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1. Introduction and reformulations

Let Gy be a connected semisimple real matrix group. It is now apparent that
the representation theory of Gy is intimately connected with the complex
geometry of the flag variety #4. By studying appropriate orbit structures on 4,
we are naturally led to representation theory in the category of Harish-
Chandra modules #%, or the representation theory of category ('. The Jac-
quet functor J: #%—0 has proved a useful tool in converting “s#% prob-
lems” into “@’ problems”, which are often more tractable. The full potential of
this transference philosophy is obstructed by the notoriously obscure g-module
structure of the Jacquet modules J(X), Xe#%. In this paper, we advance the
philosophy that the complex geometry of 4, associated to #% and (', in-
teracts in a natural way with the functor J, leading to deep new information
on the structure of Jacquet modules. Indeed, our main theorem will establish
the existence of a computable g-module filtration of J(X) having semisimple
subquotients, whenever X is an irreducible Harish-Chandra module with in-
tegral infinitesimal character. Our techniques depend upon the combinatorial
Hecke algebra formalism of our previous paper [8], analysis of certain
“weights of Frobenius” in the setting of positive characteristic and Bernstein’s
geometric construction of Zuckerman’s “K-finite functor”.

In more details, we fix, once and for all, a reductive affine algebraic group
G over R (R the field of real numbers). We look at G as the set of zeros in
GL(n,C) of a finite set of polynomials in the matrix entries with real coef-
ficients. Assume Gy has finite index in the set of real points of G; then Gy is a
real reductive group, in the sense of [22]. Fix a maximal compact subgroup Ky
with complexification K, B=H,N an [wasawa-Borel subgroup of G with
complexified Lie algebra b (where H,  is a maximally split 6-stable Cartan
subgroup (0 being the Cartan involution) and N is the nilradical) and N =6(N),
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the opposite nilradical. Denote by g the complexified Lie algebra of Gy
and define # to be the usual flag variety of all Borel subalgebras of g. Both
K and N act upon 4 in a natural way, with finitely many orbits. Fix, once and
for all, a finite dimensional irreducible representation F of Gg. We introduce
the category #' %y (resp. Op) to consist of all Harish-Chandra modules (resp. all
finitely generated b-finite U(g)-modules) with the same infinitesimal character
as F. Let H=K or N and define

={(y,(9y): 0, is an H-orbit on # and y is an H-homogeneous}

line bundle on O, with a flat connection.

Given (y,0,)e 2y, we will often abbreviate y=(y,0,) and to each such object
there is attached a natural notion of “size”, given by

length of y=¢(y)=dim0,,.

Our next result recalls the formal connection between representation theory
and the sets 2y, H=K or N.

(1.1) Proposition [1, 17, 21]. The set of irreducible representations in H'E,
(resp. Og) is in one-to-one correspondence with the set D (resp. Dy).

Given ye%g, we may attach a standard induced from discrete series 7(y)
and its unique irreducible quotient 7(y), [21]. The set &, may be identified
with the Weyl group W of (G,B) and in this sense each weZ, may be
associated to a Verma module M, and its unique irreducible quotient L,
Here, we follow the conventions of [15]: M_,=L, and M, contains F as a
quotient, where w,=the longest element of W. A refinement of (1.1) asserts:

(1.2) The Grothendieck group K(#%y) (resp. K(Oy)) has a basis {n(y): ye Dg}
and {7(y): ye D} (resp. {M,,:we Dy} and {L,: weDy}).

We recall the Jacquet functor J: # €,— O, defined by
(1.3) J(X)=7,(X)%);

here, y,(...)=n-locally nilpotent vectors in (...), ~(resp. *) denoting the ad-
missible (resp. full algebraic) dual. J is a faithful exact covariant functor
commuting with the natural duality operations in category #%; and (%; in
particular, J(7(y)) is a self-dual object in O [9, 14, 19, 23]. Our main result
(1.11) can be loosely stated as follows

(1.4) The filtration algorithm. Fix an irreducible Harish-Chandra module 7(y),
yeDy. Then there exists an explicit combinatorial algorithm to compute a g-
module filtration

0=E,GE SE,&...SEy_SEN=J(@(Y)),

with the property that each E,/E; |, (1<i<N) is completely reducible in 0'.

(1.5) Remarks. (a) By the term “explicit”, we mean the following: Given
Langlands data 7(y), our algorithm will describe the composition factors of
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each E; and the irreducible summands of each semisimple subquotient E,/E; |,
in terms of various L, weW.

(b) In practice, the algorithm of (1.4) may be very tedious to complete by
hand. Roughly speaking, one must use the Kazhdan-Lusztig formulas for #¥
and O', simultaneously. The computational difficulty increases (rapidly) with
the real rank of Gy. If Gy has real rank one, these filtrations were computed in
[8, sec. 4] or [10]; in this case, J(7(y)) contains one, two, three or (at most)
four irreducible composition factors. In the first paper, we compute the fil-
tration of (1.4) for @(y;)=an irreducible fundamental series representation of
the real rank two group SL;C; in this case, J(7(y,)) contains 44 composition
factors arranged in seven different levels!

(c) The case of Gx=SL, R is described in (1.15) below.

(d) Before the appearance of (1.4), the best structural result concerning
J(7(y)), was knowledge of its formal character; i.e. the irreducible composition
factors of J(7(y)) were previously known. This uses the Kazhdan-Lusztig conjec-
tures (which are theorems [1, 6, 21]) and Osborne’s conjecture (which was
proved in [13]).

(e) Typically, J(7(y)) is highly reducible, as can be seen from the examples
cited in (b). Nevertheless, the self-duality of J(@(y)) imposes interesting sym-
metry properties upon the g-module filtration of (1.4). In all examples we have
studied, the filtration {E;} of J(7(y)) has an odd number of levels (i.e. successive
non-zero subquotients E,/E; ). However, we have been unable to prove this in
general (cf. remarks below). Presumably, this parity condition on the levels is
true and the term(s) L, defining the Langlands data of 7(y) are all attached to
the “middle row” of J(7(y)). Otherwise put, we do not know {E;} of (14) is a
self-dual filtration; though we conjecture it is such (cf. (1.23) below).

(1.6) Corollary®. There exists an explicit combinatorial algorithm to compute a
completely reducible submodule of J(7(y)), which must contribute to H (i, (7))
and will define the same primitive ideal as 7(y).

Of course, the corollary may produce several irreducible submodules of
J(7(y)), depending upon the length of the completely reducible g-module E; of
(1.4). Using Frobenius reciprocity [9], we are led to (typically) new embeddings
of 7(y) into principal series representations. These embeddings, which we term
buried embeddings, are attached to the bottom level of the filtration {E;} in
(1.4); by contrast, the leading embedding(s) (given by asymptotics [9, 13]) are
typically attached to an intermediary level “near the middle”. (In fact, if the
parity assertion of (1.5¢) held, they would be attached to the middle level). In
principle, (1.6) describes the primitive ideals attached to objects in H#'€,, by
using the known classification in category O'.

We now turn toward a discussion of our proof. Just as with the proof of
the Kazhdan-Lusztig conjectures, a key idea is to translate (1.4) into both a
combinatorial and a geometric setting. Then, within this translated setting, our
problem will be solved.

! Further connections with fi-homology appear in [24]
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To motivate our combinatorial reformulation of (1.4), we make a few
observations. The Grothendieck groups K(#%;) and K(0) carry a W-module
action, via the coherent continuation representation. The Jacquet functor ex-
tends to a map J° of Grothendieck groups and

1.7 J°: K(#%r)— K (Of) is a W-module map.

From a result such as (1.7), the best one could hope to extract would be
composition factor information for J(@(y)). Indeed, this is exactly why (1.5d)
holds. How can we possibly hope to extract the filtration {E;} of (1.4) from
(1.7)? Quite simply, the answer is that we cannot. To proceed further, we need
an analogue of (1.7), where the Grothendieck groups are replaced by “finer”
entities and J° interacts nicely with this extra information.

To carry out the program of our previous paragraph will require the
formalism of the Hecke algebra, Hecke modules, etc. Let H=K or N and
define

(1.8) J//H=Z[f1"”2,q”2](éz§l[@n],

which is referred to as the Hecke module attached to Z,. Identifying m(y)e>y
(or M —w), we may view (1.8) as a g-deformation of the usual Grothendieck
groups. Moreover, recall the Hecke algebra # associated to our pair (W, B),
[15, 17]. Then the Hecke modules .#; carry an action of s [8, 17].

We noted in (1.2) that K(#%;) and K(O%) carry two natural basis. More-
over, the irreducibles in (1.2) form a self-dual basis. By analogy, {y:ye@} or
{w:weW=92,} form basis for #,, H=K or N. There is an analogue of the
self-dual basis given by

(1.9) {éy:yegK} and {C,:weW},

as defined in [8]. The objects in (1.9) are self-dual with respect to the natural
duality operation on /.
Given X ey, write

M
(1.10) X= Z qn/z(zaw(n(l)) Cw(n(i)))’

n=—M ()

i

~v

X

n

where a,(n(i))eZ and X, is called the n™ level of the weight filtration data of
X. We caution the reader that the indexing in (1.10) is not meant to suggest
any kind of self-duality; i.e. some X, may be zero. Schematically, we may
represent (1.10) as

X=X_y<X_ y1<.<Xy_ <Xy,

or
Xu g™’
x= X_um g~ M
levels weights

Our main theorem is best stated (and proved) in the following context.
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(1.11) Theorem. There exists a Hecke algebra map of Hecke modules I:
My— My, which satisfies the following two properties:

(I) Let yePy and consider the weight filtration data

M
(1.12) IC)= ¥ a"*(La,n0) Copa)-

n=-M n(i)

Then there exists a g-module filtration {E,} of J(7(y)), having semisimple sub-
quotients (as in (1.4)), and satisfying

(1.13) E./E,_=®la, )] Lyguay-

(II) There exists an explicit combinatorial algorithm to compute the weight
filtration data of J(C,); hence, the semisimple subquotients of our g-module
filtration {E,} of J(7(y)).

(1.14) Remarks. (a) We view this as the “correct” analogue of (1.7), in a
context where data as in (1.4) may be extracted.

(b) In the examples we have computed (cf. [8]), all levels X, of (1.12)
—M<n<M, are non-zero. This suggests that the weight filtration data of
3(C,) is self-dual and weights attached to successive levels differ by g*!/?; this
will be discussed further near the end of the introduction.

(c) In (1.13), we must take the absolute value of a,(n(i)). This is related to
the connection between .#, and a characteristic p version of K(0%); see [8] or

[3].

(1.15) Example. To fully orient the reader, we now describe in full details the
case of G,=SL,R. In this case, #=IP'=C U {oc}. Thus, # has three K-orbits:
{0}, {oo} and C€*=the open K-orbit. The isotropy groups K, for x in one of
the three orbits, are K, K and {41}, respectively. The set &, contains four
elements; the constant sheaves on the orbits and a “mobius band” coming
from the double cover of C*. From (1.1), each of these elements may be
identified with a standard representation: , = principal series which has F as
a quotient (corresponds to the trivial sheaf on €*); § _=irreducible principal
series (corresponds to the “mobius band” on the open orbit); é,=a holomor-
phic discrete series (corresponds to the constant sheaf on {0}); and §,=an
antiholomorphic discrete series (corresponds to the constant sheaf on {oo}).

Notice that
£(0,)=¢((6_)=1 and ¢(5,)=¢(9,)=0.

In a similar way, one can identify 2, with a two-element set: é,=Verma
module with F as a quotient (corresponds to the open N orbit in %) and 9,
=an irreducible Verma module (corresponds to the closed N orbit). Further-
more, we have Z(d)=1 and #(J,)=0.

Using (1.11), lets see how to compute the weight filtration data for J(C)).
Begin by setting

J(C; )=aC,+bC,,
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1/2
b

where a, beZ[q''?,q~'/*]; we are identifying s<d,, e—d, and W= {e,s}. From

[15, 17 and 21],

(@) (T,+1)-0_=0

(b) (T,+1)-C,=(1+9) C,

(C) (T;_’_l) Ce= Cs'
We find

0=0(T,+1)-0 )=(T,+ 1) I(C; )=(T,+1)(aC;+bC,)=(a+aq+b) C,.
This forces b= —(1+g)a and so
H(Cé_)za(cs—(1+q) Ce)'

Since 6 _ is a largest growth representation, [12] insures that a(l)=1. Assume
that a=1, then .
ICs )=0(g*C5))

=q~'23(C,))
=q—1/2 Cs_q—l/Z Ce__ql/l Ce
=—q'?C+¢°C,—¢'C,.

This gives weight filtration data

-C, 1/2
(1.16) 3¢, )=| ¢, 0
-C, —1/2.

The observation to be made is that (1.16) will correspond to the socle
filtration of J((d_)). Precisely, as is described in [14], we have

J#@O_)=| L, |,

where L,=socleJ(7(d_)), L,=socle(J(7(d_))/L,), L,=topJ(7(_)). The corres-
pondence can be even more precise, by inserting the appropriate +1’s in C, .
This “match up” was our original motivation for studying the fine structure of
Jacquet modules. Similar calculations show JI(C‘%)=J(C"5G)=C‘€ and J(7(4,))
=J(@3,)=L,.

The above example suggests that the knowledge of J being a Hecke algebra
map (1.11), leads to an explicit algorithm for computing the weight filtration
data of JI(C,,), €Dy, modulo a priori knowledge of certain pieces of large
growth modules. (This indeterminacy entered through “a” of (1.15).) More
carefully, let

D ={yeDy:dim0,=dim #}.
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This set parametrizes the largest growth representations of Hecht [12]. The
important property of such representations is the fact: J(n(y)) contains F as a
subquotient exactly once, whenever ye23. Define a map A: 23—~Z[q'/?,q"/*],

I(C)= Y a,mC,, a,,()=A@), ye22 and w,=the long element of W. Our

weW
work in [8] and Sect. 6 shows

(1.17) Observation. Modulo the knowledge of A, there exists_an explicit com-
binatorial algorithm to compute the weight filtration data of J(C.), yeDy.

The proof of (1.11) is now reduced to a priori understanding of the map A
in (1.17), plus justification that the weight filtration data of JI(CV) corresponds
to an actual g-module filtration {E,} of J((y)) having semisimple subquotients.
It is at this juncture we must invoke the philosophy of “passing to positive
characteristic”. Using the Beilinson-Bernstein localization theory [1] and the
Riemann-Hilbert correspondence [3], we obtain a functor

(1.18) J: HE,~0,.

Here, g=p" is almost any prime power and #%,, O, are certain (abelian)
categories of perverse Q, sheaves supported on K, or N, orbits of the modgq
flag variety 4, defined over the finite field IF,; see [8, Sect. 3] for unexplained
notation or terminology. We can now translate the problem solved by (1.4)
into this characteristic p setting; i.e. we want to compute a filtration of the
sheaf J, (7(y)), yePg. As it stands, this looks just as formidable (if not more so).
However, our new setting admits an underlying structure which was invisible
in characteristic zero. In particular, the Frobenius morphism Fr: #,—3%, be-
comes a homeomorphism (in the étale topology) and acts upon the stalks of
Q,-sheaves which carry a Frobenius action. That is, given a point xe4, fixed
by Fr and a sheaf & carrying an action of Frobenius, Fr: §,—&, and we can
ask to compute the eigenvalues of this endomorphism. From this viewpoint,
our main theorem has the following geometric reformulation.

(1.19)  We compute the action of Frobenius on J (7(y)), modulo roots of unity.

(1.20)  Remarks. (a) Implicit in (1.19) is the fact that J (7(y)) carries an action of
Frobenius; something which is not a priori clear. Moreover, we are showing
these weights have the form eq”? (ieZ), ¢ a root of unity and we compute these
weights. Typically, such calculations are very deep problems in algebraic geom-
etry (eg. the Riemann hypothesis portion of the Weil conjectures, as proved by
Deligne and generalized by Gabber [2]). However, we are blessed with a
priori knowledge of the weights of Frobenius on the intersection cohomology
of the standard irreducibles in #' %, and O [3, 17]; these facts use the Weil
conjectures! With these known weights in hand, Theorem (1.11) allows us to
compute the weights in (1.19).

(b) Computing the map A of (1.17) becomes important in (1.11).

(c) If & carries a Frobenius action and the weights of Fr (i.e. the eigenval-
ues on stalks above fixed points) have complex absolute value ¢* for some
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ieZ, then we say & is a mixed sheaf. If & carries a Frobenius action (with no
condition on the eigenvalues), then & is called a Weil sheaf.

As described in [2] or [8, Sect. 3], a result of Gabber’s asserts that any
mixed perverse sheaf has a filtration by perverse subsheaves and each suc-
cessive subquotient will be a direct sum of intersection cohomology sheaves
with Fr acting by a fixed weight of absolute value g2, some i. From the
formalism in [17], we see that this filtration will correspond to the weight
filtration data of H(Cy). Thus, these remarks reduce our entire proof to the
computation of 4 in (1.17), plus showing J, (7(y)) is mixed. These two facts are
proved simultaneously in Sect. 6. In this sense, everything has now been re-
duced to proving J is a Hecke algebra map.

In many respects, everything we have said thus far is present in [8].
However, showing commutativity of I with # proves to be extremely subtle.
Originally, our approach was to geometrically construct J in such a way that it
would obviously commute with 5. This was attempted in [8] and encapsu-
lated thru the notion of a geometric Jacquet functor J,,,. However, there we
were unable to show J,,=J. When the results of [8] were presented in a
seminar talk at MIT during the Fall of 1984, Wilfried Schmid suggested the
following tact: By the work of Bernstein, Zuckerman’s “K-finite functor”

&
ZLL(...)=R(K)RV(...) (R(K)=regular functions on K) is geometrically con-
f

structible [4] and satisfies the adjoint relation
(1.21) Hom(M, J(X))=Hom(¥° L(M), X),

Me0, and XeA# €. On moral grounds, nice properties of #L should carry
over to J. In particular, (1.21) will suffice to insure J is a Hecke algebra map;
actually, we need a slight variant of (1.21), which holds when M is a complex
with cohomology in O (Sect. 3). In this sense, Schmid’s suggested use of (1.21)
and Bernstein’s construction of # L are the central keys to our entire paper.

(1.22) Singular case. Fix a singular integral infinitesimal character y. Using
translation functors “to the walls”, (1.4) leads to a g-filtration with semisimple
subquotients of J(X), where X is an irreducible Harish-Chandra module hav-
ing infinitesimal character y. Of course, some composition factors may go to
zero, but the exactness of , (as in [20]) insures that the number of levels will
not increase (moreover, the number of composition factors cannot increase
[20]). In this sense, we have solved the singular integral case, by reduction
(logically) to the regular case. Of course, combinatorially this approach is
somewhat dissatisfying,

(1.23) Connections with [8]. We wish to clearly indicate the similarity and
difference between (1.4) (or (1.11)) and our work in [8], since there are some
rather subtle distinctions. Firstly, the philosophy in [8] was to geometrically
construct J. With this in mind, we axiomatized a functor J,., with properties as
in (1.11), then showed such exists. However, except in special cases, we were
unable to precisely relate the g-filtration of Jeeo(@(Y)) with a filtration of J(7(y)).

One property of this J,., was the fact that J . (C,) would have self-dual weight

geo
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filtration data. On the other hand, our current work shows Theorem (1.11), but
we have not geometrically constructed J, nor do we know the weight filtration
data of J(C,) is self-dual.

In addition to these remarks, there exists a deeper and more subtle differ-
ence between these two approaches, related to the map A4 of (1.17). In [8], the
map A amounts to A(8)=1, deDy. A clear connection between [8] and (1.11)
is given by

(1.24) Corollary (to [8] and (1.11)). Assume A is constant on blocks (cf. [22,
(9.2)]1). Then the weight filtration data attached to the geometrically constructed
Joeo (T(y)) coincides (up to a shift by a specifiable ¢, reZ) with the weight
filtration data attached to J(7(y)). In particular, the filtration {E,} of (1.4) is
self-dual.

For example, the hypothesis of (1.24) would be satisfied whenever Gy has
connected Cartan subgroups; this is the case if Gy is a connected semisimple
complex group or if Gy is a connected rank one group, other than SL,IR. The
case of PSB,R in [8] indicates an example where (1.24) holds, yet |2p|> 1.
Proving A is constant on blocks roughly amounts to computing the lengths
of a Gabber filtration on all principal series representations with largest growth
Langlands data and showing these lengths are the same for two such principal
series in the same block. (Here, principal series means “induced from the
minimal parabolic subgroup”) The work in [17] solves this problem (in
principle); the combinatorics are very complicated and do not obviously prove
or disprove the constancy of A.

Acknowledgements. We are both grateful to Wilfried Schmid for his suggestion to use the adjoint-
ness to Zuckerman’s functors. We are further indebted to Henryk Hecht and David Vogan for
stimulating our interest in the structure of Jacquet modules. Conversations with Frederick Bien in
connection with Bernstein’s construction of the functor L were also very useful. Both authors
were in residence at the Institute for Advanced Study during the final preparation of this
manuscript and gratefully acknowledge their support.

2. Preliminaries and a construction of Bernstein

We first introduce some conventions and notation. Throughout this section we
will have to view an algebraic variety over € as an object endowed with,
respectively, three different structures: Y*8=Y is Y the algebraic variety with
its Zariski topology; Y** consists of the complex points of Y viewed as a
complex analytic set and Y* is Y with its étale topology [18]. Often we will
consider derived categories over Y, Y*" consisting of complexes of sheaves
with constructible cohomology. If  is an algebraic map between two varieties
n,, 7, etc, will denote the direct image, direct image with proper supports etc.
as in [2] taken in the derived category, instead of using the notation Zn,, Zn
etc.
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Recall that we are fixing throughout this paper a finite dimensional repre-
sentation F of Gi. Let £, be a homogeneous line bundle over #* realizing F
on its global sections (as in the Borel-Weil theorem), ¢, the sheaf of sections
of #r and D the sheaf of twisted differential operators on .

Let x, be the infinitesimal character of F. Set R =R =U(g)/U(g) ker x. The
algebra R can be identified with the global sections of Dy [1]. We will be using
the machinery of the Kazhdan and Lusztig conjectures [1, 2, 3, 6], i.e. localiza-
tion, the Riemann-Hilbert correspondence (RHC) and passage to positive char-
acteristic (PPC). This machinery consists mainly of a dictionary between “nice”
R-modules and Q,-perverse sheaves over the analogue %, of # defined over a
finite field IF, with g elements. The first dictionary, localization [1], gives a
correspondence between R-modules and D,-modules over #*%. The second,
RHC, is between regular singular Dg-modules and perverse sheaves over %"
The third step, PPC, is subtle and is described in [2]. In our situation it will
allow us to associate to perverse sheaves on #%", arising from R-modules in
HE, or Oy, Q,perverse sheaves over 2;'. Keeping in mind all the above
dictionaries, we will be using several versions of the sets 9y, 2y introduced in
Sect. 1. A new set 25", H=K or N, will always be in some canonical bijective
correspondence to 293¢, but for convenience both will simply be denoted Z,.
For instance, if we view R-modules as perverse sheaves over #°" via RHC,
becomes

(0, £), Ois an H-orbit in #°" and ¥ is an H-equivariant
21y 94=

sheaf of C-vector spaces with stalks of dimension one.

Reduction to positive characteristic

Let IF, be the field with g elements g=p", with p a prime number. Let k=k,_ be
an algebraic closure of IF,. If Y is a complex variety defined over a finite
extension of @ by a certain set of polynomials S, (by equations and inequali-
ties), it is possible to obtain new varieties Y, defined over IF, by reducing
modulo p the coefficients involved in the polynomials of Sy. By this procedure,
one can obtain, starting from Y, new varieties ¥, having similar properties as Y
for almost all prime powers p"=gq. In particular, from our group G, we obtain
G, defined over IF, and

(a) each class of parabolic subgroups in G, is defined over IF, (including our
fixed group B,)

(b) K, and 6 (the Cartan involution) are defined over IF,;

(c) each K -orbit on 4 is defined over IF,.

(d) Each N-orbit on 4, is defined over IF,.

The Weyl group W, defined with respect to an IF,-split torus in B can be
identified to the Weyl group W of G, so we just denote it by W. We also recall
our set S < W of simple reflections making (W, S) a Coxeter group.

Let ¢ be a prime number, prime to gq. The sets I,, ¥y now become H-
equivariant Q,-sheaves over H-orbits on %,, H=K 4 Of N;. We assume Fr acts
trivially on & and @,; recall that Fr denotes the Frobenius map.
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We now define g-analogues of the categories # %, O%. Since H is assumed
to be connected, an object in any of these categories is determined by its R-
action. Therefore we will ignore for the moment the H-actions on all our
objects.

Let %},‘q, H=K, or N, be the category of constructible sheaves s over %q,
which are locally constant along H-orbits. Moreover, we ask that along each
H-orbit 0, slw is a successive extension of @Q,-sheaves from the set 9. The
categories €y a.Weil and €y gmix 1€ defined as follows: the category of Weil
sheaves denoted €} . weil consists of pairs (s, @), where seOb%}, , and @ is an
isomorphism Fr*(s)—2-s. The morphisms are morphisms in <6H 4> compatible
with the various maps ®. We define €} .., as a subcategory of %} , weir
consisting of mixed sheaves (recall (1.20)(c)).

Let D*(#%,), D(0,) be the derived categories of bounded complexes of R-
modules. With cohomology in # %, or (. Using the dictionaries provided by
localization, RHC and PPC, we can identify D*(# %) and D®(U%) as sub-
categories of D}(%,,Q Q,), H= K, or N, ThlS is the derived category of @,-
sheaves whose cohomology sheaves are in %y , (defined as a projective limit as
in [2]). We denote these new incarnations of DP(#'%,) and D°(U%) as derived
categories of @Q,-sheaves by D’(#%), and D"(0'),. We have, therefore, equi-
valences of categories (for almost all g)

(2.2) DY #Gp)~ DM HE),

D*(0;)~D*(©'),.
Also

(2.3) Theorem [2]. Under the equivalences of (2.2), objects in K6, or U
correspond to perverse sheaves inside D*(#'€), or D*(0), respectively.

We will denote the subcategories of D*(#°%), and D"(¢'), corresponding to
H 6 and Uy respectively by #°%, and 0.

If we consider sheaves with Frobenius actions instead (Weil sheaves), we
can define the categories #'F, yw.i (Dq weir and their mixed versions #'E, ..,
O, mix- These are imbedded inside D y,.,(%, ,Q,), H= K, or N,, the derived
category of complexes s of @,-sheaves with a Frobenius actlon defmed as in
[2]. As before the subscript H denotes that along H-orbits the cohomology of
518 in BY , weir-

Hecke modules

We now recall the geometric description of the modules .#; and ., from [17]
or [15]. We need to define, for technical reasons, something slightly bigger than
My and Ay. The following definitions are taken, with slight variations from

[17].

(24) Definition. Let €y w.;, H=K, or N, be the category whose objects are
sheaves in 4, Weil with some 1dent1flcat10ns Recall that a typical object in
%qum is a pair (s,®) with @: Fr*(s)»s an isomorphism. We identify
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(5,P)=(s, P,). If &]=0" for some ne{l,2,...}. The morphisms in €y y.; are
only required to be compatible with the corresponding @" for some n. We now
define €, in a similar way, starting from sheaves in % , w.; such that all the
eigenvalues of @ over a point x defined by Fr, are of the form ¢"*¢, with ¢ a
root of unity, and ne{0,1,2,...}.

Let B be defined by setting

(2.5) B,=Q,—{0}
B,=roots of unity in B,
B=B,/B,.

(2.6) Definition. Write Z[B] for the group ring of B and .4 for the free
Z[B]-module with basis 2,. We can identify #,=Z[q'?, q "*1QRQZ[2}] as
z

a submodule of .#}; by sending ¢'/? to its image in B,/B,. We have
2.7) K(6y we) = My
K (@)~ My.
As in [17], Ay is the Hecke algebra and ./, is obtained by extension of
scalars, i.e.
=Z [B]Q;)Z [2n]

with its algebra structure defined by the same relations satisfied in .#y. Recall
the operators T,,, we Wx %, of the Hecke algebra; each T, can be imbedded in
/ﬂN~K(%N Wweil) by 1dent1fy1ng T,, with the sheaf i1, . Here O, is the N -orbit
in 4, attached to w and i denotes the inclusion, w1th Lo, belng the tr1v1al Q,
sheaf on @, with trivial Fr-action. The action of T,+1, seS on #y or .#y can
be described in geometric terms as in [17] by

(2.8) (GA+DIy1=2(= D' [ny #'nyv]

with y a representative in % y.;. Here n; denotes the projection #,—(%), to
the variety of parabolics of type s.
We now recall the maps of Z[B] or Z[q'/?,q~ '/*]-modules

2.9) K(H# (gq,Weu)“’ My

K((Q;,wen)“’f//lzlv-
These maps are defined by sending the class [s] of s to the element
(2.10) [s]1-)(—1)'[#"s].

The signs in (2.10) are responsible for the signs in our map of Hecke algebras J
in example (1.195).
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A construction of Bernstein

We now describe a geometric construction of the functor £ L due to Bernstein
[4]. We will distinguish between two functors L=L;, and L; whose only
difference is essentially the categories on which they are defined.

Let BcG be a Borel subgroup containing Az N of the Iwasawa decom-
position of Gy (an Iwasawa Borel subgroup). Denote T=H, nK and T° the
component of the identity. Consider the category

(2.11)  Op 7o=0p-modules with a T°-action compatible with the action of R.
(2.12) Definition. We consider functors
Ly: Op— Kb
Ly: Op o> H 6y
both given by the formula
Z —>R(K)(>?Z

as vector spaces, with R(K) the regular functions on K. As in [11], L(Z), j=1,
IT acquires an R-action (see also our appendix).

Given Y a non-singular algebraic variety and an algebraic group T acting
on Y, we denote by (Dy, T)-mod (respectively Dy,-mod), the categories of D,-
modules with a T-action (resp. Dy-modules). The category (Dy, T)-mod is as in
[17], and corresponds to the notion used in [17] or [8] for perverse sheaves.

We have

(2.13) Lemma (Bernstein). Let Y be a non-singular algebraic variety with an
algebraic free action of an algebraic group T. Then there is an equivalence of

categories
((Dy, T)-mod) —- (Dy,r-mod).

(2.14) Remark. The inverse {1, is given by n*, the operation on D-modules
that corresponds to n*[dim T] on constructible sheaves by the RHC.

Recall T,=H, ,nK,. Let T,” be the component of the identitiy. Let o/.0 be
the category of @Q,-perverse sheaves on K . X #, which are constant along K,
x N,-orbits and which carry a T;O-action. Here 7:10 acts by t(k,x)=(kt™*,¢-x).
Let o/ be the category of Q,-perverse sheaves on K, fo‘%q which are constant
along K, x N -orbits. We denote by 1o weii> Hweirs MT:mix, .. the version of
these categories with actions of Frobenius, following the above conventions.
We obtain by passage to positive characteristic the following version of (2.13)

(2.15) Proposition. There are equivalences of categories
MTO _";—) :d
LS‘ZJTO,Weil ———C_—) rjgWeil
Ao mix— A,

,mix mix*

Also, £~ is given by n*, where n is the projection m: K, x#,-K, xgq.
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Consider the following maps p: K, x 8,~%,, p(k,x)=x, act: K, x#B,—~%,,
act(k,x)=k-x, the projection n: K x %, ,—~K, x,@ as in (2.15), and finally act’:

K, x% — 4, defined in the same way as act. Recall the notation #'%,, O, and

denote by O, ro the category of perverse sheaves in ¢, with a T°-action. Since
T is connected O, 1o can be embedded as a subcategory of ¢;. The analogous
statement for R- modules is that () contains as a subcategory, the category
Op ro of R-modules in ¢ with a compatible T°-action. In the context of R-
modules it becomes clear that the compatibility condition forces the T°-action
to be unique.

We define functors

YL,=%L,,: 0,~D"(X%),
°?L,,q: 0, 10— D*(H'B),

(M)def(act*p* M) [d1m K] ® L dimK/2
yLILq(M)"éf(act* & p*M)[dimK/T] @ L~ 4m&/m/2,

Here we remark that if M is in O} 1o, p* M is in o/, thus we can apply & The
symbol “L” denotes a Tate sheaf.

Denote by S and S, the equivalence of categories obtained by localization,
the RHC and PPC, between the appropriate category of R-modules (or com-
plexes of R-modules) and of @Q,-constructible sheaves. We have

(2.16) Theorem (Bernstein [4]). There are commutative diagrams
0= DY (A E,y)
(a) s s

0, L5, DY (H'6),
and
b o~ DY (H'Ey)

(b) S0 S
1o TE10 DY (H'E),.

We refer the reader to our appendix for a sketch of proof. The reader
should note that only (2.16)(a) is used in this paper (proved in the appendix),
plus the remark (2.18) concerning £ L.

(217) An example. Consider the case when Gp=SL,RR. Then %,=IP' and
there are three K, -orbits that can be identified with {0}, {co} and IP?
——{0 o0}. Note that the map f: K ,—IP'—{0, 00} is a double cover, and if 14

is the trivial sheaf on K, f, (1 )= a@b where a is a trivial sheaf and b is a
non-trivial sheaf. Therefore, if M is a skyscraper sheaf supported on x,elP!
—{0, 0}, p*M =1, .M and act, p*M=i_f (1 ,)» where i is the inclusion IP?
—{0, 0} >IP'. Therefore we obtain act,, p*M—l*(aG—)b) This agrees with the
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fact that if we view M as an irreducible Verma module M,, then £L,(M,) is
the sum of the two principal series in #'Ep.

(2.18) Remark. Let For: O, ro— 0, be the forgetful functor ignoring the T 0.

action. Then
L°L, ,-Forx L°Ly .

However, in general
LU,y ,-For+ 2L, .

Here we caution the reader that #° refers to the zero-cohomology in the

perverse sense, corresponding to the zero-cohomology in the category of D-
modules [2].

3. An adjoint formula

In this section, we realize J as the right adjoint to Zuckerman’s “K-finite
functor” L. For technical reasons, we need this adjointness in the derived
category; we use [5] as a general reference on the derived category. For
emphasis, recall that an object AeD’(R) is a complex of R-modules and a
morphism 4 = B means the following: there exists CeD’(R) and a diagram of

chain maps

where “qi” denotes a quasi-isomorphism (i.e. a chain map inducing an isomor-
phism on cohomology). Recall the full subcategories D?(#%;) and D°(0;), as
discussed in §2. The main result of this section is

(3.1) Proposition. If Xe#€, and MeD"(O;), then we have an isomorphism of
complex vector spaces

Homy, o (M, ZJ (X)) = Homps ¢, (£ L(M), X).

By [5, (9.13)] and the exactness of J [9], (3.1) easily implies the adjointness
formula (1.21) of the introduction. To prove (3.1), we may as well assume F
=C. This context, 4—A4* =algebraic dual of 4, is an exact functor on R-
modules. Let y, (resp. I') denote the functor of taking b-finite (resp. K-finite)
vectors. Appealing to the fact L and I' are adjoint functors (see (3.11)), under
the hypothesis of (3.1) we are reduced to establishing an isomorphism

(3.2) HomD.,(%)(M, Ry, X*)=Hom o e (X, BT M¥).
To this end, we define two maps as follows:
(3.3) Home(%)(M, Ry, X*) 2> Homy, g, (X, 2T M*);

(3.4) Hom g, (X, R M*) - Homys o (M, #7, X ).
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Definition of ®. We are given a morphism M L Ry, X* represented by a
diagram
M C— Ry, X*.

Replacing X with a (quasi-isomorphic) projective R-resolution p, X and apply-
ing *, we arrive at

(3.5) M*—> CF — (3, (P X))* —p X 5 X.
In D*(R), (3.5) yields X = M*, leading to
(3.6) AT X = AT M*.

The map in (3.6) is represented by taking injective resolutions and applying I
But, since we have an actual map X—I, X =injective resolution of X, we
obtain the following diagram defining @

ri,p,X——TI, C*———TI M*

def

|
(3.7) ri x<arx - AT M*

@(T)
rx=Xx
Here, (1) is using the fact X is a module (not a complex!) in H#E.
Definition of ¥. Suppose we are given X L M* represented by the diagram
X C—RI'M *,
Replacing M by a projective resolution p, M and applying * we obtain
(3.8) X*——> C*— (T (pM*)* —p M — M.

We have now produced M = X*, leading to
39 Ry .M =Ry, X*.

There exists a convergent spectral sequence y? HY(M)— HP*4(#y M). By hy-
pothesis, MeD?(0;) implies that HY(M) are all n-locally finite. This shows
HYM)~HY%®y,M) and since we have an actual map M—-%y,M, the map
becomes a quasi-isomorphism. We now arrive at a diagram defining ¥ via (3.9)

Ry M==Ry, X*

,,,-{ %

M.
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Proof of (3.2). We must show ¥o®=identify and @®o ¥ =identity. In both
cases, the philosophy is the same. For this reason, we will argue ¥o ®=iden-
tity, leaving the second composition to the reader. Given M é.%ynX*, we
make the observation that T is represented by a diagram

Me——C—T oy X*

qi
qi /

p, C,

(3.10)

where p, C is a projective resolution of C. This observation is justified by the
exactness of y, [9]. (Here, the fact that n is attached to the “Iwasawa Borel
subalgebra” is used. For other nilradicals n’ attached to other Borel sub-
algebras, y,, may have higher derived functors; this phenomena is investigated
in [7].) From (3.10), we are led to

(P, O ——— (3, X ) —X

I'p, C)*.
Taking duals again,
X* e (I'(p, O*)* «—p, C

\/

T

For our explicit map T, we can check that T=T" and T" factors thru y, X*.
We have just described how our actual map T of (3.10), after two appli-
cations of duality, gives back T If we can show T"=¥Y(T')=¥ o ®(T), using
the definitions of @ and ¥, our proposition is proved.
To show @(T)=T’, we begin with an injective resolution X —»I, X and form

the diagram ,
(py OF 12X

N

IX.

By the injectivity of (p, C)*, we have the existence of g (which is unique up to
homotopy). Apply I" to obtain

RTM*=T(p, C)*<—T'»~:I>“X=X

b

Q

ri Xx.

According to our definitions, ®(T)=a-b=T".
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The next step is slightly more involved. Recalling the construction of ¥(T"),
we are led to a diagram

. X* < p CaxM
T

q qi
qi qi

Y(T")

g?nX*=an*X*(.Tan*(ynX*) qi Pndy(py €)

N~ J

Now, the difference between T” and Y(T') is accounted for by b; this just
amounts to reversing our initial observation that morphisms of M into y,X*
and morphisms of M into £y, X* coincide. Q.E.D.

We now have the following adjointness relation between £L and £I in
the derived category (proved similarly to (3.2))

(3.11) Proposition. Let Xe#%6, and MeD"(0}.). Then there is a natural iso-
morphism of C-vector spaces

Hompe gy (X, ZT(M*) x Homps ., (£ L(M), X)
where X is the K-finite dual of X.

If we invoke base change, as discussed in Sect. 2, then (3.1) and (3.11) give

(3.12) Corollary. Let Xe A%, and M eD”((O’)q. Then for almost all prime powers
q=1p", there exists an isomorphism of Q, vector spaces

Homys gy, (M, RJ,(X)) = Homps g (£ L, (M), X).

4. An adjoint formula respecting Frobenius actions

In this section, we argue that the base changed Jacquet modules J, (X) carry a
natural action of Frobenius, whenever X has such. Moreover, the g-analogue
of (1.21) holds in the category of Weil sheaves. These results are established
using Bernstein’s construction of #L, and our adjoint formula (1.21). We
emphasize that the derived category adjointness of Sect. 3 is not needed here; it
becomes a technical necessity in Sect. S.

We begin by stating the base changed version of (1.21).

(4.1) Corollary. If XeHC, ., and MeO, y.,, then there exists an isomor-
phism
Hom@;(M,Jq(X))gHom,mq(,?oLq(M),X).

It is important to realize that the isomorphism of (4.1) is natural. This means
the following: Given a commutative diagram as in (4.2)(a), then (4.1) implies
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the adjoint diagram (4.2)(b) is commutative, and vice versa.

¢ ¢

L°LM, 2 X, M, 225 J(X)

4.2) Lq(f)[ U ]a f{ U ]‘J,,(,,)
gOLqMZ_‘I-,—)XZ MZWJq(XZ)

(@) (b)
(4.3) Lemma. There is a natural isomorphism J Fr*~Fr*J,.

Proof. Recall that £L =(act,p*)[dimK], from Sect. 2. This tells us that ZL,
will commute with Fr, 1.e.

LLFr*~Fr*¥L, and 2L Fr ~Fr ZL,
From (4.1) we find (dropping the O, #%, subscripts on Hom)
Hom(M, J, Fr*(X))=Hom(Z° L (M), Fr* X)=Hom(Fr, & L (M), X)
=Hom(ZL,(Fr, M), X)=Hom(¥°L (Fr M), X)
=Hom(Fr M, J (X))=Hom(M, Fr* J (X)),
for all Xes#€,, MeO,. This implies the existence of non-zero maps
Fr*J (X) 2 J, Fr*(X),
which are necessarily isomorphisms. Q.E.D.
(4.4) Corollary. If XeH'E, ;. then J (X)eO, ;-

This result is the start of our odyssey, but far from the end of the journey.
We still must show J (X) is mixed and has a computable filtration by weights
of Frobenius. Crucial to this is the following improvement of (4.1).

(4.5) Proposition. If XeHE and MeO!

mix wmix> Lhen there exists a natural
isomorphism

Homg, .. (M,J,(X))=Hom,q,_ . (Z£°L,(M),X).

Proof. 1If we disregard the action of Frobenius, this is just (4.1). Our task is to
show the following: If diagram (4.6)(a) is commutative, then the adjoint dia-
gram (4.6)(b) commutes, and vice versa

£L M L — X M 22, J(X)
w O O]
Fr* £ L(M) 7~ Fr* X Fr* M 50 FrJ (X).

(a) (b)

Here, ~ denotes the natural isomorphisms induced by Fr*. Our proof is
broken into two steps. Only the second step requires a bit of work.
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Step 1. There exists a commutative diagram
D(f)

/\

M — J,%’OLM —5 < JX

P(idr M) N Jq(f) q

IO e Ok

4.7) Fr*M—— > J Fr* YL M——— J Fr*X
@ (m) q . q Jo(Fr*f) q ,[

Fr*Jq,?OLqM Fr*J X.
Fr*J  (f) q

Step 2. There exists a commutative triangle

Fr*M‘*a(—‘—" J Fr*ZOLqM

(4.8) Fr*®(id L ar) U [

Fr*J, ,?OL M.

Assuming these two steps are established, pasting (4.8) into the lower left-hand
corner of (4.7) will produce the desired diagram (4.6)(b).

Proof of Step 1. Begin with the commuting diagram

LoLM s LM L X

(49) L(a)[z z{c [z

PLOLFr*M —2>Fr*$°L M "L F*M

here, the right most diagram is (4.6)(a), the left diagram commutes by defini-
tion of the Frobenius action on ,?OLqM. Functoriality of J, (applied to
(4.6)(a)) and naturality of the adjoint (applied to the left of (4.9)) produces the
upper two rows of (4.7). The bottom block in (4.7) comes from the naturality of
JFr*~Fr*J,.

Proof of Step 2. From the bottom line of (4.9) we obtain a diagram

@ (m)

Fr* M 20der =m0 | J,ffOL Fr*M —"" ] Fr* ¥°L M

(4.10) HM C//

Fr*J, Z°LM

where T=J(m)~'x. We must show the left-hand triangle commutes. The key
idea is to realize how the isomorphisms #°L Fr*~Fr*<2°L, and
J,Fr*~Fr*J, are naturally induced by an identity map; recall the proof of
(4.3).
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For A,Me0, we have natural isomorphisms

g, mix?

Hom(¥#°L,A, £°L,M)=Hom(A4,J,%° L, M)=Hom(Fr* 4, Fr*J, #° L M)

Hom(Fr* ¥°L A, Fr* ¥° L M)
(4.11)
Hom(Z° L Fr* 4, #° L Fr* M)

Hom(Fr*4,J, Z° L Fr* M).
Putting 4 =J,%°L M, the identity will induce a natural isomorphism
Fr*J, $°LM—"—J #°L Fr* M,

analogous to the argument in the proof of (4.3). Put A=M in the above
equality of Hom’s and obtain a commutative diagram

Hom(¥°L M, ¥°L ,M)=Hom(Fr*M,Fr*J, Z°L M)

oV

Hom(Fr* M, J, £° L, Fr* M).

(4.12)

Using (4.11) and (4.12) we may trace thru Awhat happens to id;,:
& OLqM - °LqM and obtain (by definition, since T is defined by (4.12))

Fr*d®(idr m)

Fr*M M), Fr+J, °L,M

w T

Fr*M —5 ———J, Y°L Fr* M.

D(idLF* M)

Thus, in view of these remarks, the proof of step 2 is reduced to showing T=T;
T as in (4.10).

The following sequence of Hom diagrams will commute. This sequence of
diagrams corresponds to a chain of commutative squares involving the objects
inside the Hom symbols, which “explicitly” construct T and x

(4.14)
Hom(J, #°L,M, J,%° L M) —Hom(J,Z°L,M,J,#°L,M)
dl 2
0
Hom(¥°L,J,%°L M, Z°L,M) —Hom(¥°L,J,#°L,M,¥°L,M)

d lk

Hom(Fr* £°L,J,#° L, M,Ft* #° L M)=Hom(Fr* #°L_J, #° L,M, Fr* #° L M)

d 2
Hom(#° L, Fr*J,#°L,M, #° L, Fr* M)~Hom(Z°L Fr*J,%°L ,M,Fr* #° L, M)
d ¢

Hom(Fr*J, £°L,M,J,#°L,Fr*M)  £Hom(Fr*J,#°L,M,JFr* £° L M)
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If we begin with id;,: L°L M—Z°L M, apply J, and follow the left-hand
column down, we arrive at the map T above A s1m11ar procedure on the right-
hand column leads us to x (of (4.7) or (4.10)). The isomorphism (D in (4.14)
implies the existence of a commutative square as (4.15). The diagram (4.14)
insures that the two horizontal arrows are induced (through adjointness) from
corresponding identity maps; that is, they are (by definition) T and x, respec-
tively

Fr*J, #°L,M—"— J #°L Fr*M

(4.15) “ C JJ(m)

Fr*J £°LM——J Fr*¥°L M.
Thus J(m)~*x= T But, from (4.10), Jm)~'x=T. Q.E.D.

5. Maps of Hecke-modules

We now describe a geometric analogue of the functor U, defined by Vogan in
[20] and [21] for semisimple Harish-Chandra modules. This functor, denoted
U,, plays a role only because it is designed to induce the operator T, +1, 5,8
on #y and Ay (introduced in Sect. 2).

Let s,=seS. We define U, by

5.1) Us)=n*n, (s[1])® L~ '/2.

Here n;: #,—(%), is the projection introduced in Sect.2, L is a Tate sheaf
which corresponds to twisting by ¢~ '/? in the Grothendieck groups .#y. The
symbol “[1]” denotes, as usual, a shift in degree. The functor (7 applied to an
object in H#€, or (U, has three perverse-cohomology groups U1, U0 and U1
If we 1nterpret U, as acting on Harish-Chandra modules via all our dlC-
tionaries, abusing notation, we have that for Xe0bi#¥%, irreducible with
s,¢7(X) (the t-invariant of X), U° X ~ U, X. This follows by the decomposition
theorem and 5.3 of [17]. In general U, is defined on the derived category
D} (#,,Q,), inducing functors

U: D*(#%),~D"(#%F),
U, DY), -D" (),
Using (2.8), the map induced by U, on the Grothendieck groups .#j

corresponds to the operator —(7, +1) of the Hecke algebra (the minus sign
comes from the shift). For example, we obtain a commutative diagram

(5.2)

K(@;,Weu) — My

(5.3) 0} Q j—man)

K((Q Well) — My
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Similarly, we obtain maps on the level of Grothendieck groups, induced by
the functors £L, and J,, which we denote by IL and J. These are at least
Z[B]-map
(5.4) IL: My— My

J: Myg—My.

The main result of this section is

(5.5) Proposition. The Z[B]-linear map ¥ is a map of Hecke algebra modules.

Since U, induces the operator —(T,_+1), s, =s€S, it is enough to show that
J, commutes with U,. We will prove something slightly weaker than this, which
will suffice to finish the proof of (5.5).

We first prove:

(5.6) Lemma. The Z[B]-linear map 1L is a map of Hecke algebra modules;
moreover, ¥ L, commutes with U,.

Proof of (5.6). We use base change as in [8]. First consider the base-change

diagram ,
K, x#, —— A,

(57) 1 xusJ Jl X Mg

K, x(P),—"—(P),

which implies that (1 xzy), p*=p*(1 xn,), because 1xmn is proper. Also (1
x n)*p* =p*(1 xn)* follows from diagram (5.7), therefore (1x=), and (1
x t)* commute with p*.

In order to deal with the map act, note that act can be factored as act
=poo, with ¢: K, x#,—K, x %, given by ¢(k,x)=(k,k-x). We then use the
commutative squares

K, x#B, —— K x%,

(58) 1x nsJ Jvl X Mg

qu(LJ/’s)q———‘o—»qu(?;)q
and
K, x 43, —r B,

(5.9) ; J l

K, x(2),—— (),

to conclude (by base change) that act, (1 x=n)*=n¥act, and act, (1 xmy),
=(n,), act,. In diagram (5.9) it is important to realize that =, is a smooth map.
We now conclude that # L U,=U, % L, since all the functors involved in the
definition of ¥ L, commute with =¥ and n,,. Q.E.D.

(5.10) Remark. The forgetful functor For: Of 10— 0p embedds Of ;o as a full
subcategory of (. Using the equivalence of categories O rox0, ;o and
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Oy~ 0, the forgetful functor For: 0 ;c—0, has to embedd O ;o as a full
subcategory of (. Similarly for the versions of O, O o having Frobenius
actions; namely, O, wei, O mix» Op 10 weir O 10.mix (using the conventions of
Sect. 2).

Note that For induces isomorphisms on the level of Grothendieck groups

(5.11) K((O;, TO,Weil) - T K(@;,Wen)
' KO, o ) —" K@ ).

g, TO, mix g, mix

By composing with n~!, the map of Grothendieck groups induced by

ZLLy, gives rise to a map K((D;,Weil)aK(,}f(gq,Wd,) and a map of Z[B]-
modules denoted IL;;

IL,: Ay— M.
In general IL; +1L,.

(5.12) Lemma. The map IL,; is a Hecke algebra module map.

Proof. The proof of (5.6) applies except at the moment when we apply the
functor £. Recall that £~' is given by n*, where n is the projection n: K . ¥
a@q-*Kq?o@q. We have a commutative diagram

q

K, x A, —= 5K x B,

qTo
(5.13) 1 [ Jl ‘s

K X (@)~ K X%
and by base change

* - *
(5.14) n*(Ixny), =1 xn), n*,

n*(1 xn)* =(1 x n)*n*.

By interpreting n* as the functor ¢~ ': &y = Fro wey Of (2.15), we obtain an
isomorphism

TC*=6_1Z K(dw )_-)K(dTO,Weil)'

eil

Let o weir s 1o wein b€ the categories defined in the same way as oy,
1o we Substituting 2, instead of #. Then we obtain from (5.14) the equations
EMIxm),=(Ixmny), &~ " and E7(Ixn)*=(1xn)*¢~" which in turn imply
¢ xmy),=(1xmn), ¢ and E(1 xm)*=(1 x7)*¢ in the Grothendieck group. The

rest of the proof proceeds as (5.6). Q.E.D.

(5.15) Lemma. For any X in #%, and M in D”((D’)q there is a natural isomor-
phism of Q,-vector spaces

Homy o (M, U,J, X) —2>Homp, e, (M, J, U, X).
q q

Proof. We have (dropping the subscripts D*(0;) on D*(#'%),)
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Hom(M, UanX)gHom(UaM,JqX)g Hom(Z L, (U,M), X)gHom(f]a,%”LqM, X)
@ NG -~
xHom(Z L,M, U, X)~Hom(M, J (U, x)).

Here we obtained (D from adjointness relations satisfied by TE, Toys @ from
the adjoint formula of Sect. 3 in the derived category; @ by (5.6). Similarly for

@ and ®. Q.E.D.
(5.16) Remark. By naturality of @ if we have
M,—t>M,—U,J X,

then @(aob)=P(a)ob. This is what it means for the following diagram to be
commutative

Homy g, (M5, U,J, X)—— Homp,g, (M, U,J, X)
@ @

Hom gy (M, J, U, X) —— Homp, g, (M, J, U, X).

1»Y¢q
(5.17) Corollary. If U, X is non-zero, then there is a non-zero map
d: U,J, X-J UX.
Proof. The identity UanX —»UanX produces the desired map by (5.15)

(5.18) Corollary. Let X be irreducible in #€, with s=s,¢t(X), the t-invariant
of X. Then the map . ~
d: U,J,X-J UX
is an isomorphism. Moreover, ljanX is perverse.

Proof. Let U, ', U2, U,"' denote the three perverse-cohomology groups of the
functor U,. Assume that U,;~'J, X +0. We obtain a non-zero map S

U-'J,x011—=2-0,J, X —4J U,X.

However, doS =0 because U~ 1J X[1] has all its perverse-cohomology groups
in negative degrees and J, U X has only perverse cohomology in zero degree.
Therefore, we obtain Home(@) (U~ 1J X,J, U . X)=0. By (5.16) this means that
(15(S) 0 (because d= di(identity)) Therefore S=0 by (5.15). We conclude
U- 1J X =0. Using that J, the usual Jacquet functor, commutes with duality
[14] we obtain that J X is self-dual, therefore U +1J X =0 (since U commutes
with duality). We now show that the map d is mjectlve Assume that d has a
kernel (note that we are now in an abelian category since U“J X=0 and
U*!X =0 by our assumption a¢t(X)) we obtain

K—0Jx—4J0X.

Again doi=0 and this implies ®(i)=0. By (5.15) we conclude i=0 and K =0.
In order to prove that d is surjective, it is enough to obtain a map d"
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J, Ux —+UanX and prove that d’ is injective again. We leave this to the
reader. Q.E.D.

(5.19) Lemma. Let X be irreducible in H#E, .. Then the map d:
U, J, X—>J, U,X is a map of Weil-complexes (it commutes with the corresponding
F robemus actzons)

Proof. We construct d in a way that makes it clear that d commutes with
Frobenius actions. By (4.5) we have

Hom%,Wen(JqX’ ‘IqX) ~ Hom#‘gq,Weil(gOLquxa X).

Therefore, the identity of J,X induces a non-trivial map Z°L J X—-X in
H'C, wei- Recall here that LPO refers here to the 0- perverse—cohomology Since
E’L J,X has its perverse-cohomology concentrated in non-positive degrees,
there is a map L J, X->%°L X giving XL,J, XX in D*(HEF), y.;. Now

apply U, to obtain .
U< LI, X —— UX
7

(O] /®
£LUGJ, X/

The isomorphism in (D is (5.6) and it is a map in H'EC, wen- But now UX is
perverse and EL(UJ X) is concentrated in negative (perverse- cohomology)
degrees. Therefore @ gives a map in

Hom,_ .. (£°L U,J,X,0,X)~ Hom%wﬂl(ffa J,X,J,0,X);

hence, O gives a map UanX —anﬁaX in O, y.;- We leave to the reader to
verify that this is d. Q.E.D.

Proof of (5.5). It is enough to show that for each seS, J commutes with T,+ 1.
Take de Dy such that s =s,¢1(J), the t-invariant of the Harish-Chandra module
attached to 6. Then (5.18) and (5.19) imply

(T, +DI(Cy) =I(T,+ 1) Cy),

because U, corresponds to —(7,+1) in the Grothendieck group. If set(d), then
T,.C;=qC; [17] and J(T,C;)=0(q C;) =qI(C,). We now recall that if set(X),
all the irreducible constituents of J X have s in their t-invariant. Therefore
T.J(Cs;)=qI(C;). Q.E.D.

6. Proof of main theorem
Let 92 <« 9y be as in Sect. 1; the set of parameters é corresponding to the open

K -orbit in &, The set 2 parametrizes Hecht’s largest-growth Harish-
Chandra modules in s#°%; [12].
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(6.1) Definition. A function A: 22—Z[B] is called realizable if there exists a
map of Hecke algebra modules

D, MM,

such that for each 6e2g, if we set J,(C,) = Y a,(d) Cw. Then a,, (6) =A4(J)
weW
with w, the longest element in W. We additionally ask that for any oce%,

a,(0)£0 imply £/(w)=/(0).

(6.2) Example. Let A: 22—Z[B] associate to each § the number 1€Z[B]. In
[8] it is shown that A is realizable. We will denote this function by A,y
The following lemma is a very slight variation of the uniqueness theorem of

[8].

(6.3) Lemma. Let A be a realizable map. Then the Hecke-module map U,
satisfying definition (6.1) is unique and computable in terms of A. If the image of
A lies inside Z[q''*,q~'*1—Z[B], then U, induces a Hecke-module map 1 ,:
My— My.

Brief sketch of proof. Given 6Py, one must give an algorithm in terms of A

to compute J,(C,) = Y a,(d) C,. We show that each a,(d) is computable in
weW

terms of A by decreasing induction on the length /(w). Applying operators of
the form T,+1, se§, it is possible to take any given C, to C wo I @ way that
the only other terms C that are taken to C,_ have length bigger than £(w).
Then one uses that I, comc1des with 4 for largest growth terms C,, 5e2y.
For details see [8] and example (1.15). The second assertion in (6.3) also
follows from this proof. Q.E.D.

Computability of A

Recall the duality operation D on the Hecke-modules .#, induced by Verdier
duality. By [17] there is an algorithm for computing D4, for €Dy, in the basis
Dy of My. We have

(6.4) Proposition. Let A be the realizable map associated to I of (5.5). Then A
can be computed from the equation

(=Y T, D( ¥, 8)=q~"( ¥ A(®)""9)

529, 599

(6.6) Example. Consider Gz =SL,R as in (1.15). We have
Dé,=q7'Cs, —6,—6
Dé_=q71'6_.

a

Therefore
D@6, +6_)=C;, —éa—éh—q‘lé_

=—q '(—qd,+5_)
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and A(d,)=—q ', A(d)=1. This simply shifts the weights in the filtration
obtained in (1.15) in a harmless way.

Let M ,e0b0O} be the Verma module attached to weWx9y. If i*: 0,—%,
is the inclusion of the corresponding N_-orbit, and 1, is a trivial sheaf on O,,
then M, =i1,, is the perverse sheaf associated to M by (2.2). In the context
of Weil sheaves we will assume 1, has the trivial Frobenius action

(6.7) Lemma. Let X(0) be the irreducible object in #'€, corresponding to
deDy. Then X (5) occurs exactly once in L°L (M., ) as a quotlent

Proof. This is a consequence of (2.16) and the following Frobenius reciprocity

law

Homg (LM, , 7()) = Hom,(7(0)/m (), C,)

wo?

where wy 4 is the highest weight of M, . Q.E.D.

(6.8) Corollary. In the setting of (6.7), assume that X (0) occurs with weight q"'?
neZ in $°Lq(M(vO). Then A(8)=(—1)™2q="/2,

Proof. We have

Hom(,%;q’wﬁl(foLq(M’ L@ X ()= Hom,_ . (M, L2 ®J, X (0)).

wg?

Therefore, we obtain a non-trivial map MQVO—>L"/2®JqX (0) implying (6.8) (we
use the fact that the finite dimensional module occurs exactly once in
J(7(0)). Q.E.D.

Recall the two Hecke-module maps IL,;, IL;; of Sect. 5. Since #*L (M, ) can
be non-zero for i+0, one cannot obtain, in general, the weight of X (d) in
£L°L,(M.,,) by computing IL,(T,, ). Using (2.17) and that &L, (M, )=0, i=+0
[22], it suffices to compute ILy(T, )=T, IL;(T,). Here we are considering the
operator T, as imbedded in .#, (see Sect. 2).

Computation of ILy(T,)

Let {x,} be the 0-dimensional, N-orbit in %,. Then (by our choice of N,), the
K -orbit K -x, is the open orblt in 4, We have maps f: K /T3, and h:
K /T — %, given by kT, >k - x, and kT —k-x,. Let s—dlm(BmK/T)

(6.9) Lemma. Let 1, JTO be the trivial sheaf on K /T0 The perverse sheaf
L5 Ly (M@ L™ can be computed as

Jallgyrol? (Wo)])=a§20 h, D)L (wo)].

Proof. Define categorles (K )19 weit» ¥ (Kpwen In analogy of oo weii, Hweir
of Sect. 2, with {x,} in the place of #,. In this case all the objects consist of
constant sheaves. We obtain a commutatlve diagram

ix
Ao, weir &I(Kq)TO,Weil

(6.10) gJ J:

Hyeil —t &{(Kq)wm
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where i is the inclusion K, x {x,}—K, x 8, or K /T x {x,}>K, xﬁ Recall
that /2@ L°L, (M,)= act & p*(M’)[f(wO)] and

p*(M,) =1 [XIM, =i, (1 [x]1;, ) [ (wo)],
since M|, is a skyscraper sheaf at {x,}. We obtain
(Mo =act, i, (1 [x]1, )[4 (w,)]
=act, i, (Lol ) [£(wo)]  (by (6.10))
On the other hand act’ o i=f, therefore
L0002 @ #° Ly, (M2) =, (1g, o) [ (Wo)].

If we denote by g the projection Kq/T;OaKq/Tq, f=hog with g being a proper
map. We obtain

Lf(wo)/Z ®

f*(lz(q/T,?) =h, g*(qu/Tg)za@O h 4 (9).

This proves the lemma in the quasi-split case; the general case is a slight
modification. Q.E.D.

Proof of (6.4). From (6.8) we obtain that

£(wo) £(wo)

L Ly M= 3 h, O w)]®L 2 =@DhG/(w)I®L 2 ).

6e9%

This becomes in the Grothendieck group the identity

_t(wo)
Ly(T)=(=1f"D( Y &6 2 ).
3e9%
Therefore
ILII(TWO) = Two ILy (TJ
_£(wo)
=(_1)£(wo)TwoD( Z o 2 )
e 9%
_fwo)
=) A@)'q 2 6

0eDY

and we obtain (6.4). Q.E.D.

(6.11) Corollary. The Frobenius action on J X is mixed whenever
XeObHE In particular, J. X has an increasing filtration

¢, mix*

E CEAP+1C...CEP=JqX

p

whose subquotients E; |/E; are pure of weight ¢'*''* (and therefore semisimple
in HE,).

Proof. If X is mixed, J, X is mixed because we have shown that the image of
the function A lies inside Z[q'% q~'?]—Z[B] and by (6.3). The filtration
statement is O. Gabber’s result [2]. Q.E.D.

This concludes the proof of (1.11) and (1.4).
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(6.12) Remark. The methods employed in this last section, namely the fact
that IL;; is a Hecke algebra map can be used to obtain weight filtrations for
principal series which are not necessarily standard modules and leads to their
indecomposability. This will be pursued elsewhere; [25].

Appendix to section 2

We give a sketch of proof of some results of Bernstein (2.16) which were announced in [4]. The

categories that are used are categories of D-modules. The notation f,, f*, etc. where f is some

algebraic map refers to operations on D-modules that correspond to f,, f* via the (covariant)

Riemann-Hilbert correspondence. Let M be in 0 and . its localization D ) M. For simplicity
R

assume that F is the trivial module. It is enough to prove that the global sections functor I on £,

&z
applied to act,p*(.#) can be identified with R(K)QM = L,(M). Similarly for act, o&op*(.#),
I

z
whose global sections should correspond to R(K)@ M, when M is in Of ;... We deal only with the
LT

case of £ L, and leave & L;; to the reader. Taking a free R-resolution of M, corresponding to a free
D g-resolution of .#, by localization it suffices to compute Izact, p*(Dg). Recall that

(A1) (@) p*(Da)=0xIDg

£
() act, [ Dal=act: [ Dav x.a @ OKID)]

KxB
Here f. denotes the direct image as sheaves of vector spaces. We are implicitly using that act has
an affine fiber (isomorphic to K) so that it is unnecessary to compute derived functors of act.

(A.2) Remark. The commutative diagram

KxB-2 S Kxa®

with ¢(k, x)=(k,k-x), shows that, up to a change of coordinates given by ¢, act is simply a
projection. Therefore #°act, can be obtained by dividing by vector fields along the fibers
{(k,k~*x)}~S,. We now make this precise.

By taking a projective resolution of Dy, . 4 as a right Dy g-module, it is possible to compute
act,p*(#) in (A.1). This can be done using a relative de Rham complex. We obtain

(A3) act, p*(M)=p-Homg(AL, 0 ® D 4) [dim K]

and (A.3) is the Lie algebra cohomology complex obtained by considering Oy X] D4 as a f-module,
where et acts by

(A4) (U @D=Cf @A+ @b, Cf=~f¢

Here b: U(T)—R is the projection to R, identifying & with a global vector field (since R in turn can
be identified with global section in D). This gives as global sections

(A.5) RTact, p*(Dg)~ R(KYQR
i

&
and £ L,(M)~R(K)®M can be identified with act, p*(.#) for any Me0b0}. As noted in (A.2), in
t

(A.5) we have divided by vector fields along the fibers S_={(k,k~'x): ke K}. We now take care of
the R-action.
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R-actions

Note that (A.5) simply means that we have divided by vector fields along the fibers of act. In the
case of p, (p the projection to the second coordinate), dividing by vector fields along K is
“harmless” because D, commutes with Dy in Dy, 4. Therefore the Dg-action is evident in the

quotient. For the case of act the same is true up to a change of coordinates given by ¢! as in
(A.2). Let

(A.6) 0=UHR®R(K)®R

Q' =1®R(K)®R.

Then Q corresponds to the global sections of Dy, 5. We now define an automorphism of Q (as an
algebra).

Let a: Q—Q be given by ¢(1® f@1)=1Q f®1, feR(K) and a(1®1®r)=) 1Q® f;®r, where
reR and for all keK, Y fi(k)r,=Ad(k~')r. Using that Ad(k)(r,r,)=Ad(k)r, Ad(k)r,, we obtain
that g is a map of algebras. Define

(A7) R“Eg(R)>1 Q@ R(K)QR.
C

The algebra map g extends to d: Q—Q by specifying that for fef, ¢RI N=¢(RI@I+1®1
®b(&).

(A.8) Remark. The algebra map 4 is induced by the derivative of ¢~ !: K x 8—>K x# acting on
vector fields. Moreover, G(®1®1) and R* commute.

Note that R(K)XM is a Q-module. By restriction it becomes an d(f) module and an R*
module. Also ¢

(A9) R(K)(?M:R(K)@M/d(f) [R(K)@M]

and since R* commutes with d(f), R(K)QM is an R*-module. If we identify R*~R we obtain the
R-module action in (A.5). !

The case of £ L; is handled in a similar way. Roughly speaking, the reason why we will get
& Ly instead of £ L, is that the fiber of K x#—-4% is K/T and in (A.3) one needs to use A(f/t)
leading to & L;(M)=H*(I,t, R(K) ® M). T
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