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HOMOLOGY OF THE STEINBERG VARIETY
AND

WEYL GROUP COINVARIANTS

J. MATTHEW DOUGLASS AND GERHARD RÖHRLE

Abstract. Let G be a complex, connected, reductive algebraic group with Weyl group W

and Steinberg variety Z. We show that the graded Borel-Moore homology of Z is isomorphic
to the smash product of the coinvariant algebra of W and the group algebra of W .

1. Introduction

Suppose G is a complex, reductive algebraic group, B is the variety of Borel subgroups of
G, g is the Lie algebra of G, and N is the cone of nilpotent elements in g. If T ∗B denotes the
cotangent bundle of B, then there is a moment map, µ0 : T ∗B → N . The Steinberg variety
of G is the fibered product T ∗B ×N T ∗B which we identify with the closed subvariety

Z = { (x, B′, B′′) ∈ N × B × B | x ∈ Lie(B′) ∩ Lie(B′′) }

of N ×B × B. Set n = dimB. Then Z is a 2n-dimensional, complex algebraic variety.
If V = ⊕I≥0Vi is a graded vector space, we will frequently denote V by V•. Similarly, if X

is a topological space, then Hi(X) denotes the ith rational Borel-Moore homology of X and
H•(X) = ⊕i≥0Hi(X) denotes the total Borel-Moore homology of X.

Fix a maximal torus, T , of G, with Lie algebra t, and let W = NG(T )/T be the Weyl
group of (G, T ). In [6] Kazhdan and Lusztig defined an action of W ×W on H•(Z) and they
showed that the representation of W × W on the top-dimensional homology of Z, H4n(Z),
is equivalent to the two-sided regular representation of W . Tanisaki [9] and, more recently,
Chriss and Ginzburg [3] have strengthened the connection between H•(Z) and W by defining
a Q-algebra structure on H•(Z) so that Hi(Z) ∗ Hj(Z) ⊆ Hi+j−4n(Z). Chriss and Ginzburg
[3, §3.4] have also given an elementary construction of an isomorphism between H4n(Z) and
the group algebra QW .

In this paper we extend the work of Kazhdan-Lusztig and Chriss-Ginzburg and use ele-
mentary topological arguments to compute the total Borel-Moore homology of the Steinberg
variety. We show that H•(Z) is isomorphic to the smash product of the coinvariant algebra
of W and the group algebra of W .

Precisely, for 0 ≤ i ≤ n let Coinv2i(W ) denote the degree i subspace of the rational
coinvariant algebra of W , so Coinv2i(W ) may be identified with the space of degree i, W -
harmonic polynomials on t. If j is odd, define Coinvj(W ) = 0. Recall that the smash product,
Coinv(W )#QW , is the Q-algebra whose underlying vector space is Coinv(W )⊗Q QW with
multiplication satisfying (f1 ⊗ φ1) · (f2 ⊗ φ2) = f1φ1(f2) ⊗ φ1φ2 where f1 and f2 are in
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Coinv(W ), φ1 and φ2 are in QW , and QW acts on Coinv(W ) in the usual way. The algebra
Coinv(W )#QW is graded by (Coinv(W )#QW )i = Coinvi(W )#QW and we will denote
this graded algebra by Coinv•(W )#QW . In our main result we construct an isomorphism
of graded algebras H4n−•(Z) ∼= Coinv•(W )#QW .

This paper was motivated by the observation, pointed out to the first author by C. Strop-
pel, that some very general K-theoretic results in [3] can be used to show that H•(Z) is
isomorphic to the smash product of QW and Coinv•(W ). However, such an argument would
rely on some deep results from equivariant K-theory. In particular, this would require the
bivariant Riemann-Roch Theorem and the Kazhdan-Lusztig isomorphism between the equi-
variant K-theory of Z and the extended, affine, Hecke algebra. In contrast, and also in
the spirit of Kazhdan and Lusztig’s original construction, our argument uses only elemen-
tary topological notions and is directly related to the underlying geometry of the Steinberg
variety.

Another approach to the Borel-Moore homology of the Steinberg variety uses intersection
homology. Let µ : Z → N be the projection on the first factor. Then, as in [3, §8.6],
H•(Z) ∼= Ext4n−•

D(N ) (Rµ∗QN , Rµ∗QN ). The Decomposition Theorem of Beilenson, Bernstein,
and Deligne can be used to decompose Rµ∗QN into a direct sum of simple perverse sheaves
Rµ∗QN

∼= ⊕x,φ IC
nx,φ

x,φ where x runs over a set of orbit representatives in N , for each x, φ
runs over a set of irreducible representations of the component group of ZG(x), and ICx,φ

denotes an intersection complex (see [2] or [7, §4,5]). Chriss and Ginzburg have used this
construction to describe an isomorphism H4n(Z) ∼= QW and in addition to give a description
of the projective, indecomposable H•(Z)-modules.

It follows from Theorem 2.3 that Hi(Z) ∼= Coinv4n−i(W ) ⊗ H4n(Z) and so
(1.1)

Coinvi(W ) ⊗ H4n(Z) ∼= Ext4n−i
D(N ) (Rµ∗QN , Rµ∗QN ) ∼=

⊕

x,φ

⊕

y,ψ

Ext4n−i
D(N )

(
IC

nx,φ

x,φ , IC
ny,ψ

y,ψ

)
.

In the special case when i = 0 we have that

Coinv0(W ) ⊗ H4n(Z) ∼= EndD(N ) (Rµ∗QN ) ∼=
⊕

x,φ

EndD(N )

(
IC

nx,φ

x,φ

)
.

The image of the one-dimensional vector space Coinv0(W ) in EndD(N ) (Rµ∗QN ) is the line
through the identity endomorphism, and QW ∼= H4n(Z) ∼= ⊕x,φ EndD(N )

(
IC

nx,φ

x,φ

)
is the

Wedderburn decomposition of QW as a direct sum of minimal two-sided ideals. It would
be instructive to find a nice description of the image of Coinvi(W ) in the right-hand side of
(1.1).

The rest of this paper is organized as follows: in §2 we set up our notation and state
the main results; in §3 we construct an isomorphism of graded vector spaces between
Coinv•(W ) ⊗ QW and H4n−•(Z); and in §4 we complete the proof that this isomorphism is
in fact an algebra isomorphism when Coinv•(W )⊗QW is given the smash product multipli-
cation. Some very general results about graphs and convolution that we need for the proofs
of the main theorems are proved in an appendix.

In this paper ⊗ = ⊗Q, if X is a set, then δX , or just δ, denotes the diagonal embedding
of X in X × X, and for g in G and x in g, g · x denotes the adjoint action of g on x.
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2. Preliminaries and Statement of Results

Fix a Borel subgroup, B, of G with T ⊆ B and define U to be the unipotent radical of B.
We will denote the Lie algebras of B and U by b and u respectively.

Our proof that H•(Z) is isomorphic to Coinv•(W )#QW makes use of the specialization
construction used by Chriss and Ginzburg in [3, §3.4] to establish the isomorphism between
H4n(Z) and QW . We begin by reviewing their construction.

The group G acts diagonally on B × B. Let Ow denote the orbit containing (B, wBw−1).
Then the rule w +→ Ow defines a bijection between W and the set of G-orbits in B × B.

Let πZ : Z → B × B denote the projection on the second and third factors and for w in
W define Zw = π−1

Z (Ow). For w in W we also set uw = u ∩ w · u. The following facts are
well-known (see [8] and [7, §1.1]):

• Zw
∼= G ×B∩wB uw.

• dim Zw = 2n.
• The set {Zw | w ∈ W } is the set of irreducible components of Z.

Define

g̃ = { (x, B′) ∈ g × B | x ∈ Lie(B′) },

Ñ = { (x, B′) ∈ N × B | x ∈ Lie(B′) }, and

Ẑ = { (x, B′, B′′) ∈ g × B × B | x ∈ Lie(B′) ∩ Lie(B′′) },

and let µ : g̃ → g denote the projection on the first factor. Then Ñ ∼= T ∗B, µ(Ñ ) = N ,
Z ∼= Ñ ×N Ñ , and Ẑ ∼= g̃ ×g g̃.

Let π̂ : Ẑ → B ×B denote the projection on the second and third factors and for w in W
define Ẑw = π̂−1(Ow). Then it is well-known that dim Ẑw = dim g and that the closures of
the Ẑw’s for w in W are the irreducible components of Ẑ (see [7, §1.1]).

Next, for (x, gBg−1) in g̃, define ν(x, gBg−1) to be the projection of g−1 · x in t. Then µ
and ν are two of the maps in Grothendieck’s simultaneous resolution:

g̃
µ

!!

ν

""

g

""

t !! t/W

It is easily seen that if µ̂ : Ẑ → g is the projection on the first factor, then the square

Ẑ
bµ

!!

""

g

δg

""

g̃ × g̃
µ×µ

!! g × g

is cartesian, where the vertical map on the left is given by (x, B′, B′′) +→ ((x, B′), (x, B′′)). We
will frequently identify Ẑ with the subvariety of g̃× g̃ consisting of all pairs ((x, B′), (x, B′′))
with x in Lie(B′) ∩ Lie(B′′).
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For w in W , let Γw−1 = { (h, w−1 · h) | h ∈ t } ⊆ t × t denote the graph of the action of
w−1 on t and define

Λw = Ẑ ∩ (ν × ν)−1 (Γw−1) = { (x, B′, B′′) ∈ Ẑ | ν(x, B′′) = w−1ν(x, B′) }.

In the special case when w is the identity element in W , we will denote Λw by Λ1.
The spaces we have defined so far fit into a commutative diagram with cartesian squares:

(2.1) Λw
!!

""

Ẑ
bµ

!!

""

g

δg

""
(ν × ν)−1 (Γw−1) !!

""

g̃ × g̃
µ×µ

!!

ν×ν

""

g × g

Γw−1
!! t × t

Let νw : Λw → Γw−1 denote the composition of the leftmost vertical maps in (2.1), so νw is
the restriction of ν × ν to Λw.

For the specialization construction, we consider subsets of Ẑ of the form ν−1
w (S ′) for

S ′ ⊆ Γw−1. Thus, for h in t we define Λh
w = ν−1

w (h, w−1h). Notice in particular that Λ0
w = Z.

More generally, for a subset S of t we define ΛS
w =

∐
h∈S Λ

h
w. Then, ΛS

w = ν−1
w (S ′), where S ′

is the graph of w−1 restricted to S.
Let treg denote the set of regular elements in t.
Fix a one-dimensional subspace, %, of t so that %∩ treg = % \ {0} and set %∗ = % \ {0}. Then

Λ%
w = Λ%∗

w

∐
Λ0

w = Λ%∗

w

∐
Z. We will see in Corollary 3.6 that the restriction of νw to Λ%∗

w

is a locally trivial fibration with fibre G/T . Thus, using a construction due to Fulton and
MacPherson ([4, §3.4], [3, §2.6.30]), there is a specialization map

lim: H•+2(Λ
%∗

w ) −→ H•(Z).

Since Λ%∗

w is an irreducible, (2n + 1)-dimensional variety, if [Λ%∗

w ] denotes the fundamental
class of Λ%∗

w , then H4n+2(Λ%∗

w ) is one-dimensional with basis {[Λ%∗

w ]}. Define λw = lim([Λ%∗

w ])
in H4n(Z). Chriss and Ginzburg [3, §3.4] have proved the following theorem.

Theorem 2.2. Consider H•(Z) endowed with the convolution product.

(a) For 0 ≤ i, j ≤ 4n, Hi(Z) ∗Hj(Z) ⊆ Hi+j−4n(Z). In particular, H4n(Z) is a subalgebra
of H•(Z).

(b) The element λw in H4n(Z) does not depend on the choice of %.

(c) The assignment w +→ λw extends to an algebra isomorphism α : QW
∼=−→ H4n(Z).

Now consider
Z1 = { (x, B′, B′) ∈ N × B × B | x ∈ Lie(B′) }.

Then Z1 may be identified with the diagonal in Ñ × Ñ . It follows that Z1 is closed in Z
and isomorphic to Ñ .

Since Ñ ∼= T ∗B, it follows from the Thom isomorphism in Borel-Moore homology [3, §2.6]
that Hi+2n(Z1) ∼= Hi(B) for all i. Since B is smooth and compact, Hi(B) ∼= H2n−i(B) by
Poincaré duality. Therefore, H4n−i(Z1) ∼= H i(B) for all i.
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The cohomology of B is well-understood: there is an isomorphism of graded algebras,
H•(B) ∼= Coinv•(W ). It follows that Hj(Z) = 0 if j is odd and H4n−2i(Z1) ∼= Coinv2i(W )
for 0 ≤ i ≤ n.

In §3 below we will prove the following theorem.

Theorem 2.3. Consider the Borel-Moore homology of the variety Z1.

(a) There is a convolution product on H•(Z1). With this product, H•(Z1) is a commuta-
tive Q-algebra and there is an isomorphism of graded Q-algebras

β : Coinv•(W )
∼=−−→ H4n−•(Z1).

(b) If r : Z1 → Z denotes the inclusion, then the direct image map in Borel-Moore ho-
mology, r∗ : H•(Z1) −→ H•(Z), is an injective ring homomorphism.

(c) If we identify H•(Z1) with its image in H•(Z) as in (b), then the linear transformation
given by the convolution product

Hi(Z1) ⊗ H4n(Z)
∗

−−→ Hi(Z)

is an isomorphism of vector spaces for 0 ≤ i ≤ 4n.

The algebra Coinv•(W ) has a natural action of W by algebra automorphisms, and the
isomorphism β in Theorem 2.3(a) is in fact an isomorphism of W -algebras. The W -algebra
structure on H•(Z1) is described in the next theorem, which will be proved in §4.

Theorem 2.4. If w is in W and H•(Z1) is identified with its image in H•(Z), then

λw ∗ Hi(Z1) ∗ λw−1 = Hi(Z1).

Thus, conjugation by λw defines a W -algebra structure on H•(Z1). With this W -algebra

structure, the isomorphism β : Coinv•(W )
∼=−−→ H4n−•(Z1) in Theorem 2.3(a) is an isomor-

phism of W -algebras.

Recall that Coinv(W )#QW is graded by (Coinv(W )#QW )i = Coinvi(W ) ⊗ QW . Then
combining Theorem 2.2(c), Theorem 2.3(c), and Theorem 2.4 we get our main result.

Theorem 2.5. The composition

Coinv•(W )#QW
β⊗α
−−−→ H4n−•(Z1) ⊗ H4n(Z)

∗
−−→ H4n−•(Z)

is an isomorphism of graded Q-algebras.

3. Factorization of H•(Z)

Proof of Theorem 2.3(a). We need to prove that H•(Z1) is a commutative Q-algebra and
that Coinv•(W ) ∼= H4n−•.

Let π : Ñ → B by π(x, B′) = B′. Then π may be identified with the vector bundle
projection T ∗B → B and so the induced map in cohomology π∗ : H i(B) → H i(Ñ ) is an
isomorphism. The projection π determines an isomorphism in Borel-Moore homology that

we will also denote by π∗ (see [3, §2.6.42]). We have π∗ : Hi(B)
∼=−−→ Hi+2n(Ñ ).
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For a smooth m-dimensional variety X, let pd: H i(X) −→ H2m−i(X) denote the Poincaré
duality isomorphism. Then the composition

H2n−i(B)
pd−1

−−−−→ H i(B)
π∗

−−→ H i(Ñ )
pd

−−→ H4n−i(Ñ )

is an isomorphism. It follows from the uniqueness construction in [3, §2.6.26] that

pd ◦ π∗ ◦ pd−1 = π∗ : H2n−i(B) −→ H4n−i(Ñ )

and so π∗ ◦ pd = pd ◦ π∗ : H i(B) −→ H4n−i(Ñ ).
Recall that Coinvj(W ) = 0 if j is odd and Coinv2i(W ) is the degree i subspace of the

coinvariant algebra of W . Let bi : Coinv•(W ) −→ H•(B) be the Borel isomorphism (see [1,
§1.5] or [5]). Then with the cup product, H•(B) is a graded algebra and bi is an isomorphism
of graded algebras.

Define β : Coinvi(W ) → H4n−i(Z1) to be the composition

Coinvi(W )
bi

−−→ H i(B)
π∗

−−→ H i(Ñ )
pd

−−→ H4n−i(Ñ )
δ∗−−→ H4n−i(Z1)

where δ = δ eN . Then β is an isomorphism of graded vector spaces and

β = δ∗ ◦ pd ◦ π∗ ◦ bi = δ∗ ◦ π
∗ ◦ pd ◦ bi.

The algebra structure of H•(B) and H•(Ñ ) is given by the cup product, and π∗ : H•(B) →
H•(Ñ ) is an isomorphism of graded algebras. Since Ñ is smooth, as in [3, §2.6.15], there
is an intersection product defined on H•(Ñ ) using Poincaré duality and the cup product on
H•(Ñ ). Thus, pd: H•(Ñ ) → H4n−•(Ñ ) is an algebra isomorphism. Finally, it is observed
in [3, §2.7.10] that δ∗ : H•(Ñ ) → H•(Z1) is a ring homomorphism and hence an algebra
isomorphism. This shows that β is an isomorphism of graded algebras and proves Theorem
2.3(a).

Proof of Theorem 2.3(b). To prove the remaining parts of Theorem 2.3, we need a linear
order on W . Suppose |W | = N . Fix a linear order on W that extends the Bruhat order.
Say W = {w1, . . . , wN}, where w1 = 1 and wN is the longest element in W .

For 1 ≤ j ≤ N , define Zj =
∐j

i=1 Zwi
. Then, for each j, Zj is closed in Z, Zwj

is open in
Zj, and Zj = Zj−1

∐
Zwj

. Notice that ZN = Z and Z1 = Zw1
.

Similarly, define Ẑj =
∐j

i=1 Ẑwi
. Then each Ẑj is closed in Ẑ, Ẑwj

is open in Ẑj, and

Ẑj = Ẑj−1

∐
Ẑwj

.
We need to show that r∗ : H•(Z1) −→ H•(Z) is an injective ring homomorphism.
Let resj : Hi(Zj) → Hi(Zwj

) denote the restriction map in Borel-Moore homology induced
by the open embedding Zwj

⊆ Zj and let rj : Hi(Zj−1) −→ Hi(Zj) denote the direct image
map in Borel-Moore homology induced by the closed embedding Zj−1 ⊆ Zj. Then there is
a long exact sequence in homology

· · · !!Hi(Zj−1)
rj !!Hi(Zj)

resj !!Hi(Zwj
) ∂ !!Hi−1(Zj−1) !! · · ·

It is shown in [3, §6.2] that ∂ = 0 and so the sequence

(3.1) 0 !!Hi(Zj−1)
rj

!!Hi(Zj)
resj

!!Hi(Zwj
) !!0
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is exact for every i and j. Therefore, if r : Zj → Z denotes the inclusion, then the direct
image r∗ : Hi(Zj) → Hi(Z) is an injection for all i. (The fact that r depends on j should not
lead to any confusion.)

We will frequently identify Hi(Zj) with its image in Hi(Z) and consider Hi(Zj) as a subset
of Hi(Z). Thus, we have a flag of subspaces 0 ⊆ Hi(Z1) ⊆ · · · ⊆ Hi(ZN−1) ⊆ Hi(Z).

In particular, r∗ : Hi(Z1) → Hi(Z) is an injection for all i. It follows from [3, Lemma
5.2.23] that r∗ is a ring homomorphism. This proves part (b) of Theorem 2.3.

Proof of Theorem 2.3(c). We need to show that the linear transformation given by the
convolution product Hi(Z1) ⊗ H4n(Z) → Hi(Z) is an isomorphism of vector spaces for
0 ≤ i ≤ 4n.

The proof is a consequence of the following lemma.

Lemma 3.2. The image of the convolution map ∗ : Hi(Z1)⊗H4n(Zj) −→ Hi(Z) is precisely
Hi(Zj) for 0 ≤ i ≤ 4n and 1 ≤ j ≤ N .

Assuming that the lemma has been proved, taking j = N , we conclude that the convolution
product in H•(Z) induces a surjection Hi(Z1) ⊗ H4n(Z) −→ Hi(Z). It is shown in [3, §6.2]
that dim H•(Z) = |W |2 and so dim H•(Z1) ⊗ H4n(Z) = |W |2 = dim H•(Z). Thus, the
convolution product induces an isomorphism Hi(Z1) ⊗ H4n(Z) ∼= Hi(Z).

The rest of this section is devoted to the proof of Lemma 3.2.
To prove Lemma 3.2 we need to analyze the specialization map, lim: H•+2(Λ%∗

w ) → H•(Z),
beginning with the subvarieties Λ%

w and Λ%∗

w of Λw.

Subvarieties of Λw. Suppose that % is a one-dimensional subspace of t with %∗ = % \ {0} =
% ∩ treg. Recall that uw = u ∩ w · u for w in W .

Lemma 3.3. The variety Λ%
w ∩ Ẑw is the G-saturation in Ẑ of { (h + n, B, wBw−1) | h ∈

%, n ∈ uw }.

Proof. By definition,

Λ%
w = Λ%∗

w

∐
Λ0

w = { (x, B′, B′′) ∈ Ẑ | ν(x, B′′) = w−1ν(x, B′) ∈ w−1(%) }.

Suppose that h is in treg and (x, g1Bg−1
1 , g2Bg−1

2 ) is in Λh
w. Then g−1

1 · x = h + n1 and
g−1
2 · x = w−1h + n2 for some n1 and n2 in u. Since h is regular, there are elements u1 and

u2 in U so that u−1
1 g−1

1 · h = h and u−1
2 g−1

2 · h = w−1h. Then x = g1u1 · h = g2u2w−1 · h and
so g1u1 = g2u2w−1t for some t in T . Therefore, (x, g1Bg−1

1 , g2Bg−1
2 ) = g1u1 · (h, B, wBw−1).

Thus, Λh
w is contained in the G-orbit of (h, B, wBw−1). Since ν is G-equivariant, it follows

that Λh
w is G-stable and so Λh

w is the full G-orbit of (h, B, wBw−1). Therefore, Λ%∗

w is the
G-saturation of { (h + n, B, wBw−1 | h ∈ %∗, n ∈ uw } and Λh

w ⊆ Ẑw for h in %∗.
We have already observed that Λ0

w = Z and so

Λ%
w ∩ Ẑw =

(
Λ%∗

w ∩ Ẑw

)∐ (
Λ0

w ∩ Ẑw

)
= Λ%∗

w

∐
Zw.

It is easy to see that Zw is the G-saturation of { (n, B, wBw−1) | n ∈ uw } in Z. This proves
the lemma. !

Corollary 3.4. The variety Λ%
w ∩ Ẑw is a locally trivial, affine space bundle over Ow with

fibre isomorphic to %+ uw, and so there is an isomorphism Λ%
w ∩ Ẑw

∼= G ×B∩wB (%+ uw).
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Proof. It follows from Lemma 3.3 that the map given by projection on the second and third
factors is a G-equivariant morphism from Λ%

w onto Ow and that the fibre over (B, wBw−1)
is { (h + n, B, wBw−1) | h ∈ %, n ∈ uw }. Therefore, Λ%

w
∼= G ×B∩wB (%+ uw). !

Let grs denote the set of regular semisimple elements in g and define g̃rs = { (x, B′) ∈ g̃ |
x ∈ grs }. For an arbitrary subset S of t, define g̃S = ν−1(S) = { (x, B′) ∈ g̃ | ν(x, B′) ∈ S }.

For w in W , define w̃ : G/T × treg −→ G/T × treg by w̃(gT, h) = (gwT, w−1h). The rule

(gT, h) +→ (g · h, gB) defines an isomorphism of varieties f : G/T × treg
∼=−−→ g̃rs and we will

denote the automorphism f ◦ w̃ ◦ f−1 of g̃rs also by w̃. Notice that if h is in treg and g is in
G, then w̃(g · h, gB) = (g · h, gwBw−1g−1).

Lemma 3.5. The variety Λ%∗

w is the graph of w̃|eg#∗ : g̃%
∗

→ g̃w−1(%∗).

Proof. It follows from Lemma 3.3 that

Λ%∗

w = { (g · h, gBg−1, gwBw−1g−1) ∈ grs × B × B | h ∈ %∗, g ∈ G }

= { ((g · h, gBg−1), (g · h, gwBw−1g−1)) ∈ g̃ × g̃ | h ∈ %∗, g ∈ G }.

The argument in the proof of Lemma 3.3 shows that g̃%
∗

= { (g · h, gBg−1) | h ∈ %∗, g ∈ G }
and by definition w̃(g ·h, gB) = (g ·h, gwBw−1g−1). Therefore, Λ%∗

w is the graph of w̃|eg#∗ . !

Corollary 3.6. The map νw : Λ%∗

w → %∗ is a locally trivial fibration with fibre isomorphic to
G/T .

Proof. This follows immediately from the lemma and the fact that g̃%
∗ ∼= G/T × %∗. !

The specialization map. Suppose that w is in W and that % is a one-dimensional subspace
of t with %∗ = % \ {0} = % ∩ treg. As in [4] and [3, §2.6.30], lim: Hi+2(Λ%∗

w ) → Hi(Z) is the
composition of three maps, defined as follows.

As a vector space over R, % is two-dimensional. Fix an R-basis of %, say {v1, v2}. Define
P to be the open half plane R>0v1 ⊕Rv2, define I>0 to be the ray R>0v1, and define I to be
the closure of I>0, so I = R≥0v1.

Since P is an open subset of %∗, ΛP
w is an open subset of Λ%∗

w and so there is a restriction
map in Borel-Moore homology res : Hi+2(Λ%∗

w ) → Hi+2(ΛP
w).

The projection map from P to I>0 determines an isomorphism in Borel-Moore homology
ψ : Hi+2(ΛP

w) → Hi+1(ΛI>0

w ).
Since I = I>0

∐
{0}, we have ΛI

w = ΛI>0

w

∐
Λ0

w = ΛI>0

w

∐
Z, where Z is closed in ΛI

w. The
connecting homomorphism of the long exact sequence in Borel-Moore homology arising from
the partition ΛI

w = ΛI>0

w

∐
Z is a map ∂ : Hi+1(ΛI>0

w ) → Hi(Z).
By definition, lim = ∂ ◦ ψ ◦ res.
Now fix j with 1 ≤ j ≤ N and set w = wj.

Consider the intersection ΛI
w ∩ Ẑj = (ΛI>0

w ∩ Ẑj)
∐

(Z ∩ Ẑj). Then Z ∩ Ẑj is closed in

ΛI
w ∩ Ẑj and by construction, ΛI>0

w ⊆ Ẑj and Z ∩ Ẑj = Zj. Thus, ΛI
w ∩ Ẑj = ΛI>0

w

∐
Zj.

Let ∂j : Hi+1(ΛI>0

w ) → Hi(Zj) be the connecting homomorphism of the long exact sequence
in Borel-Moore homology arising from this partition. Because the long exact sequence in
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Borel-Moore homology is natural, we have a commutative square:

Hi+1(ΛI>0

w )
∂ !! Hi(Z)

Hi+1(ΛI>0

w )
∂j

!! Hi(Zj)

r∗

##

This proves the following lemma.

Lemma 3.7. Fix j with 1 ≤ j ≤ N and set w = wj. Then ∂ : Hi+1(ΛI>0

w ) −→ Hi(Z) factors
as r∗◦∂j where ∂j : Hi+1(ΛI>0

w ) −→ Hi(Zj) is the connecting homomorphism of the long exact

sequence arising from the partition ΛI
w ∩ Ẑ = ΛI>0

w

∐
Zj.

It follows from the lemma that lim: Hi+2(Λ%∗

w ) −→ Hi(Z) factors as

(3.8) Hi+2(Λ
%∗

w )
res

−−→ Hi+2(Λ
P
w)

ψ
−−→ Hi+1(Λ

I>0

w )
∂j

−−→ Hi(Zj)
r∗−−→ Hi(Z).

Define limj : Hi+2(Λ%∗

w ) −→ Hi(Zj) by limj = ∂j ◦ ψ ◦ res.

Specialization and restriction. As above, fix j with 1 ≤ j ≤ N and a one-dimensional
subspace % of t with %∗ = % \ {0} = % ∩ treg. Set w = wj .

Recall the restriction map resj : Hi(Zj) → Hi(Zw) from (3.1).

Lemma 3.9. The composition resj ◦ limj : Hi+2(Λ%∗

w ) −→ Hi(Zw) is surjective for 0 ≤ i ≤
4n.

Proof. Using (3.8), resj ◦ limj factors as

Hi+2(Λ
%∗

w )
res

−−→ Hi+2(Λ
P
w)

ψ
−−→ Hi+1(Λ

I>0

w )
∂j

−−→ Hi(Zj)
resj

−−−→ Hi(Zw).

Lemma 3.11 below shows that res is always surjective and the map ψ is an isomorphism, so
we need to show that the composition resj ◦ ∂j is surjective.

Consider ΛI
w ∩ Ẑw = (ΛI

w ∩ Ẑj) ∩ Ẑw = ΛI>0

w

∐
Zw. Then ΛI>0

w is open in ΛI
w ∩ Ẑw and we

have a commutative diagram of long exact sequences

· · · !! Hi+1(ΛI
w ∩ Ẑw) !! Hi+1(ΛI>0

w )
∂w !! Hi(Zw) !! · · ·

· · · !! Hi+1(ΛI
w ∩ Ẑj) !!

##

Hi+1(ΛI>0

w )
∂j

!! Hi(Zj) !!

resj

##

· · ·

where ∂w is the connecting homomorphism of the long exact sequence arising from the
partition ΛI

w ∩ Ẑw = ΛI>0

w

∐
Zw. We have seen at the beginning of this section that resj is

surjective and so it is enough to show that ∂w is surjective.
Recall that {v1, v2} is an R-basis of % and I = R≥0v1. Define

EI = G ×B∩wB (R≥0v1 + uw) ,

EI>0
= G ×B∩wB (R>0v1 + uw) , and

E0 = G ×B∩wB uw.
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It follows from Corollary 3.4 that EI
∼= ΛI

w, EI>0

∼= ΛI>0

w , and E0
∼= Zw, so the long exact

sequence arising from the partition ΛI
w ∩ Ẑw = ΛI>0

w

∐
Zw may be identified with the long

exact sequence arising from the partition EI = EI>0

∐
E0:

· · · !!Hi+1(EI) !!Hi+1(EI>0
)

∂E !!Hi(E0) !! · · ·

Therefore, it is enough to show that ∂E is surjective. In fact, we show that H•(EI) = 0 and
so ∂E is an isomorphism.

Define ER = G×B∩wB (Rv1 + uw). Then ER is a smooth, real vector bundle over G/B∩wB
and so ER is a smooth manifold containing EI as a closed subset. We may apply [3, 2.6.1]
and conclude that Hi(EI) ∼= H4n+1−i(ER, ER \ EI).

Consider the cohomology long exact sequence of the pair (ER, ER \ EI). Since ER is a
vector bundle over G/B ∩ wB, it is homotopy equivalent to G/B ∩ wB. Similarly, ER \
EI

∼= G ×B∩wB (R<0v1 + uw) and so is also homotopy equivalent to G/B ∩ wB. Therefore,
H i(ER) ∼= H i(ER \EI) and it follows that the relative cohomology group H i(ER, ER \EI) is
trivial for every i. Therefore, H•(EI) = 0, as claimed.

This completes the proof of the lemma. !

Corollary 3.10. The specialization map lim1 : Hi+2(Λ%∗

1 ) −→ Hi(Z1) is surjective for 0 ≤
i ≤ 4n.

Proof. This follows from Lemma 3.9, because Z1 = Zw1
and so res1 is the identity map. !

The next lemma is true for any specialization map.

Lemma 3.11. The restriction map res : Hi+2(Λ%∗

w ) −→ Hi+2(ΛP
w) is surjective for every w

in W and every i ≥ 0.

Proof. There are homeomorphisms Λ%∗

w
∼= G/T × %∗ and ΛP

w
∼= G/T × P . By definition,

P is an open subset of %∗ and so there is a restriction map res : H2(%∗) → H2(P ). This
map is a non-zero linear transformation between one-dimensional Q-vector spaces so it is an
isomorphism.

Using the Künneth formula we get a commutative square where the horizontal maps are
isomorphisms and the right-hand vertical map is surjective:

Hi+2(Λ%∗

w )
∼= !!

res
""

Hi(G/T ) ⊗ H2(%∗) + Hi+1(G/T ) ⊗ H1(%∗)

id⊗res+0
""

Hi+2(ΛP
w) ∼=

!! Hi(G/T ) ⊗ H2(P )

It follows that res : Hi+2(Λ%∗

w ) → Hi+2(ΛP
w) is surjective. !

Proof of Lemma 3.2. Fix i with 0 ≤ i ≤ 4n. We show that the image of the convolution
map ∗ : Hi(Z1) ⊗ H4n(Zj) −→ Hi(Z) is precisely Hi(Zj) for 1 ≤ j ≤ N using induction on
j.

For j = 1, H4n(Z1) is one-dimensional with basis {λ1}. It follows from Theorem 2.2(c)
that λ1 is the identity in H•(Z) and so clearly the image of the convolution map Hi(Z1) ⊗
H4n(Z1) −→ Hi(Z) is precisely Hi(Z1).



HOMOLOGY OF THE STEINBERG VARIETY 11

Assume that j > 1 and set w = wj . We will complete the proof using a commutative
diagram:
(3.12)

0 !! Hi(Z1) ⊗ H4n(Zj−1)
id⊗(rj)∗

!!

∗

""

Hi(Z1) ⊗ H4n(Zj)
id⊗resj

!!

∗

""

Hi(Z1) ⊗ H4n(Zw) !!

∗

""

0

0 !! Hi(Zj−1)
(rj)∗

!! Hi(Zj)
resj

!! Hi(Zw) !! 0

and the Five Lemma. We saw in (3.1) that the bottom row is exact and it follows that
the top row is also exact. By induction, the convolution product in H•(Z) determines a
surjective map ∗ : Hi(Z1) ⊗ H4n(Zj−1) −→ Hi(Zj−1). To conclude from the Five Lemma
that the middle vertical map is a surjection, it remains to define the other vertical maps so
that the diagram commutes and to show that the right-hand vertical map is a surjection.

First we show that the image of the map Hi(Z1)⊗H4n(Zj) −→ Hi(Zj) determined by the
convolution product in H•(Z) is contained in Hi(Zj). It then follows that the middle vertical
map in (3.12) is defined and so by exactness there is an induced map from Hi(Z1)⊗H4n(Zw)
to Hi(Zw) so that the diagram (3.12) commutes. Second we show that the right-hand vertical
map is a surjection.

By Lemma 3.5, Λ%∗

1 is the graph of the identity map of g̃%
∗

, and Λ%∗

w is the graph of w̃|eg#∗ .
Therefore, Λ%∗

1 ◦ Λ%∗

w = Λ%∗

w and there is a convolution product

Hi+2(Λ
%∗

1 ) ⊗ H4n+2(Λ
%∗

w )
∗

−−→ Hi+2(Λ
%∗

w ).

Suppose a is in Hi(Z1). Then by Corollary 3.10, a = lim1(a1) for some a1 in Hi+2(Λ%∗

1 ).
It is shown in [3, Proposition 2.7.23] that specialization commutes with convolution, so
lim(a1∗[Λ%∗

w ]) = lim(a1)∗lim([Λ%∗

w ]) = a∗λw. Also, a1∗[Λ%∗

w ] is in Hi+2(Λ%∗

w ) and lim = r∗◦limj

and so a ∗ λw = r∗ ◦ limj(a1 ∗ [Λ%∗

w ]) is in Hi(Zj). By induction, if k < j, then a ∗ λwk
is

in Hi(Zk) and so a ∗ λwk
is in Hi(Zk). Since the set { λwk

| 1 ≤ k ≤ j } is a basis of
H4n(Zj), it follows that a ∗H4n(Zj) ⊆ Hi(Zj). Therefore, the image of the convolution map
Hi(Z1) ⊗ H4n(Zj) −→ Hi(Z) is contained in Hi(Zj).

To complete the proof of Lemma 3.2, we need to show that the induced map from Hi(Z1)⊗
H4n(Zw) to Hi(Zw) is surjective.

Consider the following diagram:

Hi+2(Λ%∗

1 ) ⊗ H4n+2(Λ%∗

w )
∗ !!

lim1 ⊗ limj

""

Hi+2(Λ%∗

w )

limj

""
Hi(Z1) ⊗ H4n(Zj)

∗ !!

id⊗resj

""

Hi(Zj)

resj

""
Hi(Z1) ⊗ H4n(Zw)

∗ !!Hi(Zw)

We have seen that the bottom square is commutative. It follows from the fact that spe-
cialization commutes with convolution that the top square is also commutative. It is shown
in Proposition A.2 that the convolution product Hi+2(Λ%∗

1 ) ⊗ H4n+2(Λ%∗

w ) → Hi+2(Λ%∗

w ) is an
injection. Since Hi+2(Λ%∗

1 ) is finite-dimensional and H4n+2(Λ%∗

w ) is one-dimensional, it follows
that this convolution mapping is an isomorphism. Also, we saw in Lemma 3.9 that resj ◦ limj

is surjective. Therefore, the composition resj ◦ limj ◦ ∗ is surjective and it follows that the
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bottom convolution map Hi(Z1)⊗H4n(Zw) → Hi(Zw) is also surjective. This completes the
proof of Lemma 3.2.

4. Smash Product Structure

In this section we prove Theorem 2.4. We need to show that λw ∗Hi(Z1) ∗ λw−1 = Hi(Z1)

and that β : Coinv•(W )
∼=−−→ H4n−•(Z1) is an isomorphism of W -algebras.

Suppose that % is a one-dimensional subspace of t so that %∗ = % \ {0} = % ∩ treg. Recall
that for S ⊆ t, g̃S = ν−1(S). By Lemma 3.5, if w is in W , then Λ%∗

w is the graph of the
restriction of w̃ to g̃%

∗

. It follows that there is a convolution product

H4n+2(Λ
%∗

w ) ⊗ Hi+2(Λ
w−1(%∗)
1 ) ⊗ H4n+2(Λ

w−1(%∗)
w )

∗
−−→ Hi+2(Λ

%∗

1 ).

Because specialization commutes with convolution, the diagram

H4n+2(Λ%∗

w ) ⊗ Hi+2(Λ
w−1(%∗)
1 ) ⊗ H4n+2(Λ

w−1(%∗)
w )

∗ !!

lim⊗ lim⊗ lim
""

Hi+2(Λ%∗

1 )

lim
""

H4n(Z) ⊗ Hi(Z1) ⊗ H4n(Z)
∗

!! Hi(Z)

commutes.
We saw in Corollary 3.10 that lim1 : Hi+2(Λ%∗

1 ) → Hi(Z1) is surjective. Thus, if c is in

Hi(Z1), then c = lim(c1) for some c1 in Hi+2(Λ
w−1(%∗)
w1

). Therefore,

λw ∗ c ∗ λw−1 = lim([Λ%∗

w ]) ∗ lim(c1) ∗ lim([Λw−1(%∗)
w−1 ]) = lim

(
[Λ%∗

w ] ∗ c1 ∗ [Λw−1(%∗)
w−1 ]

)
.

Since Λ%∗

w and Λw−1(%∗)
w−1 are the graphs of w̃ and w̃−1 respectively, and Λw−1(%∗)

1 is the graph of

the identity function, it follows that [Λ%∗

w ] ∗ c1 ∗ [Λw−1(%∗)
w−1 ] is in Hi+2(Λ

w−1(%∗)
1 ) and so by (3.8),

λw ∗ c ∗ λw−1 is in Hi(Z1). This shows that λw ∗ Hi(Z1) ∗ λw−1 = Hi(Z1) for all i.
To complete the proof of Theorem 2.4 we need to show that if w is in W and f is in

Coinvi(W ), then β(w · f) = λw ∗ β(f) ∗ λw−1 where w · f denotes the natural action of w on
f . To do this, we need some preliminary results.

First, since Λ%∗

1 is the diagonal in g̃%
∗

× g̃%
∗

, it is obvious that

δ ◦ w̃−1 = (w̃−1 × w̃−1) ◦ δ : g̃w−1(%∗) −→ Λ%∗

1 .

Therefore,

(4.1) δ∗ ◦ w̃−1
∗ = (w̃−1 × w̃−1)∗ ◦ δ∗ : Hi(g̃

w−1(%∗)) −→ Hi(Λ
%∗

1 )

for all i. (The first δ in (4.1) is the diagonal embedding g̃%
∗ ∼= Λ%∗

1 and the second δ is the

diagonal embedding g̃w−1(%∗) ∼= Λw−1(%∗)
1 .)

Next, with % ⊆ t as above, g̃% = g̃%
∗ ∐

ν−1(0) = g̃%
∗ ∐

Ñ and the restriction of ν : g̃% → % to
g̃%

∗

is a locally trivial fibration. Therefore, there is a specialization map lim0 : Hi+2(g̃%
∗

) →
Hi(Ñ ). Since δ∗ : Hi+2(g̃%

∗

) → Hi+2(Λ%∗

1 ) and δ∗ : Hi(Z) → Hi(Z1) are isomorphisms, the
next lemma is obvious.
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Lemma 4.2. Suppose that % is a one-dimensional subspace of t so that %∗ = % \ {0} ⊆ treg.
Then the diagram

Hi+2(g̃%
∗

)
δ∗ !!

lim0

""

Hi+2(Λ%∗

1 )

lim1

""

Hi(Z)
δ∗

!! Hi(Z1)

commutes.

Finally, Ñ ×N N = Ñ and so Z ◦ Ñ = (Ñ ×N Ñ ) ◦ (Ñ ×N N ) = Ñ ×N N . Thus, there
is a convolution action, H4n(Z) ⊗ Hi(Ñ ) −→ Hi(Ñ ), of H4n(Z) on Hi(Ñ ).

Suppose that w is in W and z is in H i(B). Then π∗ ◦ pd(z) is in H4n−i(Ñ ) and so
λw ∗ (π∗ ◦ pd(z)) is in H4n−i(Ñ ). It is shown in [3, Proposition 7.3.31] that for y in H•(B),
λw ∗ π∗(y) = εwπ∗(w · y) where εw is the sign of w and w · y denotes the action of W on
H•(B) coming from the action of W on G/T and the homotopy equivalence G/T / B. It is
also shown in [3, Proposition 7.3.31] that pd(w · z) = εww · pd(z). Therefore,

λw ∗ (π∗ ◦ pd(z)) = εwπ
∗(w · pd(z)) = εwεwπ

∗ ◦ pd(w · z) = π∗ ◦ pd(w · z).

This proves the next lemma.

Lemma 4.3. If w is in W and z is in Hi(B), then λw ∗ (π∗ ◦ pd(z)) = π∗ ◦ pd(w · z).

Proof of Theorem 2.4. Fix w in W and f in Coinvi(W ). Using the fact that β =
δ∗ ◦ π∗ ◦ pd ◦ bi we compute

λw ∗ β(f) ∗ λw−1 = lim1

(
[Λ%∗

w ] ∗ lim−1
1 (β(f)) ∗ [Λw−1(%∗)

w−1 ]
)

[3, 2.7.23]

= lim1 ◦(w̃
−1 × w̃−1)∗ ◦ lim−1

1 ◦β(f) Proposition A.3

= lim1 ◦δ∗ ◦ w̃−1
∗ ◦ δ−1

∗ ◦ lim−1
1 ◦β(f) (4.1)

= δ∗ ◦ lim0 ◦w̃
−1
∗ ◦ δ−1

∗ ◦ lim−1
1 ◦δ∗ ◦ δ

−1
∗ ◦ β(f) Lemma 4.2

= δ∗ ◦ lim0 ◦w̃
−1
∗ ◦ lim−1

0 ◦δ−1
∗ ◦ β(f) Lemma 4.2

= δ∗ ◦ lim0 ◦w̃
−1
∗ ◦ lim−1

0 ◦π∗ ◦ pd ◦ bi(f)

= δ∗ ◦ lim0

(
(lim−1

0 ◦π∗ ◦ pd ◦ bi(f)) ∗ [Λw−1(%∗)
w−1 ]

)
[3, 2.7.11]

= δ∗ ((π∗ ◦ pd ◦ bi(f)) ∗ λw−1) [3, 2.7.23]

= δ∗ (λw ∗ (π∗ ◦ pd ◦ bi(f))) Lemma A.1 and [3, 3.6.11]

= δ∗ ◦ π
∗ ◦ pd(w · bi(f)) Lemma 4.3

= δ∗ ◦ π
∗ ◦ pd ◦ bi(w · f) bi is W -equivariant

= β(w · f).

This completes the proof of Theorem 2.4.

Appendix A. Convolution and Graphs

In this appendix we prove some general properties of convolution and graphs.
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Suppose M1, M2, and M3 are smooth varieties, dim M2 = d, and that Z1,2 ⊆ M1 × M2

and Z2,3 ⊆ M2 × M3 are two closed subvarieties so that the convolution product,

Hi(Z1,2) ⊗ Hj(Z2,3)
∗

−−→ Hi+j−2d(Z1,2 ◦ Z2,3),

in [3, §2.7.5] is defined. For 1 ≤ i, j ≤ 3, let τi,j : Mi × Mj → Mj × Mi be the map that
switches the factors. Define Z2,1 = τ1,2(Z1,2) ⊆ M2 × M1 and Z3,2 = τ2,3(Z2,3) ⊆ M3 × M2.
Then the convolution product

Hj(Z3,2) ⊗ Hi(Z2,1)
∗′

−−→ Hi+j−2d(Z3,2 ◦ Z2,1)

is defined. We omit the easy proof of the following lemma.

Lemma A.1. If c is in Hi(Z1,2) and d is in Hj(Z2,3), then (τ1,3)∗(c∗d) = (τ2,3)∗(d)∗′(τ1,2)∗(c).

Now suppose X is an irreducible, smooth, m-dimensional variety, Y is a smooth variety,
and f : X → Y is a morphism. Then if ΓX and Γf denote the graphs of idX and f respectively,
using the notation in [3, §2.7], we have ΓX ◦ Γf = Γf and there is a convolution product
∗ : Hi(ΓX) ⊗ H2m(Γf) −→ Hi(Γf).

Proposition A.2. The convolution product ∗ : Hi(ΓX)⊗H2m(Γf ) −→ Hi(Γf ) is an injection.

Proof. For i, j = 1, 2, 3, let pi,j denote the projection of X ×X×Y on the ith and jth factors.
Then the restriction of p1,3 to (ΓX × Y ) ∩ (X × Γf) is the map that sends (x, x, f(x)) to
(x, f(x)). Thus, the restriction of p1,3 to (ΓX × Y ) ∩ (X × Γf) is an isomorphism onto Γf

and hence is proper. Therefore, the convolution product in homology is defined.
Since X is irreducible, so is Γf and so H2m(Γf) is one-dimensional with basis [Γf ]. Suppose

that c is in Hi(ΓX). We need to show that if c ∗ [Γf ] = 0, then c = 0.
Fix c in Hi(ΓX). Notice that the restriction of p1,3 to (ΓX × Y )∩ (X × Γf) is the same as

the restriction of p2,3 to (ΓX × Y ) ∩ (X × Γf). Thus, using the projection formula, we have

c ∗ [Γf ] = (p1,3)∗
(
p∗1,2c ∩ p∗2,3[Γf ]

)

= (p2,3)∗
(
p∗1,2c ∩ p∗2,3[Γf ]

)

=
(
(p2,3)∗p

∗
1,2c

)
∩ [Γf ],

where the intersection product in the last line is from the cartesian square:

Γf

""

= !! Γf

""

X × Y =
!! X × Y

Let p : X × Y → X and q : ΓX → X be the first and second projections, respectively.
Then the square

ΓX × Y

p1,2

""

p2,3
!! X × Y

p

""
ΓX q

!! X

is cartesian. Thus,

p∗ (c ∗ [Γf ]) = p∗
((

(p2,3)∗p
∗
1,2c

)
∩ [Γf ]

)
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= p∗ ((p∗q∗c) ∩ [Γf ])

= q∗c ∩ (p|Γf
)∗[Γf ]

= q∗c ∩ [X]

= q∗c,

where we have used the projection formula and the fact that (p|Γf
)∗[Γf ] = [X].

Now if c ∗ [Γf ] = 0, then q∗c = 0 and so c = 0, because q is an isomorphism. !

Let ΓY denote the graph of the identity functions idY . Then the following compositions
and convolution products in Borel-Moore homology are defined:

• Γf ◦ΓX = Γf and so there is a convolution product Hi(Γf )⊗Hj(ΓX) −→ Hi+j−m(Γf).
• ΓY ◦ Γf−1 = Γf−1 and so there is a convolution product Hi(ΓX) ⊗ Hj(Γf−1) −→

Hi+j−m(Γf−1).
• Γf ◦ Γf−1 = ΓX and so there is a convolution product Hi(Γf) ⊗ Hj(Γf−1) −→

Hi+j−m(ΓX).

Thus, if c is in Hi(ΓY ), then [Γf ] ∗ c ∗ [Γf−1 ] is in Hi(ΓX). Notice that f−1 × f−1 : ΓY → ΓX

is an isomorphism, so in particular it is proper.

Proposition A.3. If c is in Hi(ΓY ), then [Γf ] ∗ c ∗ [Γf−1 ] = (f−1 × f−1)∗(c).

Proof. We compute ([Γf ] ∗ c) ∗ [Γf−1 ], starting with [Γf ] ∗ c.
For 1 ≤ i, j ≤ 3 let qi,j be the projection of the subset

Γf × Y ∩ X × ΓY = { (x, f(x), f(x)) | x ∈ X }

of X ×Y ×Y onto the i, j-factors. Then q1,3 = q1,2. Therefore, using the projection formula,
we see that

[Γf ] ∗ c = (q1,3)∗
(
q∗1,2[Γf ] ∩ q∗2,3c

)

= (q1,2)∗
(
q∗1,2[Γf ] ∩ q∗2,3c

)

= [Γf ] ∩ (q1,2)∗q
∗
2,3c

= (q1,2)∗q
∗
2,3c.

Next, for 1 ≤ i, j ≤ 3 let pi,j be the projection of the subset

Γf × X ∩ X × Γf−1 = { (x, f(x), x) | x ∈ X }

of X × Y × X onto the i, j-factors. Then p1,3 = (f−1 × id) ◦ p2,3. Therefore, using the fact
that [Γf ] ∗ c = (q1,2)∗q∗2,3c and the projection formula, we have

([Γf ] ∗ c) ∗ [Γf−1] = (p1,3)∗
(
p∗1,2((q1,2)∗q

∗
2,3c) ∩ p∗2,3[Γf−1 ]

)

= (f−1 × id)∗(p2,3)∗
(
p∗1,2((q1,2)∗q

∗
2,3c) ∩ p∗2,3[Γf−1 ]

)

= (f−1 × id)∗
(
(p2,3)∗p

∗
1,2(q1,2)∗q

∗
2,3c ∩ [Γf−1 ]

)

= (f−1 × id)∗(p2,3)∗p
∗
1,2(q1,2)∗q

∗
2,3c.
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The commutative square

Γf × X ∩ X × Γf−1

id×id×f
!!

id
""

Γf × Y ∩ X × ΓY

q1,2

""

Γf × X ∩ X × Γf−1
p1,2

!! Γf

is cartesian, so p∗1,2(q1,2)∗ = (id × id × f)∗.
Also, the commutative square

Γf × X ∩ X × Γf−1

q2,3◦(id×id×f)
!!

(f−1×id)◦p2,3

""

ΓY

f−1×f−1

""

ΓX
id

!! ΓX

is cartesian, so (f−1 × id)∗(p2,3)∗(id × id × f)∗q∗2,3 = (f−1 × f−1)∗.
Therefore,

([Γf ] ∗ c) ∗ [Γf−1 ] = (f−1 × id)∗(p2,3)∗p
∗
1,2(q1,2)∗q

∗
2,3c

= (f−1 × id)∗(p2,3)∗(id × id × f)∗q∗2,3c

= (f−1 × f−1)∗c.

This completes the proof of the proposition. !
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