
θ-NILPOTENT SUBSPACES AND THE ASSOCIATED
HYPERPLANE ARRANGEMENT

Abstract. Suppose GR is a real connected reductive Lie group
with some special properties. Similar to ad-nilpotent ideals for
complex reductive Lie groups, we define a new object called θ-
nilpotent subspaces for GR. We prove that there’s an analogous
result of [34] about the closure relation of θ-nilpotent subspaces
and their associated orbits.

To the set of θ-nilpotent subspaces, we can define a real hyper-
plane arrangement. We give a conjectural formula for the char-
acteristic polynomials of the hyperplane arrangement which leads
to the enumeration of the set of θ-nilpotent subspaces. We verify
this formula for G = SU(m,n) and G = Sp(m,n). We also give a
combinatorial calculation of the set of θ-nilpotent subspaces when
G = SU(m,n) and show that it’s a Narayana number.

1. Introduction

Let GR be a real reductive Lie group with KR its maximal compact
subgroup fixed by a Cartan involution θ. We restrict our discussion
to the case when rank(GR) = rank(KR). Let G,K be the complexifi-
cation of GR, KR and g, k be their Lie algebras. Let g = k ⊕ p be the
Cartan decomposition of g. Let BK and B be the Borel subgroups of
K and G such that BK is contained in B and B is θ-stable.

The ad-nilpotent ideals of g are the subspaces of the nilradical which
are invariant under the adjoint action of B. We refer to the papers
of Cellini-Papi [12] [13], Gunnells-Sommers [15], Panyushev [26] [28],
Sommers [33] [34] and [9] [10] about the theory of ad-nilpotent ideals.

Among all the combinatorial properties of ad-nilpotent ideals, the
enumeration of ad-nilpotent ideals is an interesting problem and in-
volves many

The hyperplane arrangement plays an important role in the study of
ad-nilpotent ideals.

In the study of sign types [32], Shi obtained the number of ad-
nilpotent ideals by direct calculation. Later, in his thesis [1] and also
in [2], Athanasiadis studied the hyperplane arrangement that was re-
lated to the ad-nilpotent ideal and got the characteristic polynomial of
the Catalan arrangements by counting the number of points over finite
fields that do not lie in any defining hyperplanes. By using a result of
Zaslavsky, he got the number of dominant regions which was equal to
the number of ad-nilpotent ideals. All the approaches above are based
on case by case study of semisimple Lie algebras of different types. A
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case-free proof was first given by Cellini and Papa in [13]. They proved
that there was a bijection between the set of ad-nilpotent ideals and
the set of W -orbits in Q∨/(h + 1)Q∨, where Q∨ is the coroot lattice
and h is the Coxeter number of G. This led to a uniform formula for
the number of ad-nilpotent ideals of G (as well as dominant regions of
the Catalan arrangement):

1

|W |
n∏
i=1

(h+ ei + 1),

where e1, e2, . . . , en are the exponents of G.
E. Sommers in [33] defined maximal dominant elements of the affine

Weyl group associated to bounded dominant regions of the Catalan
arrangement. Then he derived the formula for the number of bounded
dominant regions of the Catalan arrangement:

1

|W |
n∏
i=1

(h+ ei − 1).

Indeed, it was proved by Athanasiadis in [3] that the characteristic
polynomial of the Catalan arrangement has a uniform formula:

χ(Cat, q) =
n∏
i=1

(q − h− ei).

The formulas of Cellini, Papi and Sommers are corollaries of his result.
The main purpose of this paper is to combine the ideas of [15] [34] In

analogy, θ-nilpotent subspaces can be considered as certain subspaces
of p that are invariant under the adjoint action of BK .

In the case of real groups, since there is no known bijection between
the set of θ-nilpotent spaces and some special affine Weyl group ele-
ments, the method of Cellini and Papi fails and we could not get a
uniform formula. However, the ideas in [1] and [2] can still be used in
the study of the real hyperplane arrangement as well as the θ-nilpotent
subspaces.

Suppose that GR is semisimple, we conjecture a general formula for
the characteristic polynomial of the real hyperplane arrangement A of
GR. Suppose h is the Coxeter number of G, the complexification of GR
and {e1, e2, . . . , em} is the set of exponents of K. We have the following
conjecture.

Conjecture 1.1. Keep the notations from above. Then the character-
istic polynomial of the real hyperplane arrangement A of GR is

χ(AK , q) =
m∏
i=1

(q − h+ ei).

The rest of the paper is organized as follows.
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2. θ-nilpotent subspaces

2.1. Basic Notation. We refer to the book of Onishchik and Vinberg
[25] and the book of Knapp [17] about the basic structure theory of
real reductive Lie algebras and Lie groups.

Let GR be a connected linear reductive real Lie group. Let θ be
the Cartan involution of GR. Let KR be the fixed points of θ. It is a
maximal compact subgroup of GR. We restrict our discussion to the
situation when rank(GR) = rank(KR). Let HR be a Cartan subgroup
of KR and H be its complexification. Under our assumption, HR is
also a maximally compact Cartan subgroup of GR. Let hR be the Lie
algebra of HR.

Let G (resp. K) be the corresponding complexification of GR (resp.
KR) and gR, g be the Lie algebra of GR and its complexification. We
denote by g = k ⊕ p the complexified Cartan decomposition of g. Let
h be the complexification of hR and ∆ be the root system of (g, h).
The root space that corresponds to any root α is denoted by gα. Since
hR ⊂ kR, for any α ∈ ∆, gα is θ-stable. Therefore either gα ⊂ k or
gα ⊂ p. In the first case, we call α a compact root and in the second
case, we call α a noncompact root. We write ∆k and ∆p for the set of
compact and noncompact roots respectively. Then ∆ = ∆k t∆p.

We choose a set of positive roots ∆+
k in ∆k and a set of positive

roots ∆+ in ∆ such that ∆+
k ⊂ ∆+. Let BK (resp. B) be the Borel

subgroups of K and G corresponding to ∆+
k and ∆+. Then B is θ-

stable and BK = B ∩K. Let W and WK be the Weyl groups of G and
K. For any w ∈ W , let ẇ be a representative of w in NG(H), where
NG(H) is the normalizer of H in G.

Let Q be the weight lattice and Q∨ be the coweight lattice. Let
V = Q∨⊗ZR, the real span of the coweight lattice. Then the dimension
of V is equal to the rank of K (and G) and all roots take real values
on V . In fact V = h0 := ihR.

Let C be the fundamental chamber and

Ck = {x ∈ V | β(x) > 0 for all β ∈ ∆+
k }.

We call Ck the (open) real dominant chamber of V .
For any left coset c ∈ WK\W , there exists a unique coset represen-

tative w ∈ c mapping C into Ck, i.e. ẇBẇ−1 ∩ K = B ∩ K. Let KW
be the set of such coset representatives. Then KW is in bijection with
WK\W .

2.2. θ-nilpotent Subspaces. Let B be the flag variety of G. Then
B is isomorphic to G/B. The group G acts on B transitively, which
induces a natural action of K on B simply by restriction. The flag
variety B is a disjoint union of finitely many K-orbits. We denote by Σ
the set of closed orbits of K in B. As mentioned in [21, lem 5.8], the set
of closed orbits is in bijection with the set of θ-stable Borel subalgebras
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(up to conjugacy), therefore, Σ is in bijection with KW . Namely

Σ = {KẇBẇ−1 | w ∈ KW}.
Here notice that the K-orbit KẇBẇ−1 is independent of our choice of
the representative ẇ ∈ NG(H), but is uniquely determined by w ∈ KW .
Therefore we denote the K-orbit by Qw.

For the complex group G, recall that we have defined the moment
map from the cotangent bundle of the flag variety to the nilpotent cone
in section 1.3. We fix a non-degenerate symmetric G-invariant bilinear
form on g and identify g with g∗ via this bilinear form. There is a
G-equivariant isomorphism T ∗B ' G ×B n. Under this isomorphism,
the moment map m : T ∗B → g∗ can be identified with the projection
map G×B n→ N (see [8, Lem 3.2.2 & Cor 3.2.3]).

For any w ∈ KW , if we restrict the moment map m to the conormal
bundle T ∗Qw(B) of some closed K-orbit Qw on B, the image m(T ∗Qw(B))
lies in the cone N ∗θ of nilpotent elements in (g/k)∗ = {f ∈ g∗ | f(x) =
0 for all x ∈ k}. In this way, we have a restriction of moment maps

mK : T ∗Qw(B) −→ N ∗θ .
Under the symmetric bilinear form on g, (g/k)∗ is identified with p and
there is a K-equivariant isomorphism

T ∗Qw(B) ' K ×ẇBẇ−1∩K (ẇnẇ−1 ∩ p).

Then mK is equivalent to

mK : K ×ẇBẇ−1∩K (ẇnẇ−1 ∩ p) −→ Np := N ∩ p.

Notice that for any w ∈ KW , ẇBẇ−1 ∩K = BK and there is a com-
mutative diagram:

T ∗Qw(B) //

��

N ∗θ
i

��
K ×BK (ẇnẇ−1 ∩ p) // Np

.

Recall that when talking about an ad-nilpotent ideal I, we always
need to specify a fixed Borel subalgebra b and I is an ideal of b. Now
if we pick any w ∈ KW , then ẇbẇ−1 is also a Borel subalgebra of g
and contains bk. Let I be an ad-nilpotent ideal of ẇnẇ−1, then I ∩ p is
BK-invariant and K ×BK I ∩ p is a subbundle of the conormal bundle
K ×BK (ẇnẇ−1 ∩ p).

Definition 2.1. We call a subspace of p a θ-nilpotent subspace if it is
the intersection of an ideal of some Borel subalgebra and p, where the
Borel subalgebra is of the form ẇbẇ−1 for some w ∈ KW .
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The name “θ-nilpotent” comes from the fact that any θ-nilpotent
space is θ-stable and consists of nilpotent elements. We denote by AdK
the set of θ-nilpotent subspaces. Then

AdK = {I ∩ p | where I is an ideal of ẇbẇ−1, and w ∈ KW}.
This definition of θ-nilpotent subspaces looks tedious and not very
natural. It’s possible to have an ideal I of ẇbẇ−1 and an ideal J
of ẇ1bẇ

−1
1 for some w,w1 ∈ KW , such that I ∩ p = J ∩ p. We may try

to interpret θ-nilpotent subspaces in a simpler way.
Let AdK be the set of BK-invariant subspaces of p, consisting no

semisimple elements. Then any θ-nilpotent subspace is BK-invariant
and consists of nilpotent elements, hence lies in AdK and AdK is a
subset of AdK . Now we can state our conjecture.

Conjecture 2.2. AdK = AdK. Namely, for any subspace in AdK,
there exists some w ∈ KW and some ad-nilpotent ideal I of ẇbẇ−1,
such that J = I ∩ p.

If Conjecture 2.2 is true, then we can have a simple and natural
definition of θ-nilpotent subspaces. Indeed, as we may see in Chap-
ter 4, we can prove this conjecture for U(m,n) via direct calculation.
Unfortunately, we don’t have a general proof of this conjecture now.

Lemma 2.3. [J, J ] ⊂ nk.

Proof. Since J is a sum of root spaces, it is enough to look at two
noncompact roots β1 and β2 so that Xβi is in J , and to prove that the
bracket of root spaces is in nk. If β1 = −β2, then Xβ1 +Xβ2 is a nonzero
semisimple elements ∈ J , contradiction. So assume β1 +β2 is not zero.
If it’s not a root, then the bracket is zero. So suppose β1 + β2 is a root
α. Since [p, p] ⊂ k, α has to be compact. If it’s positive, we’re done; so
suppose it’s negative. Then β1 − α = −β2, so [Xβ1 , X−α] is a nonzero
multiple of X−β2 . But the bracket is in [J, nk], so it follows that −β2 is
a weight of J , and again we get a semisimple element in J . �
Corollary 2.4. The space J + nk is an h-stable nilpotent subalgebra,
so it is contained in the nilradical of one of the Borel subalgebras wb,
for some w ∈ KW .

�
For any ad-nilpotent ideal I of a Borel subalgebra, the G-saturation

of I is the closure of one nilpotent G-orbit. We denote this orbit by
OI .

The K-saturation of a θ-nilpotent subspace J is always irreducible,
closed and lies in the nilcone of p, hence is the closure of one unique
nilpotent K-orbit, which we denote by OKJ .

We partially order the ad-nilpotent ideals of b by inclusion, writing
I1 � I2 if I1 is contained in I2. Similarly, we partially order θ-nilpotent
subspaces by inclusion.
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We partially order nilpotent orbits in g by inclusion of closures, writ-
ing O1 � O2 if O1 ⊆ O2. Similarly, for nilpotent orbits of K, we write

OK1 � OK2 if OK1 ⊆ OK2 .
First it’s easy to see that if one ideal is contained in another, i.e.

I1 ⊂ I2, thenOI1 � OI2 . On the other hand, ifO1, O2 are two nilpotent
G-orbits and O1 � O2, the following theorem of Sommers showed that
it’s possible to find two ideals I1 ⊂ I2 and OI1 = O1, OI2 = O2 under
the assumption that there’s no intermediate orbit between O1 and O2.

Theorem 2.5. [34, Thm4.2] Suppose O1, O2 are two nilpotent G-orbits
such that O1 � O2 and there’s no intermediate orbit between O1 and
O2. Then there exist two ad-nilpotent ideals I1 and I2, such that I1 � I2

and OI1 = O1, OI2 = O2.

We will prove a similar result for nilpotent K-orbits and θ-nilpotent
subspaces. This is the precise statement.

Theorem 2.6. Suppose OK1 and OK2 are two nilpotent K-orbits in p
and OK1 � OK2 . There’s no intermediate orbit between OK1 and OK2 .
Then there exist two θ-nilpotent subspaces J1 and J2, such that J1 � J2

and OKJ1
= OK1 , OKJ1

= OK1 .

2.3. Normal Triples.

Definition 2.7. A normal triple {H,X, Y } in g is a standard triple
with θ(X) = −X, θ(Y ) = −Y and θH = H.

Given a normal triple {H,X, Y }, then g can be decomposed into a
direct sum of eigenspaces by the adjoint action of H.

g =
⊕

i∈Z
gH,i, where gH,i = {Z ∈ g|[H,Z] = iZ}.

We denote by gH,>2 the direct sum of eigenspaces of H with eigen-
values bigger or equal to 2 and define gH,>2 in the same way. Since H
is fixed by θ, each subspace gH,2, gH,>2 is θ-invariant.

We write OX for the G-orbit through X and OKX for the K-orbit
through X.

Lemma 2.8. [20] Let OK be a nilpotent K orbit. Then there exists
a normal triple {H,X, Y } such that OKX = OK, H ∈ h0 and H is
dominant for all the positive roots in k.

If H is dominant, we call I = gH,>2 a Dynkin ideal. From Theorem
2.1.4, OX ∩ I is open and dense in I.

Lemma 2.9. [20] Keep the notations as above. Then OKX ∩ (I ∩ p) is
open dense in I ∩ p. This implies that K(I ∩ p) = OX .

In particular, H is uniquely determined by the orbit OKX (see [20]
and [16]).
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2.4. Proof of Theorem 2.6. For simplicity, we write O1 for OK1 and
O2 for OK2 . First we show that if O1 ≺ O2, there exist two ideals I
and J stable under the same Borel subalgebra b′ with the property:

I ⊂ J ; I, J are θ-stable; K(I ∩ p) = O1 and K(J ∩ p) = O2.

By Lemma 2.8, there is a normal triple {e2, H, f} with e2 ∈ O2,
H ∈ h0, and H dominant for bk. Define J = gH,>2. Then J is a
θ-nilpotent ideal preserved by bk and K(J ∩ p) = O2.

Since O1 ⊂ K(J ∩ p), there exists an element e1 ∈ O1 ∩ (J ∩ p).
There’s a decomposition e1 = x + x′ where x ∈ gH,2 ∩ p, and x′ ∈
gH,>2 ∩ p.

Again there exists a normal triple {h, x, y} for x. We have h and
H are both semisimple elements in k with eigenvalue 2 on x. We can
write H = h+ z, where z ∈ Zk(x) and Zk(x) is the centralizer of x in k.
Then z is also semisimple. Since z is semisimple, it can be conjugated
by some k′ ∈ ZK(x,H) to k′z ∈ t, where t is the Cartan subalgebra of
ZK(X) and is contained in h. Here ZK(x,H) denotes the centralizer
of x,H in K. In this case, k′h = H − k′z ∈ h and we can replace the
triple {h, x, y} with {k′h, x, k′y} and e1 with k′e1 = x + k′x′, where
x ∈ gH,2 ∩ p and k′x′ ∈ gH,>2 ∩ p. By abuse of notation, we still use
{h, x, y} to denote the normal triple and e1 to denote k′e1. Then h and
H lies in the same Cartan h.

Let I be (gH,2 ∩ gh,>2)
⊕

gH,>2. It is θ-stable and contains e1. It’s
obvious that I ⊂ J . In the proof of Theorem 4.2 in [34], Sommers
showed that I does not intersect Ge2. Then K(I ∩ p)  K(J ∩ p).

Then we have the following inclusion:

O1 ⊆ K(I ∩ p) ( K(J ∩ p) = O2.

Recall that there’s no intermediate orbit between O1 and O2. Then
it follows O1 = K(I ∩ p).

Next we claim that I and J lie in the same nilradical of some Borel
subalgebra b′ and they are the b′ stable ideals.

We choose a Weyl group element w in W so that H is dominant for
the root system w(∆+). Since H is b dominant, we can assume that
w∆+ contains ∆+

k . Then J is a w(b)-stable ideal and lies in w(n).
Let L be the subgroup of G with Lie algebra gH,0 . Then h ⊂ gH,0

and let WL be the Weyl group of L. We conjugate wb by some Weyl
group element wl with the property that h is dominant for the root
system wl(w∆+ ∩∆(l)). We can assume that wl∆

+
k = ∆+

k . Since WL

fixes H, it also fixes the wb ideal gH,>2. In other words, gH,>2 is a
wlwb-stable ideal.

Next by following an analogous statement in Sommers’ paper [34],
we can also prove that I is also a wlwb-stable ideal.

Since wlw∆+
k = ∆+

k , I∩p and J∩p are the two θ-nilpotent subspaces
we want. �
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3. The Associated Hyperplane Arrangement for G

3.1. Background. The idea of θ-nilpotent subspaces in the real case
is an analogue of ad-nilpotent ideals in the complex case. In the com-
plex case, the ad-nilpotent ideals are closely related to the theory of
affine Weyl groups and hyperplane arrangements. For example, Cellini
and Papi showed in [12] that there exists a bijection between the set
of dominant minimal affine Weyl group elements and the set of ad-
nilpotent ideals. It was also proved by J. Y. Shi in [32] that the set of
ad-nilpotent ideals is in bijection with the set of dominant regions of
the Shi arrangement (and the set of dominant regions of the Catalan
arrangement) (see the definition below).

When we turn to the situation of real groups, there is no known
bijection between the set of θ-nilpotent spaces and some special affine
Weyl group elements. This is because in general there might be several
minimal elements in the affine Weyl group corresponding to one θ-
nilpotent space. However, we will see that there still exists a bijection
between the set of θ-nilpotent subspaces and the set of dominant regions
of certain special hyperplane arrangements. Therefore, the theory of
hyperplane arrangements can be applied to the case of real groups with
some necessary modifications.

Definition 3.1. A hyperplane arrangement is a finite collection of
affine hyperplanes of Rn.

Definition 3.2. A region of an arrangement A is a connected compo-
nent of the complement X of the hyperplanes:

X = Rn − ∪H∈AH.
A bounded region is a region that is contained in a ball of finite

radius.

The number of the regions of A is denoted by r(A). The number of
bounded regions is denoted by b(A).

For instance, let G be a complex reductive Lie group of rank n. Let
∆ be the set of roots and ∆+ be the set of positive roots of G. Let V =
X∗⊗ZR ∼= Rn, where X∗ is the coweight lattice. The simplest example
of hyperplane arrangement is {Hα,0 | α ∈ ∆}. Its regions are the Weyl
chambers. We call it the Coxeter arrangement that corresponds to the
root system ∆.

If moreover the arrangement A contains the Coxeter arrangement as
a subarrangement, we call a region dominant when it is contained in
the fundamental chamber of V .

By definition in [30] and [31], the collection of hyperplanes of the Shi
arrangement is given by

Shi = {Hα,k | α ∈ ∆+, k = 0, 1}.



θ-NILPOTENT SUBSPACES AND THE ASSOCIATED HYPERPLANE ARRANGEMENT9

The collection of hyperplanes of the Catalan arrangement is given
by

Cat = {Hα,k | α ∈ ∆+, k = 0, 1,−1}.
In the papers [3] and [4], Athanasiadis introduced the generalized

Catalan arrangements. A generalized Catalan arrangement is defined
by

gCat = {Hα,k | α ∈ ∆+, k = 0, 1, . . .m}
for some positive integer m. The characteristic polynomials of the
general Catalan arrangements are similar to those of the usual Catalan
arrangements.

From the definition above, the dominant regions of the Shi arrange-
ment and the Catalan arrangement are exactly the same.

3.2. Characteristic Polynomials. For an arbitrary arrangement A,
let LA be the set of non-empty intersections of hyperplanes in A, in-
cluding V itself as the intersection of empty set. The partial order
on LA is defined by the reverse inclusion principle. Namely, for any
x, y ∈ LA, x � y if and only if x ⊇ y. Given by this partial order,
LA becomes an intersection poset. In particular, the space V is the
minimal element in the poset LA and is denoted by 0̂.

The Möbius function µ of LA is defined recursively by

µ(x, x) = 1, for any x ∈ LA;

µ(x, y) = −
∑
x6z<y

µ(x, z), for all x < y in LA.

Using the Möbius function, the characteristic polynomial is defined
by

χ(A, q) =
∑
x∈LA

µ(0̂, x)qdimx.

In geometry, let M be the complex manifold Cn − ∪H∈AH, where
A is considered as the set of complexified hyperplanes in Cn. The
Poincaré polynomial of M is

p(M, t) =
∑
p>0

Hp(M,C)tp,

where Hp(M,C) is the p-th cohomology of the complement M. It
was proved by Orlik and Solomon in [24] that the relation between the
characteristic polynomial and the Poincaré polynomial is

p(M, t) = (−t)nχ(A,−t−1).

The geometric method to compute the characteristic polynomial
seems not straightforward. In combinatorics, a practical method to
compute the characteristic polynomial is to restrict the hyperplanes in
the finite field and count the number of some points, which would give
us a polynomial. This is the finite field method.
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The origin of finite field method was implicit in the work of Crapo
and Rota (see [14]) about the Möbius inversion argument.

Motivated by their ideas and the work of Blass and Sagan in [7],
Athanasiadis developed a systematic tool to compute characteristic
polynomials for all hyperplane arrangements defined over integers. In
particular, He used the abelian group Zq of integers modulo q instead
of a power prime.

An hyperplane arrangement A is called a Z-arrangement if its hy-
perlanes are given by equations with integer coefficients. If we reduce
the coefficients of A modulo q, then A defines an arrangement in Znq .
Then Athanasiadis showed that

Theorem 3.3. [1] [2] [5] [6] Let A be a Z-arrangement in Rn. There
exist positive integer r, k which depend only on A, such that for all q
relatively prime to r with q > k,

χ(A, q) = ](Znq − ∪H∈AH).

A good exposition of finite field method is the lecture note [36] of
Stanley.

Once we have obtained the characteristic polynomial of the arrange-
ment A, it can be applied immediately to count the number of regions
r(A) and the number of bounded regions b(A) of the arrangement A.
This is based on a result of Zaslavsky [37, section 2].

Theorem 3.4. For any hyperplane arrangement A in Rn, we have

r(A) = (−1)nχ(A,−1)

and

b(A) = |χ(A, 1)| = |
∑
x∈LA

µ(0̂, x)|,

where | · | denotes the absolute value.

Fix a positive root system ∆+ and two integers a 6 b, we denote by
Â[a,b](∆) the hyperplane arrangement defined by

(α, x) = k for α ∈ ∆+ and k = a, a+ 1, . . . , b.

In particular, if ∆ = An, we denote the hyperplane arrangement by

Â[a,b]
n and if ∆ = BCn, we denote it by B̂C[a,b]

n .

Remark. In Theorem 3.3, the assumption for q is that q is relatively
prime to an integer r and is big enough. As discussed in the remark
after Theorem 2.1 of [5], Athanasisiadis stated that if the arrangement

A is contained in some Â[a,b]
n and B̂C[a,b]

n respectively, then the choice
of r is 1 or 2. We will use this fact in Lemma 3.12 and 3.18.
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3.3. The Real Hyperplane Arrangements. One motivation to study
the real hyperplane arrangement comes from the paper [15] of Gun-
nells and Sommers and the paper [27] of Panyushev. In the complex
case, there is a one-to-one correspondence between the set of domi-
nant regions of the Shi (or the Catalan) arrangement and the set of
ad-nilpotent ideals of g. In the real case, we will exhibit a one-to-
one correspondence between the set of dominant regions of certain real
hyperplane arrangement and the set of θ-nilpotent subspaces.

The general setting in this subsection is the same as in section 1.

Definition 3.5. The real hyperplane arrangement A is the set of hy-
perplanes

{Hα,0 | α ∈ ∆+
k } ∪ {Hα,1 | α ∈ ∆p},

where Hα,k = {v ∈ V | α(v) = k}.
This set of hyperplanes cuts V into open regions. In particular,

the boundary of the real dominant chamber is the set {Hα,0 | α ∈ ∆k},
which is a subset of the real hyperplane arrangement. Hence the regions
in the real dominant chamber are the open connected components of
Ck − ∪α∈∆pHα,1. We denote by R the set of regions in Ck. Given a
region R ∈ R, we define a subspace of p by

IR = ⊕α∈IRgα, where IR = {α ∈ ∆p | α(x) > 1 for any x ∈ R}.
Then we have the following lemma.

Lemma 3.6. Let IR be a θ-nilpotent subspace and IR be its correspond-
ing set of roots. Then

(i) If µ ∈ IR, γ ∈ ∆+
k and µ+ γ ∈ ∆p, then µ+ γ ∈ IR.

(ii) The subspace IR is bk-stable, where bk is the Borel subalgebra of
k corresponding to ∆+

k .
(iii) The K-saturation of IR is the closure of a unique nilpotent K-

orbit.

Proof. Since the region R lies in the real dominant chamber, γ(x) > 0
for all x ∈ R. (i) holds. (ii) follows from (i).

To prove (iii), we choose a generic element h ∈ R, i.e. α(h) 6= 0
for all α ∈ ∆. There exists an element w ∈ W , such that wh is
dominant, i.e. α(wh) > 0, for all α ∈ ∆+. Let J = ⊕α∈J gα, where
J = {α ∈ ∆+ | α(wh) > 1}. Then J is an ad-nilpotent ideal of b and
IR is a equal to w−1J ∩ p. By its definition, IR is θ-nilpotent.

Proposition 3.7. There exists a bijection between the set of dominant
regions of the real hyperplane arrangement A and the set of θ-nilpotent
subspaces.

Proof. Given a region R ∈ R, in the proof of Lemma 3.17(iii),
we actually constructed an ideal J of b, such that IR = w−1J ∩ p
is a θ-nilpotent subspace. Conversely, given a θ-stable subspace I,
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and the corresponding set I of weights of I, the region is defined by
R = (∩α∈IHα,+) ∩ Ck, where Hα,+ = {x ∈ V | α(x) > 1}. Indeed, the
region can be rewritten as

R = {x ∈ Ck | γ(x) > 1,∀γ ∈ I and γ(x) < 1, ∀γ ∈ ∆p − I}.
We only need to check that R is nonempty. By the definition of

θ-nilpotent subspaces, there exists an ad-nilpotent ideal J of wb (w ∈
KW ), such that I = J ∩ p. Then w−1J is an ad-nilpotent ideal of b
and by Proposition 1.4.1, there exists a sign type S corresponding to
w−1J . Then wS lies in R, which shows that R is nonempty. �

For any θ-nilpotent subspace I, we denote its corresponding region
by RI .

Recall that the affine Weyl group played an important role in the
description of ad-nilpotent ideals. Here it also has some applications.
In this subsection, we keep the same notation of C0 (the fundamental

alcove), Ŵ , ∆̂ = {kδ + ∆ | k ∈ Z} and V̂ = V ⊕ Rδ ⊕ Rλ as in [9].
Since the hyperplanes in A are among those defining the alcoves of V ,
any alcove of V is contained in some regions of A.

Given a θ-nilpotent subspace I, pick an element ŵ ∈ Ŵ , such that
ŵ−1(C0) ⊂ RI . That means that the hyperplane Hγ,1 separates C0 from
ŵ−1(C0) for any γ ∈ I and C0 and ŵ−1(C0) lie in the same side of Hγ,1

when γ ∈ ∆p−I. That is, if γ is a noncompact root, then ŵ(δ−γ) < 0
if and only if γ ∈ I.

Some results of ad-nilpotent ideals in [28] are still valid for the θ-
nilpotent subspaces. For example, if I is θ-nilpotent subspace, set
|I| = ∑gγ⊂I γ. Then we have

Lemma 3.8. Let I1, I2 be two θ-nilpotent subspaces and |I1| = |I2|,
then I1 = I2.

Proof. Let I1, I2 be the corresponding sets of roots of I1 and I2. We
write I1\I2 (resp. I2\I1) as the set of roots that is contained in I1 but
not in I2 (resp. the roots in I2 but not in I1). Suppose that I1 6= I2,
then either I1\I2 or I2\I1 is nonempty or both. Since |I1| = |I2|, we
have

∑
β∈I1\I2 β =

∑
γ∈I2\I1 γ. This equality can be rewritten as

∑

β∈I1\I2
(δ − β)− cδ =

∑

γ∈I2\I1
(δ − γ)

where c = dim I1 − dim I2. Without loss of generality, we assume that

c > 0. Pick an element ŵ ∈ Ŵ such that ŵ−1(C0) ⊂ RI1 . Then
ŵ(δ − β) < 0 for any β ∈ I1\I2 and ŵ(δ − γ) > 0 for any γ ∈ I2\I1.
Moreover ŵ fixes cδ. We apply ŵ to the equation above and get a
contradiction. �

The proof is basically the same as in [28] except that we need to
change the minimal element in [28] to an arbitrary affine Weyl group
element in RI1 .
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Given any region R in the real dominant chamber Ck, and its cor-
responding θ-nilpotent subspace IR, recall from section 1 that under
the moment map, IR is mapped to the closure of one unique nilpotent
K-orbit, which is denoted by OIR . Namely, the closure of the orbit OIR
is the K-saturation of IR.

Let R be the set of dominant regions of A in Ck. Given a nilpotent
K-orbit O, define

NO = {R ∈ R | K · IR = O}.
Recall in the subsection 2.3 of section 2, we have discussed normal
triples. There exists a unique H ∈ V = h0 that corresponds to the
orbit O. Then we have the following lemma.

Lemma 3.9. 1
2
H ∈ NO and for all h ∈ NO, |h| > 1

2
|H|, where ||

denotes the length function. If h 6= 1
2
H, then |h| > 1

2
|H|.

Proof. It’s a special case of Proposition 2.4 in [27]. �
Remark. The complex case is proved in [15].

3.4. The Real Hyperplane Arrangement for U(m,n). In this sec-
tion, let GR = U(m,n). Then gR = u(m,n). The complexifications of
GR and gR are G = GL(m + n) and g = gR ⊗R C = gl(m + n). The
Cartan involution θ is given by

θ(g) =

(
Im 0
0 −In

)
g

(
Im 0
0 −In

)
, for any g ∈ GL(m+ n).

Then K = GL(m) × GL(n) (embedded block diagonally into G).
The space V = ihR is isomorphic to Rm+n.

The real hyperplane arrangement for U(m,n) is the following set of
hyperplanes

xi − xj = 0, for 1 6 i, j 6 m, or m+ 1 6 i, j 6 m+ n,(1)

xi − xj = 1,−1, for 1 6 i 6 m,m+ 1 6 j 6 m+ n(2)

and is denoted by Am,n.

Example 3.10. The characteristic polynomial for A2,1 is q(q2 − 5q +
6) = q(q − 2)(q − 3) (see Figure 4-1).

Theorem 3.11. The characteristic polynomial of Am,n is given by

χ(Am,n, q) = q

m−1∏
i=1

(q − n− i)
n−1∏
j=0

(q −m− n+ j).

To prove this theorem, we follow [1] [2] and apply the finite field
method introduced in subsection 4.1.3.

Suppose A is an arrangement in Rm+n consisting of distinct hyper-
planes of the form a1x1 + a2x2 + · · ·+ am+nxm+n = a0 with all ai in Z
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Figure 1. The real hyperplane arrangement for A2,1 on
the space x1 + x2 + x3 = 0

and a1, a2, . . . , an not all zero. Let q be a large enough integer satisfy-
ing the assumption of Theorem 3.3. By Theorem 3.3, χ(A, q) counts
the number of (n+m)-tuples (x1, x2, . . . , xm+n) in Zn+m

q which satisfy
conditions of the form

a1x1 + · · ·+ am+nxm+n 6= a0.

Each (n + m)-tuple (x1, x2, . . . , xn+m) in Zn+m
q can be considered as a

map from the index set [n + m] = {1, 2, . . . , n + m} to Zq, with the
image of i being xi.

Elements of Zq can be arranged clockwise in a circle with q boxes.
The zero class of Zq is placed on the top of the circle and 1 mod Zq
is placed next to the zero class in the clockwise order, etc. Under this
idea, an (n + m)-tuple (x1, x2, . . . , xm+n) in Zm+n

q is a placement of
integers from 1 to m + n into q boxes on the circle with the integer
i goes into the box xi. The defining equations for A (which are not
satisfied) give certain restrictions on the placement. For example, if
A contains the Coxeter arrangement Am+n−1 as a subarrangement , it
means that any distinct integers i and j should not be placed into the
same box. If A contains the hyperplanes xi − xj = 1, then the integer
i could not follow j immediately in the clockwise order.

Suppose that the equations in A are all of the form xi − xj = m
(This is the case for the real hyperplane arrangement Am,n). In the
interpretation of elements of Zm+n

q as placements of the integers from
1 to m+n into q boxes on a circle, such an equation says that i should
not be placed m boxes clockwise from j. Such a condition does not
refer to which box is labeled 0, but only to relative position around the
circle.

We may therefore consider a new formula

χ̃(A, q)(4.1.5)
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which counts placements of the integers from 1 to m + n into q boxes
on a circle; two placements differing by a rotation of the circle are
now regarded as equal. Each such placement corresponds to q different
placements of type A, corresponding to the q possible boxes to label
as 0. The relation between χ(A, q) and χ̃(A, q) is therefore:

χ̃(A, q) =
1

q
χ(A, q).

This shows in particular that χ(A, q) always has q as a factor.
For large enough q, χ̃(A, q) is the characteristic polynomial of A

restricted in the hyperplane x1 + · · · + xm+n = 0, therefore, it is the
characteristic polynomial for the real group SU(m,n).

For two integers i and j, if xi − xj = 1, we say that i is consecutive
to j. We call i, j next to each other if xi − xj = ±1. Those boxes that
are not filled with integers are called “unlabeled” boxes.

We divide the index set [n + m] into two groups. The first group is
the subset {1, 2, . . . ,m} and the remaining integers m + [n] = {m +
1,m + 2, . . . , n + m} form the second group. Indeed these two groups
of integers are invariant under Sn × Sm (the Weyl group of K).

By defining equation (1) of Am,n, one can tell that two integers from
the same group should not be placed into the same box and by equation
(2) of Am,n, two integers from different groups should not be placed
next to each other.

One difficulty to count the number χ(Am,n, q) directly is that two
integers from different groups could be placed in the same box. To
overcome such difficulty, we may apply some idea in [1]. That is, we
may introduce a new arrangement that contains the Coxeter arrange-
ment Am+n−1 as a subarrangement and find a relation between the
characteristic polynomials of the two arrangements.

Theorem 3.13 follows from the following two lemmas.

Remark. By the remark at the end of subsection 4.1.2, r = 1 and we
can assume q, q −m are both big enough and relatively prime to 1.

Lemma 3.12. Let Ãm,n be the hyperplane arrangement that’s defined
by

xi − xj = 0, 1, for 1 6 i, j 6 m,(3)

xi − xj = 0, for m+ 1 6 i, j 6 m+ n,(4)

xi − xj = 0, 1,−1, for 1 6 i 6 m,m+ 1 6 j 6 m+ n.(5)

Suppose q and q −m satisfies the requirements of Theorem 3.3. We
have

χ̃(Am,n, q −m) = χ̃(Ãm,n, q).
Proof. A placement of type α(q −m) is a placement of the integers

from 1 to m + n into q − m boxes arranged around a circle (modulo
rotations of the circle), subject to the following requirements:
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-two integers from the same group cannot be placed in the same box;
and

-two integers from different groups cannot be placed next to each
other.

The number of placements of type α(q −m) is χ̃(Am,n, q −m).
For example, if we cut the circle of boxes and unfold it, in the clock-

wise order, the possible form of a sub-string of the boxes could be :

�i0/j0�i1i2 . . . ik� . . .�j1j2 . . . jl���
where 1 6 i0, . . . , ik 6 m, m + 1 6 j0, . . . , jl 6 m + n, � denotes the
unlabeled boxes, i0/j0 denotes that the integer i0 and j0 fill the same
box in the string and i1 . . . ik denotes that integers i1, . . . , ik fill distinct
boxes in the string.

A placement of type β(q) is a placement of the integers from 1 to
m + n into q boxes around a circle (also modulo rotations of circle),
subject to the following requirements:

-two integers from the first group cannot be placed in the same box
or next to each other (equation (3));

-two integers from the same group cannot be placed in the same box
(equation 4); and

-two integers from different groups cannot be placed in the same box
or next to each other (equation (5)).

The number of placements of type β(q) is χ̃(Ãm,n, q).
For example, one string of the placement of type β(q) could be partly

of form

�i1� . . .�i2� . . .�j1 . . . jl�
where �, i1, i2, and j1 . . . , jl have the same meaning as before.

In order to prove the lemma, we construct a bijection between place-
ments of type α(q −m) and placements of type β(q).

For any placement of type β(q), the boxes that are next to the integer
i, when 1 6 i 6 m are always boxes unfilled with integers. Remove
each unfilled box that’s consecutive to i in the clockwise order. The
remaining q − m boxes form a circle filled with m + n integers and
different integers are always in different boxes. After the removal of m
boxes, in the clockwise order, the possible form of string of consecutive
integers could only be

�i1i2 . . . ikj1j2 . . . jl�
where 1 6 i1, . . . , ik 6 m, m + 1 6 j1, . . . , jl 6 m + n. The string
of integers always begins with integers from the first group because
only the unlabeled boxes following integers from the first group are
removed and sting of integers from the second group always end with
an unlabeled box.

When k = 0 or l = 0, the string of integers satisfies the restrictions
for placements of type α(q − m). If k and l are both nonzero, then
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two integers from different groups are consecutive to each other, which
contradicts the restriction for Am,n. Then we need to rearrange this
string of integers to get a placements of type α(q−m). If k > l, in the
clockwise order, we rearrange the string in the following form

�i1 . . . ik−l�ik−l+1/j1� . . .�ik/jl.

If k < l, we rearrange the string in the form

�i1/j1�i2/j2� . . .�ik/jk�jk+1 . . . jl.

After this readjustments, two integers from different groups are not
consecutive to each other, but it’s possible to have such two integers
into the same box. This gives a placement of type α(q −m).

On the other hand, given any placement of type α(q−m), we could
reverse our operations and get a placement of type β(q). This gives
us a bijection between these two placements and the equality for the
characteristic polynomial follows. �

Lemma 3.13.

χ(Ãm,n, q) = q

m−1∏
i=1

(q −m− n− i)
n−1∏
j=0

(q − 2m− n+ j).

Proof. Notice that χ(Ãm,n, q) = qχ̃(Ãm,n, q). For χ̃(Ãm,n, q), we
need to count the number of placements of type β(q) in lemma 3.12.
Since Ãm,n includes Am+n−1 as subarrangement, the m+n integers are
placed into distinct boxes and there are q −m− n boxes unfilled with
integers. Assume the q−m−n boxes arranged around a circle and we
need to insert integers from 1 tom+n in between these unlabeled boxes.
Because of cyclic symmetry, there is 1 choice to place 1. Integers from
the first group could not be next to each other so there are q−m−n−1
possible choices for 2 and q−m−n− i choices for the i+1 when i < m.
Altogether there are

∏m−1
i=1 (q −m − n − i) ways to insert the first m

integers.
The integers from m+ 1 to m+ n could not be inserted into spaces

between two unlabeled boxes that already contain integers from the
first group. There are q−2m−n choices for m+1. Since integers from
the second group could be next to each other, there are q − 2m− n+
j − 1 ways to insert the integer m + j. Combining these two kinds of
insertions together, we get the desired formula for Ãm,n. �

Combining the two lemmas from above, we are able to get the char-
acteristic polynomial of Am,n. �

Applying the theorem of Zaslasvky [37, section 2], we have the fol-
lowing consequence.
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Corollary 3.14. The number of regions of Am,n is

r(Am,n) = |χ(Am,n,−1)| =
m−1∏
i=1

(n+ 1 + i)
n∏
j=1

(m+ 1 + j)

and the number of bounded regions of Am,n is

b(Am,n) = |χ(Am,n, 1)| =
m−1∏
i=1

(n− 1 + i)
n∏
j=1

(m+ j − 1).

�
Also combining Proposition 3.7 and Theorem 3.13 above, one can

count the number of θ-nilpotent subspaces.

Corollary 3.15. The number of θ-nilpotent subspaces is equal to

N(m+ n+ 1,m) =
1

m+ n+ 1

(
m+ n+ 1

m

)(
m+ n+ 1

m+ 1

)
.

Proof. The arrangement Am,n is invariant under the Weyl group of
K. Therefore, the number of regions in Ck is equal to 1

](WK)
|χAm,n(−1)|.

It’s an easy calculation to show that 1
](WK)

r(Am,n) = N(m+n+ 1,m).

This corollary follows from Proposition 3.7. �

Remark. The integer N(n, k) = 1
n

(
n
k

)(
n
k+1

)
is called a Narayana num-

ber.

3.5. The Real Hyperplane Arrangement for Sp(m,n). Let GR =
Sp(m,n). Then gR = sp(m,n) and g = gR ⊗ C = sp(m + n). Also
K = Sp(m) × Sp(n) and the set of compact roots ∆k is the disjoint
union of the root systems of sp(m) and sp(n).

Let Cm,n be the real hyperplane arrangement with the set of hyper-
planes:

2xi = 0, for 1 6 i 6 m+ n,

xi − xj = 0, for 1 6 i, j 6 m, or m+ 1 6 i, j 6 m+ n,

xi + xj = 0, for 1 6 i, j 6 m, or m+ 1 6 i, j 6 m+ n,

xi − xj = 1,−1, for 1 6 i 6 m,m+ 1 6 j 6 m+ n,

xi + xj = 1,−1, for 1 6 i 6 m,m+ 1 6 j 6 m+ n.

Example 3.16. The characteristic polynomial for C(1, 1) is q2 − 6q +
9 = (q − 3)2.

Theorem 3.17. The characteristic polynomial for Cm,n is

χ(Cm,n, q) =
m∏
i=1

(q − 2(m+ n) + 2i− 1)
n∏
j=1

(q − 2(m+ n) + 2j − 1).
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Figure 2. The real hyperplane arrangement for C1,1

The idea to prove the U(m,n) case is still applicable here.
Let q be a large enough integer satisfying the assumption of Theorem

3.3. As in the previous case, the abelian group Zq is arranged into a
circle of boxes with each box denoting a class mod q. The zero class is
placed on the top and all other classes in Zq increase in the clockwise
order. For arbitrary hyperplane arrangement C in type B,C,D, since
we are dealing with both hyperplanes of the form xi ± xj = α, the
m+n-tuples (x1, x2, . . . , xm+n) are considered as a map from±[m+n] =
{±1,±2, . . . ,±(m + n)} to Zq, sending i to the class xi ∈ Zq and −i
to the class −xi.

Elements of ±[m+n] are called signed integers. The set of signed in-
tegers is divided into two groups. The first group is±[m] = {±1, . . . ,±m}
and the second group is ±(m + [n]) = {±(m + 1), . . . ,±(m + n)}.
The two groups of integers are invariant under the Weyl group of
K = Sp(m)× Sp(n).

To count the number of (n+m)-tuples (x1, x2, . . . , xn+m) which does
not satisfy the defining equation in C, we need to count again the total
number of placements of 2(m + n) signed integers into q boxes, with
restrictions that come from the defining equation of C. For example,
the equation 2xi = 0 means that i should not placed into the zero class
on the top of the circle. The equations xi ± xj = 0 means that the
signed integers i and −i should not be placed to the same box as j.

Moreover, the signed integers are placed symmetrically around the
zero class. If i is placed into the xi class, then −i is placed into the −xi
class. Again we call boxes unfilled with integers “unlabeled” boxes.

The theorem follows from the following two lemmas.
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Let C̃m,n be the hyperplane arrangement defined by the following set
of hyperplanes.

2xi = 0, for 1 6 i 6 m+ n,(1)

xi ± xj = 0,±1, for 1 6 i, j 6 m, and i 6= j,(2)

xi ± xj = 0, for m+ 1 6 i, j 6 m+ n, and i 6= j,(3)

2xi = 0,±1, for 1 6 i 6 m,(4)

xi ± xj = 0,±1, for 1 6 i 6 m,m+ 1 6 j 6 m+ n.(5)

The relation between χCm,n(q) and χC̃m,n(q) is given by the following
lemma.

Remark. By the remark at the end of subsection 4.1.2, r = 2, if we
assume q is odd and big enough, then q and q − 2m both satisfy the
assumption of Theorem 3.3.

Lemma 3.18. Let q be an odd integer and q−2m satisfy the condition
of Theorem 3.3. Then

χ(C̃m,n, q) = χ(Cm,n, q − 2m).

Proof. A placement of type α(q − 2m) is a placement of the signed
integers from ±1 to ±(m+n) into q−2m boxes around a circle, subject
to the following requirements:

-the signed integers i and −i should be placed symmetrically around
the zero class;

-two integers from the same group cannot be placed to the same box;
and

-two signed integers from distinct groups cannot be placed next to
each other.

The number of placements of type α(q − 2m) is χCm,n(q − 2m).
A placement of type β(q) is a placement of the signed integers from
±1 to ±(m + n) into q boxes around a circle, subject to the following
requirement:

-the signed integers i and −i should be placed symmetrically around
the zero class;

-any two signed integers cannot placed into the same box (equation
(1)(2)(3)) and any two signed integers from the second group cannot
be not placed next to each other (equation (2));

-all signed integers from the first group cannot be placed to the class
1
2
(q − 1) and 1

2
(q + 1) (equation (4)); and

-two signed integers from distinct groups cannot placed next to each
other (equation (5)).

The number of placements of type β(q) is χC̃m,n(q).
To get a bijection between these two kinds of placements, we need

to remove 2m unlabeled boxes from the placements of type β(q) and
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readjust the position of some signed integers to get a placement of type
α(q − 2m).

From the description of two placements above, i and −i could not
appear both on the right half circle from the class zero to the class
1
2
(q − 1) mod Zq. It suffices to do the operation the right semicircle

and do a symmetric operation on the left side.
Given a placement of type β(q), remove one unlabeled box that is

clockwise consecutive to a signed integer from the right half circle.
Remove the same amount of unlabeled boxes on the left hand side in
a symmetric way. This operation is possible because of equation (2)
and (4). Equation (2) ensures that signed integers from the first group
is not next to any signed integers. Equation (4) ensures that elements
from the first group would not occupy the last position 1

2
(q − 1).

Similar to the U(m,n) case, a consecutive string of integers on the
right semicircle only has form

i1i2 . . . ikj1j2 . . . jl,

where i1, i2, . . . , ik come from the first group and j1, j2, . . . , jl come
from the second group. To readjusting the position of these integers,
we may choose a way that’s slightly different from the previous case.
When k < l, then in the clockwise order, the new string would become

i1/j1�i2/j2 . . . ik/jk�jk+1 . . . jl,

where is/js means that is and js are placed into the same box, � means
that it’s an unlabeled box. The last part jk+1 . . . jl is a string of integers
placed clockwise into distinct boxes that are consecutive to each other.
When k < l, the new string is

i1/j1�i2/j2 . . . ik/jk�il+1 . . . ik.

We do a symmetric operation on the left side. Under this adjustment,
the last position on the right semicircle could not have two signed
integers in the same box. This make sure that this placement satisfies
all the equalities that are defined by χCm,n and we get a placement of
type α(q− 2m). The reverse operation is obvious and therefore we get
a bijection of two kinds of placements, as well as the equality for the
two characteristic polynomials. �

The number of placements of type β(q) is easy to compute and we
can derive the characteristic polynomial of C̃m,n.

Lemma 3.19. The characteristic polynomial for C̃m,n is equal to

χ(C̃m,n, q) =
m∏
i=1

(
q − 2(m+ n)− 2i+ 1

) n∏
j=1

(
q − 4m− 2n+ 2j − 1

)
.

Proof. To calculate the number of circular placements of type β(q),
again we only need to discuss the right semicircle. There are m + n
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signed integers that should be placed on the right hand side and i, −i
could not appear both on the same side. The signed integers are placed
into distinct boxes and the no signed integers appear on the zero class.
Therefore we arrange the 1

2
(q+1)− (m+n) unlabeled boxes (including

the zero class on the top) around the right half circle such that m+ n
signed integers are placed in between these boxes. Let us first consider
the signed integer from the first group. They could not be placed into
the 1

2
(q− 1) class. There are 1

2
(q+ 1)− (m+ n)− 1 ways to insert the

first one. Since all signed integers from the first group are not next to
each other, after we have inserted a signed integer, then the number of
possible positions to insert next integer from the first group decreases
by 1. Altogether there are

m∏
i=1

(
1

2
(q + 1)− (m+ n)− i)

ways to insert signed integers from the first group.
Given a signed integer from the second group, then it could be placed

to the class 1
2
(q−1), but not next to any signed integers from first group.

There are 1
2
(q + 1)− (2m+ n) ways to place the first one and

n−1∏
j=0

(
1

2
(q + 1)− (2m+ n) + j)

ways to place all signed integers from the second group.
Since we can choose either i or −i when we place any signed integers,

the total number of placements should be multiplied by 2m+n and this
gives us the characteristic polynomial we want. �

When GR = SU(m,n), the Coxeter number of G is m + n and the
exponents of K = S(GL(m)×GL(n)) are {0, 1, . . . ,m−1, 1, . . . , n−1}.
(The exponent 0 corresponds to the centralizer of K). The character-
istic polynomial χ̃(Am,n, q) for SU(m,n) in Theorem 3.13 verifies the
conjecture 1.1. This conjecture is not valid for U(m,n).

When GR = Sp(m,n), its Coxeter number is 2(m + n) and the
exponents of K = Sp(m)× Sp(n) are {1, 3, . . . , 2m− 1, 1, . . . , 2n− 1}.
Theorem 3.17 verifies this conjecture 1.1 for Sp(m,n).

There are other real groups satisfying the assumption of conjecture
1.1. For example, GR = Sp(n,R) or GR = SO(m,n). We have verified
the conjecture when n = 4 or 6 for Sp(n,R) and when m = 2 and n is
an odd integer for SO(m,n).

Example 3.20. This conjecture holds for G2, where the short simple
root α1 is a compact root and the long simple root α2 is a noncompact
root. The characteristic polynomial for the real hyperplane arrangement
of G2 is q2−10q+25 = (q−5)2 = (q−h+ e1)2, where h is the Coxeter
number of G2 and e1 is the exponent of A1.
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Figure 3. The real hyperplane arrangement for G2

4. Some Combinatorics

4.1. Calculation of the number of θ-nilpotent subspaces. In this
section, we will show that Conjecture 2.2 is valid for U(m,n). It is
proved in Corollary 3.15 that the number of θ-nilpotent subspaces is
a Narayana number. Panyushev also showed in [26], the number of
ad-nilpotent ideals with k generators in type A is a Narayana number.

Let Admm+n+1 be the set of ad-nilpotent ideals with m generators and
Adm,n be the set of θ-nilpotent subspaces. Let Adm,n be the set of
BK-invariant subspaces of p, consisting no semisimple elements. As
discussed in section 1, Adm,n is a subset of Adm,n.

Next we will construct an explicit bijection between the ad-nilpotent
ideals with m generators in type Am+n and Adm,n. Then by using
Panyushev’s result, we can prove that Adm,n = Adm,n.

Lemma 4.1. [26] The number of ad-nilpotent ideals in sl(n) with k
generators is equal to N(n, k) .

Proposition 4.2. There exists a bijection between Adm,n and the set
of ad-nilpotent ideals for sl(m+ n+ 1) with m generators.

In this section, when we talk about ad-nilpotent ideals and subspaces
in Adm,n, we always mean their underlying set of roots.

As shown in [26] and [10], we can use [i, j] to denote the root αij =
ei − ej. When i < j, then [i, j] is a positive root and when i > j, [i, j]
is a negative root.

For g = su(m,n), the root [i, j] is compact if and only if 1 6 i, j 6 m,
or m + 1 6 i, j 6 m + n. And [i, j] is noncompact if and only if
1 6 i 6 m,m+ 1 6 j 6 m+ n, or 1 6 j 6 m,m+ 1 6 i 6 m+ n.
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Figure 4. The bijection between Admm+n+1 and Adm,n

Let J be a subspace in Adm,n. Suppose J+ ⊂ p+ and J− ⊂ p− are
the positive and negative part of J . In the case of U(m,n), J+ and
J− are both BK-invariant. The subspace J+ is BK-invariant means
that J+ is the northwest corner of p+. Namely, if [i, j] ⊂ J+, then for
all integers k, l, such that k 6 i and l > j, [k, j] and [i, l] also belong
to J+. In other words, J+ is represented by a right-justified Young
diagram with at most m rows and at most n boxes in each row.

The subspace J− is also BK-invariant, meaning that ∆(p+) − J−

is also BK-invariant and is represented by the right-justified Young
diagram that’s restricted to the m× n rectangle.

Since J consists no semisimple element, there’s no pair of roots α
and −α both appeared in J and vice versa. That means that J+ is
contained in ∆(p+)−J−. The Young diagram that represents ∆(p+)−
J− should include the Young diagram of J+ as a sub-diagram.

From the descriptions above, one could conclude that the set Adm,n is
in bijection with the set of two restricted right-justified Young diagrams
such that the first one contains in the second one.

Now we give the bijection between Adm,n and Admm+n+1.
The ad-nilpotent ideal is completely determined by its generators.

Suppose I ∈ Admm+n+1, then its generator Γ(I) is the set

{[i1, j1], [i2, j2] . . . [im, jm]},
where

1 6 i1 . . . im 6 m+ n, 1 6 j1 . . . jm 6 m+ n+ 1 and ik < jk.

It’s easy to see that the sequences i1i2 . . . im and j1j2 . . . jm satisfy the
inequalities

i1 > 1, i2 > 2, · · · , im > m;

j1 6 m+ 2, j2 6 m+ 3, · · · , jm 6 m+ n+ 1.
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We have

0 6 i1 − 1 6 i2 − 2 6 . . . 6 im −m 6 n;

0 6 j1 − 2 6 j2 − 3 6 . . . 6 jm − (m+ 1) 6 n;

and ik − k 6 jk − (k + 1), for 1 6 k 6 m.

The right-justified Young diagram is completely determined by its
left-most coordinate at each row. Then [1, i1], . . . , [m, im −m+ 1] and
[1, j1 − 1], . . . , [m, jm −m] give us two right-justified Young diagrams
with the first one containing the second one (If a Young diagram begins
at [k,m + 1] at k’s row , then it means that the Young diagram has
length 0 at this row). That gives us a subspace in Adm,n corresponding
to I.

Combining Lemma 4.2.1 and Proposition 4.2.2 together, we have

Corollary 4.3. The number of Adm,n is equal to N(m+ n+ 1,m).

Corollary 4.4. Adm,n = Adm,n.

Remark. There is an isomorphism between real groups U(m,n) and
U(n,m). In [26], Panyushev gave a natural bijection between Admm+n+1

and Adnm+n+1. In the real case, it is compatible with a natural bijection
between the sets of θ-nilpotent subspaces of U(m,n) and U(n,m).

Example 4.5. Suppose GR = SU(2, 2). The closed K-orbits are pa-
rameterized by

{+−−+,+ +−−,+−+−,
−+ +−,−+−+,−−++}.

In this case, α1, α3 are the noncompact simple root and α2 is the
compact simple root. Suppose we use the generators of the θ-nilpotent
subspace to specify the space. Then the set of θ-nilpotent subspaces is
the following:

∅, {α2}, {α1 + α2}, {α2 + α3}, {−(α1 + α2 + α3)},
{−(α2 + α3)}, {−(α1 + α2)}, {−α2}, {α1 + α2 + α3},
{−(α1 + α2),−(α2 + α3)}, {α2 + α3, α1 + α2},
{α1 + α2 + α3,−α2}, {−(α1 + α2), α1 + α2 + α3},
{α1 + α2 + α3,−(α2 + α3)}, {−α2, α1 + α2, α2 + α3},
{−α2, α1 + α2}, {α2 + α3,−(α1 + α2)},
{−(α2 + α3), α1 + α2}, {−α2, α2 + α3},
{α1 + α2 + α3,−(α1 + α2),−(α2 + α3)}.

There are altogether 20 θ-nilpotent subspaces.
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