Math 259: Introduction to Analytic Number Theory

The product formula for $\xi(s)$ and $\zeta(s)$; vertical distribution of zeros

Behavior on vertical lines. We next show that $(s^2 - s)\xi(s)$ is an entire function of order 1; more precisely:

Lemma. There exists a constant C such that $(s^2 - s)\xi(s) \ll \exp(C|s|\log|s|)$, but no constant C' such that $(s^2 - s)\xi(s) \ll \exp(C'|s|)$.

Proof: By the functional equation $\xi(s) = \xi(1-s)$, it is enough to consider $s = \sigma + it$ with $\sigma \ge 1/2$. From Stirling it follows that for fixed $\sigma \in \mathbf{R}$

$$\operatorname{Re}\left(\log\Gamma(\sigma+it)\right) = \left(\sigma - \frac{1}{2}\right)\log|t| - \frac{\pi}{2}|t| + C_{\sigma} + O_{\sigma}(|t|^{-1}).$$

For $\sigma > 1$, the Euler product for $\zeta(s)$ shows that $\log |\zeta(\sigma + it)| = O_{\sigma}(1)$; indeed we have the upper and lower bounds

$$\zeta(\sigma) \ge |\zeta(\sigma + it)| > \prod_{p} (1 + p^{-s})^{-1} = \zeta(2\sigma)/\zeta(\sigma).$$

Hence $|\xi(\sigma+it)|$ is within a constant factor of $|t|^{(\sigma-1)/2}e^{-\pi|t|/4}$ for large |t|. This estimate on $|\xi(\sigma+it)|$ already proves that $|(s^2-s)\xi(s)|$ grows faster than $\exp(C'|s|)$ for any C'; together with the functional equation, it also shows that for each $\sigma < 0$ there exists C_{σ} such that $|\zeta(\sigma+it)|$ is within a factor of C_{σ} of $|t|^{1/2-\sigma}$ for large |t|.

To prove our Lemma, it remains to bound $\zeta(s)$ for s in or near the critical strip. Generalizing our formula for analytically continuing $\zeta(s)$, we find for $\sigma > 0$

$$\zeta(s) = \sum_{n=1}^{N-1} n^{-s} + \frac{N^{1-s}}{s-1} + \sum_{n=N}^{\infty} \int_{n}^{n+1} (n^{-s} - x^{-s}) \, dx,$$

which for large t, N is $\ll N^{1-\sigma} + |t|N^{-\sigma}$, uniformly at least for $\sigma \geq 1/2$. Taking N = |t| + O(1) we find $\zeta(\sigma + it) \ll |t|^{1-\sigma}$ for $\sigma \geq 1/2$, |t| > 1. Together with Stirling's approximation, this completes the proof of our Lemma. \square

A remark about our choice of $N \sim |t|$ in the bound $\zeta(\sigma+it) \ll N^{1-\sigma}+|t|N^{-\sigma}$: of course we wanted to choose N to make the bound as good as possible, i.e., to minimize $N^{1-\sigma}+|t|N^{-\sigma}$. In calculus we learned to do this by setting the derivative equal to zero. That would give N proportional to |t|, but we arbitrarily set the constant of proportionality to 1 even though another choice would make $N^{1-\sigma}+|t|N^{-\sigma}$ slightly smaller. In general when we bound some quantity by a sum O(f(N)+g(N)) of an increasing and a decreasing function of some parameter N, we shall simply choose N so that f(N)=g(N) (or, if N is constrained to be an integer, so that f(N),g(N) are nearly equal). This is much simpler and less error-prone than fumbling with derivatives, and is sure to give the minimum to within a factor of 2, which is good enough when we're dealing with $O(\cdots)$ bounds.

Product and logarithmic-derivative formulas. By our general product formula for an entire function of finite order we know that $\xi(s)$ has a product expansion:

$$\xi(s) = \frac{e^{A+Bs}}{s^2 - s} \prod_{\rho} (1 - s/\rho) e^{s/\rho},\tag{1}$$

for some constants A,B, with the product ranging over zeros ρ of ξ (that is, the nontrivial zeros of ζ) listed with multiplicity. Moreover, $\sum_{\rho} |\rho|^{-1-\epsilon} < \infty$ for all $\epsilon > 0$ but $\sum_{\rho} |\rho|^{-1} = \infty$. The logarithmic derivative of (1) is

$$\frac{\xi'}{\xi}(s) = B - \frac{1}{s} - \frac{1}{s-1} + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right);$$
 (2)

since $\xi(s) = \pi^{-s/2}\Gamma(s/2)\zeta(s)$ we also get a product formula for $\zeta(s)$, and a partial-fraction expansion of its logarithmic derivative:

$$\frac{\zeta'}{\zeta}(s) = B - \frac{1}{s-1} + \frac{1}{2}\log\pi - \frac{1}{2}\frac{\Gamma'}{\Gamma}(\frac{s}{2} + 1) + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right). \tag{3}$$

(We have shifted from $\Gamma(s/2)$ to $\Gamma(s/2+1)$ to absorb the term -1/s; note that $\zeta(s)$ does not have a pole or zero at s=0.)

Vertical distribution of zeros. Since the zeros ρ of $\xi(s)$ are limited to a strip we can find much more precise information about the distribution of their sizes than the convergence and divergence of $\sum_{\rho} |\rho|^{-1-\epsilon}$ and $\sum_{\rho} |\rho|^{-1}$. Let N(T) be the number of zeros in the rectangle $\sigma \in [0,1]$, $t \in [0,T]$ — which is very nearly half of what we would call n(T) in the context of the general product formula for $(s^2 - s)\xi(s)$.

Theorem (von Mangoldt). As $T \rightarrow \infty$,

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T). \tag{4}$$

Proof: We follow chapter 15 of [Davenport 1967], keeping track of the fact that Davenport's ξ and ours differ by a factor of $(s^2 - s)/2$.

We may assume that T does not equal the imaginary part of any zero of $\zeta(s)$. Then

$$2N(T) - 2 = \frac{1}{2\pi i} \oint_{C_R} \frac{\xi'}{\xi}(s) \, ds = \frac{1}{2\pi i} \oint_{C_R} d(\log \xi(s)) = \frac{1}{2\pi} \oint_{C_R} d(\operatorname{Im} \log \xi(s)),$$

where C_R is the boundary of the rectangle $\sigma \in [-1,2]$, $t \in [-T,T]$. Since $\xi(s) = \xi(1-s) = \overline{\xi(\overline{s})}$, we may by symmetry evaluate the last integral by integrating over a quarter of C_R and multiplying by 4. We use the top right quarter, going from 2 to 2 + iT to 1/2 + iT. At s = 2, $\log \xi(s)$ is real, so we have

$$\pi(N(T)-1) = \operatorname{Im} \log \xi(\frac{1}{2} + iT) = \operatorname{Im} (\log \Gamma(\frac{1}{4} + \frac{iT}{2})) - \frac{T}{2} \log \pi + \operatorname{Im} (\log \zeta(\frac{1}{2} + iT)).$$

By Stirling, the first term is within $O(T^{-1})$ of

$$\operatorname{Im}\left(\left(\frac{iT}{2} - \frac{1}{4}\right)\log\left(\frac{iT}{2} + \frac{1}{4}\right)\right) - \frac{T}{2}$$

$$= \frac{T}{2}\log\left|\frac{iT}{2} + \frac{1}{4}\right| - \frac{1}{4}\operatorname{Im}\log\left(\frac{iT}{2} + \frac{1}{4}\right) - \frac{T}{2} = \frac{T}{2}\left(\log\frac{T}{2} - 1\right) + O(1).$$

Thus (4) is equivalent to

$$\operatorname{Im}\log\zeta(\frac{1}{2}+iT)\ll\log T. \tag{5}$$

We shall show that for $s = \sigma + it$ with $\sigma \in [-1, 2], |t| > 1$ we have

$$\frac{\zeta'}{\zeta}(s) = \sum_{|\operatorname{Im}(s-\rho)|<1} \frac{1}{s-\rho} + O(\log|t|),\tag{6}$$

and that the sum comprises at most $O(\log |t|)$ terms, from which our desired estimate will follow by integrating from s = 2 + iT to s = 1/2 + iT. We start by taking s = 2 + it in (3). At that point the LHS is uniformly bounded (use the Euler product) and the RHS is

$$\sum_{\rho} \left(\frac{1}{2 + it - \rho} + \frac{1}{\rho} \right) + O(\log|t|)$$

by Stirling. Thus the sum, and in particular its real part, is $O(\log |t|)$. But each summand has positive real part, which is at least $1/(4 + (t - \operatorname{Im} \rho)^2)$. Our second claim, that $|t - \operatorname{Im} \rho| < 1$ holds for at most $O(\log |t|)$ zeros ρ , follows immediately. It also follows that

$$\sum_{|\operatorname{Im}(s-\rho)|>1} \frac{1}{\operatorname{Im}(s-\rho)^2} \ll \log|t|.$$

Now by (3) we have

$$\frac{\zeta'}{\zeta}(s) - \frac{\zeta'}{\zeta}(2+it) = \sum_{\alpha} \left(\frac{1}{s-\rho} - \frac{1}{2+it-\rho}\right) + O(1).$$

The LHS differs from that of (6) by O(1), as noted already; the RHS summed over zeros with $|\operatorname{Im}(s-\rho)| < 1$ is within $O(\log |t|)$ of the RHS of (6); and the remaining terms are

$$(2 - \sigma) \sum_{|\operatorname{Im}(s - \rho)| \ge 1} \frac{1}{(s - \rho)(2 + it - \rho)} \ll \sum_{|\operatorname{Im}(s - \rho)| \ge 1} \frac{1}{\operatorname{Im}(s - \rho)^2} \ll \log|t|.$$

This proves (6) and thus also (5); von Mangoldt's theorem (4) follows. \Box

For much more about the vertical distribution of the nontrivial zeros ρ of $\zeta(s)$ see [Titchmarsh 1951], Chapter 9.

Remarks

In our proof of the product formula for $\xi(s)$ we showed that for each σ there exists ν such that $|\zeta(\sigma+it)| \ll |t|^{\nu}$ as $|t| \to \infty$. This was more than enough to prove that $(s^2-s)\xi(s)$ has order 1, but one may naturally ask how small ν can become. Let $\mu(\sigma)$ be the infimum of all such ν ; that is,

$$\mu(\sigma) := \limsup_{|t| \to \infty} \frac{\log |\zeta(\sigma + it)|}{\log |t|}.$$

We have seen that $\mu(\sigma)=0$ for $\sigma>1$, that $\mu(1-\sigma)=\mu(\sigma)+\sigma-\frac{1}{2}$ by the functional equation (so in particular $\mu(\sigma)=\frac{1}{2}-\sigma$ for $\sigma<0$), and that $\mu(\sigma)\leq 1-\sigma$ for $\sigma<1$. For $\sigma\in(0,1)$ one can improve on these bounds using the "approximate functional equation" for $\zeta(s)$ (usually attributed to Siegel, but now known to have been used by Riemann himself) to show that $\mu(\sigma)\leq (1-\sigma)/2$; this result, and the fact that $\mu(\sigma)\geq 0$ for all σ , also follows from general results in complex analysis, which indicate that since $\mu(\sigma)$ is finite for all σ , the function $\mu(\cdot)$ must be convex. For example, $\mu(1/2)\leq 1/4$, so $|\zeta(\frac{1}{2}+it)|\ll_{\epsilon}|t|^{\frac{1}{4}+\epsilon}$.

The value of $\mu(\sigma)$ is not known for any $\sigma \in (0,1)$. The Lindelöf conjecture asserts that $\mu(1/2)=0$, from which it would follow that $\mu(\sigma)=0$ for all $\sigma \geq 1/2$ while $\mu(\sigma)=\frac{1}{2}-\sigma$ for all $\sigma \leq 1/2$. Equivalently, the Lindelöf conjecture asserts that $\zeta(\sigma+it)\ll_{\epsilon}|t|^{\epsilon}$ for all $\sigma \geq 1/2$ (excluding a neighborhood of the pole s=1), and thus by the functional equation that also $\zeta(\sigma+it)\ll_{\epsilon}|t|^{1/2-\sigma+\epsilon}$ for all $\sigma \leq 1/2$. We shall see that this conjecture is implied by the Riemann hypothesis, and also that it holds on average in the sense that $\int_{0}^{T}|\zeta(\frac{1}{2}+it)|^{2}dt\ll T^{1+\epsilon}$. However, the best upper bound currently proved on $\mu(1/2)$ is only a bit smaller than 1/6; when we get to exponential sums later this term we shall derive the upper bound of 1/6.

Exercises

1. Show that in the product formula (1) we may take A = 0. Prove the formula

$$\gamma = \lim_{s \to 1} \left(\zeta(s) - \frac{1}{s-1} \right)$$

for Euler's constant, and use it to compute

$$B = \lim_{s \to 0} \left(\frac{\xi'}{\xi}(s) + \frac{1}{s} \right) = \lim_{s \to 1} \left(\frac{\xi'}{\xi}(s) + \frac{1}{1 - s} \right)$$
$$= \frac{1}{2} \log 4\pi - 1 - \frac{\gamma}{2} = -0.0230957....$$

Show also (starting by pairing the ρ and $\bar{\rho}$ terms in the infinite product) that

$$B = -\sum_{\rho} \operatorname{Re}(\rho)/|\rho|^2,$$

and thus that $|\operatorname{Im}(\rho)| > 6$ for every nontrivial zero ρ of $\zeta(s)$. [From [Davenport 1967], Chapter 12. It is known that in fact the smallest zeros have (real part 1/2 and) imaginary part $\pm 14.134725...$]

2. Prove the alternative infinite product

$$\xi(s) = \frac{\xi(1/2)}{4(s-s^2)} \prod_{\rho}^{+} \left[1 - \left(\frac{s-1/2}{\rho - 1/2} \right)^2 \right],$$

the product extending over zeros ρ of ξ whose imaginary part is positive.

3. Let f be any analytic function on the vertical strip $a < \sigma < b$ such that

$$M_f(\sigma) := \limsup_{|t| \to \infty} \frac{\log |f(\sigma + it)|}{\log |t|}$$

is finite for all $\sigma \in (a, b)$. Prove that M_f is a convex function on that interval. [Hint: Apply the maximum principle to αf for suitable analytic functions $\alpha(s)$.]

It follows in particular that M_f is continuous on (a, b). While $\zeta(s)$ is not analytic on vertical strips that contain s = 1, we can still deduce the convexity of $\mu : \mathbf{R} \to \mathbf{R}$ from $\mu(\sigma) = M_f(\sigma)$ for $f(s) = \zeta(s) - (1/(s-1))$.

Much the same argument proves the "three lines theorem": if f is actually bounded on the strip then $\log\sup_t|f(\sigma+it)|$ is a convex function of σ . The name of this theorem alludes to the equivalent formulation: if $a<\sigma_1<\sigma_2<\sigma_3< b$ then the supremum of |f(s)| on the line $s=\sigma_2+it$ is bounded by a weighted geometric mean of its suprema on the lines $s=\sigma_1+it$ and $s=\sigma_3+it$.

Reference

[Titchmarsh 1951] Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. Oxford: Clarendon, 1951. [HA 9.51.14 / QA351.T49; 2nd ed. revised by D.R. Heath-Brown 1986, QA246.T44]