KAZHDAN-LUSZTIG POLYNOMIALS

DAN CIUBOTARU

1. CLASSICAL SETTING

Let G be a complex semisimple algebraic group with Lie algebra g, B a
fixed Borel subgroup with Lie algebra b, h C b a Cartan subalgebra, AT C A
the positive roots, respectively roots, and p = %za€A+ a. Let W be the
Weyl group. The problem is to describe the multiplicities of the composition
factors in Verma modules.

Let M,, be the Verma module

My, = U(g) ®u(b) (pr—pa

and L,, the unique irreducible quotient. It is known that all subquotients
of M, are of the form L, for some v € W.
Let X = G/B be the flag variety. It has a Bruhat decomposition

X = Upew Xw,

where X, are the Bruhat cells. 1t is known that the Schubert variety
X = Up<wXo,

where the ordering is the Bruhat order in W.

Definition. The Kazhdan-Lusztig polynomials are

Pyw(q) = dimH*IC(X,) |x, ¢
i>0

The odd cohomology vanishes, moreover P, ,, = 0 unless v < w. There is
an explicit algorithm for computing P, .

Theorem (Kazhdan-Lusztig conjecture). The multiplicity of L, in M,,
z,y € W is
[My = Ly] = Puga,woy(1)-

Similar results were obtained for real reductive groups by Lusztig-Vogan
(1985). If Gy is a real form of some complex G, and K C Gy is a maximal
compact subgroup of GGy, then the geometry is in terms of Kc-orbits on the
complex flag variety G/B.

For a general p-adic group, the Langlands classification is still incomplete.
For GL(n), Zelevinsky determined a classification of irreducible representa-
tions and formulated the Kazhdan-Lusztig conjectures in that case (1981).
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Moreover, Zelevinsky proved that the KL polynomials for p-adic GL(n) are
a subset of the Verma modules case. For other p-adic groups, the situation
is more complicated and the KL conjectures need to be refined.

2. KLL CONJECTURE FOR THE HECKE ALGEBRA

Let H denote the graded Hecke algebra, which is a vector space H =
CW ® S(bh*) with a nontrivial commutation relation between W and h*. Let
us assume that H has equal parameters. 1t is known that the center of H is
AW where A = S(h*). Therefore, the central characters x are parameterized
by bh/W.

Let mod, (H) be the category of finite dimensional modules of H with
central character y. The Langlands classification exists in this case, and we
have standard modules X and irreducible quotients L.

Denote

G ={geG:Adlg)x =x}, ) ={vea:Dyl=ny}
Theorem (Lusztig). The standard and irreducible objects in mod, (H) are

parameterized by pairs £ = (O, L), where

(1) O is a G(x)-orbit on ga(x).

(2) L is a certain G(x)-equivariant local system on O. More precisely,
choose some e € O. Then L corresponds to a representation ¢ of
the component group G(e,x)/G(e,x)°?. The representations ¢ which
are allowed are those of Springer type, that is, it must be in the
restriction G(e,x)/G(e,x)? C G(e)/G(e)® of a representation which
appears in the Springer correspondence.

In this setting, the Kazhdan-Lusztig conjectures take the following form:

Theorem (Lusztig, Ginzburg). In (the Grothendieck group of)) mod, (H):

Xe =Y Peo(l): L,
¢

where ‘ o '
Peglq) =Y [L:H¥IC(O, L)) |o] - ¢
i>0
Note that, in particular, Pr¢ = 1, and if £ # ¢, then Pr g = 0, unless
0 cCO.

3. ORBITS

Let Orb,(x) denote the set of G(x) orbits on g,(x). Assume that n €
Z\ {0}. Here are some properties of Orb,(x):
(1) Orby,(x) is finite.
(2) For every O € Orb,(x), O\ O is the union of some orbits O’ with
dim 0’ < dim O.
(3) There is a unique open (dense) orbit O in Orb,(x).
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Example. The simplest example is when x = p (the regular central char-
acter case). Let II denote the simple roots, and fix root vectors X,,. In this
case

92(0) ={y € 9: [.y] = 2y} = DaenC - X,
G(p) = Cartan subgroup.
There is a one-to-one correspondence
07’52(/5) — 2H,

where to every IIp C II we associate the orbit Op = Z(XEHP C* X, In
other words, the orbits are parametrized by standard parabolic subalgebras.
There are 2/ orbits in this case, and all have smooth closure. The closure
ordering is given by inclusion of subsets. Only trivial local systems appear,
and therefore the KL polynomials are either 1 or 0 depending on the closure
ordering.

3.1. Parametrization. Let e be a representative of an orbit O, in ga(x).
We recall the construction of the Kazhdan-Lusztig parabolic associated to e.

By a graded version of the Jacobson-Morozov triple, e can be embedded
into a Lie triple {e,h, f}, such that e € go, h € go, and f € g_o. Define
a gradation with respect to h as well, g" = {y € g : [h,y] = ry}, and set

g; =g:Ng". Then
g=EP g

t,reZ
Set
m=Pg, =g p=maen (3.1.1)
t=r t<r
Properties(Lusztig):

(1) p depends only on e and not on the whole triple {e, h, f}.

(2) x is rigid for m. (By definition, this means that x is congruent modulo
3(m) to a middle element of a nilpotent orbit in m.)

(3) e is in the open M (x)-orbit in my(y).

(4) M(x,e) C G(x,e) (C P) induces an isomorphism of the component
groups.

(5) The P(x)-orbit of e in po is open, dense in ps.

An immediate corollary of (5) is a dimension formula for O, = G(x) - e.

Proposition. dim O, = dim py — dim py + dim gp.

Definition. A parabolic subgroup P (or subalgebra p) is called good for x if
it satifies conditions (3.1.1) and (2) above.

Let Ps(x) denote the set of good parabolic subgroups for x.

Theorem (Lusztig). There is a bijection between Orby(x) and G(x)-conjugacy
classes in Pa(x).
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Proof. The inverse map is given as follows. Let P = M N be a good parabolic
for x. Then there exists s a middle element of a Lie triple in m, such that
X = s (mod 3(m)). Moreover, the decomposition (3.1.1) must hold with
respect to x and s. Let G’ C G(x) be the reductive subgroup whose Lie
algebra is 98. Then G’ acts on g3(x) and there is a unique open orbit of this
action. Let O be the unique G(x)-orbit on gy containing it. The inverse
map associates O to P.

O

3.2. An application: reducibility. The category mod, (H) has also a
“classical” Langlands classification (Evens). For every standard parabolic
P = MN, one can define a subalgebra Hy; C Hp C H, and form induced
standard modules X (P, o,v), where o is a tempered module of Hj;, and v is
a dominant character. The tempered modules are defined by a Casselman
criterion in terms of the weights under the action of the abelian part of the
Hecke algebra. In the geometric classification, ¢ is tempered for Hyy, if y is
rigid for M and the corresponding M ()-orbit on ms(x) is the open orbit.

Lemma. Let o be a tempered module for Hpys parametrized by (the open
orbit of M(x) on ma(x)) and a representation v of the component group
Anr(x,e). Then the G(x)-orbit on g2(x) of the Langlands quotient L(P, o, v)
s parametrized by P and ¢ viewed now as a representation of the component

group Ac (X, e).

Proposition. The reducibility points of the standard module X (P, o,v) (with
v strictly dominant) are necessarily a subset of the zeros of the rational func-

tion
H 2— (aa X>
acAn—) (e, x)

If in addition o is generic (parametrized by the trivial local system), then
the reducibility points are precisely the set of zeros.

The first assertion follows immediately from the dimension formula for
Op. The second one follows again by using in addition a result of M. Reeder
that the generic modules are parametrized by the trivial local system on the
open orbit.

3.3. Combinatorial parametrization. In type A, an explicit combinato-
rial parametrization of the orbits and irreducible modules (there are only
trivial local systems in that case) comes down to Zelevinsky’s multisegment
(or strings): every orbit is described by a set of segments, each segment being
a sequence of numbers increasing by 2, such that the support of the strings
is x. The closed orbit corresponds to all segments being singletons, while
the open orbit corresponds to the unique nested multisegment of support x.
The closure ordering can be described combinatorially.
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For other classical types, we developed a combinatorial parametrization
which takes into account the local systems as well. Roughly, every lo-
cal system corresponds to a set of segments and a Young tableau. Inci-
dently, this answers a conjecture of Opdam and Slooten on the combina-
torial parametrization of tempered modules when the Hecke algebra is of
geometric type.

4. POLYNOMIALS

Lusztig’s algorithm (2006) computes polynomials

c&i’(”) = Z[ﬁl : ’H’(@7 L) ‘o/]’udimo_dimol—j_
J

The relation with KL polynomials is given by the formula

C&gl(?)) _ UdimO—dimO’ . Pf,f’ <%> )

The algorithm construct four bases Uy and Z inside a space K(x)/Rad :

- the Q(v)-vector space K(x) has a basis indexed by the cosets W/W ()
and

- it has a symmetric bilinear form whose radical is Rad.

- the matrix of polynomials is given by the change of basis from Z to U.

- the elements of the bases U and Z are indexed by the orbits and local
systems in Orba(x).

- to construct Y and Z one uses induction from KL parabolics and the
Fourier-Deligne transform (bijection between simple perverse sheaves on g
and simple perverse sheaves on g_o. This is why one needs 4 bases! As
a byproduct, the algorithm computes the Fourier-Deligne transform, and
therefore (by the result of Evens-Mirkovi¢, the Iwahori-Matsumoto involu-
tion). As a side remark, in type A, the FDT is the Pyasetsky map.

- one important step which makes the algorithm work is the fact that if
#Orba(x) > 1, then the FDT of the open orbit in go(x) is not the open orbit
in g_o2(x). In representation theoretic terms, this is the statement that the
Iwahori-Matsumoto involution of a tempered module cannot be tempered
(unless the tempered module is the full spherical principal series).

4.1. An example in sp(6). The central character is y = (3,1, 1), the mid-
dle element of the nilpotent (4,2). There are 10 orbits of G(x) on PB2. We
list the parametrization of these orbits, the dimensions, the corresponding
Levi subalgebras and the basis elements Z_ and ¢/_. The bases Z; and U,
are obtained by multiplication by wy.

We encode the cosets W/W (x) by the of W action on (3,1,1).
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s | Levi [ | Dim | Z_
(07 07 O) :l:{€2 - 63} 0 v+’];) T [37 1, 1]
(1,-1,0) +{e1 — e} 2 [1,3,1] +v[3,1,1]
( 7071) 1{263} 2 [3717 ] [3 1]
(1,-1,1) +{e1 — 2,263} 3 [1,3,—1]—1—1}[1 ]+ 0[3,1,— ]—l—v [3,1,1]
(0,1,1) +{ea £ €3, 2¢2,2¢3} 3 #[3, —1]—v[3,1, 1] — ;7= [3,1,1]
(0,1,1) 3 [3’_1’1]+W[3’_1’_ ]—Hv (3,1, 1]
(2,0,2) | £{e1 — €2, €2+ €3,61 +€3} | 4 [-1,1,3] +v[1,3, 1] + v[3, —1,1] + v?[3,1, —1]
(3,1,0) +{e1 + €2, 262,261 } 4 1,-3,—1]4+v[1,1,3] +v[1,3,—1] + 1}2[17 ,1]
(3,1,1) A 5 #[—3, 1,—1]—v[-1,1,3] — v[1, -3, —1]
_1}_;)%[37 -1, _1] - 1)2[1, 173] —v [173a _1]
—112[37—171] —v3[1,371]
3,1,1 5 -3, —1,1]+ —=—[-3,-1,-1]+v[-1,1,3] + v[1,3,1
( ) [ ] v+v ) D) D)
— 21 [3,-1,—1] + 0%[1,3, 1] +v?[3, 1, 1] + v*[3,1, ~ 1]
s | Uu_
(0,0,0) U_H),] [3,1,1]
(17_170) [173 1] UJFU 1[3a ) ]
(0,0,1) [3,1,—1] + #[3,171]
(1,—-1,1) [1,3,—1]
(0,1,1) #[3,—1,—1]
(0,1,1) 8, —1,1]+ ;2=[3,—1,—1]
(27032) [_17173]
(37 17 O) [17 _37 _1] + U[l, 17 3] + ’02[1, 37 _1] + U_:%[lv 37 1]
(3,1,1) -3, -1, 1]
(3,1,1) [-3,—-1,1]+ —,1[—3,—1,—1]

The basis elements satisfy the conditions:

1 (¢
2) (¢

(
(
(3
(4
(5 (similarly i) is a basis for K/Rad.
(6

&) =0, when £, & € Z correspond to distinct orbits.

) &) =1+ vZv], when £, & € Z correspond to the same orbit.
) the change of basis matrix is upper triangular (see below).

) 7 — i is an element of the radical of the bilinear form.
) Z

)

The elements in U which give the two tempered basis elements in

U_ correspond to the orbits (0,0,0) and (0,0,1).

The Lusztig polynomials c¢ ¢ (coming from the change of basis matrix

from Z to U) are:
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1 v 0?2 (v+03) v v (W2+0t) vt W3
0 1 0 v 0 0 v2 v 0w
0 0 1 v v 0 v? v v 0
0 0 0 1 0 O v v v 0
0 0 0 0 1 0 v 022 0
0 0 0 0 0 1 v 010 o2
0 0 0 0 0 0 1 0|lv v
0 0 0 0 0 0 0 1 (v 0
0 0 0 0 0 0 0 011 0
0 0 0 0 0 0 0 010 1

Remark. (Jantzen conjecture) It is natural to conjecture that the polyno-
mials c¢ ¢/(v) give precisely the levels of the Jantzen filtration.

Note that this would imply the standard injectivity conjecture in this case:
the generic subquotient must be a submodule of the standard module.

It is known that the generic subquotient is not the unique submodule.
One can see Tadié¢’s example in the above table (row 7): the induced from
the Steinberg on the Siegel parabolic of SO(7) has two submodules at the
above x. (In the Hecke algebra, this is the induced from the Steinberg on a
type Ag subalgebra of the type C3 Hecke algebra).



