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Abstract. It is known that the determination of the Iwahori-spherical
unitary dual for p–adic groups can be reduced to the classification of
unitary representations with real infinitesimal character for the associ-
ated Hecke algebras. In this setting, I determine the Iwahori–spherical
unitary dual for split groups of type F4.

1. Introduction

The purpose of this paper is to describe the unitary representations with
nontrivial Iwahori fixed vectors for a split reductive p–adic group G of type
F4. From [BM1] and [BM2], this is equivalent to the determination of the
unitary representations with real infinitesimal character of the correspond-
ing graded Hecke algebra H. Using the classification of simple Hecke algebra
modules, the unitary dual is partitioned into subsets parametrized by nilpo-
tent orbits in the dual Lie algebra. Most of the techniques here are the same
as those used in [BM3] and [B2] for the classification of the spherical unitary
spectrum of classical groups.

I present an outline of the paper. Section 2 has the ingredients needed
in the description of the unitary dual. I recall the results of Barbasch–
Moy mentioned in the first paragraph of the introduction and the basic
definitions and facts about the classification of irreducible modules for the
graded Hecke algebra, standard modules and intertwining operators that
will be used throughout the paper. I also give a summary of the results in
[B2] for classical groups.

In Section 3, I determine the spherical unitary dual. This is done entirely
using the relevant K-types (in the sense of [B2]), which are a minimal set of
Weyl group representations that are sufficient for determining the unitarity.
The payoff is that one hopes to match these Weyl representations with K-
types in the real split group F4, so that the spherical real unitary dual would
follow. The details about this correspondence, as applied for classical groups
by Barbasch in [B2], are presented in Appendix C.

The spherical H–modules can be parametrized in terms of semisimple
elements s in the dual Cartan subalgebra ǎ (as mentioned before, one can
assume s is real). Barbasch and Moy described how one can attach to such
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an element s a unique nilpotent orbit Ǒ. Therefore, it is natural to partition
the spherical unitary dual by nilpotent orbits Ǒ in the dual Lie algebra. To
each Ǒ, one attaches a set of unitary parameters, called complementary
series.

This description of the spherical dual has some beautiful consequences. In
the case of classical groups, as in [BM3], the complementary series of Ǒ can
always be identified with the complementary series associated to the trivial
nilpotent in the Lie algebra of the centralizer of Ǒ. For F4, this does not

hold when the nilpotent is Ǒ = A1 + Ã1. It is the only exception for type
F4. I note however that there are examples of similar exceptions when the
group is of types E7 and E8 (although these examples appear very rarely).

A second feature of the description of the spherical unitary dual for the
classical groups is that each parameter s in a complementary series can be
deformed irreducibly to a parameter which is unitarily induced irreducible
from some special unitary spherical parameter of a HM (M ⊂ G a Levi
subgroup). This second feature is preserved for F4.

Section 4 deals with the determination of the Iwahori–spherical unitary
dual of the Hecke algebra of type F4. I compare the part of the I–spherical
dual associated to each nilpotent Ǒ with the spherical unitary dual of the
centralizer of Ǒ. The main tools are computations of the intertwining oper-
ators introduced in [BM3] and [B2], restricted to some special K-types and
the determination of the composition series of standard modules. The con-
nection between the results in the two sections is provided by the Iwahori–
Matsumoto involution. This is an involution of H which preserves unitarity
when acting on H–modules.

In Section 5, I give a table with the unitary representations ordered by
infinitesimal characters and nilpotents.

In Appendix A, one can find the explicit description of irreducible Weyl
representations (as in [L5]) used for constructing realizations of W–represen-
tations. In Appendix B, I reproduce the unitary spherical dual for G2. This
is well–known of course, by the work of G. Múıc ([M]) in the p–adic case
and D. Vogan in the real case ([V1]). I just present it here in terms of
the affine graded Hecke algebra and give the relevant K–types to justify the
claimed connection (from Sections 3 and 4) between the unitary parameters

associated to the nilpotent orbit Ã2 and its centralizer, which is of type G2.
In Appendix C, I present the background and methods from [B2] needed

to connect the determination of the spherical unitary dual of split p–adic
groups with that for the split real groups.

I would like to thank the reviewer for all the attention and patience in
reading this paper and for many helpful comments and suggestions. I am
also grateful to Jeff Adams and John Stembridge for checking my results
for spherical parameters against their own (computer) calculations. Finally,
but most importantly, I thank Dan Barbasch without whose generous help
and advice this paper would not have been done.
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2. Preliminaries

2.1. The Iwahori–Hecke algebra. Let F denote a p–adic field with a
discrete valuation | |. R = {x ∈ F : |x| ≤ 1} is its ring of integers and
P = {x ∈ F : |x| < 1} is the unique maximal ideal in R. R/P, the residue
field, is isomorphic to a finite field Fq.

Let G = G(F) be the F–points of a split reductive algebraic group defined
over F. K = G(R) is a maximal compact open subgroup in G. Let B be a
Borel subgroup such that G = KB. B = AN , where A is a maximal split
torus and N is the unipotent radical.

There is a short exact sequence

{1} → K1 → K → G(Fq) → {1},

where K1 = {x ∈ G : x ≡ 1 mod P}. Define the Iwahori subgroup, I ⊂ G,
to be the inverse image in K of a Borel subgroup in G(Fq).

The unitary dual problem for the group G refers to the determination of
all irreducible unitary representations of G. By a representation of G, I
will always mean a smooth admissible representation. As mentioned in the
introduction, this paper determines the Iwahori–spherical dual of G, that
is, the irreducible unitary representations (π, V ) of G, such that V I 6= {0}.
An important particular case is that of spherical representations, which are
representations with nontrivial fixed K–vectors.

Define the Iwahori–Hecke algebra, H = H(I\G/I), to be the set of com-
pactly supported I–biinvariant functions on G. This is an algebra under
the convolution of functions. If (π, V ) is an I–spherical representation of G,
then H acts on V I via:

π(f)v :=

∫

G

f(g)(π(g)v) dg, for v ∈ V I and f ∈ H.

This action makes V I a finite–dimensional H–module.

Theorem 2.1 (Borel–Casselman). The functor V → V I is an equivalence of
categories between the category of finite–length admissible representations of
G with the property that each subquotient is generated by its I–fixed vectors
and the category of finite–dimensional modules of H.

Note that, in particular, the theorem implies that irreducible I–spherical
representations of G are in one–to–one correspondence with finite dimen-
sional simple H–modules.

The algebra H has a star operation defined as f → f ∗, f∗(g) := f(g−1)
and therefore one can define Hermitian and unitary modules for H. The
following result gives the reduction of the unitarity problem for the group
G to the similar problem for the Iwahori–Hecke algebra (see [BM1]).

Theorem 2.2 ([BM1],[BM2]). An I–spherical irreducible representation V
of G is unitary if and only if V I is a unitary simple H–module.
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Moreover, in [BM2], Barbasch and Moy showed that the determination of
the unitary dual of H can be reduced to the determination of the unitary dual
of the associated affine graded Hecke algebra H. Next, I give the description
of H in terms of generators and relations and recall some basic definitions
and results about the parametrization of simple H–modules.

2.2. The Affine Graded Hecke Algebra. Let Gm be the multiplicative
group of F, X = Hom(Gm, A) be the lattice of one–parameter subgroups of
A and X̌ = Hom(A,Gm). Let R, R+ and Π be the sets of roots of A in G,
positive roots, simple roots and Ř, Ř+ and Π̌ be the sets of coroots, positive
coroots and simple coroots . Let Ǧ be the complex dual group of G and ǧ

be its Lie algebra. a = X ⊗Z C and ǎ = X̌ ⊗Z C. Let W denote the Weyl
group and C[W ] the group algebra of W .

As a vector space, H is C[W ]⊗A, where A is the symmetric algebra over
a. The generators are tw ∈ C[W ], w ∈W and ω ∈ a. The relations between
the generators are:

twt
′
w = tww′, for all w,w′ ∈W ;

t2s = 1, for any simple reflection s ∈W ;
tsω = s(ω)ts + 〈ω, α̌〉, for simple reflections s = sα.

H is also a star algebra with the star operation given on generators as
follows (as in [BM2]):

t∗w = tw−1 , w ∈W ;
ω∗ = −ω +

∑
α∈R+〈ω, α̌〉tα, ω ∈ a.

2.3. Simple H–modules. As I mentioned before, the problem of the I–
spherical unitary dual of G comes down to the determination of all the
unitary simple modules for H. To this end, I need to recall some of the
basic results about the classification and parametrization of simple Hecke
algebra modules as in [KL] and [L1] and present Langland’s classification
in the setting of the affine graded Hecke algebra. The presentation of these
basic results is influenced by D. Barbasch’s exposition in [B1].

Theorem 2.3 ([L1]). The irreducible H–modules are parametrized by Ǧ-
conjugacy classes (s, Ǒ, ψ), where s ∈ ǧ is semisimple, Ǒ ⊂ ǧ is a nilpotent
orbit which has a standard Lie triple {ě, ȟ, f̌} such that [s, ě] = ě and ψ ∈

Â(s, ě) is an irreducible representation of A(s, ě), the component group of
the centralizer of s and ě. The representations ψ that appear come from the
Springer correspondence.

More precisely, if (s, Ǒ, ψ) is a parameter as in the theorem and {ě, ȟ, f̌} is
a Lie triple for Ǒ, the infinitesimal character s can be written as s = 1

2 ȟ+ν,

with ν centralizing the triple {ě, ȟ, f̌}. To each pair (s, Ǒ), one attaches a
standard module X(s, Ǒ). The standard module may be reducible and it
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decomposes into a direct sum:

X(s, Ǒ) =
⊕

ψ∈Â(s,ě)

X(s, Ǒ, ψ).

In this direct sum, not all ψ ∈ Â(s, ě) appear. Each standard module
X(s, Ǒ, ψ) has a unique irreducible quotient L(s, Ǒ, ψ) and each irreducible
H–module is isomorphic to such a L(s, Ǒ, ψ).

To each nilpotent orbit, one attaches, by the Springer correspondence,
some representations of the Weyl group, which will be refered to as the
lowest K-types of the nilpotent orbit. Their construction and properties will
be recalled at the beginning of Section 4, when I will make use of them in
an essential way.

Finally, all the factors of X(s, Ǒ, ψ) have parameters (s, Ǒ′, ψ′) such that

Ǒ′ 6= Ǒ and Ǒ ⊂ Ǒ′. This fact is crucial for the method of determination
of the spherical unitary dual used in this paper.

Definition 2.4. Let (s, Ǒ, ψ) be a parameter corresponding to a simple H–
module. If the semisimple element s has trivial elliptic part, the parameter
is called real. A parameter is called tempered if ν = 0. If in addition,
Ǒ is distinguished, i.e. it does not meet any proper Levi component, the
parameter is called a discrete series.

The above definitions are justified by the Borel–Caselman correspondence
with irreducible representations of G and the results in [KL]. An essential
fact for us is that simple H-modules parametrized by a tempered parame-
ter (as in the above definition) are formed by the Iwahori–fixed vectors of
tempered representations of the group G and, therefore, are unitary. They
represent the starting point for building the unitary dual of H.

The results in [BM2] show that it is sufficient to classify the unitary simple
H–modules with real parameters. Actually, [BM2] implies that the classifi-
cation of the unitary dual for the Iwahori–Hecke algebra H is equivalent to
the classification of the unitary simple modules with real parameter for the
graded Hecke algebra H and for similar graded Hecke algebras corresponding
to groups of lower ranks. Since the unitary dual for graded Hecke algebras
of classical types is known (from [BM3]) and the unitary dual for groups of
type G2 was also determined ([M]), it remains to determine the unitary dual
(for real parameters) when H is of type F4.

From now on, all the parameters will be assumed real.

If P = MN is a (standard) parabolic subgroup of G with the Levi compo-
nentM and V is a module for the affine graded Hecke algebra HM associated
to M , one can form the induced module I(M,V ) = H ⊗HM

V . The Lang-
lands classification in this setting (as in [BM3]) says that every irreducible
module of H appears as the unique irreducible quotient L(M,V, ν) (called
Langlands quotient) of an induced module X(M,V, ν) = I(M,V ⊗ν), where:
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(1) M is a Levi component of a parabolic subgroup of G;
(2) V is a tempered irreducible representation of HM ;
(3) ν ∈ a∗, ν real, satisfying 〈ν, α〉 = 0, for all α ∈ R+

M and 〈ν, α〉 > 0,

for all α ∈ R+−R+
M (RM ⊂ R denotes the root subsystem associated

to the Levi component M ⊂ G).

Moreover, two Langlands quotients are isomorphic if and only if the data
(M,V, ν) that characterize them are conjugate by an element in the group
G.

Next, I will explain the connection between Kazhdan–Lusztig and Lang-
lands classifications. Suppose XG(s, Ǒ) is a standard module for H = HG

and that s = 1
2 ȟ + ν and {ȟ, ě, f̌} ⊂ Ǒ are contained in a Levi component

m̌. Let M ⊂ G be the Levi subgroup whose Lie algebra has dual m̌. One
can form the standard module XM (s, ǑM ) (ǑM is the M̌–orbit of e in m̌) .
Then

XG(s, Ǒ) = I(M,XM (s, ǑM )).

For φ ∈ ̂AM (s, ě), the induced module from XM (s, ǑM , φ) breaks into a
direct sum of standard modules of G corresponding to the representations of
AG(s, ě) which contain φ in their restriction to AM (s, ě) (we view AM (s, ě)
as a subgroup of AG(s, ě)):

I(M,XM (s, ǑM , φ)) =
⊕

ψ∈ÂG(s,ě)

[ψ|AM (s,ě) : φ]XG(s, Ǒ, ψ).

If M̌ denotes the centralizer in Ǧ of ν and M the corresponding subgroup
inG, the standard modulesXG(s, Ǒ, ψ) can also be seen as induced modules:

XG(s, Ǒ, ψ) = I(M,XM (
1

2
ȟ, ǑM , φ) ⊗ Cν),

for some φ in the restriction of ψ to AM (s, ě). By Definition 2.4, V =
XM (1

2 ȟ, ǑM , φ) is a tempered module of HM . This shows the connection
between the two classifications.

2.4. Intertwining Operators and Hermitian Forms. I recall the con-
struction of Hermitian forms and intertwining operators from [BM3].

Let w = s1 . . . sk be a reduced decomposition of w. For each simple root
α, define rα = (tαα̌ − 1)(α̌ − 1)−1. Then define rw := rα1 . . . rαk

. A priori,
rw could depend on the reduced expression of w, but Lemma 1.6. in [BM3]
shows that actually rw is well-defined. w0 will denote the long Weyl element.
Denote by W (M) the Weyl group of W viewed as a subgroup of W .

I will use the following results from [BM3]:

Theorem 2.5 ([BM3]). Let M be the Levi component of a parabolic subgroup
P , V be a tempered module for HM and ν a real character as before.
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(1) The Langlands quotient L(M,V, ν) is Hermitian if and only if there
exists a Weyl group element w which conjugates the triple (M,V, ν)
to (M,V,−ν).

(2) Assume L(M,V, ν) is Hermitian with w as above. Let wm be the
shortest element in the double coset W (M)wW (M). The operator

I(wm, ν) : X(M,V, ν) → X(M,V,−ν), x⊗ (v ⊗ 1ν) → xrwm ⊗ (v ⊗ 1−ν)

is an intertwining operator. Moreover, the image of I(w, ν) is the
Langlands quotient L(w, V, ν) and the Hermitian form on L(M,V, ν)
is given by:

〈x⊗ (v ⊗ 1ν), y ⊗ (v′ ⊗ 1ν)〉 = (x⊗ (v ⊗ 1ν), yrw ⊗ (v′ ⊗ 1−ν))h,

where ( , )h denotes the pairing with the Hermitian dual.

For practical calculations in F4, wm can be chosen to be the shortest
element in the double coset W (M)w0W (M).

Of great importance for the actual classification is the C[W ]–structure of
the standard modules. Recall the Peter–Weyl decomposition

C[W ] =
∑

σ∈cW

Vσ ⊗ V ∗
σ ,

(σ, Vσ) denoting the irreducible representations of the Weyl group, which,
by analogy with the real groups, are called K-types. The Weyl group rep-
resentations for type F4 are classified by Kondo in [K]. The K–structure of
standard modules is given by the Green polynomials calculated in [K] and
can also be read from the (unpublished) tables of Alvis (see [A]).

Consider the intertwining operators of the form I(w, ν) : X(M,V, ν) →
X(M,V,−ν). We assume here that wν = −ν. As a C[W ]–module,X(M,V, ν) =
C[W ] ⊗C[W (M)] V . For any K-type (σ, Vσ), I(w, ν) induces an operator

rσ(w,M, ν) : HomC[W ](Vσ ,C[W ]⊗C[W (M)]V ) → HomC[W ](Vσ,C[W ]⊗C[W (M)]V ).

By Frobenius reciprocity,

HomC[W ](Vσ,C[W ] ⊗C[W (M)] V ) ∼= HomC[W (M)](Vσ, V ).

In conclusion, I(w, ν) gives rise to an operator

rσ(w,M, ν) : HomC[W (M)](Vσ, V ) → HomC[W (M)](Vσ , V ),

or, equivalently,

rσ(w,M, ν) : (V ∗
σ )V → (V ∗

σ )V .

Theorem 2.5 implies that if the Langlands quotient were unitary, all the
operators rσ(w,M, ν), obtained by the restriction to K–types, would be
positive semidefinite. As in [BM3] and [B2], one of the main tools for showing
modules are not unitary is to compute the signature of these operators.
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2.5. Spherical H–modules. For the rest of the section, I will present the
special case of spherical modules and the results for classical groups from
[B2]. The general machinery presented so far can be described in consider-
ably simpler terms for this case. The H-modules which correspond to the
spherical group representations are precisely those which viewed as C[W ]–
modules contain the trivial Weyl group representation.

If a simple spherical H–module is parametrized by a Kazhdan–Lusztig
triple (s, Ǒ, ψ), the representation ψ must be the trivial representation.
Moreover, the semisimple element s determines the nilpotent orbit uniquely.
Fix a semisimple s ∈ ǧ (actually, one can assume s ∈ ǎ). The characteriza-
tion of the nilpotent orbit Ǒ as in [B2] is the following. Let ǧ1 and ǧ0 be
the 1–eigenspace, respectively the 0–eigenspace of ad(s):

ǧ1 = {x ∈ ǧ : [s, x] = x}, ǧ0 = {x ∈ ǧ : [s, x] = 0}.

Let Ǧ0 ⊂ Ǧ be the complex Lie group with Lie algebra ǧ0. Ǧ0 acts on ǧ1

and it has a unique dense orbit in ǧ1. Call it Ǒ1. Then there is a unique
nilpotent orbit Ǒ in ǧ which meets ǧ1 in Ǒ1.

The nilpotent orbit Ǒ admits a second, equivalent, description:

Proposition 2.6 ([BM1]). Let s ∈ ǎ be a semisimple element and Ǒ the
associated nilpotent orbit constructed before. Let {ě, ȟ, f̌} be a Lie triple
associated to the orbit Ǒ. Then Ǒ has the property that it is unique subject
to the following two conditions:

(1) there exists w ∈W such that ws = 1
2 ȟ+ ν, where ν is a semisimple

element in the Lie algebra z(Ǒ) of the centralizer of the Lie triple;

(2) if s satisfies the first property for a different Ǒ′, then Ǒ′ ⊂ Ǒ.

For the spherical case, I consider the principal series module X(s) =
H ⊗A Cs, s ∈ ǎ. Since X(s) is isomorphic as a W–representation to C[W ],
it follows that the trivial W–representation appears with multiplicity one
in X(s) and therefore, there is a unique spherical subquotient L(s). Conse-
quently, I will refer to a semisimple element s to be unitary if the spherical
module parametrized by it is unitary.

Consider the intertwining operator given by w0, the long element in the
Weyl group, called the long intertwining operator. I cite the following result
from [B2].

Theorem 2.7 ([B2]). If s is dominant (i.e., 〈s, α̌〉 ≥ 0 for all positive roots
α ∈ R+) and the image of I(w0, s) is L(s).

Moreover, L(s) is Hermitian if and only if w0s = −s.

Note that rw0 = rα1 · · · rαk
acts on the right and therefore, each αj in the

decomposition into rαj
’s can be replaced by the scalar 〈α̌j , sj+1sj+2 · · · sk(ν)〉

in the intertwining operator I(w0, ν). Consequently, we can think of rw0 as
an element in C[W ].

The discussion about the intertwining operators and Hermitian forms in
Section 2.4. implies the following remark in the spherical case.
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Remark 2.8. The long intertwining operator gives rise to operators on the
K–types (σ, Vσ): rσ(w0, s) : (Vσ)

∗ → (Vσ)
∗. As before, the Hermitian form

on the module L(s) is positive definite (and therefore L(s) is unitary) if and
only if w0s = −s and all the operators rσ(w0, s) are positive semidefinite.

Note that this fact suggests the following combinatorial description of
the spherical unitary dual. One can consider (real) parameters s in the
dominant Weyl chamber. They parametrize spherical H–modules. Since in
the Weyl group of type F4, w0 acts on any such s by −1, any parameter s is
Hermitian. In order to determine if s is unitary, one would have to compute
the operators rσ(w0, s) on the K–type σ. An operator rσ(w0, s) can only
change its signature in the dominant Weyl chamber on a hyperplane where
〈s, α̌〉 = 1 for α ∈ R+ or 〈s, α̌〉 = 0 for α ∈ Π. Therefore, the spherical
unitary dual can be viewed as a (bounded) union of closed facets in this
arrangement of hyperplanes. I will use this observation in the description of
the spherical unitary dual in Section 3.

For the explicit description, the spherical unitary dual is partitioned into
subsets, each subset being parametrized by a nilpotent orbit in ǧ. To such
a nilpotent orbit Ǒ, one attaches the set of parameters corresponding to Ǒ
which are unitary.

Definition 2.9. These set of parameters s = 1
2 ȟ+ν associated to a nilpotent

orbit Ǒ which are unitary are called the complementary series attached to
Ǒ.

When G is of classical type, the explicit description of the spherical uni-
tary dual of the associated affine graded Hecke algebra from [B2] can be
summarized in the following theorem. I mention that for type A, the uni-
tary dual for p–adic GL(n,F) had already been classified by Tadic (see [T]).

Theorem 2.10 ([B2]). Let s ∈ ǎ be a semisimple element and Ǒ the unique
maximal nilpotent orbit such that s = 1

2 ȟ+ ν, with ν a semisimple element

in z(Ǒ).

(1) s is in the complementary series of Ǒ if and only if ν is in the
complementary series of the trivial nilpotent orbit of z(Ǒ).

(2) The (real) parameters s = (ν1, ν2, . . . , νn), n = rank G, in the com-
plementary series associated to the trivial nilpotent orbit can be de-
scribed explicitly as follows:
(a) A: s has to be of the form (ν1, . . . , νk,−νk, . . . ,−ν1) if n = 2k

or (ν1, . . . , νk, 0,−νk, . . . ,−ν1) if n = 2k + 1, with 0 ≤ ν1 ≤
ν2 ≤ · · · ≤ νk <

1
2 .

(b) B: 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νn <
1
2 .

(c) C, D: 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νk ≤ 1
2 < νk+1 < νk+2 < · · · < νn,

so that νi + νj 6= 1 if i 6= j and there is an even number of νi
such that 1 − νk+1 < νi ≤

1
2 and an odd number of νi such that

1 − νk+j+1 < νi < 1 − νk+j.
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(Note that the types A, B, C, D in the theorem refer to the group G.)

Moreover, in view of Remark 2.8, the spherical unitary dual for classical
groups is determined by the operators restricted to a small set of K–types,
as follows from [B2].

Theorem 2.11 ([B2]). For G of classical type, a spherical parameter s is
unitary if and only if the operators rσ(w0, s) are positive semidefinite for the
following representations σ of W :

(1) A: (m,n−m), 0 ≤ m ≤ [n2 ].
(2) B, C: (n−m) × (m), 0 ≤ m ≤ n and (m,n−m) × (0), m ≤ [ n2 ].
(3) D: (n−m) × (m), 0 ≤ m ≤ [n2 ] and (m,n−m) × (0), m ≤ [n2 ].

The K-types appearing in Theorem 2.11 are called relevant K–types.

2.6. Coordinates for F4. Throughout this paper, I will use the following
realization of the root system of the group G of type F4 (αi are the simple
roots and ωi the corresponding simple weights):

α1 = 1
2(ε1 − ε2 − ε3 − ε4) ω1 = ε1

α2 = ε4 ω2 = 3
2ε1 + 1

2ε2 + 1
2ε3 + 1

2ε4
α3 = ε3 − ε4 ω3 = 2ε1 + ε2 + ε3
α4 = ε2 − ε3 ω4 = ε1 + ε2
α1 and α2 are the short roots and α3 and α4 the long roots. Note that

all the calculations with the intertwining operators, being done in the dual
group Ǧ, will use the coroots α̌i. All the parameters will be expressed in
the coordinates (ε1, ε2, ε3, ε4).

3. The Unitary Spherical Dual

Recall that, in the spherical case, the Langlands quotients are uniquely
determined by their infinitesimal character s: there is a unique maximal
nilpotent orbit Ǒ such that s = 1

2 ȟ + ν, where ȟ denotes the middle el-

ement of a standard Lie triple corresponding to Ǒ and ν is a semisimple
element centralizing the standard triple, which can be written as a vector
with real entries of length n = rank ǧ. In this way, each spherical parameter
corresponds to a unique nilpotent orbit.

3.1. The Iwahori–Matsumoto involution. I recall that the graded Hecke
algebra has an involution called the Iwahori–Matsumoto involution, IM , de-
fined on the generators as follows:

IM(tw) = (−1)l(w)tw, IM(ω) = −ω, ω ∈ a.

IM acts therefore on the modules of H.
The induced action of the Iwahori–Matsumoto involution on the K-types

is tensoring with the sign representation of W . The use of the Iwahori–
Matsumoto involution is justified by the following result from [BM1].



THE UNITARY I–SPHERICAL DUAL FOR SPLIT p–ADIC GROUPS OF TYPE F4 11

Theorem 3.1 ([BM1]). Let V denote a module of H and IM the Iwahori–
Matsumoto involution. Then V is unitary if and only if IM(V ) is unitary.

In particular, if one considers a spherical module L(s) parametrized by
s = 1

2 ȟ, where ȟ is the middle element of a nilpotent orbit Ǒ, IM(L(s)) is
a tempered H–module (in the sense of Section 2). It follows that IM(L(s))
is unitary and therefore, L(s) is spherical unitary.

Definition 3.2. A spherical parameter of the form s = 1
2 ȟ is called anti-

tempered (or spherical unipotent).

The antitempered parameters are unitary and they will play an important
role in the determination of the spherical unitary dual.

Note that the distinguished orbits parametrize spherical unitary repre-
sentations which are the Iwahori–Matsumoto dual of discrete series. They
are therefore unitary. I just record them here, each with its corresponding
parameter:

F4 (11
2 ,

5
2 ,

3
2 ,

1
2 );

F4(a1) (7
2 ,

3
2 ,

1
2 ,

1
2);

F4(a2) (5
2 ,

3
2 ,

1
2 ,

1
2);

F4(a3) (3
2 ,

1
2 ,

1
2 ,

1
2).

Now assume an orbit Ǒ is not distinguished and let s ∈ ǎ be a parameter
corresponding to Ǒ. Then Ǒ meets m̌, the Levi component of a parabolic
subalgebra, in a distinguished orbit ǑM . More precisely, m̌ is the centralizer
in ǧ of a Cartan subalgebra of z(Ǒ). Let M ⊂ G be the Levi subgroup whose
Lie algebra m has m̌ as its dual. Let LM(s) be the irreducible spherical
module of HM parametrized by s and ǑM .

Theorem 3.3 ([BM1]). The spherical Langlands quotient L(s) parametrized
by Ǒ is the unique spherical subquotient of

XM (s) := I(M,LM (s)) = H ⊗HM
LM (s).

3.2. Maximal Parabolics Cases. As the starting case for the determina-
tion of the spherical unitary dual, I consider the modules which are Iwahori–
Matsumoto duals of induced from discrete series on the Levi component of
some maximal parabolic tensored with a character ν. These modules are
parametrized by nilpotent orbits which meet the Levi component of a max-
imal parabolic subalgebra in a distinguished nilpotent orbit. They will be
refered to as maximal parabolic cases.

In the case when the Hecke algebra is of type F4, the maximal parabolic

cases correspond to the nilpotent orbits B3, C3, A2+Ã1, Ã2+A1 and C3(a1).
The notation is the same as in Bala–Carter’s classification of nilpotent orbits
in the exceptional Lie algebras (see [Ca]). The Levi components of the
maximal parabolic subalgebras are parametrized by the root subsystems of
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type B3, C3 and A2 + A1 and the ˜ stands for short roots. Each nilpotent
meets the Levi component in the principal nilpotent, except C3(a1), where
the nilpotent orbit in the Lie algebra of type C3 is (42).

The intertwining operator calculations are done exclusively with the K-
types 11, 23, 42, 81 and 91. The notation is from [K] and the explicit de-
scription of each irreducible W (F4)–representation is given in the Appendix.
I just note here that in the notation dk for a Weyl representation, d is the
degree of the representation and that 11 and 42 are the trivial, respectively
the reflection representations of W (F4).

Following [B2], these K-types will be called relevant.

Lemma 3.4. The K-types 11, 23, 42, 81 and 91 are a minimal set for de-
termining the unitarity of the spherical parameters in the maximal parabolic
cases.

Proof. The proof consists of checking each maximal parabolic case sepa-
rately. I construct explicit matrix realizations of the relevant K-types using
the descriptions of the K-types as given in the Appendix. The long Weyl
element of type F4 has a reduced decomposition w0 = s1s2 · · · s24 and, as
explained in Section 2, it gives rise to operators on each K–type.

For each nilpotent orbit Ǒ in the five maximal parabolic cases, the pa-
rameter is of the form s = 1

2 ȟ + ν, where ν is a real number, which can be
assumed non-negative.

Fix a K–type σ. For σ, the calculation comes down to a multiplication
of 24 matrices of dimension dim(σ) with a single parameter ν ∈ R+. Since
in any standard module for the maximal parabolic cases, the multiplicity
of a relevant K-type in the Langlands quotient is at most two, it is easy
enough to determine explicitly the nonzero eigenvalues of these matrices.
Recall that by Remark 2.8, it is sufficient to consider (in the spherical case)
the long intertwining operator. For all explicit computations, I used the
software “Mathematica”.

We construct the induced modules XM (ν) := I(M,V ⊗ ν), in each of the
maximal cases. Explicitly, when M is of types B3 and A2 + A1, V is the
trivial module of the graded Hecke algebra HM . When M is of type C3,
there are two cases. If the nilpotent orbit is C3, V is again trivial. If the
nilpotent is C3(a1), V is the spherical representation (IM dual of a discrete
series) parametrized by the nilpotent orbit (42) in the Lie algebra of type
C3. As a W (C3)–representation, V decomposes into 3 × 0 + 2 × 1.

With these constructions, the spherical Langlands quotient L(s), which is
parametrized by Ǒ (s = 1

2 ȟ+ν), is actually equal to XM (ν), for ν such that
XM (ν) is irreducible. At ν = 0, XM (ν) is irreducible and unitary, being
antitempered. Therefore, it has to remain unitary until the first point of
reducibility. Recall that from the Kazhdan–Lusztig classification, we know
that at any reducibility point, the spherical parameter corresponds to a

bigger nilpotent Ǒ′, Ǒ ⊂ Ǒ′.
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The first point of reducibility is ν = 1
2 for C3, C3(a1), Ã2+A1 and A2+Ã1,

and ν = 1 for B3.
The same method applies for all five nilpotents: beyond the first nonzero

reducibility point, I show that the intertwining operator is not positive semi-
definite on at least one of the relevant K-types. I include the tables of sig-
natures for the nonzero eigenvalues of the operators induced by the long
intertwining operator on the five relevant K-types.

B3: C3:

ν 11 42 91 81

+ + + +
1 + + + 0

+ + + −
2 + + 0 0

+ + − +
4 + 0 0 0

+ − + −

ν 11 42 91 23

+ + + +
1
2 + + + 0

+ + + −
5
2 + + 0 −

+ + − −
11
2 + 0 0 0

+ − + +

C3(a1):

ν 11 42 42 23 91 91 81

+ + + + + + +
1
2 + + + + + 0 +

+ + + + + − +
5
2 + + 0 0 + 0 0

+ + + − + − −
7
2 + + 0 0 0 0 0

+ + − + − + +

Ã1 + A2: A1 + Ã2:
ν 11 42 91 91 81 81

+ + + + + +
1
2 + + 0 + 0 +

+ + − + + +
1 + + 0 + 0 +

+ + + + − +
3
2 + + 0 0 0 0

+ + − − + +
5
2 + 0 0 0 0 0

+ − + + − −

ν 11 42 23 91 91 81

+ + + + + +
1
2 + + + + 0 +

+ + + + − +
3
2 + + 0 + 0 0

+ + − + − −
5
2 + + 0 0 − 0

+ + − − − +
7
2 + 0 0 0 0 0

+ − + + + −

In this way, I obtain the set of spherical unitary parameters (the comple-
mentary series) for each nilpotent orbit in the maximal parabolic cases:
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B3 (3
2 + ν,−3

2 + ν, 3
2 ,

1
2 ) 0 ≤ ν < 1;

C3 (ν, 5
2 ,

3
2 ,

1
2) 0 ≤ ν < 1

2 ;
C3(a1) (ν, 3

2 ,
1
2 ,

1
2) 0 ≤ ν < 1

2 ;

Ã1 +A2 (1
2 + 2ν, ν,−1 + ν, 1

2) 0 ≤ ν < 1
2 ;

A1 + Ã2 (1
4 + 3ν

2 ,
3
4 + ν

2 ,−
1
4 + ν

2 ,−
5
4 + ν

2 ) 0 ≤ ν < 1
2 .

�

3.3. Main Results. With the maximal parabolic cases done, one can de-
termine the unitarity of the spherical parameters for each of the remaining
nilpotent orbits. The main result follows. The explicit description of the
complementary series for each Ǒ will be given in the proof and recorded
again in Section 5.

Theorem 3.5. Consider the graded Hecke algebra H of type F4.

(1) Let Ǒ be a nilpotent orbit in ǧ and s = 1
2 ȟ+ ν a spherical parameter

associated to Ǒ, where ν is a semisimple element in z(Ǒ).

(a) If Ǒ 6= A1 + Ã1, s is in the complementary series of Ǒ if and
only if ν is in the complementary series attached to the trivial
nilpotent orbit in z(Ǒ).

(b) If Ǒ = A1 + Ã1 and if s is in the complementary series of Ǒ,
then ν is in the complementary series attached to the trivial
nilpotent orbit in z(Ǒ), but the converse is false.

(2) The complementary series associated to the trivial nilpotent with
dominant infinitesimal character (ν1, ν2, ν3, ν4), ν1 ≥ ν2 ≥ ν3 ≥
ν4 ≥ 0, ν1 − ν2 − ν3 − ν4 ≥ 0 are:
(a)

{
ν1 <

1
2

}
;

(b) {ν1 + ν2 + ν3 + ν4 > 1, ν1 + ν2 + ν3 − ν4 < 1} .

Proof. The proof is based on the following induction: for a fixed nilpotent
orbit Ǒ, one divides the parameter space into open regions determined by
the hyperplanes where the standard module is reducible. Assume first that
the nilpotent orbit has trivial component group A(ě), and so, the standard
module is irreducible at the origin (i.e, for s = 1

2 ȟ). On any reducibility
hyperplane, the spherical module corresponds to a bigger nilpotent in the
closure ordering for which I have already found the unitary parameters. In
this way one can rule out the regions which are bounded by hyperplanes with
nonunitary parameters. In the end, there only remain parameters close to
the origin, in regions that are bounded by unitary walls. For these, I show
that they can be deformed irreducibly to parameters which are unitarily
induced irreducible from unitary parameters of classical groups of rank less
than four.

There is an extra difficulty for nilpotents Ǒ with nontrivial component
group. In these cases, the standard module I(M, triv ⊗ ν) = IndH

HM
(triv ⊗
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Cν) is reducible at the origin (see Section 2.3) and one finds reducibility hy-
perplanes through the origin where the spherical factor is still parametrized
by Ǒ. The method outlined above is not sufficient and one needs extra calcu-
lations with the long intertwining operator on the relevant K-types in order
to rule out some nonunitary regions close to the origin or on the reducibility
hyperplanes parametrized by Ǒ.

For the nilpotent orbits in the maximal cases (all having the central-
izer of type A1), one can see from the previous calculations that the (one-
dimensional) complementary series are the same as those for the centralizers.
The method outlined above is best illustrated in the case of the nilpotent or-
bits which admit a two-dimensional parameter. For them, I present pictures
with the reducibility lines. In these pictures, the red lines represent nonuni-
tary spherical factors and the green lines the unitary spherical factors. Any
open region bounded by some red line is necessarily nonunitary.

In the case of nilpotents A1 and Ã1, the arguments are more involved, as

these two nilpotents admit a three-dimensional parameter. Ã1 has only a
two-dimensional complementary series. The proof of this fact is easy if one
uses the signatures of the two lowest K-types associated to this nilpotent
orbit (the definition and the argument will be presented in Section 4), but
more difficult if we restrict to relevant K-types only.

For all the nilpotent orbits, I present the infinitesimal characters, re-
ducibility hyperplanes with the nilpotent orbit parametrizing the spherical
factor on each such hyperplane and the complementary series. I also show
how the infinitesimal character in the complementary series can be deformed
without reducibility to unitarily induced modules from smaller rank groups.

The cases of the parameters associated to the trivial nilpotent orbit and

the orbits A1 and Ã1 will be presented in more detail.

B2: infinitesimal character (ν1, ν2,
3
2 ,

1
2), ν1 ≥ ν2 ≥ 0. The reducibility

lines are: ν1 = 1
2 and ν2 = 1

2 from C3(a1), ν1 + ν2 = 3 and ν1 − ν2 = 3 from

B3, ν1 = 5
2 and ν2 = 5

2 from C3, ν1 = ν2 where the spherical module is still

parametrized by B2. The complementary series is {0 ≤ ν2 ≤ ν1 <
1
2}. On

the line ν2 = 0 and 0 ≤ ν1 <
1
2 the module is unitarily induced irreducible

from a complementary series associated to the nilpotent (411) in C3 (see
figure 1).

A2: infinitesimal character ( 1
2 +ν1 +ν2,−

1
2 +ν1,−

1
2 +ν2,

1
2), ν1 ≥ ν2 ≥ 0.

Reducibility lines: 2ν1 + ν2 = 1, ν1 +2ν2 = 1 and ν1 − ν2 = 1 from Ã1 +A2,
ν1 + ν2 = 1, ν1 = 1 and ν2 = 1 from B2, ν1 + ν2 = 2, ν1 = 2 and ν2 = 2
from B3 and finally ν2 = 0, where the spherical module is parametrized by
A2. The complementary series is {ν2 = 0, 0 ≤ ν1 <

1
2}. At the origin, the

spherical module is unitarily induced irreducible from the trivial in A2 (see
figure 2).
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0 3

( 1
2

, 1
2
)

( 5
2

, 5
2
)

( 11
2

, 5
2
)

F4(a2)
F4(a1)

F4(a1)

C3

B3

C3(a1)

ν1 = ν2ν2

F4

ν1
5
2

1
2

( 3
2

, 3
2
)

Figure 1. Spherical unitary dual attached to the orbit B2

Ã2: infinitesimal character (ν2 + 3ν1
2 , 1 + ν1

2 ,
ν1
2 ,−1 + ν1

2 ), ν1 ≥ 0, ν2 ≥ 0.

Reducibility lines: 2ν2 + 3ν1 = 1, ν2 + 3ν1 = 1, ν2 = 1 from A1 + Ã2,
ν2 + 2ν1 = 1, ν2 + ν1 = 1 and ν1 = 1 from C3(a1), ν2 + 2ν1 = 3, ν2 + ν1 = 3
and ν1 = 3 from C3. The complementary series is {2ν2 + 3ν1 < 1} and
{ν2 +2ν1 < 1 < ν2 +3ν1}. On the line ν2 = 0, for 0 ≤ ν1 <

1
2 , the parameter

is unitarily induced irreducible from a complementary series associated to
the nilpotent (33) in C3 (see figure 3).

A1 + Ã1: infinitesimal character (ν1,
1
2 + ν2,−

1
2 + ν2,

1
2), ν1 ≥ 0, ν2 ≥ 0.

Reducibility lines: ν1 = 1
2 from A2, ν1 = 3

2 from B2, ν1 = 5
2 from B3, ν2 = 1

from C3(a1), ν2 = 2 from C3, ν1 − 2ν2 = −3
2 , ν1 +2ν2 = 3

2 and ν1 − 2ν2 = 3
2

from Ã1 +A2, ν1−ν2 = −3
2 , ν1 +ν2 = 3

2 and ν1−ν2 = 3
2 from A1 + Ã2. The

complementary series is {ν1 +2ν2 <
3
2 , ν1 <

1
2} and {2ν2 −ν1 >

3
2 , ν2 < 1}.

On the line ν1 = 0, 0 ≤ ν2 <
3
4 and 3

4 < ν2 < 1, the standard module is
unitarily induced irreducible from a complementary series associated to the
nilpotent (222) in C3 (see figure 4).

Ã1: infinitesimal character (ν1, ν2,
1
2 + ν3,−

1
2 + ν3), ν1 ≥ ν2 ≥ 0, ν3 ≥ 0.

The planes of reducibility are:
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0 1 2

(1,1)

(2,2) (3,2)

(2,1)

ν2 ν1 = ν2

ν1

( 1
3

,
1
3
)

( 1
2

,
1
2
)

B2

B3

F4

F4(a1)

F4(a3) F4(a2)

A2 + Ã1

B2

B3

1
2A2 + Ã1

Figure 2. Spherical unitary dual attached to the orbit A2

ν1 = 1
2 , ν2 = 1

2 and ν1 ± ν2 ± 2ν3 = ±1 from A1 + Ã1;
ν3 = 1 and ν1 ± ν2 = 2 from B2;

ν1 ± ν3 = ±3
2 , ν2 ± ν3 = ±3

2 from Ã2.
Also, there is reducibility on the plane ν3 = 0 (and planes conjugate to

it), but the spherical factor is still parametrized by Ã1.
I will show that the infinitesimal character can only be unitary on the

plane ν3 = 0. This is done as follows.
Assume the parameter is unitary, with the corresponding standard mod-

ule irreducible and ν3 > 0. Then one can deform the parameter to the closest
reducibility hyperplane, but keeping ν3 > 0; the parameter has to remain
unitary. On each of the reducibility hyperplanes on which the spherical
factor is parametrized by a strictly bigger nilpotent, one knows which pa-
rameters are unitary. Checking the parameters on each of these hyperplanes,
it follows that the only hyperplanes that could bound a (three-dimensional)
unitary region are (the parameters are listed by the nilpotent orbit to which
the spherical factor belongs):
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0 1
3

1
2

1 3
2

3

1
2

3

ν2

ν1

A1 + eA2

F4(a1)

F4(a2)

C3

1

C3(a1)

F4

Figure 3. Spherical unitary dual attached to the orbit Ã2

B2 ν3 = 1 with 0 ≤ ν1 <
1
2

ν1 + ν2 = 2 with 1 < ν1 <
3
2 − ν3

A1 + Ã1 ν1 = 1
2 with 0 < ν3 < 1

ν1 + ν2 + 2ν3 = 1 with ν1 + ν2 < 1

Ã2 ν1 + ν3 = 3
2 with 3

4 < ν1 <
5
4

ν2 + ν3 = 3
2 with 3

4 < ν2 <
5
4

Assume again that the parameter (ν1, ν2,
1
2 + ν3,−

1
2 + ν3) belongs to a

(three-dimensional) unitary region. The claim is that ν1 + ν3 <
3
2 . Assume

that ν1 +ν3 >
3
2 . Then one can deform the parameter ν1 upward, leaving ν2

and ν3 fixed, and it cannot hit any of the unitary facets listed above. This is
because the unitary facets involving ν1 have the property that ν1 + ν3 <

3
2 .

Therefore in order for a parameter associated to Ã1 to be unitary, it is
necessary that ν1 + ν3 <

3
2 .

Now, I use a direct calculation involving the relevant K-types 23 and
42. Both appear with multiplicity 2 in the standard module induced from

Ã1. Denote by prod(σ), the product of the nonzero eigenvalues of the long
intertwining operator on the K-type σ. The ratio prod(42)/prod(23) is

prod(42)

prod(23)
= −

(3
2 − ν1 − ν3)(

3
2 − ν1 + ν3)(

3
2 − ν2 − ν3)(

3
2 − ν2 + ν3)

(3
2 + ν1 + ν3)(

3
2 + ν1 − ν3)(

3
2 + ν2 + ν3)(

3
2 + ν2 − ν3)

,

which shows that the region ν1 + ν3 <
3
2 must be nonunitary.

This argument implies that the only possible unitarity is on the plane
ν3 = 0.
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A1 + Ã2

Ã1 + A2

Ã1 + A2
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C3(a1)

B3

1
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2
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3
2
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4

ν1

( 1
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,
1
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)

( 5
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,
1
2
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2
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2
, 1)

( 1
2

, 2) ( 5
2

, 2) ( 11
2

, 2)

( 9
2

, 3)

( 5
2

, 4)

ν1 − 2ν2 = −

3
2

A2
B2

B3

F4

F4

F4(a1)

F4

F4(a2)

F4(a1)

C3

ν2

F4(a3)

ν1 − 2ν2 = 3
2

ν1 − ν2 = 3
2

Ã1 + A2

ν1 − ν2 = −

3
2

Figure 4. Spherical unitary dual attached to the orbit A1 + Ã1

The complementary series, {ν3 = 0, 0 ≤ ν2 ≤ ν1 < 1
2}, is unitarily

induced irreducible from a complementary series associated to the nilpotent
(314) in B3 (see figure 5).

A1: infinitesimal character (ν1, ν2, ν3,
1
2), ν1 ≥ ν2 ≥ ν3 ≥ 0. The re-

ducibility planes are:

νi = 1
2 , i = 1, 2, 3 from Ã1;

ν1 ± ν2 ± ν3 = 3
2 from A2;

νi = 3
2 , i = 1, 2, 3 from B2;

νi ± νj = 1, 1 ≤ i < j ≤ 3 from A1 + Ã1.

I will show that the complementary series is 0 ≤ ν3 ≤ ν2 ≤ ν1 <
1
2 . On

the plane ν3 = 0, 0 ≤ ν2 ≤ ν1 <
1
2 , the infinitesimal character is unitarily

induced irreducible from a complementary series associated to the nilpotent
(214) in C3.

One immediate observation is that all the reducibility hyperplanes on
which the spherical factor is parametrized by A2 cannot bound any three-
dimensional unitary region. This is because the complementary series asso-
ciated to A2 has dimension one only. On the rest of reducibility hyperplanes,

the spherical factor is parametrized by one of nilpotent orbits Ã1, B2 and

A1+Ã1. Using the complementary series for these nilpotent orbits it follows



20 DAN CIUBOTARU

0 1
2

( 1
2 , 1

2 )

ν1

ν2
ν1 = ν2

ν2 = 1
2
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(1, 1)

( 3
2 , 3

2 )

ν2 = 3
2

ν1 − ν2 = 2

ν1 − ν2 = 1

( 3
2 , 1

2 )

A1 + eA1

C3(a1)

B2

A2

Figure 5. Spherical unitary dual attached to the orbit Ã1

that the unitary three-dimensional regions could be bounded by the follow-
ing hyperplanes (listed by the nilpotent orbit parametrizing the spherical
factor):

Ã1 ν1 = 1
2 with 0 ≤ ν3 ≤ ν2 <

1
2

B2 ν1 = 3
2 with 0 ≤ ν3 ≤ ν2 <

1
2

A1 + Ã1 ν1 − ν2 = 1 with 2ν2 + ν3 <
1
2 or {2ν2 − ν3 >

1
2 , 0 ≤ ν2 <

1
2}

ν1 + ν2 = 1 with 0 ≤ ν3 ≤ ν2 <
1
2

ν1 − ν3 = 1 with 0 ≤ ν3 ≤ ν2 <
1
2

ν1 + ν3 = 1 with 0 ≤ ν3 ≤ ν2 <
1
2

Assume that the parameter (ν1, ν2, ν3,
1
2) is unitary and the corresponding

standard module is irreducible. In particular, the walls of this region can
only be among the 6 hyperplanes listed above.

The first step is to show that ν2 <
1
2 . Assume ν2 >

1
2 . If ν1 <

3
2 , deform

ν = ν1 upward. The first reducibility wall that can be met is one of: ν1 = 3
2 ,

ν1 − ν3 = 1, ν1 + ν3 = 1 and ν1 − ν2 = 1. On each of these hyperplanes the
corresponding parameter is nonunitary because ν2 >

1
2 . Now, if the case is

ν1 >
3
2 , ν2 >

1
2 , move ν = ν1 downward. The first reducibility wall must be

one of the following: ν1 = 3
2 , ν1 − ν3 = 1 or ν1 − ν2 = 1, but on these the

corresponding parameter is nonunitary as before.
From now on, I consider 0 ≤ ν3 ≤ ν2 <

1
2 .
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If ν1 <
1
2 one can deform ν3 to zero without any reducibility. The param-

eter becomes (0, ν1, ν2,
1
2) which is unitarily induced irreducible from (214)

in C3 and as 0 ≤ ν2 ≤ ν1 <
1
2 , it is unitary.

I want to show that this is the only unitary region associated with A1.
Assume 0 ≤ ν3 ≤ ν2 <

1
2 < ν1. Move ν ′ = ν3 toward zero. If it gets to zero

without passing any reducibility point, the parameter is nonunitary being
unitarily induced irreducible from some nonunitary parameter in C3. Note
that if there is reducibility, this cannot involve ν2, as 0 < ν3 < ν2 <

1
2 . The

only cases of reducibility involve ν1 and they are:
ν1 > 1 and ν3 > ν1 − 1 which implies 0 < ν1 − 1 < ν3 ≤ ν2 <

1
2 < 1 < ν1,

ν1 < 1 and ν3 > 1 − ν1 which implies 0 < 1 − ν1 < ν3 ≤ ν2 <
1
2 < ν1 < 1.

In both of these cases one can move ν ′ = ν3 to ν2 and no reducibility
occurs. The resulting parameter (ν2, ν2, ν1,

1
2) is conjugate to (ν2,−ν2, ν1,

1
2)

which is unitarily induced irreducible from B3. B3 is given by the roots α1,
α2 and α3 and if one changes the coordinates into the standard coordinates
for type B3, the parameter becomes (2ν2,

1
2 +ν1,−

1
2 +ν1). This is nonunitary

since ν1 >
1
2 , which is a contradiction. This completes the analysis in this

case.

1: Finally, the complementary series associated to the trivial is deter-
mined as follows. The full induced from the trivial has parameter (ν1, ν2, ν3, ν4)
with ν1 ≥ ν2 ≥ ν3 ≥ ν4 ≥ 0. The most important observation is that any
region bounded by a wall on which a short root is 1 is not unitary. On any

such wall, there is a factor coming from Ã1 which can’t be unitary at all

points since the complementary series for Ã1 is two-dimensional.
Therefore, one needs to only look at regions bounded by long roots. More-

over regions bounded by any of the following hyperplanes: ν2 = 1
2 , ν3 = 1

2 ,

ν4 = 1
2 can’t be unitary because on these hyperplanes the factor correspond-

ing to A1 has nonunitary parameter (ν1 >
1
2). So it remains to check ν1 = 1

2
and the following hyperplanes:

(1) ε1 − ε2 − ε3 − ε4 = 1, ν1 − ν2 − ν3 − ν4 = 1
(2) ε1 − ε2 − ε3 + ε4 = 1, ν1 − ν2 − ν3 + ν4 = 1
(3) ε1 − ε2 + ε3 − ε4 = 1, ν1 − ν2 + ν3 − ν4 = 1
(4) ε1 − ε2 + ε3 + ε4 = 1, ν1 − ν2 + ν3 + ν4 = 1
(5) ε1 + ε2 − ε3 − ε4 = 1, ν1 + ν2 − ν3 − ν4 = 1
(6) ε1 + ε2 − ε3 + ε4 = 1, ν1 + ν2 − ν3 + ν4 = 1
(7) ε1 + ε2 + ε3 − ε4 = 1, ν1 + ν2 + ν3 − ν4 = 1
(8) ε1 + ε2 + ε3 + ε4 = 1, ν1 + ν2 + ν3 + ν4 = 1

The above hyperplanes are listed in the partial ordering of the roots: if α
and β are two positive roots, α > β if and only if α− β is a sum of positive
roots.

One can show, case-by-case analysis, that none of the hyperplanes (1)−(6)
can bound a unitary region, since on them the factor coming from A1 has
nonunitary parameter.
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It follows that any unitary region can only have as reducibility walls the
following hyperplanes: ν1 = 1

2 , ν1+ν2+ν3−ν4 = 1 and ν1 +ν2+ν3+ν4 = 1.
This implies right away that any unitary region has to satisfy ν1 + ν2 + ν3 −
ν4 < 1.

a) Assume ν1 + ν2 + ν3 + ν4 < 1. Then ν2 <
1
2 . Move ν4 toward zero,

no reducibility can occur and at zero, the parameter is (0, ν1, ν2, ν3) which
is unitarily induced irreducible from C3. It is unitary iff ν1 <

1
2 (this comes

from the complementary series of C3). The first unitary region is then

ν1 <
1

2
.

b) ν1 + ν2 + ν3 + ν4 > 1, but ν1 + ν2 + ν3 − ν4 < 1. Again ν2 <
1
2 . Move

ν = ν4 up toward ν3, no reducibility can appear (à priori the only reducibility
could come from short roots involving ν1, but both ν1 − ν3 < 1 < ν1 − ν4

and ν1 + ν4 < 1 < ν1 + ν3 are impossible). At ν = ν3 the parameter,
(ν3,−ν3, ν1, ν2), is unitarily induced irreducible from B3. Inside B3 the
parameter looks like (2ν3, ν1 + ν2, ν1 − ν2) and because ν1 + ν2 + 2ν3 > 1, it
is unitary iff ν1 >

1
2 (note that this condition is automatically satisfied since

the parameter is dominant).
The second unitary region is a complementary series from B3:

ν1 + ν2 + ν3 + ν4 > 1, ν1 + ν2 + ν3 − ν4 < 1.

�

From the proof, it follows immediately:

Corollary 3.6. The K-types from Lemma 3.4 are sufficient for the deter-
mination of the spherical unitary dual of type F4.

Also, one can reformulate the classification of the spherical dual presented
in the proof in an analogous way to the results for classical groups in [BM3]:

Theorem 3.7. A spherical parameter s associated to a nilpotent orbit Ǒ in
type F4 is unitary if and only if it can be deformed irreducibly to a parameter
which is induced irreducible from an antitempered module (on the affine
graded Hecke algebra of a Levi subgroup) tensored with a parameter in a
GL-complementary series.

3.4. Computer Calculations. I conclude this section with some remarks
about the calculation of the spherical dual of F4 by computer. As mentioned
in Section 2, Remark 2.8 reduces the determination of the spherical unitary
dual to the computation of operators rσ(w0, s), s an element in the dominant
Weyl chamber and σ any irreducible W–representation. One can therefore
use the following method:

(1) find rational matrix realizations for all Weyl representations σ;
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(2) partition the dominant Weyl chamber into (a finite number of) cells
coming from the arrangement of hyperplanes 〈s, α〉 = 1, or 0, for
α ∈ R+ and choose in each cell a point s with rational entries;

(3) compute the operator rσ(w0, s) on each sample point s from step (2)
and find the signature of this operator;

(4) keep only the cells for which the corresponding sample points give
positive semidefinite operators in all representations σ. This set of
cells describes the spherical unitary dual inside the dominant Weyl
chamber.

I mention that the results of the present paper were completed in Sep-
tember 2002. The computational method explained above was applied by J.
Adams, J. Stembridge and J.-K. Yu in an effort to determine by computer
the spherical unitary dual of split p–adic exceptional groups. As a result,
they obtained, in 2003, a description of the spherical unitary dual for F4.
Their answer matches perfectly the description of the spherical unitary dual
presented in this section (note, however, that, in practice, a “translation”
between the two forms of the result is not completely straightforward).

4. Unitary I–spherical dual

Theorem 3.7 gives an explanation of how the spherical unitary modules
arise. The same kind of a result does not hold for the Iwahori–spherical
unitary dual. There are unitary parameters which cannot be explained as
deformations from unitarily induced modules coming from smaller groups.

In this section, I determine the full unitary dual of H. The explicit de-
scription will be listed for convenience in Section 5. In view of the Kazhdan–
Lusztig parametrization of simple H–modules, the unitary dual will be par-
titioned again by nilpotent orbits Ǒ. I try to match the unitary parameters
associated of each nilpotent orbit Ǒ with the spherical unitary dual of its
centralizer, z(Ǒ). They will not always be the same and I will emphasize the
unitary parameters which do not have a correspondent in the centralizer.

4.1. Lowest K–types. Let X(s, Ǒ) be a standard module and ě ∈ Ǒ be
a nilpotent element as in the Kazhdan–Lusztig classification. I recall some
facts about the W–structure of standard modules as treated in [BM1].

Let u = exp(ě) be the unipotent element in the group Ǧ. Consider Bu,
the complex variety of Borel subgrups of Ǧ containing u and H∗(Bu), the
cohomology groups of Bu. The component group A(ě) acts on H∗(Bu) and
let H∗(Bu)

φ = HomA(ě)[φ : H∗(Bu)] be the φ–isotypic component ofH∗(Bu),

φ ∈ Â(ě). There is an action of W on each H∗(Bu)
φ (Springer). If du is

the dimension of Bu, then (Hdu(Bu))
φ is either zero or it is irreducible as

a representation of W . Denote this representation σ(Ǒ, φ). The resulting
correspondence φ→ σ(Ǒ, φ) is the Springer correspondence.

As W–representations X(s, Ǒ) ∼= H∗(Bu)⊗sgn ([KL]). Then A(s, ě) acts

on the right hand side via the inclusion A(s, ě) ⊂ A(ě). Fix ψ ∈ Â(s, ě).
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If φ ∈ Â(ě) appears in the Springer correspondence and φ contains ψ in
its restriction to A(s, ě), then the W–representation σ(Ǒ, φ) ⊗ sgn appears
with multiplicity one in the standard module X(s, Ǒ, ψ). Following [BM1],
I will call these representations φ lowest K-types for X(s, Ǒ, ψ). They have
the property that L(s, Ǒ, ψ) is the unique subquotient of X(s, Ǒ, ψ) which
contains the lowest K-types σ(Ǒ, φ).

Moreover, if the parameter is tempered (s = 1
2 ȟ), then A(s, ě) = A(ě)

and X(s, Ǒ, ψ) has a unique lowest K–type σ(Ǒ, ψ).

4.2. Unitary dual of H. From the discussion in the previous section, it
follows that it is natural to partition the unitary dual of H by nilpotent
orbits and lowest K–types. I mention that the lowest K–types attached to
nilpotent orbits are known, they can be read for example from [Ca]. For
each nilpotent in F4, I would like to determine the unitarity of the factors
containing the lowest K-types.

In the action of the Iwahori–Matsumoto involution, modules contain-
ing the sign representation are taken into spherical modules. Since this
involution preserves unitarity, the complementary series associated to a
nilpotent Ǒ are transformed into unitary modules containing the sign W–
representation which are parametrized by Ǒ in the Kazhdan–Lusztig classi-
fication. They give most of the unitary dual of H associated to Ǒ. Note also
that the set of unitary parameters associated to the trivial nilpotent are just
the complementary series coming from the spherical case. This is because
the lowest K–type of the trivial nilpotent is the trivial W–representation.

I explain the calculations with the intertwining operators in this case.
Using the notation in Section 2, if a simple H–module L(M,V, ν) is Her-
mitian with w ∈ W such that w · (M,V, ν) = (M,V,−ν), the intertwin-
ing operator I(w, ν) gives rise to an operator rσ(w,M, ν) on the space
HomC[W (M)](Vσ , V ), for each K–type (σ, Vσ). I would like to calculate the
signature of this operator. Explicitly, the method is the following:

(1) using the description in Appendix A, construct an explicit (matrix)
realization for σ;

(2) determine the vectors in Vσ which transform like V under the action
of W (M). For almost all cases, V as a W (M)–representation is just
the sign representations, so one only needs to find the vectors that
transform like the sign. The number of linearly independent such
vectors is the same as the multiplicity of σ in X(M,V, ν).

(3) write a reduced decomposition for w and compute the matrix given
by the action of rσ(w,M, ν) on the vectors in (2). One obtains in
this way a hermitian matrix of dimension equal to the dimension of
σ.



THE UNITARY I–SPHERICAL DUAL FOR SPLIT p–ADIC GROUPS OF TYPE F4 25

A lowest K–type (abbreviated LKT) σ appears with multiplicity one in
L(M,V, ν), so rσ(w,M, ν) is a scalar. All the intertwining operators calcu-
lated are normalized so that this scalar is +1.

There are four distinguished orbits and the modules associated to them
are discrete series and therefore unitary. They are:

F4 parameter ( 11
2 ,

5
2 ,

3
2 ,

1
2) LKT 14

F4(a1) parameter ( 7
2 ,

3
2 ,

1
2 ,

1
2) LKTs 45 and 24

F4(a2) parameter ( 5
2 ,

3
2 ,

1
2 ,

1
2) LKTs 94 and 22

F4(a3) parameter ( 3
2 ,

1
2 ,

1
2 ,

1
2) LKTs 121, 92, 62 and 12

Then, there is the special case of the nilpotents coming from maximal
parabolics. For them, the same argument used in [BM3] applies: for a stan-
dard module parametrized by such a nilpotent orbit O and lowest K-type µ,
the next bigger nilpotent O′ has the property that a factor attached to O ′

and with lowest K-type µ′ appears at the first point of reducibility. More-
over, µ′ appears with multiplicity one in the standard module. Beyond this
point, µ and µ′ stay in the same factor and they have opposite signatures at
∞. By Proposition 2.4 in [BM3], two such K-types have opposite signatures
at ∞ if and only if their respective lowest harmonic degrees have different
parity.

Proposition 4.1. Suppose the standard module X(M,V, ν), ν ≥ 0, is
parametrized by a Levi component M of a maximal parabolic in F4. If ν = ν0

is its first point of reducibility on the half line ν > 0, then L(M,V, ν) is uni-
tary if and only if 0 ≤ ν ≤ ν0.

Proof. There are five nilpotent orbits coming from maximal parabolics: B3,

C3, C3(a1), A1 + Ã2 and Ã1 + A2. For each of them, I use the argument
outlined above, but also compute explicitly the intertwining operator (which
is a scalar) on µ′, normalized by µ. This scalar turns out to be in all cases
ν0−ν
ν0+ν

.

B3: The infinitesimal character is ( 3
2 +ν,−3

2+ν, 3
2 ,

1
2), the centralizer is A1

and LKT 82. The standard module is X(B3, sgn, ν). The first reducibility
point is at ν = 1, where there are factors with LKT 94 and 22 coming from
F4(a2). For ν > 1, these K-types will stay in the same factor with 82. 82

and 94, or 82 and 22, have opposite signs at ∞, ruling out ν > 1.
The intertwining operators are

22 :
1 − ν

1 + ν
and 94 :

1 − ν

1 + ν

and this shows independently that the unitary parameter is 0 ≤ ν ≤ 1. At
the endpoint, correponding to parameter ( 5

2 ,
3
2 ,

1
2 ,

1
2), the factor is just 82.

C3: The infinitesimal character is (ν, 5
2 ,

3
2 ,

1
2), the centralizer is A1 and

LKT 84. The standard module is X(C3, sgn, ν). The first reducibility point
is at ν = 1

2 , where there is a factor with LKT 94 coming from F4(a2). For
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ν > 1
2 , this K-type will stay in the same factor with 82. 82 and 94 have

opposite signs at ∞, ruling out ν > 1
2 .

The intertwining operator is

94 :
1
2 − ν
1
2 + ν

.

The unitary parameter is 0 ≤ ν ≤ 1
2 . At the endpoint ν = 1

2 , the factor is

84 + 24 with parameter ( 5
2 ,

3
2 ,

1
2 ,

1
2).

C3(a1): The infinitesimal character is (ν, 3
2 ,

1
2 ,

1
2 ), the centralizer is A1

and LKTs 161 and 43.
There are two lowest K-types 161 and 43. The corresponding two standard

modules are X(C3, V1, ν) and X(C3, V2, ν). Here V1 is the discrete series in
H(C3) with K–structure 1 × 11+0×13, parametrized by the nilpotent orbit
(42) and LKT 1×11, while V2 is the discrete series with K–structure 13 ×0,
parametrized by the nilpotent orbit (42) and LKT 13 × 0.

The first reducibility point for the 161 standard module is at ν = 1
2

corresponding to F4(a3) and lowest K-type 121. 161 and 121 stay in the
same factor except at ν = 1

2 and they have opposite signs at ∞, therefore the

161-factor is not unitary for ν > 1
2 . The intertwining operator (normalized

by 161) is

121 :
1
2 − ν
1
2 + ν

.

The unitary parameter is 0 ≤ ν ≤ 1
2 . At ν = 1

2 , the parameter is ( 3
2 ,

1
2 ,

1
2 ,

1
2)

and the factor 161 + 94.
For the standard module containg LKT 43, the first reducibility is again

at ν = 1
2 corresponding to F4(a3) and the factor with LKT 12. 43 and 12

stay in the same factor after that and they have opposite signs at ∞. The
intertwining operator (normalized by 43) is

12 :
1
2 − ν
1
2 + ν

.

The unitary parameter is 0 ≤ ν ≤ 1
2 . At ν = 1

2 and parameter ( 3
2 ,

1
2 ,

1
2 ,

1
2),

the lowest K-type 43 forms a factor by itself.

A1 + Ã2: The infinitesimal character is ( 1
4 + 3

2ν,
3
4 + 1

2ν,−
1
4 + 1

2ν,−
5
4 + 1

2ν),

centralizer is A1 and LKT 61. The standard module is X(A1 + Ã2, sgn, ν).
The first point of reducibility is ν = 1

2 , where there is a factor coming from
C3(a1) with LKT 161. If 161 and 61 come apart again, there should be again
a factor from C3(a1), with LKT 161, but now this factor should also contain

62. Since 62 does not appear in the induced from A1 + Ã2 in F4, it follows
that 161 and 61 stay in the same factor for ν > 1

2 . As they have opposite

signs at ∞, they rule out ν > 1
2 . This argument also implies that 61, 161,

121 and 92 are in the same factor for ν > 1
2 .
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The intertwining operator is

161 :
1
2 − ν
1
2 + ν

,

which confirms that the unitary parameter is 0 ≤ ν ≤ 1
2 . At ν = 1

2 , the

parameter becomes ( 3
2 ,

1
2 ,

1
2 ,

1
2) and the factor is 61 by itself.

Ã1 + A2: The infinitesimal character is ( 1
2 + 2ν, ν,−1 + ν, 1

2), centralizer

is A1 and the LKT 44. The standard module is X(Ã1 + A2, sgn, ν). The

first reducibility point is ν = 1
2 , where there is a factor from A1 + Ã2 with

LKT 61. If 61 and 44 come apart again, there should be a factor with LKT
61 which would contain 92. But 92 does not appear in the induced from

Ã1 + A2. Therefore 44 and 61 stay in the same factor for ν > 1
2 and have

opposite signs at ∞.
The intertwining operator is

61 :
1
2 − ν
1
2 + ν

.

The unitary parameter is 0 ≤ ν ≤ 1
2 . At the endpoint ν = 1

2 , the factor is

44 by itself corresponding to parameter ( 3
2 ,

1
2 ,

1
2 ,

1
2).

�

The rest of the nilpotents, I treat case by case as in the closure ordering.
For each nilpotent, I give the infinitesimal character, centralizer and lowest
K-type(s). The main idea is the following: assume we try to determine the
unitarity of a standard module parametrized by an orbit Ǒ and containing a
lowest K-type µ. The corresponding standard module is an X(M,V, ν). We
look at lowest K-types σ of nilpotent orbits Ǒ′ which are bigger than Ǒ, but
close to Ǒ in the closure ordering. We compute the operators rσ(w,M, ν).
We try to match these operators with (spherical) intertwining operators on
the relevant K-types of the centralizer of Ǒ.

I will say that two such operators match if they have the same character-
istic polynomials (in particular they have the same signature).

However, one cannot always match in this way all the relevant K-types
of the centralizer, and it is unclear at this point how one can predict which
relevant K-types can be matched and what the (abstract) reason for this is.

There is a more delicate point concerning the nilpotent orbits with non-
trivial component group. Let Ǒ ⊂ ǧ be a non–distinguished nilpotent orbit
and {ě, ȟ, f̌} a standard Lie triple. Let the standard module attached to
Ǒ be X(M, sgn, ν) = IndH

HM
(sgn ⊗ Cν) and s a semisimple element with

s = 1
2 ȟ + ν. If AG(ě) 6= {1}, then by Springer’s correspondence, there are

at least two lowest K–types attached to Ǒ. In F4, if Ǒ is non–distinguished
and has nontrivial component group, there are exactly two LKTs for Ǒ (Ǒ

is one of the following: C3(a1), B2, A2 and Ã1).
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When ν = 0, the standard module breaks into a sum of two factors,
each factor corresponding to one of the two LKTs. The question is how to
determine when the two LKTs are again in separate factors for ν 6= 0. This
fact is controlled by the component group A(s, ě) ⊂ A(ě) = S2 (S2 is the
group with two elements). We use now the Kazhdan–Lusztig classification
and the connection with Langlands classification (see Section 2.3).

The two lowest K–types are in separate factors if and only if:

(1) there exists a Levi subgroup M ′ with M ⊂M ′ ⊂ G such that

XG(M, sgn, ν) = IndH
HM′

(X ′
M (M, sgn,

1

2
ȟM ′) ⊗ Cν),

where by ȟM ′ , I denote the middle element of the nilpotent orbit
ǑM ′ parametrized by M in the dual Lie algebra of M ′, m̌′.

(2) and the nilpotent orbit ǑM ′ in m̌′ has nontrivial component group.

Concretely, for a parameter s we check condition (1) by verifying if there
exists M ′ such that s (or rather a W–conjugate of s) is in ǎM ′ ⊂ ǎ (the dual
Cartan subalgebra corresponding to M ′).

Next, I begin the analysis of unitarity for the remaininig nilpotent or-
bits. As in the case of spherical parameters, I present pictures of the two-
dimensional cases. In the pictures, “green” and “red” refer now to the
unitarity of the lowest K-type factors.

B2: The infinitesimal character is (ν1, ν2,
3
2 ,

1
2) with 0 ≤ ν2 ≤ ν1, the

centralizer is A1 +A1. The standard module is X(B2, sgn, ν).
There are two lowest K-types, 93 and 41 which have the same lowest

harmonic degree and therefore same sign at ∞. They stay in the same factor
everywhere except on the line ν1 = ν2 = ν. On this line the parameter can
be conjugated to (ν,−ν, 3

2 ,
1
2) ∈ ǎC3 . The nilpotent corresponding to B2 in

the Lie algebra of type B3 is (511) and it has two LKTs.
The intertwining operator is

161 :




1
2
−ν1

1
2
+ν1

0

0
1
2
−ν2

1
2
+ν2


 .

Since the first lines of reducibility are ν1 = 1
2 and ν2 = 1

2 (coming from

C3(a1)), this implies the parameter is unitary if 0 ≤ ν2 < ν1 ≤ 1
2 .

On the line ν1 = ν2 = ν, the first reducibility occurs at ν = 1
2 , corre-

sponding to F4(a3). Both factors have a copy of the K-type 161 and the

value of the interwining operator is the same
1
2
−ν

1
2
+ν

for both copies (when

normalized by 93, respectively 41). This fact shows the parameter is unitary
if 0 ≤ ν ≤ 1

2 for both factors on the line ν1 = ν2.
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30 5
2

1
2

ν1

( 1
2

, 1
2
)

( 5
2

, 5
2
)

( 11
2

, 5
2
)

F4(a2)
F4(a1)

F4(a1)

C3

B3

C3(a1)

ν1 = ν2ν2

F4

( 3
2

, 3
2
)

Figure 6. Unitary representations parametrized by B2

A2: The infinitesimal character is ( 1
2 + ν1 + ν2,−

1
2 + ν1,−

1
2 + ν2,

1
2), with

0 ≤ ν2 ≤ ν1, centralizer A2, LKTs 83 and 13. The standard module is
X(A2, sgn, ν).

The two lowest K-types, 83 and 13 are separate only on the line ν2 = 0.
On this line, the parameter can be conjugated to (− 1

2 ,
1
2 ,

1
2 + ν1,−

1
2 + ν1),

which is an element of ǎC3 . The corresponding nilpotent orbit (331) in the
Lie algebra of type B3 has two lowest K–types.

The lowest K–types, 83 and 13 have opposite signs at ∞; therefore, the
factor containing both 83 and 13 can’t be unitary. So one restricts to ν2 = 0,
where the infinitesimal character becomes ( 1

2 + ν,−1
2 + ν, 1

2 ,
1
2), ν ≥ 0.

The factor containing 83 is unitary for 0 ≤ ν ≤ 1
2 . At ν = 1

2 , there is a

first reducibility point corresponding to Ã1 +A2. The intertwining operator
is

44 :
1
2 − ν
1
2 + ν

·
1 − ν

1 + ν
and 61 :

(1 − ν)2

(1 + ν)2
·

1
2 − ν
1
2 + ν

,

which implies the factor is not unitary for ν ≥ 1
2 , except maybe at ν = 1.
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At ν = 1, the parameter is ( 3
2 ,

1
2 ,

1
2 ,

1
2) and the factor (83 + 121 + 93 + 82)

is unitary (this factor is also the IM dual of a unitary factor, endpoint of a

complementary series in Ã2).

The factor with LKT=13 has first reducibility only at ν = 1, correspond-
ing to F4(a3). The intertwining operator (normalized by 13) is

43 :
1 − ν

1 + ν
.

Therefore, the unitary parameters associated to 13 are 0 ≤ ν ≤ 1.

0 1 2

(1,1)

(2,2) (3,2)

(2,1)

ν2 ν1 = ν2

ν1

( 1
3

, 1
3
)

( 1
2

, 1
2
)

B2

B3

F4

F4(a1)

F4(a3) F4(a2)

A2 + Ã1

B2

B3

1
2A2 + Ã1

Figure 7. Unitary representations parametrized by A2

Ã2: The infinitesimal character is (ν2 + 3ν1
2 , 1 + ν1

2 ,
ν1
2 ,−1 + ν1

2 ) with
ν1 ≥ 0, ν2 ≥ 0, the centralizer is G2 and the LKT 81. The standard module

is X(Ã2, sgn, ν).
One can match the calculations with those for the spherical unitary dual

for G2 (see Appendix B).
Explicit calculations with the intertwining operator give:
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81 matches 11 in G2

61 matches 14 in G2

161 matches 22 in G2

121 matches 21 in G2

62 matches 13 in G2

The hyperplanes of reducibility in Ã2 ⊂ F4 are those from G2 and ν2 +
2ν1 = 3, ν2 + ν1 = 3, ν1 = 3. However, these extra hyperplanes do not
intersect the unitary dual of G2 except at the point ( 5

2 ,
3
2 ,

1
2 ,

1
2). Also, as

seen above, the relevant K-types in G2 are all matched, following that the

unitary parameters for Ã2 are exactly those of the spherical G2:

2ν2 + 3ν1 ≤ 1, ν2 + 2ν1 ≤ 1 ≤ ν2 + 3ν1,

and the point ( 5
2 ,

3
2 ,

1
2 ,

1
2), where the LKT factor is just (81).

0 1
3

1
2

1 3
2

3

1
2

3

ν2

ν1

1 (1, 1)

Figure 8. Unitary representations parametrized by Ã2

A1 + Ã1: The infinitesimal character is (ν1,
1
2 + ν2,−

1
2 + ν2,

1
2), ν1 ≥ 0,

ν2 ≥ 0, the centralizer is A1 + A1 and LKT 91. The standard module is

X(A1 + Ã1, sgn, ν).
One tries to match the unitary parameters with the spherical unitary dual

of A1 +A1. The intertwining operators are:
91: +1

83:
1
2
−ν1

1
2
+ν1

81:
1−ν2
1+ν2
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This implies that the unitary dual in included in 0 ≤ ν2 ≤ 1, 0 ≤ ν1 ≤ 1
2 .

However, there are two lines that cut through this region: ν1 + 2ν2 = 3
2 and

−ν1 +2ν2 = 3
2 . On these lines there is a factor from Ã1 +A2, the parameter

can be written as ( 1
2 + 2ν, ν,−1 + ν, 1

2) and the K-structure of the 91-factor
is:

91 + 3 × 161 + 83 + 81 + 2 × 121 + 2 × 92 + 93 + 61

+41 + 2 × 84 + 82 + 43 + 2 × 94 + 62 + 45 + 24.

The factor parametrized by Ã1 + A2 has LKT 44. By computing the
intertwining operator on 44, one rules out the region 0 < ν1 <

1
2 , ν1 +2ν2 >

3
2 , −ν1 + 2ν2 <

3
2 . On the line ν1 = 1

2 however, 44 is not in the same factor
as 91.

Along the line ν1 = 1
2 , the parameter can be written as ( 1

2 +ν,−1
2 +ν, 1

2 ,
1
2)

and there is reducibility coming from A2. The generic K-structure for the
LKT factor is:

91 + 2 × 161 + 81 + 121 + 2 × 92 + 61 + 41 + 2 × 84 + 43 + 94 + 24.
This factor is only reducible at ν = 1, so it will be unitary for 0 ≤ ν ≤ 1.
In conclusion, the unitary dual attached to this nilpotent is as seen in the

figure 9.
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Figure 9. Unitary representations parametrized by A1 + Ã1
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Ã1: The infinitesimal character is (ν1, ν2,
1
2 + ν3,−

1
2 + ν3), ν1 ≥ ν2 ≥ 0,

ν3 ≥ 0, the centralizer is A3 and the LKTs 42 and 21. The standard module

is X(Ã1, sgn, ν).
The two lowest K-types have opposite signs at ∞, therefore if they are

in the same factor, that factor will be nonunitary. They are separate if the
parameter can be conjugated to an element in ǎC2 since the nilpotent orbit

corresponding to Ã1 in the Lie algebra of type B2 has two lowest K–types.
This happens when ν3 = 0 or ν1 = ν2. The parameters on the two planes

are W -conjugate, and for the purpose of calculation, it is more convenient
to consider ν3 = 0.

I restrict to this hyperplane and the parameter is (ν1, ν2,
1
2 ,

1
2 ), with 0 ≤

ν2 ≤ ν1.
First, I look at the factor with LKT 42. The reducibility lines are ν1 = 1

2

and ν2 = 1
2 coming from A1 + Ã1, ν1 + ν2 = 1 and ν1 − ν2 = 1 coming

from A2, ν1 = 3
2 and ν2 = 3

2 coming from C3(a1) and ν1 + ν2 = 2 and

ν1 − ν2 = 2 coming from B2. The first reducibility line is ν1 = 1
2 , so in the

region 0 ≤ ν2 ≤ ν1 ≤ 1
2 , the factor corresponding to 42 is unitary. Note also

that on these reducibility lines, the 42-factor is self-dual, so I can’t use the
results for the other nilpotent orbits and the Iwahori-Matsumoto involution.

I am trying to match the unitary dual in this case with the spherical dual
of C2. The intertwining operator on the K-type 91 having multiplicity 2
in the 42-factor, normalized by the value on 42, matches the intertwining
operator on the K-type 1 × 1 in C2. Moreover 41 matches 0 × 11 and 44

matches the product of the operators on 0 × 11 and 11 × 0. However, one
also needs to use the intertwining operator on 83 (multiplicity 2). I list the
parameters according to the nilpotent orbits in C2.

(4): parameter (ν1, ν2) = (3
2 ,

1
2). The 42-factor is (42+62) and it is unitary

(it is dual to a factor in F4(a3)).
(22): parameter ( 1

2 + ν,−1
2 + ν). The 42-factor is self-dual:

42 + 91 + 81 + 83 + 92 + 93 + 2 × 121 + 84 + 82 + 2 × 161 + 2 × 62 + 94 + 45.

The operator on 91 is 1−ν
1+ν and on 83 is 1−ν

1+ν ·
1
2
−ν

1
2
+ν

. The first point of

reducibility is at ν = 1
2 , where there is an extra factor coming from Ã1 +A2,

so this shows the factor above is unitary for 0 ≤ ν < 1
2 . At ν = 1

2 , the factor
is just

42 + 62 + 91 + 81 + 161 + 92 + 121 + 84.

(211): parameter (ν, 1
2 ). The 42-factor is as in the case (22). The operator

on 91 is
3
2
−ν

3
2
+ν

. On this line, the first reducibility point is at ν = 3
2 , so the

factor is unitary for 0 ≤ ν < 3
2 .

(14): parameter is (ν1, ν2). The operator on 91 is positive definite only in
the regions 0 ≤ ν2 ≤ ν1 <

1
2 , which I know is unitary, and 1 − ν2 < ν1 <

1 + ν2, 0 < ν2 <
1
2 . The second region is ruled out by the operator on 44.

The answer is illustrated by figure 10.
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Figure 10. Unitary representations parametrized by Ã1 and 42

Next, I analyze the unitarity of the other lowest K-type factor, containing
21, on the same plane. The lines of reducibility are ν1 + ν2 = 1, ν1 − ν2 = 1,

where there is a factor from A1 + Ã1, ν1 + ν2 = 2, ν1 − ν2 = 2 with a factor
from B2 and ν1 = 3

2 , ν2 = 3
2 where one finds a factor from C3(a1) and also

one from Ã2.
I will give the explicit expressions for the intertwining operators on some

K-types of F4 (normalized by the value on 21). I will only remark that there
is a matching with the spherical unitary dual of a graded Hecke algebra of
type B2, but with parameter c = 3

2 (I will denote it B2(
3
2)). The opera-

tors on B2(
3
2) were also computed explicitly. 81 has multiplicity 2 and it

matches 1× 1 for B2(
3
2 ), 91 matches 11× 0 and 61 matches 0× 11. One also

needs the operator on 43. Again I list the infinitesimal characters by their
correspondents in B2.

(5): parameter ( 5
2 ,

3
2 ). 21 forms a factor by itself which is unitary (dual

to a F4(a2) factor).
(311): parameter (ν, 3

2). The 21-factor at generic points is dual to one in
B2 and has K-structure

21 + 91 + 161 + 81 + 41 + 92.

The intertwining operator on 81 is
5
2
−ν

5
2
+ν

and on 91 is
1
2
+ν

1
2
−ν

·
5
2
−ν

5
2
+ν

(note that

the second one has a pole at ν = 1
2 ). The first reducibility point is at ν = 1

2 ,
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therefore the calculations imply the factor is unitary for 0 ≤ ν < 1
2 . At

ν = 1
2 , the factor is just

21 + 81 + 92.

(221): parameter ( 1
2 + ν,−1

2 + ν). The 21-factor at generic points is dual
to one in A2 and has K-structure

21 + 81 + 92 + 43 + 12.

The intertwining operator on 81 is 2−ν
2+ν and on 43 is 1−ν

1+ν · (2−ν)2

(2+ν)2
. Since the

first reducibility is at ν = 1, it follows the factor is unitary for 0 ≤ ν < 1.
(15): parameter (ν1, ν2). From the previous calculations, it follows that

the generic 21-factor is unitary for 0 ≤ ν2 ≤ ν1 < 1−ν2 and 1+ν2 < ν1 <
3
2 .

This is also seen in the figure 11.

ν2

ν10

ν1 = ν2

1 3
2 2

(1, 1)

( 1
2 , 1

2 )

( 3
2 , 3

2 )

ν1 − ν2 = 1

ν1 − ν2 = 2

ν2 = 3
2

( 3
2 , 1

2 )

( 5
2 , 3

2 )

Figure 11. Unitary representations parametrized by Ã1 and 21

Note: On the line ν2 = 0, ν1 = ν, the parameter is (0, ν, 1
2 ,

1
2), so it is

induced from C3. The parameter (ν, 1
2 ,

1
2) in C3 comes from (2211) and

there are two separate lowest K-type factors. The 2× 1-factor is unitary for
0 ≤ ν < 1

2 and induces up to the 42-factor in F4, while the 12 × 0-factor

is unitary for 0 ≤ ν < 3
2 and induces to the 21-factor in F4. This fact is

consistent with the above calculations.

A1: The infinitesimal character is (ν1, ν2, ν3,
1
2) with 0 ≤ ν3 ≤ ν2 ≤ ν1,

the centralizer is C3 and the LKT 23. The standard module is X(A1, sgn, ν).
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I compute the intertwining operator on K-types, normalized by the value
on the LKT 23 and try to match the unitary dual with the spherical dual of
C3. The K-types that match intertwining operators in C3 are:

23 with 3 × 0
42 with 0 × 3
81 with 0 × 12
91 with 1 × 2
43 with 0 × 13

Since it is impossible to match all the relevant K-types for C3, one cannot
conclude if the unitary parameters of A1 are identical or not with the spheri-
cal unitary dual of C3. One also needs the intertwining operators calculated
on 44, 83 and 13.

I list the infinitesimal characters as in C3, ordered by the nilpotents in
C3.

(6): parameter ( 5
2 ,

3
2 ,

1
2 ). The LKT factor is 23 +83 and it is unitary (dual

of a factor in C3).
(42): parameter ( 3

2 ,
1
2 ,

1
2). The LKT factor is 23 + 83 + 93 and is unitary

(dual of a factor in F4(a3)).
(411): parameter (ν, 3

2 ,
1
2). The matched intertwining operators are all

zero for this parameter. 83 gives
7
2
−ν

7
2
+ν

, 13 gives
7
2
−ν

7
2
+ν

·
5
2
−ν

5
2
+ν

and 44 gives
7
2
−ν

7
2
+ν

·
5
2
−ν

5
2
+ν

·
1
2
−ν

1
2
+ν

. The LKT factor is unitary for 0 ≤ ν < 1
2 (ν = 1

2 is the

first reducibility point) and at ν = 7
2 (this point does not appear in C3). At

(7
2 ,

3
2 ,

1
2), the factor is 23 by itself (dual of a F4(a1) factor).

(33): parameter (1 + ν, ν,−1 + ν). The first reducibility is for ν = 1
2 . 42

gives
3
2
−ν

3
2
+ν

and 91 gives
3
2
−ν

3
2
+ν

·
1
2
−ν

1
2
+ν

. The LKT factor is unitary for 0 ≤ ν < 1
2 .

(222): parameter ( 1
2 + ν,−1

2 + ν, 1
2). 91 gives (2−ν)(1−ν)

(2+ν)(1+ν) . 83 has two

nonzero eigenvalues with product (2−ν)(1−ν)2

(2+ν)(1+ν)2
. The first reducibility is at

ν = 1, so the LKT factor is unitary for 0 ≤ ν < 1.

(2211): parameter (ν, 1
2 ,

1
2). 91 gives

3
2
−ν

3
2
+ν

. 13 is
( 1
2
−ν)( 3

2
−ν)2( 5

2
−ν)

( 1
2
+ν)( 3

2
+ν)2( 5

2
+ν)

. The

first reducibility point in F4 is ν = 1
2 , so the LKT factor is unitary for

0 ≤ ν < 1
2 .

(2211): parameter ( 1
2 + ν1,−

1
2 + ν1, ν2). The matched operators on 91,

81 and 42 rule out this entire plane except the region 1
2 < ν2 <

3
2 − ν1. In

A1 ⊂ F4, there is the line 2ν1 + ν2 = 3
2 , 1

2 < ν2 <
3
2 cutting through this

region. The two resulting open regions are ruled out by 44 and 83. On this
line the parameter can be written as ( 1

2 + 2ν, ν,−1 + ν, 1
2), which unitary

for 0 ≤ ν < 1
2 (it is dual of a unitary factor in A1 + Ã1).

(214): parameter (ν1, ν2,
1
2) with 0 ≤ ν2 ≤ ν1. The only nonzero matched

operator is on 91, which is
( 3
2
−ν1)( 3

2
−ν2)

( 3
2
+ν1)( 3

2
+ν2)

. The calculations with 44 and 83
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give the following reducibility lines: ν1 ± ν2 = 1, ν1 ± ν2 = 2, ν1 = 3
2 and

ν2 = 3
2 . Checking each of the resulting region and segments not ruled out by

91 already, it follows that the LKT factor is unitary in the regions ν1+ν2 < 1

and 1 + ν2 < ν1 <
3
2 (dual of a unitary factor in Ã1) and on the segment

(1 + ν, 1 − ν, 1
2), 0 ≤ ν ≤ 1

2 (the parameter is conjugate to (ν, ν, 3
2 ,

1
2) and

the module is the IM -dual of a factor in B2).
(16): parameter (ν1, ν2, ν3). The matched operators rule out all the space

except in the regions ν1 <
1
2 which is unitary, the plane ν1 = 1

2 being the

first plane of reducibility, and 0 < 1− ν1 < ν3 < 1− ν2 <
1
2 < ν2 < 1− ν3 <

ν1 < 1 + ν3. In F4, the plane ν1 + ν2 − ν3 = 3
2 divides this region into

two parts. The K-type 83 rules out the two open subregions and the wall
between them. It follows the only unitary parameters here are in the first
region.

5. Table of unitarity

The first list is the unitary spherical dual partitioned by complementary
series associated to nilpotent orbits.

Orbit Parameter Conditions

F4 (11
2 ,

5
2 ,

3
2 ,

1
2)

F4(a1) (7
2 ,

3
2 ,

1
2 ,

1
2)

F4(a2) (5
2 ,

3
2 ,

1
2 ,

1
2)

C3 (ν, 5
2 ,

3
2 ,

1
2) 0 ≤ ν < 1

2
B3 (3

2 + ν,−3
2 + ν, 3

2 ,
1
2) 0 ≤ ν < 1

F4(a3) (3
2 ,

1
2 ,

1
2 ,

1
2)

C3(a1) (ν, 3
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2

A1 + Ã2 (1
4 + 3ν

2 ,
3
4 + ν

2 ,−
1
4 + ν

2 ,−
5
4 + ν

2 ) 0 ≤ ν < 1
2

B2 (ν1, ν2,
3
2 ,

1
2) 0 ≤ ν2 ≤ ν1 <

1
2

Ã1 +A2 (1
2 + 2ν, ν,−1 + ν, 1

2) 0 ≤ ν < 1
2

Ã2 (ν2 + 3ν1
2 , 1 + ν1

2 ,
ν1
2 ,−1 + ν1

2 ) 3ν1 + 2ν2 < 1
2ν1 + ν2 < 1 < 3ν1 + ν2

A2 (1
2 + ν,−1

2 + ν,−1
2 ,

1
2) 0 ≤ ν < 1

2

A1 + Ã1 (ν1,
1
2 + ν2,−

1
2 + ν2,

1
2 ) ν1 + 2ν2 <

3
2 , ν1 <

1
2

Ã1 (ν1, ν2,
1
2 ,

1
2) 0 ≤ ν2 ≤ ν1 <

1
2

A1 (ν1, ν2, ν3,
1
2) 0 ≤ ν3 ≤ ν2 ≤ ν1 <

1
2

1 (ν1, ν2, ν3, ν4) ν1 <
1
2

ν1 + ν2 + ν3 − ν4 < 1 < ν1 + ν2 + ν3 + ν4

Note that the parameter for the trivial nilpotent orbit should be dominant.

Next, I will give a list with all unitary representations organized by the
nilpotent orbits, infinitesimal characters and lowest K-type of the unitary
factor. The unitary parameters for the trivial nilpotent coincide with the
spherical dual and will not be listed for economy.
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Orbit Parameter Conditions LKT

F4 (11
2 ,

5
2 ,

3
2 ,

1
2) 14

F4(a1) (7
2 ,

3
2 ,

1
2 ,

1
2) 45

24

F4(a2) (5
2 ,

3
2 ,

1
2 ,

1
2) 94

22

C3 (ν, 5
2 ,

3
2 ,

1
2) 0 ≤ ν < 1

2 84

(5
2 ,

3
2 ,

1
2 ,

1
2) 84

B3 (3
2 + ν,−3

2 + ν, 3
2 ,

1
2) 0 ≤ ν < 1 82

(5
2 ,

3
2 ,

1
2 ,

1
2) 82

F4(a3) (3
2 ,

1
2 ,

1
2 ,

1
2) 121

92

62

12

C3(a1) (ν, 3
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2 161

43

(3
2 ,

1
2 ,

1
2 ,

1
2) 161

43

A1 + Ã2 (1
4 + 3ν

2 ,
3
4 + ν

2 ,−
1
4 + ν

2 ,−
5
4 + ν

2 ) 0 ≤ ν < 1
2 61

(3
2 ,

1
2 ,

1
2 ,

1
2) 61

B2 (ν1, ν2,
3
2 ,

1
2) 0 ≤ ν2 < ν1 <

1
2 93 + 41

(ν, 3
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2 93 + 41

(1 + ν, 1 − ν, 1
2 ,

1
2) 0 ≤ ν < 1

2 93

41

(3
2 ,

1
2 ,

1
2 ,

1
2) 93

41

Ã1 +A2 (1
2 + 2ν, ν,−1 + ν, 1

2) 0 ≤ ν < 1
2 44

(3
2 ,

1
2 ,

1
2 ,

1
2) 44

Ã2 (ν2 + 3ν1
2 , 1 + ν1

2 ,
ν1
2 ,−1 + ν1

2 ) 3ν1 + 2ν2 < 1 81

2ν1 + ν2 < 1 < 3ν1 + ν2 81

(ν, 3
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2 81

(1 + ν, ν,−1 + ν, 1
2) 0 ≤ ν < 1

2 81

(3
2 ,

1
2 ,

1
2 ,

1
2) 81
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(5
2 ,

3
2 ,

1
2 ,

1
2) 81

A2 (1
2 + ν,−1

2 + ν,−1
2 ,

1
2) 0 ≤ ν < 1

2 83

0 ≤ ν < 1 13

(3
2 ,

1
2 ,

1
2 ,

1
2) 83

13

(1, 1
2 ,

1
2 , 0) 83

A1 + Ã1 (ν1,
1
2 + ν2,−

1
2 + ν2,

1
2 ) ν1 + 2ν2 <

3
2 , ν1 <

1
2 91

2ν2 − ν1 >
3
2 , ν2 < 1

(1
2 + ν,−1

2 + ν, 1
2 ,

1
2) 0 ≤ ν < 1 91

(1
2 + 2ν, ν,−1 + ν, 1

2) 0 ≤ ν < 1
2 91

(3
2 ,

1
2 ,

1
2 ,

1
2) 91

Ã1 (ν1, ν2,
1
2 ,

1
2) 0 ≤ ν2 ≤ ν1 <

1
2 42

0 ≤ ν2 < 1 − ν1 21

1 + ν2 < ν1 <
3
2 21

(1
2 + ν,−1

2 + ν, 1
2 ,

1
2) 0 ≤ ν < 1

2 42

0 ≤ ν < 1 21

(ν, 1
2 ,

1
2 ,

1
2) 0 ≤ ν < 3

2 42

(ν, 3
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2 21

(3
2 ,

1
2 ,

1
2 ,

1
2) 42

21

(1, 1
2 ,

1
2 , 0) 42

(5
2 ,

3
2 ,

1
2 ,

1
2) 21

A1 (ν1, ν2, ν3,
1
2) 0 ≤ ν3 ≤ ν2 ≤ ν1 <

1
2 23

(ν1, ν2,
1
2 ,

1
2) ν1 + ν2 < 1 23

1 + ν2 < ν1 <
3
2 23

(1
2 + 2ν, ν,−1 + ν, 1

2) 0 ≤ ν < 1
2 23

(ν, 1
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2 23

(1 + ν, ν,−1 + ν, 1
2 0 ≤ ν < 1

2 23

(1
2 + ν,−1

2 + ν, 1
2 ,

1
2) 0 ≤ ν < 1 23

(1 + ν, 1 − ν, 1
2 ,

1
2) 0 ≤ ν < 1

2 23

(ν, 3
2 ,

1
2 ,

1
2) 0 ≤ ν < 1

2 23

(3
2 ,

1
2 ,

1
2 ,

1
2) 23

(5
2 ,

3
2 ,

1
2 ,

1
2) 23

(7
2 ,

3
2 ,

1
2 ,

1
2) 23

Appendix A. Irreducible Weyl characters

Recall that the calculations with the intertwining operators are done in
the dual complex group Ǧ. Let si be the reflection in the Weyl group
corresponding to the simple coroot α̌i, i = 1, . . . , 4. Recall that α̌1, α̌2 are
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the long simple coroots. The description of irreducible characters ordered
by dimension follows.

11 unit representation;
14 sign representation;
12 s1, s2 act by +1, s3, s4 by −1;
13 = 12 ⊗ 14.

21 s1, s2 act trivially,
s3, s4 act by reflections as in the representation (21) of GL(3);

22 = 21 ⊗ 14;
23 s1, s2 act by reflections as in the representation (21) of GL(3),

s3, s4 act trivially;
24 = 23 ⊗ 14.

41 = 21 ⊗ 23;
42 the reflection representation;
43 = 42 ⊗ 12;
44 = 42 ⊗ 13;
45 = 42 ⊗ 14.

62 second exterior power of 42;
61 = 62 ⊗ 12 = 62 ⊗ 13.

81 = 42 ⊗ 21; 82 = 81 ⊗ 14; 83 = 42 ⊗ 23; 84 = 83 ⊗ 14.

91 second symmetric power of 42 from which one substracts 11;
92 = 91 ⊗ 12;
93 = 91 ⊗ 13;
94 = 91 ⊗ 14.

121 = 61 ⊗ 21; 161 = 41 ⊗ 42.

Appendix B. Unitary spherical dual for G2

Let Ǧ be the complex dual of a p–adic group of type G2. I use the following
parametrization for simple roots, coroots and coweights of Ǧ:

α1 = (2
3 ,−

1
3 ,−

1
3 ) α̌1 = (2,−1,−1) ω̌1 = (1, 1,−2)

α2 = (−1, 1, 0) α̌2 = (−1, 1, 0) ω̌2 = (0, 1,−1)

Note that α1 is the short simple root.

The closure ordering of the nilpotents orbits is:

G2 −G2(a1) − Ã1 −A1 − 1.

The following two sets of K–types are sufficient for the determination of
the spherical unitary dual:

{11, 13, 14, 22} and {11, 21, 22}.
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where 11 is the trivial representation, 21 is the reflection representation, 12

is the sign representation, 13 is the one-dimensional on which t1 acts by 1
and t2 by −1, 14 is the one-dimensional on which t1 acts by −1 and t2 by 1
and 22 = 21 ⊗ 13 (see [A]).

The long intertwining operators, corresponding to the long Weyl element
w0 = (s1s2)

3, for a parameter (associated to the trivial nilpotent orbit)
(ν1, ν1 + ν2,−2ν1 − ν2) with ν1 ≥ 0, ν2 ≥ 0 are:

11: +1

13:
1−ν2
1+ν2

· 1−(3ν1+2ν2)
1+(3ν1+2ν2)

· 1−(3ν1+ν2)
1+(3ν1+ν2)

14:
1−(ν1+ν2)
1+(ν1+ν2) ·

1−ν1
1+ν1

· 1−(2ν1+ν2)
1+(2ν1+ν2)

21, 22: are 2 × 2 matrices with determinant
1−ν2
1+ν2

· 1−(3ν1+2ν2)
1+(3ν1+2ν2)

· 1−(3ν1+ν2)
1+(3ν1+ν2) ·

1−(ν1+ν2)
1+(ν1+ν2) ·

1−ν1
1+ν1

· 1−(2ν1+ν2)
1+(2ν1+ν2)

The lines of reducibility are 3ν1 + 2ν2 = 1, 3ν1 + ν2 = 1, 2ν1 + ν2 = 1,
ν1 + ν2 = 1, ν1 = 1 and ν2 = 1.

(0, 0) ( 1
3
, 0) ( 1

2
, 0) (1, 0) ν1

ν2

(0, 1
2
)

(0, 1)

(1, 1)

Figure 12. Unitary spherical dual for G2

The spherical unitary parameters are (as seen in the picture):
{3ν1 + 2ν2 < 1};
{2ν1 + ν2 < 1 < 3ν1 + ν2};
(ν1, ν2) = (1, 1)

The spherical unitary dual in the picture is partitioned by nilpotent orbits
as follows:
G2: parameter ρ = (1, 2,−3) corresponding in the picture to the point
(1, 1). The standard module is just 11.
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G2(a1): parameter ω2 = (0, 1,−1) corresponding to the point (0, 1). The
K–structure of the standard module is (11 + 21) + (13).

Ã1: parameter 1
2α1 + νω2 = (1,−1

2 + ν,−1
2 − ν). The standard module has

K–structure 11 + 21 + 13 + 22. ν = 0 corresponds to ( 1
2 , 0) in the picture.

The standard module decomposes as follows:
ν Decomposition Spherical factor orbit
1
2 (11 + 21) + (13) + (22) G2(a1)
5
2 (11) + (21 + 22 + 13) G2

The complementary series is 0 ≤ ν < 1
2 . The calculations with K–types

are (14 does not appear):
11 : +1;

13 :
5
2
−ν

5
2
+ν

for ν 6= 0, and 0 at ν = 1
2

22 :
( 1
2
−ν)( 5

2
−ν)

( 1
2
+ν)( 5

2
+ν)

;

21 :
5
2
−ν

5
2
+ν

.

ν 11 13 22 21

+ + + +
1
2 + + 0 +

+ + − +
5
2 + 0 0 0

+ − + −

A1: parameter 1
2α2 +νω1 = (−1

2 +ν, 1
2 +ν,−2ν). The standard module has

K–structure 11 + 21 + 22 + 14. ν = 0 corresponds to (0, 1
2) in the picture.

The standard module decomposes as follows:
ν Decomposition Spherical factor orbit
1
2 (11 + 21) + (22) + (14) G2(a1)
3
2 (11) + (21 + 22 + 14) G2

The complementary series is 0 ≤ ν < 1
2 . The calculations with K–types

are (13 does not appear):
11 : +1;

14 :
( 1
2
−ν)2( 3

2
−ν)

( 1
2
+ν)2( 3

2
+ν)

;

22 :
( 1
2
−ν)( 3

2
−ν)

( 1
2
+ν)( 3

2
+ν)

;

21 :
3
2
−ν

3
2
+ν

.

ν 11 14 22 21

+ + + +
1
2 + 0 0 +

+ + − +
3
2 + 0 0 0

+ − + −
1: parameter (ν1, ν1 +ν2,−2ν1−ν2); the complementary series is formed by
the two 2–dimensional unitary regions in the picture.

Appendix C. Connections with the Real Split Case

In this appendix, I plan to present the connection between the calculation
of the spherical unitary dual in the split p–adic case, which is the subject of
Section 3, and the spherical unitary dual for real split groups. I will review
basic definitions and results from the theory of unitary representations of real
groups and summarize the results of D. Barbasch from [B2]. The following
exposition is fundamentally influenced by [B2] and the notes of D. Vogan in
[V2].

Let us fix the notation. G = G(R) will denote the R–points of a reduc-
tive algebraic group defined over R. In section C.3 we will restrict to split



THE UNITARY I–SPHERICAL DUAL FOR SPLIT p–ADIC GROUPS OF TYPE F4 43

groups G. K is a maximal compact subgroup (the fixed points of a Cartan
involution θ). P will denote a parabolic subgroup with the (Langlands) de-
composition P = MAN and G = PK. In C.3, we will consider P to be a
Borel subgroup, P = B, which contains a largest split torus.

C.1. (g,K)–modules and unitarity. The problem is to determine the
irreducible representations (π, V ) ofG which are spherical, that is V K 6= {0}.

Definition C.1. (π, V ) is called a (g,K)–module if V is a complex vector
space, which is a U(g)–module (U(g) denotes the enveloping algebra of g) and
a semisimple K–representation such that the two actions are compatible:

(1) π(k) · π(X)v = π(Adk(X)) · π(k)v, v ∈ V , k ∈ K, X ∈ U(g);
(2) if F is a K–stable finite dimensional subspace of V , then the repre-

sentation of K on F is differentiable and its differential is π|k (k is
the Lie algebra of K).

A (g,K)–module (π, V ) decomposes into a sum of K–isotypic compo-
nents. We will always consider that the modules are admissible, which means
that all the K–isotypic components are finite dimensional.

If (π, V ) is a representation of G, v ∈ V is called smooth vector if the
orbit map cv : G→ V , cv(g) = π(g)v is C∞. v ∈ V is called K–finite if the
subspace generated by {π(k)v : k ∈ K} is finite dimensional.

Let V0 be the space of smooth K–finite vectors of V . To a representation
(π, V ) of G, one attaches the Harish–Chandra module (π, V0), which is a
(g,K)–module. The unitarity question can be translated to the category of
(g,K)–modules.

Theorem C.2 (Harish–Chandra). V → V0 defines a bijection from the set
of equivalence classes of irreducible unitary representations of G onto the
set of equivalence classes of irreducible (g,K)–modules admitting a positive
definite invariant Hermitian form.

From now on, by an irreducible (unitary) admissible representation of G
we will actually mean an irreducible (unitary) admissible (g,K)–module.
Moreover, the term “equivalent” for representations of G will actually mean
“infinitesimally equivalent” (the associated (g,K)–modules are equivalent).

C.2. Langlands Classification. I will present the construction of Lang-
lands representations and associated intertwining operators following [KZ].

Definition C.3. An admissible representation (π, V ) of G is called a dis-
crete series if its matrix coefficients are in L2(G). (π, V ) is called tempered
if its matrix coefficients are in L2+ε(G) for all ε > 0.

Consider the following parameters:

(1) P = MAN a parabolic subgroup.
(2) π an irreducible tempered representation of M .
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(3) ν a character of a, the Lie algebra of A such that Re ν is in the open
dominant Weyl chamber given by the roots of A in P .

Note that ν gives rise to an one–dimensional character of A, which will
be denoted eν .

Let I(P, π, ν) be the induced module

I(P, π, ν) = IndGP (π ⊗ eν ⊗ 1).

If P = MAN denotes the opposite parabolic subgroup, define the (integral)
intertwining operator

AP (π, ν) : I(P, π, ν) → I(P , π, ν), by

(AP (π, ν)f)(x) :=

∫

N

f(xn̄) dn̄, f ∈ I(P, π, ν), x ∈ G.

Define L(P, π, ν) to be the image of AP (π, ν). This is the Langlands quotient.

Theorem C.4 (Langlands). L(P, π, ν) is irreducible admissible and every
irreducible admissible representation of G is equivalent to a Langlands quo-
tient. Two sets of parameters, (P, π, ν) and (P ′, π′, ν ′), parametrize the same
representation if and only if they are conjugate under G.

The unitarity question then amounts to classifying which Langlands quo-
tients L(P, π, ν) are unitary. The following theorem gives the necessary and
sufficient conditions for the Langlands quotients to be Hermitian.

Theorem C.5 (Knapp–Zuckerman). Let L(P, π, ν) be as in Theorem C.4.
Then L(P, π, ν) admits an invariant Hermitian form if and only if there
exists w ∈ W (G,A) (W (G,A) := NG(A)/ZG(A)) conjugating the triple
(P, π, ν) to the triple (P , π,−ν̄).

In this case, the Hermitian form is positive definite if and only if the in-
tertwining operator A := R(w)A(π, ν), where R(w) denotes the right trans-
lation by w, is either positive semidefinite or negative semidefinite.

Three remarks regarding Theorem C.4:
a) If one required the parabolic subgroups in the parametrization to be
standard, the sets (P, π, ν) would always parametrize inequivalent represen-
tations.
b) The Langlands classification can be reformulated so that π is a discrete
series. This is because every irreducible tempered representation is equiv-
alent to a summand of an induced representation from a discrete series
(Langlands). In this formulation though, ν would be required to be in the
closed Weyl chamber and the Langlands quotient as defined above would be
reducible and Langlands classification would state that every irreducible ad-
missible representation of G appears as a summand of a Langlands quotient
(see, for example, Theorem 14.92 in [Kn]).
c) For unitary representations, one can reduce the classification to the case
of real infinitesimal characters, i.e. one can assume ν ∈ ǎ∗ is real (as in
Theorem 16.10 in [Kn]).
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In the next subsection, when we will restrict to the case of spherical
representations, the classification will become simpler and we will discuss
the intertwining operator in more detail. Furthermore, the intertwining
operator will be normalized so that the condition for unitarity as in the
Theorem C.5 will require the operator to be positive semidefinite.

C.3. The Spherical Split Case. Let B = MAN be a Borel subgroup. A
is the identity component of T , a largest split torus in G and M = T ∩K.

Consider the induced representations (principal series)

XB(δ, ν) := IndGB(δ ⊗ eν ⊗ 1),

where δ is a unitary character of T , trivial on M and ν is a real character
of a.

Langlands classification for spherical representations says that any spheri-
cal representation of G is equivalent to the Langlands quotient of an induced
representation XB(δ, ν) with ν dominant. Moreover, it is possible to reduce
the study of unitary spherical representations to the case when δ is trivial.
We will assume from now on that this is the case, so that the spherical
representations will be parametrized only by a dominant character ν. Con-
sequently, they will be denoted L(ν) and we will view them as the irreducible
quotients of XB(ν).

From Theorem C.5, we know that there is an intertwining operator A(ν) :
XB(ν) → XB(ν) and let A(ν) be normalized so that it is +1 on the K–fixed
vector. L(ν) is the image of this operator and it is Hermitian if and only
if there exist w ∈ W , such that wν = −ν (recall that ν is real). This is
equivalent in this case to w0ν = −ν.

Let (µ, Vµ) be a K–type of G (a representation of K). The following
construction is due to Barbasch and Vogan. The intertwining operator A(ν)
induces a map

Aµ(ν) : HomK(Vµ, XB(ν)) → HomK(Vµ, XB(ν)).

By Frobenius reciprocity

HomK(Vµ, XB(ν)) ∼= HomM (Vµ,C) ∼= HomK(Vµ, XB(ν)).

Since HomM (Vµ,C) ∼= (V ∗
µ )M , we obtain an operator

Aµ(ν) : (V ∗
µ )M → (V ∗

µ )M .

The normalization of the intertwining operator implies that Aµ(triv) = +1.
To summarize the discussion, we have:

Proposition C.6. A spherical representation L(ν), ν ∈ a∗, real and domi-
nant, is unitary if and only if w0ν = −ν and all the operators Aµ(ν) induced
on the spaces (V ∗

µ )M are positive semidefinite.
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Since W ∼= NK(T )/M , there is an action of the Weyl group W on (V ∗
µ )M .

Denote this W–representation by τ(µ). In general τ(µ) may be reducible.
Clearly, the dimension of τ(µ) is the same as the multiplicity of µ in XB(ν).

The operator A(ν) has a factorization corresponding to a reduced decom-
position of w0, so each operator Aµ(ν) will have such a factorization. For
a given µ, the factors of Aµ(sα, ν) corresponding to the simple roots α ∈ Π
can be described explicitly.

For each simple root α of T inG, there is a homomorphism Ψα : SL(2,R) →
G, coming from the Lie algebra homomorphism which takes the Lie triple
of sl(2,R) to the Lie triple corresponding to α. Via Ψα, SO(2) is embedded
into K. Therefore, the K–representation (µ, Vµ) has a grading coming from
the action of SO(2):

Vµ =
⊕

j∈Z

Vµ(j), Vµ(j) = {v ∈ Vµ : µ(Ψα(x))v = χj(x)v}.

Recall that the irreducible representations of SO(2) are parametrized by
integers: χj(e

iθ) = eijθ, for eiθ ∈ SO(2) ∼= S1.
The action of M ⊂ K preserves Vµ(j) + Vµ(−j) and it could have fixed

vectors only if j is even. Denote (Vµ(2j))
M := (Vµ(2j) + Vµ(−2j))M . Then

we have a grading on (V ∗
µ )M :

(V ∗
µ )M =

⊕

j∈Z+

(Vµ(2j)
∗)M .

The following known result gives the action of Aµ(sα, ν) on each (Vµ(2j)
∗)M .

Theorem C.7. On (Vµ(2j)
∗)M ,

Aµ(sα, ν) =





Id if j = 0

∏

0<l≤j

(2l − 1) − 〈ν, α̌〉

(2l − 1) + 〈ν, α̌〉
Id if j 6= 0.

In order to match these operators to those from the p–adic case, we need
to restrict to a special class of K–types.

Definition C.8. A representation (µ, Vµ) ∈ K̂ is called petite if, for every
simple root α, the representation of SO(2) (via Ψα) on Vµ contains only the
characters χ−2, χ0 and χ2.

For petite K–types, Theorem C.7 can be reformulated as follows.

Corollary C.9. If (µ, Vµ) is a petite K–type, Aµ(sα, V ) acts on (V ∗
µ )M as:

Aµ(sα, ν) =





1 on the (+1)–eigenspace of sα

1 − 〈ν, α̌〉

1 + 〈ν, α̌〉
on the (−1)–eigenspace of sα.
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The corollary implies that on petite K–types, Aµ(ν) is a product of
Aµ(sα, ν) corresponding to the reduced decomposition of w0 and it depends
only on the W–structure of (V ∗)M .

In the p–adic case, from the explicit description of the long intertwin-
ing operator on a Weyl representation (σ, Vσ), we can see that rσ(w0, ν) :
(Vσ)

∗ → (Vσ)
∗ decomposes into a product corresponding to the reduced de-

composition of w0 and the action of each factor rσ(sα, ν) is given explicitly
by

rσ(sα, ν) =





1 on the (+1)–eigenspace of tα

1 − 〈ν, α̌〉

1 + 〈ν, α̌〉
on the (−1)–eigenspace of tα.

Note that sα ∈ W and tα ∈ C[W ] have the same action on Vσ. This shows
the connection between the real and p–adic case.

Theorem C.10 (Barbasch, Vogan). If (µ, Vµ) is a petite real K–type, the
real operator Aµ(ν) coincides with the p–adic operator rτ(µ)(w0, ν).

One can use this theorem to rule out nonunitary parameters in the real
case, based on the calculations for the p–adic case. In the p–adic case, we
have a list of relevant K–types, which are enough for the determination of
unitarity. The conjecture is that the relevant K–types match some petite
real K–types.

Conjecture C.11 (Barbasch). For each relevant K–type, σ ∈ Ŵ , for the
p–adic group, one can find a petite K–type µ for the real group such that
τ(µ) = σ.

In the classical cases, this conjecture was proven by Barbasch (see [B2]).
He calculates explicitly the petite K–type corresponding to each relevant
K–type in the list from Theorem 2.11 in Section 2. I reproduce here his
correspondence for the split noncompact classical groups.

Type Petite K–type Relevant K-type

A (2, . . . , 2︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

; +) (m,n−m)

B,D (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

; +) ⊗ (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

; +) (n−m) × (m)

(0, . . . , 0︸ ︷︷ ︸
n

; +) ⊗ (2, . . . , 2︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

; +) (m,n−m) × (0)

C (2, . . . , 2︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

) (n−m) × (m)

(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0,︸ ︷︷ ︸
n−2m

−1, . . . ,−1︸ ︷︷ ︸
m

) (m,n−m) × (0)
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In the table, the real groups are:

G K Type

GL(n,R) O(n) A
O(n, n) O(n) ×O(n) B
Sp(n,R) U(n) C
O(n+ 1, n) O(n+ 1) ×O(n) D

and the notation for the representations of K is the classical one.
One hopes that the same machinery works for the exceptional groups and

that a similar correspondence between petite (real) K–types and relevant
(p–adic) K–types exists.

Finally, I should stress the point that Theorem C.10 gives a criterion
for nonunitarity. After ruling out the parameters which are not positive
semidefinite on the relevant K–types, one needs to show that the remaining
parameters are unitary. The method in the p–adic case relies on the fact
that the parameters corresponding to 1

2 ȟ, where ȟ is the middle element of a

nilpotent orbit Ǒ, are unitary (these are the so–called antitempered param-
eters). In the real case, the same parameters do not come from tempered
representations, but it is known that they are unitary (Barbasch). For a
proof of this fact, see [B3] (also section 9 in [B2]).
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