
KAZHDAN-LUSZTIG POLYNOMIALS

DAN CIUBOTARU

1. Classical setting

Let G be a complex semisimple algebraic group with Lie algebra g, B a
fixed Borel subgroup with Lie algebra b, h ⊂ b a Cartan subalgebra, ∆+ ⊂ ∆
the positive roots, respectively roots, and ρ = 1

2

∑

α∈∆+ α. Let W be the
Weyl group. The problem is to describe the multiplicities of the composition
factors in Verma modules.

Let Mw be the Verma module

Mw = U(g) ⊗U(b) Cwρ−ρ,

and Lw the unique irreducible quotient. It is known that all subquotients
of Mw are of the form Lv for some v ∈W.

Let X = G/B be the flag variety. It has a Bruhat decomposition

X = ⊔w∈WXw,

where Xw are the Bruhat cells. It is known that the Schubert variety

Xw = ⊔v≤wXv,

where the ordering is the Bruhat order in W.

Definition. The Kazhdan-Lusztig polynomials are

Pv,w(q) =
∑

i≥0

dimH2iIC(Xw) |Xv
·qi.

The odd cohomology vanishes, moreover Pv,w = 0 unless v ≤ w. There is
an explicit algorithm for computing Pv,w.

Theorem (Kazhdan-Lusztig conjecture). The multiplicity of Ly in Mx,
x, y ∈W is

[Mx : Ly] = Pw0x,w0y(1).

Similar results were obtained for real reductive groups by Lusztig-Vogan
(1985). If G0 is a real form of some complex G, and K ⊂ G0 is a maximal
compact subgroup of G0, then the geometry is in terms of KC-orbits on the
complex flag variety G/B.

For a general p-adic group, the Langlands classification is still incomplete.
For GL(n), Zelevinsky determined a classification of irreducible representa-
tions and formulated the Kazhdan-Lusztig conjectures in that case (1981).
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Moreover, Zelevinsky proved that the KL polynomials for p-adic GL(n) are
a subset of the Verma modules case. For other p-adic groups, the situation
is more complicated and the KL conjectures need to be refined.

2. KL conjecture for the Hecke algebra

Let H denote the graded Hecke algebra, which is a vector space H =
CW ⊗S(h∗) with a nontrivial commutation relation between W and h∗. Let
us assume that H has equal parameters. It is known that the center of H is
AW , where A = S(h∗). Therefore, the central characters χ are parameterized
by h/W.

Let modχ(H) be the category of finite dimensional modules of H with
central character χ. The Langlands classification exists in this case, and we
have standard modules X and irreducible quotients L.

Denote

G(χ) = {g ∈ G : Ad(g)χ = χ}, gn(χ) = {y ∈ g : [χ, y] = ny}.

Theorem (Lusztig). The standard and irreducible objects in modχ(H) are
parameterized by pairs ξ = (O,L), where

(1) O is a G(χ)-orbit on g2(χ).
(2) L is a certain G(χ)-equivariant local system on O. More precisely,

choose some e ∈ O. Then L corresponds to a representation φ of
the component group G(e, χ)/G(e, χ)0. The representations φ which
are allowed are those of Springer type, that is, it must be in the
restriction G(e, χ)/G(e, χ)0 ⊂ G(e)/G(e)0 of a representation which
appears in the Springer correspondence.

In this setting, the Kazhdan-Lusztig conjectures take the following form:

Theorem (Lusztig, Ginzburg). In (the Grothendieck group of) modχ(H):

Xξ′ =
∑

ξ

Pξ,ξ′(1) · Lξ,

where
Pξ,ξ′(q) =

∑

i≥0

[L : H2iIC(O′,L′) |O] · qi.

Note that, in particular, Pξ,ξ = 1, and if ξ 6= ξ′, then Pξ,ξ′ = 0, unless

O′ ( O.

3. Orbits

Let Orbn(χ) denote the set of G(χ) orbits on gn(χ). Assume that n ∈
Z \ {0}. Here are some properties of Orbn(χ):

(1) Orbn(χ) is finite.
(2) For every O ∈ Orbn(χ), O \ O is the union of some orbits O′ with

dimO′ < dimO.
(3) There is a unique open (dense) orbit O in Orbn(χ).
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Example. The simplest example is when χ = ρ̌ (the regular central char-
acter case). Let Π denote the simple roots, and fix root vectors Xα. In this
case

g2(ρ̌) = {y ∈ g : [ρ̌, y] = 2y} = ⊕α∈ΠC ·Xα,

G(ρ̌) = Cartan subgroup.

There is a one-to-one correspondence

Orb2(ρ̌) ↔ 2Π,

where to every ΠP ⊂ Π we associate the orbit OP =
∑

α∈ΠP
C∗ · Xα. In

other words, the orbits are parametrized by standard parabolic subalgebras.
There are 2|Π| orbits in this case, and all have smooth closure. The closure
ordering is given by inclusion of subsets. Only trivial local systems appear,
and therefore the KL polynomials are either 1 or 0 depending on the closure
ordering.

3.1. Parametrization. Let e be a representative of an orbit Oe in g2(χ).
We recall the construction of the Kazhdan-Lusztig parabolic associated to e.

By a graded version of the Jacobson-Morozov triple, e can be embedded
into a Lie triple {e, h, f}, such that e ∈ g2, h ∈ g0, and f ∈ g−2. Define
a gradation with respect to h as well, gr = {y ∈ g : [h, y] = ry}, and set
gr

t = gt ∩ gr. Then

g =
⊕

t,r∈Z

gr
t .

Set

m =
⊕

t=r

gr
t , n =

⊕

t<r

gr
t , p = m ⊕ n. (3.1.1)

Properties(Lusztig):

(1) p depends only on e and not on the whole triple {e, h, f}.
(2) χ is rigid for m. (By definition, this means that χ is congruent modulo

z(m) to a middle element of a nilpotent orbit in m.)
(3) e is in the open M(χ)-orbit in m2(χ).
(4) M(χ, e) ⊂ G(χ, e) (⊂ P ) induces an isomorphism of the component

groups.
(5) The P (χ)-orbit of e in p2 is open, dense in p2.

An immediate corollary of (5) is a dimension formula for Oe = G(χ) · e.

Proposition. dimOe = dim p2 − dim p0 + dim g0.

Definition. A parabolic subgroup P (or subalgebra p) is called good for χ if
it satifies conditions (3.1.1) and (2) above.

Let P2(χ) denote the set of good parabolic subgroups for χ.

Theorem (Lusztig). There is a bijection between Orb2(χ) and G(χ)-conjugacy
classes in P2(χ).
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Proof. The inverse map is given as follows. Let P = MN be a good parabolic
for χ. Then there exists s a middle element of a Lie triple in m, such that
χ ≡ s (mod z(m)). Moreover, the decomposition (3.1.1) must hold with
respect to χ and s. Let G′ ⊂ G(χ) be the reductive subgroup whose Lie
algebra is g0

0. Then G′ acts on g2
2(χ) and there is a unique open orbit of this

action. Let O be the unique G(χ)-orbit on g2 containing it. The inverse
map associates O to P.

˜

3.2. An application: reducibility. The category modχ(H) has also a
“classical” Langlands classification (Evens). For every standard parabolic
P = MN , one can define a subalgebra HM ⊂ HP ⊂ H, and form induced
standard modules X(P, σ, ν), where σ is a tempered module of HM , and ν is
a dominant character. The tempered modules are defined by a Casselman
criterion in terms of the weights under the action of the abelian part of the
Hecke algebra. In the geometric classification, σ is tempered for HM , if χ is
rigid for M and the corresponding M(χ)-orbit on m2(χ) is the open orbit.

Lemma. Let σ be a tempered module for HM parametrized by (the open
orbit of M(χ) on m2(χ)) and a representation ψ of the component group
AM (χ, e). Then the G(χ)-orbit on g2(χ) of the Langlands quotient L(P, σ, ν)
is parametrized by P and ψ viewed now as a representation of the component
group AG(χ, e).

Proposition. The reducibility points of the standard module X(P, σ, ν) (with
ν strictly dominant) are necessarily a subset of the zeros of the rational func-
tion

∏

α∈∆(n−)

2 − 〈α,χ〉

〈α,χ〉
.

If in addition σ is generic (parametrized by the trivial local system), then
the reducibility points are precisely the set of zeros.

The first assertion follows immediately from the dimension formula for
OP . The second one follows again by using in addition a result of M. Reeder
that the generic modules are parametrized by the trivial local system on the
open orbit.

3.3. Combinatorial parametrization. In type A, an explicit combinato-
rial parametrization of the orbits and irreducible modules (there are only
trivial local systems in that case) comes down to Zelevinsky’s multisegment
(or strings): every orbit is described by a set of segments, each segment being
a sequence of numbers increasing by 2, such that the support of the strings
is χ. The closed orbit corresponds to all segments being singletons, while
the open orbit corresponds to the unique nested multisegment of support χ.
The closure ordering can be described combinatorially.
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For other classical types, we developed a combinatorial parametrization
which takes into account the local systems as well. Roughly, every lo-
cal system corresponds to a set of segments and a Young tableau. Inci-
dently, this answers a conjecture of Opdam and Slooten on the combina-
torial parametrization of tempered modules when the Hecke algebra is of
geometric type.

4. Polynomials

Lusztig’s algorithm (2006) computes polynomials

cξ,ξ′(v) =
∑

j

[L′ : Hi(O,L) |O′ ]vdimO−dimO′−j.

The relation with KL polynomials is given by the formula

cξ,ξ′(v) = vdimO−dimO′

· Pξ,ξ′

(

1

v2

)

.

The algorithm construct four bases U± and Z± inside a space K(χ)/Rad :
- the Q(v)-vector space K(χ) has a basis indexed by the cosets W/W (χ)

and
- it has a symmetric bilinear form whose radical is Rad.
- the matrix of polynomials is given by the change of basis from Z to U .
- the elements of the bases U and Z are indexed by the orbits and local

systems in Orb2(χ).
- to construct U and Z one uses induction from KL parabolics and the

Fourier-Deligne transform (bijection between simple perverse sheaves on g2

and simple perverse sheaves on g−2. This is why one needs 4 bases! As
a byproduct, the algorithm computes the Fourier-Deligne transform, and
therefore (by the result of Evens-Mirković, the Iwahori-Matsumoto involu-
tion). As a side remark, in type A, the FDT is the Pyasetsky map.

- one important step which makes the algorithm work is the fact that if
#Orb2(χ) > 1, then the FDT of the open orbit in g2(χ) is not the open orbit
in g−2(χ). In representation theoretic terms, this is the statement that the
Iwahori-Matsumoto involution of a tempered module cannot be tempered
(unless the tempered module is the full spherical principal series).

4.1. An example in sp(6). The central character is χ = (3, 1, 1), the mid-
dle element of the nilpotent (4, 2). There are 10 orbits of G(χ) on P2. We
list the parametrization of these orbits, the dimensions, the corresponding
Levi subalgebras and the basis elements Z− and U−. The bases Z+ and U+

are obtained by multiplication by w0.
We encode the cosets W/W (χ) by the of W action on (3, 1, 1).
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s Levi ls Dim Z
−

(0, 0, 0) ±{ǫ2 − ǫ3} 0 1

v+v
−1 [3, 1, 1]

(1,−1, 0) ±{ǫ1 − ǫ2} 2 [1, 3, 1] + v[3, 1, 1]
(0, 0, 1) ±{2ǫ3} 2 [3, 1,−1] + v[3, 1, 1]

(1,−1, 1) ±{ǫ1 − ǫ2, 2ǫ3} 3 [1, 3,−1] + v[1, 3, 1] + v[3, 1,−1] + v2[3, 1, 1]
(0, 1, 1) ±{ǫ2 ± ǫ3, 2ǫ2, 2ǫ3} 3 1

v+v
−1 [3,−1,−1]− v[3, 1,−1]− v

v+v
−1 [3, 1, 1]

(0, 1, 1) 3 [3,−1, 1] + 1

v+v
−1 [3,−1,−1]− v

v+v
−1 [3, 1, 1]

(2, 0, 2) ±{ǫ1 − ǫ2, ǫ2 + ǫ3, ǫ1 + ǫ3} 4 [−1, 1, 3] + v[1, 3,−1] + v[3,−1, 1] + v2[3, 1,−1]
(3, 1, 0) ±{ǫ1 ± ǫ2, 2ǫ2, 2ǫ1} 4 [1,−3,−1] + v[1, 1, 3] + v[1, 3,−1] + v2[1, 3, 1]
(3, 1, 1) ∆ 5 1

v+v
−1 [−3,−1,−1]− v[−1, 1, 3]− v[1,−3,−1]

− v
2

v+v
−1 [3,−1,−1]− v2[1, 1, 3]− v2[1, 3,−1]

−v2[3,−1, 1]− v3[1, 3, 1]

(3, 1, 1) 5 [−3,−1, 1] + 1

v+v
−1 [−3,−1,−1] + v[−1, 1, 3] + v[1, 3, 1]

− v
2

v+v
−1 [3,−1,−1] + v2[1, 3,−1] + v2[3, 1, 1] + v3[3, 1,−1]

s U
−

(0, 0, 0) 1

v+v
−1 [3, 1, 1]

(1,−1, 0) [1, 3, 1] + 1

v+v
−1 [3, 1, 1]

(0, 0, 1) [3, 1,−1] + 1

v+v
−1 [3, 1, 1]

(1,−1, 1) [1, 3,−1]

(0, 1, 1) 1

v+v
−1 [3,−1,−1]

(0, 1, 1) [3,−1, 1] + 1

v+v
−1 [3,−1,−1]

(2, 0, 2) [−1, 1, 3]

(3, 1, 0) [1,−3,−1] + v[1, 1, 3] + v2[1, 3,−1] + v
2

v+v
−1 [1, 3, 1]

(3, 1, 1) 1

v+v
−1 [−3,−1,−1]

(3, 1, 1) [−3,−1, 1] + 1

v+v
−1 [−3,−1,−1]

The basis elements satisfy the conditions:

(1) (ξ : ξ′) = 0, when ξ, ξ′ ∈ Z correspond to distinct orbits.
(2) (ξ : ξ′) = 1 + vZ[v], when ξ, ξ′ ∈ Z correspond to the same orbit.
(3) the change of basis matrix is upper triangular (see below).
(4) µ− µ is an element of the radical of the bilinear form.
(5) Z (similarly U) is a basis for K/Rad.
(6) The elements in U+ which give the two tempered basis elements in

U− correspond to the orbits (0, 0, 0) and (0, 0, 1).

The Lusztig polynomials cξ,ξ′ (coming from the change of basis matrix
from Z to U) are:
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































1 v2 v2 (v + v3) v3 v (v2 + v4) v4 v5 v3

0 1 0 v 0 0 v2 v2 v3 v
0 0 1 v v 0 v2 v2 v3 0
0 0 0 1 0 0 v v v2 0
0 0 0 0 1 0 v 0 v2 0
0 0 0 0 0 1 v 0 0 v2

0 0 0 0 0 0 1 0 v v
0 0 0 0 0 0 0 1 v 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

































Remark. (Jantzen conjecture) It is natural to conjecture that the polyno-
mials cξ,ξ′(v) give precisely the levels of the Jantzen filtration.

Note that this would imply the standard injectivity conjecture in this case:
the generic subquotient must be a submodule of the standard module.

It is known that the generic subquotient is not the unique submodule.
One can see Tadić’s example in the above table (row 7): the induced from
the Steinberg on the Siegel parabolic of SO(7) has two submodules at the
above χ. (In the Hecke algebra, this is the induced from the Steinberg on a
type A2 subalgebra of the type C3 Hecke algebra).


