2n) such that the O(p, q)-orbit generated
by my(x) is of mazimal dimension in AS(O(m)).

Then 0(p, q;2n)(m) is unitary and its associated variety is the complex orbit

O(0(p+ q,C), Span(C))(V(Ann 7).

Let me make two remarks here. Firstly, the assumption (1) does not appear in Przebinda’s
original theorem. Notice that for a unitary representation m, v > 0. Thus (2) implies 2n >
p+q—2. We add (1) as an assumption for the sake of clarity. The reader should also notice
that condition (1) guarantees the nonvanishing of (,)r. Secondly, condition (5) is satisfied in
the setting of Lemma B4l More precisely, let Op be a nilpotent orbit of Mps,(R) such that
G(Op-1) = O(p,q). Then there exists a full rank element x € Mat(p + ¢,2n) such that the
O(p, q)-orbit generated by mq(z) is Op—_1. The argument goes as follows. According to Lemma
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B3 Op occurs in the image of my. According to Lemma Bl there exists x in Mat(p + ¢,2n)
such that mq(x) € Op and mi(x) € cl(Op—_1). Then

rank(Woa'l, ;x) = rank(ma(x)) = p + q.
But x € Mat(p + ¢,2n). So x must be of full rank. For z of full rank, observe that
[ma(z)]" = ant[ml(x)]r_lfp,qx'

By writing out the defining equations for mo(z) € Op, we obtain m;(z) € Oq—1. But m;(x) €
cl(Op-1). It follows that my(z) € Op_1.

Lemma 3.5 If Op_; is of mazimal dimension in AS(O(7)) and
O(p.q) = G(Op-1),  Mp2n(R) = G(Op),

then (5) in Theorem [Z8 holds.

Similary, Przebinda’s theorem for Mpa,(R) can be formulated as follows.

Theorem 3.9 ( [PR93]) Let w be an irreducible unitary representation of Mpa,(R). Suppose
1. p+q>2n;

2. O(r) has the rate of growth ~ with

1< ——;
7+ o

FEquivalently, every leading exponent v of m satisfies

R(w) < (L~ 2)p(Mpan (R);

3. (,)r converges and does not vanish;
4. (,)r is positive semidefinite;

5. there exists a full rank element x € Mat(p + q,2n) such that the Spa,(R)-orbit generated
from ma(z) is of mazimal dimension in AS(O(r)).

Then 0(2n; p, q)(7) is unitary and its associated variety is the complex nilpotent orbit
O(Sp2n(C),0(p + q,C))(V(Ann 7)).

Let Op be a nilpotent orbit of O(p,q) such that G(Op_1) = Mpa,(R). Then according to
Lemma BA and the definition of ©(Sps,(R),O(p,q)), Op occurs in the image of m; and
mimy *(cl(Op_1)) = cl(Op). Let = be an element in Mat(p + ¢,2n) such that m;(z) € Op
and ma(x) € cl(Op_1). Then x is necessarily of full rank since rank(l,,2W,z') = 2n. By
writing out the defining equations for ¢/(Op), one can easily show that ms(z) € Op_1.
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Lemma 3.6 If Op_1 is of mazimal dimension in AS(©(m)) and
O(p,q) = G(Op),  Mp2(R) = G(Op-1),

then (5) in Theorem [Z4 holds.

Last let us recall the following theorem of Przebinda.

Theorem 3.10 (Corollary 2.8, [PR93]) Consider the dual pair (O(p,q), Span(R)).
o Ifm e R(IMO(p,q),w), then WF(m) is a subset of mi(Mat(p + ¢;2n)).

o If m € R(MSps,(R),w), then WF(m) is a subset of ma(Mat(p + ¢;2n)).
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Chapter 4

A Nonvanishing Theorem

In [HeOIl], we established a nonvanishing theorem for 6s(p, q;2n) with p + ¢ < 2n + 1. This
theorem is cited as Theorem in the last Chapter. In this chapter, we will prove a nonvan-
ishing theorem for 04(2n;p, q). These two nonvanishing theorems will then be used to construct
a packet of irreducible unitary representations N (O) attached to a real special rigid orbit O
and more generally any O € U (see Definition [[3]). We start with a trivial lemma.

Lemma 4.1 Suppose that

0s(p, ¢; 2n2)05(2n1; p, ¢)(7) = Q(2n1;p, ¢; 2n2) (7).
If Q(2n1;p, ¢; 2n2) () # 0, then 05(2n1;p, q)(7) # 0.
Combining with Theorem B, we obtain

Theorem 4.1 Let w be a unitary representation in Rss(M Span, (R),w(p,q;2n1)). Suppose
1. 2npg—p—q>p+q—2n —2;
2. n1<p<gq.

If Q(2n1;p, q;2n2) () # 0, then O5(2nq1;p, q)(m) # 0.

At first glance, Q(2n1;p, q;2n9)(m) seems to be more difficult to treat than 65(2n1;p,q). This

is true with one exception. As predicted in [Heq], quantum induction should produce some
parabolic induced module when (1) is an equality. In this chapter, we will examine Q(2n4;p, ¢; 2n2)(m)
for ny +ne + 1 = p+ q. We will prove that precisely for ny + no +1 = p 4+ ¢ and n; < no,
Q(2n1;p, q; 2n9)(m) can be obtained from parabolically induced representations.

First of all, a theorem of Kudla and Rallis says that, for some «, the parabolic induced repre-

sentation " ®
o P2nq+2ng o
I% = InalMPnﬁn2 X
decomposes into a direct sum of irreducible representations, namely £(2n1 + 2ns9; p, q) for some
p and q. Here P, 4, is the Siegel parabolic subgroup of Spay,+2n,(R). Regard I as a repre-
sentation of Mpay, (R) X Mpay,(R). For certain m € II(Mpay,, (R)), I¢ induces a representation
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of Mpan,(R), I%(m) (see Definition BEl). Using the theorem of Kudla and Rallis, we show that
I%(7) decomposes into a direct sum of Q(2nq;p, q;2n2)(m) for some p+ ¢ = ny + ng + 1.

Next, we study the restriction of I* to Mpay, (R) X Mpa,,(R). Notice that the Harish-Chandra
module V(1) consists of sections of a homogeneous line bundle over the Lagrangian Grass-
mannian of R?"+2"2 By analyzing the action of Mpay,, (R) x Mpa,,(R) on the Grassmanian,

we prove that
Mp2n2 (R)

I%(m) = Inde2n1(]R)MGL(2n2—2n1)N7TT ® X"

The details are given in 4.2 and 4.3.

Now, we know that /() is nonvanishing. The remaining question is which Q(2n4;p, ¢;2n2)(m)
is nonvanishing. This turns out to be a hard question. We don’t have any answer in general.
But for some 7, we can detect the nonvanishing of Q(2n1;p,q;2ns)(m) precisely, thanks to
the notion of wave front sets. Notice that the decomposition of I*(7) into Q(*)(7) induces a
decomposition on the wave front level. On the one hand, we know that the wave front set of
the parabolic induced representation is the induced orbit. As we have pointed out earlier, the
induced orbit consists of a few irreducible components. Theorems B and provide us the
precise information about the wave front set of 1¢(w) for the = we are concerned with. On the
other hand, Theorem BI0of Przebinda gives some control on which nilpotent orbit occurs in the
wave front set of 6(p, ¢; 2ns)(m) ( [PR93]). Lemma of Pan gives the parametrization of these
nilpotent orbits( [PAN]). We have now two sets of nilpotent orbits, one from the induced orbit,
the other from the moment map meo with respect to various (O(p,q), Span,(R)). By matching
these two sets of wave front sets, we obtain a nonvanishing theorem for Q(2ni;p, ¢;2n2) and
for 05(2n1;p, q). Some of the argument here will appear in Chapter 6. In this Chapter, we will
prove a generic nonvanishing theorem.

Theorem 4.2 Consider the group Mpaop,+2n,(R) with ny < ny. Let m be a unitary represen-
tation in
Rss(Mpan, (R),w(ny +ng + 1,0;2n1)).

Let Op be a nilpotent orbit of maximal dimension in

SP2n (R)
Ind5p2nj (R)GBgl (’ng —n1 7R) WF(W) .

If Op occurs only in the image of the moment map my associated with (O(p,q), Span,(R)) for
a finite set
SC{lp,a) |p+ag=n1+n2+1},

then there exists a pair (p,q) € S such that Q(2n1;p,q;2ns)(mw) # 0. For such a pair,
95(277‘1;]77 Q)(ﬂ-) 7& 0.
Notice

Rss(Mp2n1 (]R),w(nl +ng + 170; 2”1)) = RSS(Mp2n1 (R)aw(p7Q; 2”1))

for every p+ ¢ = ni + no + 1. In this chapter, we take 6 and 6, as a correspondence between
representations of Mpo,(R) and representations of O(p, q).
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Throughout this Chapter, we assume ng > nq.

4.1 Results of Kudla-Rallis and Lee-Zhu

Consider the Siegel parabolic subgroup P, of Sps,(R). Let P, = M AN be the Langlands
decomposition with M A = GL(n,R). Let Mps,(R) be the metaplectic covering of Spa,(R).
The group MGL(n,R) can be expressed as

{(¢,2) |z € GL(n,R), £? = det z}.

Put x(&,z) = % Then x is a character of MGL(n,R) of order 4. We extend y trivially on N.
X becomes a character of M P,.

Theorem 4.3 (Kudla-Rallis, [KR]) Suppose p+q=n+1 and « = p —q (mod 4). Let
I* = Ind%%f(mxa be the unitarily induced representation of Mpa,(R). Then 6(p, ¢; 2n)(trivial)
s a subrepresentation of I%.

By studying the K-types in 6(p, g; 2n)(trivial) for various p + ¢ = n + 1, one has
Theorem 4.4 ( [KR], [LZ])

I = @pig=ntlamp—q (mod 4)0(p, ¢; 2n)(trivial).
More precisely, for n odd,

1° = IndiiQ"(R)trivial = Optgentip=q (mod 4)0(p,q; 2n)(trivial),

Span (R ..
I? = Indpfj2 ( )Sgn(det) = Optgentip—g=2 (mod 4)0(p,q; 2n)(trivial).

For n even,
Il = 69p-i-q:n-‘,—l,lzp—q (mod 4)0(17, q; 2”) (trivial),

I3 = 69;D—I-q:n+1,3£p—q (mod 4)0(17, q; 2”) (trivjal)'

This decomposition theorem can be derived directly from the results in [KR]. It was explicitly
stated in [LZ].

Notation 13 From now on, let P, 4y, be the Siegel parabolic subgroup of Span,+2n,(R). Let
GL(n1 + n2)N be the Langlands decomposition of Py, 4n,. Write

MPy i, =1{(§,9n) | g € GL(n1 +n2),n € N,detg = 52}

Let x (&, gn) = ﬁ Write

MPZn +2n. (R)
(S 1 2 @
1% = IndMPnﬁn2 e
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Definition 24 Let Spap, (R) X Spon, (R) be embedded diagonally into Span,+an,(R). The em-
bedding Span, (R) — Span,+2n, (R) lifts to Mpap, (R) — Mpap, 12n, (R) (see for example [Head]).
Consider I*. Let m € II(Mpan, (R)) such that the form (,)

(11 ® b1, 43 ® ) = / (n(g)ur, uz) (I*(9)én, 62)dg

Mpan, (R)

converges for every ui,ug € V (), 1,2 € V(I®). Define I*(m) to be V(m) @V (I*) modulo the
radical of (,). I1*(m) is a (g, K)-module for Mpay,(R).

From the definition of quantum induction @ and Theorem EZl, we obtain
Theorem 4.5 Suppose a« =nj +ny+1 (mod 2). Then as (g, K)-modules

I (71') = @p-i—q:nl—l—ng-‘rl,p—qza (mod 4) Q(2n1;pa q; 2712)(71‘)
whenever one side is well-defined.

Let me remind the reader that (p, ¢; 2n)(trivial) is denoted by £(2n;p, q) in the definition of Q.

It is known, at least under the assumptions of Theorem B that Q(2nq;p,q;2n2)(m) is a
unitarized Harish-Chandra module of Mpa,,(R). Theorem then implies that I%(n) is also
a unitarized Harish-Chandra module in this case. Later, in 4.3, we will show directly that I%(r)
is a unitaried Harish-Chandra module of Mpa,,(R) in a much more general setting.

4.2 Lagrangian Grassmannian X

We are interested in the Mpay,, (R) x Mpa,, (R)-action on

Mp2n +2n. (R)
(S 1 2 @
1% = IndMPnﬁn2 ha

Recall that representation I consists of sections of a certain homogeneneous line bundle over

Sp2n1+2n2 (R)/Pm +na»

the Lagrangian Grassmannian. Denote this Lagrangian Grassmannian by X. X parametrizes
Lagrangian subspaces of a symplectic space of dimension 2ny 4+ 2ns. We are thus led to the
problem of analyzing the Spa,, (R) X Spay, (R)-action on X.

The existence of an open dense Spay, (R) X Span,(R)-orbit in X can be proved using alge-
braic group theory. But this is not sufficient for our purpose. Not only do we need to know the
existence of an open dense orbit, but also the detailed structure of this orbit. For this reason,
we give two elementary lemmas and one theorem in this section. We shall use them in the next
section to identify the restriction of I* to Mpay, (R) x Mpay,,(R).

Suppose from now on ny > ny > 0. The case n; = ny has been studied in [Hel)], [He99]. Let
me begin by recalling the following result.
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Theorem 4.6 ( [He0]) Let L(4n) be the Lagrangian Grassmannian of (R4, Q). Then Spa, (R)x
Spon(R) acts on L(4n) with 2n + 1 orbits. Furthermore, there is an open dense orbit in L(4n)
which can be identified with Span(R).

4.2.1 Notations

Notation 14 Let (R?"212™1 Q) be a symplectic space. Let X be the Lagrangian Grassmannian
of (R?r2+2n1 Q). Fir a standard real basis

{er, e, engpnyy f1, for oo frgtna b
on R?M+2n2 gych that
Q(es,e5) =0, Qfi, f;) =0
Q(fj,e:) = 7,
where 53 1s the Kronecker symbol. Write
R?™ = span{e1,...,eny, f1r - s fui }

as R?™ and
2n
R = Span{en1+l7 c e Enydng, fn1+17 v 7fn1+n2}-

Let Spay, (R) be the subgroup of Span,+2n,(R) fizing e;, f; for every j > ny. Let Span,(R) be
the subgroup of Span,+on,(R) fizing e;, f; for every j < ny. The group Span, (R) x Spap,(R) is
then diagonally embedded into Span,+2n, (R).

Let
Vi = Span{el — €ny+1,€2 — Eng42,---Eny — eng—i—nl}

V2 — Span{fnz—l—l + fl?fn2+2 + f27 e ’fTL1—|—TL2 + fnl}
Vo = span{en,+1,---,€ny}

‘/0/ = span{fn1+1, cee fng}

4.2.2  Spy,,(R)-action and the Generic Orbit X,
Notice that V; @ Vo @ Vj is a Lagrangian subspace in R?"1+272 Pyt

V=VieVhel

Consider the action of Spa,,(R) on V. Let Xy be the Spay,,(R)-orbit of V. Xy is a subset of
X.

Lemma 4.2 Let P,,_,, be the mazimal parabolic subgroup in Span,(R) stabilizing V. Let
Span, (R)GL(na—ny) be the Levi subgroup stabilizing both Vy and Vij. Let Span, (R)GL(na—n1)N
be the Langlands decomposition of Pp,_yn,. Then (Span,(R))y = GL(n2 —ni)N and

XO = Sp2n2 (R)/GL(TLQ - nl)N.

Furthermore, Xq is open in X.
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Proof: Let g € Span,(R). Then g fixes ¢;, f; for every ¢ < n. Suppose gV = V.
1. Since g stabilizes V and R?"2, g stabilizes Vo = V N R?*"2. So g € Py, _p, .
2. Let j < nq. Since ge; = e; and gR?"2 = R2n2
g(Re; ® R¥2) = Re; @ R?"2,
It follows that
gl(Re; ®R?™) N V] = [(Re; @ R™2) N V).
Notice that
(Re; @R*™) NV = (Re; ®R™2) N (11 © Va @ Vo) = R(ej — eny+j) © Vo

So
g(R(ej — enytj) ® Vo) = R(ej — eny+j) ® Vo
Since ge; = e;,
g(ej - enz-i-j) € (ej - e’ﬂ2+j) + Vo.

Hence for every j < ni, gen,+j € €nytj + Vo.
3. Similarly, since gf; = f; for j < nq,
9fna+j € frotj + Vo, (J <m).

4. Thus, for every
v E span{en2+1, s aen2+n17fn2+17 I fng-l—nl}v
g(v) = v @ Vj. This shows that ¢ € GL(ny — n1)N.

5. Conversely, if g € GL(na—n1)N, then g fixes €n,4, fn,+; for every j < nj. So g preserves
Vi @ Va. In addition, g € P,,—n,. So g stabilizes Vj. It follows that gV = V.

Therefore, (Span,(R))y = GL(n2 —n1)N and Xo = Span, (R)/GL(ny —n1)N. To show that X
is open in X, we compute the dimensions of Xy and X:

dim X = dim(Spap, (R)) + dim(Span, (R)/Spon, (R)GL(ng — n1)N)
= dim(Span, (R) + 3 dim(Span, (B)/Span, (R)GL(nz — 1))

2n2 +ny — 2n?2 —ng — (ng —ny)?

:271% +ny + 5
_4n% + 2n1 + Qn% + no — Zn% —nj — n% + 2ning — n%
N 2
~n?4n3+2ning + (ng + no) (4.1)
N 2
2(ny1 + n2)? + (n1 + ng) — (n1 + n2)?

2
1 .
=3 dim(Span, +2n, (R)/GL(n1 + na, R))

= dim(SPin +2n9 (R)/Pnl +n2)
=dim X.
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0.

For ny = ny, Pp,—n, will be trivial. Our Lemma says that Xy can be identified with Spa,, (R).
This case is already treated in [He()] (see Theorem [E0).

4.2.3  Spa,, (R) X Spay,, (R)-Action

Next, consider the Spay, (R) X Spay, (R) action on X. Again, our symplectic space is R @R?"2,
The basis for R?™ is

{617627”’en17f17f27”’ 7fn1}'
Let
U= span{en2+1, €no+25 -+ €notng, fn2+17 fn2+27 oo afnz—l—nl}-
Identify R?"! with U by mapping
€j — en2+j7fj - fnz-l-jv (] € [1,711]).

For each g € Spay, (R), define i(g) € Span,(R) such that

i(9)lvpevy = identity;  i(g)lu =g

In other words, Spa,, (R) is embeded into Spa,,(R) as the first factor of the Levi subgroup
Span, (R)GL(ng — ny1). Recall for every g € Spa,, (R), 7(g) is defined to be

I,, 0 I, 0
0 -I, )9\ 0o -1, )

Lemma 4.3 Let g € Span,(R). Let i(g) € Span,(R) such that i(g)ly,evy = 1. Regarding
(9,7(i(g))) as an element in Spap, (R) X Span, (R), we have

(g, 7(i(9))V = V.

Proof: Let g € Spon,(R). We borrow some ideas from [He()]. Define an isomorphism ¢ :
R?" — U by

¢lej) = —enpj  (G=12,...,m)

O(fj) = frors  (G=12,...,m).
Then Vi @ V4 is the graph of ¢ and 7(i(g))¢ = ¢g. Notice that

(9,7(i(9)) (V1 & Va) ={(gu, 7(i(g))p(u)) | u € R*™}
={(u, 7(i(9)) (g~ w)) | u € R*™}
={(u, ¢u) | u € R*™}
=V & Va.

(4.2)

Thus Vi @ V3 is preserved by the actions of (g,7(i(g))). Clearly, (g,7(i(g))) also preserves vec-
tors in Vp. It follows that (g,7(i(g)))V =V. O

Combining with Lemma EZ we obtain
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Theorem 4.7 Let P,,_,, be the mazimal parabolic subgroup of Span,(R) which preserves V.
Let Span, (R)GL(n2 —n1)N be the Langlands decomposition of Py,_p, as in Lemma [.3 Then
the isotropy group

(Span, (R) x Span, (R))v = {(7(9),9h) | g € Span,(R),h € GL(n2 —n1)N}.

Moreover,
Xo = (Span, (R) X Span, (R))/(Sp2n, (R) X Span, (R))v

and X is open and dense in X.

Here Spay, (R) and Spa,,(R) are of the standard matrix form. The Spa,, (R) in the Levi factor
Span, (R)GL(ng — ny) of Span,(R) is identified with the standard Spay, (R). We avoid using i

again.

Proof: We only need to prove that Xy is dense in X. This follows from an argument simi-
lar to that in [He(]. Briefly, for every Lagrangian subspace W, define

Ind(W) = (dim(W NR*™), dim(W NR?"2)).

Notice that dim(V NR?™) = 0 and dim(V N R?*"2) = dim(Vj) = ny — ny. In general, for every
W e X, we have
dim(W NR*) >0,  dim(W NR?*"2) > ny —ny.

We say a Lagrangian subspace W is generic if Ind(W) = (0,n2 — ny). Observe that the group
action Span, (R) x Span, (R) preserves Ind. Therefore, every element in Xy is generic.

Conversely, every generic Lagrangian subspace W must be an element in X;. Let W be generic.
Since W NR?"t = {0}, the projection

P2 Rin D RQTLQ N RQTLQ

restricted to W is injective. So dim(pa(W)) = ni + no. Similarly, since dim(W N R?"2) =
ng —ny = dim(W) — dim(R?™), the projection

p1 e Rin o RQTLQ N Rin

restricted to W must be surjective. It can then be shown that W is uniquely determined by a
symplectic map from pa(W) to R?"1. The kernel of this symplectic map is exactly W N R?"2.
By basic linear group theory, the group Spa,, (R) X Span, (R) acts on the set of generic elements
transitively. So the orbit X consists of all generic Lagrangian subspaces. Therefore X is dense
in X. O

4.3 Parabolic Induction and /()

Recall that I%(7) is induced from 7 € II(Mpa,, (R)) as follows. If

(u1 ® ¢1,u2 ® P2)1 = / (m(g)ur, u2)(I*(g9)¢1, P2)dg

Mpan, (R)
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converges for every uj,ug € V(m),¢1,¢2 € V(I%), then I%(w) is defined to be V(m) @ V(I%)
modulo the radical of (,);. I%(m) is only a (g, K)-module for Mpay,(R). Let 7 and 7" be as in
Definition [

Theorem 4.8 Let © € I1,(Mpay, (R)) be such that I°(r) is well-defined. Suppose ny < ng
and m(e)x“(e) = 1. Let Ppy—n, = Span, (R)GL(ng —n1,R)N be as in Lemma [.3 Realizing
MP,,_n, as the quotient group

Mpan, (R) x MGL(ng —n1)N/{(1,1), (€, €)}.
Then I%(m) coincides with the Harish-Chandra module of I nd%ﬁf}fﬁﬂT ® x¢. Furthermore,

Ind P2 ®

MPoy! T @ x© is the completion of I*(mw) with respect to the inner product (,)1. So as

unitarized Harish-Chandra modules,

I%(m) = [nd%lgn?fi)ﬂ'r ® x*.

Notice that here, we only assume (, ); is well-defined for V(7)) ® V' (1°). This will guarantee that
(,)1 is well-defined for V' (m) @ V(I%). Let us first analyze the restriction of I* to Mpay,(R).

4.3.1 Parabolic Induction: the Compact Picture

Parabolic induction is a powerful tool in the study of representations of reductive Lie groups
(see for example [KN| and [Wallach]). There are the compact picture and the noncompact
picture. We will study the compact picture of I¢ in various ways.

Notation 15 Let P,,1,, be the Siegel parabolic subgroup of Span,+2n,(R). Define a character
on Pyytn, = GL(n2 +n1)N by

_ng +ng+1

exp(—po(gn)) = (detg)™ 2

Lift exp(—po) trivially to a character of M P,,.,,. By abusing notation, denote this character
by exp(—po).

The Hilbert space of I* consists of L? sections of the linear bundle

Mpony +2n5 (R) X p1aL(ny+no)n CIX® @ exp(—po)] — X.

Equivalently,
Definition 25 The Hilbert space of I* consists of functions on Mpap, +on, (R) such that

f(gh) = f(g)x(h)* exp(=po(h))  (Vh € MPyyin,),

/ 1 ()| Pdk < oo,
K

where K is a maximal compact subgroup of Mpay, +2n,(R). Notice that the restriction of f to
K uniquely determines f. We call the restrictions of f to K the compact picture.
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Restrict the L2-sections to the open dense subset Xy. Fix the base point V. From Theorem
BT X is a single Spay, (R)-orbit of the form

Sp2n2 (R)/GL(TLQ — ’I’Ll)N

Hence f is uniquely determined by the function f = f | Mpan,(R) UP to a set of measure zero.

Furthermore, f satisfies

flgh) = f(@)x(h)* exp(=po(h)) ~ (V h e MGL(nz —n1)N).

Let us consider the action of Mpa,, (R) X Mpay,(R) on I®. Keep in mind that Mpa,, (R) N
Mpon,(R) = {1,¢} and
I%(e,€) = Identity.

Lemma 4.4 For f € I%, g1 € Mpap, (R), g2 € Mpan,(R), (g1,92) embedded in Mpay,,+on,(R)
diagonally,

F(g1:92)) = Flg27(g1) ")
For every hy € Mpay, (R), 3 3
(I(h1)f)(g2) = f(g27(h1)).

Proof: By Theorem KT

F(g1,92)) = F((L,927(91) (g1, 7(g1)) = Fg27(91) " )x((g1, 7(g1))* exp(—polg1,7(g1))) = fg27(g1) ).

As to the action of hy € Mpa,, (R),

(I*(h1) f)(g2) = (I*(h) £)((1,92)) = F((hi ', g2)) = flgar (1))
O

Let f with

flgh) = f(g)x(h)* exp(=po(h))  (Vhe€ MGL(nz —n1)N)

be an element in the Hilbert space of 1.
Definition 26 Let f be an element in the Hilbert space of I*. Let f be the restriction of f to
Mpon, (R). We say that a vector f (or equivalently f) is compactly supported, if f is compactly

supported on Mpay,(R)/MGL(ne—n1)N. Denote the set of compactly supported smooth vectors
in 1% by C(Xo, I%).

Theorem 4.9 Let f be a smooth and compactly supported vector in I*. Letw € IT,(Mpap, (R))
and v € V(m). Then

/ *(g)f @ 7(gn Judon
Mpan, (R)
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is an element in the Hilbert space of Ind%%?(R)WT ® x“. Furthermore, the (vector-valued)
ng—nj

functions of the form
/ (1) f ® m(g1)udg
Mpan, (R)

d p2n2 (R)
2

are dense in the Hibert space of In T ® x*

Proof: Since f is compactly supported,
[ i eeuds
Mp2n1 (R)

is well-defined as a vector valued function on Mpay,,(R). Notice that for g2 € Mpay,(R) and
hi in the Mpay,, (R) factor of P,,_,, the value of

/ I*(g1) f ® m(g1)udg
Mp2n1 (R)

at gohq is equal to

/ 91)f)(g2h1)m(g1)udgy

Mp2n1 (R

/ Flg2h17(g1))7(g1)udgr
Mp2n1 (R

- / Flgahagr)m(r(g1))udgs
Mpan (R
' (4.3)

() D[ ) en(rlen)udgi]
Since f is smooth and compactly supported, the restriction of

g2 — (Ia(gl)f)(92)7r(91)u‘191

Mp2n1 (R)

onto the maximal compact subgroup K must be continuous and bounded. Therefore

/ I*(g1) f ® m(g1)udg
Mpan, (R)

7T @ x“. It follows easily that the functions of

. . . Mpan, (R
is an element in the Hilbert space of Ind MZIZ;,(M)

the form
/ I*(g1) f ® m(g1)udg
Mp2n1 (R)

are dense in Ind,, p2"2( )

7L2 ny

T®X |:|
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Notation 16 Put
cisu = [ 1)@ rlg)udg.
Mp2n1 (R)

if the integral is well-defined in a proper sense.

4.3.2 Parabolic Induction: Half Density Bundle Picture

Theorem 4.10 Let w € II,(Mpap, (R)). For every u,v € V(m) and ¢, smooth and compactly
supported in 1%,

2(u ® ¢, v @) = / (m(g1)u, v)(I*(g1)p, ¥)dg1 = (L(u X ¢), L(v @ V) Ind n7 e

Mpan, (R)

The main goal of this section is to prove this statement. Readers who are comfortable with this
statement can move on to the next section.

Recall that the Hilbert inner product in I“ depends on the choice of the maximal compact
group of Mpap, +2n,(R). Within the process of restricting I* from Mpay,,4on, (R) to Mpay,, (R),
we lose the track of the Hilbert inner product. Somehow (u x f,u x f); becomes difficult to
manipulate. Fortunately, there is a notion of half density bundle (see [GV]) that does not
depend on the choice of the groups. In the half density model, the Hilbert norm of the unitary
principle series takes an invariant form. It is abstract, independent of the group action, and
easy to manipulate.

Let Y be a homogeneous space of Lie group G. Volume forms in Y can be regarded as sections
of the determinant of the cotangent bundle (written as det T*Y or A"PT*Y’). The group action
preserves the integration of the volume forms. However, we cannot use volume forms to form
unitary representations dlrectly To overcome this obstacle, Graham and Vogan formulated the
notion of half density bundle Ds3. Essentially, it is the real vector bundle | det T*Y'|2 > with Rt
as the transformation group. The manifold Y need not be oriented. With this in mind, one

can complexify D3 and obtaln D2 for the purpose of taklng complex sectlons Notice that the
transformation group of D is still R™ and sections of D are sections of D2 tensored with C.

1
Let s1,s2 be two sections of D&. s; and s3 need not be continuous. Then s1353 is a volume
form. The Hilbert inner product is defined to be

(s1,82) = /815-

Notice that the group G acts on the cotagent bundle. Therefore, GG also acts on the determinant
1

of T*Y and on DE. It is easy to see that the Hilbert inner product (,) is preserved by the G
action.

1

Let us now take a look at the degenerate principal series I¢. Let DZ(X) be the complex

half density bundle of X. Let x*(X) be the homogeneous vector bundle defined by the unitary
1

character x*. Let si,s2 be two sections of DZ(X) ® x*(X). x* being a unitary character
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of M P,,+n, implies that 5,55 is a well-defined volume form on X and that the Hilbert inner

product
(81782)2/ 5152
X

is preserved by the action of Mpay, 12n, (R). The Hilbert space I consists of square integrable
Cx®-valued half densities.

By fixing a proper half density on X, every square integrable half density can be expressed
as a function on X. This is how one identifies the half density picture with the compact pic-
ture. Namely, fix a half density 2 on X such that u is the U(n; 4+ ng)-invariant measure on X.
Then every sqaure integrable half density on X can be expressed as a square integrable function
on X Y We obtain the compact picture. More precisely, f in the compact picture corresponds
to fu2 in the half density model.

Now consider C2°(Xy,I%). Identify Xo with Mpo,,(R)/MGL(na — n1)N. There is a prin-
cipal fibration

Mpan, (R)/{1, €} = Mpoy,(R)/MGL(n2 —n1)N — Mpap,(R)/MPp,—p, .

The generalized flag variety Mpay,,(R)/M P,,_,, does not have a Mpa,,(R)-invariant measure.

There is the standard K-invariant measure d[k] with respect to a maximal compact subgroup
K of Mpay,,(R).

Proof of Theorem Fix an invariant measure dg; on Mpay, (R). Fix the measure d[k]dg

on Mpa,,(R)/MGL(n2 —ni)N. Fix the half density [d[k;]dgl]% and identify half densities on
X as functions on Xy. Lemma E4] remains valid under this interpretation. Now ¢ and ¢ are
Cx*-valued functions, and ¢ is a function on Xy. The inner product (¢,) is the integration
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of ¢1p with respect to d[k]dg,. We have
(u ® ¢7 (Y 1/})1
-/ (n(g2)ue, ) ({1 (92))(), ¥(@))dgn
916Mp2n1 (R)

-/ (rlon)ue) [ (o6l D)l dy
91E€Mpap, (R) z€Xp

1 _
= (r(gr)u) | / [1%(91)6] (ko )k iy dK] doy
91€MP2n1 (R) [k}EMpan( )/MPn2 ni hleMp2n1 (R)

-l / (r(g1)u, v / / (1% (r (1)) 1% (g1) ) (K) T (r (h)) 0] (k) dy K] dgy
91€Mpan, (R) h1€Mpan, (R)

Sl o] (1Y, O ()0 ) TG (4) g i

(k] S h1€Mpan, (R) Jg1€Mpan, (R)

__// / (m(7(h1) ™" g1 )u, 0) [T (g1) @) (k)1 (7 (h1) )b (k) dgy dh d[K]
(k] J h1€Mpan, (R) J g} EMpan, (R)

3 i v L (O OO TN ], ]
—5 (£ ® 6, <v><w>>mdwf®xa

(4.4)

The integrals all converge absolutely. [J.

Therefore, the form (,);, regarded as a Hilbert norm on L£(V (1) ® C°(Xy,I%)), completes

to the Hilbert norm of
Mp2n2 (R) 7‘
Ind,
7L2 7L1

® x.

4.3.3 Proof of Theorem

Go back to the form (, ); restricted to V(m) @V (I¢). Since every element in V(1) @ C° (X, I¥)
can be approximated by vectors in V (m)®V (I%), it is reasonable to believe that L(V (7m)®@V (I%))
Mpan, (R)

d 2

is dense in Ind,p 77 ®x®. This may be a direct consequence of some theorem in functional

analysis about the unbounded operator £. Unfortunately, we are not aware of any such theorem.
We are forced to go back and dig into the compact picture in which the Harish-Chandra module
is visible.

Lemma 4.5 Let K be a mazimal compact subgroup of Mpan,+on,(R). Let 1x be the spherical
vector in I°. Then g — (I°(g)1k, 1x) is positive and every K-finite matriz coefficient of I® is
bounded by a multiple of (I°(g)1x, 1x).

Proof: In the compact picture, 1x is the constant function 1 on K. I°(g)1f is also a postive
function. Therefore (I°(g)1x,1x) > 0. Furthermore, every K-finite function is bounded by a
positive multiple of 1x. Hence every K-finite matrix coefficient of I¢ is bounded by a multiple
of (I%g)1k,1k). O
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Lemma 4.6 If (u® lx,v® 1)1 converges absolutely for u,v € V() and 1 in I°, then (,);
is well-defined for V(m) @ V(I%).

Proof: This lemma follows directly from the previous lemma. [J

Lemma 4.7 Suppose that (u® 1x,v® 1x)1 converges absolutely for u,v € V(m) and 1x € I°.
Then (u ® ¢,v @ )1 converges absolutely for any ¢ € V(I%), b € C°(Xo, I*) UV (IY) and
w,v € V(m). Furthermore L(V (m) ® V(I%)) lies in the Hilbert space of
Mp2n2 (R) T «
IndMPnTnIW ® x.
Proof: Notice that any ¢ € V(I%),¢ € V(I*) U C®(Xop,I%) is bounded by a multiple of 1x.
Since

[ [ e i @ dna
Mpan, (R) J K

converges absolutely, the integrals in the proof of Theorem all converge absolutely for
¢ € V(I*),y € CX(Xo,I*) UV (I¥). By essentially the same argument, L(u ® ¢) is well-
defined and

2w® ¢, v@Y)1 = (L(u® @), L(v®Y))Ind ey

Taking u = v and ¢ = 1), we have shown that L(u ® ¢) is in the Hilbert space of

Ind P2ne®

MPpy—n,

7 ® x“.
O

Proof of Theorem It suffices to prove that £(V(w) @ V(I%)) is dense in

Mpan(R) T o
IndMPnTnlﬂ ® x*.

We shall prove that every element in £(V () ® C°(Xo, I*) can be approximated by a sequence
of elements in L(V (1) ® V(I%)).

Consider u ® ¢ € V(m) @ C*(Xo,I%). Regard ¢ as a smooth function on K, the maximal
compact subgroup of Mpap,+on,(R). By the Stone-Weierstrass Theorem, there exists a se-
quence of functions ¢; € V(I%), such that ¢; — 1 under the sup norm. In other words, for ¢
sufficiently large,

|¢i(k) — (k)| < 01k (k)(Y k € K).
Now

(L(u® (¢ — 1)), L(u® (¢i = ¥)))ndrraye = (4@ (¢ — V), u® (¢ — ¥)h

The later is no greater that 6%(u® 1x,u® 1), with respect to 7 ® I°. Therefore, £L(u ® ¢;) —
L(u ® 1) under the Hilbert norm.

By an easy K-finiteness argument with respect to Mpay, (R),

LV(r) @ V(I%) = V(Indyr®

ng—nij

™ @ XY).
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We have proved that

I%(m) = Ind%llfn?fi)ﬂ'r ® x“.

O

The involution 77 is not essential in Theorem since we can always embed g € Mpay,, (R)
into Mpap, (R) as 7(g).

Corollary 4.1 Suppose ny < nsy. If n1 + ns is odd,

I%(r) = IndSZianL(nz—m)Nﬂ ® trivial,
() = IndSisanL(nz—m)Nﬂ ® sgn(det).

If n1 4+ no is even,

1 ~ Mpz” (R) T .
I'(m) = I"de%j (RYMGL(ny—n1)N™ ® X;

Mp2n2 (R)

3 ~ T 3
I’(m) = [ndegnl(R)MGL(ng—m)Nﬂ' ®x°.

Combining this with Theorem EH, we obtain

Theorem 4.11 If 7 € I1,(Mpa,, (R)) and I°(r) is well-defined, then

Mp n (R) T ~Y
IndMPiQ{Mﬂ' ® Xa — @p—l—q:nl—l—nz—l—l, p—q=a (mod 4)Q(2Tl1;p, q; 2”2)(77')

as unitary representations.

Of course, we must have a = ny +ny + 1 (mod 2) in this situation.

4.4 Nonvanishing Theorem
Theorem 4.12 ( [VOO01]) Let P = MAN be a parabolic subgroup of a reductive group G.
Let o be a representation of MA. Then

W F(Indo) = cl(Ind°WF(a)).

Notice that I ndﬁ)o W F(0)) may contain several irreducible components of the same dimension.
Applying Theorem to I* for Mpy,(R), we obtain

Corollary 4.2 The wave front set WF(I%) = Indzll?g%)o[ln}.

Again assume p + ¢ = n + 1. By the theorem of Kudla-Rallis-Lee-Zhu, we have
I = ©pig=nt1p—qg=a (mod 4)0(p,q;2n)(trivial).
Consider the wave front sets. From Corollary B I ndzll?g%)o[ln] consists of n 4 1 components

and is equal to the closure of OjgnjNspsy,, (R). This implies that W F(6(p, g; 2n)(trivial)) must be
in the closure of OjpnjNspy, (R) ( [BVEN]). In fact, we are ready to compute W F(0(p, ¢; 2n)(trivial)).
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Theorem 4.13 Assume p+q =n+ 1. Let [2"]@ be the signed Young diagram with ¢ rows
starting with +. Then

WEF(6(p, q; 2n)(trivial)) = cl(Ojgnj) U Opgnjo-1))-
Here we take 0[271}(71) and (’)[Qn](nH) to be the empty set. In particular,
WF(Ia) = Up+q:n+1,p—qza (mod 4)WF(9(p, q; Zn)(triVial)

Proof: From Lemma B3l only cl(O[zn}(p) U (’)[Qn](pfl)) can occur in the image of the moment
map my for (O(p, q), Sp2n(R)). Thus by Theorem BI of Przebinda,

WEF(6(p, q; 2n)(trivial)) C cl(Ojgnjm) U Opgnjo-1))-
But by the decomposition Theorem F3,
U?:OO[(;)L] = WF(IQ) = Up—i—q:n—l—l,p—qza (mod 4)WF(9(p7 q; 2”)(tr1V1a1)) - U?:OOB”}U)
We must have W E(0(p, ¢; 2n)(trivial)) = cl(Opnie) U Opgnio-1) ). O

This theorem partly explains the decomposition theorem of Kudla-Rallis-Lee-Zhu in terms
of the orbit philosophy. Generalizing this idea to (), we obtain

Theorem 4.14 (A Generic Nonvanishing Theorem) Consider the group Mpa,,+on,(R)
with n1 < ng. Let m € Rss(Mpan, (R),w(n1 + n2 + 1,0;2n1)) and m unitary. Suppose o =
ny +mng+ 1 (mod 2). Let Op be a nilpotent orbit of mazimal dimension in

SP2n (R) -
I3y WE ().

If Op occurs only in the image of the moment map ma associated with (O(p,q), Span,(R)) for
a finite set
S C{(p.q) |p+q=mn1+n2+1,p fized parity},

then there exists (p,q) € S such that Q(2nq1;p, q;2n2)(w) does not vanish.

Proof: Since m € Rss(Mpan, (R),w(n1 +ng + 1,0;2n4)), for every leading exponent v of ,

n; +ns + 1
R(v) < PLE22EE 1 (S, (R)),
. o 9 . (n1+ng+1)(ng+no) .
Notice that I“ can be modeled on the space of L* functions on R 2 . One can easily
—nq—ng—1
show that every matrix coefficient of I* is bounded by a multiple of a(g) 2= We obtain

_n1+n2+1

R(v) + 2p(Mpan,(R)) <X —n3 — 1 4 p(Mpap, (R)) < 0.

So I%(m) is well-defined for any a. Theorem ETT] applies. We have

IndyP2m®

Pry—n, T ® Xa = @p—i-q:nl—i-nz—i-l,p—qza (mod 4) Q(2n1;p, q; 2”2)(77)
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It follows that

T sy WF ()

= Uptg=ni+ns+1,p—q=a (mod 4) WF(Q(2n1;p, q; 2n2)(m)) (4.5)
= Uptg=nitnatlp—g=a (mod 4) WEF(Q(2n1;p, ¢;2n2)(T))

= Uptg=ni+na+1p—q=a (mod 4) WEF(0s(p, q; 2n2)05(2n1; p, Q)(W))

By Theorem B0, there exists (p,q) € S such that
Op C WE(Q(2n1;p, g; 2n2)(m)).

Hence Q(2n1;p, q;2ns)(m) # 0. If follows that 65(2n1;p,q)(7) # 0. O

As far as the conclusion is concerned, the parameter « is redundant. In fact WF(I%*(7)) does
not depend on . Howerver, once one fixes a parity for p, « is then uniquely determined. Under
certain favorable circumstances, Op only occurs in the image of msg for a unique (p,q) with
p+q = n1+ng+1. In this case, we are able to determine for which (p, ¢), Q(2n1; p, q; 2n2)(7) # 0.
Furthermore, we have Theorem B which guarantees that

Q(2n1;p, q; 2n2)(7) = 05(p, ¢; 2n2)0s(2n1; p, q) (7).

Thus we arrive at 65(2n1;p, ¢)(7) # 0 under certain restrictions.
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Chapter 5

Construction of Unipotent
Representations

Start with a real nilpotent orbit O = Op in U(O(p,q)) or U(Mpan(R)). First, construct an
alternating sequence of nilpotent orbits of metaplectic groups and nilpotent orbits of orthogonal
groups:

O(dy) = O0p,0(d; —1) =O0p_1,...,0(1) = Op_qg,+1-

Write
G(1) = G(0(1)),G(2) = G(O(2)),...,G(d1) = G(O(dr)).

Clearly, O(k) € U for every k (see Cor. EZ).

Definition 27 We define N (Op) inductively.

1. For O(1), let N(O(1)) be the set of all finite-dimensional irreducible unitary representa-
tion ™ of G(1) such that w restricted to G(1)g contains a trivial constituent.

2. Suppose N'(O(k)) is defined.
3. For G(k + 1) orthogonal, define N'(O(k + 1)) to be

{m(k+1)@n, n(k+1)*@n | 7(k+1) = 0,(G(k), G(k+1))(n),7 € N(O(k)),n a character of O(p,q)}.
4. For G(k + 1) metaplectic, define N(O(k + 1)) to be

{r(k+1), 7(k+1)7, 7(k+1)*, 7(k + 1)*7 | 7(k+1) = 0,(G(k), G(k+1))(r), 7 € N(O(k))}.

Since O and 7(Q) are indistinguishable geometrically, we include 77 in N'(O) for G(O) meta-
plectic. Any of the operations in the definition of NV, tensoring with a character, involution by
T or *, do not alter the infinitesimal character, the real part of the leading exponent, or the
associated variety. In most cases, we will ignore these operations.

Theorem 5.1 For Op € U(G), the set N (Op) is not empty.

For technical reasons, we will postpone the proof till the next chapter. In this chapter, we work
under the assumption that V' (Op) # (). We will show that
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Theorem 5.2 Let Op be in U(O(p,q)) or U(Span(R)). Then any w(k) € N(O(k)) is in
Rss(G(k),w) for the pair (G(k),G(k+1)). The set N(Op) is well-defined. The representations
in N(Op) are all unitary.

Thus N(Op) C II,(G(Op)). We will further determine the infinitesimal character of = €
N(Op). It turns out that Z(7) only depends on d and consists of p-like segments.
5.1 Unitarity of N (O)

Let Op be in U(O(p,q)) or U(Sp2,(R)). The group G(Op) can be read off from DT, the
number of positive boxes in D, and from D™, the number of negative boxes in D. Construct
an alternating sequence of symplectic signed Young diagrams and orthogonal signed Young
diagrams:

D(d;) =D,D(d; —1) =D(dy) - 1,...,D(2) =D(3) —1,D(1) = D(2) — 1.
Let D(0) = 0. Then we must have the following.
Lemma 5.1 Let Op € U. Then
e For every k € [1,dy — 1],

D(k+1)*t>D(k)", D(k+1)" > D"

e For every k € [1,d; — 1],
D(k+1)* —D(k)* > D(k)~ —D(k—1)~,  D(k+1)" —D(k)~ > D(k)* — D(k—1)*.
Thus,

D(k+1)"+D(k—1)" = ||d(k)ll, ~ D(k+1)" +D(k—1)" > [ld(k)]].

e For every k € [1,d; — 1],
[d(k+ DIl + [[d(k = DI = 2[[d (k)| + 2
if D(k) is symplectic;
o for every k € [1,d; — 1],
[d(k + D[ + [[d(k = DI = 2[[d(%)]
if D(k) 1is orthogonal.
e |[d(k+2)| =|d(k)|] (mod 2) for all k > 0.

Proof of Theorem Consider the sequences D(k) and O(k). We shall prove that w(k — 1)
lies in Rss(G(k —1),w)) for the pair (G(k —1),G(k)), and 7(k) = 05(G(k —1),G(k))(m(k — 1))
is unitary. We will use induction.
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1. For k = 1, by definition, every m(1) in N'(O(1)) is unitary.
2. For k =2, if G(1) is metaplectic, then we have
D) =D(1)7, D(2)" >2D(1)", D(2)” >2D(1)", D(2)"+D(2)” > 4D(1)” +2;

if G(1) is orthogonal, then we have D(2)" = D(2)~ > D(1)~ + D(1)*. It follows from the
Definition [8, that every unitary representation is in Rss(G(1),w) with respect to the
dual pair (G(1),G(2)). A theorem of Li ( [LI8Y]) says that m(2) = 6,(G(1),G(2))(n(1)) is
unitary (see also Theorems Bl and BH). Therefore, N'(O(2)) is well-defined and every
7 € N(O(2)) is unitary.

3. Suppose that N (O(k — 1)) is well-defined and N (O(k — 1)) C II,(G(k — 1)). Suppose
that N (O(k — 1)) € Rss(G(k — 1),w) with respect to the pair (G(k — 1), G(k)). This is
our induction hypothesis.

If G(k) is metaplectic, let
p':D(k‘—l—l)"“,q':D(k+1)_,n:D(k)+ :D(k’)_,p:D(k‘—1)+,q:D(k‘—1)_.

Then by Lemma B p+¢=p ' +¢ (mod2), p+¢ —2n>2n—p—q+2,p > n
and ¢’ > n. Clearly max(p’,q') > n. If n # min(p’,¢’), then Theorem holds and
(k) = Os(m(k — 1)) is well-defined and unitary. Furthermore, 7(k) € R4s(G(k),w) with

/

respect to (G(k),G(k +1)). If n = min(p/, ¢'), without loss of generality, assume, n = p/'.
We shall prove that this case does not occur if Op € U.

Since D(k)~ = n = p’ = D(k + 1)T, the diagram D(k + 1) must have its first col-
umn marked with —. By the structure of signed Young diagram, D(k) must have its first
column marked with +. D(k) must have its second column marked with —. Furthermore,
the first column of D(k) and the second column of D(k) must have the same length.
Otherwise, there are at least two rows of length one in D(k). At least one [-] would occur
in the first column of D(k) according to our definition of Y D_(n,n). This contradicts
the fact that the first column of D(k) is all marked with 4. Thus,

[d(&)]| = ld(k = DI = l[d(k = D] — [[d(k = 2)]|.
By the same argument, D (k) must be of the following shape and sign pattern:

- [H - -
[ [H - [+ -]

] [ [H [H [
L
I+ [
o

[+

In other words, the j-th column of D(k) must be marked by (—1)/ and the 2j + 1-th
column of D(k) must be of the same length as the 2j + 2-th column. This kind of D(k)
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is excluded from U. So the case n = min(p’, ¢') does not occur.

If G(k) is orthogonal, let
n' = D(k+1)" = D(k+1)7, p=D(k)",q=D(k)", n=Dk-1)T =D(k-1)".
Then by Lemma BT we have

2 —p—q¢,>p+q—2n>p+q—2n—2, p>n q>n.

By the same argument as for metaplectic G(k), n # min(p, ¢). By Theorem BT, 7(k) =
Os(m(k — 1)) is well-defined, unitary and m(k) € Rgs(G(k),w) with respect to the pair
(G(k), G(k +1)).

4. Tt follows that every N(O(k)) C Rss(G(k),w) for the pair (G(k),G(k + 1)) and every
n(k) € N(O(k)) is unitary.

O

5.2 Infinitesimal Character

Theorem 5.3 (Przebinda, [PR96]) Let Z(w) be the infinitesimal character of w. Suppose
that ™ occurs in the theta correspondence with respect to (Span(R),O(p,q)).

1. Suppose p+ q < 2n. Then Z(0(p,q;2n)(m)) can be obtained by augmenting Z(m) by

P+q P+q P+q P+q
=~ PR NN P LA P

2. Suppose 2n +1 < p+q. Then Z(0(2n;p,q)(m)) can be obtained by augmenting Z(m) by

P+q P+q P+q P+q
e )

L,
2 2

n—2...,
3. Suppose p+q=2n orp+q=2n+1. Then Z(0(p,q;2n)(m)) is just Z(m).

Notation 17 We define the orthogonal segment

(%]
m m m o .m
T SR P S
m) = (1, )
and the symplectic segment
(2]
m m m m—+1

The orthogonal segment Z,(m) is just p(o(m,C)). For m even, Z_(m) is p(spm(C)). For m
odd, Z_(m) is the infinitesimal character of the oscillator representation of Mp;,+1(R).
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Theorem 5.4 Let Op be in U(O(p,q)) or U(Spa,(R)). Let m € N(Op) and
d'=(m1 >mo>...>my).
If G(D) is an orthogonal group, then
T(r) = (T4 (m1), T (m2), Ts (ms), T_(ma), ...
If G(D) is a symplectic group, then
I(m) = (Z-(m1),Z4(m2),I—(m3), L+ (ma), .. .).

Proof: Let m € N (Op). We prove this theorem by induction on d;. If d; = 1, by definition of
N(O(1)), 7 restricted to the identity component of G(Op) must contain a trivial constituent.
Thus Z(7) = Z+(my). Suppose our assertion holds for any D with d; < k. Let d; =k + 1.

If G(D) is O(p,q), then according to our definition of 7, 7|s0,(p,q) Must be equivalent to
0(G(Op-1),G(OD))(9)|504(p,q) OF its contragredient for some o € N(Op-_1). Z(r) can be
obtained by augmenting 7 (o) with

my
(2 2

If G(D) is Mps,(R), observe that Z(n™) = Z(m). Then

L

I(r) = Z(0(G(Op-1), G(Op))(0))

for some o € N(Op-_1). Z(7) can be obtained by augmenting Z (o) with

[y

-1
_17_”7__[m17

Notation 18 Let
dt:(ml ng > ... Zmdl).

For each orthogonal Young diagram d, we define Z,(d) to be
(Z4-(m1), Z-(m2), L4 (m3),I—(ma), ...).

For each symplectic Young diagram d, we define Z_(d) to be
(Z-(m1), Z4(m2), Z-(m3),I5.(ma), .. .).

Theorem B states that Z(7) = Z(d) for 7 € N(Op). Thus Z(r) only depends on d, not on
the signs of D.
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5.3 7Z.(d) and d: An algorithm

In this section, we will seek a direct way of obtaining Z,(d) from the Young diagram d. We
assume d! is very odd or very even. The Young diagram d does not have to be pre-rigid or in
U. The algorithm can be described as follows.

1. First, cover the Young diagram d by horizontal and vertical dominos

1] []
[]

as follows. We cover each column of the Young diagram d by consecutive vertical dominos,
starting from the bottom row. If d’ is very even, vertical dominos covers d completely. If
d! is very odd, we have the first row left uncovered. We cover the first row of the Young
diagram d by consecutive horizontal dominos, starting from the right. We may have the
leftmost block uncovered. In that case, cover it with a horizontal domino anyway. We
call this domino an open domino.

2. For each vertical domino DO, we can enumerate the number of dominos above it. A
horizontal domino will be counted as % domino and a vertical domino will be counted as
a full domino. Thus we obtain a number n(DO).

3. If d’ is odd, fill the open domino with no number and fill the other horizontal dominos
with % For Z. (d), if a vertical domino DO is in the k-th column, we fill in DO with the

number n(DO) + w For Z_(d), if a domino DO is in the k-th column, we fill in

DO with the number n(DO) + % Extracting the numbers in all the dominos, we
obtain Z(d).

Notation 19 Let A = (A1, A2, ..., \n) € R™. We define X to be the reordering of \ such that

M>A> .. > M,

5.4 Orderings and Reversal Phenomena
Recall from [CM] that complex nilpotent orbits of classical groups have a partial ordering <.

Notation 20 Write d; =< dg if Oq, is contained in the closure of Oq,.

Theorem 5.5 (Reversal Phenomena) Let Op, and Op, be nilpotent orbits of a fized or-
thogonal group or symplectic group. Suppose that D1 and Doy are either both very even or both
very odd. If dy = dg then Z(dy) = Z(d2).

Later we will show that V(Ann N (D)) = Op. This theorem suggests that, among the rep-
resentations N of a fixed group G, the smaller the infinitesimal character, the bigger is the
associated variety and conversely. For example, the trivial representation has the smallest as-
sociated variety, namely {0}. Its infinitesimal character is given by p(G), the greatest among
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all Z() with 7 € N.

We prove the reversal phenomena through a number of lemmas. The conditions in the theorem
are always assumed in these lemmas.

Lemma 5.2 If the Young diagram dy can be obtained from the Young diagram ds by moving
one domino to its lower left without changing other dominos, then di < ds.

We call this procedure a move.

Lemma 5.3 If the Young diagram di can be obtained from ds by a finite number of moves,
then d; =< dg and vice versa.

This lemma holds only under the assumption of the theorem. If d! is very even and d} is very
odd, this lemma is no longer valid.

Lemma 5.4 If Young diagram dy can be obtained from the Young diagram ds by a move, then
Zy(dy) = Z4(do).

Now it becomes evident that Z4(d;) = Z4(d2). By the above three lemmas, Theorem B3 is
proved. [

Corollary 5.1 Let Op, and Op, be pre-rigid nilpotent orbits of a fized orthogonal group or
symplectic group. Suppose that d} and db are both even or both odd. Then Z(d;) = Z(d2) if
and only if di < ds.

Proof: For pre-rigid orbits, one can reconstruct d* from Z(d) in a unique way and the partial
orderings are reversed in this reconstruction. [J

The ordering < for Young diagrams is different from the ordering < for numerical sequences
(see Notation [E). If one regards d! and d) as numerical sequences arranged in descending
orders, then d; < ds if and only if dﬁ - dé. In what follows, all the ordering < will refer to
numerical sequences.

Let Oq be a nilpotent orbit of G. Let Ilp,(G) be the set of 7 such that V(Ann 7) = cl(Oq).
In [BVS&H], Barbasch-Vogan conjectured that

{m e llo,(G) | |Z(m)|| = min{[|Z(o)|| | o € Tlo, (G)}} € Iu(G).

Later on we shall prove that N (Op) C Ilp,(G). Thus N(Op) C Hp,(G) NIL,(G). We
formulate the following conjecture.

Conjecture 3 Let G be either an orthogonal group or a metaplectic group. Let m be an irre-
ducible admissible representation of G such that V(Ann w) = Oq is rigid. Let X be the shortest
infinitesimal character among all Z(mw) with m € Ilp,(G). Then A =Z(d).
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This conjecture is false if V(Ann =) fails to be rigid. In the next chapter, we will formulate
another conjecture regarding the exhaustion of unitary Ilp,(G) by N (Op) for Op rigid.
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Chapter 6

Matrix Coefficients and Associated
Varieties

Let Op € U(G) and m € N(Op). In this chapter, we study the matrix coefficients and the
associated variety of . We first bound Z(7) by a multiple of p(G). By Theorem [[2 we obtain
a bound on the matrix coefficients of 7. Then we apply Przebinda’s theorem to show that

V(Ann ) = cl(Oq).

Let me briefly describe the proof of Theorem Bl Suppose 7(k) € N(O(k)). Then Z(w(i))
and V(Ann w(i)) are all known for every i < k based on our computation. If G(O(k)) is
orthogonal, then N (O(k + 1)) # ( follows from Theorem If G(O(k)) is the metaplectic
group, N (O(k + 1)) # 0 follows from Theorem ET4l The details of the proof of Bl are given
at the end of this chapter.

6.1 Estimates on Infinitesimal Characters: 1
Let G = Mpa,(R). Let Op be in U(G). Let

d'=(my >ma>...>mg)
Then we have 2n = ||d|| and p(G) = (n,n —1,...,1).

Theorem 6.1 Suppose Op € U(Mps,(R)). Let

dt:(ml,mg,...,mdl).
Then )
[ mi
Z_(d G).
(@) < =5 —p(G)

A similar statement holds for G = O(p, q).
Theorem 6.2 Suppose Oq € U(O(p,q)). Let

d' = (my,ma,...,mg,).
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Then

ptaq
2

my + 2 (p+q_

pta_pta,
p+qg—2" 2 ’ ’

Zi(d) < 5 5

1, 2,..

In fact, we will have that
(@) < 22 p(Span ().
n
my p+gq p+gq p+gq pt+q
( -1, —2,...— —[—/))
ptqg—2" 2 2 2 2
for Op € U. These two statements are slightly stronger than those of Theorems and

In the Appendix, we will give a proof for the first statement and Theorem We skip the
proof for Theorem

Zy(d) =

6.2 Associated Varieties of N (Op)
Theorem 6.3 (Estimates on Leading Exponents) Let Op be inU. Let 1 € N(Op).

1. If G(Op) is Mpon(R), then every leading exponent of m satisfies

m1+2_1
2n

R(v) < ( )p(Mpan(R)).

2. If G(Op) is O(p,q), then every leading exponent of m satisfies

my + 2

R(v) < (m — 1p(O(p,q))-

Proof: Part (1) is a direct consequence of Theorem and Theorem [l Part (2) is a direct
consequence of Theorem and Theorem [l O

Let me make one remark here concerning N (O(1)) in Definition 7 Theorem can be
established independently in the framework of [Heq] without resorting to the infinitesimal
character estimate in Theorems and Thus Theorem holds without the assumption
that 77(1)\(;(1)0 contains the trivial representation. From now on we may allow any irreducible
finite dimensional unitary representations in A (O(1)).

Theorem 6.4 Let Op € U(G). Let m € N(Op). Then V(Ann ) = cl(Oq).

Proof: Notice that none of the operations in the definition of N'(Op) changes Z () or V(Ann 7).
Without loss of generality, we assume 7(k) = 65(G(k—1),G(k))(n(k—1)) and 7(d;) = 7. Recall
Theorem and Theorem

1. Condition (1) is automatic by the definition of (G(k — 1), G(k)).

2. Conditions (2) from Theorem and are satisfied due to Theorem and the
definition of (G(k — 1), G(k)).
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3. Conditions (3) and (4) from Theorem and Theorem B3, which basically say that
Os(m(k — 1)) is well-defined and unitary, are readily verified by Theorem

4. Conditions (5) are checked in Lemma and Lemma B0

Thus Theorem and Theorem hold. Therefore
V(Ann 7(k)) = ©(G(k — 1),G(k))(V(Ann w(k — 1))).

By induction and By Lemma of DKP, V(Ann 7) = cl(Oq). O
Corollary 6.1 Fiz an Op € U(Mpa,(R)). Let O(po,q0) = G(Op-1). Let m € N(Op). Then
there exists a nilpotent orbit Op, in WF(m) such that

1. dp =d.

2. G(Opy-1) = O(po, qo)-

Proof: Suppose that m = 6(po, qo; 2n)(o) with ¢ € N(Op_1). Then V(Ann o) = Ogq_1
and V(Ann m) = O4. By Theorem BI0, WF(7w) must be in the image of mg with re-
spect to (O(po, o), Sp2n(R)). Then Lemma says that every orbit Og in W F () satisfies
G(Os—_1) = O(s,t) with s < pg and t < go. There must be at least one Op, in WF(w) such
that G(Op,—1) = O(po,qo). Otherwise, V(Ann 7), which is the complexification of W F (r),
will be strictly smaller than ¢/(Oq4) and will not be equal to cl(Op).

If 7 = 05(po,qo;2n)(0)7, by a similar argument, there exists an Op, in WF(m) such that
G(Op,-1) = O(qo, po)- O

6.3 Nonvanishing of N(Op)

Let Op € U. Let m € N(Op). We have proved that m must be unitary and V(Ann ) = Oq.
In this section, we will prove that N'(Op) is nonempty.

Lemma 6.1 Let Op € U. Let O(po, qo) = G(k—1), Mpay, (R) = G(k) and O(p,q) = G(k+1).
Suppose
7wk —1) e N(O(k — 1)), and 7(k) = 05(po, qo; 2n1)(w(k — 1)) #£ 0.

Then w(k + 1) = 05(2n1;p,q)(7(k)) # 0.
Proof: Write
d(k‘+1)t:(m1 > meo 2> m3g > My > ,)

Then
d(k)t:(m22m3>m42...,), d(k‘—l)t:(m3>m42...,),

p+q=2ny+m, 2n1 = po + qo + Mma.

By Theorem B4, V(Annm(k)) = Og(r) and V(Ann7(k—1)) = Oqq—1). Let ng = p+q—n1—1.
Clearly no —ni=p+q—2n1 —1 =mq — 1 > 0. By Theorem K], it suffices to show that

Q(2n1;p, q; 2n2)(w(k)) # 0.
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1. By Corollary BTl there exists a nilpotent orbit Op, of Spa,, (R) such that
(a) do = d(k);
(b) Do — 1 contains pg [ ’s and ¢qq [-]7s;
(¢) Op, € WE(x(k)).

2. By Theorem ET2]

5102"2 (R)

Indﬁpznl (R)®gl(n2—n1,R)

7(Op,) C WF(Ind%IIg:@(Hf)Xa & 7).

2—"n1

Observe that ng —ny =mj — 1, and my — 1 > ma. my is the first entry of dy = d(k). By

Theorem EZJ ®
5p2n2

Indsp%1 (R)@gl(na—n1,&)T(ODo)

contains mj — my irreducible components
mi1—mo—1
U =0 Os(j)-

And SU) can be obtained by

e merging 2 columns of length m; — 1 to Dy from left;
e extending the signs of Dy for the first mso rows;
e assigning j 'sand mqy —mo —1—3 ’s to rows of length 2.

3. Notice that for every j,
(S(]))t = St = (ml — 1,m1 - 1,m27m37 e '7);

(S(j) — ]_)t =(s— ]_)t = (m1—1,mg,ms,...,).

Consider the signature of SU) — 1. For the first mo rows, there are py + mo ’s and

qo+ms [-]"s. For the last mi1—mso—1 rows of length 1, there are j [-]’s and mi—mg—1—j
’s. Thus the signature of SU) — 1 is

(po +m2+j,q0 +ma+mi —my —1—j) = (po+ma+3j,q0+mi—1—7)

4. Fix the parity of p. Let j = p — pg — ms. Here p — pg is equal to the number of [thn the
first two columns of D(k + 1). It is greater or equal to the number of boxes in the second
column of D(k+1). It follows that j = p—pg —mg > 0. Since p+q = m1 +ma+ po + qo,
the signature of SU) — 1 equals

(po+ma2+j,q0 +m1—1—73)=(p,qo+m1—1+po+mao—p)=(p,qg—1).

From Lemma B3 Og(;) occurs in the image of mgy associated with (O(p, q), Span, (R)).
Also from Lemma B3l Og(;) does not occurs in the image of mg associated with

(O(p - 227 q+ 21)7 Sp2n2 (R))v (O(p + 22, q— 22)7 Sp2n2 (R))

for any i # 0.
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5. By Theorem and Theorem BT, 7(k) € Rys(Mpan, (R),w(ni +n2+1,0;2n1)). So the
generic nonvanishing theorem holds. Therefore,

Q(2n1;p, q; 2n2)(w(k)) # 0.

and
m(k +1) = 05(2n1;p, q) (7 (k)) # 0.

Q.ED

Proof of Theorem Bk We prove it by induction. The existence of w(1) is trivial. Sup-
pose w(k) € N(O(k)). If G(k) orthogonal, from Theorem B3 N (O(k + 1)) is nonempty. If
G(k) is metaplectic, from Lemma Bl 7(k + 1) is not zero. Thus N (O(k + 1)) is not empty.
U

Conjecture 4 By allowing finite dimensional irreducible unitary representations in N'(O(1)),
for rigid O € U, N(O) exhausts all irreducible unitary representations of O(p,q) and Mpa,(R)
with associated variety cl(O).

Notice that the rigid orbits in U include all special rigid orbits. For nonspecial rigid orbits of
O(p, q), by the works of Brylinski-Kostant ( [BK]) and Huang-Li ( [HLJ), there might be unitary
representations of the nontrivial covering of SOy (p, q) attached to them. Our construction does
not cover their cases. Nevertheless, it is expected that the unipotent representations attached
to nonspecial orbits must be representations of the nonsplitting covering of SOy(p,q). So for
the linear groups, our construction should be exhaustive for rigid orbits. Of course, the problem
of constructing unipotent representations attatched to nonspecial orbits remains open.

6.4 Perspectives

In this paper, we only treat O(p,q) and Mps,(R). Quantum induction for other classical
group of type I can be defined similarly. Excluding the pair (O(m, C), Sp2,(C)), the groups are
connected and the metaplectic lift on these groups split. Thus the discussion on these groups
should be considerably easier. We do not intend to work out the details here. Rather, I shall
list some problems concerning quantum induction and unipotent representations for classical
groups of type L. I shall also point out problems in connection with representation theory and the
theory of automorphic forms. The main question is whether quantum induction can supplement
parabolic induction (including complementary series) and cohomological induction to produce
a complete classification of 1L, I14yz and Il gne. In any case, this article should be viewed as
a starting point for new development.

6.4.1 Wave Front Sets of N (O)

Wave front sets under Howe’s local theta correspondence are discussed in detail in [PRO0].
There are still open questions which need to be answered. For the unipotent representations in
N(O), we have showed that their associated varieties are the complexification of ¢l(Q). Now
one may speculate that cl(O) is the wave from set of 7 € A(O). This is far from the case. In
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fact, there are irreducible representations in N (Q) such that WF(m) # ¢l(O) as demonstrated
by Theorem What should be true is that O C WF(rw) geometrically. We fall short of
proving it.

Conjecture 5 For every m € N(O), O can be embedded into W F ().

We take special caution here since there are orbits that are geometrically identical but not
algebraically identical.

Let me give some hint on how one may proceed. Przebinda started a program attempting
to obtain the Harish-Chandra character of 05() from the Harish-Chandra character of 7. If his
program works in our situation, we will have a confirmation of this conjecture. Let me point
out a critical step.

Conjecture 6 Let m € Ry(MG1,MG3). Then
V(0s(MG1, MGs)(m)) = [Hom g, vk, (W, ™) Mk, -

Roughly speaking, this is saying that every M Ks-finite m¢-valued M G1-equivariant distribution
on w can be obtained by integration over MG as in [He(0).

6.4.2 Unitary Dual, Automorphic Dual and Ramanujan Dual

Let G be a classical group of type I. Let e (G) be the set of irreducible Harish-Chandra
modules with an invariant Hermitian structure. Let iy, (G) be the set of irreducible Harish-
Chandra modules with almost L? matrix coefficients. Recall that

II(G) D Uperm(G) D Hy(G) D iemp(G).

The classification of the admissible dual II(G) is due to Langlands. Langlands proved that ev-
ery m € II(G) occurs as the unique quotient of certain induced representation from a tempered
representation. The quotients are often known as Langlands quotients. The classification of
ILiemyp is due to Knapp-Zuckerman. The classification of the Hermitian dual is also known.

With these classifications in hand, classification of unitary dual can be translated as the de-
termination of unitarity of the Langlands quotients. But this approach is of great mathe-
matical complexity. It often involves the positivity of certain analytically defined intertwining
operator. In [VOS86] and [VOS8T7], Vogan envisioned a more geometric approach based on
Kirillov-Kostant’s orbit philosophy. We believe that quantum induction should be sufficient to
supplement the existing techniques to produce a classification of the unitary dual for classical
groups of type L.

Problem 1 Can unitarity-preserving parabolic induction, cohomological induction and comple-
mentary series construction, combined with quantum induction, produces all irreducible unitary
representations of classical groups of type I?

Once this problem is solved, one can achieve the classification of the unitary dual by examining
the Langlands-Vogan parameters of these representations ( [LA], [Vogan79]).
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Theta correspondences as formulated by Howe ( [Ho79]) originated from the theory of theta
series ( [We65l, [Si]). These ideas were further explored by Rallis, Li and many others ( [Ra&7],
[Li94]). The upshot is that theta correspondences should produce automorphic representations
of a bigger group from automorphic representations of a smaller group. Thus we are tempted
to make the following conjecture.

Conjecture 7 All representations in N'(O) are automorphic.

The evidence may also come from Arthur’s conjectures. Based on the trace formula, Arthur’s
conjectures predict at least at the philosophical level which representations are automorphic
unipotent representations. These ”automorphic unipotent representations” are studied by
Adams-Barbasch-Vogan from a representation theoretic viewpoint. Thus, if representations
in M (O) agree with representations constructed in [ABV], very likely they will be automorphic.

In fact, we can even say more about A'(O) and quantum induction. Recall that
Hu(G) D Hauto(G) D Hrama(G)'

We adopt the definitions from [BLS]. In principle, according to the conjectures of Ramanujan
and Selberg ( [Sel, [Sal), complementary series should not occur in e (G) or ygma(G).
Assuming that,

Problem 2 Can we construct every m € yuo(G) by unitary quantum induction, cohomological
induction and parabolic induction?

The argument that parabolic inductions should send 1,4, of a Levi subgroup to I, (G) was
given in [BLS] with their H taking to be the parabolic subgroup rather than the Levi subgroup.
Finally, for split classical groups, Barbasch showed that the irreducible spherical unitary repre-
sentations can be constructed as a parabolically induced representation from a complementarily
induced representation tensored with a special unipotent representation ( [B0OI]). The Ramanu-
jan dual is simply the intersection of the automorphic dual with the spherical dual. Thus one
may ask

Problem 3 For G a split classical group of type I, can one construct all m € I gma(G) by
unitary quantum induction and parabolic induction?

This exhaustion question is perhaps too difficult to answer. For SL(2,R) where no quantum
induction is involved, this is equivalent to the Ramanujan-Selberg conjecture.
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Chapter 7

Appendix: Infinitesimal Characters
for Mp

Recall that 71 (d) consists of an arithmetic sequence with multiplicities. For d odd, the sequence
ends with %; for d even, the sequence ends with zero if d # [1]>". In this chapter, we shall give
a proof for Theorem Bl We start with a lemma.

Lemma 7.1 (Triviality)

1. IfX<Tand N < i/, then X+ N < i+ .

2. If X\ <1 and N < !, then (A, N) < (u, /).
3. If N <y for all l, then X\ < Ti.
4. If Ny < py for all 1, then \ < Ti.

Let G = Spap(R). Then
p(G) =(n,n—1,...,1) =Z_(2n).

Lemma 7.2 Suppose that m =r (mod 2). If r < m, then

T 22 0) = =T+ )
Proof: Write m
B = (I_(m),Z,(r)), A= m+TI_(m+7“).

We prove our lemma by induction on #5=. If #=+ =0, m = r. Then

m m—1 m—2 m-—3 21
A:(_> ) 9 7"'7_7_)7

2 2 2 2 2°2

m m—2 m—2 m—4 m—4
B=(— ).

27 2 7 2 7 2 7 2
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B ends with (1,0) if m is even and (%, %) if m is odd. Obviously, Ay > By. So B < A. Assume
that 5
m J—

m—2+r

(Z-(m—2),Z.(r)) = I_(m+r—2).

Notice that =2 < - We have

m—24+r — m+4r"

B =(1-(m),Z4(r)) = (5, T-(m = 2),Z,.(r))

m
27
m m—2
< (Z _

_(2’m—2+7’I_(m+r 2)) (71)

m m-+r m

= (m—i-r 2 ,m+TI_(m—|—r—2))
- T =4
O
Lemma 7.3 Consider a partition of 2n
2j

d'=(m,mm—2,m—2,...,m—2j+2,m—2j +2,mg,7)

with m =my =71 (mod 2) and m —2j > mg >1r > 0. Then

7_(d) <

3

—7Z_(2n).

5, L—(2n)

Proof: Clearly, 2n = mo +r + (2m — 2j + 2)j. If j = 0, d* = (mg,r). We have Z_(d) =<
07 (mgo + r) by Lemma Assume j > 1.

mo+r

Use induction on m. When m = 2, B(2,0,0) = Z_(2) = I_(2). So our lemma holds for
m = 2. Assume our lemma holds for m — 1.

Suppose that » > 1. The case r = 0 can be treated similarly. Obviously, 2n < 2m(j + 1).
So
m(2n — 25 — 2) = 2mn — m(2j + 2) < 2nm — 2n = 2n(m — 1).

It follows that % < % Consider

2j

el=(m—-1,m—-1,m—-3m—-3,....,m—2j+1,m—2j+1,myg—1,r —1).

Jj+1




Then we have

We obtain Z_(d) = §-7_(2n).

Jj+1

H}

Suppose m is odd. Then Z_(d) = (Z_(e) +

N[ =

11
1550 5) We will again have

n—j—1
(nyn—1,...,7+2).

I_(e)+ < =

i

2T (2n); — % decreases from positive to negative. So

As [ changes from n — j to n, -

l l

=Y T-(2n)i— Y T-(d),
] 1

=1 =

increases and then decreases. It suffices to show that

% n T_(2n); — anz_(d)i >0
=1 =1
Notice that
m— a8 2 m — 2s — 1)2
ST m -2 = 2D S (-2, = 2D

i i
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We obtain

5 > L-(2n)i =Y T-(d);
i=1 i=1
m(n—l—l)n_[J_l (m — 25+ 1)? N (m—23—1)2]_ (mo +1)2 B (r—1)?
o 2 pors 8 8 8 8
1 =
:g[m(Qn +2) = () 2(m —2s)? +2) — (mg+1)% — (r —1)?]
s=0
1 it ) , )
:§{m(m0—|—1+T—1+2+S§:%2(m—28))—(mo—l—l) —(r—1) —2]—;2(m—28)}
j—1
:é{(mo—l—l)(m—mo—l)—|—(r—1)(m—r—|—1)—|—2(m—j)+2Z(m—28)(m—m—|—23)}
s=0
>0

(7.3)

Therefore Z_(d) = §+Z7_(2n). By induction, Z_(d) = §+Z_(2n) for all m. O

Proof of Theorem BIF Fix n first. Let Oq € U(Mpo,(R)). Fix the number of row m; = m.
Consider

dh = (m,m,m—2,m—2,...,m—2j+2,m—2j+2,mg,7) (>0) (7.4)
with
0<r<my<m-—2j-—2 m=mgo=r (mod 2). (7.5)

Here j = 0 means that df, = (mg,r). By Lemma [[3]

T_(dy) < %I_(Zn).

Notice that Ogq, is the minimal orbit in U(Mp2,(R)) with a fixed m. Therefore, by Theorem
B3 for any d with m rows, Z_(d) < Z_(dy). We obtain for any Oq € U(Mp2,(R)),

— m my+ 2
7_(d) X —
(d) = 5 -p(G) < —~

p(G).
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