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HOMOLOGY OF GENERALIZED STEINBERG VARIETIES
AND
WEYL GROUP INVARIANTS

J. MATTHEW DOUGLASS AND GERHARD ROHRLE

ABSTRACT. Let G be a complex, connected, reductive algebraic group. In this paper we
show analogues of the computations by Borho and MacPherson of the invariants and anti-
invariants of the cohomology of the Springer fibres of the cone of nilpotent elements, A/, of
Lie(G) for the Steinberg variety Z of triples.

Using a general specialization argument we show that for a parabolic subgroup Wp x Wy
of W x W the space of Wp x Wg-invariants and the space of Wp x Wgy-anti-invariants
of Hyn(Z) are isomorphic to the top Borel-Moore homology groups of certain generalized
Steinberg varieties introduced in [5].

The rational group algebra of the Weyl group W of G is isomorphic to the opposite of
the top Borel-Moore homology Huy,(Z) of Z, where 2n = dimN. Suppose Wp x Wg is a
parabolic subgroup of W x W. We show that the space of Wp x Wg-invariants of Hu,(Z)
is eqQWep, where ep is the idempotent in the group algebra of Wp affording the trivial
representation of Wp and e is defined similarly. We also show that the space of Wp x W-
anti-invariants of Hy,(Z) is egQWep, where ep is the idempotent in the group algebra of
Wp affording the sign representation of Wp and €g is defined similarly.

1. INTRODUCTION

Suppose G is a complex, reductive algebraic group and B is the variety of Borel subgroups
of G. Then B is a smooth, projective variety. Let T" be a maximal torus in G and choose
a Borel subgroup, B, of G containing T'. Let W = Ng(T")/T be the Weyl group of (G,T).
Then W acts on G/T on the right, the natural projection G/T — G/B has the structure of
a vector bundle, and the varieties G/B and B are isomorphic. Thus, W acts on the singular
cohomology with rational coefficients of B via the isomorphisms H*(B) = H*(G/B) =
H*(G/T).

Now suppose P is a parabolic subgroup of G containing B and P is the variety of G-
conjugates of P. Then P is again a smooth, projective variety and it is a classical result
that H*(P) is isomorphic to the space of Wp-invariants in H*(B) where Wp = Np(T')/T is
the Weyl group of (P,T') (see [9]).

Borho and MacPherson have generalized this result to fixed point subvarieties of B as
follows. Let g be the Lie algebra of G and N the cone of nilpotent elements in g. There is
a moment map, po: T*B — N, where T*B is the cotangent bundle of B. For x in N, set
B, = py'(x). The variety B, may be identified with the variety of all Borel subgroups of
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G, whose Lie algebra contains x. The varieties B, vary from a point, when z is regular, to
B, when z = 0. The moment map factors as pg = 1 o & where & '(x) may be identified
with the variety, P,, of all subgroups in P whose Lie algebra contains z. There is also a
moment map, pj from the cotangent bundle of P to N, and (u))~!(x) may be identified
with the variety of all subgroups in P whose Lie algebras contain x in their nilradical. Set
Py = ()" (@)

Springer [17] has defined an action of W on H*(B,) and Borho and MacPherson [3] have
shown that if W acts on H*(B,) by the tensor product of Springer’s action with the sign
representation, then:

(1.1) H*(P,) is isomorphic to the space of Wp-invariants in H*(B,).
(1.2) H*(PY) is isomorphic to the subspace of H*(B,) on which Wp acts as the sign rep-
resentation.

In a different direction, the Steinberg variety of G is the fibred product T%B x T B which
may be identified with the closed subvariety

Z={(x,B',B") e N x Bx B|x¢€ Lie(B') NLie(B") }

of N x B x B. Kazhdan and Lusztig [12] have defined an action of W x W, on H.(Z), the
rational, Borel-Moore homology of Z, and they showed that the representation of W x W
on the top-dimensional homology group of Z, Hy,(Z), where n = dim B, is equivalent to the
two-sided regular representation of WW.

Tanisaki [19] and, more recently, Chriss and Ginzburg [4] have strengthened the connection
between H,(Z) and W by defining a Q-algebra structure on Hq(Z) so that H;,(Z)- H;(Z) C
Hiij 4,(Z) and Hy,(Z)° is isomorphic to the group algebra Q.

In this paper we prove analogs of (1.1) and (1.2) for the Steinberg variety.

Suppose @ is a parabolic subgroup of G containing B (a special case is when @ = P),
W is the Weyl group of (Q,T'), and Q is the conjugacy class of parabolic subgroups that
contains (). In [5] we defined generalized Steinberg varieties

XPQ—{(2,P,Q) e N xPx Q| xz e Lie(P") NLie(Q') }

and
Y7C = {(z,P,Q) e N xP x Q| x € Lie(Up:) N Lie(Ugy) }

where Up/ and Ug are the unipotent radicals of P’ and @' respectively. It was shown
in [5] that X< is purely 2n-dimensional and Y7 is purely (2n — f)-dimensional where
f=dim P/B+dimQ/B.
The first analogs of (1.1) and (1.2) are:
(1.1") Hy,(XP9) is isomorphic to the space of Wp x Wo-invariants in Hy,(Z).
(1.2") Hyp—2s(Y™9) is isomorphic to the subspace of Hy,(Z) on which Wp x Wy acts as
the sign representation.

We prove both of these statements in this paper.
More generally we consider the following statements:
(1.1") Ho(X7"9) is isomorphic to the space of Wp x Wg-invariants in He(Z).
(1.2") Ho(Y"9) is isomorphic to the subspace of Ho(Z) on which Wp x Wy acts as the sign
representation.
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In §3 we prove a general specialization result, in the spirit of [3], which has (1.1”) as a
special case. Obviously (1.1") follows immediately from (1.1”). It seems likely that (1.2”) is
true, but our proof of (1.2’) uses dimension computations from [5] that are not available for
H;(YP9Q) for i < 4n — 2f.

In §4 we prove a general equivariance result in the spirit of [4]. A special case of this result
is that there is a W x W-equivariant isomorphism

Exty?™* (R(po)Qr-5, R(10)Qrp) — Ho(Z).

Borho and MacPherson [2] have shown that the Q-algebras QW and Enda(R(uo)Qr«g) are
isomorphic and Chriss and Ginzburg [4, §8.6] have shown that

Ext '™ (R(10)1Qre5, R(10)\Qrep) = Ho(Z).
Thus, taking e = 4n we get W x W-equivariant, Q-algebra isomorphisms

QW —— Endy (R(p0)1Qr+5) — Hun(Z)%.

where W x W acts on QW by (w,w’) - v = w'vw™" for w and w’ in W and v in QW.

Using the isomorphism between QW and Hy,(Z)°® we may formulate (1.1) and (1.2') in
terms of the group algebra of W:

(1.1"") 1If ep is the primitive idempotent in QWp corresponding to the trivial representation
of Wp and eq is defined similarly, then Hy,(X"*€) is isomorphic to the subspace
eqQWep of QW.

(1.2"") 1If €p is the primitive idempotent in QWp corresponding to the sign representation
of Wp and € is defined similarly, then Hy,_o f(YP’Q) is isomorphic to the subspace
EQ@WE P of @W

In [5] we defined generalized Steinberg varieties X:f. Statements (1.1”) and (1.2")
together with computations in some special cases suggest that the Borel-Moore homology of
a general XZZ;Q is given as follows.

A generalized Steinberg variety, XZ?C’lQ, depends on a pair of nilpotent adjoint orbits in
Lie(P/Up) and Lie(Q/Ug) respectively. We will not recall the precise definition here but
instead refer the interested reader to [5]. In turn, these nilpotent orbits determine irreducible
representations of Wp and Wy, say p. and pg respectively, corresponding to the trivial
representation of the component groups of the orbits via the Springer correspondence as
defined in [2]. Let e. and e, denote primitive idempotents in QWp and QW affording p.
and pg respectively. In [5, Corollary 2.6] we have given a sharp upper bound, 55&9, for the

dimension of XZ,D&Q- We conjecture that
o H%f,lig (XZ,DC}Q) is isomorphic to e,QWe...
More generally, we conjecture that
. H.(XZ?&Q) is isomorphic to e;Ho(Z)e, where we consider e, and ey in Ho(Z) via the
isomorphism QW = Hy, (Z)°P.
In much of this paper (§2 — §4 and the Appendix) we are concerned with general sheaf
theory. Most of our conclusions about the Borel-Moore homology of generalized Steinberg

varieties are straightforward applications of more general results. The main theorems, which
are described briefly below, are the specialization results, Theorem 3.1.2 and Corollary 3.5.2,
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and the equivariance results discussed in §4.1. We hope these general results will have
applications outside the realm of generalized Steinberg varieties.

Our computation of the Borel-Moore homology of X7+€ and Y7:€ is given in §5. Although
the results depend on facts proved in §3 and §4, this section may be read independently of
the other sections.

The rest of this paper is organized as follows.

In §2 we fix notation and collect some sheaf-theoretic results that are used in subsequent
sections for which we could not find a suitable reference.

In §3 we give an axiomatic approach to a specialization result which allows us to identify a
direct image map in Borel-Moore homology with the averaging map for a group action. The
basic idea goes back to Lusztig [14] and Borho-MacPherson [3]. A result which is similar in
spirit, but which is in a sense dual to our result, and does not apply to Borel-Moore homology,
has been used by Spaltenstein in [16]. Statement (1.1”) is a straightforward consequence of
the main result in this section, Theorem 3.1.2.

In §4 we continue the axiomatic approach from §3 and prove an equivariance result for
two-sided group actions that is key for our application to generalized Steinberg varieties.
The crucial result is Theorem 4.4.1 which when applied to the Steinberg variety implies that
there is a W x W-equivariant isomorphism between Ethl&L_.(R(,uo)gQT* 5, R(140)1Qr+5) and
H.(Z). This result is similar in spirit to the results in [4, §8.6].

In §5 we specialize the results in the previous sections to the case of generalized Steinberg
varieties and prove (1.1”), (1.2"), (1.1"), and (1.2").

In the Appendix, we prove two results about the natural transformation ¢* — ¢'[21] for a
morphism £: X — Y, where [ = dimY — dim X. These results are needed in the proof of
Theorem 4.4.1.

For simplicity, in this paper we have chosen to work with complex algebraic groups and
Borel-Moore homology, but our arguments are essentially categorical and make sense in the
setting of algebraic groups over arbitrary algebraically closed fields and [-adic cohomology.

2. PRELIMINARIES

2.1. First, we fix some assumptions and notation that will be used throughout the rest
of this paper. The reader is urged to skim this section quickly to become familiar with the
notation and refer back to the results used in the sequel when necessary. The main references
for sheaf-theoretic notation and results used in this paper are the article [1] by Borel (with
the collaboration of N. Spaltenstein) and the book [11] by Kashiwara and Shapira.

The topological spaces we consider are complex algebraic varieties endowed with their
Euclidean topologies, although many arguments apply as well to pseudomanifolds as defined
in [8, §1.1].

The “dimension” of a space always means its dimension as a complex algebraic variety.

If X is a variety, then D(X) denotes the derived category of the category of sheaves of
Q-vector spaces on X, D?(X) denotes the full subcategory of D(X) consisting of complexes
with bounded cohomology, and D?(X) denotes the full subcategory of D’(X) consisting of
complexes with constructible cohomology.

For complexes A and B in D(X), Ext’(A, B) is defined to be H’(RHom(A, B)) and it is
shown in [1, §5.17] that Ext’(A, B) = Homp(x)(A, B[j]). Define

Ext’ (4, B) = Homp(x) (A, B[j]).
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Since D’(X) is a full subcategory of D(X), if A and B are complexes in D’(X), then
Hom py(xy(A, B) = Hompx)(A, B). To simplify the notation, we denote both of these spaces

by Homyx (A, B). Also, we denote the complex A é B simply by A ® B.

The constant sheaf on X, considered as a complex concentrated in degree 0, is denoted
by Qx and the dualizing complex of X is denoted by Dy.

If A is a complex of sheaves of Q-vector spaces on X, then AY = RHom(A,Dx) denotes
the Verdier dual of A. There is a canonical isomorphism between Dy and Q% we denote by
dcx, so

dCXZ ]D)X —:> Q}/( .
If f: A — Bisamorphism in D(X), and C'is a complex in D(X), then f induces natural
morphisms in D(X),
f*: RHom(B,C) — RHom(A,C) and f;: RHom(C, A) —— RHom(C, B).

In the special case when C' = Dy, we have RHom(A,C) = AY and RHom(B,C) = BY. We
usually write fV instead of f* in this case, so f¥: BV — AV is the Verdier dual of f.
Similarly, f induces natural linear transformations

fh Ext%(B,C) —= Ext%(4,0) and f;: Ext%(C, A) — Ext%(C, B).

The j* Borel-Moore homology group of a locally compact, Hausdorff topological space,
X, has several equivalent definitions (see [4, §2.6]). In this paper we use the canonical
isomorphisms,

H™(X,Dx) = H(X, RHom(Qx, Dx)) = Ext (Qx, Dx)

where H7(X,Dy) is the hypercohomology of X with coefficients in Dy and we define the
7" Borel-Moore homology group of X by

H;(X) = BExt(Qx, Dx).

2.2. Now suppose that £: X — Y is a morphism of varieties. Then ¢ determines natural
isomorphisms

¢¢: RHom(R&A, B) — RE,RHom(A, €' B)
and
nate: &' RHom(B,C) — RHom(£*B, £'C)
for Ain D(X) and B and C' in D(Y).
There are canonical isomorphisms,

Qg &Qy —= Qx and B ]D)Xi>§!]Dy

in the category of sheaves on X and D’(X) respectively. It is straightforward to check that
ag and (¢ have the following properties:

(2.2.1) The maps f¢: Dx — &'Dy and (B¢);: RHom(£*Qy, Dx) — RHom(£*Qy, £'Dy)
are related by (f5¢); o0 odey = nate o&'(dey) o B¢ where dey and dey are as in §2.1.



6 J.M. DOUGLASS AND G. ROHRLE

(2.2.2) I'f n:Y — Z is another morphism of varieties, then a,e = a¢ 0 {*(oy)) and B, =
&(By) o Be.

2.3. Let 0: X — X x X be the diagonal embedding and let p and ¢ denote the projections
of X x X on the first and second factors respectively. In [1, Theorem 10.25] it is shown that
there is a natural isomorphism,

\: AV B — RHom(p*A, ¢'B)
in DY(X x X). It follows that nats o '(\) is a natural isomorphism between ¢'(AY X B) and
RHom(A, B).

Proposition 2.3.1. Suppose A and B are in D%(X), u: A — A is an endomorphism of A,
and v: B — B is an endomorphism of B. Then the diagram

uY X

AYX B AKX B

y I

RHom(p*A, ¢'B) RHom(p*A, ¢'B)

(p*u)fo(q'v)y
commutes.
Proof. By definition AY X B = p* RHom(A,Dx) ® ¢*B and v’ K v = p*(u*) ® ¢*v.

In the special case when A is the constant sheaf, the isomorphism A may be identified
with a natural isomorphism X: pDx ® ¢*B — ¢'B as in [1, 910.24]. Then for an arbitrary

A, the isomorphism A is defined as the composition )\Q o hy o hy, where h; and hy are the
natural maps

hy: p*RHom(A,Dx) ® ¢*B —— RHom(p*A,p*Dx) ® ¢*B
and
hy: RHom(p*A, p*Dx) ® ¢* B —— RHom(p*A, p*Dx ® ¢*B).
It is straightforward to check that
hio (p'(uf) ® g'v) = ((pu)f) @ q"v) o
and
hs o ((p*u)ﬁ) ® q*v) = ((p*u)ti o (id® q*v)ﬁ) o hy.
Moreover, it follows from the naturality of A that
Ajo ((p*u)ﬁ o (id ® q*v)ﬁ) = ((p*u)ﬁ o (q!v)ﬁ) o \j.
Therefore Ao (u¥ Kv) = ((p*u)? o (¢'v);) o A, as desired. O
Corollary 2.3.2. With the preceding notation, the diagram

A=)
5 AR B) ) s AvR B)
natgoél()\)l lnatgoél(k)
RHom(A, B) RHom(A, B)

u OUﬁ

commautes.
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Proof. We have just seen that Ao (u¥ B v) = ((p*u)? o (¢'v)s) o A, so
§'(A) 0 0'(u” Bw) =& ((p*u)* o (q'v);) 0 0'(N).-
It is straightforward to check that
nats o ' ((p*u)ﬁ o (q!v)ﬁ) = ((6*p*u)jj o (5!q!v)ﬁ) onats = (ujj o ;) o nats
SO
nats o 8'(\) 0 6'(u¥ X wv) = nats o &' ((p*u)ﬁ o (q!v)ﬁ) o'\ = (uﬁ o vy) o nats o §'(N).
This proves the corollary. U

It is shown in [11, §2.6] that for A, B, and C in D(X) there is a natural isomorphism
Homx (C ® A, B) = Homx(C, RHom(A, B)). It follows that there is an isomorphism of
graded vector spaces Ext% (C'® A, B) = Ext%(C, RHom(A, B)). Taking C' = Qx and using
the canonical isomorphism Qxy ® A = A we get a natural isomorphism of graded vector
spaces

can: BExt% (A, B) — Ext% (Qx, RHom(A, B)).
The next proposition follows from the naturality of can.

Proposition 2.3.3. Suppose A and B are in D(X), u: A — A is an endomorphism of A,
and v: B — B is an endomorphism of B. Then the diagram

Ext% (A, B) = Ext% (Qx, RHom(A, B))

uﬁovﬁl l(uﬁovﬁ)ﬁ

Ext$ (A, B) Ext (Qx, RHom(A, B))

can

commautes.

2.4. Asin §2.2, £: X — Y is a morphism of varieties. The functors £* and R¢, form an
adjoint pair. We denote by

Ve : Homy (€*B, A) —— Homy (B, R, A)

the adjunction mapping for A in D(X) and B in D(Y') and by x* the unit of the adjunction.
Although ¢ is a natural transformation, XfB : B — RE.LTB, in order to simplify the notation

we omit the subscript and just write x¢ instead of x%. The appropriate subscript is always
uniquely determined by the context and so this should cause no confusion.
Similarly, the functors R¢ and €' form an adjoint pair. We denote by

®,: Homy (REA, B) — Hom (A, €'B)

the adjunction mapping and by €* the counit of the adjunction.
We need the following identities for morphisms f: R§A — B and k: B — B’ in D(Y)
and g: A — ¢'Band h: A — Ain D(X) (see [13, IV.1]):

(2.4.1) et = @gl(id) q)gl(g) = % o R&\(g)
(2.4.2) De(f o RG(h) = De(f)oh  De(ko f)=E (k) o Pe(f)
(2.4.3) ;' (goh) =0 (9) o R (h)  D'(E'(k)og) =ko®:'(g)
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Verdier duality defines contravariant automorphisms of the subcategories D%(X) and
DY) of D(X) and D(Y) respectively. In these subcategories we can use standard identities
for Verdier duality in [1, §10] to express ®¢ and €* in terms of ¢ and x* as follows.

Suppose A is in D2(X), B is in D(Y), and f is in Homy (R A, B). Then \Ifgl(fv)v is in
Homy (4, £'B). Clearly, f — \Ifgl(fv)v is natural in A and B and so we may define ®¢ by
Pe(f) =T H(fY)".

Vv
Similarly, taking the Verdier dual of x§: B — RE.E°B we get (x%) . R&¢'BY — BY
\%
and we conclude that ()é) = e%v.

2.5. Next, consider a cartesian square

(2.5.1) X —=X

Lk

vy
where ¢ and 7 are proper morphisms. Then \Ifj_l(Rf*(Xi)): j*R¢, — Rnyi* is a natural
equivalence of functors from D(X) to D(Y). Restricting to D?(X) and D%(Y) and taking

the Verdier dual we conclude that \Ifj_l(Rf*(Xi))V: Rni* — j'R& is a natural equivalence. It
follows from the discussion in §2.4 above that

T (RE()" = @ ((RE(X))") = @5 (R&((X)")) = @, ((R&(e)) -
Define
beyi: j' o R& — Ry oit by bey, = ®; (R&(e)) ™.
Then be,; is a natural equivalence and bc, 1= ®; (R&G(€)).
Lemma 2.5.2. Suppose that in diagram (2.5.1) the maps i and j are open embeddings.
Then, for A in D’(X) and B in DY), the diagram

(o) nat;
J'RERHom(A, € B) — ="~ i'RHom(R& A, B) ——2 RHom(j* REA, j'B)

bcl l(bcl)u

Rni' RHom(A, ¢'B) ) RmRHom(i*A,1'¢'B) —— RHom(Rni'A, j'B)

R (nat; .

commutes in D5(Y"), where bc = be, ;.

Proof. Since i and j are open embeddings, we have i' = i* and j' = j*, so the statement of
the lemma makes sense and is easily proved for sheaves on X and Y. The result then follows
using standard arguments for derived functors. O

2.6. If U is a smooth, open, dense subvariety of X, and L is a local system on U, then we
denote the intersection complex, as in [1], middle perversity, by IC(X, L). It is a complex
of sheaves in D%(X). It is shown in [8, Theorem 3.5] that IC defines a fully faithful functor
from the category of local systems on U to D(X).
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Notice that if we start with a complex, A, on an open, dense subvariety of X with H?(A) =
0 for p # 0, then we may construct a complex IC(X, A) as in [1, §2.2] starting with A. The
complexes IC(X, A) and IC(X, H°(A)) are isomorphic in D%(X).

3. SPECIALIZATION

3.1. In this section we axiomatize a specialization argument that allows us to compute
invariants in Borel-Moore homology. There are various schemes that allow one to use generic
information to prove (co)-homological results about special fibres, or more generally closed
subvarieties (see [7], [4], [15]). Our approach, which is based on an idea of Lusztig in [14]
that was generalized by Borho and MacPherson [3], is to use intersection complexes of local
systems on open, dense subvarieties of a variety, IV, to obtain information about the Borel-
Moore homology groups of a closed subvariety, Ny, of V.

We start with what we call the “basic commutative diagram” of morphisms of complex,
algebraic varieties consisting of cartesian squares:

10 o

(3.1.1) M, P, N
a l p l i l
M—' -p—* .y
i T i T i T
M, M P. &r N,
Define

p=_En,  pr =&, and  pg = Eoro-
We assume that this basic commutative diagram has the following properties:

D1 The varieties M, P, and N are purely d-dimensional.

D2 The varieties M, P, and N, are rational homology manifolds.

D3 The morphisms & and p are surjective, proper morphisms that are small (see [8,
§6.2]) in the sense that for all r > 0,

dim{z € N |dim& ! (z) >r} <dim N — 2r

and
dim{z € N |dimp~'(z) >r} <dim N — 2.
D4 The morphisms ¢,,, %,, and ¢, are open embeddings.
D5 The morphisms j,,, j,, and j, are closed embeddings.
D6 A finite group, 3, acts on M, on the right so that N, = M,/¥ and p, may be
identified with the orbit map.
D7 There is a subgroup, ', of ¥, so that P. = M, /¥’ and 7, may be identified with the

orbit map.

Since n and & are proper morphisms and the squares in the basic commutative diagram
are cartesian, it follows that all the horizontal maps in the basic commutative diagram are
proper morphisms and that pu, u,, and pg are proper morphisms. Thus, if f is any of the

morphisms in the basic commutative diagram except i,,, ¢,, or ¢,, then Rf, = Rfi. Since
. . . . %k . | o l 08 o | . .
iy Up, and iy are open embeddings, we have i7 =1 , 4}, =4 ,, and ¢}, =4 . Finally, since
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iy, &, and pu, are finite covering maps, we have n, = 1y, & = &, p, = g7, R(n) = (1)1,

R(gr)! = (57’)!) and R(,Ur)' = (,Ur)!~
In this section we prove the following theorem.

Theorem 3.1.2. The group ¥ acts on He(My) and there is an isomorphism h': He(FPy) =
H,(My)* so that if Av: Hy(My) — H(My)> is the averaging map, then the diagram

(n0)«

H,(My)

N _h’

H,(My)*

H.(Py)

of graded vector spaces commutes.

The idea of the argument is a standard one and is given in the next three subsections. In
§3.2 we prove Proposition 3.2.1, the analog of Theorem 3.1.2 for local systems on M,, P,
and N,.. In §3.3 we apply IC and use that ¢ and p are small maps to identify the intersection
complexes with higher direct images of constant sheaves. Thus we obtain a sheaf-theoretic
version of Theorem 3.1.2 for complexes of sheaves in D%(N). In §3.4 we complete the proof of
the theorem by restricting to Ny, applying Ext} (Qny, j% (- )), and showing that the induced
map in Borel-Moore homology is (7). Since we are concerned not only with complexes of
sheaves, but also the precise maps between them, most of the work involved is in keeping
track of morphisms as we apply the various functors.

Finally, in §3.5 we discuss a two variable version of Theorem 3.1.2. Here M, P, and N
are replaced by M x M, P x Q, and N x N respectively, My and P, are replaced by the
fibred products Z = (M x M) Xnxn No and X = (P X Q) Xnxn Np respectively, and j,
is replaced by 67, : Ny — N x N, where 0 is the diagonal map. In the application we are
mainly interested in (see (5.1.2)), M x M =g x g, Z is the Steinberg variety of G, and X
is the generalized Steinberg variety X7 <.

As we have observed above, all the horizontal maps in the basic commutative diagram
are proper, so direct image and direct image with proper support are the same functors for
these maps. Direct image with proper support is better adapted to Borel-Moore homology,
so the following argument is phrased in terms of direct image with proper support.

3.2. First, p, may be identified with the orbit map from M, to M,/¥ and so X acts as
automorphisms on the local system (p,.)/Qys, on N,.. Similarly, 3 acts as automorphisms on
the local system (7,),Qy, on P,.

Next, local systems on N, form an abelian category so we may consider the >'-invariants
of the local system (u,.),Qyy,. Let

Av: () Qu, — () Qs )™

denote the projection onto the local system of Y-invariants given by averaging over X'.

Finally, recall from §2.2 that oy, : n*Qp, — Q) is the natural isomorphism. Since 1} = 7.,
we may consider «,,. as a map from n.Qp. to Q. and so we may apply (ID;Tl to a;rl and get
a map from (n,)Qx. to Qp,. Define

Yoi () Qu, —= Qp, by 7=, (o) = € o (. )i(,)).
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The following proposition is easily proved either directly, or by using the correspondence
between local systems and representations of fundamental groups.

Proposition 3.2.1. There is an isomorphism h,: (§,),Qp, = ((,ur);QMT)E/ so that the dia-
gram

(,U )Q (& )(yr)
r ) INE M,

N —"h,

(1)1 Quas, )™

(gr)!@PT-

of local systems on N, commutes.

3.3. In this subsection we prove the following proposition, the analog of Proposition 3.2.1
for M, P, and N.

Proposition 3.3.1. There is a map v: EnQy — Qp and an isomorphism h: R&EQp —
(RuQay)” so that the diagram

RiuQyy R& ()

N —"h

(RM!@M)ZI

R&Qp

of complezes in D%(N) commutes.

We can apply the functor IC(N, -) to the diagram of local systems in Proposition 3.2.1
and obtain a commutative triangle of complexes in D?(N). Since the functor IC(N, - ) takes
its values in an abelian category of perverse sheaves on N and is an additive functor by
construction, we may consider IC(N, -) as an additive functor between abelian categories.
It follows that ¥ acts on IC(N, (- 1Quy, ), that

IC(N, ((1)1Qus,)™) Z IC(N, (1) Qar, )
and that if Av is the averaging map, the diagram

IC(N,(&r)i ()

IC(N, (ke ) Qur,.)

X\ I_C(hr)

IC(N7 (MT)!QMT)E,

IC(N7 (5?)!@3)

of complexes in D%(N) commutes.

Since £ and p are small maps, it follows from the axioms characterizing intersection com-
plexes (see [1, §4.13]) that IC(N, (14,)1Qys,.) and IC(N, (£,.)/Qp,) are isomorphic in D%(N) to
the direct images RuQpy; and REQp respectively. Moreover, since the YX-action on RyuyQpy
comes from transport of structure from (u,.),Qyy,. it follows that there are isomorphisms, 7,



12 J.M. DOUGLASS AND G. ROHRLE

&, and h, so that if g = E_l o IC(N, (& )1(7+)) o T, then the diagram

IC(N,(&r)i ()

(3.3.2) IC(N, (1)1 Qus,.) IC(N, (?)!Qpr)
g 3
R,ugTQM J R&Qp

(RM!QM)EI

in D(N) commutes. We can apply the functor Exty, (Quy, j% () to the bottom triangle in
(3.3.2) and obtain a commutative triangle of Ext-groups that are isomorphic to the Borel-
Moore homology groups in the statement of Theorem 3.1.2. In order to show that the
resulting horizontal map is indeed the direct image map in Borel-Moore homology induced
by 19, we need to choose the isomorphisms 77 and & appropriately and identify the map ¢ in
(3.3.2). This is accomplished in the next lemma and the following corollary.

Since P is a purely d-dimensional, rational homology manifold, we have Dp = Qp[2d] in
D%(P). We denote by v, a fixed isomorphism, v, : Dp — Qp[2d] in D4(P).

Now i\ Dyr[—2d] and i\ Qs are in Di(M,) and @' (o) 04 (n'(v,) 0 f,) is an isomorphism
between them, so ' Dy[—2d] is in fact a local system on M,. Notice that n'(v,): n'Dp[—2d] —
n'Qp and a,: 7*Qp — Qyr, so the composition a,, o n'(v,) is not defined. However,

SN <! . ! (3] * ok k% 1 %
ijn = (n/LM) = (ZP,r]'r) = nTZp = nTZp = le'r] = len )
so the composition @' () o4 (n'(v,)) is defined.
By [1, Lemma 4.11] there is a unique isomorphism of local systems on M that restricts
to i\ (o) o4 (n'(v,) o By). The statement in [1] assumes that M is a manifold, but the
argument applies when M is a variety that is a rational homology manifold. Denote this

isomorphism by vF, so vF: Dy [-2d] — Qyy and

(3.3.3) i Wl =i (o) 0i (0 (v,)0B,).
Define v: RnQu — Qp by
Y=o (Byo(wy) ) = v, 0o Rin(By0 (v)) ) = @, (1) () 0 By o (v),) 7).

Lemma 3.3.4. The diagram

N N STC)
Z'NRM!@M Z}VR&QP

(e )iy Jobepr iy, l l(ﬁr)!(aip Jobee, i,
(II"L'f‘)'@M'r (gr)'QPr

(&)
of complezes in D°(N,) commutes.

Proof. Since be, ;= (& )i(bcy, i, ) obeg, i, we need to show that

(€i(ei,) o beg, i, 0 i RE(Y) = (& )(9) © (r)i(e,, ) 0 (€)i(bey, 4,,) 0 beg ..
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Using the naturality of the base change morphism bcg, ;, we see that it is enough to show
that

Since v, = € o (n,)i1(a; ") it’s enough to show that

.l —
aip © Z.P (7) = 677r o (nr)!(anrl © aiM) © meJM'
Equivalently, it’s enough to show that

-1

it ()0 bc;rl,iM =aq; o€"o (nr)!(a;f oq; ).

Finally, n¢,, = 7,7, and so (IJZ-M o, = (I)m,(I)Z-P and hence @ip @;1 = @;TICI)Z-M. Therefore:
i (y)obeyt =i (@, (n'(v,) 0 Byo () 7)) 0 By, (Rmu(e))

Lals Vs

=®; (D, (n'(v,) 0 Byo(vh)™") o Rip(e'nr)) (by 2.4.2)
=, o (7' (vp) 0 By 0 (VD) oen) (by 2.4.3)
= @;T1¢iM n’(VP) of3,0 (,/]5)—1 o 6z'M) (q)ip @;1 _ q%l‘biM)
=0, (i, (' () 0 By (v,) 7)) (by 2.4.2)
=2, (i), (@) (by 3.3.3)
=2, (i},(e; )

=a,! (nf»(a[;) oa,’oaq ) (by 2.2.2)
:ai_Plo(I);rl oz;TloogiM) (by 2.4.3)
=a; o€ o () (o o) (by 2.4.1)

This completes the proof of the lemma. U

Corollary 3.3.5. There are isomorphisms,

f: RunQuy ——=IC(N, (1) Qu,)  and & REQp — IC(N, (6:):Qp, ),
so that the diagram

R& ()

RinQpy R&Qp

| I

LC(N, (1) Q@) — ey IOV, (6):Qx)

of complezes in D°(N) commutes.

Proof. We have already observed that since £ and p are small maps, the direct images, R&Qp
and RuQy, are isomorphic in D%(N) to IC(N, &Qp,) and IC(N, mQyy, ) respectively. Thus,
R{Qp and Ruy@Qy are in the image of IC. It is shown in [8, Theorem 3.5] that on the
image of IC, the composition IC(N, -) o 4% is naturally equivalent to the identity so there
are isomorphisms,

iCMI RILL!QM = IC(N, Z'NR/M@M) and ngZ ng@p = IC(N, i’NR(&);@pr),
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in D(N) with 7% (ic,) = id and 7 (ic¢) = id. Since IC is fully faithful, it follows that the
diagram

R& ()

RinQyy - R&Qp
ic#l J/ics
IC(N, 7, RiuQa) IC(N, i\, R(&)Qp,)

1C (i R& (7))

commutes.
If we apply IC to the commutative diagram in the lemma we get a commutative diagram:

1C(i'y, R& (7))
IC(N, i, RuQur) IC(N, i, R(&)Qp,)

1C((ur (e, obeuri, ) l llc«gr)!(aip Jobce, i)

IC(N, (1)1 Qus,) IC(N, (& )Qp,)

IC((&r)1(vr))

Therefore, if we define 77 = IC((x,)i(cvi,, ) obey, ;. )oic, and € = 1C((&)1(ay . )obcg, i) oice,
the corollary follows. O

Since : RuQyr — IC(N, (1,)1Qny,.) is an isomorphism, it follows that ¥ acts on RuQyy
by transport of structure and that 7 induces an isomorphism between Y'-invariants, say
7 (RmQa)® — IC(N, (1,)1Qaz. ), which commutes with the respective averaging maps.

Now consider the diagram:

RpnQur — IC(N, (11 ):Qaz,) [0 IC(N, (£)Qp,) —— REQp

Avl N 1C(hy) Vh

(RiuQu)™ - IC(N, (1)1 Qus, ) - (RiuQp)™

If h is defined by h = (7')~* o IC(h,) o €, then the diagram commutes. By Corollary 3.3.5,
the composition across the top row is just R& () and so tracing around the outside of the
diagram we see that h o R (y) = Av. This completes the proof of Proposition 3.3.1.

3.4. In this subsection, we complete the proof of Theorem 3.1.2.
Lemma 3.4.1. There are isomorphisms of graded vector spaces,
J/ : HZd—o(MO) —:> EXt;VO (QN() ) ]]'\,RM'QM)

and

Ji: Hog_o(Py) — Ext}y, (Quy, 1, REQp)
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so that the diagram

(mo)

Hoq—e(Mo) Hyqo(Fy)

J’l lJi
. . (G RE () . ]
ExtYy, (Qny, 4t RinQar) o Ext}y, (Qny, 73, R&GQp)

\ (G, ()

ExtYy, (Qny, 54, RiuQur)™

commutes.

Assuming for a moment that the lemma has been proved, we complete the proof of The-
orem 3.1.2 using the argument at the end of §3.3 as follows.

Since J' is an isomorphism, ¥ acts on Hyy_o(Mj) by transport of structure and J’ induces
an isomorphism between Y/-invariants, say J, which commutes with the respective averaging
maps.

Now consider the diagram

y (5 RE(M))x J!
Hoy—o(My) L . E a Ey - sz—_.(Po)
Avl A\ /jw»u vh
Haq—o(Mo)™ : By : Hygo(Mp)™

where
El - EXt;VO(@Noij!\;R:u!@M)v E2 = EXt;\fo((@NO’jl!\fli:{&(@P)7 and
By = Exty, (Qu,, 5, RuQur)™

If 1/ is defined by h' = (J)~' o (4 (h))s o J{, then the diagram commutes. By Lemma 3.4.1,
the composition across the top row is (). and so tracing around the outside of the diagram
we see that h’' o (1), = Av. This proves Theorem 3.1.2.

It remains to prove Lemma 3.4.1.

First, we apply the functor Ext}, (Qng, 7. (+)) to the diagram in Proposition 3.3.1 and
obtain a commutative triangle of graded vector spaces. Since the functor Exty, (Quy, j5 (+))
restricted to the abelian category of perverse sheaves in which IC(N, -) takes its values is an

additive functor between abelian categories, it follows that ¥ acts on Exty, (Qxy, j]!v RuQuy),
that

Extyy, (Qu,, 7, (RinQar)™) 2 Exthy, (Qng, 5, RnQu)*
and that if Av is the averaging map, the diagram of graded vector spaces

(7 RE ()

Ext}y, (Quny, 3%, RinQar) Ext}, (Qny, 7, RGQp)

N Gl ()

Extiy, (Quy, 7y RinQar)™
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commutes.
Next, recall that v = v, o € o Ry (8, o (v)™1), so using (2.4.1) we get

v, 0 @1 (3,) =70 Rp(vy): RpDy[—2d] — Qp.

Applying jij& we get ijR&(VP) Oj;\ngg((I);l(ﬁn)) = jijfg(y) ojij,ug(ug). This shows
that the diagram

(7 R& (@7 (Bn)))s

Ext}y, (Qny, 7y, RinD s [—2d)) Ext}y, (Qny, 7y, REDp[—2d))
(j;\,RM!(VAZ))nl l(j;\,Ru!(VP))u

Extiy, (Quy, j\ RuQur) Exty, (Qng, 7%, REQp)

(7 RE ()

commutes.
Finally, we show that there are isomorphisms

J o H_y(My) — Exty (Quy, j\ RuDar)

and
Jl : H_.(Po) —§> EXt;VO (@Nov.j]!VR&]D)P)

so that the diagram

(3.4.2) Ext . (Qury, Dasy) () Ext}, (Qr,, Dp,)

| E

ExtYy, (Qny, 7t RinDay) ExtYy, (Quny, ji, REDP)

(4 RE(®y ™ (Bn))

commutes. Once this has been done, set J' = (j\ Ru(v5)); o J and J| = (j) R&(v,))s 0 Ji.
Then J{ o (mo)r = (jLR&(7))s o J' and so the diagram in the statement of Lemma 3.4.1
commutes as claimed.

Recall that since 7 is a proper map, it induces a map in Borel-Moore homology. If ¥, is
the adjunction of the adjoint pair (15, (Rno)+), then (o). is the composition,

H_.(M()) = EXt;MO (@Mm ]D)MO)

= Extly, (0 Qry» D) by of,
= Extp (Qp,, R(10)+Dar, ) by Wy,
= Extp, (Qpy, R(no)moDr,) by (R(no)i(Byy)),
— Exty (Qr, Dp,) by (™),
= H—.(PO)a

SO
(10)s = (€™ 0 R(WO)!(ﬁno))ﬁ oWy, 0 O‘vﬁyo = (I);()l (Bno)g © Wiy © 05?70'
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Now consider the diagram

Q)
EXtN (@Nov.JNR:u']D)M) - EXtPg (onv (770>*]D)M0)

(*) l (%) l e

EXt;VO (@Nov.];VRg'DP> EXtIDO (QPm ]D)Po)

Upg0 ano

EXtMO (QMO ) ]D)Mo)

(1)

where (%) = (ijRS!((I),;l(ﬁn)))ﬁ, (%) = @, 1(By, )z, and (T) and (f1) are given by the compo-
sitions

Exty, (Qny, jy RuDar) = Exty (Quy, R(Eo)1j, RnDar) by (beg ., )
= Extiy, (Quo, R(€0)1R(10)17, Dar) by (R(&)(beyyj,, )
= Bxty, (Quy, RERmIDw,) by (RE)-Rm).(5,))),
~ Ext}, (6Qny. R(0) D) by ¥g,
= Exty (Qpy, R(10) D) by (O‘g)ﬁ

and
Exty, (Qny, j, REDP) = Extyy, (Quy, R(&)1jLDp) by (bcfo,jp,)ﬁ
=~ Ext, (Qu, R@IDR) by (R(@).(3,1),
> Ext}, (€ Qno, Diy) by W !
> Exth, (Qpy, Dp,) by (ag,'),

respectively, so

(1) = (0g) 0 g o (R&)- Bm). (5) © R(G).(be,) 0 besys, )

and
(1) = (05 0 W) o (RE0.(5,) 0 b, )
Assume for a moment that (xx) o (f) = (1) o () and define

J = ()71 o Uy, 0 af : Extly, (Qury, Dar) — Bxtly, (Quv,, 7 RuDa)
and
= (11)7": Exty, (Qp,, Dp,) — Exty, (Quy, 5, REDp).
Then J and J; are isomorphisms and
Jio (o)« = (1) 0 (n0)s = (7, RE(®; (B))) 0 [(1) ™ 0 Uy, 0 0l ] = (5, R&(D(8y))z 0

so diagram (3.4.2) commutes as claimed.
It remains to show that (sx) o () = (f1) o (x). Suppose h is in Exty, (Qng, i\ RuDa).
Then

((+4) 0 (1)) = 0.} (Ban) © g (R(uoh(5;,1) © R(E)(Deny,,) © Dy, o) 0 a)
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= (R<£o>!<<1>;01 (Bao) © R(mo)1(B;1) 0 beyg g, ) 0 begy j, © h) oag!.

On the other hand, using the naturality of the base change b, ; we have
(1) 0 (0)(h) = g (REEM(S;,) 0 beey s, © 1, BE(®,(5,) 0 h) o g
=0, (R&)(B;) o R(Eo)h (@, (8,)) 0 gy, o) 0 ag)

=g (R(ﬁo)!(ﬁj;l © 7, (®,1(8,))) 0 begy 5, © h) oa;!

so it is enough to show that
Dyl (B) © ROn(B;) 0 by, 5., = 5571 0 44(2,7(5,)).

JIp
This last equality is easily proved by a computation similar to the computation in the proof
of Lemma 3.3.4 using the definition of be,, ; ~from §2.5; the identities (2.4.1), (2.4.2), and
(2.4.3); the equality ®; &' = &, 1®; ; and (2.2.2). We omit the details. This completes
the proof of Lemma 3.4.1 and Theorem 3.1.2.

3.5. ;From now on we denote n and & by ¥ and ¢F respectively.

In this subsection we consider the case when we have two factorizations of p, u = £¥on? =
€9 o n%, and the spaces M and N in the basic commutative diagram (3.1.1) are replaced
by M x M and N x N respectively. So, suppose that () is a purely d-dimensional, rational
homology manifold and that in addition to the assumptions already made concerning the
basic commutative diagram, the diagram

Q Q
M—" Q—° N
R
M—" Q — N,

satisfies conditions D1, D2, D3, D4, and D7 with P replaced by @ and Y’ replaced by a
possibly different subgroup, ¥”, of X.

Let 6: N — N x N be the diagonal embedding. Then ¢j,: Ny — N x N is a closed
embedding. Define X to be the fibred product (P x Q) Xyxny No and define Z to be
the fibred product (M x M) Xyxn No. It follows immediately from the definition that a
cartesian product of two small morphisms is again a small morphism. Therefore, modifying
the notation as indicated, the diagram

1o &o

(3.5.1) 7z X Ny

j% j% j%
P Q Py ¢eQ
MxM—""" _pxQ—""" _NxN

! | T

M, x M, P. xQ, N, x N,

satisfies conditions D1 — D7 in §3.1.
We have the following corollary to Theorem 3.1.2.
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Corollary 3.5.2. The group ¥ X % acts on the local system (p. X p:)1Qus s nr, - This action
induces an action of ¥ X ¥ on R(u X u)Qurxar and hence an action of X X X on He(Z) by
functoriality and transport of structure via the isomorphism

J': Hy(Z) — Ext b *(Quy, 54 6 R x 1)1 Quarar)-

There is an isomorphism b : Hy(X) — Ho(Z)**¥" s0 that if Av: Hy(Z) — Hy(Z)*>>"
1s the averaging map, then the diagram

of graded vector spaces commutes.

4. EQUIVARIANCE

4.1. In this section we continue the analysis of diagram (3.5.1) and consider isomorphisms
of graded vector spaces from [4, §8.6]

H.(Z)—J>Ext;,; (Quos 0" R(p % ) Dasscar) LEXt?\%ﬂ(R(Mo)!@MO, R(p0)1Qusy)
where dim Ny = 2n, J is as in §3.4, and K is defined below. Notice that

Endy, (R(10)1Qar,) = EXt?vo(R(Mo)!@Mm R(100)1Qus,) = Hun(Z).

Recall that dim M = dim N = d and define | = codimy Ny = d — 2n. From now on, we
assume that M, and N, are purely 2n-dimensional, rational, homology manifolds. We also
assume that the fibred products X and Z in §3.5 are purely 2n-dimensional varieties.

The graded vector space Exty!™*(R(10)Qus,, R(110)1Qus,) is a graded Q-algebra and the
composition K o J can be used to give Ho(Z) a Q-algebra structure with H;(Z) - H;(Z) C
Hii; 4n(Z). Since the multiplication in Extﬁ)—'(R(uo)!@Mo, R(140)1Qpy,) is composition, we
have

Ext " (R(10):Qaro R(110):Qur) = Ho(Z)

We saw in §3.3 that X acts on RuQ,,. This action induces a degree-preserving ac-
tion of ¥ x X on Ext%;—’(R(uo)g@Mo,R(uo)gQMO). On the other hand, as in §3.5, ¥ X
Y acts on R(pu X u)Quxps. This action induces a degree-preserving ¥ x Y-action on
EXt]_V; (QNO,jj\r(S!R(,u X N)!DMXM)-

In this section we show that the isomorphisms J and K are Y X Y-equivariant. It then
follows that if ¥ x ¥ acts on the group algebra QX in the usual way, then there are ¥ x -
equivariant, Q-algebra homomorphisms

(4.1.1) QY — Endy, (R(10)1Qas,) — Hyn(Z)°P.

In §4.2 we describe the ¥ x Z-action on Exty'™*(R(10):Qusy, R(10)1Qas). In §4.3 we
describe the ¥ x Y-action on Exty? (@No,jjvé!R(u X ,u)g]DMxM) and observe that J is ¥ x Y-
equivariant. In §4.4 we define the map K, and in §4.5-§4.8 we show that K is X x X-
equivariant.



20 J.M. DOUGLASS AND G. ROHRLE

4.2. We first consider the ¥ x Y-action on Ext}y (R(10)1Qas, R(140)1Qns). Returning to
our original basic commutative diagram (3.1.1), ¥ acts on the direct image, (. )1Qyy,. This
action induces a (Q-algebra homomorphism

Ly: QY — Endy, ((11:)1Qar,.) -

Applying IC and transporting the action via the isomorphism 7: RuQur — IC(N, (10:)1Qus,.)
from Corollary 3.3.5 gives rise to a Q-algebra homomorphism

L: QY —— Endy(RmuQy)

with L(o) = o IC(L,(0)) o Ti.
Since L is a ring homomorphism, we get an action of 3 x ¥ on Endy(RuQys) with
(0,0)- f=L(c")o foL(c™)

for f in Endy(RmQpy).

Clearly, if ¥ x ¥ acts on QX by (0,0’) - @ = o’zo™!, then L is ¥ x Y-equivariant.

Let be™: jy R — R(po)jy, be as in §2.5. Then R(uo)i(aj,,) o be® is an isomorphism
between j* RuQy and R(p10)1Qay,. We define

Lo: Q¥ —— Endy, (R(0)1Qus,)
by
Lo(o) = Rpo)(a;,,) o be* o 5 L(o) o (be™) ™o R(uo)!(a;;).

Since Extiy, (R(10)1Quso; R(110)1Qus) = Homn (R(110)1Qusy, R(110)1Qus, [j]) is maturally an
End n, (R(10)1Qns, )-bimodule, we may define an action of ¥ x ¥ on the graded vector space

Ext iy, (R(#0)1Qary s B(120)1Qnsy) by
(0,0') - g = Lo(0") o go Lo(o™")
for o and 0’ in ¥ and g in Exty, (R(10)1Qar, R(10)1Qasy)-

4.3. Next we consider the ¥ x Y-action on Ext}, (QNO,jjvélR(,u X ,u);]D)MxM). Since M is
a rational homology manifold, so is M x M and we denote by vy« a fixed isomorphism,

Unisr: Dy — @MxM[4d]-

As in §3.4 and §3.5, ¥ x ¥ acts as automorphisms on R(u X 1)1 Qarx s and we transport
the group action on R(u X 1)1Qarx s to an action on R(p X p)iDas s using R(p X p)(Varxar)-
The group actions induce ring homomorphisms

Lg: @(Z X Z) —>EndeN(R(,u X ,U)'QMXM)

and
L/22 Q(Z X Z) —_— EndeN(R(u X ,U)']DMXM)

where L, and L are related by
Ly(0,0") = R(u i (viens) © La(0,07) 0 R(j X phi(arscar).

Notice that LY, depends on the choice of the orientation vy« .
Applying Ext}, (Qny, jL6'(+)) to R(p X p)Dasxar and using L we get an action of ¥ x ¥

on Ext;VO(QNO,jIIV(S!R(u X W Dprspr) with
(0,0") - f=(j\ 6 Ly(o,0"))s(f) = j,0' Ly(o,0") o f
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for f in Exty, (Qny, L 6" R(1 X ) Darsar)-
As in §3.4 and §3.5, the ¥ x X-action on Extjvo(@No,jjvé!R(p X W Qarxar) induces an
action of ¥ x ¥ on H(Z) by transport of structure using the isomorphism

J' = (30" R(p x p)i(Varxw))s 0 T Hug—o(Z) — Extyy, (Quy, 53, 0 R(p < 1)1 Qarscar)-

It follows from the definitions that (j\ 8'R(p X p)i(varxar))s is ¥ x S-equivariant. This
proves the following proposition.

Proposition 4.3.1. The isomorphism
J: Ho(Z) — Ext 2 (Qny, 45 0 R(1e X 1) Dasar)
18 22 X X-equivariant.
4.4. Define
K Exty (Qng, 730 R(p X phDarsar) — Extyt ™ (R(10)1Qasy, R(110)!Qasy )

to be the composition

]1 6I(k)
EXtNo (@Nm] 6 R(,u X ,u) ]DMXM) N—> EXtN (QNO,] 5 (RIUI]DM X RILLI]DM))

5 (e~ 1id)y 1o v
27 B Bty (Qug. 70 ((Rn@u)¥ B RunDy))

8 (N a1l . :
N—> Exty, (QNO,jJ!ﬁ'(RHOm(P RuQur, ¢ RiuDiy))

(nats; )
R N Exty, (@NO, RHOm(]NRIUIQM,]NR,UIDM))
=2, Extjvo (55 RuQur, 5, RiuDay)

aHto
U Bt (R(uo) @y, Rk} Qi)
where the notation is as follows:

o k't R(p X ) Dprxps — Ry W RpyDyy is the Kiinneth isomorphism (recall that g
is proper).

e ¢ = Ru(dcy/ o(B,1)5)) © by (RinQur)” — RuDy, where deyy is as in §2.1 and £,
and ¢, are as in §2.2. Notice that ¢ is an isomorphism in D(N), so j! ' (¢~ Kid),
makes sense.

e )\ nats, and can are as in §2.

o a = R(uo)(ay,,)obe”: jY RnQur — R(10)1Qus, (see §4.1).

o b= R(uo) (VMooﬂ )Obcli 3\ RpuDar — R(p0)1Qas, where be': 54 Ry — R(po)ij, is
as in §2.5, §; s as in §2.2, and vy, : Dy, — Qug,[4n] is an isomorphism in DY( M)
(recall that My is a rational homology manifold).

Since K is a composition of isomorphisms of graded vector spaces, it follows that K is an
isomorphism of graded vector spaces that increases the grading by 4n.

Theorem 4.4.1. The isomorphism
K Extyy, (Qng, 730 R(p X i) Darsar) — Extyt ™ (R(10)1Qasy, R(110)1 Qo)
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18 22 X X-equivariant.

To prove the theorem we show that j\ 6'(K')y, j\0'(c™" Kid);, can™" o (nats; o0 j 6'(N))s,
and (a~1)? o by are X X Y-equivariant in §4.5, §4.6, §4.7, and §4.8 respectively.
4.5. In the situation of §3.5 we have two factorizations of p: p = £Pnf = €999, Let 1/1]; and
1/]8 be two isomorphisms, D, — Qur[2d]. Then 1/]1; X 1/]8: Dy XDy — Qp X Qypy[4d] is an
isomorphism in D%(M x M). The superscripts P and @ do not necessarily have anything to

do with P and @), but are convenient for distinguishing between the factors.
Using the orientations Vf; and V}Cj we can define Q-algebra homomorphisms

L: QY —— Endy(RmDyy) and Ly: Q¥ —— Endy(RmDy)
by Lp(0) = Run(vE) o L(o)o Ru(vl)) and Liy(0) = Ru(v9) o L(0)o Ry (v%) respectively.
In the following, we always assume that vy, is chosen so that
v = (K)o (V]I; X Vg) ok
where
E': R(p < ) Darsns — RuDys X RpnDyy
and
' R(p X ) Qurxnr — RpnQu X RpnQpy
are Kiinneth isomorphisms.
The next lemma follows from the naturality of &’
Lemma 4.5.1. For o and o' in 3, the diagram

k'

R(p x )\ Dasyns Ry X Ry,
L;(U,aql LL@(a)m’Q (")
Ry X RnDyy

/

R(p > p)Darsnm

commutes.

The lemma shows that if ¥ x X acts on Exty, (QNO,jjvé!(R,u;]DM X R,u;]D)M)) by

(0,0") - f = (4,8 (Lp(0) K Liy(o”)) o f,
then j! 6'(k'); is ¥ x X-equivariant.

4.6. In this subsection we show that if ©x ¥ acts on Exty, (Quy, 50" (RmQur)Y X RiuDyy))
by

(0,0") - f = (jy, 0 (L(e™ ") B Lp(a)) o f,
then j 0'(c™' Mid); is ¥ x X-equivariant. In order to do this, it is enough to show that
¢: (RuQyr)" — RuDyy intertwines L(o~!)Y and L'p(o) for o in X.

In the rest of this subsection, we denote 1/]1; and L' simply by v,, and L' respectively.

It is shown in [1, Theorem 9.8 that the Verdier dual of the intersection complex of a
local system is, up to a shift, the intersection complex of the dual local system. Also, in
the equivalence between local systems and representations of the fundamental group, the
dual of a local system corresponds to the contragredient representation and the direct image
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of local systems corresponds to the induced representation. On the representation theory
side, we are considering permutation representations, which are obviously equivalent to their
contragredients, so it is natural to expect that for ¢ in X, the Verdier dual of o, acting on
(RmQys)Y, may be identified with o=! acting on (Ru@Q,s). This is indeed the case and the
next proposition gives the precise formulation we need.

Proposition 4.6.1. If ¢ = Ru(dc,; o(B,1)s)) © Gy, then the diagram

—1\Vv

(RpuQur)” (RuQu)”

RinDyy T) RpuDyy
of isomorphisms of complexes in DY(N) commutes for every o in 3.

Proof. 1t follows from [1, Theorem 9.8] that there is a unique isomorphism,

vd: IC(N, ()i Qag, )" [—2d] —IC(N, ((14r )1 Qas, ) [—2d])
with the property that % (vd) = (ﬁi:\,l)ﬁ onat; .
Define v,, = a; o, (v,)o B ,s0 v, : Dy, — Qu,[2d] is an isomorphism.
Now consider the “cube”
(4.6.2)

10(Le(0=1)Y)
IC(N, (1)1 Qar, ) ¥ [—2d]

IC(N, (pr)1Qu,.) ¥ [—2d]

IC(N, (1) Qut, )

L(o.fl)v

L(o)

R,U!@M R,U!@M
where = IC (11, )1(v,,, o deys o(B.1)s) 0 by, ) 0 vd, y = Ru(v,,) o ¢, and ¢, is as in §2.2.
It follows from the definitions of y and L’ that it is enough to show that the front face
commutes. We show that all faces besides the front face commute and so the front face must
commute also.
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The top and bottom faces of (4.6.2) commute by definition and the left and right faces
are equal, so we need to show that the back face and the left face commute.
To show that the left face of (4.6.2) commutes we need to show that the diagram

=V

(4.6.3) IC (N, (1) Qus, )" [~2d) —— (RuQa)" [~2d]
vd
IC (N, ((ptr)1Qus, )Y [—2d]) Ru((B71):)odu

1) (B g)our)
IC (N, ()iQy, [=2d]) = ="~ = RuQjy[—2d]

IC((ur)1(deyy, ) Rpu(dey)
IC (N, (st )i D, [~2d]) = = = = = Ry [~2d]
IC((/JT)!(VJWT)) R/J!(VM)

IC(N, (1) Q) RpuQu

commutes.
For the rest of this proof, set bc = bey, ;.

As in the proof of Corollary 3.3.5, since we have RuQy,[—2d] = IC (N, (1, )Q), [—2d])
and Ry [—2d] = 1C (N, (y1,)1Dar, [—2d]), there are isomorphisms,

ice: RnQ[—2d] — 1C (N, ()@Y, [~2d)
and
icq: RuDy[—2d] —IC (N, (ptr 1 Dps, [—2d]) ,
in D(N) with 7% (ic.) = id and 7% (icq) = id. Define
s =it o IC(e o (u(mat! o (5, )soaf ), w = ezt 0 100 o () (4, )
and recall that =1 = ic;1 oIC(bc™t o (ur)g(a[];)).
Since all the complexes in (4.6.3) are in the image of IC, it is enough to show that (4.6.3)

commutes after applying 77 .
First, it follows from the definition of v,, and the naturality of bc that

i (@ o IC((1)(1y,)) = be™ o (u(a) o (1 )i(vy,)
— i Ru(v,,) o b o (1 )i(Br,,)
=1, (Ru(v,,) ow).
Second, it follows from (2.2.1) applied to 7,, and the naturality of bc that
& (Rum(dey) o z) = i* Ru(dey) obe™' o (u,)!(nat;; o (i, )s0 ong)
=be o (u (B, o deyt)
= &%, (wo IC((u,)(dez)))
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Lastly, it follows from the naturality of nat; , nat; ,bc, ¢, and ¢,,, Lemma 2.5, (2.2.2),
and the equality i¥ (vd) = (ﬁ ;0 nat; that

i (Run((571):) 0 60 1Y) = 7, (Run((B; ")) 0 6,) o maty o™ ((ur)i(ews, ) o be) o mat
= be o (u)(naty ! o (3, )00l o (8 f)) 0 6y, 0 (5 1)y 0 naty,

=02, (20 10((u)((5:))2) © By) 0 vd)

Finally, consider the back face of diagram (4.6.2). It follows from the uniqueness of vd
that vd oIC(L(c™1))¥ = IC(L,(c7")") o vd. Thus, to show that the back face commutes, it
is enough to show that

(1e)1(v, 0 denz o(B1)z) © B © Li(071)Y = Li(0) 0 (pr)i(vy, © deyy, o(B0)x) © b,

In other words, we need to show that the diagram of local systems

(4.6.4) () Qus, )V [-2d) — T () Q) [ 2]
(k)1 (B ))oPpar () (B )¥)oBpr)
(1 )1Qyy, [—24] (1 )1QYy, [—2d]
(nr)i(dept) (ke )i(deyt)
(14 1Dy, [—2d] (1t 1Dy, [—2d]
(1) (vpy,) (1) ()
(1:):Qus, i (1) Qus,
commutes.

Using that ((-)1Quas,)Y[—2d] is isomorphic to the dual local system, ((u,)Qas )", and
(1 )1Qj; [—2d] is isomorphic to (u,)1Qj, , since M, and N, are rational homology manifolds,
it is straightforward to show that for x in N,., the diagram obtained from diagram (4.6.4) by
taking the stalk at x commutes. It follows that diagram (4.6.4) commutes as desired. O

4.7. In this subsection we show that if ¥ x ¥ acts on Extjvo (]I*V R}L!@M,j]!VR,u!DM) by
(0,0") - f =y L) o fojyL(o™") = (53 Lo~ 0 j, Lip(0):) (),
then can™' o (naty; 07\ 6'(\))s is ¥ x E-equivariant.
Suppose o and ¢’ are in ¥ and f is in Exty (Quy, % 0'((RuQur)Y X RuDyy)). Then,

setting u = L(0™'), v = Li(0’) and using nats; = nat; o ji (nats), Corollary 2.3.2, the
naturality of nat; , and Proposition 2.3.3 we have:

can~! o (nat(;jN ojjvé!()\))jj ((o,0") - f) = can™? (nat(;jN Oij(S!()\ o (u' ®wv))o f)

=can! (nat; o] nat5 o8 (Ao (u/ Mv)))o f)
=can! (nat‘ ovﬁonat(;oé'()\))Of)
=can~" (5% (u)* o4 (v)0 nat; o]N(nat5 o 6'(N)) o f)
= can™ ((j; () o j, ( )ﬁ)ﬁ(natéj]\, 0 j,0'(N) o f))
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j
(

(w)* 0 i, (v)g 0 can™" (nats;, © 5 6'(A) o f)
a)- (can_l o (nat5jN ojj!vé!(k))ﬁ(f)) .

*
N
0-7

4.8. To complete the proof of Theorem 4.4.1 we need to show that

(a™1)foby

ExtYy, (7% RuQar, 5\ RuDyy) Exta " (R(10)1 Qo R(10)1Quso )

is ¥ x Y-equivariant where ¥ x ¥ acts on the domain as in §4.7. For this, it is enough to
show that

b OjI!VL'Q(a’) of ojI*VL(a_l) oa"' = Ly(c')obo foatoLy(c™h)

for o and o’ in ¥ and f in Ext}y, (5 RuQur, i\ RuDyy).
Recall from §4.2 and §4.4 that a = R(uo)i(cy;,,) o bc™ and

Lo(o ™) = R(uo)(0,,) o be” 0 3 Lo ™) o (R(uoh(ay, ) obe’) ™ = ao j Lo ) oa™

Therefore, to show that (a=)* o by is ¥ x M-equivariant, it is enough to show that b o
1 Lig(") = La(o") 0. |
Recall from §4.4 that b = R(uo)1(var, © /6];) o bc’, so we need to show that

Rlsio) (v 0 0;1) 0 b o 1 (Rin(v2) ™ 0 L(o) 0 Rin(v2)) =
R(po)(ay,,) obe® o jy L) o (bc*) o R(,uo)!(aj_];) o R(po)i(vas, © ﬁj‘lj) o be'

for o in X.
Setting v,, = v%, and using the naturality of be', it follows that it is enough to show that

M

3, L(0) 0 (o) o R(uo) (7, () © B, o vigh 0 a5, ) o be’ =
(be) ™ o R} (4, (vy,) © By, © Vi © ;) 0 be” 05 L(0).
Set 7 = (be')~ o R(po)i(5}, (v,,) © B;,, © Va © ;) obc*. Then 7 is an isomorphism in

DY(Ny), 7: Je RunQpr — j]!VR,ug@M[Ql], where [ = codimy Ny = codim; My, and we need to
show that

(4.8.1) jI!VL(O') oT =TojrL(o).

We prove the following proposition in the Appendix.
Proposition 4.8.2. There is a natural transformation, p'v: j* — j\[2l], so that T =
P

Given the truth of the proposition, it follows from the naturality of p/~ that j. (g) o7 =
T0j%(g) for g in Endy(RmQys) and so in particular (4.8.1) holds for o in 3. This completes
the proof of Theorem 4.4.1.
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5. GENERALIZED STEINBERG VARIETIES

5.1. In this section we apply the results of §3 and §4 to generalized Steinberg varieties.
We start with the following incarnation of the basic commutative diagram (3.1.1) as in

3]:

- ny ~ &
(5.1.1) NP N
jﬁl Ixep l In L
~ n” ~ &P
g a” g
J nl j 34 ]
Ors 92 Ors

The notation is as follows:

e (G is a connected, reductive, complex algebraic group with Lie algebra g, NV is the
cone of nilpotent elements in g, and g, is the open subvariety of regular semisimple
elements in g.

e P is a conjugacy class of parabolic subgroups of G.

e g={(x,B) € gx B|x € Lie(B) } where B is the variety of Borel subgroups of G
and g7 = { (z,P) € g x P | = € Lie(P) }.

e The maps 1! are defined by nl’(z, B) = (x, P) where P is the unique subgroup in P
that contains B.

e The maps &I are projection on the first factor.

o 1= &P on” is the projection on the first factor.

hd grs = U_l(grs) = {({E, B) € gs X B | T e Lie(B)} and Ag?s = ( P)_l(grS) = {(ZE, P) €
gs X P |z € Lie(P) }.

e N=ptN)={(x,B) e N xB|xe€Lie(B)} and N¥ = (")} (N) = { (2, P) €
N x P |x € Lie(P)}.

In accordance with the notation above, we assume also that dimG = dimg = d, dim N =
2n, and | = d — 2n = codim N

It is shown in [3] that diagram (5.1.1) has properties D1 — D7 of the basic commutative
diagram. For the convenience of the reader, we recall the group action involved in properties
D6 and D7.

Fix a maximal torus, 7" and a Borel subgroup, B, of G with T" C B. Define t = Lie(T)
and treg = N Grs, SO L is the set of regular semisimple elements in t. Let W = Ng(T)/T
be the Weyl group of (G,T"). Then W acts on t,, X G/T on the right by (¢,¢7) - w =
(Ad(w™1)t, gwT) for win W, t in g,s and g in G. It is well-known and easy to check that the
rule (¢, gT) — (Ad(g)t,gBg™") defines an isomorphism of varieties t,,q X G/T = g, and we
use this isomorphism to transport the W-action from t,g X G/T to g,s. It is also well-known
and easy to prove that the projection on the first factor, from g,s to g, is an orbit map for
the right W-action on g,s. Thus, diagram (5.1.1) has property D6.

Next, let P be the subgroup in P with B C P and set Wp = Np(T)/T, the Weyl group
of P, so Wp is a subgroup of W. It is straightforward to check that n”|5, is an orbit map
for the action of Wp on g,. Thus, diagram (5.1.1) has property D7.
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If Q is a second conjugacy class of parabolic subgroups of GG, then the two variable version
of diagram (5.1.1), as in §3.5, is the following:

(5.1.2) ! X : N

Z
jzl jxl 5"th
P «n P e

R L A B

| |

aI'S X ars gI‘S X gI‘S

Since (g X g) Xgxg N = { ((x, B'), (z,B")) | © € Lie(B’) N Lie(B"”) }, we may identify Z
with the Steinberg variety of G. Then j,: Z — g x g by j,(x, B', B") = ((x, B'), (z, B")).

Also, since (g7 X §9) Xgug N = {((x, P'),(2,Q")) | = € Lie(P') N Lie(Q') }, we may
identify X with the generalized Steinberg variety X™< from §1. Then j,: X79 — g7 x g©
by jy (z, P', Q') = ((z, P'), (z,Q")).

Applying Theorem 3.5.2 we have our first main result.
Theorem 5.1.3. If H,(Z) is given the W x W -action induced from the W x W-action on
(s X fes )\ Qg x e then there is an isomorphism of vector spaces, Ho(X"9) = H (Z)Wr*Wa,
so that the diagram

I
gl X g2

Ho(Z) e Ho(XPQ)

H.(Z)WPXWQ
commutes.
5.2. Now we consider the special case of Theorem 5.1.3 when e = 2dimZ = 4n as in
§4.1. Borho and MacPherson [2] have shown that the Q-algebra homomorphism, QW —

Endp(R(j0)Qsy) from §4.2 is an isomorphism. Therefore, from (4.1.1) we get the result
originally proved by Kazhdan and Lusztig [12] and strengthened by Chriss and Ginzburg [4].

Theorem 5.2.1. If W x W acts on QW by (w,w') - x = w'zw™", then there are W x W -
equivariant isomorphisms

QW —= Endn(R(10)1Qsp) — Hyn(Z)%P.

Recall that ep denotes the primitive idempotent in QWp corresponding to the trivial rep-
resentation of Wp. Since (QW)"7*"e = eqQWep, the next corollary follows immediately
from Theorems 5.1.3 and 5.2.1.

Corollary 5.2.2. The W x W -equivariant isomorphism QW = Hy,(Z)° in Theorem 5.2.1
induces an isomorphism between the subspace eqQWep of QW and Hy,(X™9), the top
Borel-Moore homology group of the generalized Steinberg variety, X<

QW Hy, (Z)°P

N E

eqQWep — H,,(X79)

~
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5.3. In this subsection, we use Corollary 5.2.2 to compute the action of a simple reflection
in W on Hy,(Z). What we prove is the analog for Hy,(Z) of the “easy” part of Hotta's
transformations for the action of a simple reflection in the cohomology of a Springer fibre.
Our argument is inspired by Hotta’s argument in [10].

It is well-known that W indexes the G-orbits on B x B and that if Z,, denotes the preimage
of the orbit indexed by w in W under the projection of Z onto Bx B given by the projection on
the second and third factors, then the dimension of Z,, is 2n and the irreducible components
of Z are the closures of the Z,’s (see [18]). Thus, if [Z,] denotes the canonical class of Z,
in Hy,(Z), it follows that { [Z,] | w € W } is a basis of Hy,(Z).

Recall that we have fixed a Borel subgroup, B, of G containing T'. The choice of B
determines a set of Coxeter generators of W and hence a length function and a partial order,
the Bruhat order, on .

For the time being we fix a simple reflection, s, in W and let P, denote the conjugacy
class of minimal parabolic subgroups of G determined by s. Then P, and B are conjugacy
classes of parabolic subgroups of G' and we may consider 1, : Hy,(Z) — Hy,(X7*5).

Let P; be the subgroup in P, that contains B. It is shown in [5, §3] that if w is in W,
then dimn(Z,) = dim Z,, if and only if w is minimal in its (Wp,, Wg)-double coset. Since
Wp, = {1,s} and Wp = {1}, it follows that w is minimal in its double coset if and only
if sw > w in the Bruhat order. Therefore, if sw < w we have 1,([Z,]) = 0. It follows that
dim ker n, > |W|/2.

On the other hand, by Corollary 5.2.2, we may identify 7, with the averaging map onto the
set of Wp, x W-invariants in QW. In this case, the averaging map from QW to (QW )Wrs*Ws
is © — (2 + xs) and so its kernel is {z € QW | s = —z } and has dimension equal |W|/2.
Therefore, the kernel of 7, is the subspace {c¢ € Hy,(Z) | s- ¢ = —c} and it has dimension

equal |[W|/2. Since kern, contains the linearly independent set { [Z,] | sw < w }, it follows

that { [Z,] | sw < w} is a basis of ker n,. This proves the following theorem.

Theorem 5.3.1. If s is a simple reflection in W, then {[Z,] | sw < w} is a basis of the
subspace { ¢ € Hy,(Z) | s-c = —c} of Hy,(Z). In particular, if w is in W and s is a simple
reflection, then s - [Z,] = —[Zy] if and only if sw < w in the Bruhat order.

5.4. We now turn to computing the top Borel-Moore homology group of the generalized
Steinberg variety Y7'¢. Recall that we have fixed parabolic subgroups, P in P and Q in Q,
with B C PN Q. Then

Y7L ={(z,P,Q)eN xP x Q|x € Lie(Up) NLie(Ugy) } € X7°
and
ZPe =nH(Y"9).
Thus, we have a cartesian square

J

ZPQ A

d |

yPQ — > xP.Q

where the horizontal arrows are inclusions and 7 is the restriction of n to Z7<.
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It follows from the definitions that 7 is a fibre bundle with smooth fibres isomorphic to
P/B x Q/B.

Define W@ to be the set of maximal length (Wp, W)-double coset representatives in
W, so WH€ indexes the G-orbits on P x Q.

It was shown in [5, §4] that if Y,, denotes the preimage of the orbit indexed by w in W@
under the projection of Y7€ onto P x Q given by the projection on the second and third
factors, then the dimension of Y,, is dim P + dim Q and the irreducible components of Y7+
are the closures of the Y,,’s.

It was also shown in [5, §4] that { Z,, | w € WP} is the set of irreducible components
of ZP€. Clearly 7(Z,) C Y, and so since 7 is proper, Z,, and Y,, are irreducible, and the
fibres 7 all have the same dimension, it follows that 7(Z,) = Y.

Since 7 is a fibre bundle with smooth fibres, if f = dim P/B + dim @)/ B, then there is an
inverse image map in Borel-Moore homology, 77*: He(Y"'9) — Heyop(Z7:9) (see [4, 8.3.31]).

It is straightforward to check that if [Y,,] denotes the canonical class of Yy, in Hy, o (Y"9),
then 77*([Y,]) is a multiple of [Z,] (see [6]). Since dim Hy, of(Y"2) = dim Hy, (Z279) it
follows that 77* is injective.

Next, Z7< is a closed subvariety of Z, so if j denotes the inclusion, there is a direct
image map in Borel-Moore homology, j.: Ho(Z"2) — H,(Z). It follows immediately that
Jx([Zu]) = [Zy) for w in WFQ and that j, is injective.

Combining the results in the last two paragraphs we have proven the next proposition.

Proposition 5.4.1. The mapping 0*: Hup_o5(Y"2) — Hy(Z79) is an isomorphism of
vector spaces and the mapping j.: Hin(Z72) — Huy(Z) is injective with image equal the
span of { [Z,) | w € WHQ}.

5.5. We identify the image of Hy, (Z") with its image in Hy,(Z). Then Hy,(Z79) is the
span of {[Z,] | w € WP} in Hy,(Z) and Hy,(Z72) 22 Hyp o5 (Y79). Define HPC to be
the subspace of ¢ in Hy,(Z) with the property that s-c¢ = —c and ¢ -t = —c for all simple
reflections, s in Wp and ¢ in Wy. It follows from Theorem 5.3.1 that Hy,(Z) C HPC.

Recall that ep and €y denote the primitive idempotents in Wp and W corresponding
to the sign representations of Wp and Wy respectively. Then dim egQWep = [WH€| and
egQWep is the set of all x in QW with the property that sz = —x and 2t = —x for all
simple reflections, s in Wy, and ¢ in Wp. It follows from Theorem 5.2.1 that under the
isomorphism QW = Hy,(Z)°, the subspace HP® is the image of ¢gQWep. Therefore,
dim HP? = |WP€| and hence HP? = H,,,(Z7<). This proves the following theorem.

Theorem 5.5.1. The W x W -equivariant isomorphism QW = Hy,(Z)° in Theorem 5.2.1
induces an isomorphism between the subspace egQWep of QW and Hy,—op(Y"2), the top
Borel-Moore homology group of the generalized Steinberg variety, Y,

EQ@WEP i) H4n_2f (YP’Q)

.

QW Hy, (Z)°P

~

where the left vertical arrow is inclusion.
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APPENDIX A

A.1. In this appendix we change notation slightly from §2.4. For a morphism, ¢: X — Y,
of complex, algebraic varieties, the units of the adjoint pairs (£*,€,) and (¢, &) are denoted
by n; and 17!5 respectively. Similarly, the counits are denoted by €; and 6!5 respectively.
Suppose £: X — Y is a morphism between complex, algebraic varieties that are ra-
tional homology manifolds. For a fixed choice of isomorphisms vy : Dy = Qy 2 dim X|
and vy : Dy = Qy[2dimY] there is a natural transformation pé: £ — €'[2[] where | =
dimY — dim X. For a complex A in D%(Y), p* = pgA is defined to be the composition

we®id e preh)

A Q@A £Qx @ EARI —> E'RE(EQx ® & A) 2]

¢(cLwid) £ (m1)

¢'(REEQx @ A)[21] ¢(Qx ® A)[21] ¢ Al2l]

where the notation is as follows:

my: Qx ® B = B is the natural isomorphism for B in D(X).

we = E(vy) o Beovy': Qx = £'Qy[21], so we is an isomorphism in DJ(X).

17!5 and eé are as above.

For B in D*(X) and C in D*(Y), pr,: REB® C = R&(B ® €40 is the projection
isomorphism.

Notice that p¢ is a natural transformation since each map in the definition of pgA is natural
in A.
Now consider a cartesian square

(A1.1) My -2~ N,

satisfying the following conditions:

C1 The spaces are all complex, algebraic varieties that are rational homology manifolds.
C2 The maps are all proper morphisms.

C3 j,, and j, are closed embeddings.

C4 dim My = dim Ny = 2n, dim M =dim N =d, and [ = d — 2n.

For a cartesian square as in (A.1.1), we have base change isomorphisms
be*s % Ry —== R(po)j?, and  bc': jt Ry —== R(uo)ij!,

defined as in §2.5.
We prove the following lemmas in the next two subsections.

Lemma A.1.2. If X and Y are complex, algebraic varieties that are rational homology
manifolds and &: X — 'Y is a proper morphism, then prY = Wg O Q.
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Lemma A.1.3. If vy, is chosen appropriately, then in the cartesian square (A.1.1) the
. I Jn
morphisms py| . and pg, o, are related by

be'o p;-“?]\lrL!QM - R(/”L())!(p&{w) o bc™.
Recall from §4.8 that in the setting of (A.1.1) we have 7: j7 RuQu = 7y, RnQu[21], by
7= (bc') ™ o R(ko)i(dy, (V) © By, © Vagy © @, ) © be”

where v,,: Dy — Qu[2d] and vy, : Dy, — Qag[4n] are isomorphisms in DY(M) and
D’(M,) respectively.
Assuming Lemmas A.1.2 and A.1.3 have been proved we have:

P = (0¢) ™ 0 Rluo)(p31,) o be”
= (bc') ™! o R(po)i(w,, © aj,,) o be”
= (bc')_l © R(/”LO)'(];\/[(VIVI) © /Gj]w o V]\_J:(L) © Oéj]w) © bc*
=T
This proves Proposition 4.8.2.

A.2. In this subsection we prove Lemma A.1.2. Before doing so, we need some preliminary
results.

If A is in D%(X) we denote the canonical isomorphisms Qx ® A = A and A® Qy — A
by m; and msy respectively. When A = Qx we set m = m; = mo.

The proof of the next lemma is a straightforward computation using stalks and is omitted.

Lemma A.2.1. Suppose A and B are in D°(X) and pa: A — Qx and pg: B — Qx are
two morphisms in D°(X). Then the diagrams

A B2 AeQy 4
RGA® Qy 5 RE(A® Q) pasia |pacia
mzl J{Ms(id@as) and Qx®B @;@X ® Qx Pa
R§A R&(m2)R§!(A ® Qx) mll x
B PB Qx
commute.

Let natg: £*(A® B) = €*A® £*B denote the canonical isomorphism in D°(X).
Lemma A.2.2. The diagram

R6E'Qy @ Qy RS R&(6'Qy ® £Qy)
lRf;(id@ag)
cc®id R&(£'Qy ® Qx)
l%l(mz)
Qy ® Qy — Qy
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commutes.
Proof. Using the definition of (IDgl we have
CI)gl(mg) o R&(id ® ag) o pre = 6!5 o R& (my) o R&(id @ ag) o pre.
Also, using the naturality of e, we have m o (e, ® id) = €; 0 my, so it is enough to show that
(A.2.3) my = R&(ma) o RE(id ® ag) o pre.

Since £ is proper, we have pre = W¢((ef ® id) o nat?).
The proof of (A.2.3) is a straightforward computation using the formula for pr, and Lemma
A.2.2. We omit the details. U

We can now complete the proof of Lemma A.1.2. Recall that

PG, =€ (mioeopry!) ont o (we @id) omyt = B¢(my o eg opryt) o (we ®id) omy?,

so to prove the lemma, we need to show that
Pe(my o eé opre') =weoagomy o (wy ' ®id).
Taking A = £'Qy[2l], pa = wgl, B =¢*Qy, and pp = a¢ in Lemma A.2.1 we get
agomloo(w?@id) :wf_lom2o(id®a§),

so it is enough to show that ®¢(m; o € o prgl) = my o (id ® ag). This last equality follows
immediately from Lemma A.2.2. This completes the proof of Lemma A.1.2.

A.3. In this subsection we prove Lemma A.1.3.

The proof is accomplished by showing that the diagrams (A.3.1) and (A.3.2) below are
commutative. Then juxtaposing these diagrams and tracing around the outside gives the
desired result.

It is easy to see that any unlabeled regions of diagrams (A.3.1) and (A.3.2) commute. The
commutativity of the labeled regions is shown in the corresponding statements below.

To make the diagrams as clear as possible, we need to simplify the notation. First, for
a morphism, £: X — Y, we denote the derived functors R¢, and R¢ simply by &, and &
respectively. Second, we denote j, simply by j. Third, we label the maps in the diagrams
using only the core maps or natural transformations involved. For example, we write o,
instead of (1i0)1(v, ® id) and be* instead of j'ji(id @ be*).

If¢: X — Y, and A and B are complexes, then

pri: A9 B—=§(A®&B) and pr?: AQ&EB — §(€FA® B).

With this notation we have p¢ = &'(my o (; ® id) o (pri)™") o ng o (we @ id) oy
Notice that if ¢ is proper, then pry = We((ef ® id) o nat;) and pr7 = We((id ® €f) o naty’).
For a cartesian square as in (A.1.1) we have a base change isomorphism,

be: pR(jy ) — R(Ga s,

—~ ~—1
defined by be = ¥; (,ug(ej-N)). Define o: p3jt — j' p* by o = D; (,u*(e’jN) obc ). Then o
is a natural transformation.



Wi

wi

n;

7'Qn @ j*uQu
bc*
7'Qn @ (po)17,Qu

pr?

1

7' ('Qn @ j* Q)
bc*
733" Qn @ (po)rt, Qur)

pr2

(1) (15Qno ® 57, Qur) — (110} ((10)*5'Quy ® 5% Qur) — 2 351 (o) (155 Qv @ 5%, Quy)

e

w0

=

7 Qs m Qn, ® 7" 1 Qus
bc*
Qny @ (po)177, Qur
pr?
bc*
mi
Qg
(A2.1),
(10)17 7, Qur -

(A.3.4)

!

n

(o) (7, " Qn @ 57, Qur) —= 51 (po)i (7, 1" Qv @ 57, Qur)

p

Inm

(10)1(Qaso ® 5%, Qur) ——— (o)1 (7., Qur @ j7, Qo) —L>

7' (po) (7}, Qur ® 77, Qur)

bc!

(o)uit, (G (L, Qur @ 5% Quy)

129
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(zev)

7' Qn @ 5 Q)

bc*

751" Qn @ (po)1st, Qur)

7' (515" Qn ® uQar)

(A.3.6) pr?

J (7' Qn @ Qi)

be (A.3.7)

3910 (157 Qi ® 57, Qur) <2 310 ((Go )7 Qv © Qur)

751 (o)(4, 1" Qn @ 5% Qur) B 3 (G )k, 1 Qn @ Qo)

7o) (7, Qar ® j7,Qur)

bc!

(MO)!j]!M (.jM> (]MQM ® jM@M>

l
< M

7' (G )i, Qur ® Qur)

bc!

rl

(o)1, (G i, Qur © Quy) ——

7'(Qn @ wQur) = 7 1 Qu
e (A.2.1),
J i Qn ® Qur)
bc!
—— ' u(pQn ® Qur)
7' (Qar @ Q)
be!
—= (o), (Qu ® Qur) e (10)17}, Qs

SHILATIVA DYHANIALS A0 ADOTONOH

518
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The regions labeled (A.2.1); and (A.2.1); commute using the analog of the first rectangle
in Lemma A.2.1 with m; instead of ma,, taking A = j]!w@M and A = Q) respectively.

Lemma A.3.3. The mapping oq, : ji5j,, Qn — j. 4*Qu is an isomorphism in D2(My).

Proof. We have
S NI gl !
o=9; (1 (EjN obe ) =j,p (EjN) o j,, (be )Oan~

Since j,, is a closed embedding, né-M is an isomorphism, so it is enough to show that
j]!w,u*(e!jN): jj!w,u*(jN);j]!VQN — j}’wu*QN is an isomorphism. Since M and N are purely
d-dimensional, rational homology manifolds and M, and N, are purely 2n-dimensional, ra-
tional homology manifolds, it follows that jjw (g jI!V Qu and j}’w 1*Qpn are both isomorphic
to Qg [—21]. Tt follows that 5! u*(e!jN) is an isomorphism. O

Since oq, is an isomorphism, the composition
ﬁj_l oj]!W (1/1\_/[1 oa,)o0o0 ,ug(wj_l) o a;lz Qunty — Dy, [—4n]
M N
is an isomorphism, so we may choose v, so that
-1

VMo /631; }VI(VMl o) 0 0gy © fig(w _1) cq, .

It then follows that

As in §2.5, (bc))7!: (Ho)rjl, — Jjiiu by (bc))™! = D; (,ug(e!jM)). Thus, using (2.4.2) we
have

(o) o (o) = By e, ) © (o],
=®; (m(e), ) o ji(uo)(n;, )
=®; (m(e), 0 ui(m;,)))
=& (,w(q)]]; (77]M)))
=, (id)

—

Therefore,

(A.3.5) be' om) = (oh(n], )
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Lemma A.3.6. The diagram

pr}

R(jy )i\ A® RuB Y R(jy ) (L, A® j* RuB)
pra l \LR(jN )1 (id®bc*)
R (p*R(j, )i\ A @ B) R(jy ) (7 A @ R(po)j;, B)
Ry (E;@id) l l R(]N ) (prio)

Ry (R(j, ' A ® B) R(jypo) (1374 A © 7, B)

Ry (pr, )

commutes for A in D*(N) and B in D*(M).

Proof. First, using the formulas for pr}N and pri and the analogs of equation (2.4.2) for ¥,
and ¥, we see that it is enough to show that

v, <pr]1.M o (bc® e;) o natf) = \Iij (prio o (E;N ® bc*) o nat?N> )
Next, using the formulas for prjl-M and priO and the analogs of equation (2.4.2) for v
and ¥, we see that it is enough to show that

N2 ((E;M ®1id) o nati{ oj;, ((be®e,) o natff))

= \I]jN\I],U«O ((’ld X EZO) e} natff OMS((E;N ® bC*) o Ilat;@N)) .

0

Now using that ¥,;W, = W, and the naturality of nat;&M and natff’o, we see that it is

enough to show that
(€5, ®id) o (j,, (bc) ® jy, (€,)) nat;@M oj* (nat))

= (id®€;,) o (15(€; ) ® pg(be™)) o naty, opg(natf ).
Since naut;EQ og*(natf?) = naty,, we only need to show that

€, © I (be) = pgle; ) and 57 (e)) = €, 0 pg(be”)

In
which is the same as
\IIJ_I; (be) = ué(e;N) and  jy (€,) = \11;01 (bc™).
These last two equations follow immediately from the definitions be = \I/jM(ua(ejN)) and

be* =W, (57, (€,)) above. O

Since ®; (§) = g (&) o nj!-M, using the naturality of e!jM and the fact that e;-M o nj!-M = id,
we have

—~—1

EIJ'M © (jM>!(U) obc = E!J'M © (jM)! (jllw('u*(qzv) obe >) OU;M obe
(A.3.7) = i (ej,) 0 be o ¢, on; obc

= (€, )-
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