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The rule generating the Fibonacci sequence is extraordinarily simple, but its repeated
application produces rich mathematics. If we leave the rule alone and change the start-
ing values, we again find sequences with interesting properties—such as the Lucas
numbers. If we introduce modular arithmetic, there are new questions to answer. In
what follows, I study Fibonacci sequences in Fp = Z/pZ, the integers mod p, where
p is a prime. I like to call these the “Fpibonacci numbers.” Regardless of the start-
ing pair, the sequence will repeat [10]. The question I want to answer is “What is the
maximum period for any Fibonacci sequence in Z/pZ?”

In what follows, I present a particular point of view about the Fibonacci sequence
in a way that gives some insight into both the standard sequence and its variations.
Specifically, the Fibonacci sequence is interpreted in terms of a matrix acting on a
finite set, an idea that is related to group actions and to (discrete) dynamical systems.
The underlying set is the two-dimensional vector space Fp

2; the matrix M from (2)
provides the rule for the process. Iterations of the system correspond to powers of the
matrix. Periods in the system are related, then, to powers of M that are equivalent
modulo p to the identity matrix. The point of view works for all cases, even for the
generalized Fpibonacci numbers, where weights are allowed in the recursion formula.
For a thorough look at dynamical systems and number theory, Silverman’s book [8] is
an excellent source.

Most of what is contained here is not new. Searching Mathematical Reviews turns
up dozens of articles about periods of Fibonacci numbers in Z/mZ, including many
where m doesn’t even have to be a prime or a power of a prime. The most-referenced
article is Wall’s article [10] in the MONTHLY in 1960. Wall established many funda-
mental results, and posed some tantalizing questions. In particular, he showed that the
period divides (p − 1) when 5 is a quadratic residue mod p and divides (2p + 2) when
it is not, but he did not find the maximal periods. Wall’s investigation was motivated
by a search for methods of generating pseudorandom numbers. Later, Brent [1], also
motivated by pseudorandom numbers, considered the special properties of Fibonacci
sequences modulo a power of 2. The story, however, begins even before the days of
Mathematical Reviews. In the 1930s, Ward [11] considered periods, both minimal and
maximal, and other characteristics of sequences arising from rather general recurrence
relations, not just the Fibonacci relation. Kalman and Mena’s article in an earlier issue
of this MAGAZINE [5] examines many of the famous properties of the Fibonacci num-
bers as specific instances of properties of general second-order recurrences. Ward’s
results built on even earlier work by Carmichael [2] and others. For the early history
of the subject, the curious reader should consult Dickson’s history [3], particularly
Volume I, Chapter XVII, where elements of the problem are traced back to Gauss and
Lagrange. Earlier in the MAGAZINE, Vella and Vella [9] looked at possible periods in
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the generalized Fibonacci sequence modulo a prime. Their approach emphasized re-
cursive formulas and led to similar results to those here, but are somewhat less precise
when applied to the standard Fibonacci numbers.

This investigation stems from a homework assignment from my daughter’s fourth-
grade mathematics class. The students were taught the Fibonacci recursion relation and
how to reduce mod 100. The assignment was to find two starting numbers that gave the
longest sequence before it repeated mod 100. Being the child of a mathematician, my
daughter tried to solve the problem. It turns out the teacher imagined that the students
would try some numbers and make some guesses about what would work best. This
article shows what to do when the reduction is modulo a prime. If you would like to
complete the fourth-grade assignment, you may apply the prime case and a little extra
work to find the longest possible period for reduction modulo a composite.

Some examples Let p = 19. Since order matters and repeats are allowed, there are
192 = 361 possible choices for the starting pair a0 and a1. The standard sequence,
which starts with a0 = 1 and a1 = 1, becomes

1, 1, 2, 3, 5, 8, 13, 2, 15, 17, 13, 11, 5, 16, 2, 18, 1, 0, 1, 1, . . . (mod 19),

which has period 18. Using Maple to try all possible starting pairs shows that three
hundred forty-two of them have period 18, eighteen of them have period 9, and one
has period 1. In this case the maximum period is 18.

For p = 23, there are 232 = 529 possible starting pairs. Direct computation shows
that, other than the trivial sequence with a0 = a1 = 0, all the sequences have period
equal to 48, making 48 the maximal period.

For p = 29, there are 292 = 841 possible starting pairs. The standard sequence has
period 14, as do eight hundred eleven other sequences. Twenty-eight sequences have
period 7, and the trivial sequence has period 1.

Comment Since the sequences are periodic, it is a bit unnatural to say that, in the first
example, the sequence starting with a0 = 1 and a1 = 1 is different from the sequence
starting with a0 = 5 and a1 = 8 , since they eventually come around to match up with
each other. However, for these examples this is a convenient way to count.

At first glance, it seems that the periods are all over the map: Sometimes the period
is p − 1, sometimes it is much less. Sometimes it is even bigger than p. However, by
analyzing the sequences, in particular by examining the matrix that generates them all,
certain features emerge that allow us to divide the problem into cases where the pattern
becomes clear.

The problem

The sequences in question are

a0, a1, . . . , ak−1, ak, ak+1, . . . ,

ak+1 = ak + ak−1

with aN ≡ a0 (mod p) and aN+1 ≡ a1 (mod p)

(1)

and N is some number we don’t know in advance. We will not restrict to the standard
starting values of a0 = 0 and a1 = 1, which makes the question more interesting. We
will assume that p �= 2, since we often have to divide by 2. Most of the time, we will
also assume that p �= 5 to avoid a similar complication, as you will see. A few basic
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facts from number theory are used, and can be found in the classic texts by Hardy and
Wright [4] or Niven and Zuckerman [7].

A convenient way of generating the sequence is to call on linear algebra. The stan-
dard trick is to write the recursion relation as:(

ak

ak+1

)
=

(
0 1
1 1

) (
ak−1

ak

)
. (2)

For convenience, let M =
(

0 1
1 1

)
. Note that this is the companion matrix of the

polynomial x2 − x − 1, which is important for Fibonacci numbers. We can now write:(
ak

ak+1

)
= Mk

(
a0

a1

)
. (3)

In this formulation, the period of the Fibonacci sequence starting with a0 and a1 is the
smallest positive integer k such that

Mk

(
a0

a1

)
≡

(
a0

a1

)
(mod p). (4)

Our problem, then, is to find a0 and a1 so that k is as large as possible. From (4), we
see that k will always be less than any n such that

Mn ≡ I (mod p), (5)

where I is the 2 × 2 identity matrix. Moroever, the period of any Fibonacci sequence
will be a divisor of n, meaning our k must divide n. As a result, the smallest such n,
denoted n(p), is an upper bound on the longest period.

Standard trick, part II: diagonalize the matrix:

M = A−1 D A. (6)

The eigenvalues of M are μ = (1 + √
5)/2 and μ = (1 − √

5)/2. Thus D =
diag(μ, μ) and

A =
(

1 1
μ μ

)
.

Then, Mn ≡ I exactly when μn ≡ 1 (mod p) and μn ≡ 1 (mod p). It’s enough to
figure out the minimum n for one of the two eigenvalues. I pick μ.

The solution

There are three cases to examine. We leave the case p = 5 to the end, as it is very dif-
ferent from the others. In each case, there are two tasks: compute n(p) and determine
whether any sequences of this maximal period occur.

Case 1: Suppose 5 is quadratic residue of p In this case, 5 has a square root in Fp.
By quadratic reciprocity, 5 is a quadratic residue of p when p = 5N ± 1. Since the
interesting values of p are odd, we actually have p = 10N ± 1. Moreover, in this case,
both μ and μ are also elements of Fp.

A primitive element of F
∗
p is an element that generates F

∗
p as a multiplicative group.

If x is a primitive element of F
∗
p, then group theory tells us that x p−1 ≡ 1 and p − 1



130 MATHEMATICS MAGAZINE

is the least such exponent. Here p − 1 is the the number of elements of F
∗
p. If x is not

primitive, then the least such exponent is the order of x in the multiplicative group F
∗
p,

which is necessarily a divisor of p − 1.

PROPOSITION 1. If 5 is a quadratic residue of p, then the smallest n = n(p) satis-
fying (5) is the order of μ in F

∗
p. Moreover, there is at least one sequence with period

n(p).

Proof. We have already seen that n(p) equals the order of μ. For the second state-
ment, we note that any nonmaximal period k corresponds to a nontrivial solution to
(4), which means that Mk − I has a nontrivial nullspace as a linear transformation on
Fp

2, the two-dimensional vector space over Fp. The only way this nullspace can be
nontrivial is for k to be a divisor of n(p). We can now see that there won’t be any
sequences of maximal possible length if and only if the nullspaces of Mk − I , running
over all proper divisors k of n(p), exhaust Fp

2. Now, since the nullspace is a vector
space over Fp, it will have either 1 or p elements. (We are already assuming that it’s
not the whole space.) However, n(p) is either p − 1 or a divisor of p − 1, and there
are fewer than p proper divisors of p − 1. So by multiplying and counting, we see that
the union of these nullspaces has fewer than p2 elements, and cannot be all of Fp

2.
Hence, there must be at least one Fibonacci sequence with maximal period, n(p).

Case 2: Suppose 5 is not a quadratic residue of p In this case, μ and μ are not el-
ements of Fp. It is necessary, then, to work over the field Fp(

√
5) ∼= Fp2 . The problem

becomes finding the order of μ in Fp(
√

5)∗.
Write out

μp+1 =
(

1 + √
5

2

)p+1

= 1

2p+1
(1 + √

5)p+1

and reduce mod p. Reducing the denominator as 2p+1 = 2p · 2 ≡ 2 · 2 ≡ 4, since
x p ≡ x (mod p) for all x , gives 1/2p+1 ≡ 1/4. The second factor reduces as:

(1 + √
5)p+1 =

(
(
√

5)p+1 + (p + 1)(
√

5)p + p(p + 1)

2
(
√

5)p−1 + · · ·

+ p(p + 1)

2
(
√

5)2 + (p + 1)
√

5 + 1

)

≡
(
(
√

5)p+1 + (
√

5)p + 0 + · · · + 0 + √
5 + 1

)
(mod p).

Now, compute (
√

5)p−1 = 5(p−1)/2: In general, if a is any quadratic nonresidue of p,
then

(p − 1)! ≡ a(p−1)/2 (mod p), (7)

which can be seen by multiplying together the (necessarily unequal) pairs of elements
x and x ′ such that x · x ′ ≡ a (mod p). On the other hand, by doing a similar thing for
a = −1 (and handling separately the cases when −1 is and is not a quadratic residue)
we get Wilson’s Theorem,

(p − 1)! ≡ −1 (mod p). (8)

By combining (7) and (8), we see

(
√

5)p−1 = 5(p−1)/2 ≡ −1 (mod p).
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Comment This formula was already known to Euler, but we will want to recall the
method when considering generalized sequences in the last section. Now, substituting
this into the expansion of (1 + √

5)p+1, we obtain

μp+1 ≡ 1

2p+1

(
(
√

5)p+1 + (
√

5)p + √
5 + 1

)
≡ (1/4)

(
(5 · 5(p−1)/2 + 1) + √

5(5(p−1)/2 + 1)
)

≡ (1/4)
(
(5(−1) + 1) + √

5(−1 + 1)
)

≡ (1/4)(−4) ≡ −1

Then, μ2(p+1) = 1 in Fp(
√

5). Moreover, since μp+1 = −1 in Fp(
√

5), we see that
2(p + 1) is the least such exponent.

PROPOSITION 2. If 5 is not a quadratic residue of p, then the smallest n = n(p)

satisfying (5) is n(p) = 2(p + 1). There is at least one sequence with period n(p).

Proof. We have already computed the value of n(p). The proof of the second state-
ment is essentially the same sort of counting argument as in the first case, which shows
that there aren’t enough “short periods” to exhaust the Fp

2 of possible sequences.
Therefore, the maximum is attained in this case, too.

Case 3: p = 5 Since 5 ≡ 0 (mod 5), we have μ ≡ (1 + 0)/2 ≡ 1/2 ≡ 3 (mod 5)
and μ ≡ (1 − 0)/2 ≡ 1/2 ≡ 3 = μ. Thus, the matrix A in our earlier analysis is

A =
(

1 1
μ μ

)
≡

(
1 1
3 3

)
,

which is singular, i.e., there is no A−1. The point is that we cannot diagonalize the
Fibonacci matrix M in this case. However, Z/(5) is small, and it is not too hard to run
through all the possibilities. Starting with a0 = 1 and a1 = 1 leads to the sequence

1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, repeat

which has period 20. This is the period for most choices of initial values. However, for
a0 = 1 and a1 = 3, the sequence is just

1, 3, 4, 2, repeat

which has a period of just 4. The only other sequence is the trivial sequence 0, 0, 0, . . . .

Summary for Fibonacci sequences If 5 is a quadratic residue of p, then the maxi-
mal period of any Fibonacci sequence in Fp is the order of μ in F

∗
p. This is the maxi-

mal value of p − 1 when μ is a primitive element. If μ is not primitive, then the order
is some divisor of p − 1, which needs to be determined by a direct calculation. By
quadratic reciprocity, the primes p are of the form p = 10N ± 1.

If 5 is a quadratic nonresidue of p, then the maximal period of a Fibonacci sequence
in Fp is 2(p + 1). By quadratic reciprocity, these primes are of the form p = 10N + 7
and p = 10N + 3.

For p = 5, the possible nontrivial periods are 4 and 20.

Generalized Fibonacci numbers

The Fibonacci recurrence relation can be generalized to allow for weights: bn =
αbn−1 + βbn−2, where α and β are integers. We can then ask for the maximal periods
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of sequences of generalized Fibonacci numbers, modulo a prime p:

b0, b1, . . . , bk−1, bk, bk+1, . . . , bn = αbn−1 + βbn−2

bN ≡ b0 (mod p) and bN+1 ≡ b1 (mod p).
(9)

The weights α and β need not be positive integers. However, in order to avoid acciden-
tal multiplication by zero, we should make sure the α and β are both relatively prime
to p.

The arguments used for the standard Fibonacci now carry over, but become harder.

The matrix becomes M =
(

0 1
β α

)
. The eigenvalues become

μ = α + √
α2 + 4β

2
and μ = α − √

α2 + 4β

2
.

Let D = α2 + 4β be the discriminant of the polynomial x2 − αx − β, which plays the
role of x2 − x − 1 from the standard Fibonacci numbers. Assume, for the time being,
that D �= 0. If D is a quadratic residue of p, then the argument in Case 1 goes through
mutatis mutando.

If D is not a quadratic residue of p, then we need to be more careful. We again
need to work in an extension field of Fp, this time the field is Fp(

√
D). The essential

problem is to determine the orders of μ and μ in Fp(
√

D)∗. As before, the order of
this multiplicative group is p2 − 1, which factors as (p − 1)(p + 1). Computing μp+1

is a little more difficult now, since α and β are not explicit, meaning we don’t have
a tidy expression for μ. However, we can use the isomorphism Fp(

√
D) ∼= Fp2 and a

standard fact about the map x �→ x p in a field of characteristic p. This map, denoted
Fr, is called the Frobenius map or the Frobenius endomorphism, and it is very useful in
number theory. In our setting, the Frobenius map has the following useful properties,
as can be found in the book by Mullen and Mummert [6]:

Fr(xy) = Fr(x)Fr(y)

Fr(x + y) = Fr(x) + Fr(y)

Fr(x) = x if and only if x ∈ Fp

Fr2 = Id.

The first two properties are just another way of saying that Fr is an endomorphism,
that is, a homomorphism from Fp(

√
D) to itself. The last property is special to the

case of a quadratic extension, and can be deduced using reasoning similar to the
computation presented in Case 2 above. The last two properties combine to imply
Fr(

√
D) = −√

D.
We can now set about computing μp+1. Write out:

μp+1 =
(

α + √
D

2

)p+1

= 1

2p+1
(α + √

D)p+1

and reduce mod p. As before, the denominator reduces as 2p+1 = 2p2 ∼= 2 · 2 = 4.
The second factor reduces as:

(α + √
D)p+1 = (α + √

D)p(α + √
D) = Fr(α + √

D)(α + √
D)

= (α − √
D)(α + √

D) = α2 − D
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But D = α2 + 4β, so the second factor reduces to α2 − (α2 + 4β) = −4β and

μp+1 ∼= −β.

For the standard Fibonacci numbers, β = 1. So we knew that β2 = 1 and could con-
clude that μ2(p+1) ∼= 1. Now, however, we need to know the order d of −β in F

∗
p. This

is not an easy problem in general. All we really know is that d must divide (p − 1),
the order of F

∗
p. Thus, the best we can conclude is only that the maximum period of

the generalized Fibonacci sequence is d(p + 1), and we are left with separate com-
putations for every case. Again, a counting argument verifies that the maximal period
n(p) does occur. For α = 3, β = 7, and p = 13, the maximum possible period is
n(p) = p2 − 1 = 168. Using the starting values b0 = 0 and b1 = 1, a computation
using Maple shows that this maximum period does indeed occur.

If the discriminant D = α2 + 4β is zero, the situation is rather different. Observe
that β = −(α/2)2 and, for notational convenience, let λ = α/2. The recurrence rela-
tion now becomes:

bn = 2λbn−1 − λ2bn−2

and the matrix becomes

M =
(

0 1
−λ2 2λ

)
.

Unfortunately, M is not diagonalizable. It has Jordan form

J =
(

λ 1
0 λ

)
, so that J k =

(
λk kλk−1

0 λk

)
.

If k is a period for this generalized Fibonacci sequence, then we want to find k such
that J k ≡ I , which means(

λk kλk−1

0 λk

)
≡

(
1 0
0 1

)
(mod p).

Since Z/pZ is a field, the equality of the (2, 2) entries tells us that λk ≡ 1 (mod p).
This implies that k is a multiple of the order of λ in (Z/pZ)∗, which is a divisor of
(p − 1). Comparison of the (1, 2) entries tells us that kλk−1 ≡ 0. Again using that
Z/pZ is a field, we deduce that one of the factors must be zero. But a power of λ

is zero only if λ itself is zero, so we are left with k ≡ 0 (mod p), implying that k
is a multiple of p. So the longest possible period is kp, where k is the order of λ in
(Z/pZ)∗. When λ is primitive, the longest possible period is p(p − 1).

Acknowledgment. I am grateful to Peter Trapa who suggested the counting argument that is used in the proofs
of the second statements in the propositions.
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We enjoyed reading how Horton [1] “fooled Newton’s method” with an example where
the sequence

xn+1 = xn − f (xn)

f ′(xn)

converges but its limit does not satisfy f (x) = 0. Indeed, if

f (x) =
{

π − 2x sin π

x for x �= 0,
π for x = 0,

(1)

then the Newton sequence is

xn+1 = xn − 1

2

πxn − 2x2
n sin π

xn

π cos π

xn
− xn sin π

xn

,

and, starting from x1 = 1/2, we have x2 = 1/4, x3 = 1/8, . . . , xn = 1/2n → 0, al-
though f (0) = π �= 0.

Can f be differentiable? Note that the function in (1) is not differentiable at x = 0.
Since we thought that a differentiable function would fool the method even better, we
wanted to know if such a function exists. Simply modifying Horton’s function, we
found an example that readers might find even more surprising:

f (x) =
{

π − x2 sin π

x2 for x �= 0,
π for x = 0.

(2)


