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THE STEINBERG VARIETY
AND

REPRESENTATIONS OF REDUCTIVE GROUPS

J. MATTHEW DOUGLASS AND GERHARD RÖHRLE

1. Introduction

Suppose G is a connected, reductive algebraic group defined over an algebraically closed
field k, B is the variety of Borel subgroups of G, and u is a unipotent element in G. Let Bu

denote the closed subvariety of B consisting of those Borel subgroups that contain u, let r
denote the rank of G, and let C denote the conjugacy class of u.

In 1976, motivated by the problem of proving the equality conjectured by Grothendieck

(∗) dim ZG(u) = r + 2 dimBu,

Steinberg [Ste76], in order to get the multiplicity 2 in the picture, introduced a variety of
triples

S = { (v, B, B′) ∈ C × B × B | v ∈ B ∩ B′ }.
By analyzing the geometry of the variety S he was able to prove (∗) in most cases. In
addition, by exploiting the fact that G-orbits on B ×B are canonically indexed by elements
of the Weyl group of G, he showed that S could be used to establish relationships between
Weyl group elements and unipotent elements in G.

Now assume that the characteristic of k is good for G, let g denote the Lie algebra of
G, and let N denote the variety of nilpotent elements in g. Then there is a G-equivariant
isomorphism between N and the variety of unipotent elements in G. The Steinberg variety
of G is

Z = { (x, B, B′) ∈ N× B × B | x ∈ Lie(B) ∩ Lie(B′) }.
In the thirty years since Steinberg first exploited the variety S, the Steinberg variety has

played a key role in advancing our understanding of objects that at first seem to be quite
unrelated:

• Representations of Weyl groups.
• The geometry of nilpotent orbits in g and their covers.
• Differential operators on B.
• Primitive ideals in the universal enveloping algebra of g.
• Representations of p-adic groups and the local Langlands program.
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In this paper we hope to give readers who are familiar with the some aspects of the
representation theory of semisimple algebraic, or Lie, groups, but who are not specialists in
this particular flavor of geometric representation theory, an overview of the main results that
have been proved using the Steinberg variety. In the process we hope to make these results
more accessible to non-experts and at the same time emphasize the unifying role played by
the Steinberg variety.

We will more or less follow the historical development, beginning with concrete, geometric
constructions and then progressing to increasingly more advanced and abstract notions.

In §2 we analyze the geometry of Z, including applications to characteristic varieties and
primitive ideals.

In §3 we study the Borel-Moore homology of Z and the relation with representations of
Weyl groups. Soon after Steinberg introduced his variety S, Kazhdan and Lusztig [KL80],
defined an action of W × W on the top Borel-Moore homology groups of Z. Following a
suggestion of Springer, they showed that the representation of W ×W on the top homology
group, H4n(Z), is the two-sided regular representation of W . Somewhat later, Ginzburg
[CG97] defined a multiplication on the total Borel-Moore homology of Z. With this multi-
plication, H4n(Z) is a subalgebra isomorphic to the group algebra of W .

The authors [DR08a] [DR08b] have used Ginzburg’s construction to describe the top
Borel-Moore homology groups of the generalized Steinberg varieties XP,Q

0,0 and XP,Q
reg,reg in

terms of W , as well as to give an explicit, elementary, computation of the total Borel-Moore
homology of Z: the total Borel-Moore homology of Z is isomorphic to the smash product of
the coinvariant algebra of W and the group algebra of W .

Orbital varieties arise naturally in the geometry of the Steinberg variety. Using Ginzburg’s
formalism, Hinich and Joseph [HJ05] have used Ginzburg’s construction to prove a conjecture
of Joseph about inclusions of closures of orbital varieties.

In §4 we study the equivariant K-theory of Z and what is undoubtedly the most important
result to date involving the Steinberg variety: the Kazhdan-Lusztig isomorphism [KL87]
between KG×C∗

(Z) and the extended, affine Hecke algebra H. Using this isomorphism,
Kazhdan and Lusztig were able to classify the irreducible representations of H and hence to
classify the representations containing a vector fixed by an Iwahori subgroup of the p-adic
group with the same type as the Langlands dual of G. In this way, the Steinberg variety
plays a key role in the local Langlands program and also leads to a better understanding of
the extended affine Hecke algebra.

Very recent work involving the Steinberg variety centers around attempts to categorify
the isomorphism between the specialization of KG×C∗

(Z) at p and the Hecke algebra of
Iwahori bi-invariant functions on LG(Qp). Because of time and space constraints, we leave
a discussion of this research to a future article.

2. Geometry

For the rest of this paper, in order to simplify the exposition, we assume that the derived
group of G is simply connected and that k = C. Most of the results below hold, with obvious
modifications, for an arbitrary reductive algebraic group when the characteristic of k is zero
or very good for G.
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Fix a Borel subgroup B in G and a maximal torus T in B. Define U to be the unipotent
radical of B and define W = NG(T )/T to be the Weyl group of (G, T ). Set n = dimB and
r = dim T .

We will use the convention that a lower case fraktur letter will denote the Lie algebra of
the algebraic group denoted by the corresponding upper case roman letter.

For x in N, define Bx = { gBg−1 | g−1x ∈ b }, the Springer fibre at x.

2.1. Irreducible components of Z, Weyl group elements, and nilpotent orbits.
We begin analyzing the geometry of Z using ideas that go back to Steinberg [Ste76] and
Spaltenstein [Spa82].

The group G acts on B by conjugation and on N by the adjoint action. This latter action
is denoted by (g, x) %→ g · x = gx. Thus, G acts “diagonally” on Z.

Let π : Z → B × B be the projection on the second and third factors. By the Bruhat
Lemma, the elements of W parameterize the G-orbits on B × B. An element w in W
corresponds to the G-orbit containing (B, wBw−1) in B × B. Define

Zw = π−1
(
G(B, wBw−1)

)
, Uw = U ∩ wUw−1, and Bw = B ∩ wBw−1.

The varieties Zw play a key role in the rest of this paper.
Since π is G-equivariant, G acts transitively on G(B, wBw−1), and the fibre of π over

(B, wBw−1) is isomorphic to uw, it follows that Zw is isomorphic to the associated fibre
bundle G×Bw uw. Thus, Zw is the image of an irreducible variety and so is irreducible and
dim Zw = dim G− dim Bw + dim uw = 2n. Furthermore, each Zw is locally closed in Z and
so it follows that {Zw | w ∈ W } is the set of irreducible components of Z.

Let µz : Z → N denote the projection on the first component. For a G-orbit, C, in N, set
ZC = µ−1

z (C). Fix x in C. Then µz is G-equivariant, G acts transitively on C, and the fibre
of µz over x is isomorphic to Bx ×Bx, and so ZC

∼= G×ZG(x) (Bx ×Bx). Spaltenstein [Spa82]
has shown that the variety Bx is equidimensional and Steinberg and Spaltenstein have shown
that dim ZG(x) = r + 2 dimBx. This implies the following results due to Steinberg [Ste76,
Proposition 3.1]:

• dim ZC = dim G− dim ZG(x) + 2 dimBx = dim G− r = 2n.
• Every irreducible component of ZC has the form

G({x} × C1 × C2) = G({x} × (ZG(x)(C1 × C2)))

where C1 and C2 are irreducible components of Bx.
• A pair, (C ′

1, C
′
2), of irreducible components of Bx determines the same irreducible

component of ZC as (C1, C2) if and only if there is a z in ZG(x) with (C ′
1, C

′
2) =

(zC1z−1, zC2z−1).

Thus, ZC is equidimensional with dim ZC = 2n = dim Z and there is a bijection between
irreducible components of ZC and ZG(x)-orbits on the set of irreducible components of Bx ×
Bx.

Now the closures of the irreducible components of ZC are closed, irreducible, 2n-dimensional
subvarieties of Z and so each irreducible component of ZC is of the form ZC ∩ Zw for some
unique w in W . Define WC to be the subset of W that parameterizes the irreducible com-
ponents of ZC. Then w is in WC if and only if ZC ∩ Zw is an irreducible component of
ZC.
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We see that there is a bijection between WC and of ZG(x)-orbits on the set of pairs of
irreducible components of Bx given as follows. If w is in WC and (C1, C2) is a pair of
irreducible components of Bx, then w corresponds to the ZG(x)-orbit of (C1, C2) if and only
if G(B, wBw−1) ∩ (C1 × C2) is dense in C1 × C2.

Using the isomorphism Zw
∼= G×Bw uw we see that ZC∩Zw

∼= G×Bw (C∩ uw). Therefore,
w is in WC if and only if C ∩ uw is dense in uw. This shows in particular that WC is closed
under taking inverses.

Clearly W is the disjoint union of the WC’s as C varies over the nilpotent orbits in N.
The subsets WC are called two-sided Steinberg cells and have several properties in common
with Kazhdan-Lusztig two-sided cells in W . Some of these properties will be described in
the next subsection.

When x = 0 we have Z{0} = Zw0
= {0} × B × B where w0 is the longest element in W .

Therefore W{0} = {w0}. At the other extreme, let Nreg denote the regular nilpotent orbit.
Then it follows from the fact that every regular nilpotent element is contained in a unique
Borel subalgebra that WNreg contains just the identity element in W .

Notice that in general there are more two-sided Steinberg cells than two-sided Kazhdan-
Lusztig cells. Two-sided Steinberg cells are in bijection with the set of nilpotent orbits in N
while two-sided Kazhdan-Lusztig cells are in bijection with the set of special nilpotent orbits
in N.

2.2. Orbital varieties. Suppose that C is a nilpotent orbit. An orbital variety for C is an
irreducible component of C ∩ u. An orbital variety is a subvariety of N that is orbital for
some nilpotent orbit. (Warning: sometimes an orbital variety is defined as the closure of an
irreducible component of C ∩ u.)

Geometrically, orbital varieties can be used to decompose two-sided Steinberg cells into left
and right Steinberg cells. This can be viewed as a geometric generalization of the Robinson-
Schensted correspondence. We outline this construction using the Steinberg variety in this
subsection.

Fix a nilpotent orbit C and an element x in C ∩ u. Define p : G → C by p(g) = g−1x and
q : G → B by q(g) = gBg−1. Then p−1(C ∩ u) = q−1(Bx). Spaltenstein [Spa82] has shown
that

• if C is an irreducible component of Bx, then pq−1(C) is an orbital variety for C,
• every orbital variety for C has the form pq−1(C) for some irreducible component C

of Bx, and
• pq−1(C) = pq−1(C ′) that for components C and C ′ of Bx if and only if C and C ′ are

in the same ZG(x)-orbit.

It follows immediately that C ∩ u is equidimensional and all orbital varieties for C have the
same dimension: n− dimBx = 1

2 dim C.
Joseph [Jos84, §9] has refined the relation between orbital varieties for C and the set WC.
Suppose V1 and V2 are orbital varieties for C. Choose irreducible components C1 and C2

of Bx so that pq−1(C1) = V1 and pq−1(C2) = V2. We have seen that there is a w in WC

so that ZC ∩ Zw = G ({x} × ZG(x)(C1 × C2)). Clearly µ−1
z (x) ∩ Zw ⊆ µ−1

z (x) ∩ Zw. Since
both sides are closed and ZG(x)-stable, and the right hand side is the ZG(x)-saturation of
{x} × C1 × C2, it follows that µ−1

z (x) ∩ Zw = µ−1
z (x) ∩ Zw.
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Let p2 denote the projection of ZC to B by p2(x, B′, B′′) = B′. Then pq−1p2 (µ−1
z (x) ∩ Zw) =

B(C ∩ uw). Also,

pq−1p2

(
µ−1

z (x) ∩ Zw

)
= pq−1p2 ({x} × ZG(x)(C1 × C2)) = pq−1 (ZG(x)C1) = V1.

Since C∩uw is dense in uw we have Buw ∩C = B(C ∩ uw) ⊆ V1. However, since µ−1
z (x)∩Zw

is a dense, ZG(x)-stable subset of µ−1
z (x) ∩ Zw, it follows that

dim B(C ∩ uw) = dim pq−1p2

(
µ−1

z (x) ∩ Zw

)

= dim p2

(
µ−1

z (x) ∩ Zw

)
+ dim B − dim ZG(x)

= dimBx + dim B − r − 2 dimBx

= n− dimBx

and so Buw ∩ C = V1.
A similar argument shows that Buw−1 ∩ C = V2. This proves the following theorem.

Theorem 2.1. If C is a nilpotent orbit and V1 and V2 are orbital varieties for C, then there
is a w in WC so that V1 = Buw ∩ C and V2 = Buw−1 ∩ C

For w in W , define Vl(w) = Buw−1 ∩ C when w is in WC. For w1 and w2 in W , define
w1 ∼l w2 if Vl(w1) = Vl(w2). Then ∼l is an equivalence relation and the equivalence classes
are called left Steinberg cells. Similarly, define Vr(w) = Buw ∩ C when w is in WC and
w1 ∼r w2 if Vr(w1) = Vr(w2). The equivalence classes for ∼r are called right Steinberg cells.

Clearly, each two-sided Steinberg cell is a disjoint union of left Steinberg cells and is also
the disjoint union of right Steinberg cells. Precisely, if w is in WC, then

WC =
∐

y∈Vr(w)

Vl(y) =
∐

y∈Vl(w)

Vr(y).

It follows from the theorem that the rule w %→ (Vr(w), Vl(w)) defines a surjection from
W to the set of pairs of orbital varieties for the same nilpotent orbit. We will see below
that the number of orbital varieties for a nilpotent orbit C is the dimension of the Springer
representation of W corresponding to the trivial representation of the component group of
any element in C. Denote this representation of W by ρC. Then the number of pairs (V1, V2),
where V1 and V2 are orbital varieties for the same nilpotent orbit, is

∑
C dim ρ2

C. In general
this sum is strictly smaller than |W |. Equivalently, in general, there are more irreducible
representations of W than G-orbits in N.

However, if G has type A, for example if G = SLn(C) or GLn(C), then every irreducible
representation of W is of the form ρC for a unique nilpotent orbit C. In this case w %→
(Vr(w), Vl(w)) defines a bijection from W to the set of pairs of orbital varieties for the
same nilpotent orbit. Steinberg has shown that this bijection is essentially given by the
Robinson-Schensted correspondence.

In more detail, using the notation in the proof of the theorem, suppose that C is a nilpotent
orbit, V1 and V2 are orbital varieties for C, and C1 and C2 are the corresponding irreducible
components in Bx. In [Ste88] Steinberg defines a function from B to the set of standard
Young tableau and shows that G(B, wBw−1) ∩ (C1 × C2) is dense in C1 × C2 if and only
if the pair of standard Young tableaux associated to generic (B′, B′′) in C1 × C2 is the
same as the pair of standard Young tableaux associated to w by the Robinson-Schensted
correspondence. For more details, see also [Dou96].
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An open problem, even in type A, is determining the orbit closures of orbital varieties.
Some rudimentary information may be obtained by considering the top Borel-Homology
group of Z (see §3 and [HJ05]).

2.3. Associated varieties and characteristic varieties. The Steinberg variety arises
naturally in the theory of algebraic (g, K)-modules. This was first observed by Borho and
Brylinski [BB85] and Ginzburg [Gin86].

Recall that we have defined Z = { (x, B′, B′′) ∈ N×B×B | x ∈ Lie(B′)∩Lie(B′′) }. If B′

is a Borel subgroup of G, then using the Killing form on g, the cotangent space to B at B′

may be identified with b′ ∩N, the nilradical of b′. Define Ñ = { (x, B′) ∈ N × B | x ∈ b′ }
and let µ : Ñ → N be the projection on the first factor. Then Ñ ∼= T ∗B and it is easy to see
that Z ∼= Ñ×N Ñ ∼= T ∗B ×N T ∗B.

Using this description of Z as a fibred product, we see that it has an alternate description
as the fibred product Z ∼= (Ñ×Ñ)×N×NN where µ×µ : Ñ×Ñ → N×N and δ : N → N×N
by δ(x) = (x,−x). Alternately, Z ∼= { (x,−x, B′, B′′) | x ∈ b′ ∩ b′′ }

For the rest of this subsection, we assume that G is a semisimple complex Lie group and K
is a closed, connected, algebraic subgroup of G that acts on B with finitely many orbits. The
two special cases we are interested in are the “highest weight” case, when K = B is a Borel
subgroup of G, and the “Harish-Chandra” case, when K = Gd is the diagonal subgroup of
G × G. In the general setting, we suppose that W is a finite set that indexes the K-orbits
on B by w ↔ Xw. Of course, in the examples we are interested in, the two definitions of W
are compatible.

For w in W , let T ∗
wB denote the conormal bundle to the K-orbit Xw in T ∗B. Then letting

k⊥ denote the subspace of g orthogonal to k with respect to the Killing form and using our
identification of T ∗B with pairs we may identify

T ∗
wB ∼= { (x, B′) ∈ N× B | B′ ∈ Xw, x ∈ b′ ∩ k⊥ }.

Define Yk = µ−1(k⊥). Then Yk is closed, Yk =
∐

w∈W T ∗
wB = ∪w∈WT ∗

wB, and µ restricts to a

surjection Yk
µ−→ k⊥.

Consider U(g) with the standard filtration. Then by the PBW Theorem, gr U(g) ∼=
Sym(g), the symmetric algebra of g. Since g is semisimple, using the Killing form, we may
identify gr U(g) with C[g], the coordinate ring of the affine variety g.

A finitely generated (g, K)-module is a finitely generated g-module with a compatible
algebraic action of K. If M is a finitely generated (g, K)-module, then it has a “good”
filtration such that the associated graded module, gr M , a module for gr U(g) ∼= C[g], is
finitely generated. The associated variety of M , denoted by Vk⊥(M), is the support of the
C[g]-module grM – a subvariety of g. It is known that Vk⊥(M) is independent of the choice
of good filtration and is contained in k⊥.

Let DB denote the sheaf of algebraic differential operators on B. A coherent (DB, K)-
module is a K-equivariant sheaf of DB-modules that is coherent as a OB-module. If M is a
coherent (DB, K)-module, then it has a “good” filtration such that grM is a coherent grDB-
module. The associated graded sheaf grDB is isomorphic to the direct image p∗OT ∗B. Thus,
grM may be considered as an OT ∗B-module. The characteristic variety of M, denoted by
VYk

(M), is the support of the OT ∗B-module grM – a subvariety of T ∗B. It is known that
VYk

(M) is independent of the choice of good filtration and is contained in Yk.
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Unraveling the notation in the Harish-Chandra case we have k⊥ = g⊥
d = { (x,−x) | x ∈ g }

is isomorphic to g. Therefore,

T ∗
w(B × B) = { (x, y, B′, B′′) | (B′, B′′) ∈ G(B, wBw−1), x ∈ b′, y ∈ b′′, (x, y) ∈ g⊥

d } ∼= Zw.

Thus, Ygd
=

∐
w∈W T ∗

w(B × B) is isomorphic to the Steinberg variety and we may identify
the restriction of µ× µ to Ygd

with µz : Z → N.
Unraveling the notation in the highest weight case we have k⊥ = b⊥ = u. Hence, Yu =

µ−1(u) ∼= {(x, B′) ∈ N×B | x ∈ u∩b′ }. We denote Yu simply by Y and call it the conormal
variety. For w in W , Xw is the set of B conjugates of wBw−1 and T ∗

wB ∼= {(x, B′) ∈
N × B | B′ ∈ Xw, x ∈ u ∩ b′ }. The projection of T ∗

wB to B is a B-equivariant surjection
onto Xw and so T ∗

wB ∼= B ×Bw uw. Therefore, dim T ∗
wB = dim B − dim Bw + dim u = n.

Since Y =
∐

w∈W T ∗
wB and each T ∗

wB is locally closed and n-dimensional, we see that the set
{ T ∗

wB | w ∈ W } is the set of irreducible components of Y .
Let p3 : Z → B be projection on the third factor. Then p3 is G-equivariant, G acts

transitively on B, and the fibre over B is isomorphic to Y . This gives yet another description
of the Steinberg variety: Z ∼= G×B Y .

Arguments in the spirit of those given above (see [HJ05, §3]) show that if we set Yw = T ∗
wB

and YC = µ−1(C ∩ u), then dim YC = n, YC is equidimensional, and the set of irreducible
components of YC is { YC∩ Yw | w ∈ WC }.

Now consider the following three categories:

• coherent (DB×B, Gd)-modules, Mod (DB×B, Gd)coh;
• finitely generated (g×g, Gd)-modules with trivial central character, Mod (g×g, Gd)

fg
0,0;

and
• finitely generated (g, B)-modules with trivial central character, Mod (g, B)fg

0 .

It is shown in [BB85, §3] that these three categories are naturally equivalent.
Suppose H is a coherent (DB×B, Gd)-module, H is the corresponding finitely generated

(g×g, Gd)-module with trivial central character, and L is the corresponding finitely generated
(g, B)-module with trivial central character. Then it is shown in [BB85, §4] that there is a
subset Σ = ΣH of W so that when µ× µ : Ygd

→ g⊥
d is identified with µz : Z → N we have:

• The characteristic variety of H is VZ(H) = ∪y∈ΣZy, a union of irreducible components
of Z.

• The associated variety of H is Vgd
(H) = µz (Vgd

(H)) = ∪y∈ΣGuy = G · Vu(L), so the
associated variety of H is image under µz of the characteristic variety of H and is
also the G-saturation of the associated variety of L.

• The associated variety of L is Vu(L) = ∪y∈ΣBuy, a union of closures of orbital vari-
eties.

Moreover, the simple objects in each of these categories are indexed by W . If w is in W ,
and Hw, Hw, and Lw are corresponding simple modules, then there is a nilpotent orbit, C,
so that V (Hw) = G · V (Lw) = C.

For w in W , determining the subset Σ = Σ(w) so that V (Lw) = ∪y∈ΣBuy is still an open
problem (see [BB85] and [HJ05] for more information).

2.4. Generalized Steinberg varieties. When considering the restriction of a Springer
representation to parabolic subgroups of W , Springer introduced a generalization of Ñ de-
pending on a parabolic subgroup P and a nilpotent orbit in a Levi subgroup of P . Springer’s
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construction extends naturally to what we call “generalized Steinberg varieties.”The results
in this subsection may be found in [DR04].

Suppose P is a conjugacy class of parabolic subgroups of G. The unipotent radical of a
subgroup, P , in P will be denoted by UP . A G-equivariant function, c, from P to the power
set of N with the properties

• uP ⊆ c(P ) ⊆ N ∩ p and
• the image of c(P ) in p/uP is the closure of a single nilpotent P/UP -adjoint orbit

is called a Levi class function on P. Define

ÑP
c = { (x, P ) ∈ N× P | x ∈ c(P ) }.

Let µP
c : ÑP

c → N denote the projection on the first factor. Notice that µP
c is a proper

morphism.
If Q is another conjugacy class of parabolic subgroups of G and d is a Levi class function

on Q, then the generalized Steinberg variety determined by P, Q, c, and d is

XP,Q
c,d = { (x, P, Q) ∈ N×P ×Q | x ∈ c(P ) ∩ d(Q) } ∼= ÑP

c ×N ÑQ
d .

Since G acts on N, P, and Q, there is a diagonal action of G on XP,Q
c,d for all P, Q, c, and d.

The varieties arising from this construction for some particular choices of P, Q, c, and d
are worth noting.

• The special case when c(P ) = uP and d(Q) = uQ is denoted by XP,Q
0,0 . Then XP,Q

0,0
∼=

T ∗P ×N T ∗Q.
• When P = Q = B, then c(B) = d(B) = {uB′} for every B′, in B and so XB,B

0,0 = Z is
the Steinberg variety of G.

• When P = Q = {G}, c(G) = O1, and d(G) = O2, then X{G},{G}
c,d

∼= O1 ∩ O2.
• The special case when c(P ) = N ∩ p and d(Q) = N ∩ q is denoted simply by XP,Q.

Abusing notation slightly we let µ : XP,Q
c,d → N denote the projection on the first coordi-

nate and π : XP,Q
c,d → P×Q the projection on the second and third coordinates. We can the

investigate the varieties XP,Q
c,d using preimages of G-orbits in N and P × Q under µ and π

as we did for Z. Some special cases when at least one of c(P ) or d(Q) is smooth turn out to
be the most tractable. We will describe these cases in this subsection. We refer the reader
to [DR04] for some results for arbitrary P, Q, c, and d.

Fix P in P and Q in Q with B ⊆ P ∩ Q. Let WP and WQ denote the Weyl groups of
(P, T ) and (Q, T ) respectively. We consider WP and WQ as subgroups of W .

Let πP : B → P by defining πP(B′) to be the unique subgroup in P containing B′. Now
define

η : Z → XP,Q by η(x, B′, B′′) = (x, πP(B′), πQ(B′′).

Then η depends on P and Q and is a proper, G-equivariant, surjective morphism.

Next, define ZP,Q = η−1
(
XP,Q

0,0

)
. We denote the restriction of η to ZP,Q by η1. Then

η1 is also a proper, surjective, G-equivariant morphism. Moreover, the fibres of η1 are all
isomorphic to the smooth, complete variety P/B ×Q/B.

Finally, for w in W , define ZP,Q
w to be the intersection ZP,Q∩Zw. Since (0, B, wBw−1) is in

ZP,Q
w and η1 is G-equivariant, it is straightforward to check that ZP,Q

w
∼= G×Bw (uP ∩ wuQ).

Thus ZP,Q
w is smooth and irreducible.
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The following statements are proved in [DR04].

• For w in W , dim η(Zw) = dimN if and only if w has minimal length in WP wWQ.
The set of irreducible components of XP,Q is

{ η(Zw) | w has minimal length in WP wWQ }.
• For w in W , ZP,Q

w = Zw if and only if w has maximal length in WP wWQ. The variety
ZP,Q is equidimensional and the set of irreducible components of ZP,Q is

{Zw | w has maximal length in WPwWQ }.

• The variety XP,Q
0,0 is equidimensional with dimension equal dim uP + dim uQ and the

set of irreducible components of XP,Q
0,0 is

{ η1(Zw) | w has maximal length in WP wWQ }.
• For a Levi class function d on Q, define ρd to be the number of irreducible components

of d(Q)∩(u ∩ lQ) where LQ is the Levi factor of Q that contains T . Notice that this is
the number of orbital varieties for an LQ-orbit in the variety of nilpotent elements in
lQ. Then the varieties XB,Q

0,d are equidimensional with dimension 1
2(dim u+dim d(Q)+

dim uQ) and |W : WQ|ρd irreducible components.

Notice that the first statement relates minimal double coset representatives to regular orbits
in Levi subalgebras and the third statement relates maximal double coset representatives to
the zero orbits in Levi subalgebras.

The quantity ρd in the fourth statement is the degree of an irreducible representation of
WQ (see §3.5) and so |W : WQ|ρd is the degree of an induced representation of W . The fact
that XB,Q

0,d has |W : WQ|ρd irreducible components is numerical evidence for Conjecture 3.10
below.

3. Homology

We now take up the rational Borel-Moore homology of the Steinberg variety and gener-
alized Steinberg varieties. As mentioned in the Introduction, soon after Steinberg’s original
paper, Kazhdan and Lusztig [KL80], defined an action of W ×W on the top Borel-Moore
homology groups of Z. They constructed the action by defining and action of the simple
reflections in W×W on Hi(Z) and showed that the defining relations of W×W are satisfied.
Then they proved that the representation of W×W on H4n(Z) is equivalent to the two-sided
regular representation of W and gave a decomposition in terms of Springer representations
of W .

In the mid 1990’s Ginzburg [CG97] popularized a quite general convolution product con-
struction that defines an algebra structure on H∗(Z) and KG(Z) (see the next section for
KG(Z)). With this multiplication, H4n(Z) is a subalgebra isomorphic to the group algebra
of W .

In this section, following [CG97], [DR08b], and [HJ05] we will first use some relatively
elementary constructions to describe the algebra structure of H∗(Z), the decomposition of
H4n(Z) in terms of Springer representations, and the H4n(Z)-module structure on H2n(Y ).
Then we will use a more sophisticated sheaf theoretic construction of Borel-Moore homology
to give an alternate description of H∗(Z), a different version of the decomposition of H4n(Z)
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in terms of Springer representations, and to describe the Borel-Moore homology of some
generalized Steinberg varieties.

3.1. Borel-Moore homology and convolution. Suppose that X is a d-dimensional,
quasi-projective, complex algebraic variety (not necessarily irreducible). We denote the
complex dimension of X by dim X. Topological notions will refer to the Euclidean topology
on X unless otherwise specified. We refer the reader to [CG97, Chapter 2, Chapter 3] for
more information.

Let X ∪{∞} be the one-point compactification of X. Then the ith Borel-Moore homology
space of X, denoted by Hi(X), is defined by Hi(X) = Hsing

i (X, {∞}), the relative, singular
homology with rational coefficients of the pair (X∪{∞}, {∞}). Define H∗(X) =

∑
i≥0 Hi(X)

– the Borel-Moore homology of X.
If i > 2 dim X, then Hi(X) = 0, so H2 dim X(X) is the top non-zero Borel-Moore homology

space. Each d-dimensional irreducible component C of X gives rise to a homology class [C]
in H2d(X) and these classes form a basis of H2d(X).

In particular, for the Steinberg variety, Hi(Z) = 0 for i > 4n and the set { [Zw] | w ∈ W }
is a basis of H4n(Z). For the conormal variety, Hi(Y ) = 0 for i > 2n and the set { [Yw] | w ∈
W } is a basis of H2n(Y ).

If X is smooth and A and B are closed subvarieties of X, there is an intersection pairing
∩ : Hi(A)×Hj(B) → Hi+j−2dimX(A ∩B). This pairing depends on (X, A, B).

Fix a “base” variety, N . For i = 1, 2, 3, suppose that Mi is a smooth, connected, di-
dimensional variety and fi : Mi → N is a proper morphism. For 1 ≤ i < j ≤ 3, let
pi,j : M1 ×M2 ×M3 → Mi ×Mj denote the projection.

Suppose Z1,2 is a closed subset of M1 × M2 and Z2,3 is a closed subvariety of M2 × M3.
Define Z1,3 = Z1,2 ◦ Z2,3 to be the composition of the relations Z1,2 and Z2,3. Then

Z1,3 = { (m1, m3) ∈ M1 ×M3 | ∃m2 ∈ M2 with (m1, m2) ∈ Z1,2 and (m2, m3) ∈ Z2,3 }
Assume that the restriction, p1,3 : p−1

1,2(Z1,2)∩p−1
2,3(Z2,3) → Z1,3 is a proper morphism. Then

there is an associative convolution product, Hi(Z1,2)×Hj(Z2,3)
∗−→ Hi+j−d2

(Z1,3) defined by

c ∗ d = (p1,3)!

(
p∗1,2(c) ∩ p∗2,3(d)

)

where ∩ is the intersection pairing determined by the subsets Z1,2 × M3 and M1 × Z2,3 of
M1 ×M2 ×M3.

When M1 = M2 = M3 = M , f1 = f2 = f3 = f , and Zi,j = M ×N M for 1 ≤ i < j ≤ 3,
the convolution product defines a multiplication on H∗(M ×N M) so that H∗(M ×N M) is
a Q-algebra with identity. The identity in H∗(M ×N M) is [M∆] where M∆ is the diagonal
in M ×M . If d = dim M , then Hi(M ×N M) ∗Hj(M ×N M) ⊆ Hi+j−2d(M ×N M) and so
H2d(M ×N M) is a subalgebra and ⊕i<2d(M ×N M) is a nilpotent, two-sided ideal.

If M and M ′ are smooth and f : M → N and f ′ : M ′ → N are proper maps, then the
convolution product defines a left H∗(M ×N M)-module structure on H∗(M ×N M ′). A
special case is when M ′ = A is a subset of N and f ′ : f−1(A) → N is the restriction of f .
Then the convolution product defines a left H∗(M ×N M)-module structure on H∗(f−1(A)).

Using the description Z ∼= Ñ×N Ñ, where µ : Ñ → N, we get the following proposition.

Proposition 3.1. The convolution product defines a Q-algebra structure on H∗(Z) and left
H∗(Z)-module structures on H∗(Y ) = H∗(µ−1(u)) and H∗(Bx) for x in N.
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3.2. The specialization construction and H4n(Z). Chriss and Ginzburg [CG97, §3.4]
use a specialization construction to show that H4n(Z) is isomorphic to the group algebra
Q[W ]. The specialization construction can also be used to show that H∗(Z) is isomorphic to
the smash product of the group algebra of W and the coinvariant algebra of W . To describe
these results, we need some more notation.

Define g̃ = { (x, B′) ∈ g × B | x ∈ Lie(B′) } and Ẑ = { (x, B′, B′′) ∈ g × B × B | x ∈
Lie(B′) ∩ Lie(B′′) }. Abusing notation slightly, let µ : g̃ → g and µz : Ẑ → g denote the
projections on the first factors and let π : Ẑ → B × B denote the the projection on the
second and third factors.

For w in W define Ẑw = π−1(G(B, wBw−1)). Then Ẑw
∼= G×Bw bw and so dim Ẑw = dim g

and the closures of the Ẑw’s for w in W are the irreducible components of Ẑ.
As with Z, we have an alternate description of Ẑ as (g̃× g̃)×g×gg. However, in contrast to

the situation in §2.3, where δ : g → g×g by δ(x) = (x,−x), from now on we let δ : g → g×g

be the diagonal map. We will frequently identify Ẑ with the subvariety of g̃ × g̃ consisting
of all pairs ((x, B′), (x, B′′)) with x in b′ ∩ b′′. Similarly, we will frequently identify Z with
the subvariety of Ñ× Ñ consisting of all pairs ((x, B′), (x, B′′)) with x in N ∩ b′ ∩ b′′.

For (x, gBg−1) in g̃, define ν(x, gBg−1) to be the projection of g−1 ·x in t. For w in W , let
Γw−1 = { (h, w−1 · h) | h ∈ t } ⊆ t× t denote the graph of the action of w−1 on t and define

Λw = Ẑ ∩ (ν × ν)−1 (Γw−1) = { (x, B′, B′′) ∈ Ẑ | ν(x, B′′) = w−1ν(x, B′) }.
In the special case when w is the identity element in W , we will denote Λw by Λ1.

The spaces we have defined so far fit into a commutative diagram with cartesian squares:

(3.2) Λw
!!

""

Ẑ
µz

!!

""

g

δ

""

(ν × ν)−1 (Γw−1) !!

""

g̃× g̃
µ×µ

!!

ν×ν

""

g× g

Γw−1 !! t× t

Let νw : Λw → Γw−1 denote the composition of the leftmost vertical maps in (3.2), so νw is
the restriction of ν × ν to Λw.

For the specialization construction, we consider subsets of Ẑ of the form ν−1
w (S ′) for

S ′ ⊆ Γw−1. Thus, for h in t we define Λh
w = ν−1

w (h, w−1h). Notice in particular that Λ0
w = Z.

More generally, for a subset S of t we define ΛS
w =

∐
h∈S Λ

h
w. Then, ΛS

w = ν−1
w (S ′) where S ′

is the graph of w−1 restricted to S.
Let treg denote the set of regular elements in t.
For w in W , define w̃ : G/T × treg → G/T × treg by w̃(gT, h) = (gwT, w−1h). The

rule (gT, h) %→ (g · h, gB) defines an isomorphism of varieties f : G/T × treg
∼=−→ g̃rs, where

g̃rs = µ−1(G · treg). We denote the automorphism f ◦ w̃ ◦ f−1 of g̃rs also by w̃.
Now fix a one dimensional subspace, &, of t so that & ∩ treg = & \ {0} and set &∗ = & \ {0}.

It is not hard to check that the variety Λ#∗
w is the graph of w̃|eg!∗ : g̃#

∗ → g̃w−1(#∗). Thus, Λ#∗
w is

an irreducible, 2n + 1-dimensional variety and so H4n+2(Λ#∗
w ) is one dimensional with basis

{[Λ#∗
w ]}. Because Λ#∗

w is a graph, it follows easily from the definitions that for y in W , there
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is a convolution product

H∗(Λ
#∗

w )×H∗(Λ
w−1#∗

y )
∗−→ H∗(Λ

#∗

wy)

and [Λ#∗
w ] ∗ [Λw−1#∗

y ] = [Λ#∗
wy].

Now Λ#
w = Λ#∗

w

∐
Λ0

w = Λ#∗
w

∐
Z. Therefore there is a specialization map (see [FM81, §3.4],

[CG97, §2.6.30]),

lim: Hi+2(Λ
#∗

w ) → Hi(Z).

Take i = 4n + 2 and define λw = lim([Λ#∗
w ]) in H4n(Z). Chriss and Ginzburg [CG97, §3.4]

have proven the following:

• The element λw in H4n(Z) does not depend on the choice of &.
• Specialization commutes with convolution. Therefore, λw ∗ λy = λwy for w and y in

W .
• The expansion of λw as a linear combination of the basis elements [Zy] of H4n(Z) has

the form λw = [Zw] +
∑

y<w aw,y[Zy] where < is the Bruhat order on W .

Combining these results we obtain the following theorem.

Theorem 3.3. The assignment w %→ λw extends to an algebra isomorphism Q[W ]
∼=−→

H4n(Z).

3.3. The Borel-Moore homology of Z and coinvariants. Now consider

Z1 = { (x, B′, B′) ∈ N × B × B | x ∈ Lie(B′) }.

Then Z1 may be identified with the diagonal in Ñ× Ñ. It follows that Z1 is closed in Z and
isomorphic to Ñ.

Since Ñ ∼= T ∗B, it follows from the Thom isomorphism in Borel-Moore homology that
Hi+2n(Z1) ∼= Hi(B) for all i. Since B is smooth and compact, Hi(B) ∼= H2n−i(B) by Poincaré
duality. Therefore, H4n−i(Z1) ∼= H i(B) for all i.

The cohomology of B is well-understood: there is an isomorphism of graded algebras,
H∗(B) ∼= Coinv(W )∗ where Coinv(W )∗ is the coinvariant algebra of W with generators in
degree 2. It follows that Hj(Z) = 0 if j is odd, H4n−2i(Z1) ∼= Coinv(W )2i for 0 ≤ i ≤ n.

The following is proved in [DR08b].

(a) There is a convolution product on H∗(Z1). With this product, H∗(Z1) is a commu-
tative Q-algebra and there is an isomorphism of graded Q-algebras

β : Coinv∗(W )
∼=−→ H4n−∗(Z1).

(b) If r : Z1 → Z denotes the inclusion, then the direct image map in Borel-Moore
homology, r∗ : H∗(Z1) → H∗(Z), is an injective ring homomorphism.

(c) If we identify H∗(Z1) with its image in H∗(Z) as in (e), then the linear transformation
given by the convolution product

Hi(Z1)⊗H4n(Z) −→ Hi(Z)

is an isomorphism of vector spaces for 0 ≤ i ≤ 4n.

The algebra Coinv(W )∗ has a natural action of W by algebra automorphisms and the
isomorphism β in (a) is in fact an isomorphism of W -algebras. The W -algebra structure on
H∗(Z1) is described as follows.
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Fix w in W and identify H∗(Z1) with its image in H∗(Z), then

λw ∗Hi(Z1) ∗ λw−1 = Hi(Z1).

Therefore, conjugation by λw defines a W -algebra structure on H∗(Z1). With this W -algebra

structure, the isomorphism β : Coinv∗(W )
∼=−→ H4n−∗(Z1) in (a) is an isomorphism of W -

algebras.
Suppose that Coinv(W ) ! Q[W ] is graded by (Coinv(W ) ! Q[W ])i = Coinv(W )i⊗Q[W ].

Then combining Theorem 3.3, (c), and the fact that β is an isomorphism of W -algebras we
obtain the following theorem.

Theorem 3.4. The composition

Coinv(W )∗ ! Q[W ]
β⊗α−−→ H4n−∗(Z1)⊗H4n(Z)

∗−→ H4n−∗(Z)

is an isomorphism of graded Q-algebras.

3.4. Springer representations of W . Springer [Spr76] has given a case-free construction
of the irreducible representations of W . He achieves this by defining an action of W on
H∗(Bx) for x in N. Define dx = dimBx and let C(x) = ZG(x)/Z0

G(x). Springer shows that
if φ is an irreducible representation of C(x) and H2dx(Bx)φ is the homogeneous component
of H2dx(Bx) corresponding to φ, then H2dx(Bx)φ is W -stable and is either zero or affords an
irreducible representation of W . He shows furthermore that every irreducible representation
of W arises in this way. The convolution construction gives an alternate, more elementary
approach to Springer’s construction.

We have seen that for x in N, the convolution product defines a left H4n(Z)-module
structure on H∗(Bx) and that H4n(Z) ∼= Q[W ]. Thus, we obtain a representation of W on
H∗(Bx). Because Bx is projective, and hence compact, H∗(Bx) is the linear dual of H∗(Bx)
and so we obtain a representation of W on H∗(Bx). Hotta [Hot82] has shown that up to
sign, this is the representation constructed by Springer.

The centralizer of x acts on Bx. Thus, the component group C(x) acts on H∗(Bx). It
is easy to check that the C(x)-action and the H4n(Z)-action commute. Therefore, up to
isomorphism, the representation of W on H∗(Bx) depends only the G-orbit of x.

We will give an alternate construction of Springer representations of W below in §3.6.

3.5. More on the top Borel-Moore homology of Z. Suppose C is a G-orbit in N and
x is in C. Define ∂C = C \ C. Set Zx = µ−1

z (x), Z∂C = µ−1
z (∂C), and ZC = µ−1

z (C). Clearly
Zx

∼= Bx × Bx and so by the Künneth theorem H4dx(Zx) ∼= H2dx(Bx)⊗H2dx(Bx).
For suitable choices of fi : Mi → N and Zi,j for 1 ≤ i < j ≤ 3, the convolution product

construction in §3.1 defines left and right H∗(Z)-modules structures on H∗(Zx), H∗(Z∂C),
and H∗(ZC).

The centralizer of x acts diagonally on Zx. Thus, the component group C(x) acts on
H∗(Zx). As above, the C(x)-action and the H4n(Z)-action commute and so H4dx(Zx)C(x) is
an H4n(Z)-submodule of H4dx(Zx).

It follows from §2.1 that (H2dx(Bx) ⊗ H2dx(Bx))C(x) has a basis indexed by the set of
C(x)-orbits on Bx × Bx. Since H4dx(Zx)C(x) ∼= (H2dx(Bx)⊗H2dx(Bx))C(x), we conclude that
dim H4dx(Zx) = |WC|.

Define W∂C = ∪D⊆∂CWD and WC = ∪D⊆CWD. Then { [Zw] | w ∈ W∂C } is a basis of

H4n(Z∂C) and { [Zw] | w ∈ WC } is a basis of H4n(ZC).
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The inclusions Z∂C ⊆ ZC ⊆ Z induce injective, H4n(Z)×H4n(Z)-linear maps, H4n(Z∂C) →
H4n(ZC) → H4n(Z) and so we may identify H4n(Z∂C) and H4n(ZC) with their images in
H4n(Z) and consider H4n(Z∂C) and H4n(ZC) as two-sided ideals in H4n(Z). Define HC to be
the quotient H4n(ZC)/H4n(Z∂C). Then HC is a two-sided H4n(Z)-module with a Q-algebra
structure inherited from the convolution product on H4n(Z).

Kazhdan and Lusztig [KL80] and Chriss and Ginzburg [CG97, §3.5] have proved the
following proposition. An alternate argument has also been given by Hinich and Joseph
[HJ05].

Let S be a set of orbit representatives in N.

Proposition 3.5. There are algebra isomorphisms

HC
∼= H4n(Zx)

C(x) ∼= (H2dx(Bx)⊗H2dx(Bx))
C(x).

Thus, the decomposition

H4n(Z) ∼=
⊕

C∈N/G

HC
∼=

⊕

x∈S

(H2dx(Bx)⊗H2dx(Bx))
C(x)

is a decomposition of H4n(Z) into a direct sum of two-sided ideals with dim HC = |WC|.

For C = {0}, the two-sided ideal HC corresponds to the trivial representation of W and for
C the regular nilpotent orbit, the two-sided ideal HC corresponds to the sign representation of
W . However, in general HC is not a minimal two-sided ideal. To obtain the decomposition of
H4n(Z) into minimal two-sided ideals we need to decompose each H2dx(Bx) into C(x)-isotypic
components.

For an irreducible representation of C(x) with character φ, let H2dx(Bx)φ denote the φ-
isotypic component. We’ve seen that H2dx(Bx)φ is an H4n(Z)-submodule of H2dx(Bx). Define

Ĉ(x) to be the set of φ with H2dx(Bx)φ 2= 0. Then Ĉ(x) contains the trivial representation

of C(x). In general, Ĉ(x) does not contain all irreducible characters of C(x).
The next theorem is proved directly in [KL80] and [CG97, §3.5]. It also follows from the

sheaf-theoretic approach to Borel-Moore homology described below.

Theorem 3.6. There is an isomorphism of H4n(Z)-modules,

(H2dx(Bx)⊗H2dx(Bx))
C(x) ∼=

⊕

φ∈Ĉ(x)

EndQ(H2dx(Bx)φ).

Moreover, H2dx(Bx)φ is a simple H4n(Z)-module for every φ in Ĉ(x) and the decomposition

H4n(Z) ∼=
⊕

x∈S

⊕

φ∈Ĉ(x)

EndQ(H2dx(Bx)φ)

is a decomposition of H4n(Z) into minimal two-sided ideals.

Formulas for the action of a simple reflection on H4n(Z) analogous to Hotta’s transfor-
mation formulas for the action of a simple reflection on H∗(Bx) have been given by Hinich
and Joseph [HJ05]. The first two parts of the next theorem may be recovered from the more
general (and more complicated) argument in [DR08a].

Theorem 3.7. Suppose that s is a simple reflection in W and w is in W .
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(a) λs = [Zs] + 1.
(b) If sw < w, then [Zs] ∗ [Zw] = −2[Zw].
(c) If sw > w, then there is a subset Fs,w of { x ∈ W | x < w, sx < x } so that

[Zs] ∗ [Zw] = [Zsw] +
∑

x∈Fs,w
nx[Zx] with nx > 0.

Using this result, Hinich and Joseph prove a result analogous to Proposition 3.5 for right
Steinberg cells. Recall that for w in W we have defined Vr(w) = Buw ∩ C when w is in WC.
For an orbital variety V, define WV = { y ∈ W | Vr(y) ⊆ V }.
Theorem 3.8. For w in W , the smallest subset, S, of W with the property that [Zw] ∗ λy

is in the span of { [Zx] | x ∈ S } for all y in W is Vr(w). In particular, if V is any orbital
variety, then the span of { [Zx] | x ∈ WV} is a right ideal in H4n(Z).

3.6. Sheaf-theoretic Borel-Moore homology of fibred products. For a variety X, the
Q-vector space Hi(X) has an alternate description in terms of sheaf cohomology see [CG97,
§8.3]). The properties of sheaves and perverse sheaves we use in this section may be found
in [Dim04] and [Bor84].

Let D(X) denote the full subcategory of the derived category of sheaves of Q-vector
spaces on X consisting of complexes with bounded, constructible cohomology. Consider the
constant sheaf, QX , as a complex in D(X) concentrated in degree zero. The dualizing sheaf
DX of X is f !Q{pt} where f : X → {pt}. Then

Hi(X) ∼= Ext−i
D(X)(QX , DX) = HomD(X)(QX , DX [−i]).

Suppose we are in the convolution setup from §3.1 with proper morphisms fi : Mi → N
with di = dim Mi for i = 1, 2, 3. Consider the cartesian diagram

M1 ×N M2

f1,2
!!

δ1
""

N

δ
""

M1 ×M2 f1×f2

!! N ×N

where f1,2 is the induced map. Using the argument in [CG97, §8.6] we have isomorphisms

Hi(M1 ×N M2) ∼= Ext−i
D(M1×N M2)

(QM1×N M2
, DM1×NM2

)

∼= Ext−i
D(M1×N M2)

(f ∗
1,2QN , δ!

1DM1×M2
)

∼= Ext−i
D(N)(QN , R(f1,2)∗δ

!
1DM1×M2

) (adjunction)

∼= Ext−i
D(N)(QN , δ!R((f1 × f2)∗DM1×M2

) (base change)

∼= Ext−i
D(N)(QN , δ!(R(f1)∗DM1

! R(f2)∗DM2
)) (Künneth)

∼= Ext−i
D(N)(QN ,Hom(R(f1)∗QM1

, R(f2)∗DM2
)) [Bor84, 10.25]

∼= Ext2d2−i
D(N) (R(f1)∗QM1

, R(f2)∗QM2
)).

It is shown in [CG97, §8.6] that the isomorphism

Hi(M1 ×N M2) ∼= Ext2d2−i
D(N) (R(f1)∗QM1

, R(f2)∗QM2
))

intertwines the convolution product on the left with the Yoneda product (composition of
morphisms) on the right.
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3.7. Sheaf-theoretic decomposition of H4n(Z). Applying the computation above of the
Borel-Moore homology of a fibred product to Z ∼= Ñ×N Ñ we obtain

Hi(Z) ∼= Ext4n−i
D(N)(Rµ∗QeN, Rµ∗QeN).

In particular, H4n(Z) ∼= EndD(N)(Rµ∗QeN).
Suppose A is an abelian category and X =

∑m
i=1 Smi

i is a semisimple object A, where
S1, . . . , Sm are non-isomorphic simple objects in A. Assume also that for 1 ≤ i ≤ m,
EndA(Si) ∼= Q. The following statements are easily checked.

• EndA(X) ∼=
⊕m

i=1 EndA(Smi
i ) ∼=

⊕m
i=1 Mmi

(EndA(Si)) ∼=
⊕m

i=1 Mmi
(Q). In particu-

lar, EndA(X) is a semisimple, Artinian ring.
• HomA(Si, X) ∼= HomA(Si, S

ni
i ) ∼= EndA(Si)ni ∼= kni. Therefore, the simple EndA(X)-

modules are the HomA(Si, X) for 1 ≤ i ≤ n.

Let M(N) denote the full subcategory of D(N) consisting of perverse sheaves (with respect
to the middle perversity). Then M(N) is an abelian category and EndM(N)(K) ∼= Q for each
simple perverse sheaf K. The complex Rµ∗QeN is a semisimple object in M(N) and Borho
and MacPherson [BM81] have shown that its decomposition into simple perverse sheaves is
given by

Rµ∗QeN
∼=

⊕

x,φ

jx
∗ IC(Gx, Lφ)[−2dx]

nx,φ

where x runs over a set of orbit representatives S in N, and for each x, jx : Gx → N is the

inclusion, φ is in Ĉ(x), and nx,φ is a non-negative integer.
Define ICx,φ = jx

∗ IC(Gx, Lφ)[−2dx]. Then the formalism above implies that

• H4n(Z) ∼= ⊕x,φEndD(N)(IC
nx,φ

x,φ ) is the Wedderburn decomposition of H4n(Z) and

• the set {HomD(N)(ICx,φ, Rµ∗QN) | x ∈ S, φ ∈ Ĉ(x) } is a complete set of non-
isomorphic simple H4n(Z)-modules.

If C is a G-orbit in N and x is n C, then it is straightforward to check that

HC
∼=

⊕

φ∈Ĉ(x)

EndD(N)(IC
nx,φ

x,φ )

Also, if ix : {x} → N denotes the inclusion, then Bx
∼= Ñ×N {x}. Thus,

Hi(Bx) ∼= Ext4n−i
D(N)(Rµ∗QN, R(ix)∗Q{x}) ∼= Ext4n−i

D({x})(i
∗
xRµ∗QN, Q{x})

and the the diagram

H4n(Z)×Hi(Bx)
∗

!!

∼=
""

Hi(Bx)

∼=
""

EndD(N)(Rµ∗QeN
)× Ext4n−i

D(N)(Rµ∗QN, R(ix)∗Q{x}) ◦
!! Ext4n−i

D(N)(Rµ∗QN, R(ix)∗Q{x})

commutes. This gives an alternate description of the Springer representation of W on H∗(Bx).
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3.8. Borel-Moore homology of generalized Steinberg varieties. Recall from §2.4 the
generalized Steinberg variety

XP,Q = { (x, P ′, Q′) ∈ N× P ×Q | x ∈ p′ ∩ q′ } ∼= ÑP
c ×N ÑQ

d

where c(P ′) = N ∩ p′ and d(Q′) = N ∩ q′. Borho and MacPherson [BM83, 2.11] have shown
that ÑP

c and ÑQ
d are rational homology manifolds. The constructions and results in §3.1 and

§3.6 are valid when Zi,j = Mi ×N Mj and the Mi’s are rational homology manifolds. Thus
H∗(XP,Q) may be computed as in §3.6.

Recall that η : Z → XP,Q is a proper, G-equivariant surjection. The main result of [DR08a]
is the following theorem describing the Borel-Moore homology of XP,Q.

Theorem 3.9. Consider H4n(Z) as a W × W -module using the isomorphism H4n(Z) ∼=
Q[W ]. Then there is an isomorphism φ : H∗(XP,Q)

∼−→ H∗(Z)WP×WQ so that the composition
φ ◦ η∗ : H∗(Z) → H∗(Z)WP×WQ is the the averaging map.

Let eP (resp. eQ) denote the primitive idempotent in Q[WP ] (resp. Q[WQ]) corresponding to
the trivial representation. Then it follows immediately from the theorem that H4n(XP,Q) ∼=
eP Q[W ]eQ.

Next recall the generalized Steinberg variety XP,Q
0,0

∼= T ∗P ×N T ∗Q. Set m = dim P/B +
dim Q/B. Let εP (resp. εQ) denote the primitive idempotent in Q[WP ] (resp. Q[WQ]) corre-
sponding to the sign representation. Then dim XP,Q

0,0 = 4n− 2m and it is shown in [DR08a,
§5] that H4n−2m(XP,Q) ∼= εP Q[W ]εQ.

Now suppose that c is a Levi class function on P. Let L be a Levi subgroup of P
and choose x in c(P ) ∩ l. Then we may consider the Springer representation of WP on
H2dL

x
(BL

x )CL(x) where CL(x) is the component group of ZL(x), BL
x is the variety of Borel

subalgebras of l that contain x, and dL
x = dimBL

x . This is an irreducible representation of
WP . Let fP denote a primitive idempotent in Q[WP ] so that Q[WP ]fP

∼= H2dL
x
(BL

x )CL(x).

Set dP,Q
c,d = 1

2 (dim c(P ) + dim uP + dim d(Q) + dim uQ). Then it is shown in [DR04] that

dim XP,Q
c,d ≤ dP,Q

c,d . We conjecture that the following statement is true.

Conjecture 3.10. With the notation above, HdP,Q
c,d

(XP,Q
c,d ) ∼= fP Q[W ]fQ.

4. Equivariant K-theory

Certainly the most important result to date involving the Steinberg variety is its applica-
tion by Kazhdan and Lusztig to the Langlands program [KL87]. They show that the equi-
variant K-theory of Z is isomorphic to the two-sided regular representation of the extended,
affine Hecke algebra H. They use this representation of H to classify simple H-modules and
hence to classify representations of LG(Qp), the Qp points of the Langlands dual of G, con-
taining a vector fixed by an Iwahori subgroup. As with homology, Chris and Ginzburg apply
the convolution product formalism to the equivariant K-theory of Z and recast Kazhdan
and Lusztig’s results as an algebra isomorphism.

In this section, we assume that G is simply connected and describe the isomorphism
H ∼= KG(Z).
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4.1. The generic, extended, affine Hecke algebra. We begin by describing the Bernstein-
Zelevinski presentation of the extended, affine Hecke algebra following the construction in
[Lus89].

Let X(T ) denote the character group of T . Since G is simply connected, X(T ) is the
weight lattice of G. Define X+ to be the set of dominant weights with respect to the base
of the root system of (G, T ) determined by B.

The extended, affine, Weyl group is We = X(T ) ! W . There is a “length function” & on
We that extends the usual length function on W . The braid group of We is the group Br
with generators { Tx | x ∈ We } and relations TxTx′ = Txx′ if &(x) + &(x′) = &(xx′).

Let v be an indeterminate and set A = Z[v, v−1]. The generic, extended, affine Hecke
algebra H is the quotient of the group algebra A[Br] by the two-sided ideal generated by the
elements (Ts + 1)(Ts − v2) where s runs through the simple reflections in W .

Given λ in X(T ) one can write λ = λ1−λ2 where λ1 and λ2 are in X+. Define Eλ in H to
be the image of v#(λ1−λ2)Tλ. For w in W , denote the image of Tw in H again by Tw. Let HW

denote the Iwahori-Hecke algebra of W (an A-algebra) with standard basis {tw | w ∈ W }.
Lusztig [Lus89, §2] has proven the following theorem.

Theorem 4.1. With the notation above we have:

(a) Eλ does not depend on the choice of λ1 and λ2.
(b) The mapping A[X(T )] ⊗A HW → H with λ ⊗ tw %→ EλTw is an isomorphism of

A-modules.
(c) For λ and λ′ in X we have EλEλ′

= Eλ+λ′

and so the subspace of H spanned by
{Eλ | λ ∈ X } is a subalgebra isomorphic to A[X(T )].

(d) The center of H is isomorphic to A[X(T )]W via the isomorphism in (c).
(e) The subspace of H spanned by { Tw | w ∈ W } is a subalgebra isomorphic to HW .

Using part (b) of the theorem, we will identify A[X(T )] with the subalgebra of H spanned
by {Eλ | λ ∈ X }.

Let C∗ denote the multiplicative group of non-zero complex numbers and set T = T ×C∗,
G = G× C∗. Define a C∗-action on g by (ξ, x) %→ ξ2x. We consider B as a C∗-set with the
trivial action. Then the action of G on Ñ and Z extends to an action of G on Ñ and Z and
µz and µ are G equivariant.

For an algebraic group H , R(H) denotes the representation ring of H .
By considering v as the trivial representation of C∗, we may identify R(C∗) and A =

Z[v, v−1]. Then

R(T ) ∼= R(T )⊗ R(C∗) ∼= R(T )[v, v−1] ∼= A[X(T )]

R(G) ∼= R(G)⊗R(C∗) ∼= R(G)[v, v−1] ∼= A[X(T )]W .

Therefore, we have a commutative diagram of A-algebra homomorphisms

Z(H) !

"

!!

∼=
""

A[X(T )] !

"

!!

∼=
""

H

R(G)
!

"

!! R(T )

where Z(H) is the center of H.



STEINBERG VARIETY AND REPRESENTATIONS 19

Let LG denote the Langlands dual of G, so LG is an adjoint group. Let LGp denote the
algebraic group over Qp with the same type as LG. Suppose that I is an Iwahori subgroup
of LGp and let C[I\LGp/I] denote the space of all compactly supported functions LGp → C
that are constant on (I, I)-double cosets. Consider C as an A-module via the specialization
A → C with v %→ √

p. The following theorem is due to Iwahori and Matsumoto [IM65].

Theorem 4.2. The (I, I)-double cosets are parameterized by We. Moreover, if Ix is the
double coset indexed by x in We, then the map which sends Tx to the characteristic function
of Ix extends to an algebra isomorphism

C[I\LGp/I] ∼= C⊗A H.

4.2. Equivariant K-theory and convolution. Two beginning references for equivariant
K-theory is described in [BBM89, Chapter 2] and [CG97, Chapter 5].

For a variety X, let Coh(X) denote the category of coherent OX -modules. Suppose that
H is a linear algebraic group acting on X. Let a : H × X → X is the action morphism
and p : H × X → X is the projection. An H-equivariant coherent OX-module is a pair
(M, i), where M is a coherent OX -module and i : a∗M ∼−→ p∗M is an isomorphism (see
[CG97, §5.1]). Let CohH(X) denote the abelian category of all H-equivariant OX-modules.
The Grothendieck group of CohH(X) is denoted by KH(X) and is called the H-equivariant
K-group of X.

If X = {pt} is a point, then KH(pt) ∼= R(H) is the representation ring of H . For any X,
KH(X) is naturally an R(H)-module.

Suppose f : X → Y is a H-equivariant morphism. If f is proper it induces a direct image
map in equivariant K-theory, f∗ : KH(X) → KH(Y ). If f is smooth it induces a pullback
map in equivariant K-theory, f ∗ : KH(Y ) → KH(X). If X is smooth and A and B are closed,
H-stable subvarieties of X, there is an intersection pairing ∩ : KH(A)×KH(B) → KH(A∩B)
(called a Tor-product in [Lus98, §6.4]). This pairing depends on (X, A, B).

Now suppose we are in the convolution setup from §3.1 with fi : Mi → N is proper for i =
1, 2, 3, Zi,j closed subvarieties of Mi×Mj for 1 ≤ i < j ≤ 3, and p1,3 : p−1

1,2(Z1,2)∩p−1
2,3(Z2,3) →

Z1,3 is a proper morphism. Assume in addition that all maps are H-equivariant and the
subvarieties Zi,j are H-stable. Then as in §3.1 the formula c ∗ d = (p1,3)!

(
p∗1,2(c) ∩ p∗2,3(d)

)

where ∩ is the intersection pairing determined by the subsets Z1,2 × M3 and M1 × Z2,3 of

M1×M2×M3 defines an associative convolution product, KH(Z1,2)⊗KH(Z2,3)
∗−→ KH(Z1,3).

4.3. The Kazhdan-Lusztig isomorphism. Returning to the Steinberg variety, recall that
Z1 = { (x, B′, B′) ∈ N× B × B | x ∈ b′ }. For suitable choices of fi : Mi → N and Zi,j, and
using the embedding A ⊆ R(G), the convolution product induces various A-linear maps:

• KG(Z)×KG(Z)
∗−→ KG(Z); with this multiplication, KG(Z) is an A-algebra.

• KG(Z1) × KG(Z1)
∗−→ KG(Z1); with this multiplication, KG(Z1) is a commutative

A-algebra.
• KG(Z)×KG(Ñ× B)

∗−→ KG(Ñ× B); this defines a left KG(Z)-module structure on
KG(Ñ× B).

The group KG(Z1) has a well-known description: First, the rule (x, B′) %→ (x, B′, B′) de-
fines a G-equivariant isomorphism between Ñ and Z1 and hence an isomorphism KG(Z1) ∼=
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KG(Ñ). Next, the projection Ñ → B is a vector bundle and so we have the Thom isomor-
phism KG(Ñ) ∼= KG(B). Third, set B = B × C∗. Then B is isomorphic to G×B {pt} by a
G-equivariant isomorphism and so KG(B) ∼= KB({pt}) ∼= R(B). Finally, U is the unipotent
radical of B and so R(B) ∼= R(T ) ∼= A[X(T )].

The composite isomorphism A[X(T )] ∼= KG(Z1) is an A-algebra isomorphism and is given
explicitly as follows. If λ is in X(T ), then λ lifts to representation of B. Denote the
representation space by Cλ. Then the sheaf of sections of the line bundle G×B Cλ on B is a
G-equivariant, coherent sheaf of OB-modules that we will denote by Lλ. Pulling Lλ back first
through the vector bundle projection Ñ → B and then through the isomorphism Z1

∼= Ñ,
we get a G-equivariant, coherent sheaf of OZ1

-modules we denote by Lλ.
Let i : Z1 → Z be the inclusion. Define eλ = i∗([Lλ]) in KG(Z). Then λ %→ eλ defines an

A-linear map from A[X(T )] to KG(Z).
A concentration theorem due to Thomason and the Cellular Fibration Lemma of Chris

and Ginzburg can be used to prove the following proposition (see [CG97, 6.2.7] and [Lus98,
7.15]).

Proposition 4.3. The closed embeddings i : Z1 → Z and j : Z → Ñ × B induce injective
maps in equivariant K-theory,

KG(Z1)
i∗−→ KG(Z)

j∗−→ KG(Ñ× B).

The map i∗ is an A-algebra monomorphism and the map j∗ is a KG(Z)-module monomor-
phism. In particular, KG(Ñ× B) is a faithful KG(Z)-module.

Using the proposition and the isomorphisms KG({pt}) ∼= R(G) ∼= Z(H) we get a commu-
tative diagram of A-algebra homomorphisms

Z(H) !

"

!!

∼=
""

A[X(T )] !

"

!!

∼=
""

H

KG({pt}) !

"

!! KG(Z1)
!

"

!! KG(Z)

We follow the argument in [Lus98, §7] to complete the diagram with an isomorphism of
A-algebras KG(Z) ∼= H.

Fix a simple reflection, s, in W . Then there is a simple root, α, in X(T ) and a corre-
sponding cocharacter, α̌ : C∗ → T , so that if 〈 · , · 〉 is the pairing between characters and
cocharacters of T , then 〈α, α̌〉 = 2 and s(λ) = λ − 〈λ, α̌〉α for λ in X(T ). Choose weights
λ′ and λ′′ in X(T ) with 〈λ′, α̌〉 = 〈λ′′, α̌〉 = −1 and λ′ + λ′′ = −α. Then Lλ′ ! Lλ′′ is in
CohG(B×B). Lusztig [Lus98, 7.19] has shown that the restriction of Lλ′ !Lλ′′ to G(B, sBs)
does not depend on the choice of λ′ and λ′′. Denote the the restriction of Lλ′ ! Lλ′′ to
G(B, sBs) by Ls.

It is easy to check that Z1 ∩ Zs = { (x, gBg−1, gBg−1) ∈ Z1 | g−1x ∈ us }. It follows that
Zs is smooth and that π : Zs → G(B, sBs) is a vector bundle projection with fibre us. Thus,
π∗([Ls]) is in KG(Zs). Let is : Zs → Z be the inclusion and recall that we are identifying A
with a subspace of R(G). We define ls = (is)∗π∗([Ls]) in KG(Z).

Lusztig [Lus98, 7.24] has proved the following lemma.
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Lemma 4.4. There is a unique left H-module structure on KG(Ñ × B) with the property
that for every k in KG(Ñ× B), λ in X(T ), and simple reflection s in W we have

• −(Ts + 1) · k = ls ∗ k and
• Eλ · k = eλ ∗ k.

Since KG(Ñ × B) is an H-module and a KG(Z)-module, we have ring homomorphisms

φ1 : H → EndA

(
KG(Ñ× B)

)
and φ2 : KG(Z) → EndA

(
KG(Ñ× B)

)
. It follows from

Lemma 4.4 that the image of φ1 is contained in the image of φ2. It follows from Proposition
4.3 that φ2 is an injection. Therefore, φ−1

2 ◦φ1 : H → KG(Z) is an A-algebra homomorphism.
Denote the composition φ−1

2 ◦ phi1 simply by φ.
The following theorem is proved in [Lus98, §8] using construction that goes back to [KL87].

A different exposition may be found in [CG97, Chapter 7].

Theorem 4.5. The A-algebra homomorphism φ : H → KG(Z) is an isomorphism.

4.4. Equivariant K-theory of generalized Steinberg varieties. Suppose P and Q are
conjugacy classes of parabolic subgroups of G and recall the generalized Steinberg varieties
XP,Q and XP,Q

0,0 and the maps η : Z → XP,Q and η1 : ZP,Q = η−1(XP,Q
0,0 ) → XP,Q

0,0 from §2.4.
We have a cartesian square

(4.6) ZP,Q
k

!!

η1
""

Z

η

""

XP,Q
0,0 k1

!! XP,Q

where k and k1 are the inclusions.
The morphism η1 is smooth and so there is a pullback map in equivariant K-theory,

η∗
1 : KG(XP,Q

0,0 ) → KG(ZP,Q). We can describe the R(G)-module structure of KG(ZP,Q)

and KG(XP,Q
0,0 ) using the argument in [Lus98, 7.15] together with a stronger concentration

theorem due to Thomason [Tho92].

Theorem 4.7. The homomorphisms η∗
1 : : KG(XP,Q

0,0 ) → KG(ZP,Q) and k∗ : KG(ZP,Q) →
KG(Z) are injective. Moreover, KG(XP,Q

0,0 ) is a free R(G)-module with rank |W |2/|WP ||WQ|
and KG(ZP,Q) is a free R(G)-module with rank |W |2.

In the rest of this subsection we consider the very special case when P = Q = {G}. In
this case, we can use results of Lusztig to describe the map k∗ in terms of H and results of
Ostrik to describe the map η∗ and KG(N).

Computing the spaces in (4.6) when P = Q = {G} we obtain

X{G},{G}
0,0 ≡ {0}, Z{G},{G} = Zw0

= Z{0}
∼= B × B, X{G},{G} ≡ N.

Also, η : Z → X{G},{G} may be identified with µz : Z → N and k : Z{G},{G} → Z may be
identified with the closed embedding B × B → Z by (B′, B′′) %→ (0, B′, B′′).

It follows from Theorem 4.7 that k∗ : KG(B × B) → KG(Z) is injective. Notice that in
contrast, even though the map k∗ : Hi(B × B) → Hi(Z) in Borel-Moore homology is an
injection for i = 4n, it is not an injection in general. In particular, the inclusion of Zw in Z
for an arbitrary w does not induces an injective map on Borel-Moore homology.
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Taking Mi = Ñ, Z1,2 = Z and Z2,3 = Z{G},{G} in the convolution construction, we
have Z1,3 = Z{G},{G}, and so KG(Z{G},{G}) has a left KG(Z)-module structure. Using the
projection formula in equivariant K-theory [CG97, 5.3.12] it is straightforward to show that
k∗ is KG(Z)-linear. Therefore, the image of k∗ is a left ideal in KG(Z). Similarly, the image
of k∗ is a right ideal in KG(Z) and so the image of k∗ is a two sided ideal of KG(Z).

Define E =
∑

w∈W Tw in H. Then it is easy to see that TyE = v#(y)E for y in W . Lusztig
[Lus98, 8.11] has shown that E is in the image of k∗. This can be used to prove the next
proposition.

Proposition 4.8. The image of k∗ : KG(Z{G},{G}) → KG(Z) equals the image of the two-
sided ideal HEH of H under the Kazhdan-Lusztig isomorphism φ : H → KG(Z).

Now consider η∗ : KG(Z) → KG(X{G},{G}).
The extended, affine Weyl group We is not a Coxeter group in general, it is an extension

of a Coxeter group, and so the algebra H is not the Hecke algebra of a Coxeter group.
Nevertheless the H does have a Kazhdan-Lusztig basis, { c′x | x ∈ We } (see [Lus98]). Notice
that for a simple reflection s in W we have c′s = Ts + 1 and so by Lemma 4.4 we have
φ(c′s) = −ls.

Recall that We = X(T ) ! W . Using the computations in [IM65] it can be shown each
(W, W )-double coset contains a unique element in X+ and a unique element with minimal
length. For λ in X+ we let mλ denote the element with minimal length in WλW . Ostrik
has proved the following theorem describing KG(N) = KG(X{G},{G}).

Theorem 4.9. For x in We, η∗(c′x) = 0 unless x = mλ for some λ in X+. Moreover, the
map η∗ : KG(S) → KG(X{G},{G}) is surjective and { η∗(c′mλ

) | λ ∈ X+ } is an A-basis of

KG(X{G},{G}).
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