
Math 259: Introduction to Analytic Number Theory

Proof of the Prime Number Theorem;
the Riemann Hypothesis

We finally have all the ingredients that we need to assemble a proof of the Prime
Number Theorem with an explicit error bound. We shall give an upper bound
on |(ψ(x)/x) − 1| that decreases faster than any power of 1/ log x as x→∞,
though slower than any positive power of 1/x. Specifically, we show:

Theorem. There exists an effective constant C > 0 such that

ψ(x) = x+O(x exp(−C
√

log x)) (1)

for all x ≥ 1.

Proof : There is no difficulty with small x, so we may and shall assume that
x ≥ e, so log x ≥ 1. We use our integral approximation

ψ(x) =
1

2πi

∫ 1+ 1
log x+iT

1+ 1
log x−iT

−ζ
′

ζ
(s)xs

ds

s
+O

(
x log2 x

T

)
(T ∈ [1, x]) (2)

to ψ(x). Assume that T ≥ e, and that T does not coincide with the imaginary
part of any ρ. Shifting the line of integration leftwards, say to real part −1,
yields

ψ(x)−

(
x−

∑
| Im(ρ)|<T

xρ

ρ

)
= I1 + I2 −

ζ ′

ζ
(0) +O

(
x log2 x

T

)
, (3)

in which I1, I2 are the integrals of −(ζ ′(s)/ζ(s))xs ds/s over the vertical line
σ = −1, |t| < T and the horizontal lines σ ∈ [−1, 1 + 1/ log x], t = ±T respec-
tively. We next show that I1 is small, and that I2 can be made small by adding
O(1) to T . The vertical integral I1 is clearly

� log T
x

sup
|t|<T

∣∣∣∣ζ ′ζ (−1 + it)
∣∣∣∣� log2 T

x
.

The horizontal integrals in I2 are

� 1
T

∫ 1+ 1
log x

−1

xσ dσ · sup
σ∈[−1,2]

∣∣∣∣ζ ′ζ (σ + iT )
∣∣∣∣ .

The σ integral is � x/ log x. We have seen already that for s = σ + iT and
−1 ≤ σ ≤ 2 we have

ζ ′(s)/ζ(s) =
∑

|T−Im ρ|<1

1
s− ρ

+O(log T ),
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in which the sum has O(log T ) terms. Since the number of Im ρ in the interval
[T − 1, T + 1] is � log T , some point in the middle half of that interval is at
distance � 1/ log T from all of them; choosing that as our new value of T , we
see that each term is� log T , and thus that the sum is� log2 T . In conclusion,
then,

I2 � x log2 T/T log x.

Better estimates can be obtained (we could save a factor of log T by averaging
over [T − 1

2 , T + 1
2 ]), but are not necessary because x log2 T/T log x is already

less than the error (x log2 x)/T in (2).

Thus the RHS of (3) may be absorbed into the O((x log2 x)/T ) error. In the
LHS, we use our zero-free region, that is, the lower bound

1− σ > c/ log |t|, (4)

to find that
|xρ| = xRe(ρ) � x1− c

log T = x exp
(
−c log x

log T

)
.

Since1 ∑
| Im(ρ)|<T

1
|ρ|

<
∑

| Im(ρ)|<T

1
| Im ρ|

= 2
∫ T

1

dN(t)
t

=
2N(T )
T

+ 2
∫ T

1

N(t) dt
t2

� log T +
∫ T

1

log t dt
t

� log2 T,

we thus have ∑
|ρ|<T

xρ

ρ
� x log2 T exp

(
−c log x

log T

)
.

Therefore ∣∣∣∣ψ(x)
x
− 1
∣∣∣∣� (

1
T

+ exp
(
−c log x

log T
))

log2 x.

We choose T so that the logarithms − log T , − log x/ log T of the two terms
1/T , exp(−c log x/ log T ) are equal. That is, we take T = exp

√
log x. Then

both terms are O(exp(−C1 log1/2 x)) for some C1 > 0. We then absorb the
factor log2 x into this estimate by changing C1 to any positive C < C1, and at
last complete the proof of (1). ��

The equivalent result for π(x) follows by partial summation:

Corollary. There exists an effective constant C > 0 such that

π(x) = li(x) +O(x exp(−C
√

log x)).

for all x ≥ 1.
1We can use

∫ T
1 because we have shown that there are no complex zeros ρ with | Im(ρ)| ≤ 1.

If there were such zeros, we could absorb their terms xρ/ρ into the error estimate. We shall
do this in the proof of the corresponding estimates on ψ(x, χ).
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[Recall that li(x) is the principal value of
∫ x

0
dy/ log y, whence

li(x) =
∫ x

2

dy/ log y +O(1) = x/ log x+O(x/ log2 x).]

Proof : We have seen already that

π(x) =
ψ(x)
log x

+
∫ x

2

ψ(y)
dy

y log2 y
+O(x1/2). (5)

On the other hand, integration by parts yields

li(x) =
x

log x
−
∫ x

2

y d(1/ log y) +O(1) =
x

log x
+
∫ x

2

dy

log2 y
+O(1).

The Corollary now follows from (1). �

The Riemann Hypothesis and some consequences

The error estimate in (1), while sufficient to prove the Prime Number Theorem,
is not nearly as strong as one might wish. The growth rate of |ψ(x) − x| and
|π(x)− li(x)| hinges on the Riemann Hypothesis (RH), which we introduce next.

The RH and its generalizations are arguably the most important open problems
in mathematics. We shall see and explore some of these generalizations later.
The original RH is Riemann’s inspired guess that all the nontrivial zeros of ζ(s)
have real part equal to 1/2, i.e., lie on the critical line σ = 1/2 at the center
of the critical strip. At the time there was scant evidence for the conjecture:
the symmetry of the zeros with respect to the critical line, and also numerical
computations of the first few zeros (not reported in Riemann’s memoir but found
among his papers after his death). The conjecture is now supported by a wealth
of numerical evidence, as well as compelling analogies with “geometrical” zeta
functions for which the conjecture has been proved — notably the zeta functions
of varieties over finite fields, for which the RH was proved by Hasse [1936]
(elliptic curves), Weil [1940, 1941, 1948] (arbitrary curves and abelian varieties),
and Deligne (the general case). These analogies also suggest that proving the
“arithmetical” RH and its generalizations will involve fundamental new insights
in number theory, quite beyond the immediate applications to the distribution
of primes and related arithmetical functions. For now we content ourselves with
the most direct connections between the RH and the error estimate in the Prime
Number Theorem.

If the RH holds then we may take T = x in (3) to find ψ(x) = x+O(x1/2 log2 x).
More generally:

Proposition. Suppose there exists θ with 1/2 ≤ θ < 1 such that Re ρ ≤ θ for
all zeros ρ of ζ. Then ψ(x) = x + O(xθ log2 x) and π(x) = li(x) + O(xθ log x)
for large x.

Proof : Take T = x+O(1) in (3). By our bounds on I1, I2, the right-hand side
is O(log2 x). By hypothesis, each of the terms xρ/ρ has absolute value at most
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xθ/|ρ| < xθ/| Im ρ|. Hence∣∣∣∣∣ ∑
| Im(ρ)|<T

xρ

ρ

∣∣∣∣∣ < 2xθ
∑

0<Im(ρ)<T

1
Im ρ

.

We have seen already that the last sum is O(log2 T ); here T = x+O(1), so we
conclude that

ψ(x)− x = O(xθ log2 T ) +O(log2 x) = O(xθ log2 x),

as claimed. The corresponding estimate on π(x) − li(x) then follows from (5),
since θ ≥ 1/2. �

A converse implication also holds:

Proposition. Suppose there exists θ with 1/2 ≤ θ < 1 such that ψ(x) =
x+Oε(xθ+ε) for all ε > 0. Then ζ(s) has no zeros of real part > θ. The same
conclusion holds if π(x) = li(x) +Oε(xθ+ε).

(So, for instance, RH is equivalent to the assertion that π(x) = lix+O(x1/2 log x).
The hypotheses on π(x) and ψ(x) are equivalent, again by (5).)

Proof : Write −ζ ′(s)/ζ(s) =
∑
n Λ(n)n−s as a Stieltjes integral and integrate

by parts to find

−ζ
′

ζ
(s) = s

∫ ∞
1

ψ(x)x−s−1 dx =
s

s− 1
+ s

∫ ∞
1

(ψ(x)− x)x−s−1 dx (σ > 1).

If ψ(x)−x�ε x
θ+ε then the resulting integral for s/(s−1)+ζ ′(s)/ζ(s) extends

to an analytic function on σ > θ, whence that half-plane contains no zeros
of ζ(s). �

Note the amusing consequence that an estimate ψ(x) = x + Oε(xθ+ε) would
automatically improve to ψ(x) = x+O(xθ log2 x), and similarly for π(x).

Remarks

One may naturally ask whether ψ(x) tends to be larger or smaller than its
approximation x, and likewise whether π(x) tends to be larger or smaller than
li(x). For the former question, our formula (3) suggests that ψ(x) can as easily
be larger or smaller than x: the terms xρ/ρ in the formula (3) for x − ψ(x)
oscillate as x increases, and if we choose log x uniformly from [1, U ] then the
phase of each term tends to uniform distribution on the circle as U→∞. It may
be surprising then that π(x) behaves quite differently: it is very hard to find
any x such that π(x) > li(x). This is because π(x) is expressed as a Stieltjes
integral involving not ψ(x) but

∑
p<x log p, and

ψ(x)−
∑
p<x

log p ∼ ψ(x1/2) ∼ x1/2.

Under the Riemann Hypothesis, x1/2 is exactly of the same asymptotic order as
each of the terms xρ/ρ in (3), and much larger than each single term because
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|ρ|−1 < 1/14. For large x, we can imagine the terms xρ/ρ (Im ρ > 0) as random
complex numbers zρ drawn independently from the circle |z| = x1/2/ρ.2 Then∑
ρ x

ρ/ρ = 2 Re
∑

(Im ρ)>0 zρ. Since
∑
ρ 1/|ρ|2 < ∞, this heuristic suggests

that for “random large x” the scaled error x−1/2(ψ(x) − x) is drawn from a
distribution symmetric about the origin, and thus that x−1/2(

∑
p<x log p − x)

is drawn from a distribution symmetric about −1. Since
∑
ρ 1/|ρ| = +∞, it is

possible for −2 Re
∑

(Im ρ)>0 zρ to exceed x, and thus for
∑
p<x log p to exceed

x and likewise for π(x) to exceed li(x). But this does not happen routinely, and
indeed it was once thought that li(x) might always exceed π(x).

Littlewood first showed that the difference changes sign infinitely often. In
particular, there exist x such that π(x) > li(x). But none has been found yet.
The earliest explicit upper bound on the smallest such x was the (in)famously
astronomical “Skewes’ number” [Skewes 1933]. That bound has since fallen,
but still stands at several hundred digits, too large to reach directly even with
the best algorithms known for computing π(x) — algorithms that themselves
depend on the analytical formulas such as (2); see [LO 1982].

Exercises

1. Use the partial-fraction decomposition of ζ ′/ζ to get the following exact
formula:

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log(1− x−2).

Here
∑
ρ is taken to mean limT→∞

∑
|ρ|<T ; and if x = pk, so that ψ(x) is

discontinuous at x, then we interpret ψ(x) as (ψ(x− ε)+ψ(x+ ε))/2. Note that
− 1

2 log(1 − x−2) is the sum of −xr/r over the trivial zeros r = −2,−4,−6, . . .
See [Davenport 1967, Chapter 17].

2. Show that the improvement 1−σ > cε/ log(2/3)+ε |t| on (4) yields an estimate
O
(
x exp(−Cε log(3/5)−ε x)

)
on the error in the Prime Number Theorem.

3. Prove that

lim
x→∞

(
log x−

x∑
n=1

Λ(n)
n

)
= γ,

and give an error bound both unconditionally and under the Riemann Hypoth-
esis. Deduce that log x−

∑
p<x log p/p and log log x−

∑
p<x 1/p approach finite

limits as x→∞. (The last of these refines Euler’s theorem that
∑
p 1/p diverges.)

4. [A theorem of Mertens; see for instance [Titchmarsh 1951], pages 38–39.]
Prove that

lim
x→∞

(
log log x−

x∑
n=1

Λ(n)
n log n

)
= −γ,

2We shall later make this heuristic more precise, and show that it is equivalent to the
conjecture that the numbers γ > 0 such that ζ( 1

2
+ iγ) = 0 are Q-linearly independent. This

conjecture is almost certainly true and extremely difficult to prove. See [RS 1994] and [BFHR
2001] for more information.
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(Warning: this requires a contour integral involving log
(
(s − 1)ζ(s)

)
, which

cannot be pushed past the zero-free region.) Deduce that

lim
x→∞

(
log x

∏
p<x

p− 1
p

)
= e−γ .

As in the previous exercise, and give error bounds both unconditionally and
under the Riemann Hypothesis.

In the last exercise, we illustrate the power of the method we used to prove the Prime
Number Theorem by applying it to different kind of asymptotic averaging problem.
We’ll address a special case posed as an open problem in [Rawsthorne 1984]:

Set a0 = 1 and for n ≥ 1, an = an′ + an′′ + an′′′ where n′ = bn/2c,
n′′ = bn/3c, n′′′ = bn/6c. Find limn→∞ an/n.

(It is not immediately obvious even that the limit exists.) The general problem can be

solved in much the same way, though one usually gets somewhat less precise estimates

on the vertical distribution of the zeros than are available for our special case. Only

two solutions were received (see Math. Magazine 58, 51–52): the solution outlined

here, and a solution by Erdős, Odylzko, Hildebrand, Pudaite, and Reznick, which

they subsequentely generalized in [EHOPR 1987]. Their method corresponds to one

of the “elementary proofs” of the Prime Number Theorem. The sequence {a(n)} of

Rawsthorne’s problem is now #A007731 in Sloane’s On-Line Encyclopedia of Integer

Sequences.

5. i) Let f(s) = 1 − 2−s − 3−s − 6−s. Note that f has a simple zero at s = 1.
Prove that all its other zeros lie in the strip |σ| < 1, and that f has log 6

2π T +O(1)
zeros ρ with 0 < Im ρ < T ; more precisely, that each rectangle

{σ + it : |σ| ≤ 1,
∣∣∣∣ log 6

2π
t− n

∣∣∣∣ < 1/2}

(n ∈ Z) contains a unique zero of f (so in particular the zeros are all simple).
NB Unlike the case of ζ(s), here there is no functional equation, nor a “Riemann
Hypothesis”; indeed, it can be shown that some complex zeros have real parts
arbitrarily close to 1, as well as zeros whose real parts are arbitrarily close to −1.
ii) Let an be the coefficients of the Dirichlet series

∑∞
n=1 an/n

s = 1/f(s). Show
that an ≥ 0, with equality unless n = 2a3b for some integers a, b. Find a
constant C such that

∑
n<x an ∼ Cx as x→∞. Can you give an explicit error

bound?
iii) Solve Rawsthorne’s problem above. How far can you generalize it? (Warning:
for more general recursions of this kind you may have to contend with multiple
poles, or simple poles that nearly coincide and have large residues.)
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