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THE STEINBERG VARIETY
AND
REPRESENTATIONS OF REDUCTIVE GROUPS

J. MATTHEW DOUGLASS AND GERHARD ROHRLE

1. INTRODUCTION

Suppose G is a connected, reductive algebraic group defined over an algebraically closed
field k, B is the variety of Borel subgroups of G, and u is a unipotent element in G. Let B,
denote the closed subvariety of B consisting of those Borel subgroups that contain wu, let r
denote the rank of GG, and let C' denote the conjugacy class of u.

In 1976, motivated by the problem of proving the equality conjectured by Grothendieck

(%) dim Zg(u) = r + 2dim B,,

Steinberg [Ste76], in order to get the multiplicity 2 in the picture, introduced a variety of
triples

S={(v,B,BYeCxBxB|ve BnB}.

By analyzing the geometry of the variety S he was able to prove (x) in most cases. In
addition, by exploiting the fact that G-orbits on B x B are canonically indexed by elements
of the Weyl group of GG, he showed that S could be used to establish relationships between
Weyl group elements and unipotent elements in G.

Now assume that the characteristic of k is good for G, let g denote the Lie algebra of
G, and let O denote the variety of nilpotent elements in g. Then there is a G-equivariant
isomorphism between Ot and the variety of unipotent elements in G. The Steinberg variety
of G is

Z={(x,B,B) e M x Bx B |z e Lie(B)NLie(B’) }.

In the thirty years since Steinberg first exploited the variety S, the Steinberg variety has
played a key role in advancing our understanding of objects that at first seem to be quite
unrelated:

e Representations of Weyl groups.

e The geometry of nilpotent orbits in g and their covers.

¢ Differential operators on B.

e Primitive ideals in the universal enveloping algebra of g.

e Representations of p-adic groups and the local Langlands program.

Date: February 8, 2008.
2000 Mathematics Subject Classification. Primary 22E46, 19147, 20G05; Secondary 14F99, 20G99.
The authors would like to thank their charming wives for their unwavering support during the preparation
of this paper.
1


http://arXiv.org/abs/0802.0764v1

2 J.M. DOUGLASS AND G. ROHRLE

In this paper we hope to give readers who are familiar with the some aspects of the
representation theory of semisimple algebraic, or Lie, groups, but who are not specialists in
this particular flavor of geometric representation theory, an overview of the main results that
have been proved using the Steinberg variety. In the process we hope to make these results
more accessible to non-experts and at the same time emphasize the unifying role played by
the Steinberg variety.

We will more or less follow the historical development, beginning with concrete, geometric
constructions and then progressing to increasingly more advanced and abstract notions.

In §2 we analyze the geometry of Z, including applications to characteristic varieties and
primitive ideals.

In §3 we study the Borel-Moore homology of Z and the relation with representations of
Weyl groups. Soon after Steinberg introduced his variety S, Kazhdan and Lusztig [KL80],
defined an action of W x W on the top Borel-Moore homology groups of Z. Following a
suggestion of Springer, they showed that the representation of W x W on the top homology
group, Hy,(Z), is the two-sided regular representation of W. Somewhat later, Ginzburg
[CGI7] defined a multiplication on the total Borel-Moore homology of Z. With this multi-
plication, Hy,(Z) is a subalgebra isomorphic to the group algebra of W.

The authors [DR08a] [DRO8b] have used Ginzburg’s construction to describe the top
Borel-Moore homology groups of the generalized Steinberg varieties ng (’)Q and Xzzvg%eg in
terms of W, as well as to give an explicit, elementary, computation of the total Borel-Moore
homology of Z: the total Borel-Moore homology of Z is isomorphic to the smash product of
the coinvariant algebra of W and the group algebra of W.

Orbital varieties arise naturally in the geometry of the Steinberg variety. Using Ginzburg’s
formalism, Hinich and Joseph [HJ05] have used Ginzburg’s construction to prove a conjecture
of Joseph about inclusions of closures of orbital varieties.

In §4 we study the equivariant K-theory of Z and what is undoubtedly the most important
result to date involving the Steinberg variety: the Kazhdan-Lusztig isomorphism [KL87]
between K<€ (Z) and the extended, affine Hecke algebra H. Using this isomorphism,
Kazhdan and Lusztig were able to classify the irreducible representations of H and hence to
classify the representations containing a vector fixed by an Iwahori subgroup of the p-adic
group with the same type as the Langlands dual of G. In this way, the Steinberg variety
plays a key role in the local Langlands program and also leads to a better understanding of
the extended affine Hecke algebra.

Very recent work involving the Steinberg variety centers around attempts to categorify
the isomorphism between the specialization of K“*¢(Z) at p and the Hecke algebra of
Iwahori bi-invariant functions on “G(Q,). Because of time and space constraints, we leave
a discussion of this research to a future article.

2. GEOMETRY

For the rest of this paper, in order to simplify the exposition, we assume that the derived
group of GG is simply connected and that £k = C. Most of the results below hold, with obvious
modifications, for an arbitrary reductive algebraic group when the characteristic of £ is zero
or very good for G.
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Fix a Borel subgroup B in G and a maximal torus 7" in B. Define U to be the unipotent
radical of B and define W = Ng(T')/T to be the Weyl group of (G,T). Set n = dim B and
r=dimT.

We will use the convention that a lower case fraktur letter will denote the Lie algebra of
the algebraic group denoted by the corresponding upper case roman letter.

For z in M, define B, = { gBg™' | g™'x € b}, the Springer fibre at x.

2.1. Irreducible components of 7, Weyl group elements, and nilpotent orbits.
We begin analyzing the geometry of Z using ideas that go back to Steinberg [Ste76] and
Spaltenstein [Spa82].

The group G acts on B by conjugation and on 9t by the adjoint action. This latter action
is denoted by (g, ) — ¢ - x = gz. Thus, G acts “diagonally” on Z.

Let m: Z — B x B be the projection on the second and third factors. By the Bruhat
Lemma, the elements of W parameterize the G-orbits on B x B. An element w in W
corresponds to the G-orbit containing (B, wBw™!) in B x B. Define

Zpw=m" (G(B,wa_l)) , Uy, =UnwUw™, and B, = BNwBw™.

The varieties Z,, play a key role in the rest of this paper.

Since 7 is G-equivariant, G acts transitively on G(B,wBw™!), and the fibre of 7 over
(B,wBw™') is isomorphic to u,, it follows that Z, is isomorphic to the associated fibre
bundle G xBv u,,. Thus, Z, is the image of an irreducible variety and so is irreducible and
dim 7Z,, = dim G — dim B,, + dim u,, = 2n. Furthermore, each Z,, is locally closed in Z and
so it follows that { Z,, | w € W } is the set of irreducible components of Z.

Let p,: Z — O denote the projection on the first component. For a G-orbit, €, in I, set
Ze = p;1(€). Fix z in €. Then p, is G-equivariant, G acts transitively on €, and the fibre
of . over z is isomorphic to B, x B, and so Zg & G x%¢(®) (B, x B,). Spaltenstein [Spa82)]
has shown that the variety B, is equidimensional and Steinberg and Spaltenstein have shown
that dim Zg(z) = r + 2dim B,. This implies the following results due to Steinberg [Ste76,
Proposition 3.1]:

o dim Z¢ = dim G — dim Zg(z) + 2dim B, = dim G — r = 2n.
e Every irreducible component of Zy has the form

G{z} x C1 x Cy) = G({x} x (Zg(z)(Cy x C3)))

where C and C5 are irreducible components of B,.

e A pair, (C1,CY), of irreducible components of B, determines the same irreducible
component of Zg as (Cy,Cs) if and only if there is a z in Zg(x) with (C], C%) =
(2C1 271, 209271,

Thus, Z¢ is equidimensional with dim Zy = 2n = dim Z and there is a bijection between
irreducible components of Z¢ and Zg(x)-orbits on the set of irreducible components of B, x
B..

Now the closures of the irreducible components of Zg are closed, irreducible, 2n-dimensional
subvarieties of Z and so each irreducible component of Z¢ is of the form Z¢ N Z,, for some
unique w in W. Define Wy to be the subset of W that parameterizes the irreducible com-
ponents of Ze. Then w is in W if and only if Z¢ N Z, is an irreducible component of
L.
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We see that there is a bijection between We and of Zg(x)-orbits on the set of pairs of
irreducible components of B, given as follows. If w is in W¢ and (C4,Cy) is a pair of
irreducible components of B,, then w corresponds to the Zg(z)-orbit of (Cy, Cy) if and only
if G(B,wBw™') N (Cy x Cy) is dense in Cy x Cy.

Using the isomorphism Z,, = G xBv u,, we see that Z¢N Z,, = G xBv (€Nuy). Therefore,
w is in Wy if and only if € Nu,, is dense in u,. This shows in particular that W is closed
under taking inverses.

Clearly W is the disjoint union of the Wg’s as € varies over the nilpotent orbits in 9.
The subsets W are called two-sided Steinberg cells and have several properties in common
with Kazhdan-Lusztig two-sided cells in W. Some of these properties will be described in
the next subsection.

When z = 0 we have Zg, = Z,, = {0} x B x B where wy is the longest element in W.
Therefore Wyp, = {wo}. At the other extreme, let 9., denote the regular nilpotent orbit.
Then it follows from the fact that every regular nilpotent element is contained in a unique
Borel subalgebra that We,, contains just the identity element in WW.

Notice that in general there are more two-sided Steinberg cells than two-sided Kazhdan-
Lusztig cells. Two-sided Steinberg cells are in bijection with the set of nilpotent orbits in I
while two-sided Kazhdan-Lusztig cells are in bijection with the set of special nilpotent orbits
in M.

2.2. Orbital varieties. Suppose that € is a nilpotent orbit. An orbital variety for € is an
irreducible component of € Nu. An orbital variety is a subvariety of 91 that is orbital for
some nilpotent orbit. (Warning: sometimes an orbital variety is defined as the closure of an
irreducible component of € Nu.)

Geometrically, orbital varieties can be used to decompose two-sided Steinberg cells into left
and right Steinberg cells. This can be viewed as a geometric generalization of the Robinson-
Schensted correspondence. We outline this construction using the Steinberg variety in this
subsection.

Fix a nilpotent orbit € and an element x in € Nu. Define p: G — € by p(g) = g~ 'z and
q: G — B by q(g) = gBg~'. Then p~'(€Nu) = ¢ !(B,). Spaltenstein [Spa82] has shown
that

e if C is an irreducible component of B,, then pg~!(C) is an orbital variety for €,

e every orbital variety for € has the form pg~!(C) for some irreducible component C
of B,, and

e pg }(C) = pg~1(C") that for components C' and C”" of B, if and only if C' and C” are
in the same Zg(x)-orbit.

It follows immediately that € Nu is equidimensional and all orbital varieties for € have the
same dimension: n — dim B, = % dim €.

Joseph [Jos84, §9] has refined the relation between orbital varieties for € and the set We.

Suppose U, and Y, are orbital varieties for €. Choose irreducible components C and Cs
of B, so that pg~(C}) = U, and pg~(Cy) = Y,. We have seen that there is a w in W
so that Ze N Z, = G ({z} x Zg(z)(Cy x Cy)). Clearly u;(x) N Z, C p;'(x) N Z,. Since
both sides are closed and Zg(z)-stable, and the right hand side is the Zg(z)-saturation of
{2} x C} x Cy, it follows that p; 1 (z) N Z, = p; ' (z) N Z,,.
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Let py denote the projection of Zg to B by py(x, B', B") = B'. Then pq~'py (u;'(z) N Z,) =
B(€Nu,). Also,

pq p2 (12 (2) N Zy) = pg~'po ({2} x Za(x)(Ch x C2)) = pg~" (Za(x)Ch) = V.
Since €N, is dense in u,, we have B, N Qlim C 9U,. However, since u;'(z) N Z,
is a dense, Zg(x)-stable subset of u;'(z) N Z,, it follows that

dim B(€ Nuy,) = dimpg~'ps (' (z) N Zy,)
= dim py (uz_l(:p) N Z,) + dim B — dim Zg ()
=dimB, +dimB —r — 2dim B,
=n—dim B,
and so Bu, N ¢ = V.

A similar argument shows that Bu,-1 N € =W,. This proves the following theorem.

Theorem 2.1. If € is a nilpotent orbit and B, and Vo are orbital varieties for €, then there
18 a w in We so that U, = Bu, N € and Yy = Bu,-1 NE

For w in W, define U;(w) = Bu,-1 N € when w is in We. For w; and wy in W, define
wy ~ wy if Yy(wy) = By(wy). Then ~; is an equivalence relation and the equivalence classes
are called left Steinberg cells. Similarly, define ,(w) = Bu, N € when w is in W and
wy ~y wy if V. (wy1) = V,.(ws). The equivalence classes for ~,. are called right Steinberg cells.

Clearly, each two-sided Steinberg cell is a disjoint union of left Steinberg cells and is also
the disjoint union of right Steinberg cells. Precisely, if w is in W, then

We= [ v = [ o)

yeW, (w) yeU; (w)

It follows from the theorem that the rule w — (U, (w),V;(w)) defines a surjection from
W to the set of pairs of orbital varieties for the same nilpotent orbit. We will see below
that the number of orbital varieties for a nilpotent orbit € is the dimension of the Springer
representation of W corresponding to the trivial representation of the component group of
any element in €. Denote this representation of W by pe. Then the number of pairs (Vi, V5),
where V; and V; are orbital varieties for the same nilpotent orbit, is }_,dim p3. In general
this sum is strictly smaller than |W/|. Equivalently, in general, there are more irreducible
representations of W than G-orbits in .

However, if G has type A, for example if G = SL,(C) or GL,(C), then every irreducible
representation of W is of the form p¢ for a unique nilpotent orbit €. In this case w +—
(U, (w),V;(w)) defines a bijection from W to the set of pairs of orbital varieties for the
same nilpotent orbit. Steinberg has shown that this bijection is essentially given by the
Robinson-Schensted correspondence.

In more detail, using the notation in the proof of the theorem, suppose that € is a nilpotent
orbit, U, and Y, are orbital varieties for €, and C; and Cy are the corresponding irreducible
components in B,. In [Ste88] Steinberg defines a function from B to the set of standard
Young tableau and shows that G(B,wBw™) N (C; x Cy) is dense in C; x Cy if and only
if the pair of standard Young tableaux associated to generic (B’, B”) in C; x Cy is the
same as the pair of standard Young tableaux associated to w by the Robinson-Schensted
correspondence. For more details, see also [Dou96].
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An open problem, even in type A, is determining the orbit closures of orbital varieties.
Some rudimentary information may be obtained by considering the top Borel-Homology
group of Z (see §3 and [HJO05]).

2.3. Associated varieties and characteristic varieties. The Steinberg variety arises
naturally in the theory of algebraic (g, K)-modules. This was first observed by Borho and
Brylinski [BB85] and Ginzburg [Ging6].

Recall that we have defined Z = { (z, B', B") e M x B x B | x € Lie(B")NLie(B") }. If B’
is a Borel subgroup of G, then using the Killing form on g, the cotangent space to B at B’
may be identified with b’ NN, the nilradical of b’. Define M = {(z,B") e Mx B |x b’}
and let y1: M — N be the projection on the first factor. Then N = T~B and it is easy to see
that Z M xgy N X T*B xq T*B.

Using this description of Z as a fibred product, we see that it has an alternate description
as the fibred product Z = (M xN) X where px p: MxN — NxHNand : N — N xN
by 6(x) = (x,—z). Alternately, Z = { (z,—z,B',B") |z € b'Nb"}

For the rest of this subsection, we assume that G is a semisimple complex Lie group and K
is a closed, connected, algebraic subgroup of GG that acts on B with finitely many orbits. The
two special cases we are interested in are the “highest weight” case, when K = B is a Borel
subgroup of GG, and the “Harish-Chandra” case, when K = G is the diagonal subgroup of
G x G. In the general setting, we suppose that W is a finite set that indexes the K-orbits
on B by w « X,,. Of course, in the examples we are interested in, the two definitions of W
are compatible.

For w in W, let T} B denote the conormal bundle to the K-orbit X,, in 7*B. Then letting
t1 denote the subspace of g orthogonal to £ with respect to the Killing form and using our
identification of T*B with pairs we may identify

T'B2{(2,B)YeNxB|B €X,, zecbne-}
Define Yy = p~'(¢4). Then Y} is closed, Yy = [[, o 7B = Uwew 1B, and p restricts to a
surjection Ye & ¢t

Consider U(g) with the standard filtration. Then by the PBW Theorem, grU(g) =
Sym(g), the symmetric algebra of g. Since g is semisimple, using the Killing form, we may
identify gr U(g) with C|g|, the coordinate ring of the affine variety g.

A finitely generated (g, K)-module is a finitely generated g-module with a compatible
algebraic action of K. If M is a finitely generated (g, K)-module, then it has a “good”
filtration such that the associated graded module, gr M, a module for gr U(g) = C|g|, is
finitely generated. The associated variety of M, denoted by Vi (M), is the support of the
C|g]-module gr M — a subvariety of g. It is known that Vi (M) is independent of the choice
of good filtration and is contained in €+,

Let Dg denote the sheaf of algebraic differential operators on B. A coherent (Dg, K)-
module is a K-equivariant sheaf of Dg-modules that is coherent as a Og-module. If M is a
coherent (Dg, K)-module, then it has a “good” filtration such that gr M is a coherent gr Dg-
module. The associated graded sheaf gr Dg is isomorphic to the direct image p,O7«5. Thus,
gr M may be considered as an Op«g-module. The characteristic variety of M, denoted by
Vy, (M), is the support of the Or«g-module gr M — a subvariety of T*B. It is known that
V3, (M) is independent of the choice of good filtration and is contained in Y.
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Unraveling the notation in the Harish-Chandra case we have ¢+ = g+ = { (z,—z) |r € g}
is isomorphic to g. Therefore,

T:(Bx B)={(x,y,B,B") | (B,B") € G(B,wBw™"),z € b, ycb’ (v,y) €g;}=Z,.

Thus, Yy, = [{,ew Ta(B x B) is isomorphic to the Steinberg variety and we may identify
the restriction of pu x p to Yy, with p,: Z — .

Unraveling the notation in the highest weight case we have £+ = b+ = u. Hence, Y, =
pwtw) =2 {(z,B) e Mx B |z €unb’'}. We denote Y, simply by Y and call it the conormal
variety. For w in W, X, is the set of B conjugates of wBw™" and T:B = {(z,B’) €
MNxB| B € X,,xeunb'}. The projection of T)B to B is a B-equivariant surjection
onto X, and so T:B = B xBwy,. Therefore, dimT*B = dim B — dim B,, + dimu = n.

Since Y = [],cy 1B and each T}, B is locally closed and n-dimensional, we see that the set

{T*B | w e W} is the set of irreducible components of Y.

Let p3: Z — B be projection on the third factor. Then ps is G-equivariant, G acts
transitively on B, and the fibre over B is isomorphic to Y. This gives yet another description
of the Steinberg variety: Z =~ G xBY.

Arguments in the spirit of those given above (see [HJ05, §3]) show that if we set Y,, = T*B
and Ye = p~1(€Nu), then dimYe = n, Y is equidimensional, and the set of irreducible
components of Yg is { Ye NY, | w € We }.

Now consider the following three categories:

e coherent (Dgy s, G4)-modules, Mod (Dpxs, Gq)*";

e finitely generated (gx g, G4)-modules with trivial central character, Mod (gx g, Gd)f)gp?
and

e finitely generated (g, B)-modules with trivial central character, Mod (g, B)E.

It is shown in [BB85, §3] that these three categories are naturally equivalent.

Suppose H is a coherent (Dpyp, G4)-module, H is the corresponding finitely generated
(gx g, G4)-module with trivial central character, and L is the corresponding finitely generated
(g, B)-module with trivial central character. Then it is shown in [BB85, §4] that there is a
subset X = Xy, of W so that when p x u: Yy, — g7 is identified with p,: Z — 9N we have:

e The characteristic variety of H is Vz(H) = UyexZ,, a union of irreducible components
of Z.

e The associated variety of H is Vy,(H) = p, (Vy,(H)) = UyexGu, = G - Vi (L), so the
associated variety of H is image under p, of the characteristic variety of H and is
also the G-saturation of the associated variety of L.

e The associated variety of L is V(L) = Uyex;Bu,, a union of closures of orbital vari-
eties.

Moreover, the simple objects in each of these categories are indexed by W. If w is in W,
and ‘H,,, H,, and L,, are corresponding simple modules, then there is a nilpotent orbit, €,
so that V(H,) = G-V (L,) = C.

For w in W, determining the subset ¥ = ¥(w) so that V(L,,) = UyexBu, is still an open
problem (see [BB85] and [HJ05] for more information).

2.4. Generalized Steinberg varieties. When considering the restriction of a Springer
representation to parabolic subgroups of W, Springer introduced a generalization of 9t de-
pending on a parabolic subgroup P and a nilpotent orbit in a Levi subgroup of P. Springer’s
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construction extends naturally to what we call “generalized Steinberg varieties.” The results
in this subsection may be found in [DR04].

Suppose P is a conjugacy class of parabolic subgroups of G. The unipotent radical of a
subgroup, P, in P will be denoted by Up. A G-equivariant function, ¢, from P to the power
set of 91 with the properties

e up C¢(P)CNMNpand
e the image of ¢(P) in p/up is the closure of a single nilpotent P/Up-adjoint orbit
is called a Levi class function on P. Define

NP = {(z,P) eNxP|zecP)}

Let p”: ‘RP — 91 denote the projection on the first factor. Notice that u” is a proper
morphism.

If Q is another conjugacy class of parabolic subgroups of G and d is a Levi class function
on Q, then the generalized Steinberg variety determined by P, Q, ¢, and d is

XPP={(2,PQ) eNxPxQ|zecP)NdQ)} =N xuyNT.

Since G acts on N, P, and Q, there is a diagonal action of G on X P € for all P, Q, ¢, and d.
The varieties arising from this construction for some particular ch01ces of P, Q, ¢, and d
are worth noting.

e The special case when ¢(P) = up and d(Q) = ug is denoted by X OQ Then XSDOQ =
T*P xn T*Q.
e When P = Q = B, then ¢(B) = d(B) = {up '} for every B’, in B and so X(%B =Zis
the Steinberg variety of G.
e When P = Q = {G}, ¢(G) = Oy, and d(G) = O,, then Xig}’{G} =~ 0, N0O,.
e The special case when ¢(P) = 91N p and d(Q) = NN q is denoted simply by X7<.
Abusing notation slightly we let p: XZ?&Q — N denote the projection on the first coordi-
nate and 7: XZC’lQ — P x Q the projection on the second and third coordinates. We can the

investigate the varieties XZZ;Q using preimages of G-orbits in A and P x Q under y and 7
as we did for Z. Some special cases when at least one of ¢(P) or d(Q) is smooth turn out to
be the most tractable. We will describe these cases in this subsection. We refer the reader
to [DRO4] for some results for arbitrary P, Q, ¢, and d.

Fix P in P and @ in Q with B C PN Q. Let Wp and W denote the Weyl groups of
(P,T) and (Q,T) respectively. We consider Wp and W, as subgroups of W.

Let mp: B — P by defining mp(B’) to be the unique subgroup in P containing B’. Now
define

n:Z— X"9 by n(z,B',B") = (z,7p(B'), 7o(B").

Then 7 depends on P and Q and is a proper, G-equivariant, surjective morphism.

Next, define Z7:¢ = p~! (Xg?ég). We denote the restriction of n to Z7'¢ by ;. Then

7y is also a proper, surjective, G-equivariant morphism. Moreover, the fibres of 7, are all
isomorphic to the smooth, complete variety P/B x @Q/B.

Finally, for w in W, define ZF-€ to be the intersection Z7*¢NZ,,. Since (0, B, wBw™1) is in
ZPQ and n; is G-equivariant, it is straightforward to check that Z22 2 G xB» (up Nwug).
Thus Z7€ is smooth and irreducible.



STEINBERG VARIETY AND REPRESENTATIONS 9

The following statements are proved in [DR04].

e For w in W, dimn(Z,) = dimN if and only if w has minimal length in WpwWj,.
The set of irreducible components of X7€ is

{n(Zy) | w has minimal length in WpwWjy, }.

e Forwin W, Z:C = Z, if and only if w has maximal length in WpwWg. The variety
772 is equidimensional and the set of irreducible components of Z%< is

{Z,, | w has maximal length in WpwWg }.

e The variety ng (’)Q is equidimensional with dimension equal dim up + dimug and the
set of irreducible components of ng 2 s

{m(Z,) | w has maximal length in WpwW, }.

e For a Levi class function d on Q, define p; to be the number of irreducible components
of d(Q)N(uNly) where Lg is the Levi factor of @ that contains 7. Notice that this is
the number of orbital varieties for an Lg-orbit in the variety of nilpotent elements in
[g. Then the varieties Xg ;lQ are equidimensional with dimension %(dim u+dim d(Q)+
dimug) and |W : Wg|py irreducible components.

Notice that the first statement relates minimal double coset representatives to regular orbits
in Levi subalgebras and the third statement relates maximal double coset representatives to
the zero orbits in Levi subalgebras.

The quantity pg in the fourth statement is the degree of an irreducible representation of
W (see §3.5) and so |W : Wg|pq is the degree of an induced representation of W. The fact
that Xg ;lQ has |W : Wg|pa irreducible components is numerical evidence for Conjecture 3.10
below.

3. HoMmoLoay

We now take up the rational Borel-Moore homology of the Steinberg variety and gener-
alized Steinberg varieties. As mentioned in the Introduction, soon after Steinberg’s original
paper, Kazhdan and Lusztig [KL80], defined an action of W x W on the top Borel-Moore
homology groups of Z. They constructed the action by defining and action of the simple
reflections in W x W on H,;(Z) and showed that the defining relations of W x W are satisfied.
Then they proved that the representation of W x W on Hy,(Z) is equivalent to the two-sided
regular representation of W and gave a decomposition in terms of Springer representations
of W.

In the mid 1990’s Ginzburg [CG97] popularized a quite general convolution product con-
struction that defines an algebra structure on H,(Z) and K%(Z) (see the next section for
KY(Z)). With this multiplication, Hy,(Z) is a subalgebra isomorphic to the group algebra
of W.

In this section, following [CG97], [DRO8b]|, and [HJ05] we will first use some relatively
elementary constructions to describe the algebra structure of H,(Z), the decomposition of
Hy,(Z) in terms of Springer representations, and the Hy,(Z)-module structure on Hy,(Y).
Then we will use a more sophisticated sheaf theoretic construction of Borel-Moore homology
to give an alternate description of H,(Z), a different version of the decomposition of Hy,(Z)



10 J.M. DOUGLASS AND G. ROHRLE

in terms of Springer representations, and to describe the Borel-Moore homology of some
generalized Steinberg varieties.

3.1. Borel-Moore homology and convolution. Suppose that X is a d-dimensional,
quasi-projective, complex algebraic variety (not necessarily irreducible). We denote the
complex dimension of X by dim X. Topological notions will refer to the Euclidean topology
on X unless otherwise specified. We refer the reader to [CG97, Chapter 2, Chapter 3] for
more information.

Let X U{oo} be the one-point compactification of X. Then the i*! Borel-Moore homology
space of X, denoted by H;(X), is defined by H;(X) = H™(X, {oc}), the relative, singular
homology with rational coefficients of the pair (XU{oo}, {oo}). Define H (X) = .o, H;(X)
— the Borel-Moore homology of X. -

If i > 2dim X, then H;(X) = 0, so Haqim x(X) is the top non-zero Borel-Moore homology
space. Each d-dimensional irreducible component C' of X gives rise to a homology class [C]
in Hyq(X) and these classes form a basis of Hyq(X).

In particular, for the Steinberg variety, H;(Z) = 0 for i > 4n and the set { [Z,] | w € W}
is a basis of Hy,(Z). For the conormal variety, H;(Y') = 0 for i > 2n and the set { [Y,] | w €
W'} is a basis of Hy,(Y).

If X is smooth and A and B are closed subvarieties of X, there is an intersection pairing
N: H;(A) x Hj(B) = H;t+j—2qimx (AN B). This pairing depends on (X, A, B).

Fix a “base” variety, N. For ¢« = 1,2,3, suppose that M; is a smooth, connected, d;-
dimensional variety and f;: M; — N is a proper morphism. For 1 < ¢ < j < 3, let
pij: My x My x Ms — M; x M; denote the projection.

Suppose Z; 5 is a closed subset of M; x M, and Zy 3 is a closed subvariety of My x Ms.
Define Z; 3 = Z12 0 Z33 to be the composition of the relations Z; » and Zs 3. Then

Zl73 = {(ml,mg) € M1 X M3 | ng - M2 with (ml,mg) - ZLQ and (mg,mg) € 2273}

Assume that the restriction, p; 3: pl_é(Zl,g) ﬂpié(ngg) — 7, 3 is a proper morphism. Then
there is an associative convolution product, Hy(Z,5) x H;(Za3) = Hiyj_a,(Z13) defined by

cxd = (pa) (pla(c) Nps4(d))

where N is the intersection pairing determined by the subsets Z; 5 x M; and M; X Zy 3 of
M1 X M2 X Mg.

WhenM1:M2:M3:M,f1:fngng,andZm:MxNMforl§i<j§3,
the convolution product defines a multiplication on H,(M Xy M) so that H.(M xy M) is
a Q-algebra with identity. The identity in H.(M xx M) is [Ma] where My is the diagonal
in M x M. If d = dim M, then H;(M xy M) * H;(M xx M) C Hyy;_sa(M xx M) and so
Hyg(M x M) is a subalgebra and @;04(M X M) is a nilpotent, two-sided ideal.

If M and M’ are smooth and f: M — N and f': M’ — N are proper maps, then the
convolution product defines a left H,(M xy M)-module structure on H,(M xy M'). A
special case is when M’ = A is a subset of N and f": f~}(A) — N is the restriction of f.
Then the convolution product defines a left H.(M xy M)-module structure on H.(f~ 1(A)).

Using the description Z = N X ‘ﬁ where p: N — N, we get the following proposition.

Proposition 3.1. The convolution product defines a Q-algebra structure on H.(Z) and left
H.(Z)-module structures on H,(Y) = H,(u " (v)) and H.(B,) for z in M.
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3.2. The specialization construction and H,,(Z). Chriss and Ginzburg [CG97, §3.4]
use a specialization construction to show that Hy,(Z) is isomorphic to the group algebra
Q[W]. The specialization construction can also be used to show that H,(Z) is isomorphic to
the smash product of the group algebra of W and the coinvariant algebra of W. To describe
these results, we need some more notation. R

Define g = {(2,B") e gx B |z € Lie(B')} and Z = { (¢, B',B") e gx Bx B |z €
Lie(B’) N Lie(B"”) }. Abusing notation slightly, let u: g — g and p,: Z — g denote the
projections on the first factors and let : Z — B x B denote the the projection on the
second and third factors. R R

For w in W define Z,, = 7~ *(G(B,wBw™")). Then Z, = G xP»b,, and so dim Z,, = dim g
and the closures of the ZU’S for w in W are the irreducible components of Z.

As with Z, we have an alternate description of Z as (g X g) X gxq8. However, in contrast to
the situation in §2.3, where 0: g — g x g by §(z) = (x, —z), from now on we let 6: g — gx g
be the diagonal map. We will frequently identify Z with the subvariety of § x g consisting
of all pairs ((z, B'), (z, B”)) with x in b’ N b". Similarly, we will frequently identify Z with
the subvariety of 91 x DM consisting of all pairs ((z, B'), (z, B")) with z in tN b Nb".

For (z,gBg™') in g, define v(z,gBg™") to be the projection of g=' -z in t. For w in W, let
Ly ={(h,w™-h)|het} Ctxtdenote the graph of the action of w™' on t and define

Ae=20wxv) " ' Typs)={(z,B,B") e Z|v(x,B") =w 'v(z,B)}.

In the special case when w is the identity element in W, we will denote A,, by A;.
The spaces we have defined so far fit into a commutative diagram with cartesian squares:

(3.2) Aw 77— >4
| L
(vxv) (L) —>gxg—~8x8
l l/XI/l

Let v,: Ay, — T'y-1 denote the composition of the leftmost vertical maps in (3.2), so v, is
the restriction of v X v to A,,. R

For the specialization construction, we consider subsets of Z of the form v *(S’) for
S" C T'y-1. Thus, for h in t we define A = v 1(h,w='h). Notice in particular that A = Z.
More generally, for a subset S of t we define A =[], g Al Then, AJ = v '(S’) where S’
is the graph of w™? restricted to S.

Let t,e; denote the set of regular elements in t.

For w in W, define w: G/T X tg — G/T X t,e by w(gT,h) = (qwT,w™*h). The
rule (g7, h) — (g - h,gB) defines an isomorphism of varieties f: G/T X tieq =R Ors, Where
Ors = 4 (G - teg). We denote the automorphism f o w o f~1 of g, also by w.

Now fix a one dimensional subspace, ¢, of t so that £ Nt = ¢\ {0} and set ¢* = ¢\ {0}.
It is not hard to check that the variety A% is the graph of W[z : g* — g@ ). Thus, AL is
an irreducible, 2n + 1-dimensional variety and so Hy,,2(AY,) is one dimensional with basis
{[A%]}. Because A!, is a graph, it follows easily from the definitions that for y in W, there




12 J.M. DOUGLASS AND G. ROHRLE

is a convolution product
HL(AL) % Ha(Ay1) 5 HL(AL,)

and [AL]# [A00] = [AL,]

Now Af, =AY TTAY = AL ] Z. Therefore there is a specialization map (see [FM81, §3.4],
[CGI7, §2.6.30)),

lim: Hio(A) — Hi(Z).

Take i = 4n + 2 and define \,, = lim([A%]) in Hy,(Z). Chriss and Ginzburg [CG97, §3.4]
have proven the following:

e The element \,, in Hy,(Z) does not depend on the choice of ¢.

e Specialization commutes with convolution. Therefore, A, * A, = Ay, for w and y in
Ww.

e The expansion of A, as a linear combination of the basis elements [Z,] of Hy,(Z) has

the form A\, = [Z,] +>_,_,, @wy[Z,] where < is the Bruhat order on W.

Combining these results we obtain the following theorem.

Theorem 3.3. The assignment w — \, extends to an algebra isomorphism Q[W] =
Hun(2).

3.3. The Borel-Moore homology of Z and coinvariants. Now consider
Zy={(x,B B Ye N x Bx B |z € Lie(B') }.

Then Z; may be identified with the diagonal in 91 x 9. It follows that Z; is closed in Z and
isomorphic to M.

Since M = T7B, it follows from the Thom isomorphism in Borel-Moore homology that
H;\9,(Z)) & H;(B) for all i. Since B is smooth and compact, H;(B) = H?"~*(B) by Poincaré
duality. Therefore, Hy, ;(Z,) = H'(B) for all .

The cohomology of B is well-understood: there is an isomorphism of graded algebras,
H*(B) = Coinv(W), where Coinv(W), is the coinvariant algebra of W with generators in
degree 2. It follows that H;(Z) = 0 if j is odd, Hy,—2;(Z1) = Coinv(W),; for 0 < i < n.

The following is proved in [DRO8b].

(a) There is a convolution product on H,(Z;). With this product, H,(Z;) is a commu-
tative Q-algebra and there is an isomorphism of graded Q-algebras

3: Coinv, (W) = Hyn_(Z1).

(b) If r: Z; — Z denotes the inclusion, then the direct image map in Borel-Moore
homology, r.: H.(Z,) — H.(Z), is an injective ring homomorphism.

(c) If we identify H,(Z;) with its image in H.(Z) as in (e), then the linear transformation
given by the convolution product

H{(Z,) ® Hy(Z) — Hi(2)
is an isomorphism of vector spaces for 0 < i < 4n.

The algebra Coinv(WW), has a natural action of W by algebra automorphisms and the
isomorphism £ in (a) is in fact an isomorphism of W-algebras. The W-algebra structure on
H.(Z,) is described as follows.
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Fix w in W and identify H.(Z;) with its image in H.(Z), then
)\w x HZ(Zl) * )\wfl = Hz(Zl)
Therefore, conjugation by A, defines a W-algebra structure on H,(Z;). With this W-algebra

structure, the isomorphism 8: Coinv, (W) = Hy,_.(Z1) in (a) is an isomorphism of W-
algebras.

Suppose that Coinv(W') x Q[W] is graded by (Coinv(W') x Q[W]); = Coinv(WWV); @ Q[W].
Then combining Theorem 3.3, (c), and the fact that 3 is an isomorphism of W-algebras we
obtain the following theorem.

Theorem 3.4. The composition

Coinv(W), x QW] £2% Hy  (2)) @ Hun(Z) = Hin_(Z)

s an isomorphism of graded Q-algebras.

3.4. Springer representations of W. Springer [Spr76] has given a case-free construction
of the irreducible representations of W. He achieves this by defining an action of W on
H*(B,) for x in N. Define d, = dim B, and let C(x) = Zg(x)/Z2(x). Springer shows that
if ¢ is an irreducible representation of C(z) and H?*(B,), is the homogeneous component
of H*¥(B,) corresponding to ¢, then H?¥(B,), is W-stable and is either zero or affords an
irreducible representation of W. He shows furthermore that every irreducible representation
of W arises in this way. The convolution construction gives an alternate, more elementary
approach to Springer’s construction.

We have seen that for x in 9, the convolution product defines a left Hy,(Z)-module
structure on H,.(B,) and that Hy,(Z) = Q[W]. Thus, we obtain a representation of W on
H.(B,). Because B, is projective, and hence compact, H*(B,) is the linear dual of H,(B,)
and so we obtain a representation of W on H*(B,). Hotta [Hot82] has shown that up to
sign, this is the representation constructed by Springer.

The centralizer of x acts on B,. Thus, the component group C(x) acts on H.(B,). It
is easy to check that the C(z)-action and the Hy,(Z)-action commute. Therefore, up to
isomorphism, the representation of W on H,(B,) depends only the G-orbit of z.

We will give an alternate construction of Springer representations of W below in §3.6.

3.5. More on the top Borel-Moore homology of Z. Suppose € is a G-orbit in 1 and
7 is in €. Define 9€ = €\ €. Set Z, = u; (), Zyg = pu;1(0€), and Zg = pu;(€). Clearly
Zy = B, x B, and so by the Kiinneth theorem Hyq, (Z,) = Hog, (B:) @ Hag, (B.).

For suitable choices of f;: M; — N and Z; ; for 1 < ¢ < j < 3, the convolution product
construction in §3.1 defines left and right H,(Z)-modules structures on H.(Z,), H.(Zs¢),
and H,.(Zz).

The centralizer of = acts diagonally on Z,. Thus, the component group C(x) acts on
H,(Z,). As above, the C(z)-action and the Hy,(Z)-action commute and so Hyg, (Z,)¢® is
an Hy,(Z)-submodule of Hyy, (Z,).

It follows from §2.1 that (Hag, (B,) ® Hag, (B,))°® has a basis indexed by the set of
C(z)-orbits on B, x B,. Since Hyq, (Z,)°® = (Hyy, (B,) ® Hag, (B,))°®, we conclude that

Define Wiz = UgcgeWo and We = UgcgWao. Then {[Z,] | w € Wye} is a basis of

Hy,(Zyg) and {[Z,] | w € Wg} is a basis of Hy,(Zg).
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The inclusions Zgz C Zz C Z induce injective, Hy,(Z) x Hy,(Z)-linear maps, Hy,(Zyg) —
Hy,(Zg) — Hy(Z) and so we may identify Hy,(Zys) and Hy,(Zg) with their images in
Hy,(Z) and consider Hy,(Zyg) and Hy,(Zg) as two-sided ideals in Hy,(Z). Define H¢ to be
the quotient Hy,(Zg)/Hun(Zgs). Then He is a two-sided Hy,(Z)-module with a Q-algebra
structure inherited from the convolution product on Hy, (7).

Kazhdan and Lusztig [KL80] and Chriss and Ginzburg [CG97, §3.5] have proved the
following proposition. An alternate argument has also been given by Hinich and Joseph
[HJ05].

Let & be a set of orbit representatives in M.

Proposition 3.5. There are algebra isomorphisms
He= H4n(Z:c)C(x) = (H2dac (Bx) ® H2dac (Bx))c(x)'

Thus, the decomposition

Hi(2)= @ He= @ (Ha, (B,) © Hog, (B,))"

ceN/G zeS

is a decomposition of Hy,(Z) into a direct sum of two-sided ideals with dim He = [We|.

For € = {0}, the two-sided ideal H¢ corresponds to the trivial representation of W and for
¢ the regular nilpotent orbit, the two-sided ideal H¢ corresponds to the sign representation of
W. However, in general Hy is not a minimal two-sided ideal. To obtain the decomposition of
Hy,(Z) into minimal two-sided ideals we need to decompose each Hag, (B,.) into C(z)-isotypic
components.

For an irreducible representation of C'(x) with character ¢, let Hag, (B, ), denote the ¢-
isotypic component. We've seen that Hyg, (B,)s is an Hy,,(Z)-submodule of Hyg, (B,). Define

o~ —

C(x) to be the set of ¢ with Hag, (B;)s # 0. Then C(z) contains the trivial representation

of C(z). In general, C(z) does not contain all irreducible characters of C'(x).
The next theorem is proved directly in [KL80] and [CG97, §3.5]. It also follows from the
sheaf-theoretic approach to Borel-Moore homology described below.

Theorem 3.6. There is an isomorphism of Hy,(Z)-modules,

(Hag, (B,) @ Haq, (B:))™) = @D Endg(Haa, (B,)s)-
$cC(a)

—_—

Moreover, Hag, (B,)s is a simple Hy,(Z)-module for every ¢ in C(x) and the decomposition
Hi(Z) =@ O Endg(Haa, (B.)s)
is a decomposition of Hy,(Z) into minimal two-sided ideals.

Formulas for the action of a simple reflection on Hy,(Z) analogous to Hotta’s transfor-
mation formulas for the action of a simple reflection on H,(B,) have been given by Hinich
and Joseph [HJO05]. The first two parts of the next theorem may be recovered from the more
general (and more complicated) argument in [DRO8a].

Theorem 3.7. Suppose that s is a simple reflection in W and w is in W.
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(a) Ay = [Z,] + 1.
(b) If sw < w, then [Z,] * [Z,) = —2[Z.].
(c) If sw > w, then there is a subset F,,, of {x € W | © < w, sz < x} so that
2] # (Zo] = [Zsu) + Pser, ,, Mol Za] with nz > 0.

Using this result, Hinich and Joseph prove a result analogous to Proposition 3.5 for right
Steinberg cells. Recall that for w in W we have defined U, (w) = Bu,, N € when w is in We.

For an orbital variety U, define W = {y € W | V,.(y) C T }.

Theorem 3.8. For w in W, the smallest subset, S, of W with the property that [Z,] * \,
is in the span of { [Z,] | x € S} for all y in W is B,.(w). In particular, if B is any orbztal
variety, then the span of { [Z.] | x € Wi} is a right ideal in Hy,(Z).

3.6. Sheaf-theoretic Borel-Moore homology of fibred products. For a variety X, the
Q-vector space H;(X) has an alternate description in terms of sheaf cohomology see [CG97,
§8.3]). The properties of sheaves and perverse sheaves we use in this section may be found
in [Dim04] and [Bor84].

Let D(X) denote the full subcategory of the derived category of sheaves of Q-vector
spaces on X consisting of complexes with bounded, constructible cohomology. Consider the
constant sheaf, Qx, as a complex in D(X) concentrated in degree zero. The dualizing sheaf
Dx of X is f'Qp; where f: X — {pt}. Then

H;(X) 2 Ext ) (Qx, Dx) = Homp(x) (Qx, Dx[~d]).

Suppose we are in the convolution setup from §3.1 with proper morphisms f;: M; — N
with d; = dim M; for ¢« = 1,2, 3. Consider the cartesian diagram

MIXM2_>f1Xf2 N x N

where f) 5 is the induced map. Using the argument in [CG97, §8.6] we have isomorphisms
Hi(Ml XN M2) EXtB(MlxN]\J2 (QM1><NM2>]DM1><NM2)

= EXtB(MlxNMg (fik,2QN7 5:!lID)M1><M2)

= ExtB(N (Qn, R(f1.2)+01Dasy ary) (adjunction)
= EXtB(N Qn, 0" R((f1 X f2)<Dar xar) (base change)
= EXtDZ(N @ ( (fl)*]DMl X R(fg)*]DMz)) (Kunneth)

(
(
2 Ext ) (Qu, Hom(R(f1)«Qan s R(f2)Dar))  [Bors4, 10.25]
>~ Fixt2d2- Z( (f1)+Qas, R(f2)«Qus,)).

D(N)
It is shown in [CGI7, §8.6] that the isomorphism
HZ(Ml XN M2) EXt2Dd(2NZ( (fl) QM17 (f2)*QM2>>

intertwines the convolution product on the left with the Yoneda product (composition of
morphisms) on the right.
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3.7. Sheaf-theoretic decomposition of Hy,(Z). Applying the computation above of the
Borel-Moore homology of a fibred product to Z = 91 x5 91 we obtain

In particular, Hy,(Z) = Endp ) (RuQg).-

Suppose A is an abelian category and X = > S™ is a semisimple object A, where
S1, ..., Sy, are non-isomorphic simple objects in A. Assume also that for 1 < i < m,
End4(S;) = Q. The following statements are easily checked.

e End,(X) = @, Enda(S™) = D~ My, (Enda(S;)) = @)%, M, (Q). In particu-
lar, End4(X) is a semisimple, Artinian ring.

e Hom4(S;, X) = Hom(S;, S;") = End 4(S;)™ = k™. Therefore, the simple End 4(X)-
modules are the Hom4(.S;, X) for 1 <1i <n.

Let M (1) denote the full subcategory of D(N) consisting of perverse sheaves (with respect
to the middle perversity). Then M(91) is an abelian category and End e (/) = Q for each
simple perverse sheaf K. The complex Ry, Qg is a semisimple object in M (91) and Borho
and MacPherson [BM81] have shown that its decomposition into simple perverse sheaves is
given by

Ru.Qg = @ FEIC(Gw, Ly)[—2dy]
z,¢

where x runs over a set of orbit representatives & in M, and for each z, j*: Gox — M is the

inclusion, ¢ is in C(z), and n, 4 is a non-negative integer.
Define IC, 4 = j2IC(Gz, Ly)[—2d,]. Then the formalism above implies that
o Hy(Z) = @y gEndpony (I C’g,”;;"’) is the Wedderburn decomposition of Hy,(Z) and

—_—

o the set { Hompwn([Cr g, Rit.Qxn) | v € &, ¢ € C(x)} is a complete set of non-
isomorphic simple Hy,(Z)-modules.

If € is a G-orbit in 1 and x is n €, then it is straightforward to check that

H@g @ EHdD(m)(ICZ’Zf)

¢eC(z)
Also, if i,: {z} — 9 denotes the inclusion, then B, = N x o {z}. Thus,
Hi(B,) = Extﬂb"(&i)(Ru*@m, R(15).Qqay) = EXtlen(E;})(i;RN*@% Qay)

and the the diagram

Hy,(Z) x Hy(B,) - H;(B.)

|

End (o (Rp.Qg) x Ext 7 (Rt Qar, R(i0)«Qpuy) — Extgy (Ri.Qo, R(i). Q)

commutes. This gives an alternate description of the Springer representation of W on H,(B,).
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3.8. Borel-Moore homology of generalized Steinberg varieties. Recall from §2.4 the
generalized Steinberg variety

XPC={(2,P,Q)eMXxPxQ|zepng}2n xuyN?

where ¢(P') =Ny’ and d(Q') = NN gq’". Borho and MacPherson [BM83, 2.11] have shown
that M” and ‘ﬁdQ are rational homology manifolds. The constructions and results in §3.1 and
§3.6 are valid when Z; ; = M; x M; and the M;’s are rational homology manifolds. Thus
H,(X7?€) may be computed as in §3.6.

Recall that n: Z — X7 is a proper, G-equivariant surjection. The main result of [DR08a]
is the following theorem describing the Borel-Moore homology of X7,

Theorem 3.9. Consider Hy,(Z) as a W x W-module using the isomorphism Hy,(Z) =
Q[W]. Then there is an isomorphism ¢: H,(X"9) = H.(Z)"VP*Wa 5o that the composition
pon.: Ho(Z) — H(Z)Vr*Wa s the the averaging map.

Let ep (resp. eg) denote the primitive idempotent in Q[Wp| (resp. Q[Wy]) corresponding to
the trivial representation. Then it follows immediately from the theorem that Hy,(X"<) =
€p@[W]6Q.

Next recall the generalized Steinberg variety X(f (’)Q TP xuT*Q. Set m = dim P/B +
dim @)/B. Let ep (resp. €g) denote the primitive idempotent in Q[Wp| (resp. Q[Wy]) corre-
sponding to the sign representation. Then dim ng (’)Q = 4n — 2m and it is shown in [DR08a,
§5] that H4n_2m(XP’Q) = EPQ[W]EQ.

Now suppose that ¢ is a Levi class function on P. Let L be a Levi subgroup of P
and choose x in ¢(P) N [. Then we may consider the Springer representation of Wp on
Hogr (BE)Ot®) where Cp(z) is the component group of Z;(z), BL is the variety of Borel
subalgebras of [ that contain x, and d% = dim BL. This is an irreducible representation of
Wp. Let fp denote a primitive idempotent in Q[Wp] so that Q[Wp|fp = H2d£(B£)CL(x).
Set dzf = 2 (dim¢(P) + dimup + dimd(Q) + dimug). Then it is shown in [DR04] that

dim Xff < dff. We conjecture that the following statement is true.

Conjecture 3.10. With the notation above, Hcﬂ’f (X:ég) = fpQ[W]fo.

4. EQUIVARIANT K-THEORY

Certainly the most important result to date involving the Steinberg variety is its applica-
tion by Kazhdan and Lusztig to the Langlands program [KL87|. They show that the equi-
variant K-theory of Z is isomorphic to the two-sided regular representation of the extended,
affine Hecke algebra H. They use this representation of H to classify simple H-modules and
hence to classify representations of “G(Q,), the @, points of the Langlands dual of G, con-
taining a vector fixed by an Iwahori subgroup. As with homology, Chris and Ginzburg apply
the convolution product formalism to the equivariant K-theory of Z and recast Kazhdan
and Lusztig’s results as an algebra isomorphism.

In this section, we assume that G is simply connected and describe the isomorphism
H~K92).
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4.1. The generic, extended, affine Hecke algebra. We begin by describing the Bernstein-
Zelevinski presentation of the extended, affine Hecke algebra following the construction in
[Lus89].

Let X(T) denote the character group of 7. Since G is simply connected, X (7') is the
weight lattice of G. Define X to be the set of dominant weights with respect to the base
of the root system of (G, 7T) determined by B.

The extended, affine, Weyl group is W, = X (T') x W. There is a “length function” ¢ on
W, that extends the usual length function on W. The braid group of W, is the group Br
with generators { T, | z € W, } and relations T, T,y = T, if {(z) + ((2) = {(x2").

Let v be an indeterminate and set A = Z[v,v™!]. The generic, extended, affine Hecke
algebra 'H is the quotient of the group algebra A[Br] by the two-sided ideal generated by the
elements (7, + 1)(T, — v?) where s runs through the simple reflections in .

Given A in X (7T') one can write A = A\; — Ay where \; and ), are in X*. Define E* in H to
be the image of v 22T} For w in W, denote the image of T}, in H again by T,,. Let Hy
denote the Iwahori-Hecke algebra of W (an A-algebra) with standard basis {t,, | w € W }.
Lusztig [Lus89, §2] has proven the following theorem.

Theorem 4.1. With the notation above we have:

(a) E* does not depend on the choice of \; and \s.

(b) The mapping A[X(T)] ®4 Hw — H with X\ @ t,, — E*T,, is an isomorphism of
A-modules.

(¢) For X\ and X in X we have E*EN = EM and so the subspace of H spanned by
{E*| X\ € X } is a subalgebra isomorphic to A[X (T)].

(d) The center of H is isomorphic to A[X(T)|W wvia the isomorphism in (c).

(e) The subspace of H spanned by { T, | w € W } is a subalgebra isomorphic to Hyy .

Using part (b) of the theorem, we will identify A[X (7)] with the subalgebra of H spanned
by {E} [ A€ X}

Let C* denote the multiplicative group of non-zero complex numbers and set T = T x C*,
G = @G x C*. Define a C*-action on g by (&,2) — &2x. We consider B as a C*-set with the
trivial action. Then the action of G on M and Z extends to an action of G on M and Z and
. and g are G equivariant.

For an algebraic group H, R(H) denotes the representation ring of H.

By considering v as the trivial representation of C*, we may identify R(C*) and A =
Z[v,v™1]. Then

R(T) = R(T) & R(C*) = R(T)[v,v™"] = A[X(T)
R(G) =2 R(G) ® R(C*) = R(G)[v,v™ 1 = AIX(T)"V.
Therefore, we have a commutative diagram of A-algebra homomorphisms

Z(H)—— AX (D)) —H

where Z(H) is the center of H.
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Let G denote the Langlands dual of G, so G is an adjoint group. Let *G, denote the
algebraic group over Q, with the same type as “G. Suppose that I is an Iwahori subgroup
of G, and let C[I\"G,/I] denote the space of all compactly supported functions *G, — C
that are constant on (7, I)-double cosets. Consider C as an A-module via the specialization
A — C with v — /p. The following theorem is due to Iwahori and Matsumoto [IM65].

Theorem 4.2. The (I,I)-double cosets are parameterized by W,. Moreover, if I, is the
double coset indexed by x in W,, then the map which sends T, to the characteristic function
of 1, extends to an algebra isomorphism

CII\*G,/I) 2 C®4H.

4.2. Equivariant K-theory and convolution. Two beginning references for equivariant
K-theory is described in [BBM89, Chapter 2] and [CG97, Chapter 5].

For a variety X, let Coh(X) denote the category of coherent Ox-modules. Suppose that
H is a linear algebraic group acting on X. Let a: H x X — X is the action morphism
and p: H x X — X is the projection. An H-equivariant coherent Ox-module is a pair
(M, 1), where M is a coherent Oy-module and i: a*M = p*M is an isomorphism (see
[CG97, §5.1]). Let Coh” (X) denote the abelian category of all H-equivariant Ox-modules.
The Grothendieck group of Coh (X) is denoted by K (X) and is called the H-equivariant
K-group of X.

If X = {pt} is a point, then K (pt) = R(H) is the representation ring of H. For any X,
KH(X) is naturally an R(H )-module.

Suppose f: X — Y is a H-equivariant morphism. If f is proper it induces a direct image
map in equivariant K-theory, f.: K#(X) — KH(Y). If f is smooth it induces a pullback
map in equivariant K-theory, f*: K#(Y) — K (X). If X is smooth and A and B are closed,
H-stable subvarieties of X, there is an intersection pairing N: K7 (A)x K(B) — K" (ANB)
(called a Tor-product in [Lus98, §6.4]). This pairing depends on (X, A, B).

Now suppose we are in the convolution setup from §3.1 with f;: M; — N is proper for ¢ =
1,2,3, Z, j closed subvarieties of M; x M; for 1 <i < j <3, and p;3: pi%(Zl,g)ﬂpié(ngg) —
Z13 is a proper morphism. Assume in addition that all maps are H-equivariant and the
subvarieties Z; ; are H-stable. Then as in §3.1 the formula ¢ x d = (p13)1 (p}o(c) N p55(d))
where N is the intersection pairing determined by the subsets Z; o x M; and M; X Zj 3 of

M, x My x Ms defines an associative convolution product, K (Z, ,)@ K (Z,3) = KH(Z, 3).

4.3. The Kazhdan-Lusztig isomorphism. Returning to the Steinberg variety, recall that
Zy ={(x,B',B") € M x B x B|xeb'}. Forsuitable choices of f;: M; — N and Z, ;, and

using the embedding A C R(G), the convolution product induces various A-linear maps:

o K4(Z)x K9(Z) 5 KC(Z); with this multiplication, K%(Z) is an A-algebra.
o K9(7)) x KG(Z) & K©(Z,); with this multiplication, K¢(Z;) is a commutative
A-algebra.
o K(Z)x KM x B) 5 KE(M x B); this defines a left KF(Z)-module structure on
KC(M x B).
The group K%(Z,) has a well-known description: First, the rule (z, B) — (z, B, B') de-

[

fines a G-equivariant isomorphism between 9 and Z; and hence an isomorphism K é(Zl) =
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K G(‘ﬁ) Next, the projection N — B is a vector bundle and so we have the Thom isomor-
phism KC(M) = KC(B). Third, set B = B x C*. Then B is isomorphic to G xZ {pt} by a
G-equivariant isomorphism and so K(B) = KB ({pt}) = R(B). Finally, U is the unipotent
radical of B and so R(B) = R(T) = A[X(T)].

The composite isomorphism A[X (T)] 2 K%(Z,) is an A-algebra isomorphism and is given
explicitly as follows. If X is in X(7'), then A lifts to representation of B. Denote the
representation space by C,. Then the sheaf of sections of the line bundle G x” C, on Bis a
G-equivariant, coherent sheaf of Og-modules that we will denote by Ly. Pulling Ly back first
through the vector bundle projection M — B and then through the isomorphism 7; = ‘jvt,
we get a G-equivariant, coherent sheaf of Oz -modules we denote by L.

Let i: Z; — Z be the inclusion. Define e* = i,([£,]) in K(Z). Then A — e* defines an
A-linear map from A[X(T)] to K%(Z).

A concentration theorem due to Thomason and the Cellular Fibration Lemma of Chris
and Ginzburg can be used to prove the following proposition (see [CG97, 6.2.7] and [Lus98,
7.15]).

Proposition 4.3. The closed embeddings i: Z1 — Z and j: Z — N x B induce injective
maps in equivariant K-theory,

K%(2z) & K9 2) 25 KO x B).

The map i, is an A-alge_brg monomorphism and the map j. is a Ké(Z)-module monomor-
phism. In particular, K€M x B) is a faithful K(Z)-module.

Using the proposition and the isomorphisms K¢ ({pt}) = R(G) = Z(H) we get a commu-
tative diagram of A-algebra homomorphisms

ZH)—— AX(T)]——H

- s

K9({pt})— K%(Z)— K%(2)

We follow the argument in [Lus98, §7] to complete the diagram with an isomorphism of
A-algebras K9(Z) = H.

Fix a simple reflection, s, in W. Then there is a simple root, «, in X(7') and a corre-
sponding cocharacter, &: C* — T, so that if < -} is the pairing between characters and
cocharacters of T', then (o, &) = 2 and s(A\) = A — (A, &)« for A in X(7"). Choose weights
N and N in X(T') with (N, &) = (N, a) = —1 and A+ X' = —a. Then Ly X Ly is in
CohC (B x B). Lusztig [Lus98, 7.19] has shown that the restriction of Ly & Ly, to G(B, sBs)
does not depend on the choice of X' and \’. Denote the the restriction of Ly X Ly to
G(B,sBs) by Ls.

It is easy to check that Z, N Z, = {(x,gBg~',gBg™') € Z, | g~*x € u, }. It follows that
Z, is smooth and that 7: Z, — G(B, sBs) is a vector bundle projection with fibre u,. Thus,
m([L,]) is in K9(Z,). Let i,: Z, — Z be the inclusion and recall that we are identifying A
with a subspace of R(G). We define I, = (i,),7*([L,]) in K% (Z).

Lusztig [Lus98, 7.24] has proved the following lemma.
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Lemma 4.4. There is a unique left H-module structure on Ké(‘it x B) with the property
that for every k in Ka(‘ft x B), X\ in X(T), and simple reflection s in W we have

o —(Tsy+1)-k=Ilsxk and

o B k=¢xk.

Since KG(M x B) is an H-module and a K¢(Z)-module, we have ring homomorphisms
¢1: H — Endy (K@(sit X B)) and ¢p: K9(Z) — Endy (K@(sit x B)). It follows from
Lemma 4.4 that the image of ¢; is contained in the image of ¢,. It follows from Proposition
4.3 that ¢ is an injection. Therefore, ¢; 0¢;: H — K é(Z ) is an A-algebra homomorphism.
Denote the composition ¢, ' o phi; simply by ¢.

The following theorem is proved in [Lus98, §8] using construction that goes back to [KL87].
A different exposition may be found in [CG97, Chapter 7].

Theorem 4.5. The A-algebra homomorphism ¢: H — Ké(Z) s an isomorphism.

4.4. Equivariant K-theory of generalized Steinberg varieties. Suppose P and Q are
conjugacy classes of parabolic subgroups of G and recall the generalized Steinberg varieties
X7P2 and X&Q and the maps n: Z — XP2 and n,: ZP2 = n_l(X(f(’)Q) — X&Q from §2.4.
We have a cartesian square

(4.6) ARS: A

o]

P7Q
X070 —>k1 XP.Q

where k£ and k; are the inclusions.
The morphism 7; is smooth and so there is a pullback map in equivariant K-theory,
nit K9(X03%) — K%2Z79). We can describe the R(G)-module structure of K%(Z7-9)

and K 5(ng 29) using the argument in [Lus98, 7.15] together with a stronger concentration
theorem due to Thomason [Tho92].

Theorem 4.7. The homomorphisms 1j: : K¢(X}3%) — K%(Z79) and k.: K¢(Z72) —
K%(Z) are injective. Moreover, KE(X&’)Q) is a free R(G)-module with rank |W|?/|Wp||[Wq|
and K%(ZP2) is a free R(G)-module with rank |W|?.

In the rest of this subsection we consider the very special case when P = Q = {G}. In
this case, we can use results of Lusztig to describe the map k, in terms of H and results of

Ostrik to describe the map 7, and KC(N).
Computing the spaces in (4.6) when P = Q = {G} we obtain
XGHD = (0}, 2D =7 = 2y 2 Bx B, X{OHG =q.
Also, n: Z — X1GHC may be identified with p,: Z — M and k: ZIEHE 5 Z may be
identified with the closed embedding B x B — Z by (B', B") — (0, B, B").
It follows from Theorem 4.7 that k,: K%(B x B) — KY(Z) is injective. Notice that in
contrast, even though the map k.: H;(B x B) — H;(Z) in Borel-Moore homology is an

injection for i = 4n, it is not an injection in general. In particular, the inclusion of Z,, in Z
for an arbitrary w does not induces an injective map on Borel-Moore homology.
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Taking M, = ‘Yt, Zig = Z and Zy3 = Z1GHGY in the convolution construction, we
have Zy5 = Z{GHG} and so KC(Z{GH{G) has a left KC(Z)-module structure. Using the
projection formula in equivariant K-theory [CG97, 5.3.12] it is straightforward to show that
k, is KC(Z)-linear. Therefore, the image of k, is a left ideal in K¢(Z). Similarly, the image
of k, is a right ideal in K%(Z) and so the image of k, is a two sided ideal of K“(7).

Define £ =3 .y T\ in H. Then it is easy to see that T, F = V' W E for y in W. Lusztig
[Lus98, 8.11] has shown that E is in the image of k.. This can be used to prove the next
proposition.

Proposition 4.8. The image of k,: KS(ZHCG) — KG(Z) equals the image of the two-
sided ideal HEH of H under the Kazhdan-Lusztig isomorphism ¢: H — K%(Z).

Now consider n,: K%(Z) — K&(X{GhiG}),

The extended, affine Weyl group W, is not a Coxeter group in general, it is an extension
of a Coxeter group, and so the algebra H is not the Hecke algebra of a Coxeter group.
Nevertheless the H does have a Kazhdan-Lusztig basis, { ¢, | © € W, } (see [Lus98]). Notice
that for a simple reflection s in W we have ¢, = T, + 1 and so by Lemma 4.4 we have

o(cl) = —lLs.

Recall that W, = X(T') x W. Using the computations in [IM65] it can be shown each
(W, W)-double coset contains a unique element in X and a unique element with minimal
length. For A in X* we let my denote the element with minimal length in WAW. Ostrik
has proved the following theorem describing K&(M) = K¢(X{GHGH),

Theorem 4.9. For x in W, 1.(c,) = 0 unless ¥ = my for some X in X*. Moreover, the
map 1, K9(S) — KX s surjective and {n.(c,,) | A € XT} is an A-basis of
KG(x{ariah.
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