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Abstract

The category of highest weight representations is of special interest within
the full set of representations of a real semisimple Lie group. This memoir de-
scribes the structure of the generalized Verma modules as well as the Kazhdan-
Lusztig data for the simple modules in this category for the classical groups.
In particular, explicit formulas for composition factors of generalized Verma

modules and Kazhdan-Lusztig polynomials are given.
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§1. Introduction and summary of results

Let g be a semisimple Lie algebra over €. To study any category C(g) of
g-modules the standard procedure is to first study those with regular gener-
alized infinitesimal character Creg(g) and then to pass to those with singular
generalized infinitesimal character Cg;,,(g). In this article we invert this usual
procedure. The structure of modules in Creg(g) is determined from the cor-
responding information for Csing(g.)- In turn the latter category is anal&zed
using an induction argument on the rank of g.

The article is organized into two parts. The first part (sections two
through seven) analyzes csing(g) in terms of Creg(g’) where rank(g’) is less
than rank(g). The second part (sections eight through sixteen) is an appli-
cation of part one to the categories of highest weight modules for classical
Hermitian symmetric pairs. The results of part one are quite general while
those of part two are very explicit. In particular, in part two we obtain ex-
plicit formulas for the the composition factors of generalized Verma modules
as well as explicit formulas for the Kazhdan-Lusztig polynomials.

We now describe the results in some detail, beginning with the necessary
notation for highest weight modules. For undefined terms and greater detail
see sections two and three. Let h be a Cartan subalgebra of g and b = h®n a
Borel subalgebra. Let p = m®u be a parabolic subalgebra of g with nilradical
u, u C n and with A C m. Denote by A (repectively A(m), A(u)) the h-roots
ofg (resp. m, u). Let At be the positive roots which are the roots of n and put

At(m) = AT N A(m). Let p (resp. p(m)) equal half the sum of the elements

Received by the editors June 6, 1986.
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2 T. J. ENRIGHT and B. SHELTON

of A% (resp. A*(m)). Let W and Wy, be the Weyl groups of (g, k) and (m, k)
respectively. Put W2 = {w € W|wA* D A+(m)}. Then W = W, W™=, Let
P, equal the set of A € h* which are A-integral and A*(m)-dominant and
regular.

Let O(g, p) be the category of g-modules which are: (i) finitely generated
over U(g), (ii) U(p)-locally finite and (iii) completely reducible over U(m). For
A € b*, let O(g, p, A) be the full subcategory of O(g, p) of modules with gener-
alized infinitesimal character parameterized by the W-orbit of A. Let M(g, A)
be the Verma module with highest weight A — p and L(g, ) its irreducible
quotient. For A € Py, let F(m, A — p) be the finite dimensional irreducible
m-module with highest weight A — p. Let N(g,p,A) denote the generalized
Verma module with highest weight A — p. Let P(g,p,A) denote the projec-
tive cover of L(g,}) in O(g,p). When possible we delete the indices g and p
and write M(X), L(X), N(A) and P(X) respectively for these modules. Define
the truncated category O:(g,p, ) to be the full subcategory of O(g, p) whose
simple modules are the L(g,£) with £ less than or equal to A in the Bruhat
order.

In section four we give several results relating csing(g) and Creg(g). Let
v and p be At-dominant elements in A* with g integral and let ¢ = @L+#
be the Zuckerman translation functor (cf. section two). Then ¢ is a functor
from O(g,p,v) to O(g,p,v + p) which is an equivalence when v and v + u
have the same stabilizer in W. However, in all cases we prove: for w € W and
wv € Py, ¢P(wv) is an indecomposable projective module. Also P(wv) is
self-dual if and only if ¢ P(wv) is. These and similar results are given in (4.1),
(4.5) and (4.6).

Section five reviews the necessary material on Zuckerman derived functors.
Proofs are given for some known facts which however are not available in the

literature.
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CATEGORIES OF HIGHEST WEIGHT MODULES 3

Section six includes the first result relating categories of modules for Lie
algebras of different rank. Let ¢ = Iy, be a maximal parabolic subalgebra
of g with A C [ and ¢ not containing p. Suppose that A € A" is A-integral
and A(l)-regular. Put Oy = O(g,p,A) and O = O(l,iNp,A). The main
result of section six, (6.6), asserts that if the set of highest weights plus p in
Oy equals the set of highest weights plus p({) in O; then these two categories
are equivalent.

The main result in section seven is similar, however, with different hy-
potheses. Put r = INm. Let wy be the longest element in W; and wq ! the
longest element in W™ where Wy, = W, W=, Put ¥ = —w;p and p = wov.
Now set O; = O({,INp, v) and Oy = Oy(yg, p, p); and note, the truncation oper-
ation is on the other side in this case. Then these two categories are equivalent
(7.1). The proofs of both (6.6) and (7.1) rely on the use of Zuckerman derived
functors. However, their application is somewhat different in the two cases.
Section six uses derived functors in the top dimension while section seven uses
them in the middle dimension. These two results are the main results in part
one of the article. At the level of the Grothendieck group the equivalence estab-
lished in section seven has been proved by Boe and Collingwood ([6] Scholium
2.6) for the Hermitian symmetric setting. Their argument uses the Zuckerman
derived functors in the middle dimension to identify the Hasse diagram of O;
with a subdiagram of the Hasse diagram for O(g, p, p).

Let (G,K) be a classical Hermitian symmetric pair. The highest weight
representations for the simply connected covering group of G are infinitesimally
equivalent to the modules in the category O(g,p) where g is the complexified
Lie algebra of G and p is a maximal parabolic subalgebra of g. In part two of
this article, we apply the results from part one to analyze these categories. The
first results describe the composition factors L(zp) in the generalized Verma

module N(yp), z,y € W™. We give explicit formulas both for z in terms of
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4 T. J. ENRIGHT and B. SHELTON

y and y in terms of . Also we determine the socle of N(yp). These results
and others are stated with greater precision in Theorems 8.4 and 8.5. All
answers are expressed in terms of sets of orthogonal roots. Their proofs occupy
sections nine through thirteen. In related work the multilicity free nature of
the decompositions above was also obtained by Boe and Collingwood [6]. For
other special cases of multiplicity one, we cite [9], [12] and [21].

In sections fourteen and fifteen we turn to questions regarding Kazhdan-
Lusztig polynomials and Ext*(N(v), L(£)). Here a standard lemma from alge-
braic topology (the mapping cone lemma) combines with the equivalences of
categories from part one to give simple recursion formulas for Ext. This result
is given as Theorem 14.4. From it we immediately derive explicit formulas for
Ext' (N (yp), L(wp)), y,w € W2, i € IN. These results appear as Theorems
14.9 and Corollary 14.14.

Following Kazhdan and Lusztig [23] and Vogan [34], we define what we
call KLV polynomials Qy . (¢), ¥, w € W™, in section fifteen. The correspon-
dence with the standard Kazhdan-Lusztig polynomials is given as Lemma 15.3.
The recursion formulas for Ext described above then lead to corresponding re-
cursion formulas for the KLV polynomials. These recursion formulas uniquely
determine the polynomials. This result (Theorem 15.4) generalizes to the Her-
mitian symmetric cases Sp(2n,IR) and SO*(2n) the recursion relations found
by Lascoux and Schiitzenberger [26] for the case SU(p,q). Finally in Theorem
15.5 we give the solutions to these recursion formulas. This gives explicit for-
mulas for the KLV polynomials in terms of a combinatorial notion which we
call chains (cf. Definition 14.8).

In [16], canonical decompositions are given for self-dual modules which are
U(u~)-free. The results depend on two hypotheses: simplicity of the socle of
N(v) and self-duality of D(v) (cf. (2.7)). We have verified both of these prop-

erties for O(g, p); and so, all the results in [16] apply here as well. These results
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CATEGORIES OF HIGHEST WEIGHT MODULES 5

are summarized in section sixteen. Possibly the most interesting is Proposition
16.5 which asserts uniqueness of signature of nondegenerate Hermitian forms
on the modules D(v). In addition we give a characterization of self-duality for
U(u~)-free modules X in O. We prove X admits a nondegenerate symmet-
ric invariant form if and only if the contravariant dual module XV is a free
U(u~)-module (cf. (16.3)).

Section eight includes a more detailed summary of the main results of part
two as well as additional introductory remarks for that part of the article. The
reader primarily interested in the applications to Hermitian symmetric pairs
should review the table of contents and then turn to section eight.

This article is the culmination of a project begun some years ago. It has
undergone a number of changes in perspective and has benefited from the com-
ments and suggestions of a number of our friends. The early develepmont of
the project was strongly influenced by the work of R. Irving [20]. In particular,
the simple structure of the category O for SU(1,n) was pointed out to us by
him. This example was the starting point for all which followed. Our col-
leagues G. Carlsson and L. Small pointed out to us that one of the techniques
we employed in section fourteen is well known in topology and is called the
algebraic mapping cone lemma. The connection between “Poincaré” polyno-
mials for O(g,p) and those for O(g,b) was pointed out to us by T. Springer.
Finally we thank Neola Crimmins for her excellent preparation of part one of

this manuscript. Her work is much appreciated.
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§2. Notation

In this section we set down our notation and conventions for Lie algebras,
root systems and highest weight modules. Also, we describe the BGG reci-
procity theorem for the category O as well as generalizations of it to what we
call truncated categories.

Throughout this article g will denote a semisimple Lie algebra over €, the
field of complex numbers. Let h be a Cartan subalgebra (CSA) of g and b a
Borel subalgebra with A C §. Let p be a parabolic subalgebra of g containing
b and let n (resp. u ) be the nilradical of b (resp. p). So we have Levi
decompositions b = h®n and p = m@Ou. Let n~ (resp u~) denote the opposite
nilradicals with g = n~®b (resp u~®p). Let A denote the set of roots of (g, h)
and let At be the positive root system determined by b. For any ad(k)-stable
subspace g in g, let A(a) denote the set of roots whose root spaces lie in g
and put A*(a) = At N A(a). Also put p(a) equal to one half the sum of the
positive roots in A*(g). For convenience we write p instead of p(g). If l is any
Lie algebra, let U(l) denote the universal enveloping algebra of [.

Let W denote the Weyl group of (g,h) and for & € A, let s4 be the
reflection corresponding to o. Let W, denote the subgroup of W generated
by the reflections s, @ € A(a). For m as above we identify the Weyl group
of (m,h) with Wp. Also define W2 = {w € W|wA* D A*(m)} and let

oW = {z|]z"! € WB}. SoW = W .- Wy, = Wy, - W2 Let £(-) denote the

length function on W.
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CATEGORIES OF HIGHEST WEIGHT MODULES 7

Next we describe the categories of highest weight modules used in this
article. We begin with the Bernstein, Gelfand and Gelfand (BGG) category O.
Let O(g, p) denote the category of all g-modules X which satisfy the conditions:
(i) X is finitely generated over U(g), (ii) X is U(p)-locally finite and (iii) X is
completely reducible over U(m). If h* is the algebraic dual of h and XA € A",
let M(g, ) denote the Verma g-module with highest weight A — p. Let L(g, A)
be the unique irreducible quotient of M(g,)). Write x, for the infinitesimal
character of M(g,)) and let O(g,p, A) be the full subcategory of O(g,p) of
modules with generalized infinitesimal character xx. For Y € O(g,p), let Yy,
be the maximal submodule of Y with generalized infinitesimal character x.
Then Y is the direct sum of its submodules Yy, .

Let P, denote the set of elements in A* which are A-integral and A+ (m)-
dominant and regular. For A € Pp,, let F(m, A — p) be the finite dimensional
irreducible m-module with highest weight A — p. By letting u act by zero,
F(m, X — p) becomes a p-module. For A € Pp,, define the generalized Verma
module N(g,p, A) by:

(2.1) N(g,p,)) = U(g) Q) F(m, A - p).
Ul

In O(g,p) each irreducible module L(g,)) admits a unique indecomposable
projective cover which we denote by P(g,p,A) (cf. [31]). When there is little
chance of confusion, the modules M(g,}), L(g,)), N(g,p,A) and P(g,p, )
will be denoted by M(X), L()A), N(X) and P()) respectively.

A module A in O(g,p) is said to have a Verma flag if A admits a flag of
submodules 4 = A; D A2 D -+ D Ap41 = 0 with A;/A;41 = N();) for some
Ai € Pm, 1 < i < n. In this case we say A has a Verma flag of length n or
that A has index n. For A € Py, let [A : N())] denote the number of indices
i, 1 < i < mn, with A = );. This number is independent of the Verma flag of A

and we call it the multiplicity of N()) in a Verma flag of A. We say A has a
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8 T. J. ENRIGHT and B. SHELTON

multiplicity free Verma flag if the multiplicities [A : N())] are all one or zero.
For any module B in O(g,p), let (B : L())) denote the multiplicity of L(A) in
any Jordan-Holder series for B.

The role of projective covers in O(g, p) is made more fundamental by the

following reciprocity theorem.

Proposition 2.2 [31] Let A and v be in Py,. Then:

(a) P(\) admits a Verma flag.

(b) [PA) : N(v)] = (N(v) : L(})).
This result was first proved by Bernstein, Gelfand and Gelfand for the case
p = b (cf. [4]), and so we refer to identity (b) as the BGG reciprocity theorem.
The generalization to O(g,p) is due to Rocha-Caridi.

The space h* has two standard partial orderings defined as follows. For
A, v € h* we write A < v if v — ) is a nonnegative integral sum of elements in
At. We write A<v if Homy (M (), M(v)) # 0. This second partial ordering
is the Bruhat ordering (cf. [13]) and is the one most frequently used in this
article. We now use it to define what we call truncated categories.

Let 4 € Py and define O¢(g, p, u) to be the full subcategory of O(g, p, 1)
of modules X with the property:

(2.3) If v € Py and (X : L(v)) # 0 then v<pu.

When p is fixed and little confusion can arise we write O, O(u) and O;(u)
in place of O(g,p), O(g,p, 1) and O.(g,p, u) respectively. We call O,(u) the
truncated category O with highest weight 4 — p. Suppose A € O(u). Then
there is a unique minimal submodule B of A with A/B € O.(u). Define
T,(A) = A/B.

Lemma 2.4 Let u and v be in Ppy,.
(a) If v<p then N(v) is in Oy(p).

(b) T is a covariant right exact functor from O to O.(p).
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CATEGORIES OF HIGHEST WEIGHT MODULES 9

Proof: If (N(v) : L(€)) # 0 then £<v. This gives (a). Let A,4’ € O and
f € Hom(A, A’) and choose B and B’ with T,A = A/B and T,A' = A'/B’.
To prove T}, is a covariant functor it is sufficient to check f(B) C B’. We prove
this inclusion by induction on the length n of a composition series for B. If
n = 0 then B = 0 and the inclusion holds. Now assume n > 0 and let £ — p be
a maximal weight of B with £ £ u. Choose a nonzero map ¢ € Hom(N (£), B).
Then fyYN(€) is either zero or contains a cyclic vector of weight & — p, and
thus fY N(§) C B’. Now put C = ¥ N(£) and C' = fC. This shows that f
induces a map f : A/C — A’/C’. One checks easily that T},(A/C) = A/B and
Tu(A'/C") = A'/B’. So by the induction hypothesis, f(B/C) C B’/C’. This
implies f(B) C B’, and thus f induces a map T,f : A/B — A'/B’.

To prove right exactness consider an exact sequence A° ENY SRy}
Now f induces the map T}, f, so T}, f is surjective. We now claim: image(T,g) =
kernel(T}, f). Define B® with A°/B% = T,A° and let B and B’ be as above.
Since f is surjective, A'/f(B) = f(A)/f(B) € O¢(p). Thus f(B) O B’, and
so f(B) = B’. This implies the claim and completes the proof of (2.4).

The categories O;(u) are structurally quite similar to O(p). In particular,
simple modules admit unique indecomposable projective covers and we have a

BGG type reciprocity theorem.

Proposition 2.5 Let v and p be in Pp,.
(i) If v £ p then T,P(v) = 0.
(ii) If v<up then T, P(v) is the unique indecomposable projective cover of
L(v) in Oy(p).
(iii) If v<p then T,P(v) has a Verma flag and we have the reciprocity
formula:

(N():L(v)) if§ € Py and {<p
[TuP(v) : N(§)] = {

0 otherwise.
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10 T. J. ENRIGHT and B. SHELTON

Proof: L(v) is the unique simple quotient of P(v) and so also of T, P(v).
This proves (i) and also proves T, P(v) is indecomposable. To complete (ii)
we need only show T, P(v) is projective. Let ¢ : B — C be a surjection with
B,C € Oy(p) and v : T,P(v) — C. Let € denote the natural projection
of P(v) — T,P(p). Then P(v) is projective, and so there exists a map 6 :
P(v) — B with ¢ 06 = yoe. Now apply the functor 7,. We obtain a map
Tué : TuP(v) — B with ¢ oT,6 = v. So T, P(v) is projective, indecomposable
and has quotient L(r). This proves (ii).

To prove (iii) we chose a Verma flag for P(v) = A; D --- D Ap41 = 0 with
Ai/Aip1 = N(X;). From Lemma 2.1 in [16] we may assume \;<p if and only
if 1 < i < a, for some integer a. Then T,P(v) = A;/A, and the reciprocity

formula follows from (2.2).

Let A be any g-module and let SocA denote the sum of all the simple
submodules of A. SocA is called the socle of A. Let v be in P,,. If SocN(v)

is a simple module then we reserve the notation v# to indicate :
(2.6) SocN(v) = L(v#).

In this setting we define modules D(v) = D(g, p,v) by:

2.7 D(v) = T,P(v¥*).

For an equivalent definition of these modules see [16].

Translation functors are needed at several points in this article. Let u, A €
h* with A A-integral. Let F be the finite dimensional irreducible g-module
with extreme weight A and let F* denote the contragradient g-module. Let
¢ = ¢kt and ¢ = ¥} 4 denote the functors on O(g,b) as well as on O(g,p)

given by:

(2-8) $A = (F®Ax,. )x,.pn YA = (Ft@AxHa )xp'
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CATEGORIES OF HIGHEST WEIGHT MODULES 11

These functors are adjoints of each other and are called the Zuckerman trans-
lation functors when A and the real part of u lie in the same Weyl chamber
(cf. [38]). In this case, if 4 and p + A have the same stabilizer in W we say ¢
and 7 are equisingular. For the now standard properties of ¢ and 1 the reader
should consult [22] or [36].

The Verma modules in category O(g,p) all admit contravariant forms (in
the sense of Jantzen, cf. [22]). We shall call a module X in O(g, p) self-dual if
it admits a symmetric nondegenerate contravariant form.

We will need the following lemma on the Bruhat order.

Lemma 2.9 Let A and p be elements of Py, with A<u. Then there exist

a; €AY, 1<i<t, with g; =54, Sa, b € P and X = py< -+ - <py <p.

This follows from Theorem 2.22(b) in [22].

At times it will be convenient to write for A € A* and o € A, Ay =
2(A\, a)/{a,a). Also, for any module X in O(g,p), let chX denote the formal
character of X as in [22].
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§3. Preliminary results

In this section we collect several technical results on Weyl groups and
categories of modules. The reader is encouraged to postpone reading this
section and instead refer to the results here when needed.

For any At-dominant £ € h*, let S(¢) = {a@ € A*|(¢,a) = 0} and
let W¢ be the subgroup of W generated by the s4, o € S(€). The element
¢ determines a parabolic subalgebra and W; is the Weyl group of the Levi
component. However, this fact will not play a role here, and so we won’t
putsue the connection with the parabolic subalgebra in this section.

Fix A, € h* both A*-dominant integral. Let F = F(g,)) and let A
denote the set of weights of F'.

Lemma 3.1 Set © = (£ + A)NW(E + ). Then

O=E+We - A=We(€+1) .

Proof: Fix p € A and suppose £ + 4 = w(§ + A) for some w € W. It is
suficient to prove: w € We. Since p € A, |{|p|} < ||A|] and # < A, Also
[1€ + All = |[€ + ]|, and so we obtain: 0 < |JA|]> — ||ull* < 2(n — A,€) < 0. So
we have equality: ||A]| = ||p]| and (g,€) = (X, €). But then p € WA and if C
is the positive Weyl chamber, 1 € W¢ - C. In turn this gives 4 = s\ for some
5 € We. Then w(€ +A) = €+ p = s(€ + A). This gives s™'w € Weyn C We
and finally w € W¢.

Set ‘W = {w € W|wS(¢) C At}.

12
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CATEGORIES OF HIGHEST WEIGHT MODULES 13

Lemma 3.2 Let v,w € W and u,v € We - A
(i) &€ + p=€ + v if and only if w(§ + p)<w(€ +v).
(i) v(€ + p)<w(€ + A) if and only if v€<wé.

Proof: Suppose £ +u~<€&+v. Then choose a; € A1, 1 < i <k, such that with
$i =Sa, E+pu=sk---s1(+v)and (ait1,si---51(E+v)) >0,k >i>0. We
claim o; € S(€) for all 3.

Choose r € W, with g = rX. Since At \ S(£) is We-stable, if ay ¢
S(€) then (sx(€ + p),ax) = (€ + A, —r~lag) < 0. However, (sx(£ + p),ax) =
(sk—1---51(6 + v),ar) > 0. This contradiction proves ap € S(£). Assume
a; € S(€) for k > i > a > 1 and put @ = 8g41---514. Then £+ 7 =
Sq---51(§ +v) and € + I<€ + v. Now argiung as above with u replaced by &
we obtain e, € S(€). This completes the induction and proves the claim.

For 1 < i < k set §; = wa;. Then f; € At and sg,w = ws;. Also, let
5; = sg;. Then 5 - -51w(f +v) = w(€ +p) and (5; - -F1w( +v),B84+1) =
(sj---s1(6+v),aj41) 20,1 < j < k. This proves w(§ + pu)<w(é + v).

The converse of (i) is proved in a similar fashion. Assume w(§ + u)<
w(é+v). Choose §; € At,1 < i<k, with s; = sg,, w(€+p) = sg - - s1w(€+v)
and (sj---syw(€ +v),B5+1) > 0, 0 < j < k. Now arguing as above one
can show w™iB; € S(€). Put oy = w™!f; and 5; = s,,. Then as above,
E+p=3;51(§+v)and £+ pu<€ +v.

We now prove (ii). Suppose vé<wé. By (i), it suffices to prove v(§ +
X)) <w(€ + A). Choose o; € A*, 1 < i < k, with wé = s ---510€ and
(sj+--s1v€,0541) < 0,0 < j < k. Then —v71s;---sjaj41 € AY. Since
€ + X is dominant this gives: (s; ---s1v(€ + A),@j41) < 0, and thus if we put
N = wlsp---510X then v(€ + A)<sg ---s51v(€ + A) = w(€ + N). By (3.1),
w™lsk - 519 € We and X € WeA. Then by (i), v(€ + A)<w(é + N)<w(é + A)
giving the first half of (ii).
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14 T.J. ENRIGHT and B. SHELTON

For the converse suppose v(§ + p)<w(é + ). Choose o; € At, 1< i<k,
with s; = $q;, sk -5109(§ + #) = w(€ + X) and (s ---519(€ + p),a;41) < O,
0 < j < k. Since £ + p and £ lie in the same (closed) Weyl chamber, we have
(8j5---s1v€, aj41) < 0. Alsoif y = sg ---s1v then wly(€ + p) = €+ A, and so
by (3.1), w™ly € We. So y€ = wé, and thus v€<wé¢. This proves (3.2).

In section two we defined both truncation functors and translation func-

tors. They satisfy the following identities.

Lemma 3.3 Fix w € ‘W, )\, ¢ At-dominant integral and put p = w€, v =
wA. Let ¢ and i denote the translation functors ¢§+'\ and 1/)2 4+ Tespectively.
For any B € O(g,p,€) and E € O(g,p,£ + ) we have:

(i) Tyu4+v9¢B = ¢T,B.

(ii) TuYE = ¢YTuy E.

Proof: We argue by induction on the length of a composition series for B. Put
C = T, B and consider the short exact sequence: 0 - A — B — C — 0. First
assume A # 0 and C # 0. Then by the induction hypothesis, T),;, ¢ A = ¢T, A.
Since T,A = 0, ¢ is exact and T4, is right exact we obtain: 0 — T4, ¢B —
Tu4v¢C — 0 is exact. So T4y ¢B = Ty, ¢C = ¢T,C = ¢T,B by the
induction hypothesis applied to C.

Now suppose A = 0. Let v — p be a maximal weight of B. Then y<u
and there is a nonzero f € Hom(N(v),B). Set D = fN(y) and choose r in
§W with v = r€. By (3.1), #N(7) has a Verma flag with Verma factors of the
form N(y+ X’) with X' € W - A. Then (3.2(ii)) implies ¥ + X' <u + v for each
X', and so ¢N(v) € O¢(p + v). This implies ¢D € O;(p + v). The induction
hypothesis gives: T,,;,¢(B/D) = ¢T,(B/D) = ¢(B/D) and ¢(B/D) € Os(u+
v). Combining these, ¢B € O;(u + v), and hence Ty4,¢B = ¢B = ¢T,B.

Finally, suppose T,B = 0. Let v — p be a maximal weight of B with
¥ A p. Let f be a nonzero element of Hom(N (), B) and set D = fN(y). By
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CATEGORIES OF HIGHEST WEIGHT MODULES 15

(3.2(i1)), Ty4+véN(v) =0, and so T4, ¢D = 0. The induction hypothesis gives
Tu+v$(B/D) = ¢T,(B/D) = 0. By right exactness of Tyyy, Tyt ¢B = 0.
This completes the proof of (i).

The proof of (ii) is similar and we omit the details.
We end this section with two results on categories of modules.

Lemma 3.5 Fix 4 € Py, and let C = Oy(g,p,p). Let T and S be covariant
exact functors from C to C and let fx (X € C) be a natural transformation
from T to S. If fn is an isomorphism for each Verma module N then fx is

an equivalence.

Proof: We must prove fx is an isomorphism for all X. Choose A A*-
dominant with 4 € WA and define C; to be the full subcategory of C consisting
of modules whose composition factors all lie in {L(s))|s € W and £(s) > i}.
Thus Cy = C and we proceed by downward induction on ¢. Assume i € IN
and fx is an isomorphism for all X € C;4;. Assume sA € Pp, and £(s) = .
Then set L = L(sA) and N = N(s)) and define J to give the short exact
sequence: 0 - J — N — L — 0. Then J € C;41, and by hypothesis fx
is an isomorphism. Therefore the exactness of 7" and S and the five lemmas
imply fr is an isomorphism. This proves fx is an isomorphism for all simple
modules in C;. Now let X be any module in C;. Using the five lemmas again
and inducting on the length of a composition series for X shows fx is an
isomorphism for all X € C;. This completes the first induction argument and

proves (3.5).

Let C and C’ be categories and F' a covariant functor form C to C'. We say
F is full (resp. faithful) if F maps Hom(X,Y) surjectively (resp. injectively)
to Hom(F X, FY).

Proposition 3.6 [30] The functor F : C — C' is an equivalence if and only
if F is full and faithful and for all X € C' there exists Y € C with X and FY

isomorphic.
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§4. Reduction of singularities

We retain the previous notation. The translation functors ¢ and ¥ carry
projective modules to projective modules. In this section we describe a setting
where ¢ carries indecomposable projective modules to indecomposable projec-
tive modules. Let £ and A be At-dominant integral elements of h* and put
¢= ¢§+A. We are especially interested in the non equisingular cases, i.e. when
¢ and € + A have different stabilizers in W.

Let © = & + W¢ - X and let wo be the element of maximal length in We.

Then & + wpA is the minimal element in ©.

Proposition 4.1 Suppose w € ¢W with w¢ € Pp,. Then
(i) $N(w€) is indecomposable.

(i) $P(wE) = P(w(€ +woh).
Proof: First we check: w® C Py,,. Since w{ € Py and § is dominant,
w™lA*(m) C AT\ S(€). But At\S(€) is We-stable, and so Wew™ A%+ (m) C
AT\ S(€) C AT\ S(€+ ). This gives w® C Py. Let N = N(w€). Then using
(3.1), #N has a Verma flag A} D A3 D -+ D Ag41 = 0 with A;/Aiy) = N(v)
and {v1,...,va} = wO.

For each v € w®, Yy N(v) = N and since ¢ and ¢ are adjoint functors we

obtain:
(4.2) dim(Hom(N (v), ¢N)) = dim(Hom(N,N)) =1.
By (3.2), v<w(§ + X). We claim:

(4.3) Hom(N(v), N(w(€é + A))) #0 .

16
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CATEGORIES OF HIGHEST WEIGHT MODULES 17

Suppose for some a € A*(m), v<s,w(€ + A). Choose v € ¢W, r € W¢ with
sqw = vr. Then for some X € We¢ - A, w(€ + X) = v<v(€ + rA)<v({ + °, by
(3.2(1)). Now by (3.2(ii)), wé<v€ = s,w€. This contradicts wé € Py, and so
v £ sqw(€+ ) for any o € A*(m). But then the inclusion of Verma modules
M(v) — M(w(§ + A)) induces a nonzero map (called the standard map) of
N(v) into N(w(§ + A)). This proves the claim (4.3).

Now suppose ¢N is decomposable, say ¢N = B@®C. Since w(é + A)
is maximal in w®, we may assume N; = N(w(§ + 1)) is a submodule of
B. Let v — p be a highest weight of C. Then dim(Hom(N(v),¢N)) >
dim(Hom(N (v), N1®C)) > 2 by (4.3). This contradicts (4.2), and so ¢N
is indecomposable proving (i).

Put P = P(w€) and let ¥ = w(§ + woA). Now ¢P is projective, and so we
choose v; € W(§ + A) with ¢P = @o<;ci P(7:)- By (3.2(i)), 7 is the minimal
element of w®. Then N(¥) is a quotient of ¢ N and also of §P. Thus we
may assume vg = 9. Recall the truncation functors from section two and put
¢ = w€ and v = w(§ + A). Then (3.2) and (3.3) give:

(4.4) ¢N =¢T,P=T,¢P= P T,P(v) .

0<i<k
By (i), ¢N is indecomposable, and since T, P(o) # 0 we conclude that T, P(7;)
is zero for all ¢ > 1. So in particular, 9; £ v for ¢ > 1. Finally suppose
v € w;0, w; € ¢W. Then by (3.2), wié £ w€, and so Hom(¢P, L(v;)) =
Hom(P, ¥ L(v:)) € Hom(P, L(w;€)) = 0 for i > 1. But then P(y;) is not a
summand of #P. This contradiction proves ¥ = 0 and ¢P = P(vq). This

proves (ii).

Proposition 4.5 Let w € ‘W with wé € Py and put { = w€ and v =
w(€ + woA). Then

(1) P(() is self-dual if and only P(v) is self-dual.

(ii) P({) has a multiplicity free Verma flag if and only if P(v) does.
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18 T.J. ENRIGHT and B. SHELTON

Proof: Self-dual modules are preserved under the functors ¢ and ¢, and so
by (4.1) if P({) is self-dual then so is P(y). Conversely, if P(y) is self-dual
then ¥ P(7) is self-dual. However, if r is the index of the stabilizer of ¥ in W
in the stabilizer of { then the formal character of ¢ P(y) is r times the formal
character of P(¢). But then ¥ P(7) is the direct sum of r copies of P(¢). By
Proposition 4.2 in [20], P(() is self-dual. This proves (i).

If P(¢) has a multiplicity free Verma flag then (3.1), (4.1) and (4.2) show
P(+) has a multiplicity free Verma flag. Conversely if P(v) has a multiplicity
free Verma flag then by the previous paragraph, [YP(y) : N(B)] equals zero
or r for any (. Since ¥ P(¥) is the direct sum of r copies of P({), P({) has a

multiplicity free Verma flag.

Recall from section two the notation £# reserved for the case when the

socle of N(¢) is L(¢#). Also recall the modules D(().

Proposition 4.6 Suppose w € ‘W with wé € Pp. Put { = wé€ and
v=w(f+A).
(i) If Soc(N(()) is simple and D(() is self-dual then Soc(N(v)) is simple
and D(v) is self-dual. Moreover in this case, $D({) = D(v).
(ii) If Soc(N(v)) = L(v#) with v¥# = u(€ + woA) for some u € ¢W and
if D(v) is self-dual then Soc(N(()) is simple and D(() is self-dual.

Proof: Suppose Soc(N(()) = L(¢¥) and D(() is self-dual. Then D(¢) =
T¢P((*#). Choose v € W with (¥ = v¢ and put ¥ = v(€ + wel). By
(4.1), P(¢¥#) = P(¥). Using (3.3) we obtain: ¢D({) = ¢TP(¢¥) = T, P(P).
Thus ¢D({) has a unique irreducible quotient L(7). By self-duality we have:
Soc(¢D(¢)) = L(V). Finally, v is a maximal weight of ¢ D(¢). Therefore N(v)
is a submodule of ¢D({) and Soc(N(v)) = Soc(¢D(¢)) = L(¥). In turn,
v =v# and D(v) = T, (P(V)) = ¢D(¢). This proves (i).

Now suppose Soc(N(v)) & L(v#) with v# = u(€+wo) for some u € ¢W
and D(v) is self-dual. Set { = uf. As in the proof of (4.5), yP(v#) =
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CATEGORIES OF HIGHEST WEIGHT MODULES 19

YéP(C) is isomorphic to the direct sum of r copies of P(). Using (3.3),
YD(v) = YT, P(v#) = T,y P(v¥#), i.e. $D(v) is isomorphic to the direct sum
of r copies of T P(C). Since any quotient of P() is indecomposable and Y D(v)
is self-dual, T¢ P(C) is self-dual. Then as above, Soc(T; P(¢)) = L(€) and since
N(¢) = T¢ P(C), Soc(N(¢)) = L(C). This proves (ii) with (# = .
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§5. The Zuckerman derived functors

In this section we reecall the basic facts about Zucerman derived functors
as presented in [17] (see also [36]). The main result is Proposition 5.5 which
we suppose is known. However a good reference for this result is not available,
and so we give a proof. As well we point out an error in the statement of
Lemma 3.3 in [17]. The correct formulation of this lemma is given here as
Lemma 5.15.

Let notation be as in earlier sections. Define a second parabolic subalgebra
g of g with b C ¢ C p. Let ¢ = I®u(g) be the Levi decomposition of ¢ with
u(g) the nilradical of ¢ and h C I C m. Fix an involutive automorphism 6 of g
with # = —1 on h and set p~ = fp. Now mN g is a parabolic subalgebra of m
with Levi decomposition m N ¢ = I®(m Nu(g)). Also ¢ = (mN ¢)®u. Now by

inducing in stages, the reader can easily verify:

Lemma 5.1 Let v € P;. Set N = N(g,q,v) and M equal to the p~-module
U(p~™) Qu(m) N(m,mN g,v+ p(m) — p). Then N and M are isomorphic as

p~-modules.

For any Lie algebras k C a we let C(a, k) denote the category of all a-
modules which are U(k)-locally finite and completely reducibe as k-modules.
Let A(a, k) be the full subcategory of C(a,k) of finitely generated g-modules
with finite dimensional k-isotypic subspaces; i.e., the so called admissible mod-
ules. Fix a subalgebra m with £k C m C g and for X € C(a,k) define 'y X

to be the span of the finite dimensional simple m-submodules of X. In the

20
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CATEGORIES OF HIGHEST WEIGHT MODULES 21

next three propositions we summarize the basic propoerties of the right derived
functors T of I'y. The proofs can be found in [17].
Suppose k and m are reductive and k is reductive in both m and a and

m is reductive in a.

Proposition 5.2 (i) For i > dim(m/k), T, = 0.
(ii) For finite dimensional F € C(a, m) and X € C(g,k), X — I‘;(F@X)

and X — F®I“2(X) are naturally equivalent functors on C(a, k) for all i € IN.

Part (ii) is Lemma 3.3 in [17]. In that article the finite dimensionality of
F' is not a hypothesis; however, it is required for the proof given there to be
correct.

For X € C(a,k), let X~ (resp. X™) denote the set of U(k) (resp. U(m))

locally finite vectors in the algebraic dual of X.

Proposition 5.3 Put d = dim(m/k). Then the functors X ~— T%(X) and

X l1;".()("“)"" are naturally equivalent.

We now return to the special setting of this article. Let f denote the

forgetful functor from C(g,1) to C(p~,1).

Proposition 5.4 Foralli €N, fo I‘; and Tp- o f are naturally equivalent

functors on C(g,1).

This result is proved in [17] with p~ replaced by m. However, since m is
reductive in p~, essentially the same proof gives (5.4). We do not repeat the
argument.

We now prove a basic result for this article. The derived functors I“y_ map

Verma modules for (g, ¢) to Verma modules for (g, p).
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22 T. J. ENRIGHT and B. SHELTON

Proposition 5.5 Let d = dim(m/l) and let v € Py, . Suppose w € Wy, and
wyv € P;. Then , fori €N

i _ I N( v) ifi=d-{f(w)
XN = 9P
g (2’ L4 w) {0 otherwise .

Proof: In the case where g = m, this result is the basic calculation for derived
functors (cf. [17, Proposition 6.3] and (5.3)). Then N(g,p,v) is the irreducible
finite dimensional g-module with extreme weight v — p.

Let N = N(g,q,wv), A= N(m,mnNgq,wv+ p(m) — p) and let f be the
forgetful functor from C(g,1) to C(p~,I). Consider A to be a p~-module by
letting u~ = fu act by zero. By (5.4) and (5.1) we have:

(5.6) fTyN =T, fN = r;‘_,_(U(u‘)@A) .

Here U(u~)is a p~-module with u~ acting by left multiplication and m acting

by the adjoint action. Now suppose we have an isomorphism of p~-modules:
(5.7) Tp- (U(u")®4) = U(u™)®T}- (4).
By Proposition 6.3 in [17] and (5.3) we have:

o0 s {fmen gne

Here F(m,v — p) is the irreducible finite dimensional m-module with highest
weight v — p and we let u~ act by zero. Now combining (5.6), (5.7) and (5.8),
for i = d—4(w), fl‘;_N and fN(g,p,v) are isomorphic. Moreover, by (5.7), the
m-modules in u®F(m, v — p) do not occur in I‘;_N , and so u acts onF'(m, v —p)
by zero. Thus there is a g-module map x # 0, x : N(g,p,v) — P‘lN. By (5.7),
X is surjective and hence an isomorphism. For i # d — ¢(w), the identities
give: I‘;_N = 0. This completes the proof except for the verification of (5.7).
This verification will be given in a series of lemmas. Our argument depends

critically on the admissibility of the modules in (5.7)
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Lemma 5.9 [18] Let F be any a-module and let {f;|i € I} be a basis for F
over €. Consider U(a) as an a-module by right multiplication. Then F®U(a)
is a free a-module with basis {f;®1|i € I}.

The proof of (5.9) is easy, using only the natural filtration of U(a).

Let R and S be rings with multiplicative identity. Let B = gBpg be a left
S-module and a right R-module. Then BQg- and Homg(B, -) form an adjoint
pair; i.e., for X aleft R-module and Y a left S-module the map f +— f defined

by f(z)(b) = f(b®z) is an isomorphism giving:
(5.10) Homg(B®rX,Y) = Homg(X,Homs(B,Y)) .

We refer to (5.10) as the adjoint isomorphism.
We now recall some of the notation from [17]. For any a-module X, let
X|[a] denote the submodule of X spanned by the finite dimensional simple

submodules of X. For any Lie algebras g, b with b C a and any b-module

W we put I(a,b,W) = Homy(U(a), W)[b]. Here the actions are defined as
follows. Let f be a linear map from U(a) to W. Then f € Homy(U(a), W) if
f(ba) = bf(a) for all a € U(a), b € U(b). We consider Homy(U(a), W) as an
a-module by defing (a - f)(z) = f(za), z € U(a), a € a. If b is reductive and
reductive in g then I(a,b, W) is an g-submodule of Homy(U(a), W). For any

a-modules Xand Y put:
(5.11) H(a,X,Y) =Hom¢(X,Y)|a], I(a,X,Y) = Homgy(X,Y)[q] .

The reader can verify that the adjoint isomorphism induces an isomorphism:

for F € C(a,b), W € C(b,b);
(5.12) H(b,F,1(a,b,W)) = H(b, F,Homy(U(a), W)) = I(b, FQU(a), W) .

Lemma 5.13 Let F,X € C(a,b), W € C(b,b) and define a map ¢ — ¢ by
#(z)(f) = ¢(z)(f®1). Then this map gives a natural isomorphism:

Homyg (X, Homy(FQU (a), W)) = Homy (X, Homy(F,W)) .
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24 T. J. ENRIGHT and B. SHELTON

Moreover this isomorphism induces isomorphisms:

Homg(X, I(b, FQU (a), W)) = Homy(X, I(b, F, W))

and

Homy (X, H(b, FQU(a),W)) = Homy(X, H(b, F,W)) .

The proof of (5.13) is straightforward and relies only on the freeness of FQU (a)
(cf. (5.9)). We omit the details. This Lemma is a slight reformulation of

Lemma 6.2.10 in [36].

Lemma 5.14 For any injective module I in C(a,b) and any F € C(a,b),

H(b, F,I) is an injective module in C(a,b).

Proof: From [17] we know I is a summand of I(W) for some W € C(b,b).
So we may suppose I = I(a,b,W). Let T denote the functor on C(a,b) de-
fined by T(X) = Homy(X, H(b, F,I)). By (5.12) T is equivalent to: X
Homg (X, I(b, FQU(a), W)). In turn, by (5.13) T is equivalent to the functor
S with S(X) = Homy(X,I(b, F,W)). Now modules in C(g,b) are completely
reducible as b-modules and so S is exact. Thus T is exact and H(b, F,I) is

injective.

Note this lemma is similar to Lemma 6.1.24 in [36].

We now return to the hypotheses asnd setting for (5.2) through (5.4);

Lemma 5.15 Let F € C(a,m), A € C(a,k). Then for alli, A T H(k, F, A)

and A H(m, F,T*A) are naturally equivalent functors.
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CATEGORIES OF HIGHEST WEIGHT MODULES 25

Proof: Let 0 — A — I* be an injective resolution of A. Since F' is completely
reducible as an m and hence k-module, A — H(k, F, A) is exact and by(5.14),
takes injectives to injectives. So 0 — H(k, F, A) — H(k, F,I*) is an injective
resolution. Therefore I H(k, F, A) is the & cohomology group of the complex
TH(k,F,I"). Now by hypothesis, TH(k, F,I*) = H(m, F,I*) = H(m, F,TI*).
Finally, using exactness of H(m, F,-) on C(g, m), the cohomology group of the
complex is H(m, F,-) applied to the cohomology group of I'T*. This gives
TH(k,F,A) = H(m, F,T" A). The naturality of these isomorphisms is easy to

verify and we omit the details.

We can now prove identity (5.7). The produced modules are the duals
of induced modules (cf. [13]). Recall the notation of (5.3) and the proof of
(5.5). If F denotes the dual of the finite dimensional irreducible I-module with

extreme weight wv — p, then

(5.16) N~ = Homi(U(g),F)[l], A~ = Hommnl(U(r_n_),F)[L]
Consider these modules as p~-modules by restriction. Then

(5.17) N~ = H(,U(u (g), F), A2 H(,LUmNnu (¢), F) .

The adjoint isomorphism gives a p~-isomorphism: N~ = H(l,U(u"),A™).
Now by (5.15) for all i we have: I*N~ 22 H(m,U(u"),I[*A~). Applying the
duality theorem, I'¥~N = U(u~)®T'%"!A and the proof of (5.7) is complete.
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§6. An equivalence of categories

We keep the notation of sections two through four. Let ¢ be a maximal
parabolic subalgebra of g with Levi decomposition ¢ = l@gl, u, equaling the
nilradical of ¢. Further, suppose ¢ does not contain p and ! contains h and ¢
contains b. Let ¢ equal the center of [. Recall from section two the categories
of highest weight modules and the related truncated categories. Fix A € A*
and put Og = O(g,p,A) and O; = O;({,INp, ). In this section we establish
an equivalence of categories between O, and O; whenever the sets of highest
weights plus p (resp. p(l)) are equal.

Throughout this section we assume X is At-integral and A(l)-regular.
Also we assume the sets of highest weights plus p in O, equals the set of
highest weights plus p(l) in ©;. Let © denote this set. Let L be the one-
dimensional g-module with weight —p(gl). For any l-module X, consider X

as a g¢-module by letting Uy act by zero. Define the exact covariant functor U
by:
(6.1) U(X)=U(g) Q(XSL) .
4¢))
Set d = dim(m/m N 1) and let T’ denote the m-finite submodule functor
on C(g,m N1) described in section five. Let C denote the category O(l,1N p)

and define a functor 7 on C by:
(6.2) X =TU(X), XecC.

Lemma 6.3 For X € C, vX is the unique maximal U(m)-locally finite and
U(m)-completely reducible quotient of U(X).

26
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CATEGORIES OF HIGHEST WEIGHT MODULES 27

Proof: We use the notation surrounding the duality theorem (5.3). Note
that all modules in C are admissible. Let A be a U(m)-locally finte and U(m)-
completely reducible quotient of Y = U(X). We have: v4ao. Dualizing,
we get the exact sequence: 0 — A~5Y~. Define injections h and 7 with
toh=f~ h: A~ -TY~, i:TY™ — Y~. Dualizing again, and identifying
Y = (Y™)™, A= (A™)~ and f = (f~)~ we have surjections h™ and i~ with
f=h~oi~, i~ :Y - (TY™)~, R~ : (TY~)~ — A. Now (TY~)~ = (TY~)® =
I'9Y . This proves the lemma.

We denote by px the surjection i~ defined above. So px is the natural
surjection : px : U(X) — 7X. The naturality in X is expressed as follows: for

X,Y €C, f € Hom(X,Y)

(64) T(f) opx =py © U(f) .

The center ¢ is one dimensional with basis vector say H. Note that
p(H) = p(u,)(H). Let a = A(H) and for any c-module Z, let Z* denote the
eigensubspace of Z where H acts by eigenvalue a. Define a covariant functor

o on C by:
(6.5) oY = (Y ® L*)?, YecC.

The main result of this section is:

Theorem 6.6 The functor T gives an equivalence of O onto Oy with inverse

.
We shall prove this theorem through a series of lemmas.

Lemma 6.7 Let u € © and put A= N(l,INnp,u), B = N(g,pNg,u) and
C = Nla.p.u). Then (i) U(A) = B, (ii) TA = C and (iii) cC = A.
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28 T.J. ENRIGHT and B. SHELTON

Proof: Induction in stages proves (i) while (i) and (5.5) prove (ii). We
now prove (iii). Since u lies in the Wi-orbit of p, u(H) = a. Moreover, we
may suppose for @« € A, a(H) > 0 if and only if @ € A(y,). Let 8 be
the unique simple root of A* which is not in A(l). By assumption ¢ 2 p
and so f is a simple root of A*(m). This implies sgpu € Pmn; and we put
N = N(g,pngq,spu). Let D denote the image of N in B. Since ¢Nm
is a maximal parabolic subalgebra of m and f is the unique complementary
simple root, B/D is U(m)-locally finite and U(m)-completely reducible, and
thus C = B/D. Now ¢N = 0 and so oD = 0. Again by exactness of o,
oC = ¢B. Finally, B = U(u™(¢9)®(x~ N1))@F(m N, u — p) which gives:
ocB=U(y~ N)QF(mNl,p— p)®L*. In turn, since B — ¢B is an [-module

projection, 0B = A. This completes the proof.

Now to prove (6.6) we must establish:

(6.8) o o T is naturally equivalent to the identity functor on O; .

(6.9) 7o 0 is naturally equivalent to the identity functor on O, .

First we prove (6.8). Let £ (resp £*) denote a basis vector for L (resp. L*).
Recall the natural surjections px : U(X) — 7X. For X € O, define a map
fx by fx(v) = oopx(1®v®l), v € X. From (6.4) we obtain the following
commutative diagram: for X,Y € O, ¢ € Hom;(X,Y)

x 5 vy

(6.10) L fx Ly
ot X ki otY

This shows X +— fx is a natural transformation from the identity functor to

oo 7. To complete the proof of (6.8) we show fx is an isomorphism for all

XGOL.
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CATEGORIES OF HIGHEST WEIGHT MODULES 29

Each p € © has the form p = wA with w € W;. Weset N, = N(l,iNp, ),
Ly = L(l,p). For i € IN let O; be the full subcategory of O; of all X such
that (X : L) # 0 implies £(w) > i. If j = f(w) is maximal then N, = L,,
and for all X € Oj, (6.7) implies that fx is an isomorphism. Also, by (5.5)
col"oU(X)=0forallt <dand X € Oj. We now proceed inductively.
Suppose X +— fx is a natural equivalence between the identity functor and
gotron O; and oT'U(X) =0forall X € O; and t < d. Fix p € © with y = wA
and ¢(w) = ¢ — 1. We have a short exact sequence 0 - J — N, — L,, — 0
with J € O;. Now o and U being exact, this sequence induces a long exact

sequence:
(6.11) ... = oT¥U(J) = oTIU(N,) — o1V U(L,,) — oT¥H U(N,) — - -

By induction hypothesis, cT7U(J) = 0 for j < d. Then by (5.5), sTIU(L,,) =
oTIU(N,) = 0 for j < d— 1. Applying fx to the last six terms of (6.11) we
obtain: for L = Ly, and N = N,,

(6.12)
0 — oI U(L) — olU(J) — oT%(N) — oTU(L) — 0
fi1= fn 1= fol
J N L

0 — — — — 0

Now by hypothesis f; is an isomorphism while (6.7) proves fx is an isomor-
phism. Since the diagram is commutative cT¥~1U(L) = 0 and then by the five
lemmas, fr must be an isomorphism. A similar argument by induction on the
length of a composition series for X € O;_; shows that fx is an isomorphism
and oT*U(X) = 0 for t < d. This completes the induction step. We conclude

that fx is an isomorphism for all X € O; proving (6.8) and also:
(6.13) oT'U(X)=0 forall X €0y, t<d.

Lemma 6.14 (i) 7 is an exact functor from O to O,.

(ii) For p € ©, TL(l, u) = L(g, ).
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30 T. J. ENRIGHT and B. SHELTON

Proof: 7 is right exact since I'¥ = 0 for all i > d. Suppose ¢ : A — B is
an injection, A, B € O;. Let K equal the kernel of the map 7¢. By (6.13),
oK = 0. However,for Y € O, if Y = 0 then Y = 0. This proves K = 0, and
so 7 is exact. This fact also implies that Y € O, is simple if ¢}’ is simple in O;.
By (6.7), (6.8) and exactness of 7, TL(l, ) is a simple quotient of N(g,p, ).
This proves (ii)

We now turn to the proof of (6.9). For X € O, define a map gx :
U(eX) — X by gx(y@v) =y-v,y €U(g), v € 0 X. Note that the shifts by L
and L* cancel. Since cY = 0 impliesY = 0 in Oi , 9x is a g-module surjection.
Since X € Oy, the map gx- factors through 70 X. Let hx denote the induced
surjection: hx : 76X — X. We have: gx = hx op,x. Also X — hx is a
natural transformation from 7o o to the identity functor on Oy. Flnally by
(6.7), hx is an isomorphism for all generalized Verma modules X, and so by
(3.5), X + hx is an egivalence of 7 oo and the identity. This proves (6.9) and

completes the proof of our main result (6.6).
Lemma 6.15 Let X € O;. Then X is self-dual if and only if TX is self-dual.

Proof: Suppose X is self-dual; i.e., X admits a symmetric nondegenerate
contravariant form ¢. Let ¢ (resp. ¢r-) denote a nondegenerate form on
L (resp. L*). Then Proposition 6.12 in [14] asserts that #®¢ has a unique
extension @ to a contaravariant form on U(X). Let Y be any g-submodule of
U(X) with Y N (1 X®L) = 0. Then invariance of ¢ implies Y is contained
in the radical of 4. Let K be the kernel of px : U(X) — rX. Since K N
(18XQ®L) = 0, ¢ induces a form 7¢ on 7X. The radical R of 74 is a g-
submodule of 7X and since oR is contained in the radical of ¢, which is zero,
oR = 0. But this gives R = 0 and so 7X is self-dual.

Conversely suppose 7X is self-dual with a symmetric nondegenerate con-
travariant form 1. By contravariance, eigenspaces for H are orthogonal and
S0 PQd¢» restricts to a nondegenerate contravariant form on 07X = X. Thus

X is self-dual.
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§7. A second equivalence of categories

We retain the notation from previous sections. In particular ¢ = l@ul is
a maximal parabolic subalgebra of g which does not contain p. In this section
we obtain a result similar to that of section six. However, here truncation will
appear on the g-module category instead of the I-module category. The main
result is Proposition 7.1. As in section six this equivalence will use Zuckerman
derived functors. However, unlike section six which used derived functors in
the top dimension, here we use derived functors in the middle dimension.

Put r = mnNl. Let wy be the element of maximal length in W; and put
v = —w,p. Recall the decomposition Wy, = ZW-W, and let wg be the element
in W of maximal length. Then put u = wov and define O; = O(1,INp,v),
0O, = 04(g,pNgq,v) and O, = O(g, p, 1).
Proposition 7.1 The categories O, O, and O, are all equivalent.

We shall prove this result through a series of lemmas keeping careful track

of the induced maps on highest weight vectors. Put ¥ = {wrv|jw € Wi, wv €

P.}. Then ¥ parameterizes the set of simple modules in O; via highest weights

plus o({).
Lemma 7.2 Let{ €V¥,A€P, and suppose A<€. Then X € V.

Proof: Choose a; € A%, 1 < i <t, and let p; = 54, 80, With A =
W<+ -<po = €. Suppose A ¢ ¥ then choose j maximal with «; € A(yi). But
uj € =W; - p, and so (uj,B) < 0 for all g € A(gl). This contradiction proves
(7.2).

31
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32 T. J. ENRIGHT and B. SHELTON

This lemma shows that ¥ also parameterizes the set of simple modules
in O,. We now turn to the equivalence of O; and O,. Recall from (6.1) the

functor U.

Proposition 7.3 (i) For§ € ¥, U(L(I,€)) = L(g,¢).
(ii) A~ U(A) induces an equivalence of O; onto O,,.

Proof: By (7.2) any nontrivial g-submodule of U(A) has a nontrivial inter-
section with 1® A. This gives (i). Let o be the functor defined in (6.5) however
with A replaced by v. The natural map A — oU(A) is an [-module isomor-
phism, say f4. Moreover A — f4 is a natural transformation from 1 to c o U
on O;. To complete the proof we now show U o ¢ is naturally equivalent to 1
onO,.

Let a (resp. a*) be a basis vector for L (resp. L*). Let B € O, and
define gp € Homi(UoB,B) by the formula: for v®a* € 0B and z € U(yg),
98(z®v®a*®a) = z - v. Again by (7.2) it follows that gp is an isomorphism
for all B, and thus B + gp is an equivalence of U oo and 1 on O,. This proves

(7.3).

We now come to the more difficult part of (7.1): the equivalence of O,
and O,. Let T denote the U(m)-locally finite submodule functor on C(g,r) as

defined in section five. Put 25 = dim(m/r) and recalling wq, put © = wo¥.

Lemma 7.4 (i) © C P,,. (ii) For £ € h*, £ € ¥ if and only if woé € P

and woé<p..

Note: This lemma implies that © parameterizes the set of simple modules in
Oy.
Proof: By construction, elements of ¥ lie in P, and have negative inner
product with elements of A(y,). Thus wo¥ C Py, giving (i).

Now suppose £,( € ¥ with £€<(. Then we claim: woé<wo(. Choose

a; € AT, 1< i<t and let {; = sq, - 5a, With & = (4<---<{o = ¢ and

Licensed to Harvard Univ. Prepared on Mon Nov 14 19:34:29 EST 2016for download from IP 140.247.39.51.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CATEGORIES OF HIGHEST WEIGHT MODULES 33

(@i,¢i-1) > 0. By (7.2), a; € A*(l). Since AT(l) C At (z) U A*(u), woo; €
A*. Put v = woa;. Then woli = sy,woli-1, 1 < i < ¢, and (vi,woli-1) =
(ai,Ci-1), and so wo€<wo(. This proves the only if part of (ii).

Finally, suppose £ € h*, wof € P and wo<pu. By (2.9) we choose
v € At, 1 < i<t with p; = 8y, -+ 89,4 € P and wof = pe< -+ - <p1<p.
Since each p; is At (m)-dominant, v; € A(u) and thus 8 = wyly; € A(n)
also. Now wyly; = sp,wy pi—y and (Bi,wypi-1) = (vi,mi—1). Therefore

E<wy < -+ <wglp = v, and so by (7.2) £ € . This proves (7.4).
The calculation of derived functors in (5.5) gives:

Lemma 7.5 Let £ € ¥. Then

) N(g,p,wof) ifi=s
F’N(g,gﬁg,f)g{ B

0 otherwise .

By the duality theorem (5.3) we obtain:

Lemma 7.6

(a) Let A € O, and suppose A admits a nondegenerate invariant form.

Then so does I'* A.

(b) Let A™ denote the contravariant dual module in O,. Then "~ and T'*
commute; i.e., T*A” and (I'* A)" are isomorphic.
Lemma 7.7 T is an exact functor on O,,.
Proof: Every module 4 in O, is free over U(mNy; ), and so by (5.5), 4 = 0
for all i < s. For any simple module B in O,, B is self-dual, and thus by duality

(5.3), T¥B = 0 for all i # s. Using long exact sequences we conclude I*4 =0
if i # s. This proves (7.7).

Proposition 7.8 (i) For § € ¥, I'* L(g,§) = L(g, wof).

(ii) T* gives an equivalence of O, onto O,.
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34 T.J. ENRIGHT and B. SHELTON

Proof: Let A =TI'*L(g,£). By exactness and (7.5), A is a quotient of B =
N(g,p,wo€). By (7.6), A admits a nondegenerate invariant form. However,

the only quotient of B to admit a nondegenerate invariant form is L(g, wof).
This gives (i).

To prove (ii) it is sufficient by (3.6) to prove:

(7.9) I'* is full and faithful.

(7.10) For any X € O, thereisa Y € O, with X =Y.

To establish these facts we must first prove that I'* maps projective objects
in O, to projective objects in O,. The proof of this is somewhat delicate and
involves wall crossing and an inductive argument.

Recall from section two the truncation functors 7, and 7.

Lemma 7.11 Let £ € V. Then

T, P(g,pN ¢,§) = TuP(g,p, wof) -

Proof: To simplify notation, for £ € ¥ put N(§) = N(g,png¢,§), P(§) =
P(g,pNg,§), N(wo€) = N(g,p, wo€) and P(wo€) = P(g, p, wof). We now prove
(7.11) by downward induction on the Bruhat ordering of ¥. If £ is maximal
then £ = v and since T, P(v) = N(v) and T, P(wov) = N(wov), (7.5) gives

the isomorphism (7.11) in this case. Now let £ € ¥ and suppose we have:
(7.12) *T, P(§) = T, P(wof) .

Choose r € W with £ = rp and suppose a € A% is simple, £(rsq) = £(r) + 1
and € = rsqp € ¥. We now prove (7.12) holds with ¢ replaced by £.
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CATEGORIES OF HIGHEST WEIGHT MODULES 35

Let w be the fundamental wieght corresponding to « and let ¢ and ¢ be
the Zuckerman translation functors; ¢ = ¢’;_w and ¥ = ¥47“. Let 0 denote the
wall crossing composite; § = ¢ o . Now (3.3) asserts that § and T, commute

on O(g,pNgq,p) and 0 and T, commute on O(g,p, p). Since § also commutes

with T'* we obtain:
(7.13) I*T,0P(€) = T,0 P(wof) .

Note that this module is projective in @,. Now since P(£) is a summand of
OP(€) (cf. [20, Proposition 2.3]), (7.13) implies that T*T, P(€) is projective in
O,. On the other hand, by (2.5) and (7.5), I'*T, P(€) and T, P(wo€) have the
same character. Thus, both being projective, they are isomorphic. This proves

(7.12) for € and completes the induction step. In turn this proves (7.11).

We now prove I'* is full and faithful. Let A, B € O, and ¢ € Hom(A4, B).
By (7.7) and (7.8), image(I'*¢) = I'*(image(¢)) # 0. So I'* is faithful.

Next we prove (7.10). For ( € h*, let L(¢) = L(g,{). For £ € ¥
and A € O,, dim(Hom(T,P(€),A)) = (4 : L)) = (I°A : L(wef)) =
dim(Hom(T), P(wo€),T* A) by (7.8). Since I'* is faithful, we obtain: for any

projective P € O,
(7.14) I'*Hom(P, A) =2 Hom(I'*P,T*A) .

Now let X € O, and choose projective modules P and P’ with P’ 5 P —
X — 0 exact. By (7.11), choose projective modules @ and Q' in O, with
P =2 I'*Q and P’ = I'*Q’. Now identyify these modules and using (7.14)
choose 7; € Hom(Q',Q) with I'*7; = 7. Then by the exactness of I'*, X =

I'*(Q/m1Q’). This proves (7.10).
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36 T. J. ENRIGHT and B. SHELTON

Finally we prove I'* is full. Let A,Y,Q and Q' be in O, with Q,Q’
projective and Q' = Q =Y — 0 exact. Applying Hom(-, A) and I'* we obtain
the commutative diagram:

(7.15)
0 — Hom(Y, A) — Hom(Q, A) — Hom(Q', A)
1 1= 1=
0 — Hom([*Y,I*A) — Hom(I*Q,[*A) — Hom(I*Q’,T*A)

The two right hand maps are isomorphisms by (7.14), and so (adding two zeros

on the left) the five lemma implies all maps in (7.15) are isomorphisms. Thus

I'* is full. This completes the proof of (7.8).

Propositions 7.3 and 7.8 combine to prove (7.1). For reference we now

summarize the properties we have for the composite functor I =I'*o U on O;.

Proposition 7.16 I induces an equivalence of categories O; onto O, with
the properties: for § € ¥,
(1) I(L(€)) = L(g, wob);
(i) I(N(,1Np,£)) = N(g,p, wof);
(iii) I1(P(l,1np,§)) = T,P(g, p, wof).
Moreover, A € O; admits a nondegenerate l-invariant form if and only if IA

admits a nondegenerate g-invariant form.

Proof: The properties (i), (ii) and (iii) follow from the results above. The

result on invariant forms follows from the proof of (6.15) and (7.6).
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Part II - Highest Weight Modules for Hermitian Symmetric Pairs.

§8. Statement of the Main Results

In Part II we turn our attention to the highest weight modules of classical
Hermitian symmetric pairs. Our principal results are explicit descriptions of
the composition factors of a generalized Verma module, as well as, explicit
formulas for the Kazhdan-Lusztig polynomials in this setting.

We refer to each classical Hermitian symmetric pair (g,p) by HS.i with
1 < i < 5. These are defined by Table 8.1 below. Throughout Part II, (g,p)
will be one of these Hermitian symmetric pairs. To each pair we attach a
constant p which is also given in the table. In the equal root length cases p
is just the split rank of the pair. In the non-equal root length cases p is the

greatest integer in one half of the split rank plus one.

Table 8.1
(g,p) g [m, m] constant p
HS.1 A, A1 x A,y min(r,s) (r+s=n+1)
HS.2 B, Bn-1 1
HS.3 Ca An-y [(n+1)/2]
HS.4 D, Dn-1 2
HS.5 D, An—1 [n/2]

The nonclassical Hermitian symmetric pairs Es and E7 have been studied in

detail by D. Collingwood [12] so we omit discussion of them here.

37
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38 T. J. ENRIGHT and B. SHELTON

We begin by describing the combinatorics which gives the solution(s) to
the composition factors problem for O(g, p, p). We make the convention that if

all of the roots of g are of the same length then they are all called short roots.

Definition 8.2 Set M = {(v,v) | v,v € A% and either (vy,v) # 0 or both
v and v are long roots }. Let S(A%) denote the collection of all subsets Q of
A% which satisfy the following conditions:

i) If y,v are in Q,y # v, then (v,v) ¢ M.

i) If vy is in Q and ¢ is in AY with v # &, (7,€) € M and & < v then
there isa ¢ in Q with { # v, ((,€) € M and { < 7.

We note that S(A*) is defined for any positive system of any root system.
When there is no chance of confusion we will denote this set simply as S.

Fix z in W2, Then S, will denote the set of all 2 in & which satisfy
zQ C A(u) U —A(u). By &; we will denote the collection of Q in S, which
satisfy the additional condition:

iii) If 7 is in  then there is a { in Q with ¥ < ¢ and z¢ € A(w).

Two distinguished elements of S; have an alternative and more com-
putable description. For any root v we set vV = 2y/(v,7). For X in A"
set Zo(A) = {y € A(u) | (A,7Y) = 0}. We define £;()), for ¢ € N inductively
as follows. X;(A) = {y € A(w)|(A,vY) = —1, v is orthogonal to f,_l ¥;(A) and

if there is a long root in U{J‘I ¥;(A) then v is a short root }.

Definition 8.3 For z in W™ we set:
= U Tij(zp) and I} = U Zi(—zp)
j>0 ji>0
We note that £, and T} are sets of mutually orthogonal roots in A(u) with

L, C —zAt and T} C zA*T.
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CATEGORIES OF HIGHEST WEIGHT MODULES 39

For Qin S;,set Qt = {y€eQ|zy € A(w)} and @~ = {y € Q | zy €
—A(w)}. Note that the definitions of @ and Q~ depend on z. Let S} (resp.
S;) be the collection of Q € S, with @ = QF (resp. @ = Q7). Define
rq € Wby rq = [[,cq+ 8¢- If Aisin A", let A denote the A*(m)-dominant
element of the Wp-orbit of A. Write W = W, W™ as usual and let w — @

denote the projection of W onto W™ «

perpendicular” to Wy,. Then wp = wp.
Suppose ¥ = {71,...,7:} is a subset of &,. Put sg(z) = sg =5, -~ 5,,% and

Ay = {s5]X C £} We can now state our main results on composition factors.

Theorem 8.4 Fix z in W™,
i) —z71%, isin S,.
ii) L(zp) is a composition factor of N(u) if and only if p € Azp. Also,
the map ¥ — sy is a bijection from the set of subsets of ¥, onto A;.

iii) The composition factors of N (zp) occur with multiplicity one and are

exactly {L(ZTap),2 € €,}. Moreover, the map Q — Trqp is injective on &;.

The multiplicity one part of (8.4) was originally observed by Boe and
Collingwood [6]. We will see in section 9 that (8.4 iii) follows easily from (8.4
i) and (8.4 ii).

The techniques which prove theorem (8.4) are sufficient to prove several

other interesting results. These are listed in the next theorem.

Theorem 8.5 Fix z in W™ and set rg+ =[] cn+ 5y-
i) 27T} is in £, and Socle(N(zp)) = L(Tg+%p).
ii) D(zp) is self-dual (cf. (2.7)).
iii) If Q is in S, then the cardinality of Q is less than or equal to the
constant p for (g,p) (cf. (8.1)).
iv) P(zp) is self dual if and only if the cardinality of ¥, equals the con-

stant p for (g,p).
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40 T.J. ENRIGHT and B. SHELTON

If Qisin S, then Q is said to be positive (respectively negative) if @ = Q¥
(resp. 27). If Q is a negative set then we put tq = Hven sy. For completeness

we state the following result.

Theorem 8.6 Let z and y be in W,
(i) Hom(N(zp), N(yp)) = € or zero depending as zp = yrgp for some
positive set € Sy or not.
(ii) Hom(N (zp), N(yp)) = € or zero depending as yp = ztqp for some

negative set Q € S, or not.

This theorem, proved by Brian Boe and the authors, will appear in [8].
The result relies on the work of R. Irving [20] and B. Boe and D. Collingwood

[7.

The proofs of Theorems 8.4 and 8.5 occupy sections nine through thirteen.
We will briefly outline the arguments. If g is of type HS.2 or HS.4 then the
structure of the category O(g,p, p) is very simple and is given explicitly in [16].
Theorems (8.4) and (8.5) can be read off directly from there. In this article we
will complete the proofs of (8.4) and (8.5) by addressing the cases HS.1, HS.3
and HS.5. Most of the arguments will proceed by induction on the constant p
for (g,p) using the equivalences of categories proved in Part 1.

In section 9 we give some technical lemmas needed to keep track of our
combinatorics. We also prove that (8.4 i) and (8.4 ii) imply the first claim of
(8.4 iii) (cf (9.6)) and we prove the last claim of (8.4 iii) directly (cf. (9.7)).
Section 10 contains an equivalence of categories based on a result of D. Vogan
and section 11 gives another equivalence of categories based on the results in
Part I. Theorem (8.4) is proved in section 12. Also an interesting corollary on
the structure of the semiregular category O(g,p,p — wp) is given when (g, p)

is of type HS.3 and wp is the fundamental weight corresponding to the long
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CATEGORIES OF HIGHEST WEIGHT MODULES 41

simple root. Here a parity is uncovered and the category splits as the sum of
even and odd parts. Section 13 contains the proof of (8.5).
In sections fourteen and fifteen we turn to calculation of Ext groups and

Kazhdan-Lusztig polynomials. Section fourteen includes the proof of:

Theorem 8.7 Let y and w be in W2, Then:

C ifw=73y for some vy € L,
Ext'(Ny, Ly) = {

0 otherwise.
Equivalently,

C ify =wrq for some Q € £, with card(Q*)=1
Ext'(Ny, Ly) =

0 otherwise.

This theorem is a special case of a much more general result given as Theorem
14.9 which presents formulas for Ext?(Ny, Ly,) for all j € IN.

Following the articles of Kazhdan and Lusztig [23] and Vogan [34], we de-
fine what we call KLV polynomials Qy ., (g) in section fifteen. Roughly speaking
these are the Poincaré polynomials for the category O(g, p, p). The correspon-
dence with the standard Kazhdan-Lusztig polynomials is given as Lemma 15.3.
There are two main results here. The first is the determination of a simple
recursion formula which uniquely defines these polynomials. Let y,w € W2
and let # be a simple root. Suppose ysg<y. Then in Theorem 15.4 we describe
explicitly the two options: either Qy . equals Qy,, w or the difference Qy v
minus Qy,, . equals ¢" times a KLV polynomial for a lower rank Hermitian
symmetric pair. This generalizes to the cases HS.3 and HS.5, the recursion
relations found by Lascoux and Schiitzenberger [26] for the case HS.1. The
second result is Theorem 15.5 which gives explicit formulas for the KLV poly-
nomials in terms of a combinatorial notion called chains (cf. Definition 14.8).

The article ends with a description of the decomposition theory of self-dual
U(u~)-free g-modules. Here the main results concern canonical decompositions

into indecomposable submodules and signature results for Hermitian forms.
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§9. Additional notation and preliminary results

In this section we collect some technical information to be used in later
proofs. We assume throughout that (g, p) is one of the Hermitian symmetric
pairs HS.1, HS.3 or HS.5 with rank n. We continue with the notation of the
previous section.

We will use the usual Bourbaki notation for the roots of g. If g is of type

HS.1 then we have:

A+={e,-—ej|1§i<j§n+1}
Aw)={ei—e; |1<i<pp+1<j<n+1}.

For g of type HS.3 we have:
At ={e;+e; |1<i<j<n}\{0} and A(y) = {e; +¢; |1 <i<j<n}.
And finally for g of type HS.5 we have:
At ={e;+ej|1<i<j<n}and A(u)={e;+e¢; |1 <i<j<n}

In each case the first n — 1 simple roots are a; = e; —e;41 for 1 <i<n—1. If
g is HS.1 (respectively HS.3, HS.5) then the last simple root is o, = €5 —€n 41
(resp. 2en, €n—1 +€n).

Let z be in W2, We set ¥ = A(u)N—zAt and ¥} = A(u)NnzA*. For
any v in A, set ¥ =y if y € At and § = —v if y € —A*. We define a partial
order <; on A(u) by y<,v if and only if z/‘T'y < -1y,

42
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CATEGORIES OF HIGHEST WEIGHT MODULES 43

Lemma 9.1 Fix y in W=, Let Q be any subset of V. (resp. \Il;’) that is
maximal with respect to inclusion and satisfies the following conditions:

(a) If v and v are in Q and v # v then (v,v) ¢ M.

(b) If v is in Q and € is in ¥, (resp. ¥}) with (v,§) € M and £ <, v
then there is a ¢ in 2 with (¢,€) € M and { <, ¢&.
Then Q = Xy (resp. L} ).

Proof: Assume that Q is contained in ¥, . Set Q; = {y € Q| (yp,7") = —i}.
Then Q = U;509Q;. Suppose that © is not £,. Let ¢t be the smallest positive
integer for which Q; # X; so that Upcic:$2 = UociciXi. Fix v in §;. By
a.) and (8.2), Q is an orthogonal set with at most one long root. Thus v is
orthogonal to Upci<:X; and there is at most one long root in Upci<c:X;. So
vy isin X; and Q; C E;. Next choose a X in ¥; \ Q:. We will show that the
set Q' = QU {A} satisfies conditions a.) and b.). This will contradict the
maximality of  and complete the proof of (9.1).

First, suppose that for some ¢ there is a v in Q; with (y,A\) e M. If i < ¢
then v is in ¥; and so (y,A) = 0 and v and A are not both long roots. This
contradicts (8.2). Thus ¢ > t. It follows that A <, 7. Using b.), there is a
¢ € Q with (¢,A) € M and { <, A. But this implies that ¢ is in ©; for some
j < t. In turn both A and ¢ lie in ¥y and (¢,A) € M. This contradiction
shows that Q' satisfies condition a.).

Now suppose that there is a £ in ¥ with £ <y A, £ # A and (&,2) € M.
Set s = —(yp,€) and note that s < t. If £ is in X, then set ( = £. By
minimality of ¢, ¢ would then be in Q'. On the other hand, if £ is not in X,
then either £ is not orthogonal to Ugci<sX; or & is long and there is another
long root in UgcicsX;. Either way, by (8.2) there is a ¢ in UpcicsX; with
(¢,€) € M. Since ((,£) € M and —(yp,¢) < s, ( <y €. This shows that Q'
satisfies condition b.) and completes the proof of (9.1) when Q is contained in

¥y . If Q is contained in ¥} the proof is exactly the same.
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44 T.J. ENRIGHT and B. SHELTON

Definition 9.2 If o is in A we define A(u,a) = {y € A(w)|(v,) ¢ M}
If a is a simple root in A%, let w, be the corresponding fundamental weight
and set Wy = {w € Wh{w < wsq and w(p — we) € Pm} = {w € W2 |
W=<WSq, wsoe € WP}, W, parameterizes the simple modules in O(g,p, p—wa).
Fix y € W,. Then we take \Il;':,a = \Ilf NA(y,—ya), By o = By N Ay, —ya),
and f , = TF, N A(y,—ya). Set Ay o = {5, 5,,911,.--, 7t € Zya}-
Note that £, = {—ya}UZ, 4.

Lemma 9.3 Let o be asimple root in A and fix y in W,. Let Q be any subset
of ¥, , (resp. ¥} ) that is maximal and satisfies the following conditions:
(a) If y,v are in Q, ¥ # v then (v,v) ¢ M.
(b) If v is in Q and € is in ¥ , (resp. ¥}, ) with (v,§) € M and £ <y v
then there is a ¢ in Q with ((,£) € M and ¢ <, &.
Then Q = Xy o (resp. T} ,).
Proof: Assume that Q is contained in ¥ ,. Set Q' = QU {—ya}. By a. and
the definition of ¥ , it is clear that Q' satisfies condition a. of (9.1). We must
show that Q' satisfies condition b. of (9.1). Suppose that v is in Q' and £ is
in ¥ with § <y 7, £ # v and (£,7) € M. Since « is simple, v # —ya and
thus v is in Q. If £ is in A(u, ya) then by b., there is a ¢ in Q with { <, &
and (¢,€) € M. If £ ¢ A(y,—ya) then ( = —ya satisfies (£,{) € M. If
(€,¢) # 0 then (€,¢) > 0 since both roots are in A(u) and hence, since « is
simple, ¢ <y €. If £ and ( are orthogonal then by (8.2) they must both be long
roots. In this case ( <, £ again by the simplicity of {. Either way, Q' satisfies
condition b. of (9.1), and so by (9.1), Q' = X,. Thus @ = £, . The argument
for ¥}, is the same. This completes the proof of (9.3).

Definition 9.4 Let a be a simple root and recall the definition of S(A*) = S.
Set A(a) = {y € A | (v,a) ¢ M}. From (8.2) we see that A*(a) = A(a)NA*
is a positive system for a root system. We define S, = S(At(a)). If z is in

W2 then we define Sz o = {Q € Sy | 2Q C A(u) U —-A(u)}.
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CATEGORIES OF HIGHEST WEIGHT MODULES 45

We remark that if A is A, (resp. D,,) then A(a) is Ap—2 (resp. Dp_2xA;)
for every simple root a. If A is C, then A(a) is C,_5 X A; for every short

simple root and D,,_; when « is the long simple root.

Lemma 9.5 Let o be a simple root and fix z in W,. Then the map Q —

QU {a} is an injection from Sz o to S .

Proof: Fix Q in Sz . Set @' = QU {a}. Choose v and v in ' with v # v.
We must first show that (v,v) ¢ M. By the definition of A(a) we may assume
that v # « and v # ¢, i.e. v,v € Q. But then (v,v) ¢ M by the definition of
Sz

Now suppose that v is in @’ and £ is in A* with &€ # v,(¢,7) € M and
& <v. Wemust find a¢ € Q with ¢ # 7, ((,§) € M and ( < 7. By
minimality, ¥ # « . Suppose that (o,€) ¢ M, i.e. £ € At(a). Then, since
(&,7) € M and € < 4, either v — ¢ is a root in A*(a) or v and ¢ are both
long roots. Either way, £ < v in A*(a). Thus by hypotheses, there is a ¢ in
Q with ¢ # 7,({,€) € M and { < v in At(e) (and thus also in At). Thus
we may assume that («,&) € M. Set v = agf and € = 3 bgB where both
sums are taken over all simple roots 3. Then since § < v, ag > bg > 0 for all
B. We claim that a < v. Suppose not, i.e. a, = 0. Then since & and v are
orthogonal, ag = bg = 0 for all § that are not orthogonal to a. This tells us
that o and £ are orthogonal. By (8.2) (g,p) must be HS.3 and « and £ must
both be long roots. But then o = 2e, and £ = 2e; for some k and we have
a < € <v. Hence a < v and we may take { = . This shows that Q' is in S,

and completes the proof of (9.5).

We next show that the first claim of part iii of Theorem 8.4 is a con-

sequence of parts i and ii. For £ and A in Py, we denote the multiplicity

(N(X) : L(£)) by m(€,A).
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46 T.J. ENRIGHT and B. SHELTON

Proposition 9.6 Suppose that for each x in W™, —z~'%, is in S, and
m(zp, ) is one or zero depending as u € Azp or not. Fix y in W™=, Then

m(¢, yp) is one or zero depending as ( = yrap for some Q in £, or not.

Proof: It suffices to show that m(zp,yp) = 1 if and only if z = yrg for some
Q in &,. Suppose first that m(zp,yp) = 1. Then y is in A,. That is, there
are v1,...,%: in L, with y = 5,,7--5,,%. Define Q tobe {¢ € —z71%, | ¢ <
—z~14; for some i}. We claim that Q is in £, and z = Frg.

Since Q is contained in —z~'%¥, and —z~ 1%, is in S, Q immediately
satisfies condition (8.2 1). Let v be in © and £ be in At with v £ ¢, (v,€) € M
and £ < 4. Since —z~ %, is in S, there is a ¢ in —2~!'%, with { # 7,
(¢,€) € M and ¢ < 7. But v < —z~14; for some ¢ and so { < —z~ ;. Thus
¢ is in © and Q satisfies (8.2 ii). Thus Q isin S.

Fix v in © and fix r in Wy, with y = rs,, ---sy,&. Then —zv is in
A(u), and so —rzy is also in A(u). By the orthogonality of ¥, we have
yy = —yz~!(—zv) = £rzv, and so yv is in £A(u). Moreover yy € A(uw) if
and only if ¥y = —z~!v; for some i, 1 < i < t. Also, ¥ < —z~14; for some
i. But y(—z~19;) = rv; which is in A(u). These two observations show that
Q is in £y. By the definition of y, we have: ¢ = r‘lysa,,-x,,1 <+ 8g-14,. But
Qt = {—z71y,...,—27 1y} and so z = yrg.

Conversely, suppose that £ = yrg for some Q in £y. Set w = Hvem Sz
Then y = wz and it suffices to show that WZ is in A; . Set Q' = —zQ.
We claim that @' C ¥,. This claim will prove that wz is in A;. To prove
the claim we use Lemma (9.1). Choose m € Wy, so that £ = myrq. Then
Q= —myraQ = —my(Q~ U —Q7%) and thus Q' C A(u). Since Q C A, we
get Q' C ¥ . It is clear that Q' satisfies (9.1 a) since Q is in £,. We must
verify (9.1 b) for Q' (with respect to z). Fix ¥y € Q' and £ € ¥, and suppose
that (v,§) e M, v # € and € <, 7. Then —z71¢ < —z7 1y, —27 16 # -z~ 1y
and (—z~1¢,—z719) € M. Thus by (8.2) there is a ¢ in Q with { # —z~1v,
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CATEGORIES OF HIGHEST WEIGHT MODULES 47

(¢,—z7 %) e Mand ¢ < —z~1y. Choose ¢ to be minimal with respect to <
among the elements of Q which have these three properties. Set {/ = —z(.
Then ¢’ # v, (¢',€) € M and ¢’ <; v. For (9.1 b) it remains to see that
¢’ <z €. Since ¢’ and € are both in ¥ (@' C ¥7) and (¢',€) € M, we see
from (8.2) that either (¢’,€) = 1 or {’ and £ are both long roots. In particular,
either (! <; € or £ <, {’. If the later occurs then we may repeat the argument
with ¢’ in place of v and obtain a contradiction to the minimality of {. Thus
(" <, € and ' satisfies (9.1 b). By (9.1), @’ C X,. This completes the proof
of (9.6).

Finally we prove the second assertion in (8.4 ii and iii).

Proposition 9.7 Fix z and y in W™.
(1) The mapping of subsets of ¥, into A; given by {vi,...,%}
I1; sy is bijective.

(ii) The mapping Q — Yrq is injective on £,.

Proof: Let {v1,...,7:} and {{1,...,{,} be subsets of ¥, with m =
m‘ Then m = []s,,[]s¢;, is in Wy, and is a product of orthogonal
reflections from A(u). If sg is one of these reflections that is not repeated
then m@ = —f which contradicts m € Wy,. Thus m =1 and {y1,...,1:} =

{¢1,...,¢s} - This proves (1).

Suppose that Q,Q, are in £, and z = yrq = yrn,. Then y = Trg = Trg,

and, as in the proof of (9.6), —zQ2 and —zQ; are subsets of X,;. By part i we
see —zQt = —2Qf. Thus —z2Q ={y€ =, | —z !y < v for some v € Q*} =

—2zQ;. This completes the proof of (9.7).

Remark 9.8 We wish to draw some further conclusions from (9.7) and the
proof of (9.6). Let y be in W™ and choose 2 € Sy. Set z = yrq. Then the

last paragraph of the proof of (9.6) shows:
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48 T.J. ENRIGHT and B. SHELTON

(a) R € Sz and —zQ C I,

Choose I' C —y~!%,. Set I' = {¢ € —y~'5,|¢ < 7 for some v € T'}. The
second paragraph of the proof of (9.6) shows:

(b) If —y~'E, €S, then T € S,.
Suppose that —y~1%, € Sy. Set w = m Then, again by the proof of
(9.6), I € €£,. However, if T is in Sy then clearly I' is in €, also. Thus, by
(9.7 i1):

(c) If —y~1%, € Sy then T € S, if and only if T = T.
The upshot of these observations is this. Once we have established that
—y~18, is in Sy for all y € W™ (cf. section 12) then statements about

the sets in Sy can be converted into statements about the (computable) sets

PIFR
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§10. Wall shifting

In this section we use a result of Vogan [32] to give equivalences of cate-
gories between categories O(g, p, \) where A varies among the integral semireg-
ular points in h*. We then give the formulas that allow one to transfer specific
information from one wall to another. We continue with the notation of the
previous sections. We take (g, p) to be one of the pairs given in Table 8.1.

Throughout this section we fix two adjacent (nonorthogonal) simple roots
a and B in At. If there is more than one root length in A, then we assume
that o and B are both short roots.

For any simple root u, w, will denote the fundamental weight associated
to u. We set ¢, = d)g_w“ and ¢, = 95 “*. These are the translation functors
from and to the “u-wall”. Set O, = O(g,p,p — wy). Recall from (9.2) the

definition of W, (C W™) which parameterizes the simple modules in O,.

Lemma 10.1 Set 7 = 13 0 ¢o. Then = is an equivalence of categories from

O4 to Op with natural inverse 7’ = 1, 0 ¢p.

Proof: Set A = p—wq and p = p—wg. Fix ¢ in W,. Then zA,zp and
zsqp are all in Py, and zp < z54p. So Ya(L(zp)) = L(z)). Since u is Abelian
and za € —A(u), we see zf8 ¢ —A(u) and so z ¢ Wg. By a theorem of
Vogan ([32], 3.2) there is a unique composition factor M in ¢o(L(zA)) with
Ypda(L(z))) = ¥5(M) # 0. M has multiplicity one in ¢o(L(2A). Furthermore,
M = L(zsqp) if 25 € Wg and M =2 L(zsgp) if zsg € Wp. In either case,
7(L(z))) = ¥p(M) is simple and nonzero and #'(w(L(zA)) = L(zA)). By

the adjointness of ¢, and v, (respectively ¢g and 1g), for any X in O,,
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50 T. J. ENRIGHT and B. SHELTON

Hom(X, 7' onX) = Hom(wX,nX). Let fx € Hom(X, 7' omX) be the element
corresponding to the identity in Hom(7X,7X). For any simple module L in
Ou, L # 0 and thus fr is nonzero. Since 7’ o 7L is simple, fr is thus an
isomorphism for each simple module L in O,. Arguing by induction on length
of a composition series and using the exactness of #’ o 7, it is easily seen that
fx is an isomorphism for all X. A short exercise shows that fx is also natural
and is thus a natural equivalence between the identity functor and #’ o w. The
same argument shows 7’ o 7 is naturally equivalent to the identity on Og. This

proves (10.1).

Definition 10.2 Recall that o and B are adjacent short simple roots. Define

a bijection m : Wo — Wy by:

T(L(y(p — wa))) = L(n(y)(p — wp))

where y € W4 and w(y) € Wps. As in the proof of (10.1), we can give a
formula for n(y). Note that if y € W, then since u is Abelian, y8 ¢ —A(u).
If yB € A(m) then y € W2 implies yB € A*(m). Therefore y3 € At and
yEWs.

Case A: IfyB € A*(m) then w(y) = ysq.
(10.3)
Case B: If yB € A(u) then 7(y) = yss.

Note: In both cases, 7(y) = ySgSa.

Lemma 10.4 Fix « and f as above.
(i) sasp(A¥(2) = A*(9).
(ii) If (v,v) is in M and £ € W then (zv,zv) is in M.
(iii) If~y,v are in At (a) withy < v (with respect to At (a)) then sqs57 <
sqsgv (with respect to AT(B)).

(iv) sas3Sa = Sp.
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CATEGORIES OF HIGHEST WEIGHT MODULES 51

Proof: The first two parts of (10.4) are obvious. The third part follows from

part (i) and the last assertion follows from the first three.
We can now check the action of wall shifting on our combinatorial sets.

Lemma 10.5 Fix a and 3 as above and let y be in W,,.

(i) 5a8pSy,a = Sxy).8-

(ii) Set r = w(y)saspy~t.

Then r is a reflection in Wy, and r%, o =
Zr(y),p- In particular, if —y='%, 4 is in Sy o then —x(y) ™' Tr(y) 5 Iis
in Sy(y),p. Similar statements hold for £} ,.

(iii) Let v1,...,v: be mutually orthogonal roots in A(u,ya) and set w =

Sy, **Sy,. Then wy € W, and n(wy) = rwrn(y) = Wyssss. In particular,

T(Ay,a) = Avr(y),ﬁ'

Proof: If yisin case A; yB € A(m) and 7 = yspy™ ! = syp € Wm. In case
B; y(a+ B) € A(m) and r = yspsaspy~" = Sy(atp) € Wm. This observation,
with (10.4), proves (i) and the first part of (ii).

To prove that rXy o = Lr(y),s We use lemma (9.3) (with y and « replaced
by 7(y) and S respectively). Set Q = rX, . Since r is in Wy, and rya = 7(y)8,
rA(u, ya) = Ay, 7(y)B). So Q2 C Vo) S clearly satisfies (9.3 a). From the
definition of r we see that r¥ =¥, 5. By (10.4 iii), for £,v € A(y, ya),
€ <y vifand only if r§ <(y) rv. Thus Q satisfies (9.3 b) (with y and « replaced
by m(y) and 3 respectively). Since r gives a bijection of ¥, onto Vo5 s
maximal and (9.3) gives 2 = Xr(y) 5. This proves that r¥y o = ¥z(y) . The
rest of part (ii) follows immediately.

Finally, let w be as in part (iii). By orthogonality, wya = yo € —A(u),
and so wy(p — we) has singularity outside of A(m). Thus Wy € W,. Since

T € Wp, rwrn(y) = Wyspse. If wy is in Case A, then wyB € A(m) and

WYSse = WYse = w(wy). If wy is in Case B, then wy(a + f) € A(m) and

WYspSa = wysg = n(wy). This proves the last assertion and completes (10.5).
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52 T. J. ENRIGHT and B. SHELTON

In section fourteen we will require a linear ordering 1_5 on At and an
analogue of (10.4) for this ordering. Let a;,as,...a, be t‘l:le usual indexing
of the simple roots of A* as in Bourbaki. For v,{ € At write v = > aiai,
¢ =) ; bia;. Then we write 71,5,,4 when either ¥ = ( or, for the largest index
J with a; # b;, a; < b;.

Lemma 10.6 Suppose g is of type HS.3 and o = e, — e;41. Let v,{ €

At(a)\ {er + er41}. Then 713(,' if and only if 54557 <845p¢.
in lin

Proof: We may assume @ = e,41 — €,42. Since v and ( are fixed by s,, if
s = Sq+p then we must show: 71;‘an if and only if s'y”%s(. Here s acts on roots
by the permutation of indices (r,r +2). Write ( —y =Y _; ¢ici, ¢; € Z. Then
—yISC if and only if all ¢; are zero or the largest j with ¢; # 0 gives ¢; > 0. The
aczt’;on of s on the simple roots ¢; is as follows. If » < n — 3 then s fixes all
o; except those a; with r — 1 < i < r + 2. For these sa,_1 = ar_1 + a + 5,
sa = —pf, sf = —ca and sa,42 = a+ f+aryz. For r = n—2, the formulas are
the same except sa, = 2+ 28 + a,. Now ¢ and v lie in At(a)\ {er +€r41};
and so, a short calculation yields ¢,_1 = ¢, = ¢r41. It follows from the formulas

above that the largest index j with ¢; # 0 is positive if and only if the same

property holds for s}, cia; = Y ; dia;. This proves the lemma.
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§11. Induction from lower rank.

In this section we use the results of Part I to give an equivalence between
categories of highest weight modules for two Hermitian symmetric pairs of
different rank. This theorem will be the inductive step in the proofs of our
main theorems. Throughout this section (g,p) is of type HS.1, HS.3 or HS.5
with rank n . We use the notation for roots of g given in section nine.

We must first define two standard parabolic subalgebras g, and g, of g
with 4, 2 ¢, Let 4, = {®u; and 7, = g'®u, be Levi decompositions with
U = nilrad(g‘.) and h C g’ C l. We define 4, and q, by giving the simple roots
complementary to the simple roots of [ and g’ (see Table 11.1). Set p’ = g'Np.
Then p’ is a maximal parabolic subalgebra of g’. If ¢’ is the center of g’ then
(g'/¢,p'/¢) is also of Hermitian symmetric type and this type is also given in
Table 11.1. In each case, ¢’ is of the same type as g but with rank n — 2. The

constant p for g’ (cf. (8.1)) is always exactly one less than the constant p for

g-.

Table 11.1

(g,p) An, Apm1 X Anp Cn, Any Dn, Anoy
Simple roots in A(y,) a a a

Simple roots in A(u,) oy, an oy, ag oy, ag
(g'/¢.p'/e) Ano, Apa X Aqpy Cn-2, An-3 Dn-2, An-s

Let A’ denote the set of roots of g’ and set AT = ATNA’. Set m’ = gnm
and recall the decomposition Winm = 2 Winm - Wy . Let wg be the longest
element in '—"—'Wlnm and let rg be the longest element of Wf . Let w; be the

first fundamental weight of g. Set W’ = Wy

53
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54 T.J. ENRIGHT and B. SHELTON

Proposition 11.2 There is a covariant equivalence of categories A:

A:0 (g0, 0(¢g")) — O(g,p,p —w1).

1
. /m
For each z in W'~ :

A(L(g',2p(g))) = L(g, wozro(p — w1))-

Similar formulas hold for generalized Verma modules and projective modules.

Furthermore, A preserves self-duality.

Proof: Set p' = p(g’). Let- ¢ be the maximal weight in W(p — w1) N Pp. Set
01 =0(¢,p',p'), O2 = Oy(1,iNp,() and O3 = O(g,p,p — w1) = O(g, p, ().
Let wy be the longest element of Wg:, and put ¥ = —~wy p({) and p = woev. Set
0, =0(¢',p,v) and O3 = O,(I,INp, u).v Let ©, (respect{vely ©3) be the set
of highest weights plus p({) (resp. p) which parameterize the simple modules
in O4 (resp. O3).

We express root systems in their usual Euclidean coordinates as in Bour-
baki, except in one case. For HS.1, we find it convenient to shift by ¢(1,1,..,1),
t € R. We write p = (n,n —1,...,0) in place of the more common (%,% —
1,...,—%)and w; = (1,0,...,0) in place of "—i-f(n,—l,—l,...,—l). Our def-
initions give:

((n—2)/2,n—2,n—3,...,0,(n—2)/2) if g is HS.1

(11.3) o =< (0,0,n— 1) if gis HS.3 ;
(0,0,n — .,0) if g is HS.5.
(n-1)/2,n— -3,...,0,n—1) ifgis HS.1
(11.4) v=<(0,—n+1,n—-2 ,2, ) if g is HS.3 ;
(0,—n+2,n—3,...,1,0) if g is HS.5
(11.5)
(n=-1)/2,n-2,...,n—p,n—1,n—p—1,...,0) ifgisHS.1
u=<{ (O0n-2n-3,...,1,-n+1) if g is HS.3

(0,n—3,n—4,...,0,—n+2) if g is HS.5
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CATEGORIES OF HIGHEST WEIGHT MODULES 55

and
(n-1,n-2,...,n—p,n—-1,n—p—1,...,0) ifgis HS.1
11.6 = n—1n-2,...,2,1,—n + 1 g1s .
L,n—2,...,2,1 1 if g is HS.3
(n-2,n-3,...,1,0,—n+2) if g is HS.5.

Let C (respectively D) be the one dimensional representation of the center
¢/ of g’ (resp. the center of [) whose weight is the restriction of v — p’ (resp.
¢ — ). Let Ay (respectively As) be the functor of tensoring with C (resp. D).
From the above computations of the weights, we see that A; is an equivalence
from ©O; to ©,' and Az is an equivalence from O’ to ©3. The category O,’
satisfies the hypotheses of section seven. Let Ay be the equivalence I from O,’
to Oy given in (7.16) with g =1,1=¢' and ¢ = g, N1 Finally, an easy check
in coordinates shows that ®; = ©O3; and so, by (6.6) there is an equivalence
Ag = 7 from O3 to O3. Set A = AgjoAgoAso0A;. Then A is an equivalence of
categories and the properties of A follow from (7.16), (6.7), (6.14) and (6.15).

In particular, suppose that A(L(g’, zp")) = L(g,y(p — wy)) with

;[ ((n=2)/2,a1,as,...,an_1,(n—2)/2) if gis HS.1
P =11(0,0,a1,as,...,an_3) if g is HS.3 or HS.5.
Then
n—1,ay,...,a,,n—1,ap41,...,a,-1) if g is HS.1
P P+ bA
yp—w))=<{ (n—1,a1 ,..8,_2,—n+1) if g is HS.3
(n—2,a1 ,.,8n_2,—n+2) if g is HS.5

That is, y = wozrg or ¥ = wezrSy,. This completes the proof of (11.2).

Let p’ = m’®u’ be the Levi decomposition of p’ with »' = ung’. Let
W' be the Weyl group of g’, A’ the roots of g’. We identify W' with the
subgroup of W generated by the simple reflections s, for @ € A’. For X in
h*, we set L(X\) = L(g,A) and L'(X) = L(g’,A). Similar conventions will hold
for generalized Verma modules and their projective covers. In general, we
denote objects computed with respect to the pair (g’,p’) with a “prime” (') as
superscript. In particular, for y in W' we have the sets ¥y, E"; , Ay, S’y

and &'y as defined in section eight.

For z € W' define A(z) in Wq, by: A(L(g’,zp")) = L(g, A(z)(p — wa,))-
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56 T. J. ENRIGHT and B. SHELTON

Lemma 11.7 Fixz € W'ml and put « = a; and y = woexros,. Then
y = A(z) and we have:
(i) woXy = Iy and woX, T =T .
(i) r5'SL =Sy a-
(iii) If —z~'%., (resp. z~'X,¥) is in &', then —y=1%, , (resp. yizt,)

isin Sy o.

(iv) For v1,...,7t € T4, A(37; - 87:%) = Swoyy  * * Sweye A(z). In particu-

lar, A(AL) = Ay 4.

Proof: We know from (11.2) that y = wozre or y = wozrgss, whichever is
in Wq. In case HS.1, wozroar = €1 — ep41 (independent of z) and in cases
HS.3 and HS.5, wozroa = €1 + e,. Thus wozroa € A(u). This proves that
Y = WoZTpSq-

We prove parts i) and ii) by case by case coordinate computations. Parts
iii) and iv) follow immediately from i) and ii). A simple check with coordinates
shows that woA(u') = A(u, —ya). For example, if (g, p) is HS.3, then —ya =
e1 + e, and woA(u') = wofei+ej | 3<i<j<n}={ei-1+e-1]3<i<
Jj < n} = A(y,—ya). HS.1 and HS.5 are similar. Another case by case check
in coordinates shows that rosqp = p’ + ¢ where ¢ is a weight in A* that is
orthogonal to A’. Thus for any v in A(¥'), (yp, woy) = (zros«p,v) = (zp', 7).
Now ¥, o = X, \ {—ya}. Therefore, since « is simple, woX'ys = Xy . This
proves part i.

If g is of type HS.1 then rj'A’ = ry'{*(e; —¢;) |2<i<j<n}=
{#(e; — ;) |3 < i< j < n+1} = A(e). Moreover, this map induced by r5*
preserves the respective sets of positive roots. Therefore ry ! maps 8’ onto Sq.
Similarly, if g is HS.3 or HS.5 then r5'A’ = A(a) \ {e1 + e2}. Therefore, in
these cases ry ' maps S’ onto {Q € Syle; + €2 ¢ }. Note that in the cases of
HS.3 and HS.5, since —ya € A(u), y(e1 + e2) cannot lie in A(u) U —A(u) and

thus e; + e3 is never an element of an element of Sy o,. Now for all three of
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CATEGORIES OF HIGHEST WEIGHT MODULES 57

the cases HS.1, HS.3 and HS.5, for Q € &', 2Q C A(v')U—A(%) if and only if
yry 1Q = wozQ C A(u) U —A(u), since wg € Wp. And so, r5 ! maps S’ onto

Sy,«. This proves part ii) and completes the proof of (11.7).
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§12. Proof of Theorem 8.4

In this section we prove Theorem 8.4. As a corollary of the proof we give
a splitting of the category O(g,p, p —wp) when (g,p) is of type HS.3 and 3 is
the long simple root a,.

Retain the notation of previous sections. For 1 < i < n, let w; be the
fundamental weight of g corresponding to the simple root c;. Set O; =
O(g,p, p—w;)for 1 <i<n, 0 =0O(g,p,p) and O’ = O(g’, p’, p(g’)). If a is any
simple root, we have the translation functors ¢ = Z—wa and Yo = P,

We proceed to prove (8.4) by induction on the constant p of from Table
(8.1). If (g,p) is HS.1 then the induction starts with the case (An, An—1). In
case HS.3 the induction starts with the case (Cy, {@1}) (which is equivalent
to the case (Bg, {a2})) or with the case (A1, 0). For HS.5 the induction starts
with either (D3, A;) (which is equivalent to (A3, Az) ) or (Dy,A;) (which is
actually (A; x A1,Ay1)). In all of these p = 1 cases, (8.4) follows immediately
from [16].

For the remainder of the section we assume inductively that (8.4) holds
for the pair (g’,p’) which has constant p — 1. In view of (9.6) and (9.7), it

suffices to show the following two claims for each z in W™

(12.1), -2 1%, €8,

(12.2), m(zp, p) =1 or 0 depending as p € A, p or not.

We begin by proving the analogue of (8.4) for the semiregular categories O;

when ¢; is a short root.

58
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Lemma 12.3 Let B be a short simple root and set w = wg. Fix ¢ in Wg
and set A = p —w.
(i) —x—lzx,p is in Sz’p.

(ii) m(zA,p) = 1 or zero depending as p is in Az g or not.

Proof: First suppose that § is ;. In this case part i) follows from (11.7 iii)
and our inductive hypothesis. Part ii) follows immediately from the equivalence
of categories A of (11.2) and the formulas in (11.7 iv).

Next suppose that £ is not «;. Working inductively, we may assume that
there is a short simple root « adjacent to 8 and that (12.3) holds with « in
place of 3. By (10.1) there is an equivalence of categories 7 from O(g, p, p—w)
to O(g,p, p—wp). Part i) for § now follows from (10.5 ii). Part ii) follows from
(10.5 iii). This completes the proof of (12.3).

Lemma 12.4 Let = be in W2 and suppose that either = is the identity
element or there is a short simple root o with ¢ € Wy. Then (12.1); and

(12.2); both hold.

Proof: If z is the identity, then £, = 0 € S. Also P(zp) = N(zp). This
gives (12.1), and (12.2),. Suppose that z € W, and « is short. By (12.3),
—27 18, 4 is in S, o and by definition (9.2), £, = &, o U {—za}. From (9.5)
we find —z71%, is in S,. Again by (12.3), m(z(p —ws), #) = 1 or 0 depending
as g € Az o(p — wa) or not. However, ¢o(P(z(p —wa)) = P(xp) by (4.1);
and so, the Verma flag factors of P(zp) are exactly the N(u) for p € A op or
p € Ag aSap. Since By = Xy o U {—za} we get ; Az o U Az o5q = Ag. Thus
m(zp,p) = 1 or 0 depending as p € Agp or not. This completes the proof of
(12.4).

Remark 12.5 Lemma 12.4 completes the proof of (8.4) if (g,p) is HS.1 or
HS.5 since in those two cases all roots are short. Thus for the remainder of this
section we assume that (g,p) is of type HS.3 with rank n. We set a = a3

and B = a,, = 2ey,.
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60 T. J. ENRIGHT and B. SHELTON

Let ©;, 1 < i < n (respectively ©) be the set of highest weights plus p for
simple modules in the category O; (resp. ©). Identify A* with €™ and recall

the usual Bourbaki notation for weights of g. Then

(12.6) © = {(a1,...,as)| {laxl}i=1 ={1,...,n}and a1 > as > ... > a,},

(12.7) ©n_y = {(bs, ..., ba)| {Ibxl}7zy = {n—1,...,1,1} and by > ... > b, },

(12.8) O, = {(bl,‘ .. ,bn)l{lbkl};::l = {n -1,. ..,1,0} and b > ... > bn}
We distinguish a set of elements (j, 1 < j < n of © as follows:
(12.9) G=@m,...,i+1,-1,-2,...,—j)

Define z;j, 1 < j < n, in W™ by z;p = ;. Notice that the set {z;,...,z,} is
the complement in W™ of the elements considered in (12.4) and z; € Wy for
each j. In particular it remains to prove (12.1); and (12.2); only for z = z;,

1<j<n

Lemma 12.10 Let  be in Wy and assume that ¢ # zj, 2 < j < n. Then
(i) —27'Zzp € Sap

(ii) m(z(p — wp), ) =1 or 0 depending as p € A; g(p — wg) or not.

Proof: If £ = z; then z(p—wp) is dominant and i and ii are true automatically.
Thus we assume z # z; for any j. Since & # z; there must be a short simple
root ¥ with z € W.,,. By (12.4), —z~1Z; € S, and m(zp,{) = 1 or 0 depending
as { € Agp or not. We see immediately from this that —z~ 1%, g is in S,

since ;3 = Xz \ {—zB}. Since the stabilizer of p — wp has order two,

Ys(P(zp)) = Ypdp(P(2z(p — wp)) = P(z(p — wp))®P(z(p — wp))-

The Verma flag factors of P(z(p —wg)) are thus exactly N(y(p —wg)) for
y € A; NWg. But A, N Wy = A; g. This completes the proof of (12.10).
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Definition 12.11 Let { = (b1,b2,...,b,) be an element of ©, (see (12.8)).
We say that ( has even (respectively odd) parity if the number of nega-
tive b; is even (resp. odd). If ( = (by,...,b;,0,—1,...,b,) then we define
¢ = (b1,...,b%,1,0,...,b;) and Z = (. We remark that { and ¢ always have
opposite parity. If £ € Wy then we define £ € Wy as follows: if z(p —wg) = ¢

then #(p — wg) = {. We see that % is either Zso4p OF £5q4p555-

Set §; = zj(p—wp) =(n—1,...,5,0,—-1,...,—(j—1)) for 1 < j < n.
The following lemma will complete the proof of Theorem 8.4.
Lemma 12.12 For1<j<mn;
() ~27'Te;p € Suy
(ii) m(&;,n) = 1 or 0 depending as p € Az, s(p — wp) or not.
(i) —z;'%;; € Sq;.
(iv) m(¢j, ) = 1 or 0 depending as u € Az, p or not.

Proof: Fix j, 1 <j < n, and set £ = ;. By direct computation,

_1:"123 = {anyen—l + €n-2,6n-3 + €n—4,.-.,€k41 + ek}’
_ [n+41—3j, ifjisodd;
where k = {n+2—j; if j is even.

Set @ = —z~1E,. We prove part (iii) by showing that Q satisfies conditions
(8.2 1) and (8.2 ii). It is clear that Q satisfies (8.2 i) since it consists of or-
thogonal roots and has only one long root. Fix v in  and suppose that there
isa ¢ in At with v # &, (,€) € M and £ < y. We must produce a { €
with ¢ # v, (¢,€) € M and { < 7. Since { < 7, ¥ # an and so we may write
¥ = e; + e;4+1 for some i. If € is a long root then £ must be 2¢;4, and so we
may take { = a,. If € is a short root then we may write { = e, + e, where
r=1tori+1and s > i+ 1. By inspection, there is a unique ¢ in Q equal to
one of: e, + €541 or es—1 + €, or 2e,. This is the desired {. So § satisfies (8.2

ii). This proves part (iil).
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62 T. J. ENRIGHT and B. SHELTON

Part (i) follows at once from part (iii).

We next prove part ii. If j = 1 then & is dominant and part ii is
clear. Thus we assume that j > 2. Set # = 9gdo and 7’ = Yods. Then
T:Op_1 — Op, 7 : O, — O,,_1 and 7 and 7' are adjoint to one another
with respect to Hom. If ¢ or Cis (b1,...,b%,0,=1,...,b,) in ©,, then we de-
fine 7'(¢) = 7r’((~) = (by,...,bk,1,—1,...,b,) in ©,,_1. By a theorem of Vogan
(132], 3.2), 7'(L(¢)) = 7' (L(C)) = L(x'(¢)) for each ¢ in ©,; and moreover, the
composition factors of w(L(x’(¢))) are L(¢) and L({). By the adjoint prop-
erty we have Hom(7w#'L({), L(¢)) = Hom(#'L((),7'L(¢)) # 0 and similarly
Hom(r' L(¢), L(¢)) = Hom(x'L(¢), 7' L({)) # 0. Thus wL(x'¢) = L)@ L(C).
It follows at once that 77/ P(¢) = P(¢)®P({) and 7' N(¢) = N()@N ().
Combining these two facts, m({, p) = m(g:, i) for all {,p € ©,,.

We apply these observations to the weights &;, 2 < j < n. We have
Zi(p—wp) = 5} =(n-1,...,5,1,0,-2,...,—(j — 1)) and Zjp = (n,...,j +
1,2,—1,-3,...,—j) . Thus by direct computation:

—~;125;j \{Cn_z —ep-1} = —xj_lzz,' \{en—2+en_1}.

Set A = 2a + B = 2e,_1. The above formula gives: sA(—:cj'lExj) = —"].'1251..
Also, for any p € ©, and y € W™, u = y(p—wp) if and only if g =
m. The last two statements together say that the assignment y —
ysx is a bijection from Az s to Az 5. In particular, p is in Az, g(p — wp)
if and only if i is in Az, s(p — wp). However, Z; is one of the parameters
considered in Lemma (12.10). Thus m(fj,ﬁ) = 1 or 0 depending as i is in
Az, p(p —wp) or not. By the previous paragraph, m(¢;,n) = m(fj,ﬁ); and
thus, m(&;, ) = 1 or 0 depending as p is in Ay, g(p —wp) or not. This proves
part (ii).

Part (iv)follows from part (ii) exactly as in the proof of (12.4). This
completes the proof of (12.12).

Lemma 12.12 marks the completion of the proof of Theorem 8.4.
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Definition 12.13 Let Og(even) (respectively Og(odd)) be the full subcat-
egory of Og = O(g,p,p — wp) consisting of all modules whose composition

factors all have highest weights plus p of even (resp. odd) parity.
As before set T = Yg¢o and 7’ = Padp.

Corollary 12.14 The restriction of the functor 7’ to Og(even) (respectively
Op(o0dd)) is an equivalence of categories onto Oo. Moreover, the functor T :
Op(even) x Og(odd) — Op given by T(M,M') = M@®M' is an equivalence

of categories.

Proof: Let { and p be in ©,. From (12.10 ii) and (12.12 ii), if m(¢,pu) # 0
then ¢ and pg must have the same parity. This implies N({) and P(¢) are
both objects in Og(even) or Og(odd) depending as ¢ is even or odd. Define
0:03 — Opg(odd) by taking oM to be the maximal submodule of M that
is an object in Og(odd). Define e:0g3 — Op(even) similarly. Now for any
projective module P in Og, P = eP@®oP and thus, using a projective cover, M
= eM@®oM for any module M in Opg. In particular e and o are exact. Since
there can be no nonzero morphisms between modules in Og(even) and modules
in Og(odd), T is an equivalence with natural inverse (e,0).

Arguing exactly as in (10.1), using the adjointness of 7 and n’, we see
that the functors 7’ oeom and eomon’ are naturally equivalent to the identity
functors on O, and Og(even) respectively. This shows that O, and Og(even)
are equivalent. The argument for Og(odd) is the same. This completes (12.14).

The functor 7’ : O — O, induces a two-to-one surjection 7: Wg — Wy
given by 7'(L(y(p — wp))) = L(ty(p — wa)). This map satisfies ry = 7§ for all
y € Ws. If ya € A(u) then 7y = ys, and if yoo € A(m) then 7y = ysg. We
define a surjective map, also denoted 7, from A*(B) to A*(a)\ {en-1 + en}
as follows:

eite; fj#FEn—1

For1<i<j<n-1, T(e,::{:ej):{%. fien—1

(Recall that A*(8) contains only short roots.)
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64 T. J. ENRIGHT and B. SHELTON

Lemma 12.15 Let (g,p) be of type HS.3 with rank n > 2. Fix y € Wz and
put w = ty. Then 7 is a bijection from —y~'%, 5 (respectively y‘lz‘;',p) to

—w ISy o (resp. wTIZ ).

Proof: We prove the first assertion by induction on the rank of g. If n = 2
then the statement is clear since both of the sets in question are empty. If n = 3
then the two sets are also empty unless yp = (2,—-1,-3) or (—1,—2,-3). In
these two cases wp = (1,—2,—3) and the assertion is easily verified.

Assume that n > 4. Then the rank of the subalgebra ¢’ is at least 2 and
so we may assume inductively that (12.15) holds for the pair (g’,p’). Let 7/
denote the map 7 computed for the pair (¢'.p"). Suppose that there is a simple
root ¥ in —y~!%, that is orthogonal to a ( as well as to 8). Then 7y = 7,
w(Ty) = yy € —A(u) and 7 is in —w~!%,,. By composing the equivalence of
categories from O’ to O,, with the equivalences between the categories O,
a; short, we may construct an equivalence Ay : O’ —» O,. Fixz € W'm‘l with
A (L(z(p(g")))) = L(y(p — wy)). By the formulas of sections 10 and 11, in
particular (10.5) and (11.7), A induces an injection A : A’ — A*(y) which
is a bijection from S’; to Sy . Recall from section eleven that we identify the
root system A’ of g’ with a subsystem of A. If v = o; = ¢; — e;41 then the
formula for A, is obtained by extending linearly the formula:

e ={9 W2

Note that Ay(a) = « and A(B) = B. Let 7’ denote both the restriction of 7
to A’T(8) = A’NA*(B) and the restriction ot 7 to W’s. A short computation

shows that the diagram:

At(B)nAat(y) T at(e)nat(y)

A Ay
atE T A
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commutes. Another short computation shows A, (L(7'z(p(g))) = L(ry(p —

wy)). By induction, 7’ is a bijection from —z~1%] ; to —(r'z)~'Z,,, ,. Thus

T("y—lzy,ﬁ\{‘)'}) = ToA'y(""’—lE:c,ﬁ) = A7°T/("'”-12;,ﬁ) = “w_lz""“\{'r}'

This proves the first assertion of the lemma whenever such a ¥ exists.

Suppose next that 3 is the only simple root in —y~!E,. Then recalling
the notation of (12.9), y = «; for some i, 1 < i < n. In this case, —y~ 1%, was
computed in (12.12). If j = 1 then y = s3, w = sgs, and both of the sets in
the first assertion of the lemma are empty. Similarly, if j = 2 then both sets
are empty. If § > 2 then w = ysg and wp = (n,...,5+1,1,-2,-3,...,—j5).
By inspection: —w™'%, = (—y~'Z, \ {B,en-2 + en-1}) U {0, 2¢,-2}. Thus
T(—y 1Ty 8) = —w Sy 0.

Finally suppose that the only simple root v in —y~!X, other than 3 is
not orthogonal to . Then ¥ must be e,_3 — e,—; and for some j > 2, yp
must take the form yp = (n,...,j+1,2,-1,-3,...,—5). So,wp=(n,...,j+
1,1,-2,...,—j) and by inspection: —w™1E,, = (—y~1Z,\{8,7})U{e, 2¢,,_2}.
Thus 7(—y~'Zy,6) = ~w™ 'Sy a- The proof for y~'T} ; is similar. We omit

the details. This completes the proof of the lemma.

We warn the reader that although the formula given for 7 on A*(f) is
independent of y € W, any formula for the inverse of 7 from —(7y)™!Zry o

to —y~15, s must involve y.

Lemma 12.16 Fixy € Wy and put w = ry. Then for any v,v in —y~'Z, g,
v < v in A*(B) if and only if 7y < v in At (a). Moreover, if Q C —y™ 1%, 5
then Q € Sy g if and only if TQ € Sy a-

Proof: Fix v,v in —y~!Z, g. We first claim that v < v in A*(B) if and only
ify <vin A*. Obviously if ¥ < v in A*() then v < v. So assume that y < v

in A*. By inspection, ¥y < v in A*(3) unless ¥y = e; —en—1 and v = ey +ep—1
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66 T.J. ENRIGHT and B. SHELTON

for some k < j < n— 1. But v and v are orthogonal; and so, j = k. However,
ej —en—1 and ej + en—1 can not both be in —y~!¥, 5. Thus v < v in A*(B).
This proves the claim. A similar proof will show that 7y < 7v in A*(a) if
and only if 7y < 7v in AT, Thus, to prove the lemma it suffices to show that
v < v if and only if 7y < v (both inequalities in At).

If 7y = 4 and 7v = v then there is nothing to prove. There are two other
cases to consider.

Case one: 7v = 2¢j forsome j <n—1. f y<vthenty=v<v< v
Conversely, suppose that 7y < 7v. Then 7y = v = e} %+ ¢;, for some j <
k <l<n—1. We claim that 2¢; and ex + ¢; cannot both be in —w_IEw,a.
Otherwise, 2e; < ex + €; and (2e;,ex +€;) € M. But 2e; is the only other root
¢ in —w™'E, o with (¢,2¢;) € M and 2¢; £ e + €;. This implies, from (8.2),
that —w’12w,a is not in Sy o which we know is false. This proves the claim
and thus ¥ = ex — ¢; and v < v. This completes case one.

Case two: 7y = 2¢; for some j < n — 1. The argument here is similar to
the argument in case one and we omit the details.

This completes the proof of the first assertion of (12.16). The second

assertion follows immediately from the first assertion, (9.8 ¢) and (12.15).

Lemma 12.17 Fixy and z in Wg and Q@ C AY(B) Ny~ (A(z)U—A(u)). Set

rq = H(enny-lA(g) s¢ andrr.q = H(Erﬂn(ry)—lA(g) s¢. Suppose that z(p—wp)

and y(p — wp) have the same parity. Then

Q€ Syp andz =yrq if and only if 7(Q) € Sry o and Tz = Tyr ().

Proof: Suppose that Q is in Sy s and z = yra. Set a = rq = [[,cq+ sy and
b=l eq+ Sru- Then z = ya. We claim that 7z = (ry)b. There are two cases

to check.
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CATEGORIES OF HIGHEST WEIGHT MODULES 67

Case one: suppose that ya is in A(u). Then 7y = yso. If Q7 is orthogonal
to a then za € A(u), 7¢ = x5, and a = b. The claim follows immediately
from this. So we may assume that Q% is not orthogonal to a. Then there
is a unique v in Q% with (y,a) # 0. Since yy and yo are both short roots
in A(u), (y,a) = 1 and v = € + en—1 for some j < n — 1. In particular,
za € A(m) and thus 7z = zsg = yasg. To prove the claim it suffices to
show: m = y. However, asgbsq = absgiaaSatp = SyS7v52¢,_15a+8 =
Sejten—152¢;52n_15a4p = Sej—en_,Sa+p- AlsO, y(ej —en_1) = y(y —2a—-p) €
A(m) and y(a+ B) € A(m). Thus yasgbs, = YSe,—en_15a+p = Y- This proves
the claim in case one.

Case two: suppose that ya is in A(m). Then 7y = ysg. If Q7 is orthogonal
to a then, as in case one, the claim is obvious. Assume that Q7 is not orthogo-
nal to @. Then there is a unique v in Q% with (v, @) # 0. This v must have the
forme; +e,_;. Now za = ys,a = sy, ya. Since ya € +A(y), yo € A(m) and
both roots are short, za = yo + yy € +A(u). But y € Wp and so za € A(u).
Thus, 7z = Ts,. To prove the claim it suffices to show that m = y. Set
u =B+ 2a = 2e,_1. Then, asabsg = abs,sa = $y52¢;5u8¢ = S5,v5q. Also,
ysuy € A(m) (since yy € A(u)) and yoo € A(m). Thus yasebss = y. This
proves the claim in case two.

By (9.8), 2 € Sz p and 2 C —z71%; 5. From (12.15) and (12.16), 7Q C
—(12)7 12,0 and TQ € S;4,o. By the claim above, rz = W Thus 7Q €
S:y,« and r.q = b. This proves the only if part of the lemma.

Conversely, suppose that 7Q € S,y o and 7z = Tyr,;q Set 7Qt = QN
(ry)~1A(w). By (9.8), 7Q C —(72)"!Z,4 o and so by (12.15), there is a subset
T of —z7'%, 5 with 7T = 7Q. By (12.16), T € Sz 5. Set @ =[] er rcera+ S¢
and y' =Za. ThenT € Sy pandz = y'a. Applying the first claim of this proof
to y’ and T, we have 7z = (_7'y_’)3 where b = r;q. Thus, m =71z = m

and so 7y’ = ry. By parity we must have y = y’ and thus also T' = Q (since
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68 T. J. ENRIGHT and B. SHELTON

7 is one-to-one on A*(8) Ny~ !(A(u) U —A(x))). This completes the proof of
(12.17).

In section fourteen we will need an analogue of (12.16), with the usual
ordering of At replaced by a linear ordering. We include this result here.

Let < denote the linear ordering introduced for (10.6). Note that with this
lin

ordering any root of the form 2e; or e; + ¢; will be greater than any root of

the form e, — e,, r < 5. Also for any v,{ € At, v < { implies v <(;i.e., <
lin lin

is compatible with <.

Lemma 12.18 Let z € Wy and v,v € —z~'Z, 5. Then 7“%1/ if and only if
Ty <TV.

lin
Proof: At most one element in —z~!%, g is changed by 7. So we need only
consider two cases: 7y # v and 7v # v. However, this ordering is linear and

therefore 7151/ if and only if v, v do not satisfy VIS‘)/. Thus we need only prove
the lemma ;':;r TY# Y, TV=1. "

Fix j <n—2 with y =¢; £ e,_1. Since {1‘%7 for all roots £ of the form
er—e, r<t<n-—2 fugn'y and fugn‘r'y for all such €. Thus (12.18) holds if
v has this form. So we assume otherwise: v = e, + e, withr < s < n - 2,

r,s # j. Now directly from (8.2) and (8.4), we find s < j; and thus, both y <v
lin

and 74 <v. This completes the proof.

lin
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§13. Proof of Theorem 8.5

In this section we prove Theorem 8.5. We continue to assume that (g,p)
is of type HS.1, HS.3 or HS.5 with rank n and constant p (as in Table 8.1).
The techniques used here are essentially the same as those used to prove (8.4).
We proceed by induction on p. If p = 1 then (8.5) follows immediately from
[16]. We assume p > 1 and (8.5) holds for the pair (g’, p’).

Lemma 13.1 Let o be a simple root and fix x € Wq. Set r = H'yezi',. Sy
Then:
(i) z'TF, is in S;,q and Socle(N(z(p — wa))) = L(rz(p — wy)).
(ii) D(z(p — wy)) Is self-dual.
(iii) If Q is in Sz o then |Q| <p—1.
(iv) P(z(p — wa)) is self-dual if and only if |E; 4| =p — 1.

Proof: Suppose that o is a short root and let A, : @' — O, be the equivalence
of categories given by (10.1) and (11.2). Then all of the claims of (13.1) follow
from the inductive hypotheses and the formulas of (10.5) and (11.7). If B is the
long simple root of HS.3, then let a be the adjacent short simple root. Then
i) through iv) hold for . By the formulas of (12.15), (12.16) and (12.17) and
the equivalence of categories in (12.14), i) through iv) must also hold for 3.
This completes the proof of (13.1).

(13.2) Proof of Theorem 8.5
Fix z in W2, If zp is not A(u)—antidominant then there is a simple
root o with so € Wy. Then £F = &F, | U {za} and thus z~ 1T} € S, by

TS,

69
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(13.1) and (9.5). If zp is antidominant then £} = @. Combining parts i and

i of (13.1) with (4.6) we also have: Socle(N(zp)) = L(rg+zp) and D(zp) is
self-dual. This proves i and ii of (8.5)

Let Q be in S;. If Q is nonempty then there must be a simple root « in
Q. Since za € +A(u), either  or zs4 is in W,. Thus Q \ {a} is in Sz,o or
Szs,a- By (13.11iii) we have || < p. This is (8.5 iii).

If zp is dominant then X; = @ and P(zp) is never self dual. Assume that
zp is not dominant. Fix a simple root o with £ € W,. Then by (4.5), (13.1
iv) and (9.5), P(zp) is self-dual if and only if P(z(p — wq)) is self-dual if and
only if |2\ {—za}| = p—1 if and only if || = p. This proves (8.5 iv) and

completes the proof of (8.5).
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§14. Projective resolutions and Ext

In this section we give formulas for the groups Ext*(N(zp), L(yp)) These
formulas arise as a consequence of a special type of projective resolution for
generalized Verma modules which exists in O(g,p, p). As a consequence of the
Ext! result, we also give an explicit formula for Vogan’s Uy functor (cf. [34]).
Throughout this section, unless otherwise stated, (g, p) is any of the pairs of
Table 8.1.

If  is in W™ then we will denote by L, N, and P, the modules L(zp),
N(zp) and P(zp) respectively. If a is any simple root and z or zs4 is in W,
then we write Lg, N2 and P2 for the modules L(z(p — wa)), N(z(p — waq)) and
P(z(p — wy)) respectively. As usual, 1, and ¢, are the translation functors
to and from the a-wall. Set O = O(g,p,p), O = O(g,p,p — wy) and O’ =

O(g',p', p(g"))-

Definition 14.1 Let A be in O and let P, — A be a projective resolution
of A in O. For j € N there are m; € IN and elements w;; € W™, 1 < i < m;,
with P; = EBKij P,,;. We say that the resolution has even (resp. odd)

parity if j — £(w;;) =0 (resp. 1) mod 2 for all 4, j.

Lemma 14.2 Let y be in W™ and assume P, — A is a projective res-
olution in O with even (resp odd) parity. Then with notation as in 14.1,
Ext’ (A, Ly) = Hom(P;,Ly) and thus dim Ext/ (4, L,) = card{i | wi; = y}.
Moreover, Ext’ (A, Ly) = 0 unless j — £(y) = 0 (resp. 1) mod 2.

71
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72 T. J. ENRIGHT and B. SHELTON

Proof: For each indecomposable projective, Hom(P,, Ly) = € or 0 depending
as w = y or not. Thus the parity condition implies that every other term in
Hom(P., Ly) is zero. Thus Ext?(A, Ly) = H/(Hom(P,, L,)) = Hom(P;, Ly).
This proves the lemma.

The previous lemma describes the importance of projective resolutions
with parity. We will prove that any generalized Verma module admits such
a resolution. The technical basis for our argument is a basic result called the

algebraic mapping cone.

Proposition 14.3 [28, p.46] Let 0 - A — B — C — 0 be a short exact
sequence of modules and let P, — A and Q. — B be projective resolutions.
Then there is a projective resolution R, — C with Ry = Qo and R; = Q;®P;_1
for i € IN*.

To describe our recursive formula we will need some notation. For the
moment assume that (g, p) is one of the three types HS.1, HS.3 or HS.5. Fix
a simple root a. If a is short then combining (10.1) with (11.2) there is an
equivalence of categories Ay : O' — O,. If a is long then by (12.14) there are
equivalences eAq : O’ — Oy(even) and oAy : O — Oy(odd). Fix y € Wq so
that Ly is in Oy (resp. Oq(even), Oq(odd) ). Set A = Ay (resp. eAq, 0Aq).
For z € W'm,, set Ly = L(g',zp’) and N; = N(¢’,p’, zp'). If £ € W, (with an
even or odd condition on z(p—w,) if « is long) define z’ € we by the formula:
Ly = A(Ly/). It is clear from our equivalences that if Exty) denotes Ext
groups computed in the category O’ then Ext"(N:‘,L;‘) = Ext’b:(N;,,L'y,),
for all z,y € W, (with z(p — wq) and y(p — we) having the same parity if

relevant).

Proposition 14.4 Let y and w be in W™,
(a) Ny admits a projective resolution with the same parity as £(y).

(b) For any j, Ext!(Ny, Ly) = 0 unless y<w and j = £(y) — £(w) mod 2.
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(c) Let a be any simple root with y € W,. Then for all k > 1:
Ext*(Ny, Ly) = Ext*"'(Ny,,, Ly )®Ext* (N2, aLy)

Moreover, the last term in this equation is zero when w ¢ W, or when « is
long and y(p — wa) and w(p — w,) have opposite parity (cf. (12.11)).

(d) Suppose (g, p) is of type HS.1, HS.3 or HS.5, p > 1 and w € W,. Also
for HS.3 and a long, assume y(p — wq) and w(p — wy) have the same parity.

Then: Extk(N;",z,baLw) = Ext’b,(N'y;,L’w;).

Proof: Suppose first that (g,p) is of type HS.1 with constant p = 1, i.e.
(An,An—1). Using the notation of [16, section 6], we have N, = N(v(3)) for
some i, 0 < i < n. By (6.4) of [16] there is a projective resolution P, — N,
with Py = P(v(i + k)). This is easily seen to be a projective resolution with
the same parity as £(y) = n — i. This proves (a). Suppose that L, = L(v(t))
for some 0 < t < n. Then Ext*(Ny,L,) = Hom(P(v(i + k)),L(v(t))) =
0 unless t = i+ k. This proves (b). Finally, since Ny,, = N(v(i + 1)),
Ext*~}(Nys., Lv) = Hom(P(v(i + k)), L(v(t))) = Ext*(N,,L,). From [16,
(6.2)], Extf (Ny,%aLy) = 0for k > 1. This proves (c) and completes the proof
in the case HS.1, p = 1.

As discussed at the beginning of section twelve, for HS.1, HS.3 and HS.5
the p = 1 cases are either type Ay (for which the assertions are obvious) or
are included in sections six and seven of [16]. That article also treats the case
HS.2. In all of these cases the proof of (14.4) is precisely that of the previous
paragraph, and so we omit the details.

Next we assume that (g,p) is of type HS.1, HS.3 or HS.5 with constant
p > 1 and proceed by induction on p.

Begin a secondary induction on £(y). If £(y) = 0 then Ny = N(p) = P(p).

Thus N, trivially has the required resolution. So we assume £#(y) > 0. Fix a
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simple root o with y € Wa. Then £(yso) = £(y)—1, and so by induction, Ny,
has a projective resolution P, — Ny,  with even or odd parity depending as
£(y) is odd or even. Choose w;;, € W™ so that Py = @; P, .

Let A and y' be as above. By induction on p, N,, has a projective
resolution @, — N, with the same parity as £(y’). Fix t; in W' with
Qi = D; P(¢', P, tirp’). Choose y;x in W, with t;; = yj; (and even or odd
condition if relevant). Set Q; = ¢oA(Q}). Then Q. is a projective resolution of
¢o(Ny) with terms Qx = €D; Py, (cf. (4.1)). Applying the algebraic mapping
cone to the short exact sequence 0 — Ny, — ¢oN;* — Ny — 0, we obtain a
projective resolution R, — N, with Ry = Qo and Ry = @); Py, ©® @j ij’k_l.
To check the parity it suffices to show:

(14.5) k — £(yix) = £(y) mod 2
and
(14.6) k — f(w; x—1) = £(y) mod 2.

But (14.6) follows at once from £(y) = £(ys«)+1. So it suffices to prove (14.5).

To check (14.5) we need the following lemma:

Lemma 14.7(a) Let (g, p) be of type HS.1. Ifx € W™ withzp = (ay,...ap41)
(3Cai=0) thenf(z) = 31 ¢icp(5+1—i—a;i) = %P("+1—P)—Z1555p a;. In
particular, if ¢ € W, with a = aj and —za = e;—e, then£(2') = £(z)+2t+C;
where C; is a constant that depends only on «.

(b) Let (g,p) be of type HS.3. If x € W™ with zp = (ai,...,a,) (where
p=(n,...,1)) then(z) =3, «_;—ai. fe €W witha =;, 1 <i<n-1,
and —za = e, +e; (r <t)thenf(z')=4(z)+i+2t—3n—1. Ifz € W, with
a = ap and —za = 2e; then {(z') = £(z) —2(n —t) — 1.

(c) Let (g,p) be of type HS.5. If x € W™ with zp = (a1,...,a,) (Where
p=(n—1,...,0) then £(z) = }°, co—ai . If £ € Wq with a = a; and
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CATEGORIES OF HIGHEST WEIGHT MODULES 75

—za = e, +e; (r < t) then £(z’) = £(z) + 2t + C; where C; is a constant that

depends only on «.

Proof: The first claim of part (a) is an easy exercise which we omit. The
second claim follows by observing that

(a1 —1l,a2~1,...,a01 — @41+ 1,. .. 0, + 1,
ap+1——1,...,ar_.1—1,a,+1+1,...,an+1+1)

2'p(g) =
and then applying the first claim.

The first part of (b) we also leave as an exercise. If (g,p) is HS.3 and
—zo = e +ey, 7 <t thenz'p(g) = (a1 —2,...,8,1—2,8r41,...,8s1, 841+
2,...,8, +2). If —za = 2¢; then 2'p(g") = (a1 — 2,...,81-2 — 2,041 +
2,...,0n +2) if zay-1 € A(u) and 2'p(g") = (a1 — 2,...,8:-1 — 2,842 +
2,...,8, +2) if za,—1 € A(m). These observations prove the second claim of

(b). The proof of part (c) is similar to the proof of (b). We omit the details.
This completes (14.7).

Returning to the proof of (14.4) (a), we see immediately from (14.7) that
for any ¢ € W, £(y) — £(z) = £(y') — £(z') mod 2. Thus we have for each i, k;
k= £(y') — £(yl;) = €(y) — £(yix) mod 2. This proves (14.5) and completes the
proof of part (a) for HS.1, HS.3 and HS.5.

We next complete the proof of (¢) and (d). We assume that « is a simple
root with y € W,. By the definition and parity of the resolution R, — N,

given in the proof of part (a) we have:
Ext*(Ny, Ly) = Ext*(ga NS, Ly )OExt* 1 (Ny,, , Lu).

By the adjoint property we have Extk(¢aNy",Lw) = Extk(N;,waLw). This
proves the first claim of (c).
Set A = Ext*(N2, YaLu). If w ¢ Wq then oLy, =0, and so A = 0. If

w € Wy, a is long and y(p — ws) and w(p — w,) have opposite parity, then
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76 T. J. ENRIGHT and B. SHELTON

by (12.14) we still have A = 0. Otherwise, by our equivalences of categories
in sections 10 and 11 and by (12.14), A = Ext*(NZ, L3) = Extfy (N}, Li,.).
This completes the proof of (c)and (d).

Finally, if Ext*(Ny, Ly) # 0 then by (14.2), k — £(w) = £(y) mod 2. Now
proceed by induction on p and £(y). If £(y) = 0 then the result is clear as N,
is projective. If £(y) > O then using (c), either yso<w or y(p — wa)<w(p —
wq). Either way, y<w. This proves (b) and completes the proof of (14.4) for
HS.1,HS.3 or HS.5.

Only the case HS.4 remains. Here the argument is essentially the same
as that described above for HS.1, HS.3 and HS.5. However, there are some
simplifying features. In place of the inductive hypothesis, we use the explicit
structure of the categories O(g,p, p —wq) given in [16]. We omit the details of
this verification. This completes the proof of (14.4).

The recursion formulas in (14.4) have solutions expressed in the language
of ¥; and §;. We now describe these solutions. We say a linear ordering on
At, 15, is weakly compatible with < if for all simple roots o, all y € W,
and a;ln'y,u € ~y~ 1%, o, ¥ < v implies 7“§nv. Fix a linear ordering hé on At
weakly compatible with <. In the case HS.3, we let u% be given as in (10.6) or
(12.18).

Definition14.8 a) Recall the notation surrounding (8.2) and (8.3). For x €

W2 define a chain (of length t associated to z) to be an indexed set of positive
roots {¥i}1<i<: with the following properties. For 1 < i < t+1, put z; =
TSy, - Syi_,. Define Q;, 0 < i < t+ 1 inductively by Qo = 0 and Q; =
Qo u{be —x,.-lz:x,.lal_gy,;, §#%},1<i<t+1. PutQ; = Q;U{v}. Then
() Qies;, 1 gzing t
(i) v ¢ %, 0< i <t.
Note that a chain is determined by the flag of sets {Q2;}; and moreover, these

Qi all lie in —z; 1 5z,,, .
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CATEGORIES OF HIGHEST WEIGHT MODULES 77

b) For any y,w € W™, t € IN, let C(y, w,t) denote the set of chains {v;}
of length t associated to y with w = ys,, --- 5,,. By convention, C(y,w,0) is
the set containing the empty chain or the empty set depending as y = w or
not. Let C(y,w) = ;50 C(y,w,t). We refer to the elements of C(y,w) as the
chains from y to w.

c) For ¢ € W™, define a positive chain (of length t associated to z) to
be an indexed set of positive roots {vi}1<i<: which satisfy the following. For
1<i<t put i =75y, 8y, U1 =0, Q% ={y€ —w“lEzI‘rléw,'r # 7}
and Q; = Q; U {7:i}. Then

(i) Qies;, 1<i<t,
(i) % ¢ .
d) For y,w € W2, t € IN, let C*(y, w,t) denote the positive chains {v;}

of length t associated to y with w = Y&, - - 5,,.

By convention C*(y,w,0)
is the empty positive chain or the empty set depending as y = w or not. Let
C*(y,w) be the union of C(y,w,t) for t € IN. For any positive chain {v;} put
9; = Yt+1—j. Then the map {v;} — {4;} defines a bijection from C*(y,w,t)
to C(w, y,1). '

Theorem 14.9 Let y,w € W™ and j € IN. Then

dim Ext? (N, Ly,) = card(C(y, w, j)).

Proof: We proceed by induction on the integer p and the integer £(y) — £(w).
If £(y) < £(w) then all the Ext groups are zero by (14.4) and by (14.8 ii)
C(y,w) is empty. So we may assume £(y) — £(w) € IN.

We begin with the p = 1 cases. From [16] we know Ext/(Ny,L,) = €
or zero depending as j = £(y) — 4(w) or not. A short calculation using the

notation of [16] shows that C(y,w, j) is empty except when j = £(y) — 4(w)
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78 T. J. ENRIGHT and B. SHELTON

and, in that case, there is one chain from y to w of length j. This verifies the
proposition when p = 1.

Next we turn to the cases HS.1, HS.3 and HS.5. Suppose p > 1 and
assume (14.9) is true for smaller p. Fix y,w € W™, j € IN* (the case j =0 is
trivial) and put C = C(y,w, j). If £(y) = 0 then N, is projective, C is empty
and the proposition is true. So we assume £(y) # 0. Write C as a disjoint
union: C = AU B, where A is the set of chains {v;} with Q; empty and B is
the complement. Let & be the unique minimal element in —y~!%, with respect
to <. Then a chain in C lies in A when v; = é and in B when § € ;.

lin

The map {7i}i1<i<i — {7i}2<i<; gives a bijection:
(14.10) A — C(yss,w,j—1).

To analyze B we recall some equivalences of categories. Let O’ equal
O'(¢',p',0(g’')) and let O” equal Oy, Os(even) or Os(odd) depending as § is
short, 6 is long and y(p — ws) is even or § is long and y(p — ws) is odd. The
results of sections ten, eleven and twelve give an equivalence A : O — O,
Let v+ v/ and z + 2’ denote the maps from A*(6) to A’ and W; to we'
Then (10.5), (12.15) and (11.7) combine to assert that for all € W5, X, 5 is
carried to X',/ and S, 5 to &',/ Suppose {7i}1<i<: is a chain in B. We claim
{7{}1<i<¢ is a chain from y’ to w’. Let Q; and Q; be as in (14.8). Both Q;
and Q; are subsets of —z;'%;,, and so Q; \ {6} and Q; \ {6} lie in -—1,‘;-—121;‘.’6.
Since § lies in each Q;, =} = W Put ¥; = {V'|v € Q; \ {6}} and
¥; = ¥; U {v!}. Since {v;} € B, the 7; are orthogonal to § and thus z; € W5
for all ¢, 1 < ¢ <t. So we may recall the formulas (10.5), (11.7) and (12.15) for
each pair (z;,6). From this we conclude: ¥; lies in —mf—lz'ze; ie., ¥; € S/;ﬁ’
1< i <t. Thus the sets ¥; and ¥; satisfy properties i) and ii) respectively of

Definition 14.8.
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CATEGORIES OF HIGHEST WEIGHT MODULES 79

Now suppose 6 is a short root. In cases HS.3 and HS.5,if § = ¢; — e;41
put § = e; +e;41. Then v — V' is a bijection of At () (resp. At(6)\{6}) onto
A’ in the case HS.1 (resp. cases HS.3 and HS.5). Let ”%' denote the linear
ordering on A’* given by Vhsny if and only if u’lign"y’ for v,y € A*(8) (resp.
A*(6) \ {6}). Define chains from y’ to w' with respect to this ordering and
let C'(y',w’,t) denote the chains from y’ to w’ of length ¢. Then ¥; = {{ €
"zﬁ—lz'z’,. ICI,'%I%{ and ¢ # v;} U ¥;_;. This proves {7/} € C'(y',w’,t) when §
is a short root.

Next suppose that 6 is a long root. Then 6 is the unique long simple root.
In this case, HS.3, let 15 denote the ordering defined as in (12.18). Recall

in
the notation surrounding (12.15) through (12.18) with 3 replaced by §. Set
R = A*(a)\{en-1+€n}. Then the map 7 is a surjection of A+ (§) onto R. The
assignment v +— v’ is the composition of this map 7 with an order preserving
bijection onto A’* by (10.6). Thus v +— v/ preserves the linear order relation,
andso ¥; = {¢ € —mﬁ—IE'xrl ICIiSn"Y{ and ¢ # ¥/} U¥,_;. This proves {+/} is a
chain from y’ to w’ when § is a long root and completes the proof of the claim.

Reversing the argument which proves the claim above, and using the fact
that 6 is minimal in ~y~'XT,, we see that the mapping B — C'(y,v',t),
{7} — {~{} is also surjective.

By the induction hypothesis on £(y)—£(w), card(A) = cardC(yss,w,j—1)
which in turn equals dim Ext’ ~}(Ny,,,Ly). By induction on p, card(B) =
cardC’(y’,w’,j) which equals dim Ext’ (N'y,L'yr). Combining these with
(14.4 ¢ and d), cardC = dimExt/(Ny, Ly,). This completes the proof for
HS.1, HS.3 and HS.5.

The case HS .4 is the remaining case. Here the proposition can be verified

using the results in [16]. We outline the verification in some detail. Suppose g
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80 T. J. ENRIGHT and B. SHELTON

is of type HS.4. The reader should refer to [16] for additional details. The set
W2 for this case (D,,,D,_1) can be described by the diagram:

. n—1
|
. n—2
|
i
° 1
(14.11) 7\
0 e ° o’
NS
. -1
|
|
. -n+1

We use integers i, —n < i < n, and 0’ to denote the corresponding elements of
W2 In this setting the semiregular integral categories are equivalent to the
regular integral category for sI(2,€). Therefore, Ext* (Ny, YaLy) is always
zero for k > 2. Then (14.4 ¢) and the results of [16] imply the next Lemma.
Lemma 14.12 i) For 0 < j < t < n, Ext*(N_;,L;) = C when k equals either
t+ j ort — j. For other k, this space is zero.

ii) For all pairs (y,w) not covered in i), Ext*(Ny,Ly,) = € when k =
£(y) — £(w) > 0 and is zero otherwise.

A calculation in the coordinates of [16] yields:

Lemma 14.13i) For 0 < j <t < n, C(—t,j) contains two chains:

{an—t;an—t-}-ly ey Qp2,0n_1,0n,0n_2,.. -;an—j}

and
{an—t, Up—t4ly--y XAn—j—-2, au}

where v = an—j_1 + 2an_j + -+ + 2an_2 + an_1 + an. The first has length
t + j while the second has length t — j.
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ii) For all pairs (y,w) not covered in i), C(y,w) contains one chain of

length £(y) — £(w) if £(y) — £(w) > 0 and is empty otherwise.

These two lemmas combine to verify the theorem in the case HS.4. This

completes the proof of Theorem 14.9.

Corollary 14.14 Let y and w be in W™=, Then:

1 _[C ifw=73y for somey € X;
Ext’(Ny, L) = {0 otherwise

and

1 _JC ify=wrg forsome Q€ &, with|Qt |=1;
Ext'(Ny, L) = {0 otherwise. T

Proof: The first formula follows from (14.9), while the second follows from
the first as in the proof of (9.6).

Next we turn to a description of the functor U, introduced by Vogan. Let
a be a simple root and set O, = ¢q0Yq. If w € W, then ©4(Ly,) is a self dual
module with unique irreducible quotient L,, and socle L,,. Define Uy(L,) to

be the maximal submodule of ©4(Ly)/Ly.

Proposition 14.15 If w is in W, then:

Ua(Ly) = Lys & ) Larg-
Qeé&,,lat|=1
wro ¢ Wa

We must first establish that Uy(Ly) is semisimple. This fact is implied
by the Kazhdan-Lusztig conjectures. However in our setting we give a more

direct proof.
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82 T. J. ENRIGHT and B. SHELTON

Lemma 14.16 If w € W, and L, is a composition factor of both N, and
Nys, then z € W,.

Proof: If (g,p) is of type HS.2 then the only composition factor common to
both N, and Ny, is L, . Thus we may assume that (g, p) is not of type HS.2.
Note that if ¥ and v are in A(u) and « is a short root not orthogonal to v and
v # v then s,7 € A(m).

Suppose that z ¢ W,. For Q C X,, set sq =[], . 5y. By (8.4) there are

YeQ
Q, T C X, with w =35z and ws, = s7z. By rearranging terms and cancelling

z In the equation wsy = SpZz = 50254, We see:
(*) Ssqza850ST € W and SspzaSTSQ € W

Suppose that there is a short root v in either Q or ' with (vy,2a) # 0.
Say v € I'. Then (v, srza) = (—v,za) # 0 and, since w € Wy, srza € A(uw).
Thus ss.;a8rsa(Y) = Ssrza(£Y) € A(m) This contradicts (*) and thus there
is no v as above.

Since z ¢ W, and w = 3qz € W, there must be a root v € Q with
(v,za) # 0. By the previous paragraph, ¥ must be a long root and 7 is the
only root in Q not orthogonal to za. Since za ¢ —A(u), za # v and za cannot
be a long root. In particular, syza = sqza € —A(u) and thus za € A(m).
Since wsq,a € A(u), there must be some A € T' with (), za) # 0. Now, arguing
as above, A must be a long root. So A = ¥ and all other roots in 2 and
I are orthogonal to za. However, s,za € —A(u) and since ws,a € A(uw),

syza € A(u). This contradicts ¥ = A and completes the proof of (14.16).

Proof of (14.15): Let L, be a composition factor of Uy(Ly) which occurs

with multiplicity at least two. The character of Uy(Ly ) is dominated by the
character of ©4(N,). Since ch(©4(Ny)) = ch(Ny) + ch(Nys,) and since

both N, and N,,, are multiplicity free, L, must be a composition factor of
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both N, and Ny,,. This contradicts (14.16) since z ¢ W,. Thus, Uy(Ly,) is
multiplicity free. Since it is a self-dual module it must also be semisimple.

It remains only to compute the composition factors of Uy(Ly ). Suppose
that Ly is a composition factor of Uy L. Then, by the semisimplicity of Uy L,
Ext'(Ly, Ly) # 0. Let J, be the maximal submodule of N,. If y<w then
Hom(Jy, L, ) = 0 and thus, by a long exact sequence, Extl(Ly,Lw) injects
into Ext'(Ny, Ly) and Ext!(Ny,Ly) # 0. Thus, by (14.14), if y<w then
y = wrg for some Q € &, with card(2*) = 1. On the other hand, if y £ w
then Hom(Jy, Ly) = 0 and thus Ext'(N,, Ly) # 0. By (14.14) this could only
happen if y = ws,, since we must have y<ws,.

Conversely, suppose that y = wrg for some Q € &, with card(Qt) =1
and y ¢ W,. Let Q,L, be the maximal quotient of ®,L,,. From the short
exact sequence 0 — L,, — O4Ly — Q4Ly — 0, we obtain the long exact
sequence:

(%) q
Hom(Ny, ©4Ly) — Hom(Ny, QaLyw) — Ext'(Ny, Ly) — Ext'(Ny, ©4Ly)

The first term in (**) must be zero, since y # w and y # wso. If yo € A(m)
then ¥, Ny = 0, and so the last term is also zero. Suppose that ya € A(w),
(yo ¢ —A(u) since y ¢ Wy ). For some v in X, w = 577 . Since wa € —A(u)
and ya € A(u), this can only happen if « is a long root and v is not or-
thogonal to ya. A simple check in coordinates then shows that w(p — ws)
and y(p — wa) have different parity (cf. (12.11)). Thus Ext!(Ny,04Ly) =
Extl(qbaNy, YaLly) = 0 by (12.14). In any case, the last term of (*#) is zero,
and thus the second and the third terms are both nonzero (by (14.14)). Since
L, is the unique simple quotient of N, this shows that L, must be a compo-
sition factor of Q4L . The exact sequence 0 — UyLy — QqLy — Ly — 0
implies that L, must actually be a composition factor of UyL,. Finally,
Lys, must be a composition factor of UyL, because of the isomorphism
Hom(Ny;,,0qLy) = Hom(¥gNy,%aLly,) = €. This completes the proof
of (14.15).
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§15. Kazhdan-Lusztig polynomials

The Kazhdan-Lusztig conjecture [23] gives a recursion relation which de-
termines the character formula for irreducible highest weight modules for any
semisimple Lie algebra. This conjecture was proved in [2] using the theory of
D-modules and in [11] using the theory of holonomic systems. In the setting of
classical Hermitian symmetric pairs, as one might guess, there are easier proofs
of this conjecture. In [34], the semisimplicity of the modules Uy L(v) implies
the validity of the conjecture. In turn, this semisimplicity is established in
(14.15). This gives another proof for our setting.

The work of Lascoux and Schiitzenberger gives a combinatorial descrip-
tion of the Kazhdan-Lusztig polynomials in the case HS.1. They define gen-
erating functions ), ¢!”! and then prove these polynomials are solutions to
the Kazhdan-Lusztig recursion relations. However, these polynomials satisfy
a much simpler recursion relation determined by the combinatorics. This re-

lation is given in [26] and asserts (in their notation):
1 " ’ " 1,01
(15.1) QU = QU + g QUL whete = [o/]a — [/]a.

There are two main results in this section. The first is Theorem 15.4
which generalizes the relation (15.1) to the Hermitian symmetric cases HS.3
and HS.5. The second is Theorem 15.5 which gives explicit formulas in all
the classical Hermitian symmetric cases for the Kazhdan-Lusztig polynomials
in the language of chains as introduced in (14.8). Of course our hope is that
similar representation theoretic techniques will yield similar results for O(g, p)
where p is any maximal parabolic subalgebra of a semisimple Lie algebra g.

Following the work of Kazhdan and Lusztig [23] and Vogan [34], we define
polynomials which we call KLV polynomials. Let wy (resp. wp,) be the element

of maximal length in W (resp. Wp,) and for w € W define v = wpww,. For

84
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w € W™, put My = M(wp), Ny = N(wp) and Ly = L(wp). For y,w € W2,
define a polynomial Qy ., (g) by :

Qyu(g) = E ¢’ dim Exttw)-4v)-2 (N;, L)
j20

— Z ql‘w!—q![—

(152) .- |
2 dim Ext'(Ng,Lu‘,)‘

i>0
From the parity (14.4), we k_now the sum over j can be taken over the integers
or half integers. The result is the same. Let P, ,,(¢) denote the corresponding
polynomials with Ext computed in O(g, b) instead of O(g, p) and with Ny and
L, replaced by M(—yp) and L(—wp) respectively. It is well known that these

polynomials are related. We have:
Lemma 15.3 For y,w € W™ and r € Wp,,

Qy,uw(g) = Pry,waw(qy

Proof: Let b = h®n and n = DU Then u is an ideal of n. Put
& = —wmyp — p and let F denote the irreducible finite dimensional m-module
with extreme weight £. For any h-module E, let E¢ denote the £-weight space
of E. The Ext groups are related to cohomology as follows: Exti(Ng, L) =
Homy, (F, H'(y, Ly)) and Ext'(M,y, Ly) = H'(n, L) €+7)=+. Now the mod-
ules Hi(y_, L,;) are finite dimensional m-modules, and so we may use Kostant’s
formula for computing the n,,-cohomology of these modules [25]. Then the
Lyndon spectral sequence ([28], p. 351) proves the equality of these polynomi-
als.

In the cases HS.2 and HS.4, the KLV polynomials can be computed ex-
plicitly from [16], as can the cases HS.1,HS.3 and HS.5 when p = 1. We remark
that in all the p = 1 cases, the polynomials @, ., are either one or zero depend-
ing as w~<y or not. So we now restrict to the remaining cases where recursion
formulas are needed. Let (g,p) be of type HS.1, HS.3 or HS.5 and let notation
be as in the remarks surrounding (14.4). Recall the notation z + z’ defined
by: Lg = A(L's). Let @'y, denote the KLV polynomial defined as above
with g, p, m and W™ replaced by ¢’, p’, m’ and W'ml respectively.
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86 T.J. ENRIGHT and B. SHELTON

Theorem 15.4 Let y and w be in W™,
(i) Ify is the element of maximal length in W™ then Q, ,, equals the constant
polynomial one or zero depending as y = w or not.
(ii) Ify is not of maximal length then choose a simple root 3 with ysg € Wg,
ie. yB € A(u). We have the following two cases:
(a) Suppose that either wsg ¢ Wy or (g,p) is of type HS.3, (3 is a long
root and y(p —wg) and w(p — wg) have opposite parity (cf. (12.11)).
Then
Quw = Quspu-

(b) Suppose that wsg € Wg. Also, for HS.3 and 3 long, assume that

y(p —wp) and w(p — wp) have the same parity. Then

Quuw = st,g,w + quly',w’

with 2r = f(w) —€(y) — €' (w')+ €' (y") and £( ) (resp. £'()) denoting the length
function on W (resp. W').

Proof: If y has maximal length in W™ then Ny is projective. This proves (i).
Now suppose y and § satisfy (ii). Put « = —wy3. From (9.2) we obtain: for
y, B as above, ysg € Wy if and only if § € W,. Also, if 3 is long then oo =
and y(p —wp) and w(p — wp) have the same parity if and only if y(p —wg) and
w(p — wp) do. Therefore, case a) follows directly from (14.4) c) while case b)
follows from (14.4) c) and d). This completes the proof.

After a change of notation from that used here to that of Lascoux and
Schiitzenberger [26], we find that the identity (15.4, ii, b) for HS.1 is precisely
the identity (15.1). Therefore the combinatorial generating functions 3, ql*!
in [26] are the polynomials @y, for HS.1.

The notion of chain introduced in Definition 14.8 generalizes these results
of Lascoux and Schiitzenberger . The formulas for Ext given in (14.9) translate

as follows for KLV polynomials.
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Theorem 15.5
(i) Let y,w € W™. The coeflicient of ¢’ in the KLV polynomial Qy,w
equals the number of chains from y to w of length £(w) — £(y) — 2j.
(ii) For w € W™ expand the character chL,, = Ey(-l)l(y)“(“’)aychNy
with ay € Z. Then a, equals the number of chains from y to w (of all lengths),

or equivalently the number of positive chains from w to y.
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§16. Decompositions of U(u~)-free self-dual g-modules

We keep the notation and assumptions of section eight. So (g,p) is a
Hermitian symmetric pair of classical type (cf. (8.1)) and O = O(g,p,p). Let
D be the full subcategory of O consisting of all modules which admit both a
Verma flag and a nondegenerate g-invariant bilinear form. In this section we
give a complete description of the modules in D. This description then yields
several corollaries concerning the signatures of Hermitian forms.

Recall the modules D(v) from (2.7). Let D, = D(wp) for w € W™,

Proposition 16.1 Let X € D. Then X admits a symmetric nondegenerate
g-invariant bilinear form ¢. Furthermore, there is an orthogonal direct sum
decomposition (with respect to ¢): X = ®i61 X; where X; = D,,, for some
w; e WH, iel

Proof: This is exactly Theorem 1.8 in [16]. The hypotheses (1.7) and (1.4)

of [16] have been verified here in (8.5).

Corollary 16.2 Let X,Y € D and assume chX = chY. Then X andY are

isomorphic.

For any module X in O(g,p), let XV denote the h-finite contravariant
dual module to X. Then XV is in O(g, p) and chX = chXV.

Proposition 16.3 Let X € O and assume that both X and XV are free
U(u~)-modules. Then X admits a symmetric nondegenerate form; i.e., X lies

inD.

88
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CATEGORIES OF HIGHEST WEIGHT MODULES 89

Proof: PutY = X@XV. ThenY € D and by (16.1), Y = @,, Yo, where each
summand Y,, is itself a direct sum of copies of D,,, w € W2, Therefore Y has
a decomposition Y = @w,‘ Yy i where Y,, ; = D,,. We say this decomposition
satisfies (C,z) for z € W™ if for all w » 2z and all 4, Y, ; is a submodule of
either X or XV.

Suppose the decomposition of Y does not satisfy (C, z) for some z € W™,
Choose u € W™ maximal in the Bruhat order with (C,u) not satisfied. Set
Y’ = @Y., with the sum taken over all w € W™ for which (C,w) is satisfied.
By maximality of u choose an invariant symmetric form ¢ on Y which has
nondegenerate restrictions to both X NY’ and XV NY’. Set Y(resp. X, &V)
equal to the orthogonal complement of Y’ (resp. X NY’, X¥NY’)in Y (resp.

X, XV). The maximality of u gives:

(16.4) Y =XoXxV , Y =Y'®Y.

Put v = up — p and let L denote the weight space Y,. Then v is a maximal
weight of Y. Fix any nondegenerate symmetric bilinear form %’ on L which
has nondegenerate restrictions to both LNX and LNX"Y. The module Y has a
decomposition as above: Y = @, Y,,. Since v is a maximal weight, L equals
LNY,. In turn from [16, (3.1)], this implies that v’ extends to an invariant
symmetric form ¢ on Y.

Decompose Y,, into a sum EQF where E and F' are each direct sums
of D,and LNE =LNX, LNF = LNXY. Note that the socles of E
and F are contained in X and XV respectively. Therefore if v and mV ‘denote
the projections of Y onto X and XV, then 7 and #¥ induce isomorphisms:
ES7E, and F=7V F. By (16.4), these modules lie in Y. Moreover, from [16,
(3.1)], the restrictions of ¢ to 7E, 7V F and w E®nY F are nondegenerate, since
(7E), = LNX and (7" F), = LNX". Taking complements with respect to -

orthogonality we obtain Y = nE®nY F®G. Recall the original decomposition
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90 T. J. ENRIGHT and B. SHELTON

of Y. Replacing the summands Y, ; by the summands of 7E and xVF and the
summands Y, ; not in Y’ by summands of G, we obtain a decomposition of
Y which satisfies (C, u). By induction we obtain a decomposition of Y which

satisfies (C, w) for all w € W™. This completes the proof of (16.3).

If ¢ is a nondegenerate Hermitian form on a finite dimensional vector
space E then for some basis of E, ¢ is represented by a diagonal matrix with
a ’s and b -1’s. We call the pair (a,b) the signature of . Let X € O and
let 1 be a nondegenerate invariant Hermitian form on X. Define the signature
of ¥, S(¢), to be a map S(¢) : weights of X — IN x IN. For a weight A of
X, S(¥)(A) is the signature of 9 restricted to the finite dimensional A-weight

space of X.

Proposition 16.5 [16, Theorem 1.10] D,, admits a nondegenerate invariant

Hermitian form. Moreover, if ¢ and ¢ are two such forms then either

S(¢)=5@E) o  S(¢)=-5(¥)

For any X € D, by (16.1) we may write: X = @ X,, with X, isomorphic
to a direct sum of dy-copies of D,,, w € W2, If ¢ is a nondegenerate g-
invariant Hermitian form on X then we may assume this decomposition is
orthogonal with respect to ¢. Put ¢,, equal to the restriction of ¢ from X to
Xu-

Proposition 16.6 [16, Theorem 1.12] Let X and Y be in D with nondegen-
erate invariant Hermitian forms ¢ and v respectively. Assume S(¢) = S(¥).

Then X and Y are isomorphic and for all w € W2, S(¢y,) = S(¥w)-
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