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HOMOLOGY OF THE STEINBERG VARIETY
AND
WEYL GROUP COINVARIANTS

J. MATTHEW DOUGLASS AND GERHARD ROHRLE

ABSTRACT. Let G be a complex, connected, reductive algebraic group with Weyl group W
and Steinberg variety Z. We show that the graded Borel-Moore homology of Z is isomorphic
to the smash product of the coinvariant algebra of W and the group algebra of W.

1. INTRODUCTION

Suppose G is a complex, reductive algebraic group, B is the variety of Borel subgroups of
G, g is the Lie algebra of G, and N is the cone of nilpotent elements in g. If 7*B denotes the
cotangent bundle of B, then there is a moment map, po: T*B — N. The Steinberg variety
of G is the fibered product T*B x T*B which we identify with the closed subvariety

Z ={(x,B',B") € N x Bx B |z e Lie(B')NLie(B")}

of N x B x B. Set n=dimB. Then Z is a 2n-dimensional, complex algebraic variety.

If V =@V, is a graded vector space, we will frequently denote V' by V,. Similarly, if X
is a topological space, then H;(X) denotes the i*! rational Borel-Moore homology of X and
H.(X) = ®;>0H;(X) denotes the total Borel-Moore homology of X.

Fix a maximal torus, T, of G, with Lie algebra t, and let W = Ng(T')/T be the Weyl
group of (G,T). In [6] Kazhdan and Lusztig defined an action of W x W on H(Z) and they
showed that the representation of W x W on the top-dimensional homology of Z, Hy,(Z),
is equivalent to the two-sided regular representation of W. Tanisaki [9] and, more recently,
Chriss and Ginzburg [3] have strengthened the connection between H(Z) and W by defining
a Q-algebra structure on H,(Z) so that H;(Z) « H;(Z) C H;4j_4,(Z). Chriss and Ginzburg
3, §3.4] have also given an elementary construction of an isomorphism between Hy,(Z) and
the group algebra QW.

In this paper we extend the work of Kazhdan-Lusztig and Chriss-Ginzburg and use ele-
mentary topological arguments to compute the total Borel-Moore homology of the Steinberg
variety. We show that H,(Z) is isomorphic to the smash product of the coinvariant algebra
of W and the group algebra of W.

Precisely, for 0 < i < n let Coinvy;(W) denote the degree i subspace of the rational
coinvariant algebra of W, so Coinvy; (W) may be identified with the space of degree i, W-
harmonic polynomials on t. If j is odd, define Coinv,;(W) = 0. Recall that the smash product,
Coinv(W)#QW , is the Q-algebra whose underlying vector space is Coinv(IV) ®qg QW with
multiplication satisfying (f1 ® ¢1) - (f2 ® ¢2) = fi191(f2) ® ¢1¢92 where fi and f, are in
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Coinv(W), ¢1 and ¢, are in QW, and QW acts on Coinv(W) in the usual way. The algebra
Coinv(W)#QW is graded by (Coinv(W)#QW); = Coinv;(W)#QW and we will denote
this graded algebra by Coinve(W)#QW. In our main result we construct an isomorphism
of graded algebras Hy, o(Z) = Coinv, (W )#QW.

This paper was motivated by the observation, pointed out to the first author by C. Strop-
pel, that some very general K-theoretic results in [3] can be used to show that He(Z) is
isomorphic to the smash product of QW and Coinv,(W). However, such an argument would
rely on some deep results from equivariant K-theory. In particular, this would require the
bivariant Riemann-Roch Theorem and the Kazhdan-Lusztig isomorphism between the equi-
variant K-theory of Z and the extended, affine, Hecke algebra. In contrast, and also in
the spirit of Kazhdan and Lusztig’s original construction, our argument uses only elemen-
tary topological notions and is directly related to the underlying geometry of the Steinberg
variety.

Another approach to the Borel-Moore homology of the Steinberg variety uses intersection
homology. Let u: Z — N be the projection on the first factor. Then, as in [3, §8.6],
H,(7Z) = Ext4D"(j_\/') (R Qupr, Rk Qpr). The Decomposition Theorem of Beilenson, Bernstein,
and Deligne can be used to decompose R, Qy into a direct sum of simple perverse sheaves
Ru.Qun = @, ICZf”f where z runs over a set of orbit representatives in A, for each z, ¢
runs over a set of irreducible representations of the component group of Zg(z), and IC, ,
denotes an intersection complex (see [2] or [7, §4,5]). Chriss and Ginzburg have used this
construction to describe an isomorphism Hy,(Z) = QW and in addition to give a description
of the projective, indecomposable Hq(Z)-modules.

It follows from Theorem 2.3 that H;(Z) = Coinvy,—;(W) ® Hy,(Z) and so
(1.1)

Coinv;(W) @ Hin(Z) = Extyf) (RuQu, RiQy) = @ @D Extiiy, (IC757,1C)%") .

z,0 Yy

In the special case when ¢ = 0 we have that

Coinvg(W) ® Hyn(Z) = Endpv) (RuQp) = EB Endp (IC;37) .
z,¢

The image of the one-dimensional vector space Coinvy(W) in Endpy (Ru.Qyr) is the line
through the identity endomorphism, and QW = H,,(Z) = @, Endpy (ICZf”f) is the
Wedderburn decomposition of QW as a direct sum of minimal two-sided ideals. It would
be instructive to find a nice description of the image of Coinv;(W) in the right-hand side of
(1.1).

The rest of this paper is organized as follows: in §2 we set up our notation and state
the main results; in §3 we construct an isomorphism of graded vector spaces between
Coinve (W) ® QW and Hy,—e(Z); and in §4 we complete the proof that this isomorphism is
in fact an algebra isomorphism when Coinv, (W) ® QW is given the smash product multipli-
cation. Some very general results about graphs and convolution that we need for the proofs
of the main theorems are proved in an appendix.

In this paper ® = ®q, if X is a set, then dx, or just d, denotes the diagonal embedding
of X in X x X, and for g in G and x in g, ¢ -  denotes the adjoint action of g on .
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2. PRELIMINARIES AND STATEMENT OF RESULTS

Fix a Borel subgroup, B, of G with T' C B and define U to be the unipotent radical of B.
We will denote the Lie algebras of B and U by b and u respectively.

Our proof that He(Z) is isomorphic to Coinve(W)#QW makes use of the specialization
construction used by Chriss and Ginzburg in [3, §3.4] to establish the isomorphism between
Hy,(Z) and QW. We begin by reviewing their construction.

The group G acts diagonally on B x B. Let O, denote the orbit containing (B, wBw™).
Then the rule w — O, defines a bijection between W and the set of G-orbits in B x B.

Let m;: Z — B x B denote the projection on the second and third factors and for w in
W define Z,, = 7,'(O,). For w in W we also set u,, = uNw - u. The following facts are
well-known (see [8] and [7, §1.1]):

o 7,2 G xB"By,,
e dim 7, = 2n.
e The set { Z,, | w € W} is the set of irreducible components of Z.

Define

g={(z,B)egxB|zeLieB)},
N ={(z,B)eN x B|zeLie(B)}, and
Z={(x,B,B") € gx BxB|uzeLie(B)NLie(B") },

and let y1: g — g denote the projection on the first factor. Then N = T*B, u(N) = N,
7 NXNN andZ_gxgg

Let 7: 7 — B x B denote the projection on the second and third factors and for w in W
define Z, ~1(O,,). Then it is well-known that dim Z,, = dim g and that the closures of
the Z,’s for w in W are the irreducible components of Z (see [7, §1.1]).

Next, for (z,gBg™!) in g, define v(z, gBg~!) to be the projection of g=! - z in t. Then p
and v are two of the maps in Grothendieck’s simultaneous resolution:

-

—t/W
It is easily seen that if i: 7 — g is the projection on the first factor, then the square

o
B ——

7 g
|

CRE BT

is cartesian, where the vertical map on the left is given by (x, B', B”) — ((x, B'), (x, B")). We

will frequently identify 7 with the subvariety of g x g consisting of all pairs ((z, B'), (x, B"))
with z in Lie(B’) N Lie(B").
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For w in W, let Ty-1 = { (h,w™ - h) | h € t} C t X t denote the graph of the action of
w~! on t and define

Ao=20wxv) " ' Tps)={(z,B,B") € Z|v(x,B") =w 'v(z,B)}.

In the special case when w is the identity element in W, we will denote A, by A;.
The spaces we have defined so far fit into a commutative diagram with cartesian squares:

=)

(2.1) Ay 7 g
| L
(v % ¥) " (Dyt) —=F X §—r 0 X 0

Let vy,: Ay, — T'y-1 denote the composition of the leftmost vertical maps in (2.1), so v, is
the restriction of v X v to A,,. R

For the specialization construction, we consider subsets of Z of the form v,'(S’) for
S’ CTy-1. Thus, for h in t we define A" = v 1(h,w™h). Notice in particular that A2 = Z.
More generally, for a subset S of t we define A5 =[], g A". Then, AJ = v '(S’), where S’
is the graph of w™? restricted to S.

Let t,e; denote the set of regular elements in t.

Fix a one-dimensional subspace, ¢, of t so that {Nt,e, = ¢\ {0} and set ¢* = ¢\ {0}. Then
A = AL TTAS = AL [1Z. We will see in Corollary 3.6 that the restriction of v, to A%
is a locally trivial fibration with fibre G/T. Thus, using a construction due to Fulton and
MacPherson ([4, §3.4], [3, §2.6.30]), there is a specialization map

lim: Hypo(AL) — Ho(2).

Since Af, is an irreducible, (2n + 1)-dimensional variety, if [A] denotes the fundamental
class of A’;, then Hy, »(A%) is one-dimensional with basis {[A’,]}. Define A, = lim([A%])
in Hy,(Z). Chriss and Ginzburg [3, §3.4] have proved the following theorem.

Theorem 2.2. Consider Ho(Z) endowed with the convolution product.

(a) For0<i,j <d4n, H(Z)* H;(Z) C Hiy;j—an(Z). In particular, Hy,(Z) is a subalgebra
of H(Z).

(b) The element A\, in Hy,(Z) does not depend on the choice of {.

o

(c) The assignment w — \,, extends to an algebra isomorphism o: QW — Hy,(Z).

Now consider
Zy={(x,B B Ye N x Bx B|z € Lie(B') }.
Then Z; may be identified with the diagonal in N x N. 1t follows that Z; is closed in Z
and isomorphic to N.
Since N & T*B, it follows from the Thom isomorphism in Borel-Moore homology [3, §2.6]
that H; 0,(Z,) = H;(B) for all i. Since B is smooth and compact, H;(B) = H?*"~*(B) by
Poincaré duality. Therefore, Hy, ;(Z;) = H'(B) for all i.
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The cohomology of B is well-understood: there is an isomorphism of graded algebras,
H*(B) = Coinve(W). It follows that H;(Z) = 0 if j is odd and Hy,—9;(Z;) = Coinvy; (W)
for 0 <i<n.

In §3 below we will prove the following theorem.

Theorem 2.3. Consider the Borel-Moore homology of the variety Z;.

(a) There is a convolution product on He(Zy). With this product, He(Z1) is a commuta-
tive Q-algebra and there is an isomorphism of graded Q-algebras

3: Coinve(W) — Hyn_o(Z1).

(b) If r: Zy — Z denotes the inclusion, then the direct image map in Borel-Moore ho-
mology, rv: He(Z1) — He(Z), is an injective ring homomorphism.

(¢) If we identify Ho(Z1) with its image in Ho(Z) as in (b), then the linear transformation
given by the convolution product
Hi(Z1) © Hin(Z) — Hi(Z)
is an tsomorphism of vector spaces for 0 <1i < 4n.
The algebra Coinv,(W) has a natural action of W by algebra automorphisms, and the

isomorphism 3 in Theorem 2.3(a) is in fact an isomorphism of W -algebras. The W-algebra
structure on He(Z) is described in the next theorem, which will be proved in §4.

Theorem 2.4. If w is in W and H4(Z,) is identified with its image in He(Z), then
)‘w * HZ(Z1> * >\w*1 = Hz(Zl>

Thus, conjugation by A, defines a W-algebra structure on He(Zy). With this W -algebra

structure, the isomorphism 3: Coinve(W) — Hyn_o(Zy) in Theorem 2.3(a) is an isomor-
phism of W -algebras.

Recall that Coinv(W)#QW is graded by (Coinv(W)#QW); = Coinv;(W) ® QW. Then
combining Theorem 2.2(c), Theorem 2.3(c), and Theorem 2.4 we get our main result.

Theorem 2.5. The composition

Coinve(W)#QW 2% Hyy o(Z)) © Hin(Z) == Hun_o(Z)

s an isomorphism of graded Q-algebras.

3. FACTORIZATION OF H,(Z)

Proof of Theorem 2.3(a). We need to prove that H,(Z7) is a commutative Q-algebra and
that Coinvz(W) = Hypo.
Let 7: N — B by n(z,B’) = B’. Then 7 may be identified with the vector bundle

projection T*B — B and so the induced map in cohomology 7*: HY(B) — H'(N) is an
isomorphism. The projection 7 determines an isomorphism in Borel-Moore homology that
we will also denote by 7* (see [3, §2.6.42]). We have *: H;(B) — H;\2,(N).



6 J.M. DOUGLASS AND G. ROHRLE

For a smooth m-dimensional variety X, let pd: H(X) — Hs,,_;(X) denote the Poincaré
duality isomorphism. Then the composition

-1 . * .~ ~
Hapi(B) 2 H'(B) " H'(N') 2 Hini(N)
is an isomorphism. It follows from the uniqueness construction in [3, §2.6.26] that
pdor*opd™ = n*: Hyy i(B) — Hyn (V)

and so 7 o pd = pdo7*: H(B) — Hy,_i(N).

Recall that Coinv,;(W) = 0 if j is odd and Coinvy; (W) is the degree i subspace of the
coinvariant algebra of W. Let bi: Coinve(WW) — H*(B) be the Borel isomorphism (see [1,
§1.5] or [5]). Then with the cup product, H*(B) is a graded algebra and bi is an isomorphism
of graded algebras.

Define 3: Coinv;(W) — Hy,_;(Z1) to be the composition

pd

Coinv; (W) = H'(B) = H'(N') 2% Hyp i(N) = Hyn i(Z1)
where 0 = 0. Then (3 is an isomorphism of graded vector spaces and

B =0d0,opdon™obi=20d,0n" opdo bi.

The algebra structure of /*(B) and H*(N) is given by the cup product, and 7*: H*(B) —
H*(N) is an isomorphism of graded algebras. Since N is smooth, as in [3, §2.6.15], there

is an intersection product defined on H4(N) using Poincaré duality and the cup product on
H*(N). Thus, pd: H*(N) — Hy,_o(N) is an algebra isomorphism. Finally, it is observed
in [3, §2.7.10] that 0,: Hy(N) — H,(Z,) is a ring homomorphism and hence an algebra
isomorphism. This shows that 3 is an isomorphism of graded algebras and proves Theorem

2.3(a).

Proof of Theorem 2.3(b). To prove the remaining parts of Theorem 2.3, we need a linear
order on W. Suppose |W| = N. Fix a linear order on W that extends the Bruhat order.
Say W = {wy,...,wx}, where w; = 1 and wy is the longest element in W.

For 1 < j < N, define Z; = [[]_, Z.,. Then, for each j, Z; is closed in Z, Zy; is open in
Zj, and Zj = Z; 1 ][ Zy,;. Notice that Zy = Z and 7, = Z,,,.

Similarly, define 2j =11, ZD Then each 2j is closed in Z , Z,)j is open in 2]-, and
Zj == Zj—l H ij.

We need to show that r,: He(Z;) — H.(Z) is an injective ring homomorphism.

Let res;: H;(Z;) — H;(Zy,;) denote the restriction map in Borel-Moore homology induced
by the open embedding Z,, C Z; and let r;: H;(Z;_1) — H;(Z;) denote the direct image
map in Borel-Moore homology induced by the closed embedding Z;_; C Z;. Then there is
a long exact sequence in homology

res;

. -—>H,-(Z-_1)L>Hi(Z-)—>H,-(ij)—8> i1 (Zj ) — - -

J J
It is shown in [3, §6.2] that 0 = 0 and so the sequence

T res;

(3.1) 0——=Hy(Z;j—1)—=Hi(Z;)—>Hi(Z,)—0
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is exact for every ¢ and j. Therefore, if r: Z; — Z denotes the inclusion, then the direct
image r.: H;(Z;) — H;(Z) is an injection for all 4. (The fact that r depends on j should not
lead to any confusion.)

We will frequently identify H;(Z;) with its image in H;(Z) and consider H;(Z;) as a subset
of H;(Z). Thus, we have a flag of subspaces 0 C H;(Z;) C --- C H;(Zn-1) C H;(2).

In particular, r.: H;(Z,) — H;(Z) is an injection for all i. It follows from [3, Lemma
5.2.23] that r, is a ring homomorphism. This proves part (b) of Theorem 2.3.

Proof of Theorem 2.3(c). We need to show that the linear transformation given by the
convolution product H;(Z;) ® Hy,(Z) — H;(Z) is an isomorphism of vector spaces for
0<1i<d4n.

The proof is a consequence of the following lemma.

Lemma 3.2. The image of the convolution map * : H;(Z,) @ Hyn(Z;) — H;(Z) is precisely
H(Zj) for0<i<4n and 1 <j < N.

Assuming that the lemma has been proved, taking ;7 = N, we conclude that the convolution
product in H(Z) induces a surjection H;(Z,) ® Hy,(Z) — H;(Z). It is shown in [3, §6.2]
that dim H(Z) = |[W|? and so dim H,(Z;) ® Hy,(Z) = |W|* = dim H,(Z). Thus, the
convolution product induces an isomorphism H;(Z;) ® Hy,(Z) = Hi(Z).

The rest of this section is devoted to the proof of Lemma 3.2.

To prove Lemma 3.2 we need to analyze the specialization map, lim: H,»(AY) — H(Z),
beginning with the subvarieties AY, and A% of A,,.

Subvarieties of A,. Suppose that ¢ is a one-dimensional subspace of t with ¢* = ¢\ {0} =
¢ N tee. Recall that u, =unNw-ufor win W.

Lemma 3.3. The variety A, N Z,, is the G-saturation in Z of {(h 4+ n, B,wBw™) | h €
l,n €uy .

Proof. By definition,
A=A TTAS ={(@. B By e Z | v(z,B") =w 'v(z,B) e w () }.

Suppose that h is in t,e and (z,g1Bg; ", g2Bg; ") is in A", Then g;' -2 = h + n; and
g2_1 -2 = wth 4 ny for some n; and ny in u. Since h is regular, there are elements u; and
uy in U so that u;'g;*-h =h and uy'g; ' - h = w™'h. Then z = gu; - h = goupw™" - h and
S0 g1uy = gausw 't for some ¢ in T. Therefore, (z,g1Bg; ", g2Bgy ') = gius - (h, B,wBw™).
Thus, A" is contained in the G-orbit of (h, B,wBw™!). Since v is G-equivariant, it follows
that A" is G-stable and so A” is the full G-orbit of (h, B,wBw™'). Therefore, A% is the
G-saturation of { (h +n, B,wBw™" | h € *, n € u, } and A" C Z,, for h in (.

We have already observed that A% = Z and so

ANZ, = (Af; mZU) I1 (Agmfw) = A5 ] Ze-
It is easy to see that Z,, is the G-saturation of { (n, B,wBw™') | n € u, } in Z. This proves
the lemma. 0

Corollary 3.4. The variety A‘, N Zw s a locally trivial, affine space bundle over O, with
fibre isomorphic to £ + u,,, and so there is an isomorphism A, N Z, = G xB"B (0 +u,).
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Proof. 1t follows from Lemma 3.3 that the map given by projection on the second and third
factors is a G-equivariant morphism from A% onto O, and that the fibre over (B, wBw™!)
is { (h+n,B,wBw™)|hel,necu,}. Therefore, A, = G xB"E ({ +u,). O

Let g, denote the set of regular semisimple elements in g and define g,s = { (z, B") € g |
T € gy }. For an arbitrary subset S of t, define g° = v=1(S) ={(z,B') € g | v(x,B") € S }.
For w in W, define w: G/T X tyeg —> G/T X tyeg by w(gT,h) = (qwT,w'h). The rule

(gT, h) — (g - h,gB) defines an isomorphism of varieties f: G/T X tieq = Bus and we will
denote the automorphism fow o f~! of g also by w. Notice that if /i is in t. and g is in
G, then w(g - h,gB) = (g h,gwBw™'g™!).

Fue,

Lemma 3.5. The variety AL is the graph of wlz: g" — g

Proof. 1t follows from Lemma 3.3 that

AL ={(g-h,gBg ', gwBw'g7") €gux BxB|hel*, geG}
={((g-h,gBg™"),(g-h,gwBw'g""))egxglhel ge G}

The argument in the proof of Lemma 3.3 shows that g© = {(g-h,gBg ) |h € *, g€ G}
and by definition w(g-h, gB) = (g-h, gwBw~'g~"). Therefore, AY is the graph of w[ge. O

Corollary 3.6. The map v,,: A, — (* is a locally trivial fibration with fibre isomorphic to
G/T.

Proof. This follows immediately from the lemma and the fact that g° = G/T x ¢*. O

The specialization map. Suppose that w is in W and that ¢ is a one-dimensional subspace
of t with ¢* = £\ {0} = £ Nty Asin [4] and [3, §2.6.30], lim: H; o(AY) — H;(Z) is the
composition of three maps, defined as follows.

As a vector space over R, ¢ is two-dimensional. Fix an R-basis of ¢, say {vy,vs}. Define
P to be the open half plane R-qv; ® Ruy, define I to be the ray R.gv;, and define I to be
the closure of 15, so I = Rxgv;.

Since P is an open subset of ¢*; AP is an open subset of A’ and so there is a restriction
map in Borel-Moore homology res: Hy,»(AY)) — Hiio(AL).

The projection map from P to I.o determines an isomorphism in Borel-Moore homology
¥ Hipa(Ay) — Hipa (AG°).

Since I = I-o[J{0}, we have AL = A>0JJAS = A>0 ][ Z, where Z is closed in AZ. The
connecting homomorphism of the long exact sequence in Borel-Moore homology arising from
the partition AL = AL>0[[ Z is a map 0: H;,1(AL>0) — H,(Z).

By definition, lim = 9 o 1) o res.

Now fix j with 1 < j < N and set w = w;.

Consider the intersection AL N Z;, = (AL N Z,)[[(Z N Z;). Then Z N Z; is closed in
AL N Z; and by construction, A0 C Z; and Z N Z; = Z;. Thus, AL N Z; = A0 ]] Z;.
Let 9;: Hiy1(AL>0) — H;(Z;) be the connecting homomorphism of the long exact sequence
in Borel-Moore homology arising from this partition. Because the long exact sequence in
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Borel-Moore homology is natural, we have a commutative square:

Hig1 (ML) — Hi(2)

| I§

Hip1(A0) —— Hi(Z;)

This proves the following lemma.

Lemma 3.7. Fiz j with 1 < j < N and set w = wj. Then 0: H; 1 (A>0) — H(Z) factors
as r,00; where d;: Hyyi(A>°) — H;(Z;) is the connecting homomorphism of the long exact
sequence arising from the partition AL, N Z = N> 1] Z;.

It follows from the lemma that lim: H;,o(A’,) — H;(Z) factors as

res

(3.8) Hipa(AL) " Hipo(AD) 2 Hia(ALY) 2 Hi(Z)) " Hi(Z).
Define lim;: H;,o(AL) — H;(Z;) by lim; = 9; 0 ¢ o res.
Specialization and restriction. As above, fix j with 1 < 7 < N and a one-dimensional

subspace £ of t with £* = ¢\ {0} = { N t,ee. Set w = w;.
Recall the restriction map res;: H;(Z;) — H;(Z,) from (3.1).

Lemma 3.9. The composition res;olim;: H; »(A) — Hy(Z,) is surjective for 0 < i <
4n.
Proof. Using (3.8), res; olim; factors as

res;

Hipo(AD) =5 Hio(AD) 5 Hyy (AB0) -2 Hy(Z)) —=5 Hi(Z).

Lemma 3.11 below shows that res is always surjective and the map v is an isomorphism, so
we need to show that the composition res; o 9; is surjective.

Consider AL N Z, = (AL N 23) N Zy = A>0]] Zy. Then AL is open in AL N Z,, and we
have a commutative diagram of long exact sequences

~ Ow
= Hi (A, N Z,) — Hil (ML) = Hi(Zy) — -

I

~ 3
T i+1(AfUﬂZj)—> z+1AI>0 —>H(Z)—>

where 0, is the connecting homomorphism of the long exact sequence arising from the
partition A N Z, = Al>0]] Z,. We have seen at the beginning of this section that res; is
surjective and so it is enough to show that 0,, is surjective.

Recall that {v;,vs} is an R-basis of £ and I = Rsgv;. Define

Er =G xP"B (Roguy +uy),
Er,=G x BB (Roovy +uy,), and

BNvB
=G x Uy
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It follows from Corollary 3.4 that Er & Al Fr , = Al>0 and E, & Z,, so the long exact

sequence arising from the partition AL N ZU = A>0]] Z, may be identified with the long
exact sequence arising from the partition E; = Er_, [[ Eo:

5}
w——Hip1 (Er)——His1 (Er ) —=Hi(Ep)— - -

Therefore, it is enough to show that Jg is surjective. In fact, we show that He(E;) = 0 and
so Og is an isomorphism.

Define Fr = G x5 B (Rv; + u,,). Then Eg is a smooth, real vector bundle over G/BNYB
and so Eg is a smooth manifold containing E; as a closed subset. We may apply [3, 2.6.1]
and conclude that H;(E;) & H""1=(Eg, Fg \ Ej).

Consider the cohomology long exact sequence of the pair (Fg, Eg \ Ey). Since Eg is a
vector bundle over G/B N "B, it is homotopy equivalent to G/B N “B. Similarly, Eg \
Er = G xB"B (R_yv; +u,,) and so is also homotopy equivalent to G/B N B. Therefore,
H'(Er) = H'(Eg \ E;) and it follows that the relative cohomology group H(Eg, Er \ EJ) is
trivial for every i. Therefore, H(E;) = 0, as claimed.

This completes the proof of the lemma. O

Corollary 3.10. The specialization map lim;: H; (A — H;(Z)) is surjective for 0 <
1 < A4n.

Proof. This follows from Lemma 3.9, because Z; = Z,,, and so res; is the identity map. [
The next lemma is true for any specialization map.

Lemma 3.11. The restriction map res: H; o(AY) — H; »(AL) is surjective for every w
m W oand every i > 0.

Proof. There are homeomorphisms AY, = G/T x ¢* and AL = G/T x P. By definition,
P is an open subset of ¢* and so there is a restriction map res: Hy(¢*) — Hy(P). This
map is a non-zero linear transformation between one-dimensional Q-vector spaces so it is an
isomorphism.

Using the Kiinneth formula we get a commutative square where the horizontal maps are
isomorphisms and the right-hand vertical map is surjective:

Hi5(AS) ——— Hy(G/T) @ Ha(£*) + H; 11 (G/T) ® Hy (%)
res l l 1d@res +0

Hiyo(AD) Hi(G/T) ® Hy(P)

w

oY

It follows that res: H; o(AL) — Hio(AL) is surjective. O

Proof of Lemma 3.2. Fix ¢ with 0 < i < 4n. We show that the image of the convolution
map * : H;(Z;) ® Hy,(Z;) — H;(Z) is precisely H;(Z;) for 1 < 5 < N using induction on
],

For j = 1, Hy,(Z;) is one-dimensional with basis {\1}. It follows from Theorem 2.2(c)
that A, is the identity in He(Z) and so clearly the image of the convolution map H;(Z;) ®
Hy,(Zy) — H(Z) is precisely H;(Z,).
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Assume that 7 > 1 and set w = w;. We will complete the proof using a commutative
diagram:
(3.12)
1d®(r;)« id@res;

0— Hi(Z1) ® Hyp(Zj—1) —> Hi(Z1) ® Hyn(Z;) — Hi{(Z1) @ Hyn(Zy) —= 0

| | |

(ry)-
Hi(Z;-1) H(Z;) Hi(Z.)

0

0

and the Five Lemma. We saw in (3.1) that the bottom row is exact and it follows that
the top row is also exact. By induction, the convolution product in H,(Z) determines a
surjective map * : H;(Z1) ® Hyn(Z;—1) — H;(Z;_1). To conclude from the Five Lemma
that the middle vertical map is a surjection, it remains to define the other vertical maps so
that the diagram commutes and to show that the right-hand vertical map is a surjection.

First we show that the image of the map H;(Z1) ® Hy,(Z;) — H;(Z;) determined by the
convolution product in H,(Z) is contained in H;(Z;). It then follows that the middle vertical
map in (3.12) is defined and so by exactness there is an induced map from H;(Z1) ® Hy,(Z,)
to H;(Z,) so that the diagram (3.12) commutes. Second we show that the right-hand vertical
map is a surjection.

By Lemma 3.5, A{" is the graph of the identity map of g, and A% is the graph of w
Therefore, A{ o AY, = A% and there is a convolution product

Hito(A7) @ Hingo(Ay) — Higa(Ay,).

Suppose a is in H;(Z;). Then by Corollary 3.10, a = lim;(a;) for some a; in H;,o(A]).
It is shown in [3, Proposition 2.7.23] that specialization commutes with convolution, so
lim(ay*[AL]) = lim(ap) «lHim([AS]) = ax\y,. Also, ayx[AS]is in Hiy2(AY) and lim = r,olim,
and so a x A\, = 7, o lim;(a; * [AY]) is in H;(Z;). By induction, if k < j, then a * \,, is
in H;(Zy) and so a * A\, is in H;(Zy). Since the set {A,, | 1 < k < j} is a basis of
Hy,(Z;), it follows that a x Hy,(Z;) € H;(Z;). Therefore, the image of the convolution map
H,(Z,) ® Hyn(Z;) — H;(Z) is contained in H;(Z;).

To complete the proof of Lemma 3.2, we need to show that the induced map from H;(Z;)®
Hy,(Z,) to Hi(Z,,) is surjective.

Consider the following diagram:

Hiyo(AY) @ Hypio(AL)——=H, o (AL)

g

lim; ® lim; llimj
Hi(Zy) ® Hu,(Z;)——H;(Z;)
id®res; 1e8;

Hz’(Zl) ®H4n(Zw) - Hi(Zw)

We have seen that the bottom square is commutative. It follows from the fact that spe-
cialization commutes with convolution that the top square is also commutative. It is shown
in Proposition A.2 that the convolution product H; o(AY) @ Hynio(AL) — Hipo(AL) is an
injection. Since H; o(A{") is finite-dimensional and Hy,, 12(A%) is one-dimensional, it follows
that this convolution mapping is an isomorphism. Also, we saw in Lemma 3.9 that res; o lim;
is surjective. Therefore, the composition res; olim; o * is surjective and it follows that the
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bottom convolution map H;(Z1) ® Hy,(Z,) — H;(Z,) is also surjective. This completes the
proof of Lemma 3.2.

4. SMASH PRODUCT STRUCTURE

In this section we prove Theorem 2.4. We need to show that A, * H;(Z1) *x A\y—1 = H;(Z7)

and that 3: Coinve(W) — Hy,_(Z,) is an isomorphism of W-algebras.

Suppose that ¢ is a one-dimensional subspace of t so that ¢* = £\ {0} = £ N t,c,. Recall
that for S C t, g° = v~!(S). By Lemma 3.5, if w is in W, then A% is the graph of the
restriction of @ to g¢ . It follows that there is a convolution product

*

* w*l * w™ * *
Hipoo(AS) © Hipo(AY ) @ Huppo (A% 7)) o Hipo(AD).
Because specialization commutes with convolution, the diagram

*

* w*l * ,wfl * *
Hypio(AL) @ Hipo(A) « )) ® Hynto(Aw « )) = Hiyo(AL)
lim ® lim ® 1iml l lim

Hyn(Z) @ Hi(Z1) @ Hyn(Z) H;(Z)

commutes.
We saw in Corollary 3.10 that lim;: H;,o(A{) — H;(Z;) is surjective. Thus, if ¢ is in
H(Z,), then ¢ = lim(c;) for some ¢; in Hyyo( Ay, (f*))‘ Therefore,

A * €% A1 = Hm([A]) * lim(cy) * lim([Awil(Z*)]) = lim ([Afu] * 1 % [Awil(z*)]> .

w—1 w1

Since AY, and AZ:(Z*) are the graphs of w and w~! respectively, and A;"il(m is the graph of

the identity function, it follows that [A%] x ¢; x [AZj(m] is in HHQ(A?{l(Z*)) and so by (3.8),
Aw * €% Ay—1 18 in H;(Z7). This shows that A\, * H;(Z1) * A,—1 = H;(Z;) for all i.

To complete the proof of Theorem 2.4 we need to show that if w is in W and f is in
Coinv; (W), then B(w - f) = Ay, * B(f) * Ap—1 where w - f denotes the natural action of w on
f. To do this, we need some preliminary results.

First, since A{" is the diagonal in g*" x g, it is obvious that

~_ ~_ ~_ ~w71 * *
Sow t=(w ' xw Hods: gy ) — AL
Therefore,
~_ ~_ ~_ ~w71 * *
(4.1) Spow, ' = (@ ' xw ), 00, Hy(g® ) — Hy(AY)

for all 4. (The first 6 in (4.1) is the diagonal embedding g = A{" and the second § is the
~— * wL(e*

diagonal embedding g@~ (¢ = A" (¢ ).)

Next, with ¢ C t as above, g¢ = g* [[v'(0) = g* [[N and the restriction of v: g* — £ to

g"" is a locally trivial fibration. Therefore, there is a specialization map limg: H;yo(g") —

H;(N). Since 6.: H;y2(g") — Hio(AY) and 0,: Hy(Z) — H;(Z,) are isomorphisms, the
next lemma is obvious.
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Lemma 4.2. Suppose that { is a one-dimensional subspace of t so that £* = £\ {0} C tyeg.
Then the diagram

~ )k 5* *
Hiyo(g") — Hio(AY)

limg l l limy

H;(Z) H;(Zy)

*

commautes.

Finally, N xy N =N and so Zo N = (N xy N)o (N xy N) =N xn N. Thus, there
is a convolution action, Hy,(Z) @ H;(N) — H;(N), of Hy,(Z) on H;(N).

Suppose that w is in W and z is in Hi(B). Then 7* o pd(z) is in Hy_;(N) and so
Ay * (7 0 pd(2)) is in Hy,—;(N). It is shown in [3, Proposition 7.3.31] that for y in H,(B),
Aw * T (y) = €, (w - y) where €, is the sign of w and w - y denotes the action of W on
H.(B) coming from the action of W on G/T and the homotopy equivalence G/T" ~ B. It is

also shown in [3, Proposition 7.3.31] that pd(w - 2) = €,w - pd(z). Therefore,

A * (5 opd(2)) = €,m*(w - pd(2)) = €pepm o pd(w - z) = 7" o pd(w - 2).
This proves the next lemma.
Lemma 4.3. If w is in W and z is in H;(B), then A\, x (7% o pd(z)) = 7* o pd(w - 2).

Proof of Theorem 2.4. Fix w in W and f in Coinv;(W). Using the fact that g =
0, o m* o pd o bi we compute

Mo BUF) Ao = timy ([AG] Ty (B(F) = (A% 1)) 3, 2.7.23]
= lim; o(w ' x w '), o lim] " oB(f) Proposition A.3
= lim; o6, o w, ' 0 6,1 o lim* of(f) (4.1)
= §, o limgow, ' 0 6, o lim* o8, 0 0, o B(f) Lemma 4.2
=4, o limg ow, ' o limy ' 06, ! o B(f) Lemma 4.2

= 0§, o limg ow, * o limy* o o pd o bi(f)

= 6. olimy ((limg" 0" 0 pd o bi()) = [, “]) 3, 2.7.11]
— 6, (7% o pd o bi(f)) * A1) 3, 2.7.23]
= 0, (A x (7" o pd o bi(f))) Lemma A.1 and [3, 3.6.11]
=0, om" opd(w - bi(f)) Lemma 4.3
=0, 0m" opdobi(w- f) bi is W-equivariant
= B(w- f).

This completes the proof of Theorem 2.4.

APPENDIX A. CONVOLUTION AND GRAPHS

In this appendix we prove some general properties of convolution and graphs.
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Suppose M, My, and M; are smooth varieties, dim My = d, and that Z; o C M; X M,
and Zy 3 C My x Ms are two closed subvarieties so that the convolution product,

Hi(Z15) @ Hj(Z23) — Hiyj2a(Z120 Za3),
in [3, §2.7.5] is defined. For 1 <i4,j < 3, let 7, ;: M; x M; — M; x M; be the map that
switches the factors. Define Zg’l = TLQ(ZLQ) - M2 X M1 and Zg’g = T2’3(Z2,3) - M3 X MQ.
Then the convolution product

H;i(Zs2) ® Hi(Z5,) o itj—2d(Z320 Z21)
is defined. We omit the easy proof of the following lemma.
Lemma A.1. [fC 181N HZ'(Z172> and d is in Hj(Zg,g), then (7'173)*(C*d) = (Tg,g)*(d)*,(Tl’Q)*(C).

Now suppose X is an irreducible, smooth, m-dimensional variety, Y is a smooth variety,
and f: X — Y isamorphism. Then if I'y and I'y denote the graphs of idx and f respectively,
using the notation in [3, §2.7], we have I'x o I'y = I'y and there is a convolution product

Proposition A.2. The convolution product *: H;(I'x)®Ho,(I'y) — H;(I'f) is an injection.

Proof. Fori,j =1,2,3, let p; ; denote the projection of X x X x Y on the i*" and j* factors.
Then the restriction of p;3 to (I'x x Y) N (X x I'y) is the map that sends (z,z, f(z)) to
(x, f(z)). Thus, the restriction of p;3 to (I'y x Y) N (X x I'y) is an isomorphism onto I'f
and hence is proper. Therefore, the convolution product in homology is defined.

Since X is irreducible, so is I'y and so Hy,,, (I'f) is one-dimensional with basis [I'f]. Suppose
that ¢ is in H;(I'x). We need to show that if ¢ % [I'y] = 0, then ¢ = 0.

Fix ¢ in H;(I'y). Notice that the restriction of p; 3 to (I'xy x Y) N (X x I'y) is the same as
the restriction of po 3 to (I'x x Y) N (X x I'f). Thus, using the projection formula, we have

e [Df] = (prs)s (PiocN P33Ty
= (p2,3)- (Pikgc N P;,g[rf])
= ((p2,3)+p1 2¢) N [T,
where the intersection product in the last line is from the cartesian square:
If———1Ty
L
X XY —XxY

Let p: X xY — X and ¢: 'y — X be the first and second projections, respectively.
Then the square

p2,3

FXXY—>XXY

pl lp

I'x X

is cartesian. Thus,
ps (c* [y]) = p. (((p2,3)*PT,2C) n [Ff])
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= p. ((p"g.c) N [I'y])
= q.cN(plr;)«[Iy]
= g«CM [X]

= G«C,

where we have used the projection formula and the fact that (p|r,).[I's] = [X].
Now if ¢ x [['y] = 0, then ¢.c = 0 and so ¢ = 0, because ¢ is an isomorphism. O

Let I'y denote the graph of the identity functions idy. Then the following compositions
and convolution products in Borel-Moore homology are defined:

o [';oI'x = I'y and so there is a convolution product H;(I'f) @ H;(I'x) — Hij—m(Ty).
e I'y ol'y-1 = I'y—1 and so there is a convolution product H;(I'x) ® H;(I'j-1) —
Hijm(Lp-1).
el'yol'yss = I'y and so there is a convolution product H;(I'y) ® H;(I'y-1) —
Hi—l—j—m(FX)-
Thus, if ¢ is in H;(T'y), then [y % ¢* [[4-1] is in H;(T'x). Notice that f~!' x f=%: Ty — I'x
is an isomorphism, so in particular it is proper.

Proposition A.3. If ¢ is in H;(T'y), then [[y] * cx [Tp-1] = (f71 x f71).(c).

Proof. We compute ([I'y] % ¢) * [['y-1], starting with [I's] * c.
For 1 <14,j <3 let ¢;; be the projection of the subset

FyxYNXxTy={(z, f(z), f(z)) |z e X}

of X xY xY onto the 7, j-factors. Then ¢; 3 = ¢1 2. Therefore, using the projection formula,
we see that

[Ty = (q1,3)« (Qikz Tyl Ngs 30)
(C_I12 * (Qikz Ff] ﬂq§3c)
[Ff] N (Ch 2)*(1; 3C

Next, for 1 <4, 7 < 3 let p; ; be the projection of the subset
Fix XNX xTpa={(z, f(z),2) |z e X}

of X XY x X onto the 4, j-factors. Then p;3 = (f~! x id) o p3. Therefore, using the fact
that [['f] ¢ = (q1,2)+¢5 3¢ and the projection formula, we have

([Cs]* ) * [Lp1] = (pn, )(p’{,2((ql,2)*QS,3C)ﬁp§3[ 1)

= (7" xid)u(p2s)« (95 2((qr2)+a5.5¢) NP3 [Cp1])
= (f7" xid), ((p2,3)«P} 2(q1,2)+@55¢ N [T 1))
=(f"

' x Zd)*(Pzﬁ)*Piz(%2)*?]5,30-
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The commutative square

idXxidX f

FfXXﬂXXFffl FfXYﬂXXFy

al |

Ff XXﬂXXFf—l i Ff
is cartesian, so py,(q12)« = (id x id X f)*.
Also, the commutative square
Dy x XN X x [y 220D g
(leid)Opz,al lflel
Ix - Ix
is cartesian, so (f ' X id),(pas)s (id X id X f)*g5 5= (f71 x f71)..
Therefore,
([Tl xc)*[Tpa] = (f_l X id)*(P2,3)*PT,2(Q1,2)*QS,3C
= (f7" xid).(p23):(id x id x ) s
= (fT x e
This completes the proof of the proposition. O
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