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UNITARY REPRESENTATIONS WITH NON-ZERO
DIRAC COHOMOLOGY FOR COMPLEX Eg

CHAO-PING DONG

ABSTRACT. This paper classifies the equivalence classes of irreducible unitary representa-
tions with nonvanishing Dirac cohomology for complex Egs. This is achieved by using our
finiteness result, and by improving the computing method.

1. INTRODUCTION

In his description of the wave function of the spin—% particles, Dirac introduced the epony-
mous Dirac operator in [5] by using matrix algebra in 1928. This operator was a square root
of the wave operator, and it led to the foundational Dirac equation in quantum mechanics.
Mimicking the spirit of [5], Parthasarathy introduced the geometric Dirac operator in rep-
resentation theory of Lie groups [15] in 1972. This allowed him to construct most of the
discrete series, and the construction was completed by Atiyah and Schmid [2].

Let G be a connected semisimple Lie group with finite center. Let 6 be the Cartan
involution of G and assume that K := G? is a maximal compact subgroup of G. Let g = ¢®p
be the corresponding Cartan decomposition on the complexified Lie algebra level. Let U(g)
be the universal enveloping algebra of g, and let S be a spin module for the Clifford algebra
C(p). Let m be any irreducible (g, K) module. The Dirac operator D lives in U(g) ® C(p)
and it acts on 7@ S. To understand the unitary dual of G better, in 1997, Vogan formulated
the notion of Dirac cohomology [20], which was defined to be K-module

(1) Hp(m) = Ker D/(Im D N KerD).

Here K is the spin double covering group of K. Vogan conjectured that whenever non-zero,
Dirac cohomology should reveal the infinitesimal character of the original module 7. This
conjecture was proved by Huang and Pandzi¢ [12] in 2002 (see Theorem 2.3). Since then,
Dirac cohomology became a new invariant for the study of Lie group representations.

We care most about the case that 7 is unitary. Then D is symmetric with respect to a
natural inner product on 7 ® S, and

(2) Hp(n) = Ker D = Ker D%
Parthasarathy’s Dirac inequality [15, 16] now reads as that D? has non-negative eigenvalues
on any K-types of m ® S. Moreover, by Theorem 2.3, Dirac inequality becomes equality on

some K-types of 7 ® S if and only if Hp() is non-vanishing (see Proposition 2.4 for more).
Thus, among the entire unitary dual of G, those having non-zero Dirac cohomology are

2010 Mathematics Subject Classification. Primary 22E46.

Key words and phrases. Dirac cohomology, spin norm, unitary representation.

Dong is supported by NSFC grant 11571097 and the China Scholarship Council.
1



2 CHAO-PING DONG

exactly the extreme ones. Therefore, classifying GY—the set of all the irreducible unitary
representations (up to equivalence) with non-zero Dirac cohomology—should also be helpful
for us to understand the entire unitary dual of G.

In this paper, we consider the special case that GG is a connected complex simple Lie group.
Recently, by analyzing Parthasarathy’s Dirac inequality, by using results on cohomological
induction mainly due to Vogan [19], and by Theorem 6.1 of [6], we obtained in [9] a finiteness
result: G4 consists of finitely many scattered members (the scattered part) and finitely many
strings of members (the string part), see Theorem 2.6. We also classified G4 for complex
Fy in [9]. Here, by improving the computing method, we report the following complete
description of G4 for complex FEg.

Theorem A. The set Eg consists of 33 scattered representations (see Table 6) whose spin-
lowest K -types are all unitarily small, and 213 strings of representations (see Section 6).
Moreover, each representation w € Eg has a unique spin-lowest K-type which occurs with
multiplicity one.

In Theorem A, the notion unitarily small (u-small for short) was introduced by Salamanca-
Riba and Vogan in [17], see Section 2.3. The last statement of Theorem A was motivated
by [11], where Huang kindly told the author that he announced the following conjecture at
a conference: each spin-lowest K-type of any 7 € G4 should occur exactly once.

It is interesting to note that in the penultimate row of Table 6 sits the model representation
due to McGovern [14], which is K-multiplicity free. A few other members there, say those
described in Examples 4.1, 7.1 and 7.2, may also be K-multiplicity free.

As deduced by Barbasch and Pandzi¢ on page 5 of [4] from Theorem 2.3, to find all the
irreducible unitary representations with non-zero Dirac cohomology, it suffices to consider
the following candidates:

(3) J()‘a —S)\),

where s is an involution in the Weyl group, and ) is a weight such that 2\ is dominant integral
and regular. Here J(\, —sA) is the irreducible (g, K) module with Zhelobenko parameters
AL = A AR = —sA, see Theorem 2.1. At the end of Section 2.1, we will explain why the
element s in (3) must be an involution.

A little more thinking leads to the additional requirement that A — s\ should be a non-
negative integer combination of simple roots, see (13). Surprisingly, all the calculations
that we have carried out suggest that when put together, these necessary conditions should
become sufficient. Let us summarize this observation in the following.

Conjecture B. Let G be a connected complex simple Lie group. The set G4 consists exactly
of unitary representations J(\, —s\), where s is an involution, and X is a weight such that

e 2)\ is dominant integral and reqular;
e )\ + s\ is an integral weight;
e \ — s\ is a non-negative integer combination of simple roots.

The above conjecture holds for Ai-Ag, Ba-By, Co-Cy, Dy-Dg, Go, Fy and Eg. Our calcu-
lations in type A also lead to Conjecture 5.1.



UNITARY REPRESENTATIONS WITH DIRAC FOR COMPLEX Eg 3

The paper is organized as follows. We set up the notation and collect necessary prelimi-
naries in Section 2. We discuss the automorphism —wy in Section 3, which will allow us to
do reduction in calculations. Section 4 aims to improve the computing method of [9]. We
figure out the scattered parts of G4 in Section 5 for some classical groups, and illustrate how
to use this information to get the string part of Eg in Section 6. Finally, we determine the
scattered part of Eg in Section 7.

Acknowledgements. 1 thank my advisor Prof. Huang sincerely for sharing brilliant ideas
with me during my PhD study. I also thank the math department of MIT for offering
excellent working conditions. I am deeply grateful to the atlas mathematicians for many
many things. Jian Ding had spent about one month to double-check all the calculations
reported in this paper. In particular, the representation sitting in the 8th row of Table 6
was originally missed. I thank him heartily for his time and carefulness.

2. PRELIMINARIES

This section aims to set up the notation and collect some preliminaries. Throughout this
paper N = {0,1,2,...}, P = {1,2,...} and %]P’ denotes the set of positive integers and
positive half-integers.

Although some results in this section (say Theorem 2.3 and Proposition 2.4) hold for real
reductive Lie groups, for simplicity, we only quote them under the assumption that G is a
connected complex simple Lie group. Let # be the Cartan involution of G, and let K := G?
be a maximal compact subgroup of G. Denote by gg and £, the Lie algebras of G and K,
respectively. As usual, we drop the subscripts to denote the complexifications. We denote
by (, ) the Killing form form on g, which is negative definite on ¢, and positive definite
on po. Moreover, ¢ and p are orthogonal to each other under (, ). Let | - || be the norm
corresponding to the Killing form.

Let T be a maximal torus of K. Let ag = /—1tg and A = exp(ag). Then up to
conjugation, H = T'A is the unique -stable Cartan subgroup of G. We identify

(4) 0= go®go, b=hoDho, t={(z,—x):xecho}, a={(zr,z):x¢€bho}.

Fix a Borel subgroup B of G containing H. Put A*(gg,ho) = A(bg,bhg). Then we
have the corresponding simple roots aq,--- ,q; and fundamental weights wq, - , ;. Set
(] :=={1,2,...,1}. Denote by s; the simple reflection s,,. Let p be the half sum of positive
roots in AT (go,ho). In this paper, we always use the fundamental weights as a basis to
express a weight. That is, [ny,---,n] stands for the weight Zézl n;w;. For instance,
p=1[1,1,1,1,1,1] for complex Fg. Set

AT (g, h) = AT(go, ho) x {0} U{0} x (=A™ (go, ho))-

When restricted to t, we get At (g,t), AT(¢t) and AT (p,t). Denote by p. the half-sum of
roots in AT (€,t). We denote by W the Weyl group W (go, ho), which has identity element e
and longest element wy. Then W(g,h) ~ W x W.

2.1. Zhelobenko classification. The classification of irreducible admissible modules for
complex Lie groups was obtained by Zhelobenko. Let (Ar,Ar) € b x h§ be such that
AL — Ag is a weight of a finite dimensional holomorphic representation of G. Using (4), we
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can view (Az, Ag) as a real-linear functional on b, and write Cy, 5, as the character of H
with differential (Ar, Ag) (which exists). Using (4) again, we have

Covanlt =Corrans Copamla =Capprg:
Extend Cy, ) to a character of B, and put

X (AL, Ar) := K-finite part of Indg(C(AL,AR)).

Theorem 2.1. (Zhelobenko [21]) The K -type with extremal weight A\, — Ar occurs with mul-
tiplicity one in X(Ap, Ar). Let J(Ar, Ar) be the unique subquotient of X (A, Ar) containing
this K-type.
a) BEvery irreducible admissible (g, K )-module is of the form J(Ar, Ar).
b) Two such modules J(Ar,Ar) and J(N}, Ng) are equivalent if and only if there exists
w € W such that whp, = N}, and wAp = Nj.
c) J(AL,Ar) admits a nondegenerate Hermitian form if and only if there exists w € W
such that w(AL — AR) = AL — Ar, w(AL + Ar) = —(AL + AR).
d) The representation X (Ar, Ar) is tempered if and only if A\;, + Ar € ibj. In this case,
X (AL, Ar) = J(AL, AR).

Note that the W x W orbit of (Ar,Ar) is the infinitesimal character of J(Ar, Ar). We
call A, Ar the Zhelobenko parameters for J(Ar, Ar). For instance, the trivial representation
has A\ = Ag = p, while the model representation due to McGovern [14] has A\, = Ag = p/2.
We will also refer to A\, — Ar (resp. A\p + Ag) as the T-parameter (resp. A-parmeter) of
J(AL, AR). The latter parameters are more convenient for the input of representations into
atlas.

@2

O O
(073 as Q4 0%} [04]

FIGURE 1. Dynkin diagram for Fjg

Example 2.2. Let G be complex Eg (see Figure 1 for the labelling of the simple roots). Let
S = $485868551538284581, A=1[1,1/2,1/2,1/2,1/2 1].

Then J(A, —s\) has T-parameter [0,4,4, —4,4,0] and A-parameter [2,—3,—3,5,—3,2|. Per-

forming the following commands allows us to input this representation into atlas:

set G=complex(simply_connected(E6))

set x=x(trivial(G))

set P=Param(xa [O’4’4’_4’4’0’0’0’0’0’0,01 > [2,_3,_3,5,_3,2,0,0,0,0,0,0])

To test the unitarity of J(\, —s\), we use the command

is_unitary(p)

The output is

Value: true
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To look at the K-types of J(A, —sA) up to the atlas height h, we use the command
branch_irr(p, h)
O

For convenience of reader, we repeat the explanation from [4] that the Weyl group element
s in (3) must be an involution. Indeed, for J(A, —s\) to be unitary, it should admit a non-
degenerate Hermitian form in the first place. Thus by Theorem 2.1(c), there exists w € W
such that

WA+ sA) = A+ s\, wA—sA) = =X+ sA.

Therefore wA = sA and wsA = A. Since A is regular, we have that w = s and ws = e. Thus

s? = e, as desired.

2.2. Dirac cohomology. Fix an orthonormal basis Z1,--- ,Z, of pp with respect to the
inner product induced by (, ). Let U(g) be the universal enveloping algebra of g and let
C(p) be the Clifford algebra of p with respect to (, ). The Dirac operator D € U(g) ® C(p)
is defined as

D=>"7®Z.
i=1
It is easy to check that D does not depend on the choice of the orthonormal basis Z; and it
is K-invariant for the diagonal action of K given by adjoint actions on both factors.

Let K be the subgroup of K x Spin pg consisting of all pairs (k, s) such that Ad(k) = p(s),
where Ad : K — SO(po) is the adjoint action, and p : Spinpy — SO(po) is the spin double
covering map. Here SO(pg) is defined with respect to the Killing form on pg. If 7 is a (g, K)
module, and if S denotes a spin module for C(p), then 7 ® S is a (U(g) ® C(p), K) module.
The action of U(g) ® C(p) is the obvious one, and K acts on both factors, on 7 through
K and on S through the spin group Spinpg. Now the Dirac operator acts on 7 ® S, and
the Dirac cohomology of 7 is the K-module defined in (1). By setting the linear functionals
on t to be zero on a, we embed t* as a subspace of h*. The following foundational result,
conjectured by Vogan, was proved by Huang and Pandzi¢ [12].

Theorem 2.3. (Huang and Pandzi¢) Let 7 be an irreducible (g, K ) module. Assume that

the Dirac cohomology of m is nonzero, and that it contains the K-type E. with highest weight
v € t* C b*. Then the infinitesimal character of m is conjugate to v + p. under W(g,h).

2.3. Spin norm and spin lowest K-type. The notions of spin norm and spin-lowest K-
type were introduced in the author’s thesis for real reductive Lie groups. They are motivated
for the classification of irreducible unitary representations with non-zero Dirac cohomology.
Let us recall them for complex Lie groups. We identify a K-type § with its highest weight.
Then

() 16]lspin = [[{6 = p} + pll

is the spin norm of the K-type ¢. Here {J — p} is the unique dominant weight to which § — p
is conjugated under the action of W. Recall that § is u-small in the sense of Salamanca-Riba
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and Vogan [17] if and only if ¢ lies in the convex hull of the W-orbit of 2p. In such a case,
by Lemma 2.3 of [8],
oIl < l0llspin < 12p1]-
For any irreducible admissible (g, K)-module 7, we define
(6) [7llspin = min [[0]|spin,

where 0 runs over all the K-types occurring in w. We call § a spin lowest K-type of 7 if it
occurs in m and ||6||spin = ||7|spin-

Let us recall Proposition 3.3 of [6] for complex Lie groups. It is a combination of the ideas
and results of Parthasarathy [15, 16], Vogan [20], Huang and Pandzi¢ [12].

Proposition 2.4. For any irreducible unitary (g, K )-module m with infinitesimal character
A, let § be any K-type occurring in w. Then

a) ||7l|spin > [|All, and the equality holds if and only if Hp(m) is non-zero.
b) [[6llspin > ||All, and the equality holds if and only if 6 contributes to Hp().
c) If Hp(m) # 0, it is exactly the spin lowest K -types of m that contribute to Hp(m).

In view of the above proposition, spin norm and spin lowest K-type give the right frame-
work for the classification of G9.

2.4. Vogan pencil. Let 8 be the highest root. The following result is a special case of
Lemma 3.4 and Corollary 3.5 of [18]. It coarsely describes the K-type pattern for an infinite-
dimensional irreducible (g, K)-module 7.

Proposition 2.5. (Vogan) Let G be a connected complex simple Lie group. Then for any
infinite-dimensional irreducible (g, K )-module 7, there is a unique set

{wlie}Cit
of dominant integral weights such that all the K-types of m are precisely
{ui+nB|iel,neN}
We call a set of K-types
(7) P(0) :={0+np|neN}

a Vogan pencil. For instance, P(0) denotes the pencil starting from the trivial K-type. We
also set

(8) Py = min{[§ + nBlpin | n € N}.

Calculating Ps will be a vital step in our computing method in Section 4. On this aspect,
we mention that by Theorem 1.1 of [8],

) B {min{HcS + nf||spin | 0 + nf is u-small}  if § is u-small;

116 |lspin otherwise.
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2.5. A necessary condition. As mentioned in the introduction, to find all the irreducible
unitary representations with non-zero Dirac cohomology, it suffices to consider the candidates
in (3). We can add one more requirement here. Indeed, suppose that J(\, —s\) is a member
of G4, Then by Theorem 2.3 and Proposition 2.4, it has a spin lowest K-type d such that

{6 —p}+p=2A
Since {§ — p} =6 — p+ >, picv; for some p; € N, it follows that

(10) 2A=06+> pio.

On the other hand, put p := {\ + sA}. Then

(11) p=AtsA+ > g,

where ¢; € N. Since p is the lowest K-type of J(\, —s\), by Frobenius reciprocity and the
highest weight theorem, we have

(12) 0 :,u+Zriozi,
i
for some r; € N. Combining (10), (11), and (12) gives
(13) A—sA= Zmai,
i
where n; = p; +q¢; +r; € N.
2.6. A description of G4, One key idea in [9] was to arrange the representations (3) into
s-families. More precisely, let us denote

(14)  A(s) :=={A=[A1,..., \] | 2\ € P, A + s\ is integral, and A — s satisfies (13)}.

We call A(s) and the corresponding representations J(A, —s\) an s-family. Note that an
s-family has infinitely many members. For instance, the e-family consists of tempered rep-
resentations, and they are handled in Section 4 of [9]; while on the other extreme, spherical
representations live in the wp-family, and they are considered in Section 5 of [9].

Let I be a non-empty subset of [I]. We call

(15) {A € A(s) | A; varies for ¢ € I and ); is fixed for j € [I] \ I}

and the corresponding representations J(\, —s\) an (s, I)-string. When s is known from the
context, we may call it an [-string or just a string.
Fix an involution s. Put

(16) I(s):={ie[l]|s(wi)=wi}.

As shown in Lemma 3.1 of [9], the set I(s) consists of the indices 7 such that the simple
reflection s; does not appear in one reduced expression of s.
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Theorem 2.6. (Theorem A of [9])! Fiz an involution s of a complex connected simple Lie
group G. 1If I1(s) is empty, then the s-family contains at most finitely many members of
Ga. If 1(s) is non-empty, then the s-family contains at most finitely many I(s)-strings of
members of G4, The latter representations are cohomologically induced from members of
Eg sitting in the s-family of L, and they are all in the good range. Here Ly O HA is the
0-stable Levi subgroup of G corresponding to the simple roots {c; | i ¢ 1(s)}.

We call the members of G¢ coming from those s-families such that I (s) are empty the
scattered part of éd, while we call the remaining members of G4 the string part. Recall
that by the proof of Proposition 3.5 of [9], J(A, —s\) is cohomologically induced from the
irreducible (5, LsN K) module with Zhelobenko parameters A — p(us)/2 and —s(A—p(us)/2).
Here P is the #-stable parabolic subgroup of G with Levi factor L, ps = [s + ug is the Levi
decomposition of the complexified Lie algebbra of Py, and p(u;) is the half-sum of the positive
roots in A(ug, h). The induction is always in the good range. Thus it preserves unitarity [19]
and the non-vanishing of Dirac cohomology [6]. Therefore, to figure out @d, it suffices to
pin down the scattered parts of G4 and E‘Sis. Here Ly = [Ls, Ls|. Moreover, by Proposition
3.4 of [9], it suffices to consider finitely many candidates representations to determine the
scattered part of G4, An explicit algorithm will be presented in Section 4 to sieve out tAhese
finite candidates. To sum up, after a finite calculation, one can completely determine G¢.

3. THE AUTOMORPHISM —wy

In this section, we assume that —wg # 1, which happens exactly when G is A, (n > 2),
Dsypy1 and Eg. As we shall see, the map —wg gives an automorphism of the complex Lie
group GG and will allow us to do reduction in studying representations of G.

Let s € W be an involution. Then it is obvious that wgswy is still an involution. If
woswy = s, we say the involution s is self-dual; otherwise, s’ := wgswy is another involution.
In the latter case, we say that s and s’ are dual to each other. For instance, Fg has 892
involutions in total, among which 140 are self-dual.

Since wyp = —p, the following lemma is immediate.

Lemma 3.1. We have the following.
a) Two involutions s and s’ are dual to each other if and only if (—wq)sp = §'p.

b) The involution s is self-dual if and only if (—wo)sp = sp.

Under our assumption that —wg # 1, we have that —wy is not an element of W. There-
fore, in view of Theorem 2.1, the two representations J(Ar, Ar) and J(—woAr, —woAR) are
inequivalent. However, since —wq gives an automorphism of GG, they share the same unitar-
ity, while the dual K-type pattern. Thus we say they are dual to each other, and use ~ to
denote this relation. That is,

(17) J(AL, ARr) ~ J(—woAL, —woAR).

In such a case, we can fold the two representations by studying only one of them. This will
reduce the work load.

1This result has been partially generalized to real reductive Lie groups in [7].
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Now suppose that s and s’ are dual to each other. Then we have
TN, —5)X) ~ J(—woX, wos) = J(—woA, (—s")(—wg)\).
Thus it suffices to study the s-family. On the other hand, if s is self-dual, we have
J(A, —8A) ~ J(—wo, wosA) = J(—woA, (—s)(—wp)N).
Therefore, within the s-family, whenever A # —wgA, it suffices to consider the parameter .

In the following sections, we always present the folded version of the scattered part of G4
We mark an involution s with a star whenever it is not self-dual. When s is self-dual, we
mark the parameter A\ with a star whenever A\ 2 —wgA. In other words, the appearance of
a star always indicates the existence of two representations which are dual to each other.
Thus we can unfold and restore the entire scattered part easily.

4. THE IMPROVED COMPUTING METHOD

This section aims to introduce a method that allows us to compute all the members of
G4 in any s-family such that I(s) is empty. We proceed as follows:

e collect the finitely many A € A(s) such that A\ — s\ = Y. n;o;, where n; € N, and

that
(18) IX = sAlI* < [|20].
e further collect from the previous step those A satisfying
(19) 127 < P2,

where p1:= {\ + sA} is the lowest K-type of J(\, —s\) and P, is defined in (9).
e For the remaining \, use atlas [1, 3] to study the unitarity and K-types of J(A, —s\).

Let us explain why the method works. For the first step, as deduced in Section 3 of [9],
12217 = [l = 1A = sAI* = g(N),

spin

where g(\) == 2({p — p} — (u — p), p) < |12p||%, see Lemma 3.3 of [9]. Thus, if A does not
meet the requirement (18), we would have that

A1) = 222 = 3 > 0.

spin
Therefore, the corresponding representation J(A, —s\) is non-unitary by Dirac inequality.
Since I(s) is assumed to be empty, by Lemma 3.2 of [9], ||A—sA||? is a homogeneous quadratic
polynomial in terms of A;. Moreover, each term /\Z2 has a positive coefficient, while each term
AiAj (i < j) has a nonnegative coefficient. Thus there are finitely many X satisfying (18).
For the second step, if A does not meet the condition (19), we would have that

Ag(N) = [|2A]* = P > 0.
Thus, again by Dirac inequality, the corresponding representation J(A, —s\) is non-unitary.
The current method improves the previous one [9] mainly at the first step. Indeed, most
of our energy in sieving out the candidate representations for F f was spent in obtaining the
specific values of g()) via case-by-case analysis, see Section 8 of [9]. To carry out a similar

analysis for type E is next to impossible. This motivates our first step: by adopting the
uniform bound ||2p||? of the function g(\), we no longer need to do case-by-case analysis of
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its values. For the second step, we note that using the distribution of the spin norm along
the Vogan pencil P(u) is very efficient in practical calculation, see Example 4.1.

Recall that in Section 5 of [9], which is essentially known in Section 7 of [6], we have an
effective way to deal with the spherical unitary dual living in the wg-family. The current
method extends it to any s-family such that I(s) is non-empty. The extension is non-
trivial in the following sense: unlike the spherical representations, now the lowest K-type
p:={X+ sA} of J(A, —s\) varies according to A and s. The key ingredient leading to the
extension is the analysis of Parthasarathy’s Dirac inequality carried out in Section 3 of [9].

Remark that we used Mathematica to carry out the first two steps, and the pdf version
was uploaded on ReserachGate via the link

https://www.researchgate.net/publication/320110729_E6-s-family-genuine

We gave explanations to the codes. Thus the reader can pick up them easily. An interested
reader may also modify these codes to investigate other complex Lie groups. On the other
hand, one can carry out the third step using the atlas commands in Example 2.2.

Example 4.1. Let G be complex Eg. Consider the self-dual involution
S = S548555655515359254S51.

Note that sp = [-2,5,6,—7,6, —2] (recall Lemma 3.1).
The first step leaves us with 124048 candidate representations. However, after carrying
out the second step, only the following three A survive:

[1/2,1/2,1,1/2,1/2,1],[1,1/2,1/2,1/2,1/2,1],[1,1/2,1/2,1/2,1,1/2).

The first and the third are dual to each other. Thus we can fold them by omitting the third
one:

[1/2,1/2,1,1/2,1/2,1],[1,1/2,1/2,1/2,1/2,1].

Then by atlas, we know that only the second A gives a unitary representation J(\, —s\),
which has T-parameter [0, 4,4, —4,4,0] and A-parameter [2, -3, —3,5, —3,2]. (Recall Exam-
ple 2.2.) This representation has a unique spin-lowest K-type [1,1,0,3,0,1] which occurs
once. Moreover,

I11,1,0,3,0, Ullspin = [[2A]]-

Thus it is a member of Eg by Proposition 2.4. This representation sits in the first row of
Table 6. O

5. THE SCATTERED PART OF GY¢ FOR SOME CLASSICAL GROUPS

This section aims to describe the scattered part of G4 for some classical groups with small
ranks. This information will be needed later to form the string part of Eg. For convenience,
in each table, we always present the folded version. (Recall the last paragraph of Section
3.) Therefore, one just needs to pay attention to each star to restore the entire scattered
part. In particular, in each table, N equals the number of rows plus the number of stars.
Here N¢g denotes the cardinality of the scattered part of G4, We note also that the trivial
representation always sits in the last row of each table.
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TABLE 1. The scattered part of 121\% (folded version)

sp A | spin LKT | mult | u-small
[1,—3,1] p/2 p 1 Yes
[—2,1,-2] | [1/2,1/2,1 | [2,0,1] | 1 Yes
—p P [0,0,0] 1 Yes

TABLE 2. The scattered part of 22 (folded version)

sp A spin LKT | mult | u-small
[—2,3,—4,2]F |[1,1/2,1/2,1/2] | [1,0,2,1] | 1 Yes
[—3,1,1,—3] p/2 p 1 Yes
[2,-1,2,-3* | [1,1,1/2,1/2] | [1,0,0,3] | 1 Yes
—p p/2 p 1 Yes
—p [1,1/2,1/2,1] 23 1 Yes
—p P [0,0,0,0] 1 Yes

TABLE 3. The scattered part of g‘g (folded version)

sp A spin LKT | mult | u-small
[-3,1,3, -5, 3] p/2 p 1 Yes
[—2,4,—5,4, 2] 1,1/2,1/2,1/2,1] [1,0,3,0,1] 1 Yes
[—2,-1,4,-5,3]* 1,1,1/2,1/2,1/2] [1,0,0,3,1] 1 Yes
[—4,2,—1,2, —4] 1/2,1/2,1,1/2,1/2] | [2,1,0,1,2] 1 Yes
[—2,—-1,—-1,3,—4]* | [1,1/2,1/2,1/2,1/2] | [1,1,0,2,1] 1 Yes
[—2,—-1,—1,3,—4]* 1,1,1,1/2,1/2] [1,0,0,0,4] 1 Yes
1,-3,1,-3,1] p/2 p 1 Yes
[—2,1,-3,1,—2] 1/2,1/2,1/2,1/2,1]* | [1,2,0,1,1] 1 Yes
[—1,-2,1,—-2,—1] [1,1/2,1/2,1,1]* (3,0,0,0, 2] 1 Yes
—p p [0,0,0,0,0] 1 Yes

5.1. The scattered part of A\? (1 <i <5). One can calculate that the scattered part of

11

E‘f consists of the trivial representation, and that of A\g consists of the trivial representation
and the model representation. We list the folded version of scattered parts of A? (3<i<5h)

in Tables 1-3. To sum up, we have N4, =1, Na, =2, Ny, =4, Na, = 8 and Ny, = 16.

One can also calculate that N4, = 32. Thus we make the following.

Conjecture 5.1. We have Ny, =271,

5.2. The scattered part of ﬁg. Note that —wg = 1 for D4. However, we can use the

automorphism which interchanges as and a4 while preserving oy and as to play the role of

—wp. In this sense, we present the folded version of the scattered part of 132 in Table 4.
To keep the folded versions in a unified style, we do not use other automorphisms of Dj.
Note that the penultimate row is the model representation due to McGovern [14], and that

Np, = 9.
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TABLE 4. The scattered part of ﬁﬁf (folded version)

sp A spin LKT | mult | u-small
[3,-5,3,3] p/2 ) 1 Yes
(—5,3,—1,—1] | [1/2,1/2,1,1] | [3,1,0,0] | 1 Yes
(—1,3,—5,—1]" | [1,1/2,1/2,1] | [0,1,3,0] | 1 Yes
—1,-3,1,1]  |[1,1/2,1/2,1/2] | [1,2,0,0] | 1 Yes
1,-3,-1,1]* |[1/2.1/2,1,1/2] | [2,1,0,0] | 1 Yes
—p p/2 p 1 Yes
—p P [0,0,0,0] 1 Yes

TABLE 5. The scattered part of ﬁg (folded version)

sp A spin LKT | mult | u-small
[-2.5,-6,4,4 [1,1/2,1/2,1/2,1/2] | [1,0,2,1,1] | 1 Yes
5,~7,5,—1, —1] [1/2,1/2,1/2,1,1] |[1,3,1,0,0] | 1 Yes
[—4,3,4,—6, -2 | [1/2,1/2,1/2,1/2,1] | [2,0,1,2,1] | 1 Yes
[~1,-2,6,~7,—1* | [1,1,1/2,1/2,1] |[0,1,0,5,0] | 1 Yes
[—7,5,—3,1,1] p/2 p 1 Yes
[—5,3,-5,3,3] p/2 p 1 Yes
[~7,5,—1,—1, —1] [1/2,1/2,1,1,1] |[5,1,0,0,0] | 1 Yes
[-2,4, -5, 2, 4]* 1,1/2,1/2,1,1/2] |1[0,2,0,3,0] | 1 Yes
[~1,-5,3,—1, —1] 1,1/2,1/2,1,1] | [3.2,0,0,0] | 1 Yes
[~1,-1,-3,1,1] 1,1,1/2,1/2,1/2] | [1,3,0,0,0] | 1 Yes
1,-3,1,-2,-2] | [1/2,1/2,1/2,1/2,1]* | [0,2,0,1,2] | 1 Yes
—p p/2 p 1 Yes
p o 0,0,0,0,0] | 1 Yes

5.3. The scattered part of ﬁg In this case, —wy interchanges a4 and a5, while preserving
other simple roots. The information is presented in Table 5. We remark that the penultimate

row is the model representation, and that Np, =

17.

6. THE STRING PART OF Eg

From now on, we set G to be complex Ejg, whose Dynkin diagram is in Figure 1, see page
687 of Knapp [13] for more details. In particular, we note that —wy interchages «; and g,

as and as, while preserving as, ay.

In this section, we use A = [A1,..., \g] to denote the weight ). A\;ww;, where each \; runs

over %]P’. By Theorem 2.6, the string part of Eg comes from the scattered parts of L

L O HA runs over all the proper #-stable Levi subgroups of G and Lgg is its semisimple
factor. Therefore, we can obtain the string part of Eg from the information in the previous

section. Let us illustrate the process via examples.
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Example 6.1. Consider one extreme case L = HA. Then the corresponding string in E‘g
is:
[/\1, c.. 7/\6] € A(e),

where each \; € %IP’. All of them are tempered representations. O

Example 6.2. Consider the model representation of As, where s = s1s981 and A =
[1/2,1/2]. This representation has T-parameter [0,0] and A-parameter [1,1]. Recall that
Sp(A2) = [_17_1]'
There are five f-stable Levi subgroups of G whose semisimple factors are of type Asy. The

corresponding five strings in Eg are listed as follows:

[1/2, )\2, 1/2, )\4, )\5, )\6] € A(slsgsl); [)\1, )\2, 1/2, 1/2, )\5, )\6] S A(838483)

[)\1, 1/2, )\3, 1/2, )\5, )\6] € A(828482); [)\1, )\2, )\3, 1/2, 1/2, )\6] S A(S4S5S4)

[)\1, )\2, )\3, )\4, 1/2, 1/2] S A(S58685),

where each \; € %IP’. We list the T-parameters and A-parameters for the first string below:
[0,2)\2,0,2)\4+1,2/\5,2)\6], [1,0,1,—1,0,0].
0

Example 6.3. Let us consider another extreme case. Namely, now Lg is D5. We focus on
the first representation in Table 5, where s = s1535251545553 and A = [1,1/2,1/2,1/2,1/2].
This representation has T-parameter [0, 3, —3,3, 3] and A-parameter [2,—2,4, -2, —2]. Re-
call that sp(Ds) = [-2,5,—6,4,4].

There are two #-stable Levi subgroups of G whose semisimple factors are of type D5. The
first one corresponds to {aq, ..., a5}, while the second one corresponds to {«s,...,as}. Let
us denote the counterparts of the involution s in them by s’ and s”, respectively. One can
find that

S/ = 5485515359254S51, S// = 54855655535254,
and that
S/p(Eﬁ) = [_27 47 57 _67 47 3]7 Sl/P(E6) = [37 47 47 _67 57 2]

In each case, all the non-bolded coordinates come from those of sp(Ds) via permutations.
Now the representation J(\, —s\) of Dj gives the following two strings of Eg:

[1,1/2,1/2,1/2,1/2,X ] € A(s");  [M1,1/2,1/2,1/2,1/2,1] € A(s"),
where A\, \g € %]P’. We list their T-parameters and A-parameters below. They are
[0,3,3,-3,3,2X¢ + 1], [2,-2,—-2,4,—-2,—1]
for the first string, and
2A1+1,3,3,-3,3,0], [-1,—-2,—-2,4,-2,2]

for the second string. O
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One can obtain other strings of Eg from the tables in Section 5 WithoEt much difficulty.
We omit this part. Instead, let us count the total number of strings in Eg. Let N; be the
number of I-strings in Eg such that [I| =6 —i. Then Ny =1 (see Example 6.1), and

Ny =6Ny, =6

Ng =5N4, +10N4, N4, = 20,

N3 =5Na; +10N4, Na, +5Ng, Na, Ny, = 45,

Ny = Np, +4Na, +4Na, Na, +5NaA, Na,Na, + Nay,Na, =71,

N5 =2Np, + Ny, + 2N, Ny, + No, Ny, Na, = 70.
Here recall that Ng is the cardinality of the scattered part of Gi. Therefore, Eg contains
S0 N; = 213 strings in total.

7. THE SCATTERED PART OF L

This section aims to report the scattered part of Eg using the computing method in
Section 4. According to Theorem 2.6, we should focus on these s-families such that I(s)
is empty. That is, we should study those s-families such that any reduced expression of
s contains si,...,sg. There are 571 such involutions, among which sit 103 self-dual ones.
Thus by using the —wy automorphism in Section 3, it boils down to consider 337 s-families.

Let us provide a few more examples.

Example 7.1. Consider the involution
S = 5652545553545153525455565354515352545158352S51.
Note that sp = [—1,—2,—1,—1,10,—11] and s is dual to the involution
S/ — 56555451535925455586555453525455545359254535951.
Note that s’p = [-11,-2,10,—1, —1, —1] (recall Lemma 3.1).

The first step of Section 4 leaves us with 2475 candidate representations. After carrying
out the second step of Section 4, 35 of them survive. By using atlas, we find that only
A= [1,1,1,1,1/2,1/2] gives a unitary representation J(A,—s\), which has T-parameter
[0,0,0,0,9,—9] and A-parameter [2,2,2,2, —8,10]. By looking at its K-types, we know that
it has a unique spin-lowest K-type [0, 1,0,0,0,9] which occurs once. Moreover,

1[0,1,0,0,0,9][[spin = [I2A]-
Thus it is a member of Eg by Proposition 2.4. This gives the 13th row of Table 6. g

Example 7.2. Consider the involution

S = 565553545153525455565554535254555453525451535251.
Note that sp = [-1,—1,—10,8,—1,—1] and s is dual to the involution

s’ = 555659545553545153525455565354515352545551535251.
Note that s’p = [-1,—1,—1,8, 10, —1] (recall Lemma 3.1).

The first step of Section 4 leaves us with 1145 candidate representations. After carrying
out the second step of Section 4, 17 of them survive. By using atlas, we find that only
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TABLE 6. The scattered part of Eg (folded version)

sp A spin LKT | mult | u-small
[~2,5,6,—7,6,—2] [1,1/2,1/2,1/2,1/2,1] |[1,1,0,3,0,1] | 1 Yes
[—4,-2,3,6,—8,6]* [1/2,1,1/2,1/2,1/2,1/2] | [2,1,0,1,2,1] | 1 Yes
[-5,-7,3,5,3, —5] p/2 1 Yes
[—1,-1,-2,8,-9,7]* [1,1,1,1/2,1/2,1/2] |[0,0,1,0,5,1] | 1 Yes
[-2,-8,-2,7,4,—5]* [1,1/2,1,1/2,1/2,1/2] |[1,4,1,0,0,3] | 1 Yes
[_87_17 7_1767_8] [1/27171/27171/271/2] [47071707174] 1 Yes
[~10,5,8, —6,4, —2]* [1/2,1/2,1/2,1/2,1/2,1] | [1,0,2,1,1,1] | 1 Yes
[—1,-11,-1,9,—1, —1] [1,1/2,1,1/2,1,1] 0,7,0,1,0,0] | 1 Yes
[-8,7,6,—8,6,—2]* [1/2,1/2,1/2,1/2,1/2,1] | [1,0,2,1,1,1] | 1 Yes
[_17 7_674777_9] [17171/271/271/271/2] [27072707173] 1 Yes
[—1,-1,8,—10,8,—1] [1,1,1/2,1/2,1/2,1] | [0,4,0,2,0,0] | 1 Yes
[—11,-3,9,1,—3,1]* p/2 1 Yes
[1,-2,—1,-1,10, —11]* [1,1,1,1,1/2,1/2] (0,1,0,0,0,9] | 1 Yes
6, —1, 8.6, 86] [1/2,1,1/2,1/2,1/2,1/2] | [1,2,0,2,0,1] | 1 Yes
[—1,-1,-10,8,—1, —1]* [1,1,1/2,1/2,1,1] [7,2,0,0,0,0] | 1 Yes
[—2,7,-1, 8,6,—1]* [1,1/2,1,1/2,1/2,1] | [5,3,0,0,0,0] | 1 Yes
[—5,3,3,—5,3, —5] /2 1 Yes
[~2,—6,—1,4,-5,3]* [1,1/2,1,1/2,1/2,1/2] | [4,3,0,0,0,1] | 1 Yes
[2,-1,1,-3,1,—2] [1/2,1,1/2,1/2,1/2,1]* |[2,3,0,0,0,3] | 1 Yes
—p p/2 1 Yes
—p P 0,0,0,0,0,0] | 1 Yes

A =[1,1,1/2,1/2,1,1] gives a unitary representation J(A,

15

—sA), which has T-parameter

[0,0,—7,7,0,0] and A-parameter [2,2,8,—6,2,2]. By looking at its K-types, we know that

it has a unique spin-lowest K-type [7,2,0,0,0,0] which occurs once. Moreover,

117,2,0,0,0,0]f|spin = [[2A]]-

Thus it is a member of Eg by Proposition 2.4. This gives the 15th row of Table 6.

0

The final result is given in Table 6. Note that the representation in the last row is
the trivial one. The scattered part of Eg consists of 33 representations in total. That is,

Ng, = 33.
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