
Math 259: Introduction to Analytic Number Theory

Elementary approaches I: Variations on a theme of Euclid

Like much of mathematics, the history of the distribution of primes begins with
Euclid:

Theorem (Euclid [IX, 20]). There are infinitely many primes.

Euclid’s justly famed argument, while often presented as a proof by contradic-
tion, is readily framed as an effective (albeit rather inefficient) construction:

Proof: Given primes p1, p2, . . . , pn, let Pn =
∏n
k=1 pn, define Nn = Pn + 1, and

let pn+1 be the smallest factor of Nn. Then pn+1 is a prime no larger than Nn
and different from p1, . . . , pn. Thus {pk}k>1 is an infinite sequence of distinct
primes, Q.E.D.

This answers Yes to the first asymptotic question to ask about

π(x) := #{p ≤ x : p is a positive prime} =
∑

0<p<x
p prime

1,

namely whether π(x)→∞ as x→∞. Moreover, the proof also gives an explicit
upper bound on pn, and thus a lower bound on π(x).

Theorem. For each integer n > 0, there are more than n primes p < 22n .
Equivalently, we have1

π(x) > log2 log2 x

for all x > 1.

Proof : In the proof of Euclid’s theorem, we may take p1 = 2, and observe that

pn+1 ≤ Nn = 1 +
n∏
k=1

pn ≤ 2
n∏
k=1

pn.

if equality were satisfied at each step we would have pn = 22n−1
. Thus by

induction we see that
pn ≤ 22n−1

,

and of course the inequality is strict once n > 1. Therefore if x ≥ 22n−1
then

pk < x for k = 1, 2, . . . , n, and so π(x) ≥ n, Q.E.D.

The Pn + 1 trick has been adapted to prove some special cases of Dirichlet’s
theorem on primes in arithmetic progression, which asserts that for coprime
integers q > 0 and a there are infinitely many primes p ≡ a mod q. (We shall give
the proof later in the course.) Of course the case 1 mod 2 is trivial given Euclid.
For −1 mod q with q = 3, 4, 6, start with p1 = q − 1 and define Nn = qPn − 1.

1Q: What sound does a drowning analytic number theorist make?
A: log log log log . . . [R. Murty, via B. Mazur]
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More generally, for any quadratic character χ there are infinitely many primes p
with χ(p) = −1; as a special case, given an odd prime q0, there are infinitely
many primes p which are quadratic nonresidues of q0. [I’m particularly fond of
this argument because I was able to adapt it as the punchline of my doctoral
thesis; see [Elkies 1987].] The case of χ(p) = +1 is only a bit trickier.2 For
instance, to prove Dirichlet for (q, a) = (4, 1), let p1 = 5 and Nn = 4P 2

n + 1, and
invoke Fermat’s theorem on the prime factors of x2 + y2. Again this argument
even yields an explicit lower bound on

π(x, 1 mod 4) := #{p ≤ x : p is a positive prime congruent to 1 mod 4},

namely3

π(x, 1 mod 4) > C log log x

for some positive constant C.

But Euclid’s approach and its variations, however elegant, are not sufficient
for our purposes. For one thing, numerical evidence suggests — and we shall
soon prove — that log2 log2 x is a gross underestimate on π(x). For another,
one cannot prove all cases of Dirichlet’s theorem using only variations on the
Euclid argument.4 Our next elementary approaches will address at least the
first deficiency.

Exercises

1. Let G be a subgroup of (Z/qZ)∗ other than (Z/qZ)∗ itself. Prove that there
are infinitely many primes whose residue modulo q is not in G.

2. Exhibit an explicit value of C such that π(x, 1 mod 4) > C log log x for all
x > 1.

3. Use cyclotomic polynomials to show more generally that for any q0, prime or
not, there exist infinitely many primes congruent to 1 mod q0. [Attributed to
Euler in [Dickson 1919, Ch.XVIII], a chapter which gives much more information
on the history of work on the distribution of primes up to about 1900. Note
that 4P 2

n + 1 is the fourth cyclotomic polynomial evaluated at 2Pn.] Show that
again the number of such primes < x grows at least as fast as some multiple of
log log x.

4. Show that there are infinitely many primes congruent to 4 mod 5, once more
with a log log lower bound.

5. [A much later proof of the infinitude of primes that curiously gives the same
bound π(x) > log2 log2(x).] Recall that the m-th Fermat number Fm is defined
by Fm = 22m + 1 (m = 0, 1, 2, . . .). Prove that Fm and Fm′ are relatively prime

2But enough so that a problem from a recent Qualifying Exam for our graduate students
asked to prove that there are infinitely many primes congruent to 1 mod 4.

3Even a drowning analytic number theorist knows that log log and log2 log2 are asymptot-
ically within a constant factor of each other. What is that factor?

4This is not a theorem, of course. How could one even define “variation of the Euclid
argument” rigorously? But a Euclid-style argument for the infinitude of primes congruent
to 2 mod 5 or mod 7 would already be quite impressive.
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unless m = m′. Conclude that there are at least n primes p ≤ Fn−1, and thus
that π(x) > log2 log2 x.

Digression

Even a piece of mathematics as venerable as Euclid’s proof of the infinitude of
primes can continue to suggest very difficult problems. For instance, let pn be
the n-th prime, and let5 Pn =

∏n
i=1 pi. We know that Pn + 1 must contain

a new prime factor, which cannot be pn+1 once n > 1 (if only because Pn − 1
must also contain a new prime factor). Does it happen infinitely often that pn+1

is a factor of Pn + 1? [This is the case for n = 1, 7, 232, 430, and no other
n < 5000.] What of the primality of Pn + 1 itself? It is well-known that Pn + 1
is prime for n = 1, 2, 3, 4, 5, but P6 + 1 = 30031 = 59 · 509. Only fifteen n > 5
have been found for which Pn + 1 is prime, of which the smallest is 11 and the
largest is 13494.6 Again it is not known whether this happens infinitely often.
Likewise for the primality of Pn − 1 and its divisibility by pn+1. For another
variation, define q1 = 2 and, for n > 0, let qn+1 be the smallest prime factor of
(
∏n
i=1 qi) + 1. The sequence {qn}∞n=1 starts

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, . . .

For instance, q5 = 13 because 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139. Is this “Euclid-
Mullin sequence” [Sloane, A000945] a permutation of the sequence of primes?
Probably yes, but proving this will likely be intractable for the foreseeable future.
The same is true for the infinitude of primes of the form Pn ± 1, and of n such
that pn+1|Pn ± 1.

It should not even be obvious that one should expect that these four sets are
all infinite. The heuristics supporting this expectation rely on results on the
distribution of primes that we shall develop in the next few weeks.
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5By analogy with the “factorial” n! =
∏n

i=1
i, this Pn is sometimes called the n-th

“primorial”.
6Sequence A014545 in [Sloane], where the primality of P13494 + 1 is attributed to Arlin

Anderson, Oct.20, 2000. For the analogous question concerning Pn−1, see Sequence A055704
and A006794.

3


