
Math 259: Introduction to Analytic Number Theory

Čebyšev (and von Mangoldt and Stirling)

Before investigating ζ(s) and L(s, χ) as functions of a complex variable, we give
another elementary approach to estimating π(x), due to Čebyšev. This method,
unlike Euler’s, produces upper and lower bounds on π(x) that remain within
a small constant factor as x→∞. These bounds x/ log x � π(x) � x/ log x
are sufficient for many theoretical and practical applications, which thus do not
require the more advanced and subtle techniques that enter into the proof of
the Prime Number Theorem. (The bounds are also close enough to let Čebyšev
prove “Bertrand’s Postulate”: every interval (x, 2x) with x > 1 contains a
prime. See [HW 1996, p.343–4] for Erdös’s simplification of Čebyšev’s proof;
this simplified proof is also on the Web: http://forum.swarthmore.edu/dr.math/
problems/kuropatwa.4.3.97.html .) For us Čebyšev’s method also has the advan-
tage of introducing the von Mangoldt function and the Stirling approximation
to x!, both of which will figure prominently in our future analysis.

It is well known1 that for any prime p and positive integer x the exponent of p
in x! (a.k.a. the p-valuation of x!) is

cp(x) :=
⌊
x

p

⌋
+
⌊
x

p2

⌋
+
⌊
x

p3

⌋
+ · · · =

∞∑
k=1

⌊
x

pk

⌋
,

the sum being finite because eventually pk > x. It was Čebyšev’s insight that
one could extract information about π(·) from the resulting formula

x! =
∏
p

pcp(x),

or equivalently

log x! =
∑
p

cp(x) log(p) =
∞∑
n=1

⌊x
n

⌋
Λ(n), (1)

where Λ(n) is the von Mangoldt function

Λ(n) :=
{

log p, if n = pk for some positive integer k and prime p;
0, otherwise.

To make use of (1) we need to estimate

log x! =
x∑
n=1

log n

1If only thanks to the perennial problems along the lines of “how many zeros end 2003! ?”.
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for large x. We do this by in effect applying the first few steps of symmetrized
Euler-Maclaurin summation, to find:

Lemma. There exists a constant C such that

log x! = (x+
1
2

) log x− x+ C +O(1/x) (2)

holds for all positive integers x.

Proof : For any C2 function f we have (by integrating by parts twice)∫ 1/2

−1/2

f(y) dy = f(0) +
1
2

[∫ 0

−1/2

f ′′(y)
(
y +

1
2
)2
dy +

∫ 1/2

0

f ′′(y)
(
y − 1

2
)2
dy

]

= f(0) +
1
2

∫ 1/2

−1/2

f ′′(y)
∥∥y +

1
2

∥∥2
dy,

where ‖z‖ is the distance from z to the nearest integer. Thus

N∑
k=1

f(k) =
∫ N+ 1

2

1/2

f(y) dy +
1
2

∫ N+ 1
2

1
2

f ′′(y)
∥∥y +

1
2

∥∥2
dy.

Taking f(y) = log(y) and N = x we thus have

log x! = (x+
1
2

) log(x+
1
2

) +
1
2

log 2− x− 1
2

∫ x+ 1
2

1
2

∥∥y +
1
2

∥∥2 dy

y2
.

The integral is

−1
2

∫ ∞
1
2

∥∥y +
1
2

∥∥2 dy

y2
+ O(1/x),

and the other terms are

(x+
1
2

) log x− x+
1
2

(log 2 + 1) +O(1/x),

from which (2) follows. �

[Stirling also determined the value of C (which turns out to be 1
2 log(2π), as we

shall soon see), and extended (2) to an asymptotic series for x!/((x/e)x
√

2πx )
in inverse powers of x. But for our purposes log x! = (x + 1

2 ) log x − x + O(1)
is more than enough. In fact, since for the time being we’re really dealing with
logbxc! and not log Γ(x+ 1), the best honest error term we can use is O(log x).]

Now let
ψ(x) :=

∑
1≤n≤x

Λ(n).

Then from (1) and (2) we have

∞∑
k=1

ψ(x/k) = (x+
1
2

) log x− x+O(1).
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This certainly suggests that ψ(x) ∼ x, and lets us prove upper and lower bounds
on ψ(x) proportional to x. For instance, since x ≥ 1 +

∑∞
m=1bx/2mc for all

x ≥ 1, we have

ψ(x) ≤ log x!−
∞∑
m=1

log
⌊ x

2m
⌋
!,

which yields

ψ(x) ≤

[ ∞∑
m=1

m

2m
log 2

]
x+O(log2 x) = (2 log 2)x+O(log2 x).

For a lower bound we can use the inequality

ψ(x) ≥
∞∑
k=1

(−1)k−1ψ(x/k) = log
x!

(x/2)!2
= (log 2)x+O(log x)

for an even integer x = 2n; This is essentially the same tactic of factoring
(

2n
n

)
that Čebyšev used to prove π(2x) > π(x).

It is true that we’re ultimately interested in π(x), not ψ(x). But it is easy to get
from one to the other. For one thing, the contribution to ψ(x) of prime powers pk

with k > 1 is negligible — certainly less than
∑log2 x
k=2 bx1/kc log x � x1/2 log x.

The remaining sum,
∑
p≤x log p, can be expressed in terms of π(x) and vice

versa using partial summation, and we find:

ψ(x) = log(x)π(x)−
∫ x

2

π(y)
dy

y
+O(x1/2 log x),

π(x) =
ψ(x)
log x

+
∫ x

2

ψ(y)
dy

y log2 y
+O(x1/2).

It follows that the Prime Number Theorem π(x) ∼ x/ log x holds if and only
if ψ(x) ∼ x, and good error terms on one side imply good error terms on the
other. It turns out that we can more readily get at ψ(x) than at π(x); for
instance, ψ(x) is quite well approximated by x, while the “right” estimate for
π(x) is not x/ log x but (x/ log x)+

∫ x
dy/ log2 y, i.e., the “logarithmic integral”∫ x

dy/ log y. It is in the form ψ(x) ∼ x that we’ll actually prove the Prime
Number Theorem.

Exercises

On Čebyšev’s method:

1. How many consecutive 0’s are there at the end of the base-12 expansion
of 2006! ? Why did I choose 12 rather than any smaller base (including the
default 10), and what other bases less than 100 would serve the same purpose?

2. Since our upper and lower asymptotic bounds log 2, log 4 on ψ(x)/x are
within a factor of 2 of each other, they do not quite suffice to prove Bertrand’s
Postulate. But any improvement would prove that π(2x) > π(x) for sufficiently
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large x, from which the proof for all x follows by exhibiting a few suitably spaced
primes. It turns out that better bounds are available starting from (1). For
instance, show that ψ(x) < ( 1

2 log 12)x + O(log2 x). Can you obtain Čebyšev’s
bounds of 0.9 and 1.1? In fact it is known that the upper and lower bounds
can be brought arbitrarily close to 1, but alas the only known proof of that fact
depends on the Prime Number Theorem!

To recover Bertrand’s Postulate, one needs for once to convert all the O(·)’s to explicit

error estimates. One then obtains an explicit x0 such that π(2x) > π(x) for all x ≥ x0,

which reduces Bertrand’s Postulate to the finite computation of verifying π(2x) > π(x)

for each x ∈ (1, x0). This can be done by calculating a sequence of O(log x0) primes

2, 3, 5, 7, 13, 23, . . . , p, each less than twice the previous prime, and with p > x0. Once

we prove the Prime Number Theorem it will follow that for each ε > 0 there exists x0

such that π((1 + ε)x) > π(x) for all x ≥ x0.

3. Estimate log
∏

(m2 + n2), where the product extends over all (m,n) ∈ Z2

such that 0 < m2 + n2 ≤ x. What is the exponent of a prime p ≤ x in this
product? Using this information, how close can you come to the asymptotic
formula π(x, 1 mod 4) ∼ 1

2x/ log x?

Bernoulli polynomials, Euler-Maclaurin summation, and efficient computation
of ζ(s) and L(s, χ):

4. The Bernoulli polynomials Bn(x) are defined for n = 0, 1, 2, 3, . . . by the
generating function

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
.

The Bernoulli numbers Bn are the rational numbers Bn(0), with generating
function t/(et − 1) =

∑∞
n=0Bnt

n/n!. The first few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 − x+

1
6
,

B3(x) = x3 − 3
2
x2 +

1
2
x, B4(x) = x4 − 2x3 + x2 − 1

30
.

Show that in general Bn(x) =
∑n
k=0

(
n
k

)
Bkx

n−k ( = “(B+x)[n]” mnemonically),
that B′n(x) = nBn−1(x), and that Bn (n = 1, 2, 3, . . .) is the unique polynomial
such that Bn(x + 1) − Bn(x) = nxn−1 and

∫ 1

0
Bn(x) dx = 0. Show that the

Bernoulli number Bn vanishes for odd n > 1. What is Bn(x) + Bn(x+ 1
2 )?

5. Now let f be a Cn function on [t, t+ 1]. Prove that

f(t) =
∫ t+1

t

f(x) dx+
n∑

m=1

Bm
m!
(
f (m−1)(t+ 1)− f (m−1)(t)

)
+ (−1)n+1

∫ t+1

t

f (n)(x)
Bn(x− t)

n!
dx.
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Therefore, if f is a Cn function on [M,N ] for some integers M,N then

N−1∑
n=M

f(n) =
∫ N

M

f(x) dx+
n∑

m=1

Bm
m!
(
f (m−1)(N)− f (m−1)(M)

)
+ (−1)n+1

∫ N

M

f (n)(x)
Bn(x− bxc)

n!
dx;

and if f is Cn on [M,∞) then

∞∑
n=M

f(n) =
∫ ∞
M

f(x) dx−
n∑

m=1

Bm
m!

f (m−1)(M)

+ (−1)n+1

∫ ∞
M

f (n)(x)
Bn(x− bxc)

n!
dx, (3)

provided the integrals converge and each f (m−1)(N)→0 as N→∞. This is a
rigorous form of the “Euler-Maclaurin formula”

∞∑
n=M

f(n) =
∫ ∞
M

f(x) dx−
∞∑
m=1

Bm
m!

f (m−1)(M),

which rarely converges (can you find any nonzero f for which it does converge?),
but is often useful as an asymptotic series. For instance, show that for any s > 1
one can efficiently compute ζ(s) to within exp(−N) in time NO(1) by taking
f(x) = x−s in (3) and choosing M,n appropriately. Do the same for L(s, χ)
where χ is any nontrivial Dirichlet character and s > 0. For instance, one can
compute Catalan’s constant

G = L(2, χ4) = 1− 1
32

+
1
52
− 1

72
+− · · · = .9159655941772190150546 . . .

in this way.

We could also use (3) to obtain the analytic continuation of ζ(s) and L(s, χ) to the

half-plane σ > 1 − n, and thus to the whole complex plane since n is arbitrary. But

this is a less satisfactory approach than using the functional equation which relates

L(s, χ) to L(1− s, χ) and thus achieves the analytic continuation to C in one step.

More about ψ(x):

6. Show that∑
p≤x

log p = ψ(x)−ψ(x1/2)−ψ(x1/3)−ψ(x1/5) +ψ(x1/6) · · · =
∞∑
k=1

µ(k)ψ(x1/k),

where µ is the Möbius function taking the product of r ≥ 0 distinct primes to
(−1)r and any non-square-free integer to 0.

Finally, another elementary approach to estimating π(x) that gets within a
constant of the Prime Number Theorem:
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7. Let P (u) be any nonzero polynomial of degree d with integer coefficients;
then ∫ 1

0

f(u)2n du ≥ 1/lcm(1, 2, . . . , 2dn+ 1) = exp(−ψ(2dn+ 1)).

Thus
ψ(2dn+ 1) < 2n log min

0<u<1
1/|P (u)|.

For instance, taking f(u) = u−u2 we find (at least for 4|x) that ψ(x) < x log 4.
This is essentially the same (why?) as Čebyšev’s trick of factoring ( 2n

n ), but
suggests different sources of improvement; try f(u) = (u − u2)(1 − 2u) for
example. [Unfortunately here the upper bound cannot be brought down to 1+ε;
see [Montgomery 1994, Chapter 10] — thanks to Madhav Nori for bringing this
to my attention.]
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