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Abstract 

The category of highest weight representations is of special interest within 

the full set of representations of a real semisimple Lie group. This memoir de­

scribes the structure of the generalized Verma modules as well as the Kazhdan-

Lusztig data for the simple modules in this category for the classical groups. 

In particular, explicit formulas for composition factors of generalized Verma 

modules and Kazhdan-Lusztig polynomials are given. 
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§1. Introduction and summary of results 

Let £ be a semisimple Lie algebra over <D. To study any category C(g) of 

£-modules the standard procedure is to first study those with regular gener­

alized infinitesimal character Creg(£) and then to pass to those with singular 

generalized infinitesimal character Cs^n„(g). In ^his article we invert this usual 

procedure. The structure of modules in Cxeg(g) is determined from the cor­

responding information for ^sincr(g)' In turn the latter category is analyzed 

using an induction argument on the rank of £. 

The article is organized into two parts. The first part (sections two 

through seven) analyzes Csing(£) in terms of Creg(£') where rank(£;) is less 

than rank(y). The second part (sections eight through sixteen") is an appli­

cation of part one to the categories of highest weight modules for classical 

Hermitian symmetric pairs. The results of part one are quite general while 

those of part two are very explicit. In particular, in part two we obtain ex­

plicit formulas for the the composition factors of generalized Verma modules 

as well as explicit formulas for the Kazhdan-Lusztig polynomials. 

We now describe the results in some detail, beginning with the necessary 

notation for highest weight modules. For undefined terms and greater detail 

see sections two and three. Let h be a Cartan subalgebra of £ and b = h&n a 

Borel subalgebra. Let p = m®u be a parabolic subalgebra of £ with nilradical 

Hi uQ R and with K m . Denote by A (repectively A(ra), A(u)) the A-roots 

of £ (resp. m, M). Let A + be the positive roots which are the roots of n and put 

A + (m) = A+ H A(ra). Let p (resp. p(rn)) equal half the sum of the elements 

Received by the editors June 6, 1986. 
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2 T. J. ENRIGHT and B. SHELTON 

of A+ (resp. A + (m)) . Let W and W\n be the Weyl groups of (#, ft) and (m, ft) 

respectively. Put W2 1 = {w G W|wA+ D A+(m)}. Then W = W^W*2-. Let 

T ^ equal the set of A G ft * which are A-integral and A+(ra)-dominant and 

regular. 

Let 0(g,p) be the category of ^-modules which are: (i) finitely generated 

over U(g), (ii) £/(£)-locally finite and (iii) completely reducible over U(m). For 

A € ft*, let £>(£,£, A) be the full subcategory of 0(gyp) of modules with gener­

alized infinitesimal character parameterized by the W-orbit of A. Let M(g, A) 

be the Verma module with highest weight A — p and L(g, A) its irreducible 

quotient. For A G Vmj let F(m, A — p) be the finite dimensional irreducible 

rn-module with highest weight A — p. Let N(g, £, A) denote the generalized 

Verma module with highest weight A — p. Let P(£,£, A) denote the projec­

tive cover of L(g, A) in 0(g,p). When possible we delete the indices g and p 

and write M(A), L(X)i N(X) and P(A) respectively for these modules. Define 

the truncated category Ot(g,p, A) to be the full subcategory of 0(g,p) whose 

simple modules are the L(g,£) with £ less than or equal to A in the Bruhat 

order. 

In section four we give several results relating Csing(y) and Creg(£)- Let 

v and /i be A+-dominant elements in ft* with p, integral and let <f> = <££+/i 

be the Zuckerman translation functor (cf. section two). Then </> is a functor 

from £?(£,£, i/) to 0(gipii/ + p) which is an equivalence when v and v -f p 

have the same stabilizer in W. However, in all cases we prove: for w £ W and 

wv G Vrnj <f>P{wp) is an indecomposable projective module. Also P{wv) is 

self-dual if and only if <j>P(wv) is. These and similar results are given in (4.1), 

(4.5) and (4.6). 

Section five reviews the necessary material on Zuckerman derived functors. 

Proofs are given for some known facts which however are not available in the 

literature. 
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CATEGORIES OF HIGHEST WEIGHT MODULES 3 

Section six includes the first result relating categories of modules for Lie 

algebras of different rank. Let q = /0W. be a maximal parabolic subalgebra 

of g with h C L and g not containing p. Suppose that A G i* is A-integral 

and A(/)-regular. Put Og_ - 0(g,p,X) and OL = #*( / , /Dp,A) . The main 

result of section six, (6.6), asserts that if the set of highest weights plus p in 

Og equals the set of highest weights plus p([) in Q\_ then these two categories 

are equivalent. 

The main result in section seven is similar, however, with different hy­

potheses. Put r = / n ra. Let w\ be the longest element in Wi_ and WQ1 the 

longest element in WL where Wm_ = WryV-. Put v = —w\p and p = WQV. 

Now set Oi = 0 ( / , /Og, i/) and Og = (!?*(£,£, p)\ and note, the truncation oper­

ation is on the other side in this case. Then these two categories are equivalent 

(7.1). The proofs of both (6.6) and (7.1) rely on the use of Zuckerman derived 

functors. However, their application is somewhat different in the two cases. 

Section six uses derived functors in the top dimension while section seven uses 

them in the middle dimension. These two results are the main results in part 

one of the article. At the level of the Grothendieck group the equivalence estab­

lished in section seven has been proved by Boe and Collingwood ([6] Scholium 

2.6) for the Hermitian symmetric setting. Their argument uses the Zuckerman 

derived functors in the middle dimension to identify the Hasse diagram of D\ 

with a subdiagram of the Hasse diagram for 0(g,p, p). 

Let (G,K) be a classical Hermitian symmetric pair. The highest weight 

representations for the simply connected covering group of G are infinitesimally 

equivalent to the modules in the category 0(g,p) where g is the complexified 

Lie algebra of G and p is a maximal parabolic subalgebra of g. In part two of 

this article, we apply the results from part one to analyze these categories. The 

first results describe the composition factors L(xp) in the generalized Verma 

module N(yp), x,y £ W221. We give explicit formulas both for x in terms of 
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4 T. J. ENRIGHT and B. SHELTON 

y and y in terms of x. Also we determine the socle of N(yp). These results 

and others are stated with greater precision in Theorems 8.4 and 8.5. All 

answers are expressed in terms of sets of orthogonal roots. Their proofs occupy 

sections nine through thirteen. In related work the multilicity free nature of 

the decompositions above was also obtained by Boe and Collingwood [6]. For 

other special cases of multiplicity one, we cite [9], [12] and [21]. 

In sections fourteen and fifteen we turn to questions regarding Kazhdan-

Lusztig polynomials and Ext*(7V(i/), £(£)). Here a standard lemma from alge­

braic topology (the mapping cone lemma) combines with the equivalences of 

categories from part one to give simple recursion formulas for Ext. This result 

is given as Theorem 14.4. From it we immediately derive explicit formulas for 

Ext'(N(yp),L(wp)), y,w G W12-, i G IN. These results appear as Theorems 

14.9 and Corollary 14.14. 

Following Kazhdan and Lusztig [23] and Vogan [34], we define what we 

call KLV polynomials <5y,tu(<z), 2/, w G W22-, in section fifteen. The correspon­

dence with the standard Kazhdan-Lusztig polynomials is given as Lemma 15.3. 

The recursion formulas for Ext described above then lead to corresponding re­

cursion formulas for the KLV polynomials. These recursion formulas uniquely 

determine the polynomials. This result (Theorem 15.4) generalizes to the Her-

mitian symmetric cases Sp(2n,IR) and SO*(2n) the recursion relations found 

by Lascoux and Schutzenberger [26] for the case SXJ(p,q). Finally in Theorem 

15.5 we give the solutions to these recursion formulas. This gives explicit for­

mulas for the KLV polynomials in terms of a combinatorial notion which we 

call chains (cf. Definition 14.8). 

In [16], canonical decompositions are given for self-dual modules which are 

U(u~)-fiee. The results depend on two hypotheses: simplicity of the socle of 

N(v) and self-duality of D(v) (cf. (2.7)). We have verified both of these prop­

erties for 0 (£ ,p) ; and so, all the results in [16] apply here as well. These results 
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CATEGORIES OF HIGHEST WEIGHT MODULES 5 

are summarized in section sixteen. Possibly the most interesting is Proposition 

16.5 which asserts uniqueness of signature of nondegenerate Hermitian forms 

on the modules D(v). In addition we give a characterization of self-duality for 

U(u~)-fiee modules X in O. We prove X admits a nondegenerate symmet­

ric invariant form if and only if the contravariant dual module Xv is a free 

U{u7)-module (cf. (16.3)). 

Section eight includes a more detailed summary of the main results of part 

two as well as additional introductory remarks for that part of the article. The 

reader primarily interested in the applications to Hermitian symmetric pairs 

should review the table of contents and then turn to section eight. 

This article is the culmination of a project begun some years ago. It has 

undergone a number of changes in perspective and has benefited from the com­

ments and suggestions of a number of our friends. The early develepmont of 

the project was strongly influenced by the work of R. Irving [20]. In particular, 

the simple structure of the category O for SU(l,n) was pointed out to us by 

him. This example was the starting point for all which followed. Our col­

leagues G. Carlsson and L. Small pointed out to us that one of the techniques 

we employed in section fourteen is well known in topology and is called the 

algebraic mapping cone lemma. The connection between "Poincare" polyno­

mials for 0(g_,p) and those for 0(g,b) was pointed out to us by T. Springer. 

Finally we thank Neola Crimmins for her excellent preparation of part one of 

this manuscript. Her work is much appreciated. 
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§2. Notation 

In this section we set down our notation and conventions for Lie algebras, 

root systems and highest weight modules. Also, we describe the BGG reci­

procity theorem for the category O as well as generalizations of it to what we 

call truncated categories. 

Throughout this article g will denote a semisimple Lie algebra over <C, the 

field of complex numbers. Let ft be a Cartan subalgebra (CSA) of g and b a 

Borel subalgebra with hcb. Let £ be a parabolic subalgebra of g containing 

k and let n (resp. u. ) be the nilradical of k (resp. p). So we have Levi 

decompositions 6 = ft®n and p = rnf&u. Let n" (resp yT) denote the opposite 

nilradicals with g = n~®£ (resp u~®p)- Let A denote the set of roots of (<j, t±) 

and let A + be the positive root system determined by b. For any ad(ft)-stable 

subspace a in £, let A(a) denote the set of roots whose root spaces lie in a 

and put A + (a) = A + D A(a). Also put p(a) equal to one half the sum of the 

positive roots in A + (a) . For convenience we write p instead of p(g). If / is any 

Lie algebra, let U(V) denote the universal enveloping algebra of /. 

Let W denote the Weyl group of (</,ft) and for a € A, let s a be the 

reflection corresponding to a. Let Wa denote the subgroup of W generated 

by the reflections sa, a £ A (a). For m as above we identify the Weyl group 

of (m,ft) with Wm. Also define W™ = {w G W\wA+ D A+(m)} and let 

Z2-W = \x\x-1 e W2 1}. S o W = ^ W • Wrn = Wrn • W12-. Let £(-) denote the 

length function on W. 

6 

Licensed to Harvard Univ.  Prepared on Mon Nov 14 19:34:29 EST 2016for download from IP 140.247.39.51.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CATEGORIES OF HIGHEST WEIGHT MODULES 7 

Next we describe the categories of highest weight modules used in this 

article. We begin with the Bernstein, Gelfand and Gelfand (BGG) category O. 

Let 0(g,p) denote the category of all ^-modules X which satisfy the conditions: 

(i) X is finitely generated over U(g)> (ii) X is £7(p)-locally finite and (iii) X is 

completely reducible over U(m). If h* is the algebraic dual of h and X E h*, 

let M(g, A) denote the Verma ^-module with highest weight A — p. Let L(g, A) 

be the unique irreducible quotient of M(g, A). Write XA f°r the infinitesimal 

character of M(g, A) and let 0(g,p, A) be the full subcategory of 0(g,p) of 

modules with generalized infinitesimal character xx- For Y G 0(gip)) let YXx 

be the maximal submodule of Y with generalized infinitesimal character xx> 

Then Y is the direct sum of its submodules YXx. 

Let Vrr^ denote the set of elements in h* which are A-integral and A + (m) -

dominant and regular. For A G V^, let F(m, A — p) be the finite dimensional 

irreducible m-module with highest weight A — p. By letting u act by zero, 

F(m, A — p) becomes a p-module. For A G Vm-, define the generalized Verma 

module N(g,p,\) by: 

(2.1) iV(£ ,£ , A) = U(g) <g) F(m, A - p). 

In C?(£,£) each irreducible module L(g,X) admits a unique indecomposable 

projective cover which we denote by P(£,p, A) (cf. [31]). When there is little 

chance of confusion, the modules M(£, A), L(g, A), N(g,p,\) and P(g1pi\) 

will be denoted by M(A), £(A), N(A) and P(A) respectively. 

A module A in 0(gip) is said to have a Verma flag if A admits a flag of 

submodules A = A\ D A^ D • • • D ^n+1 = 0 with A,-/A,-+i = N(Xi) for some 

At- G 'Prn, 1 < i < n. In this case we say A has a Verma flag of length n or 

that A has index n. For A G ?mj let [̂ 4 : N(A)] denote the number of indices 

h 1 < * < rc, with A = A«. This number is independent of the Verma flag of A 

and we call it the multiplicity of N(X) in a Verma flag of A. We say A has a 
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8 T. J. ENRIGHT and B. SHELTON 

multiplicity free Verma flag if the multiplicities [A : N(\)] are all one or zero. 

For any module B in 0(g,p), let (B : L(X)) denote the multiplicity of L(X) in 

any Jordan-Holder series for B. 

The role of projective covers in 0(g,p) is made more fundamental by the 

following reciprocity theorem. 

Proposition 2.2 [31] Let A and v be in Vm- Then: 

(a) .P(A) admits a Verma flag. 

(b)[P(\):N(v)] = (N(u):L(\)). 

This result was first proved by Bernstein, Gelfand and Gelfand for the case 

p = 6 (cf. [4]), and so we refer to identity (b) as the BGG reciprocity theorem. 

The generalization to 0(g,p) is due to Rocha-Caridi. 

The space ft* has two standard partial orderings defined as follows. For 

A, v G Ik we write A < v if v — A is a nonnegative integral sum of elements in 

A + . We write A-<i/ if Hom^(M(A),M(z/)) ^ 0. This second partial ordering 

is the Bruhat ordering (cf. [13]) and is the one most frequently used in this 

article. We now use it to define what we call truncated categories. 

Let p G Vrn. and define Ot(g,pip>) to be the full subcategory of 0(g}p,p,) 

of modules X with the property: 

(2.3) If v G Vrn and (X : L{v)) ± 0 then v-<\i. 

When p_ is fixed and little confusion can arise we write (9, 0(p) and Ot(p) 

in place of 0(g,p), 0(g1p,fi) and Ot(g,pyp,) respectively. We call Ot{p) the 

truncated category O with highest weight /i — p. Suppose A G 0(p,). Then 

there is a unique minimal submodule B of A with A/B G Ot(p). Define 

T,(A) = A/B. 

Lemma 2.4 Let p, and is be in Vm_. 

(a) Ifi/-<p then N(v) is in Ot(p). 

(b) Tp is a covariant right exact functor from O to Ot(p). 
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CATEGORIES OF HIGHEST WEIGHT MODULES 9 

Proof: If (JV(i/) : £(£)) ^ 0 then £-<*/. This gives (a). Let A, A' G O and 

/ G Hom(A,A') and choose 5 and B' with T^A = A/B and T^A' = ^ V ^ ' . 

To prove 7), is a covariant functor it is sufficient to check f(B) C B'. We prove 

this inclusion by induction on the length n of a composition series for B. If 

n = 0 then B = 0 and the inclusion holds. Now assume n > 0 and let £ — p be 

a maximal weight of B with £ -fi u. Choose a nonzero map \f> G Hom(iV(£), 5 ) . 

Then ftpN(£) is either zero or contains a cyclic vector of weight £ — p, and 

thus /^JV(£) C £ ' . Now put C = ^ ( 0 and C" = / C . This shows that / 

induces a map / : A/C —• A'/Cf. One checks easily that T^{A/C) = A/B and 

T^A'/C) S A ' / J B ' . So by the induction hypothesis, f(B/C) C B'/C". This 

implies / ( # ) C 5 ' , and thus / induces a map Tpf : A / J B —• Af/B'. 

To prove right exactness consider an exact sequence A0 -?+ A -+ A' -+ 0. 

Now / induces the map Tfifi so T^f is surjective. We now claim: image(TM^) = 

k e r n e l ^ / ) . Define B° with ,4°/J9° = T^A° and let £ and B' be as above. 

Since / is surjective, A'/f(B) = f(A)/f(B) G O t(/i). Thus / ( £ ) D 5 ' , and 

so f(B) = 5 ' . This implies the claim and completes the proof of (2.4). 

The categories Ot(fi) are structurally quite similar to O(ii). In particular, 

simple modules admit unique indecomposable projective covers and we have a 

BGG type reciprocity theorem. 

Proposition 2.5 Let v and \i be in V^. 

(i) Ifv-frii then T^P{u) = 0. 

(ii) Ifv~<fi then T^P{u) is the unique indecomposable projective cover of 

L(u) in Ot(fi). 

(Hi) If v^\x then T^P{u) has a Verma Sag and we have the reciprocity 

formula: 

((N(£):L(v)) ifteVrnand^v 
[T,P(v):N(0] = \ 

v 0 otherwise. 
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10 T. J. ENRIGHT and B. SHELTON 

Proof: L(v) is the unique simple quotient of P{y) and so also of TAiP(i/). 

This proves (i) and also proves TpP{v) is indecomposable. To complete (ii) 

we need only show TpPty) is projective. Let <f> : B —• C be a surjection with 

B,C G Ot(n) and 7 : T^P^) —* C. Let e denote the natural projection 

of P(v) —• TnP(n). Then P(*/) is projective, and so there exists a map 6 : 

P(i/) -+ B with (^06 = 7 0 6 . Now apply the functor Tp. We obtain a map 

T^6 : TpP(u) —* 2? with <j>oTp6 — 7. So TAiP(i/) is projective, indecomposable 

and has quotient L(v). This proves (ii). 

To prove (iii) we chose a Verma flag for P{y) = A\ D • • • D -An+i = 0 with 

Ai/Ai+i =* iV~(At). From Lemma 2.1 in [16] we may assume A,-</i if and only 

if 1 < % < a, for some integer a. Then T/iP(i/) = A\fAa and the reciprocity 

formula follows from (2.2). 

Let A be any ^-module and let SocA denote the sum of all the simple 

submodules of A, SocA is called the socle of A Let 1/ be in 7 ^ . If SocN(v) 

is a simple module then we reserve the notation i/# to indicate : 

(2.6) SocN(v) 2 L(*/#). 

In this setting we define modules D(v) = D(g1piu) by: 

(2.7) £>(*/) = T„P(*/#). 

For an equivalent definition of these modules see [16]. 

Translation functors are needed at several points in this article. Let /i,AG 

A* with A A-integral. Let F be the finite dimensional irreducible £-module 

with extreme weight A and let F* denote the contragradient ^-module. Let 

<j> = ^{J+A and \j) — V^+A denote the functors on 0(g,b) as well as on 0(g,p) 

given by: 

(2.8) *A = ( P 0 A X M )X M + X , rPA = ( P * ® ^ X M + , )XM . 
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CATEGORIES OF HIGHEST WEIGHT MODULES 11 

These functors are adjoints of each other and are called the Zuckerman trans­

lation functors when A and the real part of /i lie in the same Weyl chamber 

(cf. [38]). In this case, if \i and /i + A have the same stabilizer in W we say <j> 

and ip are equisingular. For the now standard properties of <j> and r/> the reader 

should consult [22] or [36]. 

The Verma modules in category 0(^p) all admit contravariant forms (in 

the sense of Jantzen, cf. [22]). We shall call a module X in 0(g,p) self-dual if 

it admits a symmetric nondegenerate contravariant form. 

We will need the following lemma on the Bruhat order. 

Lemma 2.9 Let A and /i be elements ofVm_ with X-<fi. Then there exist 

a,- G A + , 1 < i < t, with /it- = sai • -saifi £ V^ and A = /it-< <A*iX/i. 

This follows from Theorem 2.22(b) in [22]. 

At times it will be convenient to write for A G h* and a G A, Aa = 

2 (A,a ) / (a ,a ) . Also, for any module X in 0(g,p), let chX denote the formal 

character of X as in [22]. 
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§3. Preliminary results 

In this section we collect several technical results on Weyl groups and 

categories of modules. The reader is encouraged to postpone reading this 

section and instead refer to the results here when needed. 

For any A+-dominant £ G £*, let S(£) = {a G A+|(£,a) = 0} and 

let Wf be the subgroup of W generated by the sa, c* G S(£). The element 

£ determines a parabolic sub algebra and W^ is the Weyl group of the Levi 

component. However, this fact will not play a role here, and so we won't 

pursue the connection with the parabolic subalgebra in this section. 

Fix A,f G h* both A+-dominant integral. Let F = F(g, A) and let A 

denote the set of weights of F. 

Lemma 3.1 Set 0 = (f + A) n W(f 4- A). Then 

e = £ + W e . A = We(£ + A) . 

Proof: Fix \i G A and suppose £ + \i = w(£ -f A) for some w G W. It is 

suficient to prove: w G W$. Since /i G A, ||/i| | < ||A|| and M < A. Also 

||£ + A|| = ||£ + JI | | , and so we obtain: 0 < ||A||2 - | | / i | |2 < 2(/i - A,£) < 0. So 

we have equality: ||A|| = ||ji|| and (//,£) = (A,£)- But then jx G WA and if C 

is the positive Weyl chamber, /i G W{ • C. In turn this gives fi = 5A for some 

* G W e . Then w(f + A) = £ + // = s(f + A). This gives s^w G V ^ + A C W e 

and finally w G W^. 

Set *W = {w G W|u;S(0 C A+}. 

12 

Licensed to Harvard Univ.  Prepared on Mon Nov 14 19:34:29 EST 2016for download from IP 140.247.39.51.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CATEGORIES OF HIGHEST WEIGHT MODULES 13 

L e m m a 3.2 Let v,w £ *W and fi,v £ W^ • A. 

(i) £ -}- jz^f -f ^ if and only if u;(£ + n)^w(£ -f i/). 

(j'i) v(£ + n)-<w(€ + A) if and only if t;£-<u/£. 

Proof: Suppose £-f J/-<£ + ZA Then choose at- £ A + , 1 < % < k, such that with 

s% = Sai9 f + /* = Sfe •••*i(£ + i>) and (a,+i,st- •--siCf 4-1>)) > 0, k > i > 0. We 

claim on £ S(£) for all i. 

Choose r £ Wf with JJ = rX. Since A+ \ S(£) is W^-stable, if a^ $ 

5 ( 0 then (**(£ + /i),or*) = (£ + A, - r - 1 * * ) < 0. However, {**(£ + / i ) , a*) = 

(sfc-i • • • Si(€ 4- ^j^Jb) > 0- This contradiction proves a*. £ 5 ( 0 - Assume 

<*» £ S(£) for fc > i > a > 1 and put 7* == «a+i - — sni. Then £ + 7/ = 

sa * * * si(€ 4- *0 and £ + p-<£ 4- v. Now argiung as above with fi replaced by /J 

we obtain aa £ S(£)* This completes the induction and proves the claim. 

For 1 < i < k set /?,• = war,-. Then /?,- £ A + and s^.iu = wsi. Also, let 

«s- = sp.. Then S* • • • Siw(£ + v) = w(£ + fi) and (s^ • • -?iw(£ 4- z/),/?/+i) = 

(«j * * * si(£ + v)> a j+ i ) > °> 1 < i < *• This proves w(£ 4- ii)^w(€ + ^) . 

The converse of (i) is proved in a similar fashion. Assume w(£ 4- //)-< 

w(£+i/). Choose /?,• £ A + , 1 < i < fc, with st- = s^ , W(£4-A0 = Sk • • • siw(£+i/) 

and (SJ • • -siw(£ + ^),/?j+i) > 0, 0 < j < fc. Now arguing as above one 

can show w"1^ £ £(£)• Put ai = w~lPi and ?t- = s a i . Then as above, 

£ + /i = s* • • • ?i(£ 4- ^) and £ 4- / /-< + v. 

We now prove (ii). Suppose v£-<w£. By (i), it suffices to prove v(£ + 

A ) -<w(£ 4- A). Choose a* £ A + , 1 < i < fc, with tx;£ = sj, " - s i t ^ and 

(SJ ' — siv£,aj+i) < 0, 0 < j < k. Then — v~1s\ • • *SJOLJ+I £ A + . Since 

£ 4- A is dominant this gives: (s;- • • • s\v(£ + A), <*;+i) < 0, and thus if we put 

A' = w~lsk • • • 5ivA then v(£ + \)-<sk • • • sxv(C + A) = w(f + A'). By (3.1), 

w-xsk • • • «iv £ We and A' £ W^A. Then by (i), v(£ + A)-^w(£ + A')Xu;(£ + A) 

giving the first half of (ii). 
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14 T. J. ENRIGHT and B. SHELTON 

For the converse suppose v(£ + /i)-<ii;(£ + A). Choose a,- G A + , 1 < i < Jb, 

with Si = saii Sk'-S!v(£ + A*) = w($ + A) and (SJ • • • siv(f + Ji),flj+i) < 0, 

0 < j < k. Since £ + A* &nd f lie in the same (closed) Weyl chamber, we have 

(SJ •• -siv£,Oij+i) < 0. Also if y = S* •• -sit; then t^""1^/^ -f- A0 = £ +A, and so 

by (3.1), w"1y G W^. So yf = «;£, and thus v^w^. This proves (3.2). 

In section two we defined both truncation functors and translation func­

tors. They satisfy the following identities. 

Lemma 3.3 Fix w G *W, A,f A+-dominant integral and put p, = w£, v = 

w\. Let <f> and tp denote the translation functors <t>{* and V'f+A respectively. 

For any B G #(£ ,£ ,£) and E G 0(g,p,£ + A) we have: 

(i) T^u<j>B 2 #TMJ9. 

(jjj T ^ J E S rpTp+vE. 

Proof: We argue by induction on the length of a composition series for B. Put 

C = TpB and consider the short exact sequence: 0-+A-+B-+C—• 0. First 

assume A ^ 0 and C ^ 0. Then by the induction hypothesis, T^V^A 2 (pT^A. 

Since T^A = 0, </> is exact and 1^+,, is right exact we obtain: 0 —• Tfl^.l/<f>B —• 

T ^ + ^ C -+ 0 is exact. So T^v<t>B S T^^C 2 ^ C 2 #TMJ3 by the 

induction hypothesis applied to C. 

Now suppose A = 0. Let 7 — p be a maximal weight of B. Then 7-</z 

and there is a nonzero / G Hom(iV(7),B). Set D = fN(y) and choose r in 

*W with 7 = r£. By (3.1), <j>N(y) has a Verma flag with Verma factors of the 

form N(y + A') with A' G rW^ • A. Then (3.2(H)) implies 7 + A'-^/i +1/ for each 

A', and so <f>N(y) G 0*0* + ^ ) . This implies <£D G Ot(/x 4- ^) . The induction 

hypothesis gives: Tp+„4>(B/D) = <j>T^{B/D) = <t>{B/D) and <f>(B/D) G Ot(p+ 

1/). Combining these, <£J? G 0*(A* + 1/), and hence T^u<t>B = <j>B = (fiTpB. 

Finally, suppose T^B = 0. Let 7 — p be a maximal weight of 5 with 

7 7̂  A*- Let / be a nonzero element of Hom(iV(7), B) and set D = fN(y). By 
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CATEGORIES OF HIGHEST WEIGHT MODULES 15 

(3.2(ii)), T^u^N(j) = 0, and so T^v<j>D = 0. The induction hypothesis gives 

Tn+v<t>(B/D) £ <j>T^{B/D) = 0. By right exactness of T / i+I /, T^+u(j)B = 0. 

This completes the proof of (i). 

The proof of (ii) is similar and we omit the details. 

We end this section with two results on categories of modules. 

Lemma 3.5 Fix \i £ V^and let C = <9t(£,g,/i). Let T and S be covariant 

exact functors from C to C and let fx (X £ C) be a natural transformation 

from T to S. If fa is an isomorphism for each Verma module N then fx is 

an equivalence. 

Proof: We must prove fx is an isomorphism for all X. Choose A A + -

dominant with \i £ WA and define C{ to be the full subcategory of C consisting 

of modules whose composition factors all lie in {I/(sA)|s £ W and £(s) > i}. 

Thus CQ = C and we proceed by downward induction on i. Assume i £ IN 

and fx is an isomorphism for all X £ C,+i. Assume sX £ Vrn_ and £(s) = i. 

Then set L = L(s\) and N = N(sX) and define J to give the short exact 

sequence: 0—>J—> N —•£—•(). Then J £ C,+i, and by hypothesis fjsr 

is an isomorphism. Therefore the exactness of T and S and the five lemmas 

imply fx, is an isomorphism. This proves fx is an isomorphism for all simple 

modules in C,-. Now let X be any module in C,-. Using the five lemmas again 

and inducting on the length of a composition series for X shows fx is an 

isomorphism for all X £ C,-. This completes the first induction argument and 

proves (3.5). 

Let C and Cf be categories and F a covariant functor form C to C'. We say 

F is full (resp. faithful) if F maps Hom(X,Y) surjectively (resp. injectively) 

to Eom(FX,FY). 

Proposition 3.6 [30] The functor F : C —• C' is an equivalence if and only 

ifF is full and faithful and for all X £ C' there exists Y £ C with X and FY 

isomorphic. 
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§4. Reduction of singularities 

We retain the previous notation. The translation functors <j> and ip carry 

projective modules to projective modules. In this section we describe a setting 

where <j> carries indecomposable projective modules to indecomposable projec­

tive modules. Let £ and A be A+-dominant integral elements of h* and put 

<j> = < |̂+ . We are especially interested in the non equisingular cases, i.e. when 

£ and f + A have different stabilizers in W. 

Let 0 = £ + Wf • A and let wo be the element of maximal length in Wf. 

Then £ + woX is the minimal element in 0 . 

Proposition 4.1 Suppose w G *W with w£ G Vrn_. Then 

(i) <j>N(w£) is indecomposable, 

(ii) 4P{wt)<*P{w(t + wo\)). 

Proof: First we check: u>0 C Vm_. Since w£ G Vm^ and £ is dominant, 

w~lA+(m) C A+ \ 5 ( 0 - But A+ \S(£) is Wrstable, and so W^iif1 A+(m) C 

A + \ 5 ( 0 C A + \ S ( £ + A). This gives w 0 C T V Let N = JV(u;0- Then using 

(3.1), <f>N has a Verma flag i i D ^ D - O A*+i = 0 with -A</J4,-+I = JV(i/,-) 

and {ui,..., i/^} = w0 . 

For each v G w 0 , ipN(v) = iV and since <£ and ^ are adjoint functors we 

obtain: 

(4.2) dim(Hom(JV(z/), </>N)) = dim(Hom(AT, JV)) = 1 . 

By (3.2), v^w(£ + A). We claim: 

(4.3) Hom(tf (i/), AT(w(£ + A))) ^ 0 . 

16 
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CATEGORIES OF HIGHEST WEIGHT MODULES 17 

Suppose for some a G A+ ( ra) , i/-<saii;(£ •+ A). Choose v G *W, r G W^ with 

s aw = vr. Then for some A' G W^ -A, w(£ 4- A;) = v^v(£ 4- rA)-^v(^ 4- v
y by 

(3.2(i)). Now by (3.2(ii)), w£~<vt = saw£- This contradicts iuf G 7>m, and so 

v -fi saw(€ 4- A) for any a G A + (m) . But then the inclusion of Verma modules 

M(y) «-• M(w(£ 4- A)) induces a nonzero map (called the standard map) of 

N(v) into N(w(Z 4- A)). This proves the claim (4.3). 

Now suppose <f>N is decomposable, say <j>N = B®C. Since iu(f 4- A) 

is maximal in u;0, we may assume Ni = N(w(£ + A)) is a submodule of 

B. Let v - p be a highest weight of C. Then dim(Hom(N(i/),<£iV)) > 

dim(Hom(iV(z/), ATxeC)) > 2 by (4.3). This contradicts (4.2), and so <j>N 

is indecomposable proving (i). 

Put P = P(w£) and let 7 = w(£ 4- woA). Now <£P is projective, and so we 

choose 7,- G W(£ 4- A) with ^ P = 0o<t<jfe ^(7t)- % (3-2(i))> T is the minimal 

element of w&. Then ^ ( 7 ) is a quotient of </)N and also of <j>P. Thus we 

may assume 70 = 7. Recall the truncation functors from section two and put 

C = w$ and v = w(£ 4- A). Then (3.2) and (3.3) give: 

(4.4) <f>N = <f>TcP S T ^ P S 0 T„P(7,) . 
0<i<Jb 

By (i), <j>N is indecomposable, and since T„P(7o) ^ O w e conclude that T„P(7,-) 

is zero for all i > 1. So in particular, 7,- ^ 1/ for * > 1. Finally suppose 

7,- G tu,-e, ti;,- G *W. Then by (3.2), w^ -£ u£, and so Hom(<£P, £(7,)) S 

Hom(P, rpL(ji)) C Hom(P, L(w,£)) = 0 for i > 1. But then P(7,) is not a 

summand of <j>P. This contradiction proves k = 0 and <£P = P(7o). This 

proves (ii). 

Proposition 4.5 Let it; G *>V with iu£ G Vm_ and put £ = w£ and 7 = 

tu(f 4-u>oA). Then 

(i) P(C) is self-dual if and only P(y) is self-dual. 

(ii) P(C) i a s a multiplicity free Verma flag if and only if P(y) does. 

Licensed to Harvard Univ.  Prepared on Mon Nov 14 19:34:29 EST 2016for download from IP 140.247.39.51.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



18 T. J. ENRIGHT and B. SHELTON 

Proof: Self-dual modules are preserved under the functors <f> and >̂, and so 

by (4.1) if P(£) is self-dual then so is P ( T ) . Conversely, if P(j) is self-dual 

then rpP(j) is self-dual. However, if r is the index of the stabilizer of 7 in W 

in the stabilizer of £ then the formal character of xpP(j) is r times the formal 

character of P(C). But then ^P(j) is the direct sum of r copies of P(£). By 

Proposition 4.2 in [20], P(C) is self-dual. This proves (i). 

If P(C) has a multiplicity free Verma flag then (3.1), (4.1) and (4.2) show 

P(y) has a multiplicity free Verma flag. Conversely if P(y) has a multiplicity 

free Verma flag then by the previous paragraph, [ ^ ( 7 ) : N(P)] equals zero 

or r for any /?. Since rpP(y) is the direct sum of r copies of P(C), P(C) n a s a 

multiplicity free Verma flag. 

Recall from section two the notation £& reserved for the case when the 

socle of N(C) is £(C#)- Also recall the modules £>(C). 

Proposition 4.6 Suppose w G ^W with w£ £ Pm« Put £ — w£ and 

v = w(£ + \). 
(i) IfSoc(N(C)) is simple and D(() is self-dual then Soc(N(v)) is simple 

and D{v) is self-dual. Moreover in this case, <j>D{Q = D{v). 

(ii) IfSoc{N{v)) = L(i/#) with v# = ti(f + w0X) for some u G ^W and 

if D(u) is self-dual then Soc(N(C)) is simple and D(C) is self-dual 

Proof: Suppose Soc(N(()) = L(C*) and £>«) is self-dual. Then D « ) S 

TCP(C#) . Choose v € *W with < # = v£ and put V = v(£ + u>oA). By 

(4.1), ^P(C # ) = P(F). Using (3.3) we obtain: <j>D{Q S ^ P ^ ) = T„P(V). 

Thus <f>D(£) has a unique irreducible quotient £(F). By self-duality we have: 

Soc(<l>D(C)) = L(F). Finally, 1/ is a maximal weight of <j>D{Q. Therefore N{u) 

is a submodule of </>D(C) and Soc(N(v)) S Soc(<j>D(C)) = 1(F). In turn, 

F = i/# and £>(*/) S T„(P(I7)) S <££>«). This proves (i). 

Now suppose Soc(N(u)) = L(v#) with i /# = U(£-\-WQX) for some u 6 *W 

and £>(i/) is self-dual. Set C = tif. As in the proof of (4.5), rf>P(i>#) 2 
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CATEGORIES OF HIGHEST WEIGHT MODULES 19 

rp<f)P(C) is isomorphic to the direct sum of r copies of P(C)- Using (3.3), 

ipD(v) == xfrTyPtyft) = T{t/>P(i/*)> i.e. <t>D(v) is isomorphic to the direct sum 

of r copies of T^P{Q. Since any quotient of P{Q is indecomposable and rpD(i/) 

is self-dual, TCP(() is self-dual. Then as above, Soc(TcP(C)) = L(£) and since 

AT«) <-» TCP(<), Soc(tf « ) ) S £(<). This proves (ii) with C# = C 
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§5. The Zuckerman derived functors 

In this section we reecall the basic facts about Zucerman derived functors 

as presented in [17] (see also [36]). The main result is Proposition 5.5 which 

we suppose is known. However a good reference for this result is not available, 

and so we give a proof. As well we point out an error in the statement of 

Lemma 3.3 in [17]. The correct formulation of this lemma is given here as 

Lemma 5.15. 

Let notation be as in earlier sections. Define a second parabolic subalgebra 

g of £ with 6 C g C p. Let g = l&u(q) be the Levi decomposition of g with 

u(q) the nilradical of g and h C / C m. Fix an involutive automorphism 0 of g 

with 6 = — 1 on h and set p~ = Op. Now m D g is a parabolic subalgebra of m 

with Levi decomposition ra n g = /®(m n M(<?))- Also g = (m n £)®tx- Now by 

inducing in stages, the reader can easily verify: 

Lemma 5.1 Let v G Vj_. Set N = N(£,g, i/) and M equal to the p~-module 

U(P~)®U(m) N(221>2210 £, i/ + p(22l) — p)- Then N and M are isomorphic as 

p~-modules. 

For any Lie algebras k_ C a we let C(a,fc) denote the category of all a-

modules which are f7(ifc)-locally finite and completely reducibe as jfe-modules. 

Let A(a,k) be the full subcategory of C(a,fc) of finitely generated a-modules 

with finite dimensional ib-isotypic subspaces; i.e., the so called admissible mod­

ules. Fix a subalgebra m with k_ C m C a and for X G C(ayk) define Y±X 

to be the span of the finite dimensional simple m-submodules of X. In the 

20 
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CATEGORIES OF HIGHEST WEIGHT MODULES 21 

next three propositions we summarize the basic propoerties of the right derived 

functors T^ of I V The proofs can be found in [17]. 

Suppose t and rn are reductive and fc. is reductive in both rn and a and 

rn is reductive in a. 

Propos i t ion 5.2 (i) For i > dim(m/£), I \ = 0. 

(ii) For finite dimensional F G C(a,rr£) and X € C(a,£), X »-• T^F^X) 

and X i—• F 0 r ^ ( X ) are naturally equivalent functors on C^a, k) for all i £ IN. 

Part (ii) is Lemma 3.3 in [17]. In that article the finite dimensionality of 

F is not a hypothesis; however, it is required for the proof given there to be 

correct. 

For X e C(a,£), let X~ (resp. X™) denote the set of U(k) (resp. U(m)) 

locally finite vectors in the algebraic dual of X. 

Proposition 5.3 Put d = dim(m/fc). Then the functors X h-f T^(X) and 

X H-+ r£~*(A''s')w are naturally equivalent. 

We now return to the special setting of this article. Let / denote the 

forgetful functor from C(£,/) to C(p~,/). 

Proposition 5.4 For all i E IN, / o T%
g and Tp- o / are naturally equivalent 

functors on C(g,[). 

This result is proved in [17] with p~~ replaced by m. However, since m is 

reductive in p"~, essentially the same proof gives (5.4). We do not repeat the 

argument. 

We now prove a basic result for this article. The derived functors 1^ map 

Verma modules for (#,£) to Verma modules for (£,p). 
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22 T. J. ENRIGHT and B. SHELTON 

Propos i t i on 5.5 Let d = dim(m/i) and let v € Vm_ • Suppose w € W ^ and 

•wv £ Vi_. Then , for i G IN 

^ 0 otherwise . 

Proof: In the case where gz= ra, this result is the basic calculation for derived 

functors (cf. [17, Proposition 6.3] and (5.3)). Then N(g,p,v) is the irreducible 

finite dimensional £-module with extreme weight v — p. 

Let N = N(g,g, wis), A = N{m,mr\ g, wv -f p(ra) — p) and let / be the 

forgetful functor from C(</,/) to C(p~,/). Consider A to be a g~*-module by 

letting u~ = 0w act by zero. By (5.4) and (5.1) we have: 

(5.6) fT[N S I* - fN S I* - (^(it-)®A) . 

Here U(u~) is a £"~-module with u~~ acting by left multiplication and m acting 

by the adjoint action. Now suppose we have an isomorphism of £~-modules: 

(5.7) rj,_ (ff(iT )®A) = Uiu-)®^. (A). 

By Proposition 6.3 in [17] and (5.3) we have: 

K } V ^ " l o otherwise . 

Here F{m, v — p) is the irreducible finite dimensional m-module with highest 

weight v — p and we let u~ act by zero. Now combining (5.6), (5.7) and (5.8), 

for % = d—t(w), fT*gN and fN(g,p,i/) are isomorphic. Moreover, by (5.7), the 

m-modules in u®F(rn,i/ — p) do not occur in r* iV, and so u acts onF(m, v — p) 

by zero. Thus there is a£-module map x ^ 0> X : N(£,p, v) —» r*JV. By (5.7), 

X is surjective and hence an isomorphism. For % ^ d — ^(tu), the identities 

give: r*AT = 0. This completes the proof except for the verification of (5.7). 

This verification will be given in a series of lemmas. Our argument depends 

critically on the admissibility of the modules in (5.7) 
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CATEGORIES OF HIGHEST WEIGHT MODULES 23 

Lemma 5.9 [18] Let F be any a-module and let {fi\i G / } be a basis for F 

over (D. Consider U(a) as an a-module by right multiplication. Then F®U(a) 

is a free a-module with basis {/«®l|i G / } • 

The proof of (5.9) is easy, using only the natural filtration of U(a). 

Let R and S be rings with multiplicative identity. Let B = SBR be a left 

S-module and a right 12-module. Then B&R- and Homs(JB, •) form an adjoint 

pair; i.e., for X a left i2-module and Y a left S-module the map / H-> / defined 

by f(x)(b) = f(b<g>x) is an isomorphism giving: 

(5.10) Eoms(B^RX, Y) S HomH(X, Hom 5 (£ , Y)) . 

We refer to (5.10) as the adjoint isomorphism. 

We now recall some of the notation from [17]. For any a-module X, let 

X[g] denote the submodule of X spanned by the finite dimensional simple 

submodules of X. For any Lie algebras a, 6 with b C a and any 6-module 

W we put / (a ,6 , W) = Hom±(U(a),W)[b\. Here the actions are defined as 

follows. Let / be a linear map from U(a) to W. Then / G Hom^(C/(a), W) if 

/(6a) = 6/(a) for all a G U(a), b G U(b). We consider Eomk(U(a)1W) as an 

a-module by defing (a • f)(x) = / (#a) , # G #Xa), a £ a. If 6 is reductive and 

reductive in a then /(a, 6, PV) is an a-submodule of Hom^( 17(a), W). For any 

a-modules Xand Y put: 

(5.11) JJ(fl,X,y) = Hom c (X,y) [a] , I(a,X,Y) = Hom^X, Y)fc] . 

The reader can verify that the adjoint isomorphism induces an isomorphism: 

for FGC(a ,6 ) , WeC(b,b); 

(5.12) H(k, F, / (a , 6, W)) S #(&, F, Hom&(*7(a), W)) S 7(6, F® 17(a), W) . 

Lemma 5.13 Let F , l G C(a,b), W G £(£,£) and define a map <j> \-* <f> by 

<f>(x)(f) = <£(#)(/<g)l). Tien this map gives a natural isomorphism: 

Homa(X, HomL(F®U(a)i W)) £ ffom^X, HomL(F, W)) . 
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24 T. J. ENRIGHT and B. SHELTON 

Moreover this isomorphism induces isomorphisms: 

Homa(X, 7(6, F®U(g), W)) S Homk(X, 7(6, F, W)) 

and 

Homa(X, J7(6, F®U(a), W)) S Eomk{X, 77(6,F, W)) . 

The proof of (5.13) is straightforward and relies only on the freeness of F<g>U(a) 

(cf. (5.9)). We omit the details. This Lemma is a slight reformulation of 

Lemma 6.2.10 in [36]. 

Lemma 5.14 For any injective module I in C(a,6) and any F G C(a,6), 

77(6, Fy I) is an injective module in C(a, 6). 

Proof: From [17] we know 7 is a summand of I(W) for some W G C(6,6). 

So we may suppose 7 = 7(a, 6, W). Let T denote the functor on C(a,6) de­

fined by T(X) = Homa(X,7T(6,F,7)). By (5.12) T is equivalent to: X i-> 

Homa(X,7(6,F®C/(a), J¥)). In turn, by (5.13) T is equivalent to the functor 

S with S(X) = Hom^(X, 7(6,7^, W)). Now modules in C(a,6) are completely 

reducible as 6-modules and so S is exact. Thus T is exact and i7(6, F, 7) is 

injective. 

Note this lemma is similar to Lemma 6.1.24 in [36]. 

We now return to the hypotheses asnd setting for (5.2) through (5.4); 

k_<Zm(Za. 

L e m m a 5.15 Let F G C(a, m),Ae C(a, k). Then for all i, A «-• r '77(£, F, A) 

and A H+ 77(m, F, P A ) are naturally equivalent functors. 
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CATEGORIES OF HIGHEST WEIGHT MODULES 25 

Proof: Let 0 —• A —• 7* be an injective resolution of A. Since F is completely 

reducible as an m and hence fc-module, A i—• H(k, Fy A) is exact and by(5.14), 

takes injectives to injectives. So 0 —• H(k,F,A) —• H(k, F> I*) is an injective 

resolution. Therefore TtH(ki F, A) is the i ~ cohomology group of the complex 

TH(k, F, I*). Now by hypothesis, TH(ky FJ*) = H(m, F, I*) = H(m, F, IT*). 

Finally, using exactness of H(m, F, •) on C(a, m), the cohomology group of the 

complex is H(m, F, •) applied to the cohomology group of TI*. This gives 

TtH(ki Fy A) = H(rn, F, T%A). The naturality of these isomorphisms is easy to 

verify and we omit the details. 

We can now prove identity (5.7). The produced modules are the duals 

of induced modules (cf. [13]). Recall the notation of (5.3) and the proof of 

(5.5). If F denotes the dual of the finite dimensional irreducible /-module with 

extreme weight wv — p, then 

(5.16) N~ 2 Hom£(tf(g), F)[/], A~ 2 H o r n ^ t f ( m ) , F ) \ R 

Consider these modules as p~-modules by restriction. Then 

(5.17) N~ £ H(L9U(yT(3)),F), A~ S ff(t%nst-(j)),F) . 

The adjoint isomorphism gives a £~-isomorphism: N~ = H([, U(u~),A~). 

Now by (5.15) for all z we have: P W = # ( m , t / ( u - ) , r ' A ~ ) . Applying the 

duality theorem, TdmmiN = U(yr)®Td-iA and the proof of (5.7) is complete. 
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§6. A n equivalence of categories 

We keep the notation of sections two through four. Let £ be a maximal 

parabolic subalgebra of £ with Levi decomposition g = /0 t^ , uq equaling the 

nilradical of g. Further, suppose g does not contain p and / contains h and g 

contains b. Let c equal the center of /. Recall from section two the categories 

of highest weight modules and the related truncated categories. Fix A £ h* 

and put Og = ®{g<>PjX) and Q\ = O t ( / , / n p , A). In this section we establish 

an equivalence of categories between Og and Oi whenever the sets of highest 

weights plus p (resp. p(/)) are equal. 

Throughout this section we assume A is A+-integral and A(/)-regular. 

Also we assume the sets of highest weights plus p in Og equals the set of 

highest weights plus p{V) in Oi_. Let 0 denote this set. Let L be the one-

dimensional g-module with weight —p(uq). For any /-module X, consider X 

as a j-module by letting u„ act by zero. Define the exact covariant functor U 

by: 

(6.1) U(X) = U(£)(g)(X®L). 

Set d = dim(m/m PI /) and let T denote the m-finite submodule functor 

on C ( £ , m n / ) described in section five. Let C denote the category (9 ( / , /np ) 

and define a functor r on C by: 

(6.2) rx = rd*7(x), x e c . 

Lemma 6.3 For X £ C, rX is the unique maximal U{m)-locally finite and 

U(m)-completely reducible quotient ofU(X). 

26 
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Proof: We use the notation surrounding the duality theorem (5.3). Note 

that all modules in C are admissible. Let A be a J7(m)-locally finte and U(rn)-

completely reducible quotient of Y = U(X). We have: Y—+A —• 0. Dualizing, 

we get the exact sequence: 0 —• A~—*Y~. Define injections h and i with 

i o h = / ~ , h : A~ -+ r y ^ , i : r y ~ -> y ~ . Dualizing again, and identifying 

y £ ( y ~ ) ~ , A = (A")"' and / £ ( /~ )~ we have surjections h~ and i~ with 

/ = A~OI~, ;~: y — (ry~)~, &~ : (ry~)~ — A. NOW (ry~)~ = (ry~)« s 
pdy This proves the lemma. 

We denote by px the surjection i~ defined above. So px is the natural 

surjection : px : ^ ( ^ ) —» ^X. The naturality in X is expressed as follows: for 

X,Y € C , / G H o m ( X , y ) 

(6.4) r ( / ) o p x = p y o J7(/) • 

The center c is one dimensional with basis vector say H. Note that 

p(H) = p(t^)(i7). Let a = A(iJ) and for any c-module Z, let Z° denote the 

eigensubspace of Z where H acts by eigenvalue a. Define a covariant functor 

(TonC by: 

(6.5) (jy = ( y ® L * ) a , y e c . 

The main result of this section is: 

Theorem 6.6 The functor r gives an equivalence ofOi onto Og with inverse 

We shall prove this theorem through a series of lemmas. 

Lemma 6.7 Let p, € ® and put A = 7V(/,/Op,/i), B = N(#, p n £, jx) and 

C = N(a. v. u). Then (i) U(A) £ B, (ii) TA^C and (Hi) <rC £ A 
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28 T. J. ENRIGHT and B. SHELTON 

Proof: Induction in stages proves (i) while (i) and (5.5) prove (ii). We 

now prove (iii). Since \i lies in the Wj-orbit of p, fJ>(H) = a. Moreover, we 

may suppose for a E A, a(H) > 0 if and only if a £ A(t/g). Let /? be 

the unique simple root of A + which is not in A(/). By assumption g 2 P 

and so /? is a simple root of A + ( ra) . This implies spfj, £ Vrnni and we put 

N = iV(0,pn £, s^/i). Let D denote the image of N in B. Since gf) m 

is a maximal parabolic subalgebra of m and /? is the unique complementary 

simple root, B/D is {/(m)-locally finite and £/(m)-completely reducible, and 

thus C = B/D. Now <TN = 0 and so CTD = 0. Again by exactness of (7, 

crC ^ <TB. Finally, J5 ^ U(yr(q)®(uT n p F f m n / , / / - p) which gives: 

<TB = {7(u"~ H l)®F(m fl /, /i — p)®L*. In turn, since JB —> crB is an /-module 

projection, aB = A. This completes the proof. 

Now to prove (6.6) we must establish: 

(6.8) (Tor is naturally equivalent to the identity functor on Q\ . 

(6.9) r o a is naturally equivalent to the identity functor on Og . 

First we prove (6.8). Let I (resp £*) denote a basis vector for L (resp. L*). 

Recall the natural surjections px : U(X) —+ rX. For X G 0 [ define a map 

fx by fx(v) = <r op^(l<8w®0> v € ^ - From (6.4) we obtain the following 

commutative diagram: for X,Y G C?£, 0 E Hom/(X, y ) 

(6.10) 

This shows X \-> fx is a natural transformation from the identity functor to 

COT. To complete the proof of (6.8) we show fx is an isomorphism for all 

xeoh 

X 
Ux 

<TTX 

V % 

ar<f> 

Y 
4/y 

<TTY 
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Each / / G O has the form fi = wX with w G Wt_. We set Nw = iV(/, /rip, /i), 

Lw = L([,fi). For i G IN let Ot- be the full subcategory of Oi of all X such 

that (X : Lw) ^ 0 implies £(w) > i. If j = ^(u;) is maximal then JV^ = L^ 

and for all X G Oj, (6.7) implies that /*- is an isomorphism. Also, by (5.5) 

a o r* o U(X) = 0 for a lH < d and X £ Oj. We now proceed inductively. 

Suppose X K / ^ is a natural equivalence between the identity functor and 

(TOT on Oi and <rr'£/(X) = 0 for all X G 0 , and t < d. Fix /i G O with /x = wA 

and ^(w;) = * — 1. We have a short exact sequence 0 —• J —• iV^ —• Lw —• 0 

with J € Oi. Now a and £/ being exact, this sequence induces a long exact 

sequence: 

(6.11) • vTjU(J) -> <rTjU(Nw) -+ <rTjU(Lw) -+ <rTj+lU(Nw) -+ • • • 

By induction hypothesis, <rTjU(J) = 0 for j < df. Then by (5.5), <TTW(LW) £ 

<rTW{Nw) = 0 for J < d — 1. Applying / * to the last six terms of (6.11) we 

obtain: for L = Lw, and AT = ATW 

(6.12) 
0 — <TYd~lU(L) -> aTdU(J) — <rTdU(N) -> aTdU(L) -» 0 

0 - > J - + N - ^ L - > 0 

Now by hypothesis fj is an isomorphism while (6.7) proves fa is an isomor­

phism. Since the diagram is commutative <rTd~1U(L) = 0 and then by the five 

lemmas, /& must be an isomorphism. A similar argument by induction on the 

length of a composition series for X G Oi - i shows that fx is an isomorphism 

and aTiU(X) = 0 for t < d. This completes the induction step. We conclude 

that fx is an isomorphism for all X G 0\_ proving (6.8) and also: 

(6.13) <rT*U(X) = 0 for all X G Ob t<d . 

Lemma 6.14 (i) r is an exact functor from 0\_ to Og. 

(ii) For / i € 0 , TL{1 /i) S L(£,AX). 
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30 T. J. ENRIGHT and B. SHELTON 

Proof: T is right exact since P = 0 for all i > d. Suppose <f> : A —* B is 

an injection, A>B G 0\_. Let K equal the kernel of the map r<j>. By (6.13), 

aK = 0. However, for Y G O, if crY = 0 then Y = 0. This proves K = 0, and 

so r is exact. This fact also implies that Y G ©^ is simple if aY is simple in 0\. 

By (6.7), (6.8) and exactness of r , TL(1,(J) is a simple quotient of N(g,p,n). 

This proves (ii) 

We now turn to the proof of (6.9). For X G Og define a map gx : 

U(aX) —• X by gx(y<S>v) = y • v, y € #(£), v € crX. Note that the shifts by Z, 

and I/* cancel. Since aY = 0 implies Y = 0 in Ogy gx is a ^-module surjection. 

Since X G C^, the map 0x> factors through r<rX. Let hx denote the induced 

surjection: hx ' raX —* X. We have: gx — hx op<?x> Also X M A^ is a 

natural transformation from r o <r to the identity functor on Og. Finally by 

(6.7), hx is an isomorphism for all generalized Verma modules X, and so by 

(3.5), X i—• hx is an eqivalence of TOO- and the identity. This proves (6.9) and 

completes the proof of our main result (6.6). 

Lemma 6.15 Let X G Oy Then X is self-dual if and only ifrX is self-dual. 

Proof: Suppose X is self-dual; i.e., X admits a symmetric nondegenerate 

contravariant form <j>. Let <J>L (resp. <J>L*) denote a nondegenerate form on 

L (resp. L*). Then Proposition 6.12 in [14] asserts that <j>®<j>L has a unique 

extension <j> to a contaravariant form on U(X). Let Y be any £-submodule of 

U(X) with Y fl (l®X<g>£) = 0. Then invariance of <j> implies Y is contained 

in the radical of <j>. Let K be the kernel of px : ^ ( ^ ) —* ^ ^ - Since if O 

(1®X®L) = 0, ^ induces a form r<£ on r X . The radical iE of r<^ is a g-

submodule of rX and since aR is contained in the radical of <£, which is zero, 

cR = 0. But this gives R = 0 and so r X is self-dual. 

Conversely suppose r X is self-dual with a symmetric nondegenerate con­

travariant form xl>. By contravariance, eigenspaces for H are orthogonal and 

so tl>®</>L* restricts to a nondegenerate contravariant form on <TTX = X. Thus 

X is self-dual. 
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§7. A second equivalence of categories 

We retain the notation from previous sections. In particular g = l®uq is 

a maximal parabolic subalgebra of g which does not contain p. In this section 

we obtain a result similar to that of section six. However, here truncation will 

appear on the ^-module category instead of the /-module category. The main 

result is Proposition 7.1. As in section six this equivalence will use Zuckerman 

derived functors. However, unlike section six which used derived functors in 

the top dimension, here we use derived functors in the middle dimension. 

Put r = mOL Let w\ be the element of maximal length in Wi_ and put 

v — — wip. Recall the decomposition Wm_ = LW->Vr and let WQ be the element 

in L>V of maximal length. Then put /i = WQV and define Q\ = 0 ( / , / fl£, v), 

Ov = 0«(£,£ri£,i/) and O^ = Ot(g,p,ii). 

Proposition 7.1 The categories Oy Ov and O^ are all equivalent. 

We shall prove this result through a series of lemmas keeping careful track 

of the induced maps on highest weight vectors. Put ^ = {wv\w G W/_, wv G 

Vr}. Then \P parameterizes the set of simple modules in 0± via highest weights 

plus p(l). 

L e m m a 7.2 Let £ G * , A G VL and suppose A-<£. Then A G * . 

Proof: Choose a,- G A + , 1 < i < t, and let p>i = £ with A = 

p>t-< - - - -<p-o = £. Suppose A ^ \P then choose j maximal with ctj G A(w^). But 

lij G — W^ • p, and so (/i;,/?) < 0 for all /? G A(t^) . This contradiction proves 

(7.2). 
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32 T. J. ENRIGHT and B. SHELTON 

This lemma shows that \£ also parameterizes the set of simple modules 

in Ou. We now turn to the equivalence of G\ and Ou. Recall from (6.1) the 

functor U. 

Proposition 7.3 (i) For £ G * , U(L(L,S)) = L(g,$). 

(ii) A i—• U(A) induces an equivalence ofO\ onto Ov. 

Proof: By (7.2) any nontrivial #-submodule of U(A) has a nontrivial inter­

section with 1 0 A . This gives (i). Let a be the functor defined in (6.5) however 

with A replaced by v. The natural map A —• <rU{A) is an /-module isomor­

phism, say / A . Moreover A i-» /A is a natural transformation from 1 to cr o U 

on Q\_. To complete the proof we now show U o a is naturally equivalent to 1 

on Ov. 

Let a (resp. a*) be a basis vector for L (resp. L*). Let B G Ov and 

define </# G Kom.g(U<rB> B) by the formula: for v0a* G <r£ and x £ #"(£), 

<7s(#0t;0a*0a) = x • v. Again by (7.2) it follows that gs is an isomorphism 

for all JB, and thus B i-* <7# is an equivalence ofUoa and 1 on Oj,. This proves 

(7.3). 

We now come to the more difficult part of (7.1): the equivalence of Ov 

and Op. Let T denote the £/(ra)-locally finite submodule functor on C{g^r) as 

defined in section five. Put 2s = dim(m/r) and recalling wQi put 0 = wQ^. 

Lemma 7.4 (i) 0 C V^. (ii) For £ e h*, £ e V if and only if wQ£ G V^ 

and WO£-<IJ>.. 

Note: This lemma implies that 0 parameterizes the set of simple modules in 

<v 
Proof: By construction, elements of ^ lie in VL and have negative inner 

product with elements of A(uq). Thus w0ty C Vrn_ giving (i). 

Now suppose ( , ( G ^ with £-<C- Then we claim: WQ^WQC. Choose 

(*i G A+, 1 < i < t, and let & = sai • • • sai( with £ = Ct^> <Co = C a n d 
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CATEGORIES OF HIGHEST WEIGHT MODULES 33 

(<*iXi-i) > 0- By (7.2), ai G A+(/). Since A+(/) C A+(r) U A+(u), w0a{ G 

A + . Put 7J = woai. Then WQ& = s7iwoC*-i> 1 < * < *> and (7i,ttfoC*-i) = 

(a,-,Ct-i)j and so wo£-<woG. This proves the only if part of (ii). 

Finally, suppose ( G i* , wo£ G Vr^ and wo£-<n. By (2.9) we choose 

7i G A + , 1 < i < t, with //,- = «7. • • • s7l/i G Pm« and w0£ = fif< • • • X / i i - ^ . 

Since each //,- is A+(m)-dominant, 7,- G A(W) and thus /?,• = tz;^17,- G A(w) 

also. Now WQ1^ = spiWQ1fj,i-i and (/?,-, t ^ V « _ i ) = (7,-,//1_i). Therefore 

£^wJ7 V t ^ • • • -<wJT V = v, and so by (7.2) £ G # . This proves (7.4). 

The calculation of derived functors in (5.5) gives: 

Lemma 7.5 Letter. Then 

AT(£,£,u;oO ifi = s 

otherwise . lo 

By the duality theorem (5.3) we obtain: 

Lemma 7.6 

(a) Let A G Ov and suppose A admits a nondegenerate invariant form. 

Then so does TSA. 

(b) Let A~ denote the contravariant dual module in Ov. Then ~ and Vs 

commute; i.e., TSA~ and (VA)" are isomorphic. 

Lemma 7.7 Vs is an exact functor on Ou. 

Proof: Every module A in Ov is free over ^ ( m n t ^ ) , and so by (5.5), T*A = 0 

for all i < s. For any simple module B in GUy B is self-dual, and thus by duality 

(5.3), TXB = 0 for all i ^ s. Using long exact sequences we conclude TlA = 0 

if i ^ s. This proves (7.7). 

Proposition 7.8 (i) For £ G # , r 5 £(#,£) = L(£, ti;0£)-

(ii) T* gives an equivalence ofOv onto Op. 
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34 T. J. ENRIGHT and B. SHELTON 

Proof: Let A = TsL(g^). By exactness and (7.5), A is a quotient of B = 

N(g,p,wo£). By (7.6), A admits a nondegenerate invariant form. However, 

the only quotient of B to admit a nondegenerate invariant form is L((7,u;o£). 

This gives (i). 

To prove (ii) it is sufficient by (3.6) to prove: 

(7.9) Vs is full and faithful. 

(7.10) For any X G O^ there i s a Y G ^ with X £ T'Y. 

To establish these facts we must first prove that Vs maps projective objects 

in Ou to projective objects in O^. The proof of this is somewhat delicate and 

involves wall crossing and an inductive argument. 

Recall from section two the truncation functors Tv and T^. 

Lemma 7.11 Letter. Then 

TsTuP{hpf\q^)^T^P{i,hw^) . 

Proof: To simplify notation, for £ G * put 7V(0 = % £ n £ » 0 » P(0 = 

^(£i£H£,f), N(w00 = # (£ ,£ , woO and P(wo£) = ^(£ ,£ , ti>oO- W e n o w P r o v e 

(7.11) by downward induction on the Bruhat ordering of \£. If £ is maximal 

then £ = i/ and since TvP(v) = JV(i/) and TfiP(w0if) = N(w$v), (7.5) gives 

the isomorphism (7.11) in this case. Now let £ G * and suppose we have: 

(7.12) r ' r . P K j s T p P K O • 

Choose r G W with £ = rp and suppose a G A + is simple, £(rsa) = £(r) -f 1 

and £ = r s a p G \P. We now prove (7.12) holds with £ replaced by £. 
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CATEGORIES OF HIGHEST WEIGHT MODULES 35 

Let u> be the fundamental wieght corresponding to a and let <f> and ^ be 

the Zuckerman translation functors; <f> = (/>^w and tp = t/>£~u. Let 0 denote the 

wall crossing composite; 6 = <f>oip. Now (3.3) asserts that 9 and T„ commute 

on 0(g}pDg,p) and 0 and T^ commute on £>(£,£, p). Since 0 also commutes 

with T5 we obtain: 

(7.13) TSTU0P(O S T^Piwot) . 

Note that this module is projective in (9^. Now since P(£) is a summand of 

0P(£) (cf. [20, Proposition 2.3]), (7.13) implies that r*T„P(£) is projective in 

Op. On the other hand, by (2.5) and (7.5), r5T„P(£) and TVkP{w^) have the 

same character. Thus, both being projective, they are isomorphic. This proves 

(7.12) for £ and completes the induction step. In turn this proves (7.11). 

We now prove Vs is full and faithful. Let A, B G Ov and <j> G Hom(A, B). 

By (7.7) and (7.8), image ( r^ ) £ P(image(<£)) £ 0. So T8 is faithful. 

Next we prove (7.10). For < G A*, let L « ) = L(£,<). For ^ G ^ 

and A G 0 „ , dun(Rom(TyP(Z)fA)) = (A : £(£)) = ( r M : £ ( ^ 0 ) = 

dim(Hom(r^P(ti;oO,rM) by (7.8). Since Ts is faithful, we obtain: for any 

projective P G 0U1 

(7.14) r5Hom(P,^L) S Hom(r*P,r5A) . 

Now let l G O v and choose projective modules P and P ' with P ' -̂ » P —> 

X —• 0 exact. By (7.11), choose projective modules Q and Q' in Ov with 

P S T*Q and P ' £ r 5 Q ' . Now identyify these modules and using (7.14) 

choose 7Ti G Hom(<5',Q) with T57ri = 7r. Then by the exactness of Vs, X = 

r ' ( Q A i Q 0 - T h i s P r o v e s (7-10)-
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36 T. J. ENRIGHT and B. SHELTON 

Finally we prove Vs is full. Let A,Y,Q and Q' be in Ov with Q,Q' 

projective and Q' -^ Q -^ Y —• 0 exact. Applying Hom(«, A) and T3 we obtain 

the commutative diagram: 

(7.15) 
0 -+ Hom(Y,A) — Hom(Q,^) - • Hom(Q',A) 

i 1= 1= 
0 — Hom(r 5 Y,rM) — Hom(r*Q,r*A) -+ H o m ( r 5 Q ' , r M ) 

The two right hand maps are isomorphisms by (7.14), and so (adding two zeros 

on the left) the five lemma implies all maps in (7.15) are isomorphisms. Thus 

T5 is full. This completes the proof of (7.8). 

Propositions 7.3 and 7.8 combine to prove (7.1). For reference we now 

summarize the properties we have for the composite functor / = Vs o U on O^ 

Proposition 7.16 I induces an equivalence of categories D\ onto O^ with 

the properties: for £ E \P, 

(i) I(L(L,O)~L(g,w0t); 

(ii) i(N(L,Lnp,0) = N(g,p,woO; 
(Hi) I(P(l_, In p, 0) = T^Pig,p, wot). 

Moreover y A G 0\ admits a nondegenerate [-invariant form if and only if IA 

admits a nondegenerate g-invariant form. 

Proof: The properties (i), (ii) and (iii) follow from the results above. The 

result on invariant forms follows from the proof of (6.15) and (7.6). 
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P a r t I I - Highest Weight Modules for He rmi t i an Symmet r i c Pa i r s . 

§8, S t a t emen t of t h e Main Resul ts 

In Part II we turn our attention to the highest weight modules of classical 

Hermitian symmetric pairs. Our principal results are explicit descriptions of 

the composition factors of a generalized Verma module, as well as, explicit 

formulas for the Kazhdan-Lusztig polynomials in this setting. 

We refer to each classical Hermitian symmetric pair (<7,p) by HS.z with 

1 < * < 5. These are defined by Table 8.1 below. Throughout Part II, (#,£) 

will be one of these Hermitian symmetric pairs. To each pair we attach a 

constant p which is also given in the table. In the equal root length cases p 

is just the split rank of the pair. In the non-equal root length cases p is the 

greatest integer in one half of the split rank plus one. 

constant p 

min(r, s) (r -f s = n -f 1) 

1 

[ ( n + l ) / 2 ] 

2 

[n/2] 

The nonclassical Hermitian symmetric pairs E$ and Ej have been studied in 

detail by D. Collingwood [12] so we omit discussion of them here. 

37 

Table 8.1 

(£>£) 

HS.l 

HS.2 

HS.3 

HS.4 

HS.5 

£ 

A„ 

B„ 

c„ 
D„ 

D„ 

\m,m\ 

Ar_x X A,_! 

B n - i 

A„_i 

D„_i 

A„_i 
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38 T. J. ENRIGHT and B. SHELTON 

We begin by describing the combinatorics which gives the solution(s) to 

the composition factors problem for 0(g,p, p). We make the convention that if 

all of the roots of g are of the same length then they are all called short roots. 

Definition 8.2 Set M = {(7,^) | 7 , ^ G A + and either (7,^) ^ 0 or both 

7 and v are long roots }. Let <S(A+) denote the collection of all subsets Q of 

A + which satisfy the following conditions: 

i) If 7, v are in Q}y ^ v, then (7, v) £ M. 

ii) If y is in Q and £ is in A + with 7 ^ ^ , (7>0 G M and £ < 7 then 

there is a £ in SI with £ ^ 7, (C>0 G M and £ < 7. 

We note that <S(A+) is defined for any positive system of any root system. 

When there is no chance of confusion we will denote this set simply as S. 

Fix x in W221. Then Sx will denote the set of all Q in S which satisfy 

xQ C A(u) U —A(w). By Ex we will denote the collection of Q in Sx which 

satisfy the additional condition: 

iii) If 7 is in 0 then there is a £ in Q with 7 < ( and x( G A(u). 

Two distinguished elements of Sx have an alternative and more com­

putable description. For any root 7 we set 7V = 27/(7,7) . For A in h* 

set E0(A) = { 7 6 A(u) | (A,7V> = 0}. We define £,-(A), for i G N inductively 

as follows. E,(A) = {7 G A(t/)|(A,7V) = —2,7 is orthogonal to (JQ~ £ J ( A ) and 

if there is a long root in |J^~ £j(A) then 7 is a short root }. 

Definition 8.3 For x in W™ we set: 

E* = ( J Zjixp) and £+ = ( J E^-xp) 
j>o j>o 

We note that E^ and E+ are sets of mutually orthogonal roots in A(u) with 

£* C -xA+ and E+ C xA+. 
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CATEGORIES OF HIGHEST WEIGHT MODULES 39 

For ft in Sx, set ft+ = {7 G ft | xj G A(u)} and ft" = {7 G ft | 0:7 G 

—A(t/)}. Note that the definitions of ft+ and ft"" depend on x. Let S* (resp. 

5 J ) be the collection of ft G Sx with ft = ft+ (resp. ft = ft""). Define 

rn G W by rfi = IXy€n+ 57* ^ ^ *s *n — *» ^et ^ denote the A + (m)-dominant 

element of the W^-orbit of A. Write W = WjnW121 as usual and let w —* w 

denote the projection of W onto W 2 1 "perpendicular" to W^. Then tUp = Tvp. 

Suppose E = { 7 1 , . . . , yt} is a subset of E r . Put s%(x) = s s = s7 l • • • sltx and 

^ = {ss |E C E r } We can now state our main results on composition factors. 

Theorem 8.4 Fix x in W121. 

i) — x"1TiX is in Sx. 

ii) L{xp) is a composition factor of N(p) if and only if p, G Axp. Also, 

the map E —• s^ is a bijection from the set of subsets ofT,x onto Ax. 

iii) The composition factors of N(xp) occur with multiplicity one and are 

exactly {L(xrnp),ft G Sx}. Moreover, the map ft —• xr^ip is injective on £x. 

The multiplicity one part of (8.4) was originally observed by Boe and 

CoUingwood [6]. We will see in section 9 that (8.4 iii) follows easily from (8.4 

i) and (8.4 ii). 

The techniques which prove theorem (8.4) are sufficient to prove several 

other interesting results. These are listed in the next theorem. 

Theorem 8.5 Fix x in W2 1 and set r s+ = IXy€E+ 57-

i) x"*1E+ is in Sx and Socle(N(xp)) = L(r^+xp)-

ii) D(xp) is self-dual (cf (2.7)). 

iii) IfQ is in Sx, then the cardinality of£l is less than or equal to the 

constant p for (#,£?) (cf. (8.1)). 

iv) P(xp) is self dual if and only if the cardinality of E r equals the con­

stant p for (g}p)-
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40 T. J. ENRIGHT and B. SHELTON 

If 12 is in SX1 then Q is said to be positive (respectively negative) if Q = Q + 

(resp. Cl~~). If Q is a negative set then we put fo = Ilyeft 57- For completeness 

we state the following result. 

T h e o r e m 8.6 Let x and y be in W—. 

(i) Hom(N(xp),N(yp)) = <D or zero depending as xp = yr^p for some 

positive set Q £ Sy or not. 

(ii) Hom(N(xp),N(yp)) = <D or zero depending as yp = xt^/? for some 

negative set Q £ 5* or not. 

This theorem, proved by Brian Boe and the authors, will appear in [8]. 

The result relies on the work of R. Irving [20] and B. Boe and D. Collingwood 

[7]. 

The proofs of Theorems 8.4 and 8.5 occupy sections nine through thirteen. 

We will briefly outline the arguments. If g is of type HS.2 or HS.4 then the 

structure of the category 0{g)pJ) p) is very simple and is given explicitly in [16]. 

Theorems (8.4) and (8.5) can be read off directly from there. In this article we 

will complete the proofs of (8.4) and (8.5) by addressing the cases HS.l, HS.3 

and HS.5. Most of the arguments will proceed by induction on the constant p 

for (</,p) using the equivalences of categories proved in Part I. 

In section 9 we give some technical lemmas needed to keep track of our 

combinatorics. We also prove that (8.4 i) and (8.4 ii) imply the first claim of 

(8.4 iii) (cf (9.6)) and we prove the last claim of (8.4 hi) directly (cf. (9.7)). 

Section 10 contains an equivalence of categories based on a result of D. Vogan 

and section 11 gives another equivalence of categories based on the results in 

Part I. Theorem (8.4) is proved in section 12. Also an interesting corollary on 

the structure of the semiregular category 0(gyp,p — u>p) is given when (£,p) 

is of type HS.3 and wp is the fundamental weight corresponding to the long 
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CATEGORIES OF HIGHEST WEIGHT MODULES 41 

simple root. Here a parity is uncovered and the category splits as the sum of 

even and odd parts. Section 13 contains the proof of (8.5). 

In sections fourteen and fifteen we turn to calculation of Ext groups and 

Kazhdan-Lusztig polynomials. Section fourteen includes the proof of: 

T h e o r e m 8.7 Let y and w be in W - . Then: 

{ CD if w = ~s^y for some 7 £ Ey 

0 otherwise. 

Equivalently, 

{ <D ify = WTQ for some Q £ Sw with card(tt+)=l 

0 otherwise. 

This theorem is a special case of a much more general result given as Theorem 

14.9 which presents formulas for ExtJ (Ny, Lw) for all j £ IN. 

Following the articles of Kazhdan and Lusztig [23] and Vogan [34], we de­

fine what we call KLV polynomials Qy,w(<l) in section fifteen. Roughly speaking 

these are the Poincare polynomials for the category 0(g,p,p). The correspon­

dence with the standard Kazhdan-Lusztig polynomials is given as Lemma 15.3. 

There are two main results here. The first is the determination of a simple 

recursion formula which uniquely defines these polynomials. Let y,w £ W221 

and let /? be a simple root. Suppose ysp^y. Then in Theorem 15.4 we describe 

explicitly the two options: either Qy)W equals QyS0)W or the difference QVlW 

minus QyS0,w equals qr times a KLV polynomial for a lower rank Hermitian 

symmetric pair. This generalizes to the cases HS.3 and HS.5, the recursion 

relations found by Lascoux and Schiitzenberger [26] for the case HS.l. The 

second result is Theorem 15.5 which gives explicit formulas for the KLV poly­

nomials in terms of a combinatorial notion called chains (cf. Definition 14.8). 

The article ends with a description of the decomposition theory of self-dual 

U(u~)-fiee ^-modules. Here the main results concern canonical decompositions 

into indecomposable sub modules and signature results for Hermitian forms. 
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§9. Additional notation and preliminary results 

In this section we collect some technical information to be used in later 

proofs. We assume throughout that (g,p) is one of the Hermitian symmetric 

pairs HS.l, HS.3 or HS.5 with rank n. We continue with the notation of the 

previous section. 

We will use the usual Bourbaki notation for the roots of g. If g is of type 

HS.l then we have: 

A+ = {e{ - ey | 1 < i < j < n + 1} 
A(u) = {a - ej | 1 < i < pyp + 1 < j < n + 1}. 

For g of type HS.3 we have: 

A + = {e,- ±ej | 1 < i < j < n) \ {0} and A(u) = {e,- -f e j \l<i<j< n}. 

And finally for g of type HS.5 we have: 

A + = {e,- ± ej \l<i<j<n] and A(«) = {e,- + e j | 1 < i < j < n} . 

In each case the first n — 1 simple roots are a, = et- — e l + i for 1 < i < n — 1. If 

£ is HS.l (respectively HS.3, HS.5) then the last simple root is an — en — en+\ 

(resp. 2en , en_i + e n ) . 

Let x be in W21 . We set # ~ = A(«) n -xA+ and ^ + = A(t/) n x A + . For 

any 7 in A, set 7 = 7 if 7 G A+ and 7 = —7 if 7 G — A + . We define a partial 

order < r on A(«) by 7<ir2/ if and only if x~1y < x~xv. 

42 
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CATEGORIES OF HIGHEST WEIGHT MODULES 43 

Lemma 9.1 Fix y in W-. Let ft be any subset of \I>~ (resp. *$+) that is 

maximal with respect to inclusion and satisfies the following conditions: 

(a) If 7 and v are in ft and 7 ^ v then (7, v) £ M. 

(b) If j is in ft and £ is in ty~ (resp. W+) with ( 7 , 0 £ M and £ <y 7 

then there is a £ in ft with (C>£) £ M and £ <y £. 

Then ft = Ey (resp. E+). 

Proof: Assume that ft is contained in \£~. Set ft; = {7 £ ft| (yp,7v) = — i}. 

Then ft = U,->oft». Suppose that ft is not E y . Let 2 be the smallest positive 

integer for which ft* 7̂  E* so that Uo<t<tft« = Uo<i<tE;. Fix 7 in ft*. By 

a.) and (8.2), ft is an orthogonal set with at most one long root. Thus 7 is 

orthogonal to Uo<t<«E,- and there is at most one long root in Uo<»<tEt-. So 

7 is in Ef and Qt C E*. Next choose a A i n E t \ f t . We will show that the 

set ft' = ft U {A} satisfies conditions a.) and b.). This will contradict the 

maximality of ft and complete the proof of (9.1). 

First, suppose that for some i there is a 7 in ftt- with ( 7 , A ) G M . If i < t 

then 7 is in E,- and so (7, A) = 0 and 7 and A are not both long roots. This 

contradicts (8.2). Thus i > t. It follows that A < y 7. Using b.), there is a 

C £ ft with (C, A) £ M. and £ < y A. But this implies that £ is in ftj for some 

j < t. In turn both A and £ lie in Ey and (C,A) £ A4. This contradiction 

shows that ft' satisfies condition a.). 

Now suppose that there is a £ in \I>~ with ^ < y A, ( ^ A and (£, A) £ .M. 

Set s = — (yp,£) and note that s < t. If £ is in Ey then set £ = £. By 

minimality of 2, £ would then be in £2'. On the other hand, if £ is not in Ey 

then either £ is not orthogonal to Uo<»<*E,- or £ is long and there is another 

long root in Uo<»<*Et-. Either way, by (8.2) there is a £ in Uo<«<5Ef with 

« , 0 £ M. Since ( C O £ A4 and -(ypX) < «, C <y £• This shows that ft' 

satisfies condition b.) and completes the proof of (9.1) when ft is contained in 

\Pr. If ft is contained in \£+ the proof is exactly the same. 
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44 T. J. ENRIGHT and B. SHELTON 

Definition 9.2 If a is in A we define A(«, a) = {7 G A(u) |(7,a) ^ A4}. 

If a is a simple root in A + , let u;a be the corresponding fundamental weight 

and set Wa = {w e W~\w x ws a and w(p - ua) G ^ m } = {w G W™ | 

w-<wsa,wsa G W221}. >Va parameterizes the simple modules in G(gipip—uja). 

Fix yeWa. Then we take * ± a = ¥ ± n A(u, - y a ) , Ey>a = Ey n A(u, - y a ) , 
a j l d Ey*,a = Eyior H A( t i , - ya ) . Set .4y>a = {s7 l • • -s7 ty|7i , • • • ,7* € £ y , a} . 

Note that Ey = {—ya} U EyjCt. 

Lemma 9.3 Let a be a simple root in A and fix y in Wa. Let f2 be any subset 

ofty~a (resp. ty^a) that is maximal and satisfies the following conditions: 

(a) If 7, v are in Q, 7 ^ v then (7,1/) £ M. 

(b) Ify is in Q and £ is in \P~ a (resp. ^y}Q) with ( 7 , 0 G M and £ < y 7 

then there is a £ in Q, with ( C O G Af and £ < y C 

Then Q = E y , a (resp. E + J . 

Proof: Assume that Q is contained in ^ > a . Set Qf = fill {—ya}. By a. and 

the definition of \£~ it is clear that Q' satisfies condition a. of (9.1). We must 

show that Qf satisfies condition b. of (9.1). Suppose that 7 is in Q' and f is 

in SPy with £ < y 7, £ ^ 7 and (£,7) € AC. Since a is simple, 7 ^ —ya and 

thus 7 is in £3. If £ is in A(w, ya) then by b., there is a £ in Q with £ < y £ 

and ( C O G M . If £ £ A ( « , - y a ) then < = - y a satisfies ( C O G M. If 

(CC) ^ 0 then (CC) > 0 since both roots are in A(u) and hence, since a is 

simple, C <y C If £ a n ( I C a r e orthogonal then by (8.2) they must both be long 

roots. In this case £ < y £ again by the simplicity of C Either way, Q' satisfies 

condition b. of (9.1), and so by (9.1), fi' = E y . Thus Q = £ y , a . The argument 

for ^^a is the same. This completes the proof of (9.3). 

Definition 9.4 Let a be a simple root and recall the definition of <S(A+) = S. 

Set A(a) = {7 G A | (7, a) g M}. From (8.2) we see that A+(a) = A(a )nA+ 

is a positive system for a root system. We define <Sa = <S(A+(a)). If x is in 

W™ then we define SXiOC = {ft G <Sa | xft C A(u) U - A ( u ) } . 
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We remark that if A is An (resp. Dn) then A(a) is An_2 (resp. D n _2*Ai) 

for every simple root a. If A is Cn then A(a) is Cn__2 x Ai for every short 

simple root and Dn_i when a is the long simple root. 

L e m m a 9.5 Let a be a simple root and fix x in W a . Then the map ft —• 

ft U {a} is an injection from SX)(X to Sx . 

Proof: Fix ft in Sxta> Set ft' — ft U {#}• Choose 7 &nd v in ft' with y ^ 1/. 

We must first show that (7, v) £ M. By the definition of A(a) we may assume 

that 7 ^ a and v ^ a, i.e. 7, i/ G ft. But then (7, */) ^ M by the definition of 

Now suppose that 7 is in ft' and f is in A + with £ ^ 7, (£,7) £ At and 

f < 7. We must find a C G ft' with ( ^ 7 , ( C O G M and C < 7. By 

minimality, 7 ^ a . Suppose that ( a , 0 ^ M, i.e. £ G A + ( a ) . Then, since 

(£,7) G .M and £ < 7, either 7 — £ is a root in A + ( a ) or 7 and £ are both 

long roots. Either way, £ < 7 in A + ( a ) . Thus by hypotheses, there is a £ in 

ft with C ^ 7 , ( C O € A4 and < < 7 in A+(a) (and thus also in A+). Thus 

we may assume that ( a , 0 € <M. Set 7 = J2apP anc* £ = Yl^pfi where both 

sums are taken over all simple roots j3. Then since £ < 7, ap > bp > 0 for all 

/?. We claim that a < 7. Suppose not, i.e. a a = 0. Then since a and 7 are 

orthogonal, ap == bp = 0 for all /? that are not orthogonal to a. This tells us 

that a and £ are orthogonal. By (8.2) (g,p) must be HS.3 and a and £ must 

both be long roots. But then a = 2en and £ = 2e* for some & and we have 
a < £ < 7- Hence a < 7 and we may take £ = a. This shows that ft' is in 5^ 

and completes the proof of (9.5). 

We next show that the first claim of part iii of Theorem 8.4 is a con­

sequence of parts i and ii. For £ and A in Vrn_ we denote the multiplicity 

(N(\):L(0)bym(t,\). 
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46 T. J. ENRIGHT and B. SHELTON 

Proposition 9.6 Suppose that for each x in yvm-y — x~lY,x is in Sx and 

m(xpip) is one or zero depending as p G Axp or not. Fix y in W—. Then 

m(C, yp) is one or zero depending as £ = yrnp for some ft in Ey or not. 

Proof: It suffices to show that m(xp, yp) — 1 if and only if x — yr\i for some 

ft in £y. Suppose first that m(xp,yp) = 1. Then y is in Ax. That is, there 

are 7 1 , . . . , 7* in E r with y = s7 l • • -sltx. Define ft to be {£ G —x~1T,x \ £ < 

—ar""17i for some i}. We claim that ft is in £y and x = t/rn-

Since ft is contained in — x~xT,x and —x_ 1Ex is in Sx, ft immediately 

satisfies condition (8.2 i). Let 7 be in ft and £ be in A + with 7 ^ f, ( 7 , 0 G .M 

and £ < 7. Since — x~lT,x is in Sx there is a ( in —x~1E r with £ ^ 7, 

( C O G A4 and £ < 7. But 7 < — X~ 1 7J for some i and so £ < —aj_17j. Thus 

C is in ft and ft satisfies (8.2 ii). Thus ft is in S. 

Fix 7 in ft and fix r in Wni with y — r s 7 l • • •s 7 tz. Then — £7 is in 

A(w), and so —r#7 is also in A(t/). By the orthogonality of E^, we have 

yy = —yx_1(—#7) = ±ra?7, and so 7/7 is in ±A(u). Moreover 2/7 G A(u) if 

and only if 7 = —x~1ji for some i, 1 < i < t. Also, 7 < — £""17i for some 

i. But y(—x"~x7i) — rji which is in A(u). These two observations show that 

ft is in Ey. By the definition of y, we have: x = r"1ysx-iyi •• -sx-iJt. But 

ft+ = {—a:~17i,..., —x_17t} and s o x = yf^. 

Conversely, suppose that x = y?n for some ft in Ey. Set w = fj ea+ 5*7-

Then y = w# and it suffices to show that wx is in Ax . Set ft' = —xft. 

We claim that ft' C E^. This claim will prove that wx is in Ax. To prove 

the claim we use Lemma (9.1). Choose m G Wrr^ so that x = myrn. Then 

ft' = —myrnQ = —my(Q~ U —ft+) and thus ft' C A(u). Since ft C A + , we 

get ft' C ty~. It is clear that ft' satisfies (9.1 a) since ft is in Ey. We must 

verify (9.1 b) for ft' (with respect to x). Fix 7 G ft' and £ G ^x and suppose 

that (7,£) G M, 7 ^ £ and £ <x 7. Then -a:" 1^ < - z _ 1 7 , -a :" 1^ ^ -a?- 1 ? 

and (~x^1^-x-1y) G .M. Thus by (8.2) there is a < in ft with C 9̂  - ^ _ 1 7 , 
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(£, — x~x£) G M and £ < —x~1y. Choose £ to be minimal with respect to < 

among the elements of Q which have these three properties. Set £' = — x£. 

Then <' ^ 7, (C',£) € M and <' <* 7. For (9.1 b) it remains to see that 

£' <x £• Since C and £ are both in ^ " (ft' C #~) and (C',£) G Ai, we see 

from (8.2) that either (C,€) = 1 or £' and £ are both long roots. In particular, 

either £' <x £ or £ < x £'. If the later occurs then we may repeat the argument 

with £' in place of 7 and obtain a contradiction to the minimality of £. Thus 

C <x £ and 12' satisfies (9.1 b). By (9.1), Qf C E*. This completes the proof 

of (9.6). 

Finally we prove the second assertion in (8.4 ii and iii). 

Proposition 9.7 Fix x and y in W—. 

(i) The mapping of subsets of E x into Ax given by {71 , . . . ,7*} 1—• 

Y\i s7ix is bijective. 

(ii) The mapping Q 1—• yrn is injective on £y. 

Proof: Let { 7 1 , . . . , 7*} and {Ci> •••>&} be subsets of E r with n ^ T . ^ ~ 

f j ^ x . Then m = n ^ n ^ O *s m ^m. anc* *s a product of orthogonal 

reflections from A(u). If sp is one of these reflections that is not repeated 

then m/3 = —/? which contradicts m G W,^. Thus m = 1 and {71 , . . . ,7*} = 

{ & , . . . , & } • T h i s proves (i). 

Suppose that Q, Qi are in £y and x = yro, — Wfh- Then y = xrn = #rn7 

and, as in the proof of (9.6), — xQ and — xQ\ are subsets of E^. By part i we 

see — zQ + = — xQf. Thus — #Q = {7 G E x | —x~1y < v for some v G ft+} = 

—xQi. This completes the proof of (9.7). 

R e m a r k 9.8 We wish to draw some further conclusions from (9.7) and the 

proof of (9.6). Let y be in W221 and choose Q G Sy. Set x = yr^,. Then the 

last paragraph of the proof of (9.6) shows: 
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48 T. J. ENRIGHT and B. SHELTON 

(a) Q G Sx and -xQ C E*. 

Choose T C - y ^ E y . Set f = {C G -y~ 1 E y |C < 7 for some 7 G T}. The 

second paragraph of the proof of (9.6) shows: 

(b) i f —y Ey G Sy then r G Sy. 

Suppose that —y_1Ey G Sy. Set w; = y n 7 6 r 5 7 * Then, again by the proof of 

(9.6), f G Sw. However, if T is in Sy then clearly T is in Sw also. Thus, by 

(9.7 ii): 

(c) If - y -^Ey G Sy then T G S y if and only if T = f. 

The upshot of these observations is this. Once we have established that 

—y""1Ey is in Sy for all y G W 2 1 (cf. section 12) then statements about 

the sets in Sy can be converted into statements about the (computable) sets 

E*. 
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§10. Wall shifting 

In this section we use a result of Vogan [32] to give equivalences of cate­

gories between categories 0(g)pi A) where A varies among the integral semireg-

ular points in h*. We then give the formulas that allow one to transfer specific 

information from one wall to another. We continue with the notation of the 

previous sections. We take (£,g) to be one of the pairs given in Table 8.1. 

Throughout this section we fix two adjacent (nonorthogonal) simple roots 

a and /? in A + . If there is more than one root length in A, then we assume 

that a and /3 are both short roots. 

For any simple root //, CJ^ will denote the fundamental weight associated 

to p,. We set (f}^ = ^£„w and ^V = V,£~"WM • These are the translation functors 

from and to the "/i-wall". Set O^ = 0(g,p,p — a;,,). Recall from (9.2) the 

definition of W^ (C W111) which parameterizes the simple modules in O^. 

Lemma 10.1 Set IT = tf>p ° <t><x> Then ir is an equivalence of categories from 

Oa to Op with natural inverse 7r' = i/>Q o <f>p. 

Proof: Set A = p — u>a and p = p — up. Fix x in W a . Then x\>xp and 

xsap are all in Pm and xp -< xsap. So il>a(L(xp)) = L(xX). Since u is Abelian 

and xa G —A(u), we see xfi £ — A(w) and so x £ Wp. By a theorem of 

Vogan ([32], 3.2) there is a unique composition factor M in <f>a(L(x\)) with 

il>p<j>a(L(x\)) = i>p(M) ^ 0. M has multiplicity one in <j)oe(L(x\). Furthermore, 

M = L(xsap) if xsa G Wp and M = L(xspp) if xsp G Wp. In either case, 

w(L(xX)) = ipp(M) is simple and nonzero and 7r'(7r(L(x\)) = L(x\)). By 

the adjointness of <j>a and ipa (respectively <j>p and W?)> for any X in Oa, 
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50 T. J. ENRIGHT and B. SHELTON 

Hom(X, TT' O TTX) = Hom(7rX, irX). Let fx G Hom(X, TT' O wX) be the element 

corresponding to the identity in Hom(7rX, wX). For any simple module L in 

Oa, 7rL ^ 0 and thus fz, is nonzero. Since TT1 o wL is simple, fi is thus an 

isomorphism for each simple module L in Oa. Arguing by induction on length 

of a composition series and using the exactness of ir' o 7r, it is easily seen that 

fx is an isomorphism for all X. A short exercise shows that fx is also natural 

and is thus a natural equivalence between the identity functor and TT' O T. The 

same argument shows TT' O IT is naturally equivalent to the identity on Op. This 

proves (10.1). 

Definition 10.2 Recall that a and f3 are adjacent short simple roots. Define 

a bijection w : Wa —* Wp by: 

*(L(y(p - u>a))) £* L(*(y)(p - cop)) 

where y G Wa and ir(y) G W/?. As in the proof of (10.1), we can give a 

formula for 7r(y). Note that if y G Wa then since u is Abelian, y/3 £ — A(u). 

If y/3 G A(m) then y G W— implies y/3 G A+(ra). Therefore y(3 G A+ and 

y£Wp. 

Case A: If y/3 G A + (m) then ir(y) = ysa. 
(10.3) 

Case B: If y/3 G A(w) then 7r(t/) = ys^. 

Note: In both cases, 7r(y) — yspsa. 

Lemma 10.4 Fix a and (3 as above, 

(i) sas0(A+(a)) = A+(J3). 

(ii) If (7, v) is in Ai and x G W then (#7, xv) is in M. 

(iii) If 7,1/ are in A + ( a ) with J < v (with respect to A+(a)>) then sa^/?7 < 

saspv (with respect to A+(/3)). 

(iv) saspSa = Sp. 
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Proof: The first two parts of (10.4) are obvious. The third part follows from 

part (i) and the last assertion follows from the first three. 

We can now check the action of wall shifting on our combinatorial sets. 

L e m m a 10.5 Fix a and (3 as above and let y be in W a . 

(0 SaSpSy,a = ^ir(y),^-

(ii) Set r = ir{y)saspy~l. Then r is a reflection in Wm_ and rE y j a = 

^Tr(y),/?- In particular, if —y"1Ey>a is in Sy)<x then - i r ^ ) " 1 ! ] ^ ^ is 

in Sw(y),p- Similar statements hold for E+ . 

(Hi) Let 7 i , . . . ,7t be mutually orthogonal roots in A(u, yet) and set w = 
sii ' " s7t - Then wy £ Wa and 7r(wy) = rwrir(y) = wyspsa. In particular, 

*(Av,<*) = Ar(y),/?-

Proof: If y is in case A; y/3 £ A(m) and r = yspy"1 = sy^ £ Wm.. In case 

B; y(ct -f /?) £ A(m) and r = yspSaS^y"1 = sy(a+/?) £ Wrn. This observation, 

with (10.4), proves (i) and the first part of (ii). 

To prove that rE y > a = E ^ ) ^ we use lemma (9.3) (with y and a replaced 

by 7r(y) and /? respectively). Set Q = rE y > a . Since r is in Wm and ryot = 7r(y)/?, 

rA(u, yc*) = A(w, w(y)/3). So Q C ^~(y\ #• & clearly satisfies (9.3 a). From the 

definition of r we see that r\£~ = ^^(V\Q- ^ (10.4 iii), for £,7 £ A(u, ya), 

£ < y 7 if and only if r£ <7r(y) 7*7 • Thus Q satisfies (9.3 b) (with y and a replaced 

by 7r(y) and /? respectively). Since r gives a bijection of \£~ a onto ^~(y) «, ^ is 

maximal and (9.3) gives £2 = E ^ ) ^ . This proves that rE y > a = E ^ y ) ^ . The 

rest of part (ii) follows immediately. 

Finally, let it; be as in part (iii). By orthogonality, wya — yet £ — A(t/), 

and so wy(p — u>a) has singularity outside of A(m). Thus wy £ W a - Since 

r £ W™,, rwrn{y) = wyspsa. If tUy is in Case A, then wy/3 £ A(m) and 

wyspSa = wys a = Tr(tiJy). If tUy is in Case B, then wy(ct + /?) £ A(m) and 
wysps<* = wys/? = 7r(wy). This proves the last assertion and completes (10.5). 
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In section fourteen we will require a linear ordering < on A + and an 
lin 

analogue of (10.4) for this ordering. Let a i ,a2>. . . a n be the usual indexing 

of the simple roots of A + as in Bourbaki. For JX £ A+ write 7 = Y2i a*a*> 

£ = ^2{ biCti. Then we write 7 <C when either 7 = £ or, for the largest index 
lin 

j with aj ^ bj, aj < bj. 

Lemma 10.6 Suppose g is of type HS.3 and a = er — er+\. Let 7,£ G 

A + ( a ) \ {er + e r +i} . Then 7 <£ if and only ifsaspy <sasp(. 
lin lin 

Proof: We may assume /? = e r + i — e r+2- Since 7 and £ are fixed by s a , if 

s = sa+/? then we must show: 7 <£ if and only if 57 <s£. Here s acts on roots 
lin lin 

by,the permutation of indices (r, r + 2). Write £ — 7 = ]T)t. ctat-, c,- 6 2Z. Then 

7 <C if and only if all ct- are zero or the largest j with c, ^ 0 gives c,- > 0. The 
lin 

action of s on the simple roots a,- is as follows. If r < n — 3 then 5 fixes all 

ct{ except those a,- with r — 1 < i < r + 2. For these s a r _ i = a r - i + ot + /?, 

sa = —/?, s/? = —a and sa r+2 = a -f /? + <*r+2« For r = n — 2, the formulas are 

the same except sotn = 2a + 2/? + a n . Now £ and 7 lie in A + ( a ) \ {er + e r +i}; 

and so, a short calculation yields c r_i = cr = c r+i. It follows from the formulas 

above that the largest index j with Cj ^ 0 is positive if and only if the same 

property holds for «X2* c*a* = 52* ̂ a ; . This proves the lemma. 
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§11. Induction from lower rank. 

In this section we use the results of Part I to give an equivalence between 

categories of highest weight modules for two Hermitian symmetric pairs of 

different rank. This theorem will be the inductive step in the proofs of our 

main theorems. Throughout this section (g,p) is of type HS.l, HS.3 or HS.5 

with rank n . We use the notation for roots of g given in section nine. 

We must first define two standard parabolic subalgebras g and g of g 

with g D g . Let g = L®ux and g2 = g^^u2 be Levi decompositions with 

u{ = nilrad(£.) and hCg^CL We define gx and g2 by giving the simple roots 

complementary to the simple roots of/ and £ ; (see Table 11.1). Set p ' = g'np. 

Then p' is a maximal parabolic subalgebra of £'. If c' is the center of y' then 

(tf/c'itf/c') is also of Hermitian symmetric type and this type is also given in 

Table 11.1. In each case, £ ; is of the same type as g but with rank n — 2. The 

constant p for g' (cf. (8.1)) is always exactly one less than the constant p for 

£• 
Table 11.1 

(£,p) A„, Ap-i x A„_p Cn, A„_i Dnj An_i 

Simple roots in A(ux) ot\ OC\ OL\ 

Simple roots in A(u2) c*i, an a\t a2 Q?I, a2 

{<fld,tfld) A n . 2 ) Ap_2 x An .p«i Cn_2> An_3 Dn_2> An_3 

Let A' denote the set of roots of g' and set A / + = A+HA'. Set ra' = y'flm 

and recall the decomposition W/nm = ~ Winm • VVm' • Let wo be the longest 

element in — >Vjnm and let r0 be the longest element of Wf . Let u>i be the 

first fundamental weight of g. Set W' = Wg*. 

53 
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54 T. J. ENRIGHT and B. SHELTON 

Propos i t ion 11.2 There is a covariant equivalence of categories A: 

A : O ( £',£'^(£0) — 0{g_,hp-^). 

For each x in W'— : 

A(L(£,xp(£))) = L(g, w0xr0(p - u)X)). 

Similar formulas hold for generalized Verma modules and projective modules. 

Furthermore, A preserves self-duality. 

Proof: Set p' — p(£')- Let- ( be the maximal weight in W(p — u>i) D Vrn_. Set 

©i = 0(^^,p'), 02 = Ot(Ll_np,0 and 03 = (%, £ ) p - Wl) = 0(g,p,<). 

Let wi be the longest element of W^', and put v — —w\p(X) and p — w$v. Set 

Oi ' = £>(£',£', v) and 0 2 ' = Ot{l /Hg, /i). Let 0 2 (respectively 6 3 ) be the set 

of highest weights plus p([) (resp. p) which parameterize the simple modules 

in e>2 (resp. Oz). 

We express root systems in their usual Euclidean coordinates as in Bour-

baki, except in one case. For HS.l, we find it convenient to shift by t(l, 1 , . . , 1), 

< G E . We write p = (n, n — 1 , . . . , 0) in place of the more common (?~, ~ — 

1 , . . . , —§) and CJI = (1 ,0 , . . . ,0) in place of ^^-(n, —-1, — 1 , . . . , —1). Our def­

initions give: 

((n - 2)/2, n - 2, n - 3 , . . . , 0, (n - 2)/2) if £ is HS.l 
(11.3) p' = { ( 0 , 0 , n - 2 , . . . , l ) iftfisHS.3 ; 

( 0 , 0 , n - 3 , . . . , 0 ) ifg is HS.5. 

((n - l ) /2 , n - 2, n - 3 , . . . , 0, n - 1) if £ is HS.l 
(11.4) i /= ^ ( 0 , - n + l , n - 2 , . . . , 2 , l ) i f£ i sHS.3 ; 

( 0 , - n + 2 , n - 3 , . . . , l , 0 ) if £ is HS.5 

(11.5) 
((n — l ) /2 , n — 2 , . . . , n — p, n — 1, n — p — 1 , . . . , 0) if £ is HS.l 

/i = ^ (0, n - 2, n - 3 , . . . , 1, -n + 1) if £ is HS.3 
1 (0, n - 3, n - 4 , . . . , 0, - n -f 2) if £ is HS.5 
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and 

{ (n — l ,n — 2 , . . . , n — p,n — l , n — p — 1 , . . . ,0) if g is HS.l 
(n - 1, n - 2 , . . . , 2 ,1 , - n + 1) if £ is HS.3 

(n - 2, n - 3 , . . . , 1,0, - n + 2) if £ is HS.5. 

Let C (respectively D) be the one dimensional representation of the center 

c' of g' (resp. the center of /) whose weight is the restriction of v — p' (resp. 

£ — p). Let Ai (respectively A3) be the functor of tensoring with C (resp. D). 

From the above computations of the weights, we see that Ai is an equivalence 

from Q\ to G\ and A3 is an equivalence from O2 to C?2- The category G\ 

satisfies the hypotheses of section seven. Let A2 be the equivalence I from G\ 

to O^ given in (7.16) with £ = / , / = £' and £ = q D L Finally, an easy check 

in coordinates shows that 62 = ®3 5 and so, by (6.6) there is an equivalence 

A4 = r from O2 to O3. Set A = A4 o A3 o A2 o Ai. Then A is an equivalence of 

categories and the properties of A follow from (7.16), (6.7), (6.14) and (6.15). 

In particular, suppose that A(L(g',xpf)) = L(g,y(p — u>i)) with 
, _ (((n- 2)/2, a i , a 2 , . . . , a „ - i , (n - 2)/2) if £ is HS.l 

xp - \ ( 0 , 0 , a 1 , a 2 , . . . , a n _ 2 ) if £ is HS.3 or HS.5. 
Then 

{ ( n - l , a i , . . . , a p , n - l , a p + i , . . . , a n - i ) if £ is HS.l 
( n - l , a i , . P a n _ 2 ) - n + l ) i f£ i sHS.3 

(n — 2,ai , .,.an_2,—^ + 2 ) if £ is HS.5 
That is, t/ = Wo#ro o r y = WQxroSai. This completes the proof of (11.2). 

Let p1 = m ' © ^ be the Levi decomposition of p ' with u' = u f l / . Let 

W' be the Weyl group of £', A' the roots of £'. We identify Wf with the 

subgroup of W generated by the simple reflections sa for a G A'. For A in 

h*, we set £(A) = L(g,X) and L'(A) = L(g^,\). Similar conventions will hold 

for generalized Verma modules and their projective covers. In general, we 

denote objects computed with respect to the pair (£',g') with a "prime" (') as 

superscript. In particular, for y in W'~~ we have the sets X/y, £ ' y , Ayy S'y 

and S'y as defined in section eight. 

For x e W - define A(x) in Wai by: A(L(g', xp')) = L{g, A(x)(p - wai)). 
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/ 

Lemma 11.7 Fix x G W'~~ and put a — OL\ and y = woxrosa. Then 

y = A(a?) and we have: 
(i) woK = £,,,« and w0Xx

+ = S + a . 

(iii) If-x-1^ (resp. x ' 1 ^ ) is in S'x, then - 2 / - % , * (resp. y^X+J 

is in Syi0e. 

(iv) For 7 1 , . . . ,7* € ££., A(s7 l • • • sltx) = sWo7l • • -sWoliA(x). In particu­

lar, A(AX) = Ay}CX. 

Proof: We know from (11.2) that y = woxro or y = woxrosay whichever is 

in W a . In case HS.l, woxr0a = ei — ep + i (independent of x) and in cases 

HS.3 and HS.5, woxroa = e\ + en. Thus t^oxroa G A(u). This proves that 

y = w0xr0sa. 

We prove parts i) and ii) by case by case coordinate computations. Parts 

iii) and iv) follow immediately from i) and ii). A simple check with coordinates 

shows that woA(u') = A(u, — ya). For example, if (£,p) is HS.3, then — yot = 

ei + en and woA(u') = wo{e{ + e;- | 3 < i < j < n} = {e,_i -f e ;_i | 3 < i < 

j < n} = A(«, — ya). HS.l and HS.5 are similar. Another case by case check 

in coordinates shows that rosap = p' + C where C is a weight in A* that is 

orthogonal to A'. Thus for any 7 in A(t / ) , (yp,woy) = (xrosap, 7) = (xp',j). 

Now Ej^a = Ey \ {—ya}. Therefore, since a is simple, w^L'x = Ey > a . This 

proves part i. 

If g is of type HS.l then r j ^A ' = ^{dbfc,- - e,-) | 2 < i < j < n} = 

{db(e,- — ej) | 3 < i < j < n + l } = A(a) . Moreover, this map induced by r^"1 

preserves the respective sets of positive roots. Therefore rjj"1 maps S' onto Sa. 

Similarly, if g is HS.3 or HS.5 then r^ 1 A7 = A(a) \ {ei + e 2 }. Therefore, in 

these cases r^ 1 maps <S' onto {Q G <Sa|ei + e2 £ ^ } . Note that in the cases of 

HS.3 and HS.5, since — ya G A(u), y(ei + e2) cannot lie in A(tz) U — A(tz) and 

thus ei + e2 is never an element of an element of SV)ai. Now for all three of 
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the cases HS.l, HS.3 and HS.5, for fi G S', xQ C A(u') U -A(u') if and only if 

t/r^*1Q = iuo#^ C A(«) U ~A(u), since wo G WVn. And so, r^1 maps S'x onto 

5 y > a . This proves part ii) and completes the proof of (11.7). 
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§12. Proof of Theorem 8.4 

In this section we prove Theorem 8.4. As a corollary of the proof we give 

a splitting of the category 0(# ,£ , p — up) when (#,£) is of type HS.3 and /? is 

the long simple root an. 

Retain the notation of previous sections. For 1 < i < n, let a;,- be the 

fundamental weight of g corresponding to the simple root at-. Set O,- = 

0(g,p,p-<jJi) for 1 < i < n, O = 0(£,p,p) and O' = 0{£,rf,p(£)). If a is any 

simple root, we have the translation functors <j>a = <f>p
p-UJa and tpa = \\)p

p~Wot. 

We proceed to prove (8.4) by induction on the constant p of from Table 

(8.1). If (£,p) is HS.l then the induction starts with the case (An, A n _i ) . In 

case HS.3 the induction starts with the case (C2,{c*i}) (which is equivalent 

to the case (B2, {^2})) or with the case (Ai, 0). For HS.5 the induction starts 

with either (D3,A2) (which is equivalent to (A3,A2) ) or (D2,Ai) (which is 

actually (Ai x Ai, Ai)). In all of these p = 1 cases, (8.4) follows immediately 

from [16]. 

For the remainder of the section we assume inductively that (8.4) holds 

for the pair (£',£') which has constant p — 1. In view of (9.6) and (9.7), it 

suffices to show the following two claims for each x in W—: 

(12.1)* ~x~lVx e Sx 

(12.2)r m(#p, /i) = 1 or 0 depending as p, £ Axp or not. 

We begin by proving the analogue of (8.4) for the semiregular categories D{ 

when oti is a short root. 

58 
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Lemma 12.3 Let (3 be a short simple root and set u = up. Fix x in Wp 

and set A = p — u. 

(i) -x-^xj is in SXip. 

(ii) m(xX,fi) = 1 or zero depending as p, is in AX)p\ or not. 

Proof: First suppose that (3 is a\. In this case part i) follows from (11.7 iii) 

and our inductive hypothesis. Part ii) follows immediately from the equivalence 

of categories A of (11.2) and the formulas in (11.7 iv). 

Next suppose that /? is not ct\. Working inductively, we may assume that 

there is a short simple root a adjacent to /? and that (12.3) holds with a in 

place of/?. By (10.1) there is an equivalence of categories n from 0(g,p, p—ua) 

to 0(g,p}p — up). Part i) for /? now follows from (10.5 ii). Part ii) follows from 

(10.5 iii). This completes the proof of (12.3). 

Lemma 12.4 Let x be in W— and suppose that either x is the identity 

element or there is a short simple root a with x G W a . Then (12.1)* and 

(12.2)* both hold. 

Proof: If x is the identity, then £* = 0 G S. Also P(xp) = N(xp). This 

gives (12.1)* and (12.2)*. Suppose that x G W a and a is short. By (12.3), 

—x~lT,X}Qe is in SX}(X and by definition (9.2), E* = £*>a U {—xa}. From (9.5) 

we find — x~lYix is in Sx. Again by (12.3), m(x(p — ua),fi) = 1 or 0 depending 

as p, G AX)(X(p — ua) or not. However, <j>a(P(x(p — ua)) = P(xp) by (4.1); 

and so, the Verma flag factors of P(xp) are exactly the N(fi) for /i G AX)<xp or 

^ € A^aSap. Since E* = E*>a U {—xa} we get ; AX)OC U ̂ 4*,a«a = -4a?- Thus 

m(xp,p,) = 1 or 0 depending as /i G 4̂a?P or not. This completes the proof of 

(12.4). 

Remark 12.5 Lemma 12.4 completes the proof of (8.4) if(g,p) is HS.l or 

HS.5 since in those two cases all roots are short. Thus for the remainder of this 

section we assume that (g,p) is of type HS.3 with rank n. We set a = a n _ i 

and (3 = an = 2en . 
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Let 0,-, 1 < i < n (respectively 0 ) be the set of highest weights plus p for 

simple modules in the category G{ (resp. O). Identify h* with € n and recall 

the usual Bourbaki notation for weights of £. Then 

(12.6) 0 = { ( a i , . . . , a„) | {hb|}£= i = { 1 , . . . , n} and ax > a2 > . . . > a n } , 

(12.7) 0 n _ ! = {(&!,... ,&n)| {|&fc|}2=1 = { n - 1 , . . . , 1,1} and 6X > . . . > 6n}, 

(12.8) e „ = {(61,...>6fl)|{|6fc|}jf=1 = { n - l , . . . , l , 0 } a n d 6 i > . . . > 6 n } . 

We distinguish a set of elements Q, 1 < j < n of 0 as follows: 

(12.9) 0 = ( n , . . . , i + l , - l , - 2 , . . . > - i ) 

Define x;-, 1 < j < n, in W 2 1 by Xjp = Q. Notice that the set {#i, . . . , x n } is 

the complement in W 2 1 of the elements considered in (12.4) and Xj G Wp for 

each j . In particular it remains to prove (12.1)^ and (12.2)x only for x = Xj, 

1 < j < n. 

Lemma 12.10 Let £ be in Wp and assume that x ^ Xj, 2 < j < n. Then 

(ii) m(x(p — a^), /i) = 1 or 0 depending as p G *4c,/?(p ~ w /0 o r n°£-

Proof: If x = #i then x(p—u>p) is dominant and i and ii are true automatically. 

Thus we assume x ^ Xj for any j . Since x ^ x;- there must be a short simple 

root 7 with x G W 7 . By (12.4), —x*""1!^ G Sx and m(xpX) = 1 or 0 depending 

as C € *4xP or not. We see immediately from this that — x~xYlX}p is in SX)p, 

since X ) ^ = Ttx \ {—#/?}. Since the stabilizer of p — tup has order two, 

MPi*P)) = 4>(3<t>p(p(x(p - <*f>)) = ^(*(P - ^ ) )©P(a : (p - w„)). 

The Verma flag factors of P(x(p — up)) are thus exactly N(y{p — up)) for 

y E ^ n W/?. But .A* n Wp = A?,/?. This completes the proof of (12.10). 
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Definition 12.11 Let £ = (61,&2>..., bn) be an element ofBn (see (12.8)). 

We say that £ has even (respectively odd) parity if the number of nega­

tive bi is even (resp. odd). If £ = (&x, . . . ,&*,() ,—1,. . . ,6n) then we define 

£ = (&!, . . . , bk, 1,0,. . . , bn) and C = C ^ e remark that £ and £ always have 

opposite parity. IfxE Wp then we define x G Wp as follows: ifx(p — up) = £ 

then x(p — u)p) = £. We see that £ is either xsa+p or xsa+pSp. 

Set £,• = Xj(p-vp) = ( n - 1 , . . . , j , 0 , - l , . . . , - ( i - 1)) for 1 < i < n. 

The following lemma will complete the proof of Theorem 8.4. 

Lemma 12.12 For 1 < j < n; 

(i) -xJlyEXj)p eSXj}p 

(ii) m(€j,p,) = 1 or 0 depending as p G AXjip(p — u>p) or not. 

(Hi) -xjlVXj eSXj. 

(iv) m(Cji p) = 1 or 0 depending as p G .A^p or not. 

Proof: Fix j , 1 < j < n, and set x = Xj. By direct computation, 

—a?""1Ear = { a n , e n _ i -f en_2,en_3 -f e n _ 4 , . . . , e^+i + e*}, 

w h e r e f c = ( " + J - j : ' ! ^ !S ° d d ; 

[ n + 2 - j , if j is even. 

Set fi = —x"1Ea?. We prove part (iii) by showing that Q satisfies conditions 

(8.2 i) and (8.2 ii). It is clear that Q satisfies (8.2 i) since it consists of or­

thogonal roots and has only one long root. Fix 7 in Q and suppose that there 

is a £ in A+ with 7 ^ £, ( 7 , 0 G M and £ < 7. We must produce a ( € f i 

with C ̂  7, (C>0 € Ai and £ < 7. Since f < 7, 7 ^ a n and so we may write 

7 = e* 4- et-+i for some i. If £ is a long root then £ must be 2e,+i and so we 

may take £ = a n . If £ is a short root then we may write £ = er ± e5 where 

r = i or i + 1 and s > i + 1. By inspection, there is a unique £ in Q equal to 

one of: es + e5+i or e5_i + e5 or 2es. This is the desired £. So ft satisfies (8.2 

ii). This proves part (iii). 
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62 T. J. ENRIGHT and B. SHELTON 

Part (i) follows at once from part (iii). 

We next prove part ii. If j = 1 then £j is dominant and part ii is 

clear. Thus we assume that j > 2. Set ir = if)p<t>a and **' = ipa<fip- Then 

7r : On-\ —• On) ir* : On —* On„x and -K and 7r' are adjoint to one another 

with respect to Horn. If C or £ is ( 6 i , . . . , &&, 0, — 1 , . . . , bn) in 0 n then we de­

fine 7r'(C) = 7r'(C) = (6 i , . . . ,6jb,l,~ 1,. . . ,6 n ) in @„_i. By a theorem of Vogan 

([32], 3.2), TT'(L(C)) = *r'(£(C)) = L(*'(0) for each C in 6 n ; and moreover, the 

composition factors of ^(//(^'(C))) are L(() and L(C)- By the adjoint prop­

erty we have Hom(7T7r/L(C), L(()) ~ Hom(7r^L(C), TT'Z,(C)) ^ 0 and similarly 

Hom(7T7r'L(C),£(C)) = Hom(7r'L(C),7r'L(C)) ^ °- T h u s ^ ( A ) = L(C)e£(C). 

It follows at once that 7r7r'P(C) = P(C)©^(C) and TTTT'A/XC) = N(C)®N(C)> 

Combining these two facts, m((,p) = m(C>A0 f° r all C>^ £ ®n-

We apply these observations to the weights £,, 2 < j < n. We have 

Xj(p-cjp) = ij = (n- l , . . . , i , 1 ,0 , -2 , . . . , - ( j - 1)) and xjp = ( n , . . . , j + 

1,2, — 1, — 3 , . . . , — j) . Thus by direct computation: 

-xJ1EXj \ {en_2 - en_x} = -xJxEXj \ {en_2 + e n _ i } . 

Set A = 2a + /? = 2en_i. The above formula gives: $*(—sj 1^^) = * "^7 1 ^ i* 

Also, for any // £ On and y £ W—, p = 2/(p — up) if and only if /i = 

ys\(p — up). The last two statements together say that the assignment y —* 

ys\ is a bijection from AXj)p to Asjtp. In particular, /i is in AXj,p(p — u>p) 

if and only if p is in AXj)p(p — top). However, Xj is one of the parameters 

considered in Lemma (12.10). Thus m(£j,/x) = 1 or 0 depending as p is in 

AXj>p{p — up) or not. By the previous paragraph, ra(£j,/i) = m(£j,/i); and 

thus, m(£j,p) = 1 or 0 depending as p is in AXjip{p — wp) or not. This proves 

part (ii). 

Part (iv)follows from part (ii) exactly as in the proof of (12.4). This 

completes the proof of (12.12). 

Lemma 12.12 marks the completion of the proof of Theorem 8.4. 
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Definition 12.13 Let Op(even) (respectively Op(odd)) be the full subcat­

egory of Op = 0(g>P^>P — up) consisting of all modules whose composition 

factors all have highest weights plus p of even (resp. odd) parity. 

As before set w = \j)p<f>ct and w' = ipa<f>p. 

Corollary 12.14 The restriction of the functor ir' to Op (even) (respectively 

Op(odd)) is an equivalence of categories onto Oa. Moreover, the functor T : 

Op(even) x Op (odd) —• Op given by T(M,M') = M®>M' is an equivalence 

of categories. 

Proof: Let < and fi be in 0 n . From (12.10 ii) and (12.12 ii), if m « , A*) ̂  0 

then C a n d p> must have the same parity. This implies N(Q and P(C) are 

both objects in Op(even) or Op(odd) depending as £ is even or odd. Define 

o\Op —• Op(odd) by taking oM to be the maximal submodule of M that 

is an object in Op(odd). Define e:Op —• Op (even) similarly. Now for any 

projective module P in Op, P = eP®oP and thus, using a projective cover, M 

= eM®oM for any module M in Op. In particular e and o are exact. Since 

there can be no nonzero morphisms between modules in Op(even) and modules 

in Op(odd), T is an equivalence with natural inverse (e,o). 

Arguing exactly as in (10.1), using the adjointness of T and 7r', we see 

that the functors irf o e o -K and e o n o 7r' are naturally equivalent to the identity 

functors on Oa and Op(even) respectively. This shows that Oa and Op (even) 

are equivalent. The argument for Op (odd) is the same. This completes (12.14). 

The functor irf : Op —• Oa induces a two-to-one surjection r : Wp —» W a 

given by wf(L(y(p — up))) — L(ry(p — u>a))- This map satisfies ry = ry for all 

y G Wp. If ya G A(u) then ry = ysa and if ya G A(ra) then ry — ysp. We 

define a surjective map, also denoted r , from A+(/?) to A + ( a ) \ {en_i + e n } 

as follows: 

(Recall that A+(/?) contains only short roots.) 
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64 T. J. ENRIGHT and B. SHELTON 

Lemma 12.15 Let (£,g) be of type HS.3 with rank n>2. Fix y G Wp and 

put w = ry. Then r is a bijection from —y~lT,yip (respectively y"1^Q) to 

-w-xJ:Wia (resp. t i ^ E + J . 

Proof: We prove the first assertion by induction on the rank of g. If n = 2 

then the statement is clear since both of the sets in question are empty. If n = 3 

then the two sets are also empty unless yp = ( 2 , - 1 , —3) or (—1,-2, —3). In 

these two cases wp = ( 1 , - 2 , - 3 ) and the assertion is easily verified. 

Assume that n > 4. Then the rank of the subalgebra #' is at least 2 and 

so we may assume inductively that (12.15) holds for the pair (£',£'). Let r1 

denote the map r computed for the pair (#'.£'). Suppose that there is a simple 

root 7 in —y~1Ey that is orthogonal to a ( as well as to /?). Then ry = 7, 

W{TJ) = 2/7 G —A(u) and 7 is in —w YJW . By composing the equivalence of 

categories from O' to O a i with the equivalences between the categories Oai, 

a, short, we may construct an equivalence A7 : Of —» G1. Fix x G W / 2 1 with 

Ay(L(x(p(gf)))) =. L(y(p — u;1)). By the formulas of sections 10 and 11, in 

particular (10.5) and (11.7), A7 induces an injection A7 : A —• A + (7 ) which 

is a bijection from S'x to SVtl. Recall from section eleven that we identify the 

root system A7 of #' with a subsystem of A. If 7 = a» = e,- — ei+i then the 

formula for A7 is obtained by extending linearly the formula: 

7V J/ i e j - 2 " 3 < j < z + 1 . 

Note that A7(a) = a and A7(^3) = /?. Let r ' denote both the restriction of r 

to A /+(/?) = A'fl A + ( ^ ) and the restriction ot r to W'p. A short computation 

shows that the diagram: 

A+ (/?) H A+ (7) Ji A+ (a) n A+ (7) 

A 7 | A7J 

A,+ (/?) i A,+ (a) 

Licensed to Harvard Univ.  Prepared on Mon Nov 14 19:34:29 EST 2016for download from IP 140.247.39.51.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CATEGORIES OF HIGHEST WEIGHT MODULES 65 

commutes. Another short computation shows A7(L(r'x(/o(£'))) = L(ry(p — 

w7)). By induction, r1 is a bijection from —a; - 1 E'^ to —(r/x)-1E^.;a. a. Thus 

r ( - y - 1 E , l / , \ { 7 } ) = r o A ^ - * " 1 ^ ) = A ^ - a T 1 ! ^ ) = - r ' S , ^ ! ) } . 

This proves the first assertion of the lemma whenever such a 7 exists. 

Suppose next that /3 is the only simple root in —t/""1Ey. Then recalling 

the notation of (12.9), y = X{ for some f, 1 < i < n. In this case, —y""1Ey was 

computed in (12.12). If.; = 1 then y = s^, u> = S/?sa and both of the sets in 

the first assertion of the lemma are empty. Similarly, if j = 2 then both sets 

are empty. If j > 2 then w = ysp and tup = ( n , . . . , j + 1,1, —2, — 3 , . . . , — j). 

By inspection: -w"1^ = (—i/~1Ey \ {/?, en_2 + en_i}) U {a ,2e n _ 2 } . Thus 

r ( -y" 1 E y i j 9) = - u ; " 1 E u , | a . 

Finally suppose that the only simple root 7 in — y~1Ey other than /3 is 

not orthogonal to a. Then 7 must be en_2 — e n - i and for some j > 2, yp 

must take the form yp = ( n , . . . , j + 1 , 2 , — 1 , - 3 , . . . , — j ) . So, wp = ( n , . . . , j + 

1,1, - 2 , . . . , - j ) and by inspection: -uT^E^, = (-y~1E2 /\{/?, 7})u{<*, 2e n _ 2 } . 

Thus r(—y""1Ey)^) = —w;~'1Ew,ja. The proof for y""1EjJ*« is similar. We omit 

the details. This completes the proof of the lemma. 

We warn the reader that although the formula given for r on A+(/J) is 

independent of y G Wp, any formula for the inverse of r from —(ry)""1Ery>a 

to —y""1Ey)/0 must involve y. 

L e m m a 12.16 Fix y £ W/? and put w = ry. Then for any 7,1/ in —y~1EJ/)/?, 

y <u in A+(/3) if and only if ry < rv in A + ( a ) . Moreover, if CI C —y" 1E y^ 

then CI G «Sy>£ if and only ifrCl € SW)0e. 

Proof: Fix 7, v in —y~1Ey>/(?. We first claim that 7 < 1/ in A+(/?) if and only 

if 7 < v in A + . Obviously if 7 < j / in A+(/?) then 7 < 1/. SO assume that 7 < v 

in A + . By inspection, 7 < */ in A+(/?) unless 7 = ej — en_i and 1/ = ek + en-i 
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for some k < j < n — 1. But 7 and v are orthogonal; and so, j = k. However, 

ej — en_i and ej + en_i can not both be in —t/""1Ey)/?. Thus 7 < 1/ in A+(/?). 

This proves the claim. A similar proof will show that rj < rv in A + ( a ) if 

and only if rj < rv in A + . Thus, to prove the lemma it suffices to show that 

7 < v if and only if rj < rv (both inequalities in A + ) . 

If TJ = 7 and rv — v then there is nothing to prove. There are two other 

cases to consider. 

Case one: rv = 2ej for some j < n — 1. If 7 < v then ry = 7 < z/ < ri/. 

Conversely, suppose that T7 < ri/. Then rj = 7 = e* ± e/, for some jf < 

& < Z < n — 1. We claim that 2ej and ejt + e/ cannot both be in — i t ; - 1 ! ] ^ ^ . 

Otherwise, 2e/ < e^ +e / and (2e/,e^ + e/) E A4. But 2ej is the only other root 

£ in — w~1T,Wj0( with (£,2e/) G M and 2e^ << e^ + e/. This implies, from (8.2), 

that —w~lYiW)Ql is not in SW)OC which we know is false. This proves the claim 

and thus 7 = e* — e\ and 7 < v. This completes case one. 

Case two: rj = 2e,- for some j < n — 1. The argument here is similar to 

the argument in case one and we omit the details. 

This completes the proof of the first assertion of (12.16). The second 

assertion follows immediately from the first assertion, (9.8 c) and (12.15). 

Lemma 12.17 Fixy and x in Wp andQ C A^(f3)ny-1(A(u)U-A(u)). Set 

r n = ric€nny-iA(tO*< a n d r ^ = ric€mn(ry)-iA(iO*C- Suppose that x(p-u>p) 

and y(p — up) have the same parity. Then 

Q E Syfi and x = yr^ if and only if r(Q) G STy,a and rx = ryrT^y 

Proof: Suppose that Q is in SV)p and x = yr^. Set a — rn = ri/ien+ 5A* an(^ 

b = Yluea+ STV' Then x — t/a. We claim that rx = (ry)b. There are two cases 

to check. 
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Case one: suppose that ya is in A(tz). Then ry = ysa. If Q+ is orthogonal 

to a then xa G A(u), rx = xsa and a = b. The claim follows immediately 

from this. So we may assume that Q + is not orthogonal to a. Then there 

is a unique 7 in ft+ with (7, a) ^ 0. Since 2/7 and ya are both short roots 

in A(u), (7, a) = 1 and 7 = e, 4- en_i for some j < n — 1. In particular, 

xa G A(m) and thus rx — xsp = yasp. To prove the claim it suffices to 

show: yaspbsa = y. However, aspbsa = absp+2aSa+p = S7Sr7S2en_i «<*+/? = 

5 e i +e n _ 1 «2e J «2e n _ 1 Sa-H/3 = « c , - e n - i * o + i 9 • A l s o , t /(ej - e n _ i ) = y(j - 2a - f3) G 

A(m) and y(a-f/?) G A(m). Thus yaspbsa = ysej-en_1sa+p — y. This proves 

the claim in case one. 

Case two: suppose that ya is in A(m). Then ry = ysp. If ft+ is orthogonal 

to a then, as in case one, the claim is obvious. Assume that ft+ is not orthogo­

nal to a. Then there is a unique 7 in Q + with (7, a) ^ 0. This 7 must have the 

form ej ±en__i. Now xa = ys1a = syyya. Since ya G ±A(t/), ya G A(m) and 

both roots are short, xa = ya ± 1/7 G ±A(«)- But y G W/? and so xa G A(u). 

Thus, rx = xs^. To prove the claim it suffices to show that yasabsp = y. Set 

j / = /? + 2a = 2en_i . Then, asabsp = abs^Sa = syS2ejsfisol = sSftlsa. Also, 

ysM7 G A(m) (since 2/7 G A(u)) and ya G A(m). Thus yasabsp = y. This 

proves the claim in case two. 

By (9.8), ft G Sa.,0 and fi C - x " 1 ! ) ^ . From (12.15) and (12.16), rft C 

—(rx)"1I!,TXia and rQ G «Sra7ja. By the claim above, rx = (ry)6. Thus rQ G 

«STy,a and r r n = b. This proves the only if part of the lemma. 

Conversely, suppose that rQ G Sry>a and rx = ryrT^ Set r f t + = rft n 

( ry ) " 1 A(t/). By (9.8), rO C —(rx)~1E r r r j a and so by (12.15), there is a subset 

r of -x-lY,Xip with r r = rft. By (12.16), T G 5 ^ . Set a = Ucerircem+ SC 

and y' = xcL Then r G ̂ ' , /3 and x = y'a. Applying the first claim of this proof 

to y' and T, we have rx = (ry')6 where 6 = r rn- Thus, {ry')b = rx = (ry)6 

and so ry ' = ry. By parity we must have y — y' and thus also r = Q (since 
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r is one-to-one on A+(/?) PI y 1(A(«) U —A(u))). This completes the proof of 

(12.17). 

In section fourteen we will need an analogue of (12.16), with the usual 

ordering of A + replaced by a linear ordering. We include this result here. 

Let < denote the linear ordering introduced for (10.6). Note that with this 
lin 

ordering any root of the form 2e,- or et- + e, will be greater than any root of 

the form e r — e5, r < s. Also for any 7,£ G A+, 7 < C implies 7 <£; i. e., < 
lin lin 

is compatible with < . 
Lemma 12.18 Let x E Wp and 7,1/ G — x~lT,x^. Then 7 <v if and only if 

lin 
TJ <TV. 

lin 

Proof: At most one element in —x~1EX)p is changed by r . So we need only 

consider two cases: ry ^ 7 and rv ^ v. However, this ordering is linear and 

therefore 7 <v if and only if 7, v do not satisfy v <y. Thus we need only prove 
lin lin 

the lemma for TJ ^ 7, rv = v. 

Fix j < n — 2 with 7 = e-• ± e n_i . Since £ <y for all roots £ of the form 
lin 

er - eu r < t < n - 2, £ <y and £ <T7 for all such £. Thus (12.18) holds if 
lin lin 

v has this form. So we assume otherwise: v = er 4- e5 with r < s < n — 2, 

r , s ^ j . Now directly from (8.2) and (8.4), we find s < j ; and thus, both 7 <v 
lin 

and ry <v. This completes the proof. 
/in 
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§13. Proof of T h e o r e m 8.5 

In this section we prove Theorem 8.5. We continue to assume that (£,p) 

is of type HS.l, HS.3 or HS.5 with rank n and constant p (as in Table 8.1). 

The techniques used here are essentially the same as those used to prove (8.4). 

We proceed by induction on p. If p = 1 then (8.5) follows immediately from 

[16]. We assume p > 1 and (8.5) holds for the pair (£',£')• 

Lemma 13.1 Let a be a simple root and fix x G W a - Set r = r i 7 €E + si 

Then: 

(i) x - ^ a is in Sx>a and Socle(N(x(p - wa))) £ L(rx(p-va)). 

(ii) D{x{p — wa)) is self-dual. 

(Hi) IfQ is in SXja then \Q\ < p — 1. 

(iv) P(x(p — cja)) is self-dual if and only if |EX j a | = p — 1. 

Proof: Suppose that a is a short root and let A a : Of —• Oa be the equivalence 

of categories given by (10.1) and (11.2). Then all of the claims of (13.1) follow 

from the inductive hypotheses and the formulas of (10.5) and (11.7). If j3 is the 

long simple root of HS.3, then let a be the adjacent short simple root. Then 

i) through iv) hold for a. By the formulas of (12.15), (12.16) and (12.17) and 

the equivalence of categories in (12.14), i) through iv) must also hold for /?. 

This completes the proof of (13.1). 

(13.2) P roof of T h e o r e m 8.5 

Fix x in W221. If xp is not A(w)—antidominant then there is a simple 

root a with xsa G W a . Then E j = E+5or>a U {xa} and thus x - 1 E + G Sx by 
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70 T. J. ENRIGHT and B. SHELTON 

(13.1) and (9.5). If xp is antidominant then E+ = 0. Combining parts i and 

ii of (13.1) with (4.6) we also have: Socle (AT (xp)) = L(r^+xp) and D(xp) is 

self-dual. This proves i and ii of (8.5) 

Let Q be in Sx. If Q is nonempty then there must be a simple root a in 

Q. Since xa £ ±A(u), either x or xsa is in >Va. Thus O \ {a} is in SX}0e or 

Sxsoa- By (13.1 iii) we have |Q| < p. This is (8.5 iii). 

If xp is dominant then T,x = 0 and P(xp) is never self dual. Assume that 

xp is not dominant. Fix a simple root a with # G Wa. Then by (4.5), (13.1 

iv) and (9.5), P(xp) is self-dual if and only if P(x(p — wa)) is self-dual if and 

only if \Q \ {—xa}\ = p — 1 if and only if |Q| = p. This proves (8.5 iv) and 

completes the proof of (8.5). 
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§14. Projective resolutions and Ext 

In this section we give formulas for the groups Ext*(N(xp))L(yp)) These 

formulas arise as a consequence of a special type of projective resolution for 

generalized Verma modules which exists in <9(£,£, p). As a consequence of the 

Ext1 result, we also give an explicit formula for Vogan's Ua functor (cf. [34]). 

Throughout this section, unless otherwise stated, (g,p) is any of the pairs of 

Table 8.1. 

If x is in W221 then we will denote by Lx, Nx and Px the modules L(xp), 

N(xp) and P(xp) respectively. If a is any simple root and x or xsa is in Wa 

then we write L%, N£ and P£ for the modules L(x(p — u;a)), N(x(p — ua)) and 

P(x(p — u;a)) respectively. As usual, ipa and <j)a are the translation functors 

to and from the a-wall. Set O = 0(g,p,p), Oa = 0(g,p,p — uja) and O1 == 

<%',£>(£'))• 

Definition 14.1 Let A be in O and let P* —• A be a projective resolution 

of A in O. For j G IN there are rrij G IN and elements w^ G W22-, 1 < i < rrij} 

with Pj =. © i < , < m . Pwij- We say that the resolution has even (resp. odd) 

parity if j — £(w{j) = 0 (resp. 1) mod 2 for all i,j. 

Lemma 14.2 Let y be in W 2 1 and assume P* —+ A is a projective res­

olution in O with even (resp odd) parity. Then with notation as in 14.1, 

Extj(A,Ly) = Hom(Pj,Ly) and thus dimExtf (A, Ly) = card{i \ W{j = y}. 

Moreover, Extf (A, Ly) = 0 unless j — £(y) = 0 (resp. 1) mod 2. 
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72 T. J. ENRIGHT and B. SHELTON 

Proof: For each indecomposable projective, Hom(Pty, Ly) = <D or 0 depending 

as w = y or not. Thus the parity condition implies that every other term in 

Hom(P*,Ly) is zero. Thus Extj(A,Ly) = Ej'(Hom(P*,Ly)) = Hom(Py,Ly). 

This proves the lemma. 

The previous lemma describes the importance of projective resolutions 

with parity. We will prove that any generalized Verma module admits such 

a resolution. The technical basis for our argument is a basic result called the 

algebraic mapping cone. 

Proposition 14.3 [28, p.46] LetO-+A-+B->C-+Obea short exact 

sequence of modules and let P* —> A and Q+ —* B be projective resolutions. 

Then there is a projective resolution R* —± C with RQ = QQ and R{ = Q»®Pi_i 

forie IN*. 

To describe our recursive formula we will need some notation. For the 

moment assume that (g,p) is one of the three types HS.l, HS.3 or HS.5. Fix 

a simple root a. If a is short then combining (10.1) with (11.2) there is an 

equivalence of categories Aa : O' —• OQ. If a is long then by (12.14) there are 

equivalences eAa : O' —» Ga(even) and oAa : O' —• Oa(odd). Fix y G W a so 

that Ly is in Oa (resp. Oa(even), Oa(odd) ). Set A = Aa (resp. eAa, oAa). 

For x G W - , set L'x = L{tf,xp') and ^ = N(g',g,xp'). If a? G W a (with an 

even or odd condition on x(p—wa) if a is long) define xf G W/_~ by the formula: 

I/J = &(L'xt). It is clear from our equivalences that if Ext**}/ denotes Ext 

groups computed in the category O* then Extfc(7V^,L^) ^ Ext^)/(iV^,L /
y/), 

for all x, y G W a (with x(p — u>a) and y(p — u)a) having the same parity if 

relevant). 

Proposition 14.4 Let y and w he in W—. 

(a) Ny admits a projective resolution with the same parity as £{y). 

(b) For any j , Extj(Ny,Lw) = 0 unless y^w and j = £(y) — £(w) mod 2. 
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CATEGORIES OF HIGHEST WEIGHT MODULES 73 

(c) Let a be any simple root with y E W a . Then for all k > 1; 

Extk(Ny,Lw) £ Extk^l{NySa,Lw)®Extk{N^^aLw) 

Moreover, the last term in this equation is zero when w £ Wa or when a is 

long and y(p — u>a) and w(p — ua) have opposite parity (cf. (12.11)). 

(d) Suppose (g,p) is of type HS.l, HS.3 or HS.5, p > 1 and w € W a . Also 

for HS.3 and a long, assume y(p — uja) and w(p — ua) have the same parity. 

Then: Extk(N°,i>aLw) £ Extk
0,(Nf

y,,L'w>). 

Proof: Suppose first that (g,p) is of type HS.l with constant p = 1, i.e. 

(An , A n _ i ) . Using the notation of [16, section 6], we have Ny = N(v(i)) for 

some i, 0 < i < n. By (6.4) of [16] there is a projective resolution P+ —• Ny 

with Pk = P(v(i + k)). This is easily seen to be a projective resolution with 

the same parity as £(y) = n — i. This proves (a). Suppose that Lw = L{v(t)) 

for some 0 < t < n. Then Extk(Ny,Lw) £ Hom(P(z/(i + ifc)),L(i/(t))) = 

0 unless t = i + k. This proves (b). Finally, since NySoi = N(i/(i + 1)), 

E x t * " 1 ^ ^ , ^ ) ^ Hom(P(i/(t + i)),L(i/(t))) £ E x t * ^ , ^ ) . From [16, 

(6.2)], Extk(Ny,rpa^w) = 0 for Ar > 1. This proves (c) and completes the proof 

in the case HS.l, p = 1. 

As discussed at the beginning of section twelve, for HS.l, HS.3 and HS.5 

the p = 1 cases are either type Ai (for which the assertions are obvious) or 

are included in sections six and seven of [16]. That article also treats the case 

HS.2. In all of these cases the proof of (14.4) is precisely that of the previous 

paragraph, and so we omit the details. 

Next we assume that (^,p) is of type HS.l, HS.3 or HS.5 with constant 

p > 1 and proceed by induction on p. 

Begin a secondary induction on £(y). If £(y) = 0 then Ny = N(p) = P(p). 

Thus Ny trivially has the required resolution. So we assume £(y) > 0. Fix a 
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74 T. J. ENRIGHT and B. SHELTON 

simple root a with y G W<*- Then £{ysa) = £(y) — 1, and so by induction, NySa 

has a projective resolution P* —* NySa with even or odd parity depending as 

£(y) is odd or even. Choose Wik G W~ so that Pk = © i P ^ . 

Let A and y' be as above. By induction on p, JVL has a projective 

resolution Q+ —+ N'y, with the same parity as £(yf). Fix tik in >V/— with 

Qib = 0 « Pis^i^iUkp')* Choose ?/,•*; in Wa with t ^ = Va ( a n d even or odd 

condition if relevant). Set Qi = <paA(Q/
i). Then Q* is a projective resolution of 

<t>a(Ny) with terms Qk = 02- Pi/iA. (cf. (4.1)). Applying the algebraic mapping 

cone to the short exact sequence 0 —• NySa —* <f)aNy —* Ny —• 0, we obtain a 

projective resolution P* —• 2Vy with R0 = Qo and R* = 0 ^ P y . ^ 0 0 ^ P^ . fc_1. 

To check the parity it suffices to show: 

(14.5) k - £(yik) = *(y) mod 2 

and 

(14.6) fc - £(wiik-i) = £{y) mod 2. 

But (14.6) follows at once from£(y) = £{ysa)-\-l. So it suffices to prove (14.5). 

To check (14.5) we need the following lemma: 

L e m m a 14.7(a) Let (g,p) be of type HS.l. Ifx G W— with xp = {au .. . a n + 1 ) 

particular, ifx G W a wi^h a = ctj and —XOL — et — er then £{x') = £(x)+2t+Cj 

where Cj is a constant that depends only on a. 

(b) Let (£,p) be of type HS.3. If x G W— with xp = ( a i , . . . , an) fw/jere 

p = ( n , . . . , 1)) then £(x) = ]Ca < - i ~a«- ^ ^ ^ ^<* WJ*^ a = a*> 1 < * < n—1, 

and - z a = e r 4- et (V < t) then t(x') = ^(z) + 1 + 2t - 3n - 1 . If x G Wa with 

a = an and —xa = 2et then £(x') = £(x) — 2(n — t) — 1. 

(cj Let (#,p) be of type jffS.5. If x G W 2 1 with xp = ( a i , . . . , an) (where 

p = (n — 1 , . . . , 0)) then £{x) = X2ai<o ~a* • If x € W a with a = ctj and 
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CATEGORIES OF HIGHEST WEIGHT MODULES 75 

—xa = er + e% (r < t) then t(x') = £(x) + 2t + Cj where Cj is a constant that 

depends only on a. 

Proof: The first claim of part (a) is an easy exercise which we omit. The 

second claim follows by observing that 

X'D(Q'\ = (<*i - 1> <*2 - 1, • • •, « t - i - 1, «*+i + 1 , . . . , ap + 1, 
ap+i — 1 , . . . , a r_i - 1, a r + i + 1 , . . . , a n + i 4- 1) 

and then applying the first claim. 

The first part of (b) we also leave as an exercise. If (g,p) is HS.3 and 

-XOL = er + et, r < t, then x'p(£) = ( a i - 2 , . . . , a r _ 1 - 2 , a r + 1 , . . . , a* - i , a t + 1 - f 

2 , . . . , an 4-2). If -xa = 2et then x'p(tf) = (ai — 2 , . . . , a t-2 — 2, a*+i 4-

2 , . . . , an + 2) if xotn-i £ A(tx) and x'p(£) = (ax - 2 , . . . , a*_i - 2, a t + 2 4-

2 , . . . , an 4- 2) if £a n _ i £ A (TO). These observations prove the second claim of 

(b). The proof of part (c) is similar to the proof of (b). We omit the details. 

This completes (14.7). 

Returning to the proof of (14.4) (a), we see immediately from (14.7) that 

for any x £ W a , £(y) — £(x) = £{y') — £{x') mod 2. Thus we have for each i, k\ 

k = £(y') — £(yf
ik) = £(y) — £{yik) mod 2. This proves (14.5) and completes the 

proof of part (a) for HS.l, HS.3 and HS.5. 

We next complete the proof of (c) and (d). We assume that a is a simple 

root with y £ W a . By the definition and parity of the resolution R* —* Ny 

given in the proof of part (a) we have: 

Extk(Ny,Lw) 2 Ext^^N^L^Ext^iNys^Ln). 

By the adjoint property we have Ext*(^aJV", Lw) = Extk(Ng ,t/jaLw). This 

proves the first claim of (c). 

Set A = Extk(N«,i(>aLw). If w £ Wa then ipaLw = 0, and so A = 0. If 

w £ W<*, a is long and y(p — u>a) and w(p — ua) have opposite parity, then 

Licensed to Harvard Univ.  Prepared on Mon Nov 14 19:34:29 EST 2016for download from IP 140.247.39.51.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



76 T. J. ENRIGHT and B. SHELTON 

by (12.14) we still have A = 0. Otherwise, by our equivalences of categories 

in sections 10 and 11 and by (12.14), A £ Ext*(iVy
a, ££) £ Ext^,(A^, ,Z4,) . 

This completes the proof of (c)and (d). 

Finally, if Extk(Ny, Lw) ^ 0 then by (14.2), k - £(w) = l(y) mod 2. Now 

proceed by induction on p and £(y). If £(y) = 0 then the result is clear as Ny 

is projective. If £(y) > 0 then using (c), either ysa^w or y(p — ujoc)-<w{p — 

wa). Either way, y^w. This proves (b) and completes the proof of (14.4) for 

HS.1,HS.3 or HS.5. 

Only the case HS.4 remains. Here the argument is essentially the same 

as that described above for HS.l, HS.3 and HS.5. However, there are some 

simplifying features. In place of the inductive hypothesis, we use the explicit 

structure of the categories O(gipip — oja) given in [16]. We omit the details of 

this verification. This completes the proof of (14.4). 

The recursion formulas in (14.4) have solutions expressed in the language 

of Yix and Sx. We now describe these solutions. We say a linear ordering on 

A+> <, is weakly compatible with < if for all simple roots a, all y £ WQ 
lin 

and all 7 , ^ £ —y""1Eyf0, 7 < v implies 7 <v. Fix a linear ordering < on A + 

lin lin 
weakly compatible with <. In the case HS.3, we let < be given as in (10.6) or 

lin 
(12.18). 

Definition 14.8 a) Recall the notation surrounding (8.2) and (8.3). For x £ 

W121, define a chain (of length t associated to x) to be an indexed set of positive 

roots {7t}i<i<t with the following properties. For 1 < i < t + 1, put Xi = 

XS<y. • • • 0*y^_ 1 . Define ftj, 0 < i < t + 1 inductively by Qo = 0 aD<i ^« = 

Qi-iU{6 £ -x^Xi\S <fi, « # 7 < } , 1 < * < * + !• Put « 7 = a-U{7»}- Then 
lin 

(i) Tues~(, i<i<t 
(ii) H £Qi, 0<i<t. 

Note that a chain is determined by the Bag of sets {Oj}; and moreover, these 

fi< all lie in — x^E,;,^. 
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b) For any y,w G W—, tf G IN, let C(y,w,t) denote the set of chains {7,} 

of length t associated to y with w = ys7l • • • s7i. By convention} C(y, w,0) is 

the set containing the empty chain or the empty set depending as y = w or 

not. Let C(y,w) = Ut>o C(y,w,t). We refer to the elements ofC(y,w) as the 

chains from y tow. 

c) For x G WtrL
1 define a positive chain (of length t associated to x) to 

be an indexed set of positive roots {7»}i<*<t which satisfy the following. For 

1 < * < t, put Xi = xslx •••«7 i , n*+i = 0, &i = { 7 6 -a?"1Ear |7 <7t ,7 7* 7t} 
l in 

and TU = Qt- U {7,}. Then 

ft) ales-., 1 <»<*, 
(ii; 7» g$V 

d) For y,w e W - , * G IN, iefc C+(t/, «;,<) denote the positive chains {7,} 

of length t associated to y with w = ys7 l • • • s7<. By convention C+ (y , u;,0) 

is the empty positive chain or the empty set depending as y = w or not. Let 

C+(t/, w) be the union ofC(y,w,t) for t G IN. For any positive chain {7,} put 

jj = jt+1_j. Then the map {7,} h-> {7,} defines a bijection from C+(y,w,t) 

toC(wyy,t). 
T h e o r e m 14.9 Let y,w G W™ and j G IN. Then 

dim Extj(Ny,Lw) = card(C(y,w,j)). 

Proof: We proceed by induction on the integer p and the integer £(y) — -£(tt;). 

If £{y) < £(w) then all the Ext groups are zero by (14.4) and by (14.8 ii) 

C(y,w) is empty. So we may assume £(y) — £{w) G IN. 

We begin with the p = 1 cases. From [16] we know Ext-7 (Ny, Lw) = C 

or zero depending a s j = ^(t/) — ^(tu) or not. A short calculation using the 

notation of [16] shows that C(y,w,j) is empty except when j = £(y) — £{w) 
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78 T. J. ENRIGHT and B. SHELTON 

and, in that case, there is one chain from y to w of length j . This verifies the 

proposition when p = 1. 

Next we turn to the cases HS.l, HS.3 and HS.5. Suppose p > 1 and 

assume (14.9) is true for smaller p. Fix y,w G W—, j G IN* (the case j = 0 is 

trivial) and put C — C(y,w,j). If £(y) = 0 then Ny is projective, C is empty 

and the proposition is true. So we assume £(y) ^ 0. Write C as a disjoint 

union: C = AU B, where A is the set of chains {7,} with Qi empty and B is 

the complement. Let 8 be the unique minimal element in —2/-1Ey with respect 

to < . Then a chain in C lies in A when 71 = 8 and in B when 8 G £2i. 
/in 

The map {7«}i<«<j |-» {7;}2<«<j gives a bijection: 

(14.10) A-^C(ys6,wJ-l). 

To analyze B we recall some equivalences of categories. Let O1 equal 

<9/(£/j£/>p(g/)) anc* le* ^ " equal £>$, Os(even) or Os(odd) depending as 8 is 

short, 8 is long and y(p — u>$) is even or 8 is long and t/(p — u;$) is odd. The 

results of sections ten, eleven and twelve give an equivalence A : O" —+ O'. 

Let v 1—• i/' and ar 1—• a/ denote the maps from A+(6) to A' and Ws to Wf~ . 

Then (10.5), (12.15) and (11.7) combine to assert that for all x eW6, Zx,s is 

carried to E V and SX}s to Sl
x/. Suppose {7i}i<«<t is a chain in B. We claim 

Wi}i<i<t is a chain from y' to u/. Let ft, and fit- be as in (14.8). Both ft; 

and ft, are subsets of — xJlYiXi, and so ft, \ {<5} and ft, \ {6} lie in —a?t~1Ear.^. 

Since 6 lies in each ft,-, xj = x 'sy •• -s7 '_ • Put \If, = {^'|^ G ft,- \ {8}} and 

v̂ - = \£t u {7,-}. Since {7,} G 5 , the 7,- are orthogonal to 8 and thus X{ G W$ 

for all i,l <i <t. So we may recall the formulas (10.5), (11.7) and (12.15) for 

each pair (#,-,£). From this we conclude: # , lies in — x\~ EV.; i.e., \P, G ^V., 

1 < i < t. Thus the sets \£,- and \P, satisfy properties i) and ii) respectively of 

Definition 14.8. 
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Now suppose 6 is a short root. In cases HS.3 and HS.5, if S = et- — e t + i 

put 6 = e,- + e,-+i. Then v \-> v' is a bijection of A+(<5) (resp. A+(<5)\{£}) onto 

A in the case HS.l (resp. cases HS.3 and HS.5). Let < ' denote the linear 
I in 

ordering on A given by v <y if and only if i/ <'y' for z/, 7 G A+(6) (resp. 
Un Un 

A+(6) \ {5}). Define chains from y' to w' with respect to this ordering and 

let C'(y' ,w' ,t) denote the chains from y' to w' of length t. Then *&{ = {£ G 

-x J^EV. IC <'7« and C 7* 7*'} U * t -_ i . This proves {7/} G C"(y'> 11/,*) when 5 
* Un 

is a short root. 

Next suppose that 6 is a long root. Then S is the unique long simple root. 

In this case, HS.3, let < denote the ordering defined as in (12.18). Recall 
Un 

the notation surrounding (12.15) through (12.18) with f3 replaced by S. Set 

R = A + ( a ) \ { e n _ i - f e n } . Then themap r is asurjection of A+(<5) onto R. The 

assignment v 1—»• 1/ is the composition of this map r with an order preserving 

bijection onto A' by (10.6). Thus v \~* v1 preserves the linear order relation, 

and so ¥,- = {C G - x J ^ E V |C <'7; and C ̂  7;} U ¥,-_i. This proves {7^} is a 
1 Jtn 

chain from y' to u>' when S is a long root and completes the proof of the claim. 

Reversing the argument which proves the claim above, and using the fact 

that 6 is minimal in —y~1Ey, we see that the mapping B —* C'(yf,w\t), 

{7*} *-* {li} 1S a l s o surjective. 

By the induction hypothesis on £(y)—£(w)} card(^i) = ca,rdC(ys$, w, j ~ I) 

which in turn equals dimExtJ~1(NyS6,Lw). By induction on p, card(i?) = 

cardC"(2/', w',j) which equals dimExtf (N'y',L'w'). Combining these with 

(14.4 c and d), cardC = dimExt^ '(Ny,Lw). This completes the proof for 

HS.l, HS.3 and HS.5. 

The case HS.4 is the remaining case. Here the proposition can be verified 

using the results in [16]. We outline the verification in some detail. Suppose g 
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80 T. J. ENRIGHT and B. SHELTON 

is of type HS.4. The reader should refer to [16] for additional details. The set 

W 2 1 for this case (D n ,D n _ i ) can be described by the diagram: 

• n — 1 
I 

I 

I 
• 1 

(14.11) / \ 
0 • # 0 ' 

\ / 
• - 1 
I 

i 
• - n + l 

We use integers i, —n < i < n, and 0' to denote the corresponding elements of 

W221. In this setting the semiregular integral categories are equivalent to the 

regular integral category for s/(2,<D). Therefore, Extk (NyyipaLw) is always 

zero for k > 2. Then (14.4 c) and the results of [16] imply the next Lemma. 

Lemma 14.12 i) For 0 < j < t < n, Extk(N-t,Lj) = <D when k equals either 

t + j ort — j . For other k, this space is zero. 

ii) For all pairs (y,w) not covered in i), Extk(NyiLw) = <D when k = 

£(y) — £(w) > 0 and is zero otherwise. 

A calculation in the coordinates of [16] yields: 

Lemma 14.13i) For 0 < j <t < n, C{—t^j) contains two chains: 

{(*n_t,an-t+l, . . . , ̂ - 2 , ^ - 1 , ^ , ^ - 2 , • • • , <*n-j} 

and 

{an_*, a n _ t + i , . . . , a n _ j _ 2 , ocv} 

where v = a n _j_i 4- 2an_;- + h 2a n _ 2 4- <*n-\ + otn. The first has length 

t + j while the second has length t — j . 
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CATEGORIES OF HIGHEST WEIGHT MODULES 81 

ii) For all pairs (y, w) not covered in i), C(yi w) contains one chain of 

length £(y) — £(w) if £{y) — £(w) > 0 and is empty otherwise. 

These two lemmas combine to verify the theorem in the case HS.4. This 

completes the proof of Theorem 14.9. 

Corollary 14.14 Let y and w be in W21. Then: 

Extl(N!nLw) = \(C ifw = <hV for some y<=Xy; 
L 0 otherwise 

and 

Extl(N L ) = i ^ *fy = w^to for some Q G €w with | ft+ |= 1; 
w 10 otherwise. 

Proof: The first formula follows from (14.9), while the second follows from 

the first as in the proof of (9.6). 

Next we turn to a description of the functor Ua introduced by Vogan. Let 

a be a simple root and set 0 a = <j>a°i>a> If w £ W a then Oa(Lw) is a self dual 

module with unique irreducible quotient Lw and socle Lw. Define Ua(Lw) to 

be the maximal submodule of <da(Lw)/Lw. 

Proposition 14.15 Ifw is in Wa then: 

n esw, | n+ |= 1 

We must first establish that Ua(Lw) is semisimple. This fact is implied 

by the Kazhdan-Lusztig conjectures. However in our setting we give a more 

direct proof. 
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82 T. J. ENRIGHT and B. SHELTON 

Lemma 14.16 If w G W a and Lz is a composition factor of both Nw and 

NWSa then z G W a -

Proof: If (£,p) is of type HS.2 then the only composition factor common to 

both Nw and NWSct is Lw. Thus we may assume that (£,g) is not of type HS.2. 

Note that if 7 and v are in A(u) and 7 is a short root not orthogonal to v and 

7 ^ 1 / then sv^ G A(m). 

Suppose that z £ W a . For ft C E^, set s^ = H y e n ^ - By (8-4) there are 

ft, T C TiZ with u; = J^z and ws a = srz. By rearranging terms and cancelling 

z in the equation wsa = spz = sn^Sa, we see: 

(*) Ssn^a^nsr G Wm and s ^ a ^ r ^ n G W m 

Suppose that there is a short root 7 in either fi or T with (7,2a) ^ 0. 

Say 7 G T. Then (7, spza) = (—7,2a) ^ 0 and, since w G Wa> sr^c* G A(u). 

Thus s5r^a«r«n(T) = S5r*a(±7) £ A(m) This contradicts (*) and thus there 

is no 7 as above. 

Since z £ Wa and w = sn^ G W a there must be a root 7 G ft with 

(jyZa) ^ 0. By the previous paragraph, 7 must be a long root and 7 is the 

only root in ft not orthogonal to ZOL. Since za ^ —A(u), za ^ 7 and za cannot 

be a long root. In particular, s1za = s^za £ —A(u) and thus za G A(ra). 

Since u>saa G A(M) , there must be some A G T with (A, za) ^ 0. Now, arguing 

as above, A must be a long root. So A = 7 and all other roots in ft and 

T are orthogonal to za. However, s1za G —A(u) and since wsaa G A(u), 

sx^a G A(w). This contradicts 7 = A and completes the proof of (14.16). 

Proof of (14.15); Let Lz be a composition factor of Ua(Lw) which occurs 

with multiplicity at least two. The character of Ua(Lw) is dominated by the 

character of Qa(Nw). Since ch(<da(Nw)) = ch(Nw) + ch(NWSa) and since 

both Nw and NWSot are multiplicity free, Lz must be a composition factor of 
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CATEGORIES OF HIGHEST WEIGHT MODULES 83 

both Nw and NWSQ. This contradicts (14.16) since z £ W a - Thus, Ua(Lw) is 

multiplicity free. Since it is a self-dual module it must also be semisimple. 

It remains only to compute the composition factors of Ua(Lw). Suppose 

that Ly is a composition factor of UaLw. Then, by the semisimplicity of UaLw, 

Extl(Ly)Lw) ?£ 0. Let Jy be the maximal submodule of Ny. If y-<w then 

H.om(Jy)Lw) = 0 and thus, by a long exact sequence, Ext1 (LyiLw) injects 

into Ext1 (Ny,Lw) and E x t 1 ^ , ^ ) ^ 0. Thus, by (14.14), if y^w then 

y =z wra, for some Q G Ew with card(12+) = 1. On the other hand, if y -ft w 

then Rom(Jw,Ly) = 0 and thus Ext1(Nw,Ly) ^ 0. By (14.14) this could only 

happen if y = wsa, since we must have y^wsa. 

Conversely, suppose that y = wr\i for some Q G €w
 w ^ h card(Sl+) = 1 

and y £ W a . Let QaLw be the maximal quotient of SaLw. From the short 

exact sequence 0 —» Lw -^ SaLw —• QaLw —»• 0, we obtain the long exact 

sequence: 

(**) nr 

Hom(iVy ,eaLw;) -+ H o m f ^ ^ a ^ ) — E x t 1 ^ , ! ^ ) -> Ext1 ( 7 ^ , 0 * 1 ^ ) 

The first term in (**) must be zero, since y ^ w and y ^ ws a . If ya G A(m) 

then xfraNy = 0, and so the last term is also zero. Suppose that ya G A(u), 

(ya £ — A(tx) since y ^ W a ) . For some 7 in Ey , w = s7y . Since iua G —A(u) 

and ya G A(u), this can only happen if a is a long root and 7 is not or­

thogonal to ya. A simple check in coordinates then shows that w(p — ua) 

and y(p-Wa) have different parity (cf. (12.11)). Thus Ext1(NVieaLw) = 

Ext1 (ij)aNy, ipaLw) = 0 by (12.14). In any case, the last term of (**) is zero, 

and thus the second and the third terms are both nonzero (by (14.14)). Since 

Ly is the unique simple quotient of Ny, this shows that Ly must be a compo­

sition factor of QaL>w The exact sequence 0 —• UaLw —• QaLw —+ Lw —+ 0 

implies that Ly must actually be a composition factor of UaLw. Finally, 

LWSQ must be a composition factor of UaLw because of the isomorphism 

Kom(NWSQ,<dQLw) = Rom(ipaNW)tpaLw) = <D. This completes the proof 

of (14.15). 
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§15. Kazhdan-Lusz t ig polynomials 

The Kazhdan-Lusztig conjecture [23] gives a recursion relation which de­

termines the character formula for irreducible highest weight modules for any 

semisimple Lie algebra. This conjecture was proved in [2] using the theory of 

Z>-modules and in [11] using the theory of holonomic systems. In the setting of 

classical Hermitian symmetric pairs, as one might guess, there are easier proofs 

of this conjecture. In [34], the semisimplicity of the modules UaL(i/) implies 

the validity of the conjecture. In turn, this semisimplicity is established in 

(14.15). This gives another proof for our setting. 

The work of Lascoux and Schutzenberger gives a combinatorial descrip­

tion of the Kazhdan-Lusztig polynomials in the case HS.l. They define gen­

erating functions Ylv flf'"' a n ^ then prove these polynomials are solutions to 

the Kazhdan-Lusztig recursion relations. However, these polynomials satisfy 

a much simpler recursion relation determined by the combinatorics. This re­

lation is given in [26] and asserts (in their notation): 

(15.1) <£?X»=QVJ&» + <le<yX» where c = \v'\a - \w'\a. 

There are two main results in this section. The first is Theorem 15.4 

which generalizes the relation (15.1) to the Hermitian symmetric cases HS.3 

and HS.5. The second is Theorem 15.5 which gives explicit formulas in all 

the classical Hermitian symmetric cases for the Kazhdan-Lusztig polynomials 

in the language of chains as introduced in (14.8). Of course our hope is that 

similar representation theoretic techniques will yield similar results for 0(g_,p) 

where p is any maximal parabolic subalgebra of a semisimple Lie algebra g. 

Following the work of Kazhdan and Lusztig [23] and Vogan [34], we define 

polynomials which we call KLV polynomials. Let wg (resp. Wrn) be the element 

of maximal length in W (resp. W™} and for w G W define w = WrnWwg. For 
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w G W™, put Myj = M(wp), Nu = N(wp) and L„ = L(wp). For y,w G W - , 

define a polynomial Qy>w(q) by : 

Q, i t0(g) = £ > > dim E x t ^ ) - ^ ) - 2 ^ ^ , ^ ) 

= £ < ? 2 d i m E x t f ^ L t f ) . 
*>o 

From the parity (14.4), we know the sum over j can be taken over the integers 

or half integers. The result is the same. Let Py,w(<l) denote the corresponding 

polynomials with Ext computed in 0(#,6) instead of 0(g,p) and with Ny and 

LXJJ replaced by M(—yp) and L(—wp) respectively. It is well known that these 

polynomials are related. We have: 

Lemma 15.3 For y,w G W ~ and r G Wm, 

Qy,w(<l) = Pry}wrnw(q). 

Proof: Let 6 = ft®n and n = n m 0w. Then u is an ideal of n. Put 

£ = —Wrnjyp — p and let F denote the irreducible finite dimensional m-module 

with extreme weight £. For any /i-module E, let E* denote the ^-weight space 

of E. The Ext groups are related to cohomology as follows: Ext*(iVy, L^) =. 

EouirniF^iu.L^)) and E x t ^ M ^ , ! ^ ) S H ,"(a,£t&) r t t+p )"p . Now the mod­

ules H*(ii, Lyj) are finite dimensional m-modules, and so we may use Kostant's 

formula for computing the n^-cohomology of these modules [25]. Then the 

Lyndon spectral sequence ([28], p. 351) proves the equality of these polynomi­

als. 

In the cases HS.2 and HS.4, the KLV polynomials can be computed ex­

plicitly from [16], as can the cases HS.l,HS.3 and HS.5 when p = 1. We remark 

that in all the p = 1 cases, the polynomials Qy}W are either one or zero depend­

ing as uMy or not. So we now restrict to the remaining cases where recursion 

formulas are needed. Let (#,p) be of type HS.l, HS.3 or HS.5 and let notation 

be as in the remarks surrounding (14.4). Recall the notation x v-• xf defined 

by: L% = K{Vxi). Let Ql'y> wi denote the KLV polynomial defined as above 

with <7, p, m and W— replaced by #', p' , m' and W ' ~ respectively. 
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Theorem 15.4 Let y and w be in W221. 

(i) Ify is the element of maximal length in W~ then Qy>w equals the constant 

polynomial one or zero depending as y = w or not. 

(ii) Ify is not of maximal length then choose a simple root (3 with ysp G Wp, 

i.e. yf3 G A(u). We have the following two cases: 

(a) Suppose that either wsp £ Wp or (g,p) is of type HS.3, (3 is a long 

root and y(p — up) and w(p — wp) have opposite parity (cf. (12.11)). 

Then 

tyy,w -— l"cyspyw* 

(b) Suppose that wsp G Wp. Also, for HS.3 and j3 long, assume that 

y(p — up) and w(p — up) have the same parity. Then 

Qy,w = tyysp,w "T Q Q y',iv' 

with 2r = £(w)-i{y)-e(w,)^e{y') and £( ) (resp. £'( )) denoting the length 

function on W (resp. W'). 

Proof: Ify has maximal length in W221 then Ny is projective. This proves (i). 

Now suppose y and (3 satisfy (ii). Put a = —wg/3. From (9.2) we obtain: for 

y, f3 as above, ysp G Wp if and only if y G W a . Also, if /? is long then a — (3 

and y(p — up) and w(p — up) have the same parity if and only if y(p — wp) and 

w(p — up) do. Therefore, case a) follows directly from (14.4) c) while case b) 

follows from (14.4) c) and d). This completes the proof. 

After a change of notation from that used here to that of Lascoux and 

Schiitzenberger [26], we find that the identity (15.4, ii, b) for HS.l is precisely 

the identity (15.1). Therefore the combinatorial generating functions ]T^ qM 

in [26] are the polynomials QVtW for HS.l. 

The notion of chain introduced in Definition 14.8 generalizes these results 

of Lascoux and Schiitzenberger . The formulas for Ext given in (14.9) translate 

as follows for KLV polynomials. 
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T h e o r e m 15.5 

(i) Let y,w G W m . The coefficient of q3 in the KLV polynomial Qyw 

equals the number of chains from y to w of length £(w) — £(y) — 2j. 

(ii) For w G W™ expand the character chLw = T,y(-iy(y)-liw)aychNy 

with ay G 2Z. Then ay equals the number of chains from y tow (of all lengths), 

or equivalently the number of positive chains from w to y. 
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§16. Decompositions of U(u~)-free self-dual g-modules 

We keep the notation and assumptions of section eight. So (gyp) is a 

Hermitian symmetric pair of classical type (cf. (8.1)) and O = (9(#,£, p). Let 

V be the full subcategory of O consisting of all modules which admit both a 

Verma flag and a nondegenerate £-invariant bilinear form. In this section we 

give a complete description of the modules in V. This description then yields 

several corollaries concerning the signatures of Hermitian forms. 

Recall the modules D(v) from (2.7). Let Dw = D(wp) for w G W™. 

Proposition 16.1 Let X G V. Then X admits a symmetric nondegenerate 

g-invariant bilinear form <f>. Furthermore, there is an orthogonal direct sum 

decomposition (with respect to <j>): X = ® , € / ^ i where X{ = DWi for some 

Wi G W21, i G / . 

Proof: This is exactly Theorem 1.8 in [16]. The hypotheses (1.7) and (1.4) 

of [16] have been verified here in (8.5). 

Corollary 16.2 Let X,Y €V and assume chX = chY. Then X and Y are 

isomorphic. 

For any module X in 0(gJp)) let Xw denote the ^-finite contravariant 

dual module to X. Then X v is in 0(g,p) and chX = chXv. 

Proposition 16.3 Let X G O and assume that both X and Xy are free 

U(u~)-modules. Then X admits a symmetric nondegenerate form; i.e., X lies 

inV. 
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Proof: Put Y = X®XW. Then Y G V and by (16.1), Y = © w y w where each 

summand Y^ is itself a direct sum of copies of Dw, w £ W 2 1 . Therefore y has 

a decomposition y = 0 ^ <YW)i where YWii == £>«,. We say this decomposition 

satisfies (C, z) for z € W 2 1 if for all w y z and all i, y^,jt- is a submodule of 

either X or X v . 

Suppose the decomposition of y does not satisfy (C, z) for some z G W12-. 

Choose u G W 2 1 maximal in the Bruhat order with (C, u) not satisfied. Set 

Y' = ® yw with the sum taken over all «; G.W21 for which (C, it;) is satisfied. 

By maximality of u choose an invariant symmetric form <j> on Y which has 

nondegenerate restrictions to both X n Y' and Xv f) Y'. Set Y(resp. 2L, 2CV) 

equal to the orthogonal complement of Y1 (resp. X 0 7 ' , X v n V ) in y (resp. 

X, X v ) . The maximality of u gives: 

(16.4) Y = xex v , y = y/eY. 

Put v = up — p and let £ denote the weight space Y„. Then v is a maximal 

weight of Y. Fix any nondegenerate symmetric bilinear form ipf on L which 

has nondegenerate restrictions to both LC\X and LDXW. The module Y has a 

decomposition as above: Y = © ^ Y ^ . Since v is a maximal weight, L equals 

L n Y u . In turn from [16, (3.1)], this implies that tf>' extends to an invariant 

symmetric form ip on Y. 

Decompose Yu into a sum E®F where E and F are each direct sums 

of Du and L n E = L n X, L n F = L n X v . Note that the socles of # 

and F are contained in X and X v respectively. Therefore if TT and 7rv denote 

the projections of Y onto X and X v , then 7r and 7rv induce isomorphisms: 

E^+nE, and JP-^7T V F. By (16.4), these modules lie in Y. Moreover, from [16, 

(3.1)], the restrictions of ip to nE, 7rvF and wEQw*F are nondegenerate, since 

(7rJ5)j, = L n J and (ww F)u = L n X v . Taking complements with respect to V>-

orthogonality we obtain Y = 7r£ ,07rvF0G. Recall the original decomposition 
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of Y. Replacing the summands YUfi by the summands of wE and ?rvF and the 

summands YW|1- not in Y' by summands of G, we obtain a decomposition of 

Y which satisfies (G, u). By induction we obtain a decomposition of Y which 

satisfies (G, w) for all w £ W21. This completes the proof of (16.3). 

If <j> is a nondegenerate Hermitian form on a finite dimensional vector 

space E then for some basis of E, </> is represented by a diagonal matrix with 

a l 's and b - l ' s . We call the pair (a, b) the signature of </>. Let I G O and 

let ij> be a nondegenerate invariant Hermitian form on X. Define the signature 

of r/>, S(ip), to be a map S(rp) : weights of X -* IN x IN. For a weight A of 

X, S(ip)(\) is the signature of \j> restricted to the finite dimensional A-weight 

space of X. 

Proposition 16.5 [16, Theorem 1.10] Dw admits a nondegenerate invariant 

Hermitian form. Moreover, if <j> and tp are two such forms then either 

S(4) = S&) or S(<f>) = -Sty). 

For any X £ X>, by (16.1) we may write: X = @XW with Xw isomorphic 

to a direct sum of d^-copies of DWi w G W21. If <j> is a nondegenerate £-

invariant Hermitian form on X then we may assume this decomposition is 

orthogonal with respect to <j>. Put <f>w equal to the restriction of <j> from X to 

Ay, . 

Proposition 16.6 [16, Theorem 1.12] Let X and Y be in V with nondegen­

erate invariant Hermitian forms <j> and if> respectively. Assume S(<f>) = S(rp). 

Then X and Y are isomorphic and for all w £ WUL
1 S(<j>w) = S(tpw). 
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