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QUATERNIONS AND REFLECTIONS* 
H. S. M. COXETER, University of Toronto 

1. Introduction. It is just a hundred years since Cayley began to use qua- 
ternions for the discussion of rotations. He was followed by Boole, Donkin, 
Clifford, Buchheim, Klein, Hurwitz, Hathaway, Stringham, and Study. Appar- 
ently none of these men thought of considering first the simpler operation of 
reflection and deducing a rotation as the product of two reflections. This pro- 
cedure will be described in ??3 and 5, and its consequences developed in the 
later sections. 

Every quaternion a =ao+a1i+aZj+a3k determines a point P. = (ao, a,, a2, a3) 
in euclidean 4-space, and a hyperplane aoxo+a1xl+a2x2+a3x3 =0. The reflection 
in that hyperplane is found to be the transformation x---axa/Na. This leads 
easily to the classical expression 

x - axb (Na = Nb = 1) 

for the general displacement preserving the origin. Cayley obtained this elegant 
expression by "brute force" as early as 1855. It became somewhat more natural 
in the hands of Klein and Hurwitz, forty years later. The treatment in ?7 will 
possibly serve to clarify it still further. 

We begin with a few algebraic lemmas, mostly due to Hamilton. 

2. Elementary properties of quaternions. A quaternion is a hyper-complex 
number a =ao+a1i+a2j+a3k, where ao, al, a2, a3 are real numbers ("scalars"), 
and multiplication is defined by the rules 

i2= j2 = k2= ijk =-1, 

which imply jk = =i-kj, ki =j =-ik, ij=k =-Ji. Thus quaternions form an 
associative but non-commutative algebra. 

It is often convenient to split a quaternion into its "scalar" and "vector" 
parts :t 

a = Sa + Va, Sa = ao, Va = ari + a2j + a3k. 

We define also the cozjugate quaterniont 

d = Sa- Va = ao - ali - a2j - a3k 

and the norm 

Na = da = ad = a 2+ a2 + a2+ a3 

* This paper is an amplification of an invited address delivered at the annual meeting of the 
Mathematical Association of America in Chicago on November 24, 1945. 

t W. R. Hamilton, Elements of Quaternions, vol. 1, London, 1899, pp. 177, 193. By his special 
convention, p. 186, Sxy means S(xy), not (Sx)y; similarly for Vxy and Nxy. 

t Klein's symbol a seems preferable to Hamilton's Ka. 

136 
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In terms of a and d, we have Sa=2(a+d), Va= 2(a-a). 
Since I = -1- and i=-k =f, etc., we easily verify that 

ab= 

whence Nab =aab = baab = b(Na)b = NaNb. If Na = 1, we call a a unit quater- 
nion. To every non-vanishing quaternion a there corresponds a unit quaternion* 

Ua = a/N. 

A quaternion p is said to be pure if Sp=O. Then P= -p and p2 -Np. Thus a 
pure unit quaternion is a square root of -1. 

The point P. = (X1, X2, X3) in ordinary space may be represented by the pure 
quaternion x =x1i+x2j+x3k. This representation resembles the Argand diagram 
in the plane, in that the distance PXP, is given by pxpP2 = N(y -x). Since 

xy=-(xIyI+X2y2+x3y3)+ X2 X3: +X3 XI j+ Xl X212 
Y2 Y3 Y3 Yi yl Y2 

we see that -Sxy and Vxy are the ordinary 'scalar product" and 'vector 
product" of the two vectors PoPe, and PoP11. If x and y are pure unit quaternions, 
then Px and P, lie on the unit sphere around the origin Po, and we have 
Z PxPoPv = O, where 

cos =- Sxy= -(xy + yx). 

Thus the condition for P. and P, to lie in perpendicular directions from Po is 

xy + yx = 0. 

LEMMA 2.1. For any quaternion a we can find a unit quaternion y such that 
ay =yy. 

Proof. Take any pure quaternion p for which PoP, is perpendicular to PoPva. t 
Then 

(Va)p + p(Va) = 0. 

But since the scalar Sa commutes with p, 

(Sa)p - p(Sa) = 0. 

By addition, 
ap - p= 0. 

The desired unit quaternion is y = Up. 

* Hamilton, op. cit., p. 137. 
t If an explicit formula is desired, we may write p = V(Va)q, where q is any pure quaternion 

(other than the scalar multiples of Va). In fact, if p=Vaj, where a=Va, then 2p=ag-qa, and 

2(ap + pa) = a(a - qa) + (aq - ga) a = a2q - qa2 = 0, 
a2 being scalar. Thus our appeal to geometry could have been avoided. 
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LEMMA 2.2. Let a and b be two quaternions having the same norm and the same 
scalar part.* Then we can find a unit quaternion y such that ay =yb. 

Proof. If b = d, this is covered by Lemma 2.1; so let us assume b #a d. Since 
Sa=Sb, we have 

a+d=b+?i, a-7b = b-a, 

a(a - )b = a(b -)b, 

a(ab - Nb) = (ab - Na)b. 

Thus ac-cb, where c=ab-Nb=ab-Na=a(b-a). Since bzA, c0; so we can 
take y = Uc. 

LEMMA 2.3. Any quaternion is expressible as a power of a pure quaternion.f 

Proof. Since Npt = (Np) t, it will be sufficient to prove this for a unit quater- 
nion, a. Since (Sa)2 - (Va)2 = Na =1, such a quaternion may be expressed as 

a = cos a + p sin a, 

where cos a= Sa and p is a pure unit quaternion. Since Va = p sin a, we have 
p = UVa. Since p2 -1, de Moivre's Theorem shows that 

an = cos na + p sin na 

for any real number n. In particular, awr2a =p, so a =p2ot/'. Thus 

a= pty 

where p UVa and cos 'tr = Sa (so that we may suppose 0? t <2). 

3. Reflections and rotations in three dimensions. We have seen that P. and 
P,, lie in perpendicular directions from the origin PO if the pure quaternions 
x and y satisfy the relation 

xy + yx = 0. 

If Ny = 1, so that y2 -1, this condition may be expressed as 

x = yxy. 

Since yxy= yy = -yxy, yxy is pure for any position of P,. Thus the linear 
transformation x-->yxy (where Ny = 1) represents a collineation which leaves in- 
variant every point P. in the plane through Po perpendicular to PoPV, i.e., the 
plane 

ylXl + Y2X2 + y3X3 = 0. 

Moreover, it reverses the vector POP,,: 

y -+y3= y. 
* Two such quaternions satisfy the same "rank equation" x2 - 2mx+n = 0, where m = Sa = Sb 

and n = Na = Nb. For a general discussion of the equation ay = yb, see Arthur Cayley, On the 
quaternion equation qQ-Qq'=0, Messenger of Mathematics, vol. 14, 1885, pp. 108-112. 

t Hamilton, p. 399. 
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But the only collineation having these properties is the reflection in the plane of 
invariant points. Hence 

THEOREM 3.1. The reflection in the plane EY,yx=O is represented by the trans- 
formation 

x -yxy (Ny = 1). 

The product of two such reflections, x-*yxy and x--zxz (with Ny = Nz =1), 
is the transformation 

x -* zyxyz. 

Accordingly, this is a rotation, in the plane PoP11Pz, through twice the angle 
P,PoP2. In other words, it is a rotation through q5 about the line PoPvv,z where 

Cos 2q = - Syz. 

By Lemma 2.1, any unit quaternion a may be expressed as -zy, where 
ay =yd=z. (Here z, like y, is a pure unit quaternion; for, 

z + -=ay-yd = O, and Nz = NaNy = 1.) 

Since =-yz, this shows that the transformation 

x --+ axa (Na= 1) 

is a rotation through q$ about PoPva, where cos 5= Sa. 
In the notation of the proof of Lemma 2.3, we have a =cos ao+p sin a, where 

PoPp is the unit vector along the axis of rotation, and a = + 24. The sign is a 
matter of convention. Taking the plus, we find that the rotation through 'w 
about the x3-axis POPk transforms Pi into Pi: 

1 + k 1-k (i + j)(1-k) 

\/ >/2 2 

(The opposite convention would have given i- >-j.) We sum up in 

THEOREM 3.2.* The rotation through q5 about the line with direction cosines 
(Pl, P2, p3) is represented by the transformation x->axd, where 

a cos 21 + (pli + p2j + p3k) sin 2q. 

Since the product of two rotations, x-*axd and x--*bxb, is another rotation, 
viz., x->baxba, we can immediately deduce 

THEOREM 3.3. All the rotations about lines through the origin in ordinary space 
form a group, homomorphic to the group of all unit quaternions. 

Since the rotation through q is indistinguishable from the rotation through 
q+27r about the same axis, there are two quaternions, ?a, for each rotation. 

* Arthur Cayley, On certain results relating to quaterniohs, Philosophical Magazine (3), 
vol. 26, 1845, p. 142. George Boole, Notes on quaternions, ibid., vol. 33, 1848, p. 279. W. F. Donkin, 
On the geometrical theory of rotation, ibid. (4), vol. 1, 1851, p. 189, 
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Alternatively, we may say that the group of rotations is isomorphic to the 
group of all "homogeneous quaternions," in accordance with the formula 

x - ax4/Na, or x -+ axa-1. 

(A homogeneous quaternion is the class of all scalar multiples of an ordinary 
quaternion.) To make this an isomorphism rather than an anti-isomorphism, 
we must agree to multiply group elements from right to left. 

Combining x->axd with the inversion x- -x, we obtain the transformation 

x --axCa (Na=1) 

which may be regarded either as a rotatory-inversion of angle 4 or as a rotatory- 
reflection of angle +ir. 

4. The general displacement. Two orthogonal trihedra at the same origin 
can be brought into coincidence by the successive application of the following 
reflections: one to interchange the two xl-axes, another to interchange the two 
x2-axes (without disturbing the xi-axis), and a third (if necessary) to reverse the 
x3-axis. Thus the general orthogonal transformation in three dimensions is the 
product of at most three reflections-an even or odd number according as the 
transformation preserves or reverses sense. In particular, any displacement (or 
"movement") leaving the origin fixed must be the product of only two reflections 
t.e., a rotation. (This is a famous result, due to Euler.) Thus the group considered 
in Theorem 3.3 is the group of all such displacements, and is a subgroup of 
index 2 in the group of all orthogonal transformations. The latter contains also 
the rotatory-reflections x-- >-axJ, which are products of three reflections. 

Similarly in four dimensions, the general orthogonal transformation (i.e., 
congruent transformation with a fixed origin) is a product of at most four reflec- 
tions (in hyperplanes). Thus the general displacement (leaving the origin fixed) 
is the product of two or four reflections. But the product of two reflections is a 
rotation (about the common plane of the two hyperplanes, through twice the 
angle between them). Hence a displacement is either a single rotation or the 
product of two rotations about distinct planes.. If any point besides the origin 
is invariant, the displacement can only be a single rotation; for it operates 
essentially in the 3-space perpendicular to the line of invariant points. In the 
general case of a double rotation, where only the origin is fixed, it is well known 
(though far from obvious) that the axial planes of the two rotations may be 
chosen to be completely orthogonal. This wa's first proved by Goursat in 1889. 
We shall obtain a new proof in ?9. 

5. Reflections and rotations in four dimensions. A point P. in euclidean 
4-space has four Cartesian coordinates (xO, Xl, X2, X3) which may be interpreted* 
as the constituents of a quaternion 

X = Xo + X1i + x2j + x3k. 
* A. S. Hathaway, Quaternions as numbers of four-dimensional space, Bulletin of the American 

Mathematical Society, vol. 4, 1897, pp. 54-57. 
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The distance PXPV is given by 

PZPy = (yo - XO) + (Y1-X1) + (Y2 - X2) + (Y3-X3) = N(Y-X). 

If x and y are unit quaternions, then P. and P, lie on the unit hypersphere 
around the origin Po, and we have Z PPOP,P =0, where 

cos 0 = XOyo + xlyl + x2y2 + x3y3 = Sx9 = 2(xY + yx). 

Thus the condition for P. and Pv to lie in perpendicular directions from Po is 

xy + yx = 0. 

If Ny = 1, this condition may be expressed as 

x = - yxy. 

Thus the linear transformation x-* - yxy (where Ny =1) represents a collinea- 
tion which leaves invariant every point P. in the hyperplane through Po per- 
pendicular to PoPS, i.e., the hyperplane 

YOXO + ylXl + Y2X2 + Y3X3 = 0. 

But it reverses the vector PoP,: 

Y- yyy =-y. 
Hence 

THEOREM 5.1. The reflection in the hyperplane >y,x, =0 is represented by the 
transformation 

x->-yxy (Ny= 1). 

The product of *two such reflections, x->-yxy and x-?-zxz (with 
Ny = Nz 1), is the transformation 

x z yxy z = zyxyz. 

Accordingly, this is a rotation, in the plane PoP,P5, through twice the angle 
PvPoPx. In other words, it is a rotation about the completely orthogonal plane 

E Y'x= z x = O 
through angle p, where cos = Sy2 = Szy = Syz. This proves 

THEOREM 5.2. The general rotation through angle q5 (about a plane) is 

x -> axb, 

where Na=Nb= 1 and Sa=Sb=cos j4. 

Conversely, the transformation x->axb (where Na = Nb =1) is a rotation 
whenever Sa = Sb; for then, by Lemma 2.2, we can find unit quaternions y and z 
such that ay= yb =z, enabling us to write 

a= zy, b = yz. 
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6. Clifford translations. The product of the two rotations x-*axa and x->axa 
is the so-called left translation* 

x -+ a2xI 

while the product of x-+axa and x-*jxa is the right translation 

x - xa2. 

Clearly, left translations x-?ax form a group, so do right translations x->xb, 
and any left translation commutes with any right translation. Every left trans- 
lation has a unique expression x->ax (Na = 1); for, the equation ax = bx would 
imply a=b. Similarly every right translation has a unique expression x->xb. 
Hence 

THEOREM 6.1. The group of left (or right) translations is isomorphic to the 
group of unit quaternions. 

(In the case of right translations, we can make this a true isomorphism, and 
not merely an anti-isomorphism, by letting the quaternion b correspond to the 
translation x->xb, so that the product ab corresponds to x-*xab =xbd.) 

Comparing this with Theorem 3.3, we see that the group of left (or right) 
translations is homomorphic to the group of rotations about a fixed origin in 
ordinary space, with two Clifford translations for each rotation. 

A Clifford translation (i.e., a left or right translation) has the remarkable 
property of turning every vector through the same angle. For, if Nx=1, so 
that also Nax =1, the left translation x-*ax transforms P. into Pa,, and 

cos ZPLPoP., = Sax? = Sa, 

which is the same for all vectors POP.. Similarly, x-*xb transforms P. into P b, 
and cos Z P,,POPA = Sxxb = Sb. 

Can a left translation be also a right translation? This would make ax =xb 
for every x. The case x=1 gives a=b. Now take x to be the y of Lemma 2.1. 
Then 

ya= ay=yd, y(a-2) = O, Va= O, 

and so, since Na = 1, a = ? 1. Thus the only left translations that are also right 
translationst are the identity x-*x and the inversion x-+-x. 

Instead of dceriving Theorem 5.1 from the condition for LZPPoPv to be a 
right angle, we might have observed that x-*ax (where Na = 1) must be some 
kind of congruent transformation (since Nax = Nx), and that this transforms 
the special reflection x-+-x into the general reflection 

x -a4x = - a2a. 

* Felix Klein, Vorlesungen uiber nicht-Euklidische Geometrie, Berlin, 1928, p. 240. 
t William Threlfall and Herbert Seifert, Topologische Untersuchung der DiskontinuitIts- 

bereiche endlicher Bewegungsgruppen des dreidimensionalen spharischen Raumes, Mathematische 
Annalen, vol. 104, 1931, p. 10. 
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7. The group of displacements. The product of a left translation and a right 
translation is, of course, x->axb (where Na = Nb =1). The product of two dis- 
displacements of this form is another of the same form. In particular, as we saw 
in Theorem 5.2, a rotation is of this form (with the special relation Sa = Sb). 
But t'he general displacement with a fixed origin is the product of two rotations. 
Hence 

THEOREM 7.1.* The general displacement preserving the origin is 

x -axb (Na=Nb=1). 

Of course, axb is the same as (- a)x(- b). With this exception, each displace- 
ment has a unique expression x->axb. For, the equation axb =a'xb' would imply 
a'Ilax -xb'b-l for every x, whence a'-'a =b'b-1 = ? 1. In other words, every dis- 
placement (with a fixed origin) is the product of a left translation and a right 
translation in just two ways. Thus the direct product of the groups of all left 
translations and of all right translations is homomorphic to the group of all four- 
dimensional displacements preserving the origin (with two elements of the direct 
product for each displacement), and this in turn is homomorphic to the direct 
square of the group of all three-dimensional displacements preserving the origin 
Xwith two displacements for each element of the direct square). 

8. The general orthogonal transformation in four dimensions. The general 
"opposite" or "sense-reversing" transformation leaving the origin invariant is 
the product of an odd number of reflections. Hence, in four dimensions, it is 
either a single reflection or a product of three. But in the latter case the three 
reflecting hyperplanes intersect in a line of invariant points, and every hyper- 
plane perpendicular to this line is invariant; so this scarcely differs from a 
ro'tatory-reflection in ordinary space. As such, it has an axis and a special re- 
flecting plane. Its product with the special reflection x-x- - is a displacement 
x->axb; so the rotatory-reflection itself must be x- >-axb, or, after changing 
the sign of a, 

x -> axb. 

Since a a+-b b =a+b, the line of invariant points is POPa+b. Since a a-b b 
- (a - b), the axis is POPa_b. 
We sum up our conclusion in 

THEOREM 8.1. Every orthogonal transformation in four dimensions is either 

x -axb or x-> axb. 

9. The general displacement expressed as a double rotation. By Theorem 
5.2, the general half-turn is 

x -> pxq, 

* Arthur Cayley, Recherches ulterieures sur les determinants gauches, Journal fur die reine 
und angewandte Mathematik, vol. 50, 1855, p. 312. 
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where p and q are pure unit quaternions. This is the half-turn about the plane 
containing all points P. for which x =pxq, or 

px + xq = 0.* 

Since p - q and 1 +pq are particular solutions of this equation for x, we may 
describe the plane as PoPp_sP1+p. A rotation through t7r about the same plane is, 
of course, x-*ptxqt. Replacing q by -q (= =q1), we deduce that x?ptxq-t 
is a rotation through thr about the completely orthogonal plane PoPp+Pl-p,. 
(The fact that these two planes are completely orthogonal is most easily verified 
by observing that the product of the half-turns x-*pxq and x- pxq-1 is the 
inversion x->p2x= -x.) 

Thus the product of rotations through tr and uwx about the respective planes 
PoPprqPi?pq is x+pt+uxqt-u. Setting tr-=a+13, ur= =a-f, and observing that 

cos a + P sin a =p2a/- 

(see the proof of Lemma 2.3), we deduce that the product of rotations through 
angles a?/3 about planes POPP,P1?ip is 

x -* (cos a + p sin a))x(cos ,B + q sin p). 

In other words, 

THEOREM 9.1.1 The general displacement x->axb is the double rotation through 
angles a about planes PoPpi,Pi?pq, where 

cos a = Sa, cos P = Sb, p = UVa, q = UVb. 

10. Lines in elliptic space. The above considerations can be translated into 
terms of elliptic geometry by identifying pairs of antipodal points on the hyper- 
sphere. Now all scalar multiples of a quaternion x represent the same point P., 
whose coordinates (xO, X1l X2, x3) are homogeneous. The transformation 

x -* - yxy 

is the reflection in the polar plane of Pv, and this is the same as the inversion 
in P, itself. We now say that the group of all displacements is precisely the 
direct product of the groups of left and right displacements; accordingly, it is 
isomorphic to the direct square of the group of displacements preserving the 
origin. Instead of Theorem 9.1, we say that the general displacement x->axb 
is the product of rotations through angles a? + about the respective lines 
PpT-P,?,,, where 

(1) cosa = Sa, cos, = Sb, p = UVa, q = UVb. 

* Irving Stringham, On the geometry of planes in parabolic space of four dimensions, Trans- 
actions of the American Mathematical Society, vol. 2, 1901, p. 194. 

t tdouard Goursat, Sur les substitutions orthogonales et les divisions r6guliRres de 1'espace, 
Annales Scientifiques de l'gcole Normale Sup6rieure (3), vol. 6, 1889, p. 36. 
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The line P,P,P1+,, which is the axis of the half-turn x-*pxq, is conveniently 
denoted by {p, q},* or equally well by { -p, -q}. Thus any two pure unit 
quaternions determine a line {p, q}. The absolute polar line is { -p, q} or 
{P, -q}. 

Two lines {p, q } and {p', q'} have, in general, two common perpendicular 
lines, which are the transversals of the four lines { ?p, q } and { ?p', q'}. These 
are preserved by either of the half-turns x-+pxq, x--p'xq', and so also by their 
product 

(2) x -* p'pxqq'. 

Thus they are the two axes of this double rotation. Any point on either axis 
will be reflected first in { p, q } and then in { p', q'}; altogether it will be trans- 
lated along that axis through twice the distance between the lines. Hence the 
two distances between the lines { p, q } and { p', q' }, measured along their common 
perpendiculars, are 2 J o ? : | where 

(3)t cosa - Sp'p -- Spp', cosf8 =-Sqq'; 

and the common perpendiculars themselves are the lines 

(4) ? + UVpp', UVqq' 1. 
It follows from (3) that the condition for {p, q } and {p', q'} to intersect is 

(5) Spp' = Sqq', 

and then the angle between them, being half the angle of the rotation (2), is 
arc cos (C+ Spp'). Similarly, the condition for { p, q } and { p', q' } to be perpen- 
dicular (i.e., for one to intersect the polar of the other) is 

(6) Spp' + Sqq' = 0. 
Thus the condition for them to intersect at right angles is 

(7) SpP' = Sqq' = 0. 

The common perpendicular lines (4) cease to be determinate if Vpp' or Vqq' 
vanishes, i.e., if either p'= +porq'= +q. Lines {p, q} and {p, q'} are saidto 
be left parallel. They have an infinity, of common perpendiculars 

(8) { UVpp', UVqq' }, 
where p' may range over all unit pure quaternions (except +p). To verify 

* This notation was used by A. S. Hathaway, Quaternion space, Transactions of the American 
Mathematical Society, vol. 3, 1902, p. 53. It is closely associated with the representation of a 
line in elliptic space by an ordered pair of points on a sphere; see Eduard Study, Beitriige zur 
nichteuklidische Geometrie, American Journal of Mathematics, vol. 29, 1907, pp. 121-124. 

t Here we are using (1) with a= -p'p, b= -qq'. Plus signs would have given the supple- 
mentary distances, which are equally valid; but it seems preferable to use the sign that makes 
a and 63 small when p' and g' are nearly equal to p and q. 
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this we merely have to observe that the line (8), which intersects { p, q } at 
right angles, also intersects { p, q'} at right angles. The distance between 
these left parallel lines, measured along any of the common perpendiculars, is 
2arc cos (-Sqq'). 

Similarly, right parallel lines { p, q } and { p', q } are distant 2 arc cos (- Spp') 
along any of an infinity of common perpendiculars (8), only now it is q' that 
can vary. Thus the common perpendicular lines of right parallels are left 
parallel, and vice versa. 

By the remark at the beginning of ?9, the condition for the line { p, q } to 
contain the point P. is 

(9) px+xq=O. 

Regarding this as an equation to be solved for q or p, we see that we can draw 
through a given point P. just one left and one right parallel to a given line { p, q 
namely{-x-1px} and {- xqx-1, q}. 

Thus the set of all left (or right) parallels to a given line is an elliptic con- 
gruence: there is just one member of the set through every point of space. 

If { p, q } contains P,,, its polar line lies in the polar plane of P. Replacing 
q by - q, we deduce that the condition for the line { p, q} to lie in the plane 
EY,x1V = O is 
(10)* py = yq. 

Instead of insisting that the p and q of the symbol { p, q } shall be unit pure 
quaternions, we could just as well allow them to be any two pure quaternions 
of equal norm. Then {p, q } is the same line as {Xp, Xq } for any non-zero scalar X; 
i.e., the two pure quaternions are "homogeneous coordinates" for the line. In- 
stead of (3) we must now write 

cos a =-Spp'/v'}Npp, cos 3 -Sqq'/VNN; 

but instead of (4) we find that the common perpendiculars to {p, q } and {p', q'} 
are simply { ?Vpp', Vqq'}, or 

{Vpp', Vqq'} and { Vp'p, Vqq'}. 
Formulas (5), (6), (7), (9), (10) remain valid, but (8) takes the simpler form 
{ Vpp', Vqq' } . 

To express the line PaPb in the form {p, q } we have to find pure quaternions 
p and q satisfying 

pa + aq = pb + bq = 0. 
We may take p=ab -b4 and q=aZb-Da, or, halving these, p=Vab and q=VcVb. 
Thus the line PaPb is { Vab, Vab }. 

Similarly, the line of intersection of planes ,x = 0 and Eb,x, = 0 is 
{Vab, Vba}. 

* Hathaway, Quaternion Space, p. 52. 


	Article Contents
	p. 136
	p. 137
	p. 138
	p. 139
	p. 140
	p. 141
	p. 142
	p. 143
	p. 144
	p. 145
	p. 146

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 53, No. 3 (Mar., 1946), pp. 121-180
	Front Matter [pp. ]
	Rehabilitation of Graduate Work [pp. 121-131]
	Mathematics at the American Universities in Europe [pp. 131-133]
	Biarritz American University [pp. 134-135]
	Quaternions and Reflections [pp. 136-146]
	Discussions and Notes
	On the Equation of Joukowski's Aerofoils [pp. 147-149]
	Note [pp. 149-150]

	Clubs and Allied Activities [pp. 150-153]
	Recent Publications
	Reviews
	Review: untitled [pp. 154]
	Review: untitled [pp. 155-156]

	New Books Received [pp. 156]

	Problems and Solutions
	Elementary Problems
	Problems for Solution: E711-E715 [pp. 156-157]
	Solutions
	E681 [pp. 157-158]
	E683 [pp. 158-159]
	E685 [pp. 159-160]


	Advanced Problems
	Problems for Solution: 4193-4197 [pp. 160-161]
	Solutions
	4141 [pp. 161-162]
	4148 [pp. 162-163]
	4149 [pp. 163-164]



	News and Notices [pp. 165]
	General Information [pp. 166-172]
	The Mathematical Association of America
	The Twenty-Ninth Annual Meeting of the Association [pp. 172-179]
	December Meeting of the Philadelphia Section [pp. 179-180]
	Calendar of Future Meetings [pp. 180]

	Back Matter [pp. ]



