
Nilpotent Orbits and Commutative ElementsC. Kenneth Fan and John R. StembridgeMarch, 1996Abstract. LetW be a simply-lacedCoxeter group with generating set S, and letWc denotethe subset consisting of those elements whose reduced expressions have no substrings of theform sts for any non-commuting s; t 2 S. We give a root system characterization of Wc,and in the case where W corresponds to a �nite Weyl group, show that Wc is a union ofSpaltenstein-Springer-Steinberg cells. The latter is valid also for a�neWeyl groups of typeA,but not for types D or E. 1. IntroductionLet W be a Coxeter group with (�nite) generating set S = fsigi2I . In the Weyl groupcase, the \commutative" elements of W were de�ned in [F1] to be those elements havingno reduced expression containing a substring of the form sisjsi, where si and sj are (non-commuting) generators such that the simple root corresponding to sj is at least as longas the simple root corresponding to si. The \fully commutative" elements of a generalCoxeter group were de�ned in [S1] to be those elements having no reduced expressioncontaining a substring sisjsisj � � � of length m � 3, where m is the order of sisj in W . Inthe simply-laced case these two de�nitions agree, since the product of any pair of generatorshas order 2 or 3, and all roots have the same length.There are numerous characterizations and properties of (fully) commutative elementsin [F1], [F3], [S1] and [S2]. In this paper, we extend some previous characterizationsin [F1] for �nite, simply-laced Coxeter groups to arbitrary simply-laced Coxeter groups. Inparticular, in Section 2, we provide a root system characterization of commutativity. (Thespecial case corresponding to �nite Weyl groups was �rst proved in [F1], by a di�erentargument.) This can be viewed as a generalization of the fact that in the symmetricgroup, the commutative elements are the permutations with no decreasing subsequence oflength 3.Research of the �rst author partially supported by a NSF Postdoctoral Fellowship.Research of the second author partially supported by NSF grant DMS{9401575.The �rst author wishes to thank George Lusztig without whom this paper would not exist.Typeset by AMS-TEX1



In Section 3, we study the relationship between commutative elements and certainnilpotent orbits in the associated Lie algebra when W is a (simply-laced) �nite or a�neWeyl group. In particular, we obtain thatWc is a union of Spaltenstein-Springer-Steinbergcells if and only if W is a�ne of type A, or �nite.2. Root System Characterizations of Wc.We assume henceforth that the Coxeter group W is simply-laced; thus sisj = sjsi orsisjsi = sjsisj for all i; j 2 I. Let � denote the Coxeter graph corresponding to W ; i.e.,the simple graph with vertex set I and i adjacent to j if and only if si and sj do notcommute. We let Wc denote the subset ofW consisting of those elements with no reducedexpression containing a substring sisjsi for any adjacent pair i; j of �.Let V be a vector space over Q with basis � = f�igi2I , and let h ; i denote thesymmetric bilinear form on V de�ned byh�i; �ji = 8><>: 2 if i = j;�1 if i and j are adjacent in �;0 otherwise:The space V carries the re
ection representation of W ; namely,si� = � � h�; �ii�ifor all � 2 V , i 2 I. Furthermore, h ; i is W -invariant relative to this action.Let � denote the (generalized) root system generated by the action of W on �; i.e.,� = fw�i j w 2 W; i 2 Ig. Every � 2 � is an integer linear combination of the simpleroots �i 2 �. Let �+ denote the set of positive roots; i.e., the set of � 2 � whosecoe�cients relative to � are nonnegative. For every root �, we have either � 2 �+ or�� 2 �+ (e.g., [H, x5.4]). We write � > 0 and � < 0 in these cases, respectively.For w 2 W , let �(w) denote the set of roots � > 0 such that w� < 0. The cardinalityof �(w) is the length l of any reduced expression w = si1� � �sil , also denoted `(w). In fact�(w) = f
1; : : : ; 
lg, where
1 = �il ; 
2 = sil�il�1 ; : : : ; 
l = sil� � � si2�i1 :We refer to (
1; : : : ; 
l) as the root sequence of the reduced expression si1� � � sil .We remark that �(w) is \biconvex" (cf. [Bj,x3]) in the sense that for all �; � 2 �+ andall integers c1; c2 > 0 such that c1�+ c2� 2 �+, we have�; � 2 �(w)) c1�+ c2� 2 �(w)�; � 62 �(w)) c1�+ c2� 62 �(w): (2.1)In fact, these convexity properties characterize the �nite subsets of �+ of the form �(w)for some w 2W . 2



Lemma 2.1. We have h�; �i � �1 for all �; � 2 �(w).Proof. If �; � 2 �(w) are roots such that h�; �i = �c � �2, then the re
ection cor-responding to � maps � to � + c�, a root in the positive linear span of � and �. Hence� + c� 2 �(w), by (2.1). However h�; � + c�i = 2 � c2 � �2, so iterations of the map(�; �) 7! (�; � + c�) generate an in�nite sequence in the �nite set �(w). �Given a root sequence (
1; : : : ; 
l) for w, let us partially order �(w) by taking thetransitive closure of the relations 
i < 
j for all i < j such that h
i; 
ji 6= 0.Proposition 2.2. The partial ordering of �(w) is independent of the choice of rootsequence if and only if w 2 Wc.Proof. Any reduced expression for w 2W can be obtained from any other by a sequenceof braid moves (i.e., sisjsi ! sjsisj or sisj ! sjsi, according to whether i and j areadjacent in �) [B,xIV.1.5]. Therefore, if there are no opportunities to apply braid movesof length three (i.e., w 2 Wc), all reduced expressions for w can be generated merelyby interchanging consecutive pairs of commuting generators. In the root sequence, thesemoves correspond to interchanging consecutive pairs of orthogonal roots and clearly haveno e�ect on the partial order.On the other hand, if i and j are adjacent in �, then the root sequences correspond-ing to the two reduced expressions for x = sisjsi = sjsisj are (�i; �i + �j; �j) and(�j; �i + �j; �i), and the partial orders are total. It follows that if sisjsi is a substringof some reduced expression for w (i.e., w 62 Wc), then there exist root sequences for wcontaining W -conjugates of these two subsequences, and hence the corresponding partialorders di�er. �Remark 2.3. The partial ordering of a root sequence is isomorphic to the dual of the\heap" (see [S1,x1]) of the corresponding reduced expression. In particular, it followsthat the extensions of the partial order to a total order are the root sequences that can begenerated from the given root sequence by interchanging consecutive pairs of orthogonalroots.In the following, let � denote the customary partial ordering of � in which � � �whenever � � � has nonnegative coordinates relative to the simple roots.Theorem 2.4. For w 2 W , the following are equivalent.(a) w 2 Wc.(b) h�; �i � 0 for all �; � 2 �(w).(c) There does not exist a triple �; �; �+ � 2 �(w).3



(d) The partial ordering of �(w) relative to some (equivalently, every) root sequenceis consistent with � (i.e., � < � in �(w) implies � � �).Proof. We demonstrate that the negations of these properties are equivalent.:(a)) :(b). If (a) fails, then w has a reduced expression of the form xsisjsiy for someadjacent pair i; j. It follows that the corresponding root sequence includes � = y�1�i and� = y�1sisj�i = y�1�j, for which h�; �i = h�i; �ji = �1.:(b) ) :(c). If �; � 2 �(w) are roots such that h�; �i < 0, then h�; �i = �1 byLemma 2.1. Therefore � + � is a root (being the re
ection of � through �), and henceby (2.1) must belong to �(w).:(c) ) :(d). Every initial segment of a root sequence is also a root sequence, andhence the subset of �(w) formed by such an initial segment must satisfy (2.1). It followsthat a set of roots of the form �; �; � + � 2 �(w) must occur in the order (�; � + �; �)or (�; �+ �; �) in every root sequence, and hence also in the corresponding partial order.However, neither of these orderings is consistent with �.:(d) ) :(a). If (d) fails, then there is a root sequence for w whose partial orderincludes a covering relation � < � that is not consistent with �; in particular, ��� 62 �+.By choosing a suitable linear extension of the partial order, we may obtain a root sequencefor w in which � and � appear consecutively, and hence � = y�1�i, � = y�1si�j, giventhat the corresponding reduced expression for w is of the form xsjsiy. Since h�; �i 6= 0(otherwise � < � could not be a covering relation), it follows thath�; �i = hy�1�i; y�1si�ji = �h�i; �ji = 1:Hence ��� = �y�1�j is a root, necessarily positive, since ��� 62 �+. However, y�1�j < 0implies that there is a reduced expression for y that begins with sj (e.g., [H, x5.4]). Hencethere is a reduced expression for w containing the substring sjsisj , and w 62Wc. �Remark 2.5. The previous result can be viewed as a generalization of the fact that thecommutative elements of the symmetric group Sn are the permutations w = (w1; : : : ; wn)of f1; : : : ; ng that do not contain a decreasing subsequence of length 3. Indeed, usingf"j � "i j 1 � i < j � ng as the set of positive roots for An�1, one sees that the triples ofpositive roots of the form �; �; �+ � are "j � "i; "k� "j ; "k � "i, where 1 � i < j < k � n.Having such a triple occur in �(w) is equivalent to having wi > wj > wk. A similardescription can be provided in type D; see [F1, x7] or [S2,x10].3. CellsNow suppose that W is the Weyl group of a semisimple, simply-laced, simply connectedalgebraic group G over C with Lie algebra g. We may assume that � is the root system4



of g relative to some choice of Cartan subalgebra h, and that b is the Borel subalgebracorresponding to the chosen simple roots �.Let n be the nilpotent radical of b, and de�ne n0 = w0nw0, where w0 denotes the longestelement of W . For w 2 W , set nw0 = wn0w�1.Let N be the subvariety of nilpotent elements in g, and let N=G denote the G-orbitsof such elements. Following Spaltenstein, Springer, and Steinberg (et. al.), one may de�nea map � : W ! N=G by taking �(w) to be the (unique) nilpotent orbit O such thatO\nw0 \n is dense in nw0 \n. (This di�ers from the standard de�nition by a factor of w0.)The �bers of � are cells.We now pass to analogous structures for the a�ne Weyl group Ŵ . It should be notedthat Ŵ is also simply-laced (in the sense of x2) unless W is of type A1. In this exceptionalcase, we can maintain the validity of Theorem 2.4 by de�ning Ŵc := Ŵ .Let Ĝ = G(F ), where F = C ((t)). The abstract root system �̂ generated by Ŵ (in thesense of x2) can be identi�ed with the real roots of the Lie algebra g
C F .Let b̂ be the Iwahori subalgebra which sits in g
C [[t]] as the inverse image of b relativeto the canonical projection t 7! 0, and let n̂ � b̂ be the inverse image of n relative to thesame projection. Let n̂0 be the inverse image of n0 relative to the canonical projectiong 
 C [t�1 ]! g de�ned by t 7! 1. For w 2 Ŵ , we set n̂w0 = wn̂0w�1. For further detailson this setup, see [KL, x0].Each nilpotent orbit O in N=G also indexes a G( �F )-orbit Ô, where �F denotes thealgebraic closure of F . Following Lusztig [L], we may de�ne a map �̂ : Ŵ ! N=G bytaking �̂(w) to be the (unique) nilpotent orbit O such that Ô \ n̂w0 \ n̂ is dense in n̂w0 \ n̂.Note that n̂w0 \ n̂ is �nite-dimensional over C ; in fact, it is spanned by the root spacesindexed by �̂(w�1).Let N4 = fn 2 N j ad(n)4 = 0g, and let N4=G denote the nilpotent orbits in N4.Theorem 3.1. We have(a) Wc = ��1(N4=G).(b) Ŵc � �̂�1(N4=G), with equality if and only if W is of type A.Let E� denote a generator for the root space corresponding to � 2 �̂.Lemma 3.2. For w 62 Ŵc, there exists n 2 n̂w0 \ n̂ such that ad(n)4 6= 0.Proof. Given that w 62 Ŵc (and hence w�1 62 Ŵc), Theorem 2.4 implies that thereis a triple �; �; � + � 2 �̂(w�1). This given, we take n := E� + E� 2 n̂w0 \ n̂. Sincen is the regular element of an sl3 subalgebra, it follows that ad(n)4 6= 0 (e.g., see [K]).5



Alternatively, one can directly compute ad(n)4E���� and verify that it is a non-zeromultiple of E�+�. �Lemma 3.3. In an a�ne root system of type D or E, there exists a quadruple oforthogonal simple roots 
1; : : : ; 
4 and a root � such that h�; 
ii = �1 for all i.Proof. For type D, we may take 
1; : : : ; 
4 to be the simple roots corresponding to thefour end nodes of �, and � to be the sum of the remaining simple roots.For Em, use I = f0; 1; : : : ;mg, with the indexing arranged so that 4 labels the node ofdegree three, 0 labels the node corresponding to the highest root, and 1; 3; 4; : : :;m � 4labels a path in �.In E6, it su�ces to take f
1; : : : ; 
4g = f�0; �1; �4; �6g and � = �2 + �3 + �4 + �5;in E7, f
1; : : : ; 
4g = f�0; �3; �5; �7g and � = �1 + �2 + �3 + 2�4 + �5 + �6; in E8,f
1; : : : ; 
4g = f�0; �2; �5; �7g and � = �1 + �2 + 2�3 + 3�4 + 2�5 + 2�6 + �7 + �8. �Proof of Theorem 3.1. Lemma 3.2 implies that �̂�1(N4=G) � Ŵc, and essentially thesame argument proves ��1(N4=G) � W . To prove the reverse inclusions, it would su�ceto show that for w 2 Ŵc and n 2 n̂w0 \ n̂ (resp., w 2Wc and n 2 nw0 \ n), we have n 2 N4.Since any n 2 n̂w0 \ n̂ is a linear combination of those E� such that � 2 �̂(w�1), itfollows that ad(n)4 is a linear combination of monomials of the formM = ad(E
1) ad(E
2 ) ad(E
3) ad(E
4); (3.1)where 
1; : : : ; 
4 2 �̂(w�1).If ad(n)4 6= 0, at least one such monomial must be nonzero. Let us therefore supposeM (E�) 6= 0 for some � 2 �̂[f0g, following the convention that E0 represents an arbitrarymember of h 
 F . Setting � = � + Pi 
i, it is clearly necessary that � 2 �̂ [ f0g.Furthermore,h�; �i = h�; �i + 8 + 2Xi h�; 
ii+ 2Xi<jh
i; 
ji � h�; �i + 8 + 2Xi h�; 
ii; (3.2)since h
i; 
ji � 0 by Theorem 2.4.If � = 0, this implies h�; �i � 8, which is impossible. Hence � 2 �̂ and h�; �i = 2.Since h ; i is positive semide�nite, it follows that h�; 
ii � �2 for all i. If h�; 
1i = �2,then �+ 
1 would belong to the radical of h ; i, and thereforeh�; �i = h
2 + 
3 + 
4; 
2 + 
3 + 
4i � 6;6



a contradiction. Thus h�; 
ii � �1 and the bound implied by (3.2) yields h�; �i � 2.This bound is tight, so equality occurs in (3.2); in particular, the 
i must be pairwiseorthogonal and h�; 
ii = �1 for all i. Conversely, in any such con�guration of roots, wehave h
i+1+ � � �+
4+�; 
ii = �1, so 
i+ � � �+
4+� 2 �̂ for all i, and hence M (E�) 6= 0.Furthermore, if we set n := E
1 + � � �+E
4 , then the above analysis shows that every termin the expansion of ad(n)4 is 0 except for the 24 monomials that correspond to selectinga permutation of (3.1). However, ad(E
i ) and ad(E
j ) commute pairwise for i 6= j, soad(n)4 = 24M 6= 0.If W is of type A, we claim that there can be no con�guration �; 
1; : : : ; 
4 2 �̂ asabove. Indeed, since the inner products among these roots coincide with those formedby the simple roots of an a�ne system of type D4, they generate either a �nite or a�nesubsystem of type D4 in �̂, according to whether � is in the linear span of 
1; : : : ; 
4.In either case, modulo the radical of h ; i, we would have an embedding of a �nite rootsystem of type D4 in a �nite root system of type A, which is impossible|every irreduciblesubsystem in type A is also of type A.If W is of type D or E, Lemma 3.3 implies that there is a suitable con�guration ofroots �; 
1; : : : ; 
4 in which the 
i are simple. If we take w to be the product of the simplere
ections corresponding to the 
i, it is clear that w = w�1 2 Ŵc and �̂(w) = f
1; : : : ; 
4g.Hence there exists n 2 n̂w0 \ n̂ such that ad(n)4 6= 0, and the inclusion in (b) is proper.Turning now to (a), the above reasoning also proves that for w 2 Wc and n 2 nw0 \ n,we have ad(n)4 = 0 unless there exist pairwise orthogonal roots 
1; : : : ; 
4 2 �(w) and� 2 � satisfying h�; 
ii = �1 for all i. However in this case h ; i is positive de�nite, so�; 
1; : : : ; 
4 must generate a �nite root system � of type D4.Setting �+ = �+ \�, we can choose an orthogonal basis "1; : : : ; "4 for the span of �so that �+ = f"i� "j j 1 � i < j � 4g. There are three quadruples of pairwise orthogonalroots in �+; namely, f"i�"j ; "k�"lg, where ffi; jg; fk; lgg ranges over the three partitionsof f1; : : : ; 4g into doubletons. We claim that if any of these con�gurations occurs in �(w),then there would exist a root � 2 �(w) such that h�; 
ii = �1 for some i, contradictingthe fact that w 2Wc (cf. Theorem 2.4).If "1 � "2; "3 � "4 2 �(w), then the decomposition "1 + "2 = ("1 � "4) + ("2 + "4)together with the convexity properties of (2.1) imply "1 � "4 or "2 + "4 2 �(w). Howeverh"1 � "4; "3 + "4i = �1 and h"2 + "4; "3 � "4i = �1, so both cases lead to a contradiction.Similarly, if "1�"3; "2�"4 2 �(w), then the decomposition "1+"3 = ("1�"2)+("2+"3)and convexity together imply "1 � "2 or "2 + "3 2 �(w). However h"1 � "2; "2 + "4i = �1and h"2 + "3; "1 � "3i = �1, so again both cases yield contradictions.Finally, if "1� "4; "2� "3 2 �(w), then the decomposition "2+ "3 = ("2� "4)+("3+ "4)7



and convexity imply "2 � "4 or "3 + "4 2 �(w). However h"2 � "4; "1 + "4i = �1 andh"3 + "4; "1 � "4i = �1, so both cases yield contradictions. �Remark 3.4. (a) Part (a) of Theorem 3.1 was �rst proved in [F1, x7] and used thereto determine the longest elements in Wc for �nite simply-laced Weyl groups W .(b) If W is of type D or E, Theorem 3.1(b) implies that there exists w 2 Ŵc suchthat �̂(w) = O 62 N4=G. On the other hand, it is known that every �ber of the map � isnon-empty, so ��1(O) must contain elements not in Wc, by Theorem 3.1(a). Since � and�̂ commute with the natural embedding of W in Ŵ , it follows that in these cases, Ŵc isnot a union of cells.(c) From the tables in [C], it can be shown that for E8 there are exactly �ve nilpotentorbits in N4. On the other hand, it is known that there are only �nitely many commuta-tive elements in the a�ne Weyl group Ê8 [F1, x3]. (In fact, there are exactly 44,199 suchelements.) Thus Ê8 has at least �ve �nite cells.(d) The members of N4 are precisely the \spherical" nilpotents as classi�ed by Pa-nyushev [P]. (A nilpotent element is spherical if its orbit under the action of some Borelsubgroup is dense in its G-orbit.) Panyushev's classi�cation is achieved on a case-by-casebasis; it is possible that further analysis of the �bers of � will lead to a uniform proof, atleast in the simply-laced cases.
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