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ABSTRACT. Let W be a simply-laced Coxeter group with generating set S, and let W, denote
the subset consisting of those elements whose reduced expressions have no substrings of the
form sts for any non-commuting s,t € S. We give a root system characterization of W¢,
and in the case where W corresponds to a finite Weyl group, show that W is a union of
Spaltenstein-Springer-Steinberg cells. The latter is valid also for affine Weyl groups of type A,
but not for types D or E.

1. Introduction

Let W be a Coxeter group with (finite) generating set S = {s;};cs. In the Weyl group
case, the “commutative” elements of W were defined in [F1] to be those elements having
no reduced expression containing a substring of the form s;s;s;, where s; and s; are (non-
commuting) generators such that the simple root corresponding to s; is at least as long
as the simple root corresponding to s;. The “fully commutative” elements of a general
Coxeter group were defined in [S1] to be those elements having no reduced expression
containing a substring s;s;s;s; - -- of length m > 3, where m is the order of s;s; in W. In
the simply-laced case these two definitions agree, since the product of any pair of generators
has order 2 or 3, and all roots have the same length.

There are numerous characterizations and properties of (fully) commutative elements
in [F1], [F3], [S1] and [S2]. In this paper, we extend some previous characterizations
in [F1] for finite, simply-laced Coxeter groups to arbitrary simply-laced Coxeter groups. In
particular, in Section 2, we provide a root system characterization of commutativity. (The
special case corresponding to finite Weyl groups was first proved in [F1], by a different
argument.) This can be viewed as a generalization of the fact that in the symmetric
group, the commutative elements are the permutations with no decreasing subsequence of
length 3.
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In Section 3, we study the relationship between commutative elements and certain
nilpotent orbits in the associated Lie algebra when W is a (simply-laced) finite or affine
Weyl group. In particular, we obtain that W, is a union of Spaltenstein-Springer-Steinberg
cells if and only if W is affine of type A, or finite.

2. Root System Characterizations of W..

We assume henceforth that the Coxeter group W is simply-laced; thus s;s; = s;s; or
sis;s; = s;5;5; for all 4,5 € I. Let I' denote the Coxeter graph corresponding to W i.e.,
the simple graph with vertex set I and ¢ adjacent to j if and only if s; and s; do not
commute. We let W, denote the subset of W consisting of those elements with no reduced
expression containing a substring s;s;s; for any adjacent pair 7, j of I'.

Let V' be a vector space over Q with basis IT = {o;}ier, and let (| ) denote the
symmetric bilinear form on V defined by

2 ifi=j,
(ai,a5) =< —1 if i and j are adjacent in T,
0 otherwise.

The space V carries the reflection representation of W; namely,
sif =P — (B, ai)e
for all 3 € Vi € I. Furthermore, ( , ) is W-invariant relative to this action.

Let ® denote the (generalized) root system generated by the action of W on II; i.e.,
® = {wa; |weW,iel}. Every a € ® is an integer linear combination of the simple
roots oy € II. Let ®F denote the set of positive roots; i.e., the set of @« € ® whose
coefficients relative to II are nonnegative. For every root a, we have either o € ®F or
—a € 9T (e.g., [H,§5.4]). We write o > 0 and « < 0 in these cases, respectively.

For w € W, let ®(w) denote the set of roots & > 0 such that wa < 0. The cardinality
of ®(w) is the length [ of any reduced expression w = s;,---s;,, also denoted £(w). In fact
S (w) ={v1,...,m}, where

ML @y, Y2 = S Qg ey Y= Sy SOl
We refer to (v1,...,741) as the root sequence of the reduced expression s;,- - - s;,.

We remark that ®(w) is “biconvex” (cf. [Bj,§3]) in the sense that for all o, 3 € ®T and

all integers c1, co > 0 such that ¢y + ¢33 € ®T, we have

a, B € P(w) = cra+ 23 € B(w)
a, & P(w) = cra+ caf & B(w).

In fact, these convexity properties characterize the finite subsets of ®* of the form ®(w)

(2.1)

for some w € W.



LEMMA 2.1. We have («, 5) > —1 for all o, 3 € ®(w).

Proof. If o, 8 € ®(w) are roots such that (o, 3) = —c¢ < —2, then the reflection cor-
responding to a maps 3 to § + ca, a root in the positive linear span of a and 3. Hence
B+ ca € ®(w), by (2.1). However (3,3 + ca) = 2 — ¢ < —2, so iterations of the map
(a, B) = (8, B + ca) generate an infinite sequence in the finite set ®(w). O

Given a root sequence (y1,...,7) for w, let us partially order ®(w) by taking the
transitive closure of the relations v; < +; for all ¢ < j such that {y;,~;) # 0.

PROPOSITION 2.2. The partial ordering of ®(w) is independent of the choice of root
sequence if and only if w € W..

Proof. Any reduced expression for w € W can be obtained from any other by a sequence
of braid moves (i.e., s;s;8; — s;8;8; or 8;8; — §;5;, according to whether ¢ and j are
adjacent in T') [B,§IV.1.5]. Therefore, if there are no opportunities to apply braid moves
of length three (i.e., w € W.), all reduced expressions for w can be generated merely
by interchanging consecutive pairs of commuting generators. In the root sequence, these
moves correspond to interchanging consecutive pairs of orthogonal roots and clearly have
no effect on the partial order.

On the other hand, if ¢ and j are adjacent in I', then the root sequences correspond-
ing to the two reduced expressions for « = s;s;5, = s;8;8; are (i, o + «;, ;) and
(aj, 5 + o, «;), and the partial orders are total. It follows that if s;s;s; is a substring
of some reduced expression for w (i.e., w & W), then there exist root sequences for w
containing W-conjugates of these two subsequences, and hence the corresponding partial
orders differ. 0O

REMARK 2.3. The partial ordering of a root sequence is isomorphic to the dual of the
“heap” (see [S1,§1]) of the corresponding reduced expression. In particular, it follows
that the extensions of the partial order to a total order are the root sequences that can be
generated from the given root sequence by interchanging consecutive pairs of orthogonal

roots.

In the following, let < denote the customary partial ordering of ® in which a <

whenever  — a has nonnegative coordinates relative to the simple roots.

THEOREM 2.4. For w € W, the following are equivalent.
(a) we We.

(b) (e, ) >0 for all &, 8 € ®(w).

(c) There does not exist a triple a, 3, v + 3 € ®(w).



(d) The partial ordering of ®(w) relative to some (equivalently, every) root sequence

is consistent with < (i.e., « < § in ®(w) implies o < 3).

Proof. We demonstrate that the negations of these properties are equivalent.
—(a) = —(b). If (a) fails, then w has a reduced expression of the form #s;s;s;y for some

L, and

adjacent pair ¢, j. It follows that the corresponding root sequence includes o = y~
B =y 'sisja; = y~tay, for which {a, 8) = (o, a;) = —1.

=(b) = =(c). If a,8 € ®(w) are roots such that (o, 3) < 0, then (o, 3) = —1 by
Lemma 2.1. Therefore oo + § is a root (being the reflection of 3 through «), and hence
by (2.1) must belong to ®(w).

=(c) = —=(d). Every initial segment of a root sequence is also a root sequence, and
hence the subset of ®(w) formed by such an initial segment must satisfy (2.1). Tt follows
that a set of roots of the form o, 3, + 3 € ®(w) must occur in the order (o, + 3, 5)
or (8, + 3, @) in every root sequence, and hence also in the corresponding partial order.
However, neither of these orderings 1s consistent with <.

=(d) = —(a). If (d) fails, then there is a root sequence for w whose partial order
includes a covering relation o < /3 that is not consistent with <; in particular, 3 —« & ®7.
By choosing a suitable linear extension of the partial order, we may obtain a root sequence
for w in which o and 3 appear consecutively, and hence o = y~la;, 8 = y~'s;a;, given
that the corresponding reduced expression for w is of the form xs;s;y. Since (o, 8) # 0

(otherwise o < 3 could not be a covering relation), it follows that

(a,p) = (y i,y siaj) = —(oi, o) = 1.

1 1

Hence a—f = —y~'a; is a root, necessarily positive, since B—a ¢ ®T. However, y~ta; < 0
implies that there is a reduced expression for y that begins with s; (e.g., [H, §5.4]). Hence

there is a reduced expression for w containing the substring s;s;s;, and w ¢ W.. O

REMARK 2.5. The previous result can be viewed as a generalization of the fact that the
commutative elements of the symmetric group S, are the permutations w = (wy,..., wy)
of {1,...,n} that do not contain a decreasing subsequence of length 3. Indeed, using
{e; —ei | 1 <i< j < n} as the set of positive roots for A,_1, one sees that the triples of
positive roots of the form o, 8, o+ F are e; —e;,ep — 5,6, —&;, where 1 <7 < j <k < n.
Having such a triple occur in ®(w) is equivalent to having w; > w; > wg. A similar

description can be provided in type D; see [F1,§7] or [S2,§10].

3. Cells
Now suppose that W is the Weyl group of a semisimple, simply-laced, simply connected
algebraic group GG over C with Lie algebra g. We may assume that ® is the root system



of g relative to some choice of Cartan subalgebra h, and that b i1s the Borel subalgebra
corresponding to the chosen simple roots II.

Let n be the nilpotent radical of b, and define ny = wgnwyg, where wy denotes the longest
element of W. For w € W, set n{ = wngw™?.

Let A be the subvariety of nilpotent elements in g, and let A'/G denote the G-orbits
of such elements. Following Spaltenstein, Springer, and Steinberg (et. al.), one may define
amap ¢ : W — N/G by taking ¢(w) to be the (unique) nilpotent orbit O such that
ONny Nnis dense in n§ Nn. (This differs from the standard definition by a factor of wy.)
The fibers of ¢ are cells.

We now pass to analogous structures for the affine Weyl group W. 1t should be noted
that W is also simply-laced (in the sense of §2) unless W is of type A;. In this exceptional
case, we can maintain the validity of Theorem 2.4 by defining We. .= W.

Let G = G(F), where F = C((t)). The abstract root system ® generated by W (in the
sense of §2) can be identified with the real roots of the Lie algebra g ®¢ F'.

Let b be the Iwahori subalgebra which sits in g® C[[t]] as the inverse image of b relative
to the canonical projection ¢ — 0, and let n C b be the inverse image of n relative to the
same projection. Let ng be the inverse image of ny relative to the canonical projection
g ® C[t~1] — g defined by ¢ +— oo. For w € W, we set nY = wnogw~!. For further details
on this setup, see [KL, §0].

Each nilpotent orbit O in N'/G also indexes a G(F)-orbit O, where F denotes the
algebraic closure of F. Following Lusztig [L], we may define a map q/; W N/G by
taking qg(w) to be the (unique) nilpotent orbit O such that on ny N1 is dense in 0y N 1.
Note that nf’ N n is finite-dimensional over C; in fact, it is spanned by the root spaces
indexed by <i>(w_1).

Let Ny = {n € N | ad(n)* = 0}, and let N4/G denote the nilpotent orbits in Nj.

THEOREM 3.1. We have

(a) We =971 (Na/G).

(b) We D ¢~ (Na/G), with equality if and only if W is of type A.
Let E, denote a generator for the root space corresponding to a € .

LEMMA 3.2. For w ¢ W., there exists n € 7% N 1 such that ad(n)* # 0.

Proof. Given that w & W (and hence w=! ¢& WC), Theorem 2.4 implies that there
Is a triple o, 3,a + 3 € <i>(w_1). This given, we take n := E, + Eg € nf Nn. Since
n is the regular element of an sl3 subalgebra, it follows that ad(n)* # 0 (e.g., see [K]).
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Alternatively, one can directly compute ad(n)4E_a_@ and verify that 1t is a non-zero

multiple of Foyg. O

LEMMA 3.3. In an affine root system of type D or E, there exists a quadruple of
orthogonal simple roots 41, . ..,7v4 and a root p such that (p,~;) = —1 for all ¢.

Proof. For type D, we may take 71, ...,74 to be the simple roots corresponding to the
four end nodes of I', and p to be the sum of the remaining simple roots.

For E,,, use I = {0,1,...,m}, with the indexing arranged so that 4 labels the node of
degree three, 0 labels the node corresponding to the highest root, and 1,3,4,...,m —4
labels a path in T'.

In Fjs, it suffices to take {y1,...,va} = {@p, a1, a4, a6} and p = as + oz + a4 + as;
in Bz, {y1,...,7a} = {ao,as,a5,a7} and p = oy + a2 + a3 + 24 + a5 + «as; in Es,
{71, ., va} = {0, a9, a5, a7} and p = a1 + as + 2a3 + 3aa + 205 + 206 + a7 + ag. O

Proof of Theorem 3.1. Lemma 3.2 implies that ¢~'(N3/G) C We, and essentially the
same argument proves ¢~ (Ny/G) C W. To prove the reverse inclusions, it would suffice
to show that for w € W, and n € ny N (resp., w € W, and n € nfY Nn), we have n € Ny.

Since any n € ny N1 is a linear combination of those F, such that o € <i>(w_1), it

follows that ad(n)4 1s a linear combination of monomials of the form
M= ad(E’Yl) ad(E’Y2) ad(E’Ya) ad(E%), (31)

where 51, ..., 74 € ®(w™).

If ad(n)* # 0, at least one such monomial must be nonzero. Let us therefore suppose
M(E,) # 0 for some p € ®U{0}, following the convention that Ej represents an arbitrary
member of h @ F. Setting § = p+ >, 7, it is clearly necessary that ¢ € d U {0}.

Furthermore,

(0,0) = (p.p) + 8423 o) 423 (0,%) = (prp) +8+2 (), (3.2)

<]

since (vi,7v;) > 0 by Theorem 2.4.

If p = 0, this implies (4,d) > 8, which is impossible. Hence p € & and (p,p) = 2.

Since ( , ) is positive semidefinite, it follows that {(p,~v;) > —2 for all i. If (p,y1) = -2,
then p 4+ 41 would belong to the radical of ( , ), and therefore

(6,8) = {(y2 + 3 + 4,72 +v3 + 74) > 6,
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a contradiction. Thus (p,y;) > —1 and the bound implied by (3.2) yields (4,6) > 2.
This bound is tight, so equality occurs in (3.2); in particular, the v; must be pairwise
orthogonal and {(p,~;} = —1 for all i. Conversely, in any such configuration of roots, we
have (yip1+- - +ya+p,%) = —1,50 % +- - +7v14p € ® for all i, and hence M(F,) # 0.
Furthermore, if we set n := £, +---4 F,,, then the above analysis shows that every term
in the expansion of ad(n)? is 0 except for the 24 monomials that correspond to selecting
a permutation of (3.1). However, ad(E,,) and ad(F,,) commute pairwise for i # j, so
ad(n)* = 24M # 0.

If W is of type A, we claim that there can be no configuration p,v1,...,v4 € P as
above. Indeed, since the inner products among these roots coincide with those formed
by the simple roots of an affine system of type D., they generate either a finite or affine
subsystem of type D4 in ®, according to whether p is in the linear span of ~1,...,7a.
In either case, modulo the radical of ( , ), we would have an embedding of a finite root
system of type D4 in a finite root system of type A, which is impossible—every irreducible
subsystem in type A is also of type A.

If W is of type D or E, Lemma 3.3 implies that there is a suitable configuration of
roots p,¥1, . .,74 in which the v; are simple. If we take w to be the product of the simple
reflections corresponding to the v;, it is clear that w = w™' € W, and ®(w) = {y1,...,74}.
Hence there exists n € n¥ N1 such that ad(n)* # 0, and the inclusion in (b) is proper.

Turning now to (a), the above reasoning also proves that for w € W, and n € n§ N n,
we have ad(n)* = 0 unless there exist pairwise orthogonal roots v1,...,74 € ®(w) and
p € @ satisfying (p,y;) = —1 for all i. However in this case { , ) is positive definite, so
071, - - -, Y4 must generate a finite root system A of type Da.

Setting At = @+ N A, we can choose an orthogonal basis €1, ...,&4 for the span of A
so that AT = {&;+¢; | 1 <i< j <4}. There are three quadruples of pairwise orthogonal
roots in AT; namely, {e;+¢;,ex2e;}, where {{¢, j}, {k,[}} ranges over the three partitions
of {1,...,4} into doubletons. We claim that if any of these configurations occurs in ®(w),
then there would exist a root § € ®(w) such that (3,v;) = —1 for some 4, contradicting
the fact that w € W, (cf. Theorem 2.4).

If e1 + £2,63 + ¢4 € ®(w), then the decomposition &1 + g2 = (g1 — €4) + (€2 + £4)
together with the convexity properties of (2.1) imply &1 — 4 or 3 + ¢4 € ®(w). However
(e1 —€4,e3+€4) = —1 and (g2 + 4,63 — £4) = —1, so both cases lead to a contradiction.

Similarly, if 1 +e3,c2+e4 € ®(w), then the decomposition 1 4+¢e5 = (1 —e3) + (€2 +¢3)
and convexity together imply £ — €2 or €2 4+ €3 € ®(w). However (g1 — eq9,e9+4) = —1
and (g9 + €3,61 — €3) = —1, so again both cases yield contradictions.

Finally, if €1 4,69 £ 3 € ®(w), then the decomposition g5 +¢3 = (g2 —4) + (¢35 +24)



and convexity imply €9 — g4 or €3 + £4 € ®(w). However (g9 — 4,61 + £4) = —1 and

(e3 + €4,61 — €4) = —1, so both cases yield contradictions. O

REMARK 3.4. (a) Part (a) of Theorem 3.1 was first proved in [F1,§7] and used there
to determine the longest elements in W, for finite simply-laced Weyl groups W.

(b) If W is of type D or E, Theorem 3.1(b) implies that there exists w € W, such
that qg(w) = O ¢ N4/G. On the other hand, it is known that every fiber of the map ¢ is
non-empty, so ¢~(0) must contain elements not in We, by Theorem 3.1(a). Since ¢ and
q/; commute with the natural embedding of W in W, it follows that in these cases, Wi is
not a union of cells.

(c) From the tables in [C], it can be shown that for Eg there are exactly five nilpotent
orbits in Ny. On the other hand, it is known that there are only finitely many commuta-
tive elements in the affine Weyl group Es [F1,§3]. (In fact, there are exactly 44,199 such
elements.) Thus Eg has at least five finite cells.

(d) The members of Ny are precisely the “spherical” nilpotents as classified by Pa-
nyushev [P]. (A nilpotent element is spherical if its orbit under the action of some Borel
subgroup is dense in its G-orbit.) Panyushev’s classification is achieved on a case-by-case
basis; it is possible that further analysis of the fibers of ¢ will lead to a uniform proof, at

least in the simply-laced cases.
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