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ABSTRACT. It is known that the determination of the Iwahori-spherical
unitary dual for p—adic groups can be reduced to the classification of
unitary representations with real infinitesimal character for the associ-
ated Hecke algebras. In this setting, I determine the Iwahori—spherical
unitary dual for split groups of type Fu.

1. INTRODUCTION

The purpose of this paper is to describe the unitary representations with
nontrivial Iwahori fixed vectors for a split reductive p—adic group G of type
F,. From [BM1] and [BM2], this is equivalent to the determination of the
unitary representations with real infinitesimal character of the correspond-
ing graded Hecke algebra H. Using the classification of simple Hecke algebra
modules, the unitary dual is partitioned into subsets parametrized by nilpo-
tent orbits in the dual Lie algebra. Most of the techniques here are the same
as those used in [BM3] and [B2] for the classification of the spherical unitary
spectrum of classical groups.

I present an outline of the paper. Section 2 has the ingredients needed
in the description of the unitary dual. I recall the results of Barbasch—
Moy mentioned in the first paragraph of the introduction and the basic
definitions and facts about the classification of irreducible modules for the
graded Hecke algebra, standard modules and intertwining operators that
will be used throughout the paper. I also give a summary of the results in
[B2] for classical groups.

In Section 3, I determine the spherical unitary dual. This is done entirely
using the relevant K-types (in the sense of [B2]), which are a minimal set of
Weyl group representations that are sufficient for determining the unitarity.
The payoff is that one hopes to match these Weyl representations with K-
types in the real split group F}, so that the spherical real unitary dual would
follow. The details about this correspondence, as applied for classical groups
by Barbasch in [B2], are presented in Appendix C.

The spherical H-modules can be parametrized in terms of semisimple
elements s in the dual Cartan subalgebra a (as mentioned before, one can
assume s is real). Barbasch and Moy described how one can attach to such
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an element s a unique nilpotent orbit @. Therefore, it is natural to partition
the spherical unitary dual by nilpotent orbits O in the dual Lie algebra. To
each O, one attaches a set of unitary parameters, called complementary
series.

This description of the spherical dual has some beautiful consequences. In
the case of classical groups, as in [BM3], the complementary series of O can
always be identified with the complementary series associated to the trivial
nilpotent in the Lie algebra of the centralizer of O. For Fj, this does not
hold when the nilpotent is @ = A; + A;. It is the only exception for type
Fy. I note however that there are examples of similar exceptions when the
group is of types F7 and Eg (although these examples appear very rarely).

A second feature of the description of the spherical unitary dual for the
classical groups is that each parameter s in a complementary series can be
deformed irreducibly to a parameter which is unitarily induced irreducible
from some special unitary spherical parameter of a Hy, (M C G a Levi
subgroup). This second feature is preserved for Fy.

Section 4 deals with the determination of the Iwahori—spherical unitary
dual of the Hecke algebra of type F4. I compare the part of the I-spherical
dual associated to each nilpotent @ with the spherical unitary dual of the
centralizer of @. The main tools are computations of the intertwining oper-
ators introduced in [BM3] and [B2], restricted to some special K-types and
the determination of the composition series of standard modules. The con-
nection between the results in the two sections is provided by the Iwahori—
Matsumoto involution. This is an involution of H which preserves unitarity
when acting on H—modules.

In Section 5, I give a table with the unitary representations ordered by
infinitesimal characters and nilpotents.

In Appendix A, one can find the explicit description of irreducible Weyl
representations (as in [L5]) used for constructing realizations of WW-represen-
tations. In Appendix B, I reproduce the unitary spherical dual for G5. This
is well-known of course, by the work of G. Muic ([M]) in the p—adic case
and D. Vogan in the real case ([V1]). I just present it here in terms of
the affine graded Hecke algebra and give the relevant K—types to justify the
claimed connection (from Sections 3 and 4) between the unitary parameters
associated to the nilpotent orbit A, and its centralizer, which is of type Go.

In Appendix C, I present the background and methods from [B2] needed
to connect the determination of the spherical unitary dual of split p—adic
groups with that for the split real groups.

I would like to thank the reviewer for all the attention and patience in
reading this paper and for many helpful comments and suggestions. I am
also grateful to Jeff Adams and John Stembridge for checking my results
for spherical parameters against their own (computer) calculations. Finally,
but most importantly, I thank Dan Barbasch without whose generous help
and advice this paper would not have been done.
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2. PRELIMINARIES

2.1. The Iwahori—-Hecke algebra. Let F denote a p-adic field with a
discrete valuation | |. R = {z € F : || < 1} is its ring of integers and
P ={x €F:|x| <1} is the unique maximal ideal in R. R/P, the residue
field, is isomorphic to a finite field IF,.

Let G = G(F) be the F—points of a split reductive algebraic group defined
over F. K = G(R) is a maximal compact open subgroup in G. Let B be a
Borel subgroup such that G = KB. B = AN, where A is a maximal split
torus and N is the unipotent radical.

There is a short exact sequence

{1} = K1 —» K = G(F) — {1},

where K1 = {z € G: z =1 mod P}. Define the Iwahori subgroup, I C G,
to be the inverse image in K of a Borel subgroup in G(IFy).

The unitary dual problem for the group G refers to the determination of
all irreducible unitary representations of GG. By a representation of G, I
will always mean a smooth admissible representation. As mentioned in the
introduction, this paper determines the Iwahori—spherical dual of G, that
is, the irreducible unitary representations (m, V) of G, such that V! # {0}.
An important particular case is that of spherical representations, which are
representations with nontrivial fixed K—vectors.

Define the Iwahori—Hecke algebra, H = H(I\G/I), to be the set of com-
pactly supported I-biinvariant functions on . This is an algebra under
the convolution of functions. If (7, V') is an I-spherical representation of G,
then H acts on V! via:

w(fv = /Gf(g)(ﬂ(g)v) dg, forve Viand f € H.

This action makes V! a finite-dimensional H-module.

Theorem 2.1 (Borel-Casselman). The functor V. — V' is an equivalence of
categories between the category of finite—length admissible representations of
G with the property that each subquotient is generated by its 1-fized vectors
and the category of finite—dimensional modules of 'H.

Note that, in particular, the theorem implies that irreducible I-spherical
representations of G are in one-to—one correspondence with finite dimen-
sional simple H—modules.

The algebra H has a star operation defined as f — f*, f*(g) := f(¢g~1)
and therefore one can define Hermitian and unitary modules for H. The
following result gives the reduction of the unitarity problem for the group
G to the similar problem for the Iwahori-Hecke algebra (see [BM1]).

Theorem 2.2 ([BM1],[BM2]). An I-spherical irreducible representation V
of G is unitary if and only if V! is a unitary simple H-module.
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Moreover, in [BM2], Barbasch and Moy showed that the determination of
the unitary dual of H can be reduced to the determination of the unitary dual
of the associated affine graded Hecke algebra H. Next, I give the description
of H in terms of generators and relations and recall some basic definitions
and results about the parametrization of simple H-modules.

2.2. The Affine Graded Hecke Algebra. Let G,, be the multiplicative
group of F, X = Hom(G,,, A) be the lattice of one—parameter subgroups of
A and X = Hom(A,G,,). Let R, RT and II be the sets of roots of A in G,
positive roots, simple roots and R, RT and II be the sets of coroots, positive
coroots and simple coroots . Let G be the complex dual group of G and §
be its Lie algebra. a = X ®7 C and @ = X @7 C. Let W denote the Weyl
group and C[W] the group algebra of W.
As a vector space, H is C[IW] ® A, where A is the symmetric algebra over
a. The generators are t,, € C[W], w € W and w € a. The relations between
the generators are:
twth, = tywyw, for all w,w' € W;
t2 = 1, for any simple reflection s € W;
tsw = s(w)ts + (w, @), for simple reflections s = s,.
H is also a star algebra with the star operation given on generators as
follows (as in [BM2]):
tn, =ty—1, weW;

*

W= =0+ ept (@, @)ta, w € a.

2.3. Simple H-modules. As I mentioned before, the problem of the I-
spherical unitary dual of G comes down to the determination of all the
unitary simple modules for H. To this end, I need to recall some of the
basic results about the classification and parametrization of simple Hecke
algebra modules as in [KL] and [L1] and present Langland’s classification
in the setting of the affine graded Hecke algebra. The presentation of these
basic results is influenced by D. Barbasch’s exposition in [B1].

Theorem 2.3 ([L1]). The irreducible H-modules are parametrized by G-
conjugacy classes (s, O,v), where s € § is semisimple, O C § is a nilpotent
orbit which has a standard Lie triple {é, h, f} such that [s,¢é] = é and ¢ €

—

A(s,€) is an irreducible representation of A(s,é), the component group of
the centralizer of s and €. The representations v that appear come from the
Springer correspondence.

More precisely, if (s, O, ) is a parameter as in the theorem and {¢, h, f} is
a Lie triple for O, the infinitesimal character s can be written as s = %ﬁ—{— v,
with v centralizing the triple {&, h, f}. To each pair (s, D), one attaches a
standard module X (s,0). The standard module may be reducible and it
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decomposes into a direct sum:

X(s,0)= P X(s,0,0).
YEA(s,2)

In this direct sum, not all ¢ € A(s,é) appear. Each standard module
X (s,0,1) has a unique irreducible quotient L(s, O, 1) and each irreducible
H-module is isomorphic to such a L(s, O, ).

To each nilpotent orbit, one attaches, by the Springer correspondence,
some representations of the Weyl group, which will be refered to as the
lowest K-types of the nilpotent orbit. Their construction and properties will
be recalled at the beginning of Section 4, when I will make use of them in
an essential way.

Finally, all the factors of X (s, O, 1)) have parameters (s, O, 1) such that

O # O and © C O'. This fact is crucial for the method of determination
of the spherical unitary dual used in this paper.

Definition 2.4. Let (s, @,w) be a parameter corresponding to a simple H-
module. If the semisimple element s has trivial elliptic part, the parameter
is called real. A parameter is called tempered if v = 0. If in addition,
O is distinguished, i.e. it does not meet any proper Levi component, the
parameter is called a discrete series.

The above definitions are justified by the Borel-Caselman correspondence
with irreducible representations of G and the results in [KL]. An essential
fact for us is that simple H-modules parametrized by a tempered parame-
ter (as in the above definition) are formed by the Iwahori—fixed vectors of
tempered representations of the group G and, therefore, are unitary. They
represent the starting point for building the unitary dual of H.

The results in [BM2] show that it is sufficient to classify the unitary simple
H-modules with real parameters. Actually, [BM2] implies that the classifi-
cation of the unitary dual for the Iwahori—-Hecke algebra H is equivalent to
the classification of the unitary simple modules with real parameter for the
graded Hecke algebra H and for similar graded Hecke algebras corresponding
to groups of lower ranks. Since the unitary dual for graded Hecke algebras
of classical types is known (from [BM3]) and the unitary dual for groups of
type G2 was also determined ([M]), it remains to determine the unitary dual
(for real parameters) when H is of type Fj.

From now on, all the parameters will be assumed real.

If P = MN is a (standard) parabolic subgroup of G with the Levi compo-
nent M and V is a module for the affine graded Hecke algebra H ;s associated
to M, one can form the induced module I(M,V) = H®p,, V. The Lang-
lands classification in this setting (as in [BM3]) says that every irreducible
module of H appears as the unique irreducible quotient L(M,V,v) (called
Langlands quotient) of an induced module X (M, V,v) = I(M,V ®v), where:
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(1) M is a Levi component of a parabolic subgroup of G;

(2) V is a tempered irreducible representation of Hyy;

(3) v € a*, v real, satisfying (v,a) = 0, for all @ € R}, and (v,a) > 0,
foralla € R —R]T/[ (Rm C R denotes the root subsystem associated
to the Levi component M C G).

Moreover, two Langlands quotients are isomorphic if and only if the data
(M, V,v) that characterize them are conjugate by an element in the group

G.

Next, I will explain the connection between Kazhdan—Lusztig and Lang-
lands classifications. Suppose X¢(s,O) is a standard module for H = Hg
and that s = %ﬁ + v and {h,¢é, f} C O are contained in a Levi component
m. Let M C G be the Levi subgroup whose Lie algebra has dual m. One
can form the standard module X (s, Q) (Oyy is the M—orbit of e in ) .
Then

Xg(s,0) = I(M, Xpr(s,0n)).

For ¢ € Ap(s,€), the induced module from X (s, Oy, ¢) breaks into a
direct sum of standard modules of G corresponding to the representations of
Ag(s, €) which contain ¢ in their restriction to Aps(s,é) (we view Aps(s, é)
as a subgroup of Ag(s,é)):

I(M, Xn(s,0m,9)) = EB [ 4y (s.0) : D1 Xa(s, O, 9).
YeAa(s,é)

If M denotes the centralizer in Gj of v and M the corresponding subgroup
in G, the standard modules X (s, O, 1) can also be seen as induced modules:

Xa(s,0,9) = I(M, X (55, Ou,6) £ C,),

for some ¢ in the restriction of ¥ to Aps(s,é). By Definition 2.4, V =
X M(%h, Ou, @) is a tempered module of Hjy;. This shows the connection
between the two classifications.

2.4. Intertwining Operators and Hermitian Forms. I recall the con-
struction of Hermitian forms and intertwining operators from [BM3].

Let w = s1...s; be a reduced decomposition of w. For each simple root
a, define 74 = (ta& — 1)(& — 1)1, Then define 7, := 74, ... 7q,. A priori,
7w could depend on the reduced expression of w, but Lemma 1.6. in [BM3]
shows that actually 7., is well-defined. wg will denote the long Weyl element.
Denote by W (M) the Weyl group of W viewed as a subgroup of W.

I will use the following results from [BM3]:

Theorem 2.5 ([BM3)). Let M be the Levi component of a parabolic subgroup
P,V be a tempered module for Hp; and v a real character as before.
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(1) The Langlands quotient L(M,V,v) is Hermitian if and only if there
exists a Weyl group element w which conjugates the triple (M, V,v)
to (M,V,—v).

(2) Assume L(M,V,v) is Hermitian with w as above. Let w,, be the
shortest element in the double coset W (M )wW (M). The operator

Hwp,v) : X(M,V,v) = X(M,V,—v), z®W®1l,)—ar,, @(v®l_,)

is an intertwining operator. Moreover, the image of I(w,v) is the
Langlands quotient L(w,V,v) and the Hermitian form on L(M,V,v)
s given by:

<l‘ ® (U ® 11/)7y ® (U/ ® 1u)> = (:L' ® (U ® 1V)7yrw ® (U/ ® 1—V))h7
where (, )p denotes the pairing with the Hermitian dual.

For practical calculations in Fj4, w,, can be chosen to be the shortest
element in the double coset W (M )woW (M).

Of great importance for the actual classification is the C[W]-structure of
the standard modules. Recall the Peter—-Weyl decomposition

C[W] = Z VU®V0*7
oceW

(0,V,) denoting the irreducible representations of the Weyl group, which,
by analogy with the real groups, are called K-types. The Weyl group rep-
resentations for type Fy are classified by Kondo in [K]. The K-structure of
standard modules is given by the Green polynomials calculated in [K] and
can also be read from the (unpublished) tables of Alvis (see [A]).

Consider the intertwining operators of the form I(w,v): X(M,V,v) —
X(M,V,—v). We assume here that wv = —v. As a C[W]-module, X (M, V,v) =
CIW] @ciw ) V. For any K-type (0, V,), I(w,v) induces an operator

o (w, M,v) : Homcpw)(Vo, CIW]@ciw (ary V) — Homew (Vo, CIW]@cw (i) V)-
By Frobenius reciprocity,
Homepy)(Vo, CIW] @cpw any) V) = Homepwy (ar)) (Vo, V).
In conclusion, I(w,v) gives rise to an operator
o (w, M,v) : Homepy (ary(Vo, V') — Homepy (ary (Vo, V),
or, equivalently,

ro(w, M,v) : (V:)V — (V*)V.

g
Theorem 2.5 implies that if the Langlands quotient were unitary, all the
operators r,(w, M,v), obtained by the restriction to K-types, would be
positive semidefinite. Asin [BM3] and [B2], one of the main tools for showing
modules are not unitary is to compute the signature of these operators.
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2.5. Spherical H-modules. For the rest of the section, I will present the
special case of spherical modules and the results for classical groups from
[B2]. The general machinery presented so far can be described in consider-
ably simpler terms for this case. The H-modules which correspond to the
spherical group representations are precisely those which viewed as C[W]-
modules contain the trivial Weyl group representation.

If a simple spherical H-module is parametrized by a Kazhdan—Lusztig
triple (s,0,), the representation 1) must be the trivial representation.
Moreover, the semisimple element s determines the nilpotent orbit uniquely.
Fix a semisimple s € g (actually, one can assume s € a). The characteriza-
tion of the nilpotent orbit O as in [B2] is the following. Let §; and §o be
the 1—-eigenspace, respectively the O—eigenspace of ad(s):

gi={zr€g: [s,a]=a}, go={zecg: [s2]=0}
Let Gy C G be the complex Lie group with Lie algebra go. Go acts on §;
and it has a unigue dense orbit in g;. Cavll it O1. Then there is a unique
nilpotent orbit O in g which meets g; in O;.
The nilpotent orbit @ admits a second, equivalent, description:

Proposition 2.6 ([BM1]). Let s € a be a semisimple element and O the
associated nilpotent orbit constructed before. Let {é, ﬁ,f} be a Lie triple
associated to the orbit ©. Then O has the property that it is unique subject
to the following two conditions:

(1) there exists w € W such that ws = %ﬁ + v, where v is a semisimple

element in the Lie algebra 3(O) of the centralizer of the Lie triple;
(2) if s satisfies the first property for a different O', then O' C O.

For the spherical case, I consider the principal series module X(s) =
H ®p Cs, s € a. Since X(s) is isomorphic as a W-representation to C[W],
it follows that the trivial W-representation appears with multiplicity one
in X (s) and therefore, there is a unique spherical subquotient L(s). Conse-
quently, I will refer to a semisimple element s to be unitary if the spherical
module parametrized by it is unitary.

Consider the intertwining operator given by wy, the long element in the
Weyl group, called the long intertwining operator. 1 cite the following result
from [B2].

Theorem 2.7 ([B2]). If s is dominant (i.e., (s,&) > 0 for all positive roots
« € RT) and the image of I(wy,s) is L(s).
Moreover, L(s) is Hermitian if and only if wos = —s.

Note that 7, = 7, - - T, acts on the right and therefore, each «; in the
decomposition into r,,’s can be replaced by the scalar (d;, sj115j42 - sk (V))
in the intertwining operator I(wq, ). Consequently, we can think of 7, as
an element in C[W].

The discussion about the intertwining operators and Hermitian forms in
Section 2.4. implies the following remark in the spherical case.
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Remark 2.8. The long intertwining operator gives rise to operators on the
K-types (0,Vy): ro(wg,s) : (Vy)* — (Vi)*. As before, the Hermitian form
on the module L(s) is positive definite (and therefore L(s) is unitary) if and
only if wos = —s and all the operators r,(wp, s) are positive semidefinite.

Note that this fact suggests the following combinatorial description of
the spherical unitary dual. One can consider (real) parameters s in the
dominant Weyl chamber. They parametrize spherical H-modules. Since in
the Weyl group of type Fy, wg acts on any such s by —1, any parameter s is
Hermitian. In order to determine if s is unitary, one would have to compute
the operators r,(wp, s) on the K-type 0. An operator r,(wp,s) can only
change its signature in the dominant Weyl chamber on a hyperplane where
(s,&) = 1 for a« € R or (s,@) = 0 for a € II. Therefore, the spherical
unitary dual can be viewed as a (bounded) union of closed facets in this
arrangement of hyperplanes. I will use this observation in the description of
the spherical unitary dual in Section 3.

For the explicit description, the spherical unitary dual is partitioned into
subsets, each subset being parametrized by a nilpotent orbit in g. To such
a nilpotent orbit O, one attaches the set of parameters corresponding to @
which are unitary.

Definition 2.9. These set of parameters s = %71—#1/ associated to a nilpotent
orbit O which are unitary are called the complementary series attached to

0.

When G is of classical type, the explicit description of the spherical uni-
tary dual of the associated affine graded Hecke algebra from [B2] can be
summarized in the following theorem. I mention that for type A, the uni-
tary dual for p-adic GL(n,F) had already been classified by Tadic (see [T]).

Theorem 2.10 ([B2]). Let s € & be a semisimple element and O the unique
mazimal nilpotent orbit such that s = %71 + v, with v a semisimple element
in 3(O).

(1) s is in the complementary series of O if and only if v is in the
complementary series of the trivial nilpotent orbit of 3(O).

(2) The (real) parameters s = (vi,va,...,vy,), n = rank G, in the com-
plementary series associated to the trivial nilpotent orbit can be de-
scribed explicitly as follows:

(a) A: s has to be of the form (vi,..., Vg, —Vg,...,—1v1) if n = 2k
or (V1. Vg, 0, =gy, —v1) if n = 2k + 1, with 0 < vy <
vy <o <y < 3

(b) B:0<v; <wp <+ <y < 4

(c) C, D.~0§u1gygg---guk§%<uk+1<uk+2<---<un,
so that v; +v; # 1 if i # j and there is an even number of v;
such that 1 — v <v; < % and an odd number of v; such that
1-— Vkt+j+1 < V3 < 1-— Vktj-
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(Note that the types A, B, C, D in the theorem refer to the group G.)

Moreover, in view of Remark 2.8, the spherical unitary dual for classical
groups is determined by the operators restricted to a small set of K-types,
as follows from [B2].

Theorem 2.11 ([B2]). For G of classical type, a spherical parameter s is
unitary if and only if the operators r,(wo, s) are positive semidefinite for the
following representations o of W:

(1) A: (m,n—m), 0 <m < [5].
(2) B, C: (n—m) x (m), 0 <m < n and (m,n —m) x (0), m < [§].

(3) D: (n—m) x (m), 0 <m < [5] and (m,n —m) x (0), m < [F].

The K-types appearing in Theorem 2.11 are called relevant K—types.

2.6. Coordinates for F;. Throughout this paper, I will use the following
realization of the root system of the group G of type Fy (o are the simple
roots and w; the corresponding simple weights):

o =3(e1—e2—€3—€1) wi=¢

3 1 1 1
Q9 = €4 Wo = 5614-5624-5634—564
a3 = €3 — €4 ws = 2€1 + €2+ €3
Oy = €3 — €3 w4 = €1 + €2

aq and asg are the short roots and a3 and a4 the long roots. Note that
all the calculations with the intertwining operators, being done in the dual
group G, will use the coroots &;. All the parameters will be expressed in
the coordinates (€1, €, €3, €4).

3. THE UNITARY SPHERICAL DUAL

Recall that, in the spherical case, the Langlands quotients are uniquely
determined by their infinitesimal character s: there is a unique maximal
nilpotent orbit @ such that s = %ﬁ + v, where h denotes the middle el-
ement of a standard Lie triple corresponding to © and v is a semisimple
element centralizing the standard triple, which can be written as a vector
with real entries of length n = rank g. In this way, each spherical parameter
corresponds to a unique nilpotent orbit.

3.1. The Iwahori—-Matsumoto involution. Irecall that the graded Hecke
algebra has an involution called the Iwahori—-Matsumoto involution, IM, de-
fined on the generators as follows:

IM(ty) = (—=1)!®t,,  IM(w)=-w, we€a.

IM acts therefore on the modules of H.

The induced action of the Iwahori-Matsumoto involution on the K-types
is tensoring with the sign representation of W. The use of the Iwahori—
Matsumoto involution is justified by the following result from [BM1].
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Theorem 3.1 ([BM1]). Let V' denote a module of H and IM the Iwahori—
Matsumoto involution. Then V is unitary if and only if IM (V') is unitary.

In particular, if one considers a spherical module L(s) parametrized by
s = +h, where h is the middle element of a nilpotent orbit O, IM(L(s)) is
a tempered H-module (in the sense of Section 2). It follows that IM (L(s))
is unitary and therefore, L(s) is spherical unitary.

Definition 3.2. A spherical parameter of the form s = %ﬁ is called anti-
tempered (or spherical unipotent).

The antitempered parameters are unitary and they will play an important
role in the determination of the spherical unitary dual.

Note that the distinguished orbits parametrize spherical unitary repre-
sentations which are the Iwahori-Matsumoto dual of discrete series. They
are therefore unitary. I just record them here, each with its corresponding

paralgleter: (%’ %, %, %)7
F4(al) (27?%7%%
Fy(az) (gv?v?v?);

Fylas) (3,5:3:3)
Now assume an orbit O is not distinguished and let s € a be a parameter
corresponding to @. Then © meets i, the Levi component of a parabolic
subalgebra, in a distinguished orbit @y;. More precisely, t is the centralizer
in § of a Cartan subalgebra of 3(O). Let M C G be the Levi subgroup whose
Lie algebra m has m as its dual. Let Ljs(s) be the irreducible spherical

module of H; parametrized by s and Oyy.

Theorem 3.3 ([BM1]). The spherical Langlands quotient L(s) parametrized
by O is the unique spherical subquotient of

Xn(s) :=I1(M, Ly(s)) = H®m,, La(s).

3.2. Maximal Parabolics Cases. As the starting case for the determina-
tion of the spherical unitary dual, I consider the modules which are Iwahori—
Matsumoto duals of induced from discrete series on the Levi component of
some maximal parabolic tensored with a character v. These modules are
parametrized by nilpotent orbits which meet the Levi component of a max-
imal parabolic subalgebra in a distinguished nilpotent orbit. They will be
refered to as maximal parabolic cases.

In the case when the Hecke algebra is of type Fj, ‘the maximal parabolic
cases correspond to the nilpotent orbits Bs, Cs, As+ Ay, As+ Ay and Cs(ay).
The notation is the same as in Bala—Carter’s classification of nilpotent orbits
in the exceptional Lie algebras (see [Ca]). The Levi components of the
maximal parabolic subalgebras are parametrized by the root subsystems of
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type Bs, C3 and As + Ay and the ~ stands for short roots. Each nilpotent
meets the Levi component in the principal nilpotent, except C5(aq), where
the nilpotent orbit in the Lie algebra of type Cj is (42).

The intertwining operator calculations are done exclusively with the K-
types 11, 23, 49, 81 and 9;. The notation is from [K] and the explicit de-
scription of each irreducible W (Fy)-representation is given in the Appendix.
I just note here that in the notation dj for a Weyl representation, d is the
degree of the representation and that 1; and 45 are the trivial, respectively
the reflection representations of W (Fy).

Following [B2], these K-types will be called relevant.

Lemma 3.4. The K-types 11, 23, 49, 81 and 91 are a minimal set for de-
termining the unitarity of the spherical parameters in the maximal parabolic
cases.

Proof. The proof consists of checking each maximal parabolic case sepa-
rately. I construct explicit matrix realizations of the relevant K-types using
the descriptions of the K-types as given in the Appendix. The long Weyl
element of type Fj has a reduced decomposition wg = $182--- S94 and, as
explained in Section 2, it gives rise to operators on each K—type.

For each nilpotent orbit @ in the five maximal parabolic cases, the pa-
rameter is of the form s = %il + v, where v is a real number, which can be
assumed non-negative.

Fix a K-type 0. For o, the calculation comes down to a multiplication
of 24 matrices of dimension dim(c) with a single parameter v € R™. Since
in any standard module for the maximal parabolic cases, the multiplicity
of a relevant K-type in the Langlands quotient is at most two, it is easy
enough to determine explicitly the nonzero eigenvalues of these matrices.
Recall that by Remark 2.8, it is sufficient to consider (in the spherical case)
the long intertwining operator. For all explicit computations, I used the
software “Mathematica”.

We construct the induced modules X /(v) := I(M,V ®v), in each of the
maximal cases. Explicitly, when M is of types B3 and Ay + Aj, V is the
trivial module of the graded Hecke algebra Hj,;. When M is of type Cs,
there are two cases. If the nilpotent orbit is C3, V is again trivial. If the
nilpotent is C3(aq1), V' is the spherical representation (IM dual of a discrete
series) parametrized by the nilpotent orbit (42) in the Lie algebra of type
C5. As a W(Cs)-representation, V' decomposes into 3 x 0+ 2 x 1.

With these constructions, the spherical Langlands quotient L(s), which is
parametrized by O (s = %ﬁ—{— v), is actually equal to X;(v), for v such that
X (v) is irreducible. At v = 0, Xps(v) is irreducible and unitary, being
antitempered. Therefore, it has to remain unitary until the first point of
reducibility. Recall that from the Kazhdan—Lusztig classification, we know
that at any reducibility point, the spherical parameter corresponds to a

bigger nilpotent @', O c O'.
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The first point of reducibility is v = % for C3, Cs(ay), As+Aq and Ay+ Ay,
and v = 1 for Bs.

The same method applies for all five nilpotents: beyond the first nonzero
reducibility point, I show that the intertwining operator is not positive semi-
definite on at least one of the relevant K-types. I include the tables of sig-
natures for the nonzero eigenvalues of the operators induced by the long
intertwining operator on the five relevant K-types.

B32 Cg:
14 11 42 91 81 14 11 42 91 23
+ + + + + 4+ + +
1 + + + 0 s + + + 0
+ + + - + 4+ + -
2 + 4+ 0 0 S 4+ 4+ 0 -
+ + - + + 4+ - -
4 4+ 0 0 0 L+ 0 0 0
+ - - + - 4+ +

1% 11 42 42 23 91 91 81

+ + + + + + +

I+ + + + + 0 4+

+ + + + + - +

Calar) s o 0 + 0 o0

+ + + - + - -

I 4 + 0 0 0 0 0

+ + - + - +

Aq + Ao Aq + Ag:
v 11 42 91 91 81 81 14 11 42 23 91 91 81
+ + 4+ + + + + + + + + +
o+ + 0 o+ 0 o+ 5 + + + + 0 +
+ + - + + + + + + + - +
1 + + 0 + 0 + S+ + 0 + 0 0
+ + + + - + + + - + —
5+ + 0 0 0 0 S+ + 0 0 - 0
+ + - - + + + + - - - +
>+ 0 0 0 0 0 I+ 0 0 0 0 0
+ - + + - - + - + + + -

In this way, I obtain the set of spherical unitary parameters (the comple-
mentary series) for each nilpotent orbit in the maximal parabolic cases:
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B3 G+v,—-2+v,31) 0<v<l;
Cs (1/,%,%,?) 0§1/<%;
93(0’1) (V7§7§7§) 0<rv< 95
A+ A (%—1—21/,%—1—1—%%) 0§1/<%;
v dy Grsdeydhy 2oy ose<d

3.3. Main Results. With the maximal parabolic cases done, one can de-
termine the unitarity of the spherical parameters for each of the remaining
nilpotent orbits. The main result follows. The explicit description of the
complementary series for each @ will be given in the proof and recorded
again in Section 5.

Theorem 3.5. Consider the graded Hecke algebra H of type Fy.

(1) Let O be a nilpotent orbit in § and s = %714— v a spherical parameter
associated to O, where v is a semisimple element in 3(O).

(a) If O # Ay + Ay, s is in the complementary series of O if and
only if v is in the complementary series attached to the trivial
nilpotent orbit in 3(O).

b) IfO = A + Ay and if s is in the complementary series of O,
then v is in the complementary series attached to the trivial
nilpotent orbit in 3(O), but the converse is false.

(2) The complementary series associated to the trivial nilpotent with
dominant infinitesimal character (v1,va,v3,1y), V1 > Vo > U3 >
vy >0, v —v9 —v3—rvy >0 are:

(o) {0 < b}

(b) {I/1+I/2+I/3+V4 >1, v1+r+rvyg—1y < 1}.

Proof. The proof is based on the following induction: for a fixed nilpotent
orbit O, one divides the parameter space into open regions determined by
the hyperplanes where the standard module is reducible. Assume first that
the nilpotent orbit has trivial component group A(¢é), and so, the standard
module is irreducible at the origin (i.e, for s = %71) On any reducibility
hyperplane, the spherical module corresponds to a bigger nilpotent in the
closure ordering for which I have already found the unitary parameters. In
this way one can rule out the regions which are bounded by hyperplanes with
nonunitary parameters. In the end, there only remain parameters close to
the origin, in regions that are bounded by unitary walls. For these, I show
that they can be deformed irreducibly to parameters which are unitarily
induced irreducible from unitary parameters of classical groups of rank less
than four.

There is an extra difficulty for nilpotents @ with nontrivial component
group. In these cases, the standard module I(M,triv ® v) = Ind%h ,(trive
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C,) is reducible at the origin (see Section 2.3) and one finds reducibility hy-
perplanes through the origin where the spherical factor is still parametrized
by O. The method outlined above is not sufficient and one needs extra calcu-
lations with the long intertwining operator on the relevant K-types in order
to rule out some nonunitary regions close to the origin or on the reducibility
hyperplanes parametrized by O.

For the nilpotent orbits in the maximal cases (all having the central-
izer of type Aj), one can see from the previous calculations that the (one-
dimensional) complementary series are the same as those for the centralizers.
The method outlined above is best illustrated in the case of the nilpotent or-
bits which admit a two-dimensional parameter. For them, I present pictures
with the reducibility lines. In these pictures, the red lines represent nonuni-
tary spherical factors and the green lines the unitary spherical factors. Any
open region bounded by some red line is necessarily nonunitary.

In the case of nilpotents A; and A, the arguments are more involved, as
these two nilpotents admit a three-dimensional parameter. A; has only a
two-dimensional complementary series. The proof of this fact is easy if one
uses the signatures of the two lowest K-types associated to this nilpotent
orbit (the definition and the argument will be presented in Section 4), but
more difficult if we restrict to relevant K-types only.

For all the nilpotent orbits, I present the infinitesimal characters, re-
ducibility hyperplanes with the nilpotent orbit parametrizing the spherical
factor on each such hyperplane and the complementary series. I also show
how the infinitesimal character in the complementary series can be deformed
without reducibility to unitarily induced modules from smaller rank groups.

The cases of the parameters associated to the trivial nilpotent orbit and
the orbits A7 and A; will be presented in more detail.

Bo: infinitesimal character (vq,vs, %, %), 1 > vy > 0. The reducibility
lines are: v = % and vy = % from Cs(ay), 11 + 5 = 3 and v; — v = 3 from
B3, 11 = % and vy = g from C3, v1 = v9 where the spherical module is still
parametrized by By. The complementary series is {0 < vy < 1y < %} On
the line s =0 and 0 < 1y < % the module is unitarily induced irreducible
from a complementary series associated to the nilpotent (411) in C3 (see
figure 1).

As: infinitesimal character (% + 11+ 1o, —% +uv1, —% + v, %), vy > > 0.
Reducibility lines: 2v1 +1v9 =1, v1 + 215 = 1 and v1 — o = 1 from ﬁl + Ao,
ri+ro=11v1 =1and vy =1 from By, 1 + 1o =2, 1 = 2 and vy = 2
from Bj3 and finally v = 0, where the spherical module is parametrized by
As. The complementary series is {ro =0, 0 < 11 < %} At the origin, the
spherical module is unitarily induced irreducible from the trivial in Ay (see
figure 2).
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FI1GURE 1. Spherical unitary dual attached to the orbit Bs

A: infinitesimal character (ve + 3%, 1+42,5,-1+%), 11 >0,v3 >0.
Reducibility lines: 2vo + 311 = 1, vo + 311 = 1, vp = 1 from A; + ;12,
vo+2vy =1, v+ =1and vy =1 from Cs(ay), vro+2v1 =3, v +1v1 =3
and v = 3 from C3. The complementary series is {2v5 + 3v; < 1} and
{re+21r1 <1 <wvy+3v1}. On theline v, =0, for 0 <1y < %, the parameter
is unitarily induced irreducible from a complementary series associated to
the nilpotent (33) in C3 (see figure 3).

A; + A;: infinitesimal character (v1, % + vo, —% + vo, %), v, >0, v >0.
Reducibility lines: v = % from As, 1n = % from Bs, 11 = g from Bs, 1o =1

from Cs(ay), vy = 2 from Cs, v; — 20y = —%, v +2uy = % and v| — 21y = %
from A1+ A, 11 — vy = —%, vi+ve=5and vy —vp = % from Ay 4+ As. The

complementary series is {v; + 2y < %, v < %} and {2v9 — 1y > %, ve < 1}.
On the line ;1 =0, 0 < 1n < % and % < vy < 1, the standard module is
unitarily induced irreducible from a complementary series associated to the
nilpotent (222) in C3 (see figure 4).

Aq: infinitesimal character (v1, v, % + vs, —% +v3), vy > 19 >0, 3 >0.
The planes of reducibility are:
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Fy(a1)
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FI1GURE 2. Spherical unitary dual attached to the orbit As

VlZ%;VQ:%andVliV2i2I/3:j:1 ffom/h—i-;ll;

v3=1and v vy =2 from Bs;
1/1:|:1/3::|:%, I/g:l:l/gzzl:% from As.

Also, there is reducibility on the plane v3 = 0 (and planes conjugate to
it), but the spherical factor is still parametrized by A

I will show that the infinitesimal character can only be unitary on the
plane v3 = 0. This is done as follows.

Assume the parameter is unitary, with the corresponding standard mod-
ule irreducible and v3 > 0. Then one can deform the parameter to the closest
reducibility hyperplane, but keeping v3 > 0; the parameter has to remain
unitary. On each of the reducibility hyperplanes on which the spherical
factor is parametrized by a strictly bigger nilpotent, one knows which pa-
rameters are unitary. Checking the parameters on each of these hyperplanes,
it follows that the only hyperplanes that could bound a (three-dimensional)
unitary region are (the parameters are listed by the nilpotent orbit to which
the spherical factor belongs):
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FIGURE 3. Spherical unitary dual attached to the orbit Ay

By vy =1 with 0 <1y < &
V] +1y =2 with 1 < <5 —v3
Ay + Ay 1/1:% with 0 < 3 <1

1+ +2u3=1 withv +1p <1

As V1+V3=§ With§<vl<§
vot+uv3 =3 with § <y < 3

Assume again that the parameter (vq, 1/2,% + vs, —% + v3) belongs to a
(three-dimensional) unitary region. The claim is that v + v3 < % Assume
that v1 +v3 > % Then one can deform the parameter v1 upward, leaving v
and v3 fixed, and it cannot hit any of the unitary facets listed above. This is
because the unitary facets involving v; have the property that vy + v3 < %

Therefore in order for a parameter associated to A to be unitary, it is
necessary that 11 +v3 < %

Now, I use a direct calculation involving the relevant K-types 23 and
45. Both appear with multiplicity 2 in the standard module induced from
;11. Denote by prod(o), the product of the nonzero eigenvalues of the long
intertwining operator on the K-type o. The ratio prod(43)/prod(2s) is

prod(4s) B-r—»)E-—n—+v3)(3 -0 — )3 —1a+us)

prod(23) G+m+m)E+m—m)E+r+u)(E+r—w)

which shows that the region vy + v3 < % must be nonunitary.
This argument implies that the only possible unitarity is on the plane
vy = 0.
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FIGURE 4. Spherical unitary dual attached to the orbit A; + A

The complementary series, {vr3 = 0, 0 < 1, < 11 < %}, is unitarily
induced irreducible from a complementary series associated to the nilpotent
(31%) in Bs (see figure 5).

A;: infinitesimal character (vi,vs,vs, %), v1 > vy > vz > 0. The re-
ducibility planes are:

Vi:%,i:1,2,3 from gl;
= e e % from As;
Vi:%,i:1,2,3 from Bo;

vitr;=1,1<i<j <3 fromA1+/~11.

I will show that the complementary series is 0 < v3 < vy <1 < % On
the plane 3 = 0, 0 < 1y < 1] < %, the infinitesimal character is unitarily
induced irreducible from a complementary series associated to the nilpotent
(21%) in Cs.

One immediate observation is that all the reducibility hyperplanes on
which the spherical factor is parametrized by As cannot bound any three-
dimensional unitary region. This is because the complementary series asso-
ciated to A has dimension one only. On the rest of reducibility hyperplanes,
the spherical factor is parametrized by one of nilpotent orbits A;, By and
A1+ A;. Using the complementary series for these nilpotent orbits it follows
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FIGURE 5. Spherical unitary dual attached to the orbit gl

that the unitary three-dimensional regions could be bounded by the follow-
ing hyperplanes (listed by the nilpotent orbit parametrizing the spherical
factor):
A 2
By vy =

with 0 <13 <1y <
with 0 < v <1 <
Al—l—gl v1 — v =1 with 21 + 13 < % or {2vy — v3 > %, 0<1y < %}
vi+rs=1 with0<wg3<wy<i
vi—rv3=1 with0<rv3<1n <5
vi+rv3=1 with0<wv3<1p <3
Assume that the parameter (v, 12, V3, %) is unitary and the corresponding
standard module is irreducible. In particular, the walls of this region can
only be among the 6 hyperplanes listed above.
The first step is to show that vy < % Assume vy > % If i < %, deform
v = vy upward. The first reducibility wall that can be met is one of: vy = %,
v —v3=1,1v1 +v3=1and vy — 1, = 1. On each of these hyperplanes the
corresponding parameter is nonunitary because vg > % Now, if the case is
v > %, vy > %, move v = v; downward. The first reducibility wall must be
one of the following: v = %, v1 —v3=1or vy — vy =1, but on these the
corresponding parameter is nonunitary as before.
From now on, I consider 0 < v3 < 15 < %

N[
N[ —
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If1h < % one can deform v to zero without any reducibility. The param-
eter becomes (0,1, 15, 3) which is unitarily induced irreducible from (21%)
inCgandas 0 <y <1y < %, it is unitary.

I want to show that this is the only unitary region associated with Aj.
Assume 0 <3 <1y < % < v1. Move v/ = v3 toward zero. If it gets to zero
without passing any reducibility point, the parameter is nonunitary being
unitarily induced irreducible from some nonunitary parameter in C3. Note
that if there is reducibility, this cannot involve vo, as 0 < v3 < 1y < % The
only cases of reducibility involve v and they are:

1/1>1andl/3>V1—1Whichimplies()<1/1—1<1/3§1/2<%<1<1/1,

rn<landvy >1-—14 WhiChimplieSO<1—1/1<I/3§I/2<%<I/1 < 1

In both of these cases one can move v/ = v3 to 1o and no reducibility
occurs. The resulting parameter (vo, v9, 11, %) is conjugate to (vo, —va, V1, %)
which is unitarily induced irreducible from Bj3. Bg is given by the roots aq,
a9 and a3 and if one changes the coordinates into the standard coordinates
for type B3, the parameter becomes (2vs, %4—1/1, —%—1—1/1). This is nonunitary
since v > %, which is a contradiction. This completes the analysis in this
case.

1: Finally, the complementary series associated to the trivial is deter-
mined as follows. The full induced from the trivial has parameter (v1,v2, 3, v4)
with v1 > 19 > v3 > v4 > 0. The most important observation is that any
region bounded by a wall on which a short root is 1 is not unitary. On any
such wall, there is a factor coming from A; which can’t be unitary at all
points since the complementary series for A; is two-dimensional.

Therefore, one needs to only look at regions bounded by long roots. More-

over regions bounded by any of the following hyperplanes: vy = %, vy = %,

vy = % can’t be unitary because on these hyperplanes the factor correspond-

ing to A; has nonunitary parameter (v; > %) So it remains to check v; = %
and the following hyperplanes:
1) 61—62—63—64:1, I/1—I/2—V3—V4:1
€1—€—€3+es1=1, v1—w—rv3+ury=1
€g—€te3—eg=1 r—rtrvy—ry=1
€g—€te3stea=1 -ttty =1
€1+e—€e3—e1=1, vi+1ro—rv3—1y=1
e1te—€e3t+er=1, n+r—rvsty=1
e1tetes—e=1, n+rntrs—y=1
e1tetester=1, m+rtrsty=1

The above hyperplanes are listed in the partial ordering of the roots: if «
and [ are two positive roots, a > g if and only if o — § is a sum of positive
roots.

One can show, case-by-case analysis, that none of the hyperplanes (1)—(6)
can bound a unitary region, since on them the factor coming from A; has
nonunitary parameter.

S~

2
3
4
5
6
7
8

— N N S N N
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It follows that any unitary region can only have as reducibility walls the
following hyperplanes: v; = %, vi+wv+trvs—rvg=1land vy +vo+u3+vy = 1.
This implies right away that any unitary region has to satisfy vq +vo +v3 —
vy < 1.

a) Assume vq + vy +v3 +v4 < 1. Then vy < % Move v4 toward zero,
no reducibility can occur and at zero, the parameter is (0,1, V2, v3) which
is unitarily induced irreducible from Cj3. It is unitary iff 11 < % (this comes
from the complementary series of C3). The first unitary region is then

1
< %
b) 1+ +v3+vy > 1, but vy +v9 +v3 —vg < 1. Again vy < % Move
v = vy up toward v3, no reducibility can appear (& priori the only reducibility
could come from short roots involving v, but both v —v3 < 1 < v; —yy
and v; + v4 < 1 < v; + v3 are impossible). At v = v3 the parameter,
(v3, —vs3,v1,12), is unitarily induced irreducible from Bs. Inside Bj the
parameter looks like (2v3, 11 + v9, 1 — 1) and because vy +vo + 2v3 > 1, it
is unitary iff 14 > % (note that this condition is automatically satisfied since
the parameter is dominant).
The second unitary region is a complementary series from Bj:

vi+urvstrvs+uvs>1, vi+rvetrvyg—uy <l

From the proof, it follows immediately:

Corollary 3.6. The K-types from Lemma 3.4 are sufficient for the deter-
mination of the spherical unitary dual of type Fy.

Also, one can reformulate the classification of the spherical dual presented
in the proof in an analogous way to the results for classical groups in [BM3]:

Theorem 3.7. A spherical parameter s associated to a nilpotent orbit © in
type Fy is unitary if and only if it can be deformed irreducibly to a parameter
which is induced irreducible from an antitempered module (on the affine
graded Hecke algebra of a Levi subgroup) tensored with a parameter in a
GL-complementary series.

3.4. Computer Calculations. I conclude this section with some remarks
about the calculation of the spherical dual of Fy by computer. As mentioned
in Section 2, Remark 2.8 reduces the determination of the spherical unitary
dual to the computation of operators r,(wy, s), s an element in the dominant
Weyl chamber and ¢ any irreducible W-representation. One can therefore
use the following method:

(1) find rational matrix realizations for all Weyl representations o;
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(2) partition the dominant Weyl chamber into (a finite number of) cells
coming from the arrangement of hyperplanes (s,a) = 1, or 0, for
a € R™ and choose in each cell a point s with rational entries;

(3) compute the operator r,(wg, s) on each sample point s from step (2)
and find the signature of this operator;

(4) keep only the cells for which the corresponding sample points give
positive semidefinite operators in all representations o. This set of
cells describes the spherical unitary dual inside the dominant Weyl
chamber.

I mention that the results of the present paper were completed in Sep-
tember 2002. The computational method explained above was applied by J.
Adams, J. Stembridge and J.-K. Yu in an effort to determine by computer
the spherical unitary dual of split p—adic exceptional groups. As a result,
they obtained, in 2003, a description of the spherical unitary dual for Fjy.
Their answer matches perfectly the description of the spherical unitary dual
presented in this section (note, however, that, in practice, a “translation”
between the two forms of the result is not completely straightforward).

4. UNITARY [-SPHERICAL DUAL

Theorem 3.7 gives an explanation of how the spherical unitary modules
arise. The same kind of a result does not hold for the Iwahori—spherical
unitary dual. There are unitary parameters which cannot be explained as
deformations from unitarily induced modules coming from smaller groups.

In this section, I determine the full unitary dual of H. The explicit de-
scription will be listed for convenience in Section 5. In view of the Kazhdan—
Lusztig parametrization of simple H-modules, the unitary dual will be par-
titioned again by nilpotent orbits O. I try to match the unitary parameters
associated of each nilpotent orbit @ with the spherical unitary dual of its
centralizer, 3(@) They will not always be the same and I will emphasize the
unitary parameters which do not have a correspondent in the centralizer.

4.1. Lowest K-types. Let X(s,0) be a standard module and ¢ € O be
a nilpotent element as in the Kazhdan—Lusztig classification. I recall some
facts about the W-structure of standard modules as treated in [BM1].

Let u = exp(¢) be the unipotent element in the group G. Consider By,
the complex variety of Borel subgrups of G containing v and H*(B,), the
cohomology groups of B,,. The component group A(¢é) acts on H*(B,) and
let H*(B,)? = Hom 4(¢)[¢ : H*(B,)] be the ¢—isotypic component of H*(B,),

—_

¢ € A(é). There is an action of W on each H*(B,)? (Springer). If d, is
the dimension of B, then (H%(B,))? is either zero or it is irreducible as
a representation of W. Denote this representation a(@, ®). The resulting
correspondence ¢ — o(O, ¢) is the Springer correspondence.

As W-representations X (s, O) = H*(B,) ® sgn ([KL]). Then A(s, ¢) acts

—

on the right hand side via the inclusion A(s,é) C A(é). Fix ¢ € A(s,é).
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If ¢ € A/(g) appears in the Springer correspondence and ¢ contains 1 in
its restriction to A(s,¢), then the W-representation (O, ¢) ® sgn appears
with multiplicity one in the standard module X (s, O,4)). Following [BM1],
I will call these representations ¢ lowest K-types for X (s, O,v). They have
the property that L(s, O, 1) is the unique subquotient of X (s, O,4) which
contains the lowest K-types (O, ¢).

Moreover, if the parameter is tempered (s = %h), then A(s,é) = A(é)
and X (s, 0,) has a unique lowest K-type (O, 1)).

4.2. Unitary dual of H. From the discussion in the previous section, it
follows that it is natural to partition the unitary dual of H by nilpotent
orbits and lowest K—types. I mention that the lowest K—types attached to
nilpotent orbits are known, they can be read for example from [Ca]. For
each nilpotent in F}, I would like to determine the unitarity of the factors
containing the lowest K-types.

In the action of the Iwahori-Matsumoto involution, modules contain-
ing the sign representation are taken into spherical modules. Since this
involution preserves unitarity, the complementary series associated to a
nilpotent @ are transformed into unitary modules containing the sign W-
representation which are parametrized by O in the KazhdanLusztig classi-
fication. They give most of the unitary dual of H associated to ©. Note also
that the set of unitary parameters associated to the trivial nilpotent are just
the complementary series coming from the spherical case. This is because
the lowest K—type of the trivial nilpotent is the trivial W-representation.

I explain the calculations with the intertwining operators in this case.
Using the notation in Section 2, if a simple H-module L(M,V,v) is Her-
mitian with w € W such that w - (M,V,v) = (M,V,—v), the intertwin-
ing operator I(w,v) gives rise to an operator r,(w,M,v) on the space
Homgy (ary (Vo, V), for each K-type (0,V,). I would like to calculate the
signature of this operator. Explicitly, the method is the following:

(1) using the description in Appendix A, construct an explicit (matrix)
realization for o;

(2) determine the vectors in V,, which transform like V' under the action
of W(M). For almost all cases, V' as a W (M )-representation is just
the sign representations, so one only needs to find the vectors that
transform like the sign. The number of linearly independent such
vectors is the same as the multiplicity of o in X(M,V,v).

(3) write a reduced decomposition for w and compute the matrix given
by the action of r,(w, M,v) on the vectors in (2). One obtains in
this way a hermitian matrix of dimension equal to the dimension of
0.
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A lowest K—type (abbreviated LKT) o appears with multiplicity one in
L(M,V,v), so ry(w, M,v) is a scalar. All the intertwining operators calcu-
lated are normalized so that this scalar is +1.

There are four distinguished orbits and the modules associated to them
are discrete series and therefore unitary. They are:
Fq parameter (1,2 3 1) LKT 1,
F4(a;) parameter ( 1 l) LKTs 45 and 24
Fs(az) parameter (3,3, i, i) LKTs 94 and 2
F4(ag) parameter ( ; %) LKTs 1241, 95, 65 and 15

[SIISC SI[9) TR
[SIEENTNC N U

Then, there is the special case of the nilpotents coming from maximal
parabolics. For them, the same argument used in [BM3] applies: for a stan-
dard module parametrized by such a nilpotent orbit O and lowest K-type p,
the next bigger nilpotent O’ has the property that a factor attached to O’
and with lowest K-type p/ appears at the first point of reducibility. More-
over, p' appears with multiplicity one in the standard module. Beyond this
point, x4 and g/ stay in the same factor and they have opposite signatures at
oo. By Proposition 2.4 in [BM3], two such K-types have opposite signatures
at oo if and only if their respective lowest harmonic degrees have different
parity.

Proposition 4.1. Suppose the standard module X (M,V,v), v > 0, is
parametrized by a Levi component M of a maximal parabolic in Fy. Ifv = 1y
is its first point of reducibility on the half line v > 0, then L(M,V,v) is uni-
tary if and only if 0 < v < vy.

Proof. There are five nilpotent orbits coming from maximal parabolics: Bs,
Cs, C3(a1), A1 + Az and A; + Ag. For each of them, I use the argument
outlined above, but also compute explicitly the intertwining operator (which

is a scalar) on p/, normalized by u. This scalar turns out to be in all cases
vo—v
1/8-‘,-1/'

Bgs: The infinitesimal character is (%+V 2+1/, 3 2) the centralizer is A

and LKT 8y. The standard module is X (B3, sgn, ). The first reducibility
point is at v = 1, where there are factors with LKT 94 and 25 coming from
Fy(az). For v > 1, these K-types will stay in the same factor with 85. 89
and 94, or 8 and 29, have opposite signs at oo, ruling out v > 1.
The intertwining operators are

1—v 1—-v
and 9y :
1+v 14w
and this shows independently that the unitary parameter is0<v<I1. At
the endpoint, correponding to parameter ( 3 —), the factor is just 8.

29 :

R §
Cgs: The infinitesimal character is (v, 2,% %) the centralizer is A; and
LKT 84. The standard module is X (Cs, sgn,v). The first reducibility point

isatv= 2, where there is a factor with LKT 94 coming from Fjy(az). For
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v > %, this K-type will stay in the same factor with 82. 89 and 94 have
opposite signs at oo, ruling out v > %

The intertwining operator is
s—v

2 .
2 TV

9y :

The unitary parameter is 0 < v < % At the endpoint v = %, the factor is
84 + 24 with parameter (%, %, %, %)

Cs(ay): The infinitesimal character is (v, %, %, %), the centralizer is A;
and LKTs 167 and 43.

There are two lowest K-types 161 and 43. The corresponding two standard
modules are X (Cs5,V1,v) and X (Cs, Va,v). Here V; is the discrete series in
H(C3) with K-structure 1 x 1140 x 13, parametrized by the nilpotent orbit
(42) and LKT 1 x 11, while V5 is the discrete series with K-structure 13 x 0,
parametrized by the nilpotent orbit (42) and LKT 12 x 0.

The first reducibility point for the 167 standard module is at v = %
corresponding to Fy(as) and lowest K-type 12;. 167 and 12; stay in the
same factor except at v = % and they have opposite signs at oo, therefore the
161-factor is not unitary for v > % The intertwining operator (normalized
by 161) is

1
5—U
12y : 2—.
2 TV
The unitary parameter is 0 < v < % At v = %, the parameter is (%, %, %, %)

and the factor 167 + 94.

For the standard module containg LKT 43, the first reducibility is again

at v = % corresponding to Fy(as) and the factor with LKT 15. 43 and 15

stay in the same factor after that and they have opposite signs at co. The
intertwining operator (normalized by 43) is

— UV

D=

15 : .
2%+V

The unitary parameter is 0 < v < % At v = % and parameter (

the lowest K-type 43 forms a factor by itself.

A7 4 As: The infinitesimal character is (%—l—%lj, %—I—%I/, —%—l—%l/, —%—I—%V),
centralizer is A; and LKT 6;. The standard module is X (Al + Ay, sgn, v).
The first point of reducibility is v = %, where there is a factor coming from
C3(ay) with LKT 16;. If 167 and 61 come apart again, there should be again
a factor from C3(aq), with LKT 161, but now this factor should also contain
6. Since 65 does not appear in the induced from A; + gg in Fy, it follows
that 167 and 61 stay in the same factor for v > % As they have opposite

signs at oo, they rule out v > % This argument also implies that 61, 164,

lll)
72992992/

121 and 97 are in the same factor for v > %



THE UNITARY [-SPHERICAL DUAL FOR SPLIT p-ADIC GROUPS OF TYPE F4 27

The intertwining operator is

1
=—v
16y : 22—,
3 TV
which confirms that the unitary parameter is 0 < v < % At v = %, the

parameter becomes (%, %, %, %) and the factor is 61 by itself.

A1 + As: The infinitesimal character is (% +2v,v, -1+, %), centralizer
is A; and the LKT 44. The standard module is X(A; + Ay, sgn,v). The

first reducibility point is v = %, where there is a factor from A7 + gg with
LKT 61. If 67 and 44 come apart again, there should be a factor with LKT
61 which would contain 9. But 95 does not appear in the induced from
Ay + As. Therefore 44 and 6, stay in the same factor for v > % and have
opposite signs at oo.

The intertwining operator is

1
6 i
1:7 .
§+V

The unitary parameter is 0 < v < % At the endpoint v = %, the factor is

3111)'

44 by itself corresponding to parameter (3, 3,3, 5

O

The rest of the nilpotents, I treat case by case as in the closure ordering.
For each nilpotent, I give the infinitesimal character, centralizer and lowest
K-type(s). The main idea is the following: assume we try to determine the
unitarity of a standard module parametrized by an orbit @ and containing a
lowest K-type p. The corresponding standard module is an X (M, V,v). We
look at lowest K-types o of nilpotent orbits @' which are bigger than O, but
close to O in the closure ordering. We compute the operators 7, (w, M, v).
We try to match these operators with (spherical) intertwining operators on
the relevant K-types of the centralizer of O.

I will say that two such operators match if they have the same character-
istic polynomials (in particular they have the same signature).

However, one cannot always match in this way all the relevant K-types
of the centralizer, and it is unclear at this point how one can predict which
relevant K-types can be matched and what the (abstract) reason for this is.

There is a more delicate point concerning the nilpotent orbits with non-
trivial component group. Let O C § be a non-distinguished nilpotent orbit
and {é,ﬁ, f } a standard Lie triple. Let the standard module attached to
O be X(M,sgn,v) = Ind%M(sgn ® C,) and s a semisimple element with
s = %ﬁ +v. If Ag(é) # {1}, then by Springer’s correspondence, there are
at least two lowest K-types attached to O. In Fy, if O is non-distinguished
and has nontrivial component group, there are ezactly two LKTs for O (O
is one of the following: Cs(ay), B2, As and Zl)



28 DAN CIUBOTARU

When v = 0, the standard module breaks into a sum of two factors,
each factor corresponding to one of the two LKTs. The question is how to
determine when the two LKTs are again in separate factors for v # 0. This
fact is controlled by the component group A(s,é) C A(é) = So (59 is the
group with two elements). We use now the Kazhdan—Lusztig classification
and the connection with Langlands classification (see Section 2.3).

The two lowest K—types are in separate factors if and only if:

(1) there exists a Levi subgroup M’ with M C M’ C G such that
1.
XG(M7 sgn, V) = IHd%M/ (XE\/[(Ma sgn, §hM’) ® (Cl/)v

where by ha, I denote the middle element of the nilpotent orbit
Opr parametrized by M in the dual Lie algebra of M " m.
(2) and the nilpotent orbit Oy in m’ has nontrivial component group.

Concretely, for a parameter s we check condition (1) by verifying if there
exists M’ such that s (or rather a W—-conjugate of s) is in ay» C a (the dual
Cartan subalgebra corresponding to M').

Next, I begin the analysis of unitarity for the remaininig nilpotent or-
bits. As in the case of spherical parameters, I present pictures of the two-
dimensional cases. In the pictures, “green” and “red” refer now to the
unitarity of the lowest K-type factors.

B2: The infinitesimal character is (v1,vs, %, %) with 0 < vy < v, the
centralizer is A; + A;. The standard module is X (B3, sgn,v).

There are two lowest K-types, 93 and 4; which have the same lowest
harmonic degree and therefore same sign at co. They stay in the same factor
everywhere except on the line v; = 15 = v. On this line the parameter can
be conjugated to (v, —v, %, %) € acy. The nilpotent corresponding to By in
the Lie algebra of type Bsg is (511) and it has two LKTs.

The intertwining operator is

%‘H/l
161 : 1
((J—
%+m

Since the first lines of reducibility are v; = % and vy = % (coming from

C3(ay)), this implies the parameter is unitary if 0 < vy < 1y < %
On the line v; = 15 = v, the first reducibility occurs at v = %, corre-
sponding to Fy(az). Both factors have a copy of the K-type 16, and the
1

value of the interwining operator is the same ?;Z for both copies (when

normalized by 93, respectively 41). This fact shows the parameter is unitary
ifo<rv< % for both factors on the line v1 = vy.
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2 vy =/
Bsg
1 5
(7> 32) Cs
(é 5
2032
Fy(a1) Fy
3.3
(1,1 Fy(az) Fa(a1) Cs(a1)
3
V| .
0 3

]
(M

F1GURE 6. Unitary representations parametrized by Bo

A,: The infinitesimal character is (% + 1+ vy, —% + 1, —% + 1o, %), with
0 < vy < vy, centralizer Ay, LKTs 83 and 13. The standard module is
X (Ag, sgn,v).

The two lowest K-types, 83 and 13 are separate only on the line vy = 0.
On this line, the parameter can be conjugated to (—%, %,% + v, —% + 1),
which is an element of ac,. The corresponding nilpotent orbit (331) in the
Lie algebra of type B3 has two lowest K—types.

The lowest K—types, 83 and 13 have opposite signs at co; therefore, the
factor containing both 83 and 13 can’t be unitary. So one restricts to vy = 0,
where the infinitesimal character becomes (% + v, —% +u, %, %), v>0.

The factor containing 83 is unitary for 0 < v < % At v = %, there is a
first reducibility point corresponding to Ay + Ay. The intertwining operator

1S

v 1-v (1-v)? §-v

. and 67 : . ,
Tyv 1+v are? iy

441

which implies the factor is not unitary for v > %, except maybe at v = 1.
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At v = 1, the parameter is (3, 1,3, 4) and the factor (85 + 121 + 95 + 85)
is unitary (this factor is also the IM dual of a unitary factor, endpoint of a

complementary series in Aj).

The factor with LKT=13 has first reducibility only at v = 1, correspond-
ing to Fy(as). The intertwining operator (normalized by 13) is

1—v
14+v

3 .

Therefore, the unitary parameters associated to 13 are 0 < v < 1.

v2 vy = v
Az + Ay
22 (32) Bs
Fya
an B @b Bo
Fa(a1)
Bz
11
(553
3.4
Fy4(ag) Fs(az) vy
OAy +A,2 ! 2

FI1GURE 7. Unitary representations parametrized by Ag

Ao: The infinitesimal character is (vg + 32&7 1+ 42,4, -1+ %) with
v > 0~7 vo > 0, the centralizer is G5 and the LKT 8;. The standard module
is X(Ag, sgn,v).

One can match the calculations with those for the spherical unitary dual
for G (see Appendix B).

Explicit calculations with the intertwining operator give:
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81  matches 1; in Gy
61 matches 14 in Gy
167 matches 29 in Go
127 matches 2; in Go

62  matches 13 in Gy

The hyperplanes of reducibility in Ay C Fy are those from G and s +
21 = 3, vy + 11 = 3, 11 = 3. However, these extra hyperplanes do not
intersect the unitary dual of Gy except at the point (%, %, %, %) Also, as
seen above, the relevant K-types in G2 are all matched, following that the
unitary parameters for Ay are exactly those of the spherical G:

200+ 31 <1, vy +2r; <1< vy + 3y,
and the point (%, %, %, %), where the LKT factor is just (81).

V2

FIGURE 8. Unitary representations parametrized by AVQ

A+ 111: The infinitesimal character is (v1, % + v, —% + vo, %), v > 0,
vy > 0, the centralizer is A1 + A; and LKT 9;. The standard module is
X (A1 + Ay, sgn,v).

One tries to match the unitary parameters with the spherical unitary dual
of A; 4+ Ay. The intertwining operators are:

91: +1

. l_ljl
T
811 f_yz

14+vo

Vi
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This implies that the unitary dual in included in 0 < vy <1, 0< 1y < %
However, there are two lines that cut through this region: vq + 2y = % and
-+ 219 = % On these lines there is a factor from A; + Ao, the parameter

can be written as (% +2v,v,—1 4+ v, %) and the K-structure of the 9¢-factor

1S:
91 4+3x 1671 +83+8 +2x 121 +2 x99+ 93 + 64

441 +2 x84 +8 +43+2x 94+ 69+ 45 + 24.

The factor parametrized by Ay + Ay has LKT 4. By computing the
intertwining operator on 44, one rules out the region 0 < 1 < %, v1+2v9 >
%, -1+ 21y < % On the line 11 = % however, 44 is not in the same factor
as 9.

Along the line v; = %, the parameter can be written as (% +v, —%-{—V, %, %)
and there is reducibility coming from As. The generic K-structure for the
LKT factor is:

91 +2%x161+8 +121+2%x994+67 +41 +2 X 8 +43+94 + 24.

This factor is only reducible at v = 1, so it will be unitary for 0 < v < 1.

In conclusion, the unitary dual attached to this nilpotent is as seen in the
figure 9.

vy Ag

=

[V

Fg(a, F

il 4(a -

(EQ))/ (%,i (%.1) Cs(a1)
1
3 Fa(a1)
4 (3N

vl

1 3 5

0 3 3 3

FI1GURE 9. Unitary representations parametrized by A, + /Tl
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Aq: The infinitesimal character is (v1, Vo, % + vs, —% +v3), 11 > 19 >0,
vs >0, the centralizer is A3 and the LKTs 45 and 2;. The standard module
is X(Ay,sgn,v).

The two lowest K-types have opposite signs at oo, therefore if they are
in the same factor, that factor will be nonunitary. They are separate if the
parameter can be conjugated to an element in d¢, since the nilpotent orbit
corresponding to ﬁl in the Lie algebra of type Bs has two lowest K—types.

This happens when v3 = 0 or 1 = v5. The parameters on the two planes
are W-conjugate, and for the purpose of calculation, it is more convenient
to consider v3 = 0.

I restrict to this hyperplane and the parameter is (v1, v, %, %), with 0 <
1%} § 4B

First, I look at the factor with LKT 45. The reducibility lines are vq = %

and vy = % coming from A; + Zl, 1 + v =1 and 11 — v = 1 coming

from Ag, 11 = % and vy = % coming from C3(a;) and v; + o = 2 and
1 — vg = 2 coming from By. The first reducibility line is 1 = %, so in the
region 0 < vy <vp < %, the factor corresponding to 45 is unitary. Note also
that on these reducibility lines, the 4o-factor is self-dual, so I can’t use the
results for the other nilpotent orbits and the Iwahori-Matsumoto involution.

I am trying to match the unitary dual in this case with the spherical dual
of Cy. The intertwining operator on the K-type 9; having multiplicity 2
in the 4s-factor, normalized by the value on 45, matches the intertwining
operator on the K-type 1 x 1 in C5. Moreover 4; matches 0 x 11 and 44
matches the product of the operators on 0 x 11 and 11 x 0. However, one
also needs to use the intertwining operator on 83 (multiplicity 2). I list the
parameters according to the nilpotent orbits in Cs.

(4): parameter (v1,v2) = (2, 1). The 4o-factor is (45+65) and it is unitary
(it is dual to a factor in Fy(as)).

(22): parameter (3 + v, —3 + v). The 4o-factor is self-dual:
44 +914+8 +834+94+93+2 x 121 + 84 + 8 + 2 >1< 161 4+ 2 X62—|—94—|—45.

The operator on 9; is =%

1+v

and on 83 is L‘L—Z . ;_FZ The first point of

reducibility is at v = %, where there is an extra factor coming from A+ Ao,
so this shows the factor above is unitary for 0 < v < % At v = %, the factor
is just
49 + 62 + 91 + 81 + 167 + 92 + 127 4 84.
(211): parameter (v, 5). The 4p-factor is as in the case (22). The operator

3_
on 9; is §+Z On this line, the first reducibility point is at v = %, so the
2

factor is unitary for 0 < v < %

(1*): parameter is (v1,12). The operator on 9; is positive definite only in
the regions 0 < vy, < 1] < %, which I know is unitary, and 1 — vy < 11 <
1+, 0<1n< % The second region is ruled out by the operator on 4.

The answer is illustrated by figure 10.
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vo vy = vy

vy —vg =1

v] —vg =2

wle
leo

vg =

Wl
vl
leo
-

1 2

=}
[N
wlw

V1

FiGURE 10. Unitary representations parametrized by Ay and 45

Next, I analyze the unitarity of the other lowest K-type factor, containing
21, on the same plane. The lines of~ reducibility are v; + 15 =1, 1] — 15 =1,
where there is a factor from Ay + A1, v1 + 19 = 2, 11 — o = 2 with a factor

from By and v = %, vy = % where one finds a factor from Cs(a1) and also

one from As.

I will give the explicit expressions for the intertwining operators on some
K-types of Fy (normalized by the value on 21). I will only remark that there
is a matching with the spherical unitary dual of a graded Hecke algebra of
type B, but with parameter ¢ = 3 (I will denote it By(2)). The opera-
tors on Bg(%) were also computed explicitly. 8; has multiplicity 2 and it
matches 1 x 1 for By(3), 91 matches 11 x 0 and 6; matches 0 x 11. One also
needs the operator on 43. Again I list the infinitesimal characters by their
correspondents in Bs.

(5): parameter (5,3). 2; forms a factor by itself which is unitary (dual
to a Fy(az) factor).

(311): parameter (v, 3). The 2;-factor at generic points is dual to one in
By and has K-structure

21491 4+ 167 + 81 + 41 + 9.
The intertwini t S.g—ud 9.%4-1/%—1/
e intertwining operator on 8 is . and on 9; is i
the second one has a pole at v = %) The first reducibility point is at v =

(note that

1
29
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At

D=

therefore the calculations imply the factor is unitary for 0 < v <
v= %, the factor is just
21 4+ 81 + 9.
(221): parameter (3 + v, —3 + v). The 2;-factor at generic points is dual
to one in A, and has K-structure

21 + 81 + 99 + 43 + 1o.

The intertwining operator on 8 is 3;—5 and on 43 is i;—z . % Since the

first reducibility is at v = 1, it follows the factor is unitary for 0 < v < 1.
(15): parameter (vq,v2). From the previous calculations, it follows that

the generic 21-factor is unitary for 0 < vy < vy <l—wpand 1415 <11 < %

This is also seen in the figure 11.

v2
vy = V2
V1—I/2:1
1117112:2
(§
29
5 3 _ 3
2 2) v2 = 3
,
(l 1
2
3
0 1 5 2 121

FiGURE 11. Unitary representations parametrized by Ay and 2,
Note: On the line vy = 0, v; = v, the parameter is (0, v, %, %), so it is
induced from C3. The parameter (v, %, %) in C3 comes from (2211) and
there are two separate lowest K-type factors. The 2 x 1-factor is unitary for
0<v< % and induces up to the 4o-factor in Fy, while the 12 x O-factor
is unitary for 0 < v < % and induces to the 2;-factor in Fy. This fact is
consistent with the above calculations.

A;: The infinitesimal character is (vq,v9, s, %) with 0 < v3 < vy < 1y,
the centralizer is C'3 and the LKT 23. The standard module is X (A1, sgn, v).
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I compute the intertwining operator on K-types, normalized by the value
on the LKT 23 and try to match the unitary dual with the spherical dual of
(3. The K-types that match intertwining operators in C'3 are:

23 with 3 x 0

45 with 0 x 3
81 with 0 x 12
91 with1x2

43 with 0 x 13

Since it is impossible to match all the relevant K-types for C3, one cannot
conclude if the unitary parameters of A; are identical or not with the spheri-
cal unitary dual of C'3. One also needs the intertwining operators calculated
on 44, 83 and 13.

I list the infinitesimal characters as in Cj, ordered by the nilpotents in
Cs.

(6): parameter (2,3,1). The LKT factor is 23+ 83 and it is unitary (dual
of a factor in C3).

(42): parameter ( % %) The LKT factor is 23 + 83 + 93 and is unitary
(dual of a factor in F4( 3))-

(411): parameter (v,3,%). The matched intertwining operators are all
7

1 I d 44 gi
3 gives #— - 2— and 44 gives
+v  S+v

The LKT factor is unitary for 0 < v < % (v = % is the

zero for this parameter. 83 gives 2— ol
A
Al Sopl =2
first reducibility point) and at v = % (this point does not appear in C3). At
(2,3.1), the factor is 23 by itself (dual of a Fy(ay) factor).

(33) parameter (14 v,v,—1+v). The first reducibility is for v = 1. 45

1—1/
+ . The LKT factor is unitary for 0 < v < %
2-(1-v)

—v

3
gives T and 9; gives T

222): parameter (s + v, —= —|— v, 91 gives 83 has two
2 2

) @+v)(1+v) -
nonzero eigenvalues with product % The first reducibility is at
v =1, so the LKT factor is unitary for 0 < v < 1.

3 1 3 2
. 11 . 5V . (5—1/)(5—1/) §—V)
(2211): parameter (v,3,3). 91 glves vl 13 is EEe e The

first reducibility point in Fy is v = 2, so the LKT factor is unitary for
0<rv< %

(2211): parameter (% + vy, —% + v1,1v9). The matched operators on 91,
81 and 45 rule out this entire plane except the region 5 < Uy < g —v. In
Ay C Fy, there is the line 217 + vy = , 2 <1y < 3 cuttrng through this
region. The two resulting open regions are ruled out by 44 and 83. On this
line the parameter can be written as (% +2v,v,—1 + v, %), which unitary
for 0 < v < & (it is dual of a unitary factor in 4; + A).

(214): pararneter (v1,12, 3) with 0 < v5 < 1. The only nonzero matched
(3-1r1)(5-r2)
G+r1)(34v2)”

operator is on 9, which is The calculations with 44 and 83
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give the following reducibility lines: v1 + 15 =1, vy £ o =2, 1) = % and
Vo = ;’ Checking each of the resulting region and segments not ruled out by
9, already, it follows that the LKT factor is unitary in the regions v1+vo < 1
and 1+ 15 <11 < 2 (dual of a unitary factor in Al) and on the segment
(1+v,1-v, ), 0<v<3 1 (the parameter is conjugate to (v, v, g, ;) and
the module is the IM- dual of a factor in By).

(1%): parameter (v1, vo, Vg) The matched operators rule out all the space
except in the regions v; < 2 which is unitary, the plane vy = % being the
first plane of reducibility, and 0 < 1 —1y <3 <1l—1n < % < <l—-ury<
v1 < 14 v3. In Fy, the plane v; + 19 — v3 = % divides this region into
two parts. The K-type 83 rules out the two open subregions and the wall
between them. It follows the only unitary parameters here are in the first
region.

5. TABLE OF UNITARITY

The first list is the unitary spherical dual partitioned by complementary
series associated to nilpotent orbits.

Orbit Parameter Conditions
F (Q 5 3 1)
F4( ) (72 ’32 712 12)
4(a1 5y 51575

87811
F4((12) (57?7g7?) 1
C3 (V7§7§7§) 0§V<§
By (3+v.—3+w3.3) 0sv<l
Fias)  (3.1.4.0)
Glar)  nd L5 0<v<l
Atd G+ ¥3rgobesofep 0se<d
By (v1,12,5,5) 0<wm<uy<i
AL+ Ay (3 +2v,v,-1+v,3) 0<v<3
Ay (o + 301+, 8, —1 4+ 4) Sv1 + 21, <

21 + 19 < 1 < 311 + 1

Ay (3 +1/—2—|—1/—2,2) 0<v<3
414-141 (V1,2+V2, 2+V2,%) V1+2V2<%, V1<%
Al (V17V27272) 0§V2§V1<%
Ay (v1,v2,v3, %) 0<ry<wmm<ur <3
1 (v1,v2,v3,14) v < 3

i+t —m<l<uvy4+uvy+vy+uy
Note that the parameter for the trivial nilpotent orbit should be dominant.

Next, I will give a list with all unitary representations organized by the
nilpotent orbits, infinitesimal characters and lowest K-type of the unitary
factor. The unitary parameters for the trivial nilpotent coincide with the
spherical dual and will not be listed for economy.
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Orbit

Fy(ar)

Fy(az)

Cs

Bs

Fy(a3)

Cs(ar)

A1+Z2

Bs

gl‘i‘AQ

Ay
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Parameter

,3)

—~
—_
—_

v
e
nolee

— —
Ot NI~
[\e][OV) N
N[ — D=
N[ — D=
N— S~—

N TN
ot

ol
NI
NN
~—

/N N
N|OBO| W
roleo +
l\)lr—-\;
N[ — |
~— D[
S
N
NI
N—

—
N
D=
D=
D=

N—

Conditions

0<r<

D=

o
A
A
N
D=

0<r<

D=

0§I/2<I/1<%
0<v<i
0<r<

NN

3v1 +21p < 1

201 + 15 <1< 3] + 10
0<rv<
0<v<

DO—=DO[ =

LKT



THE UNITARY [-SPHERICAL DUAL FOR SPLIT p-ADIC GROUPS OF TYPE F4; 39

A1+Z1

(%—I_V?_%_‘_Va%v%)
(g +2v,v,—1 V,%)
(57%7%7%)

(V17V27 %7 %)

—
N[ —
+
X
|
N[ —
_l_
X
N[ —
N[ —
~—

<

N
vl X
S—

D] O] G| =
IS M
SN M
N—

—

nojot
NojodOl—
IS
wl— 2
~ S—

+ + +l\3I>—‘—|—
N ol

v, —

NN

o
D[

<4

DO O] b0 | I Lo
NI TN L)
NI N T Ll
— — —

NN TN TN TN TN TN TN
~woloolw X o= = T o=

I/1—|—21/2<§, I/1<%
21/2—1/1>§, vy < 1
0<rv«l
0§1/<%

0<wy <1 <3
0<w<l—un
1+V2<V1<%
0<r<
0<r<
0<rv<
0<rv<

S SITIUR TR

0§V3§V2§V1<%
V141 <l
1+V2<V1<%
0<rv<
0<r<
0<rv<
0<rv<
0<v<
0<r<

DOl —= = DO =0 =0 —

APPENDIX A. IRREDUCIBLE WEYL CHARACTERS

31

33
13
33
13
83

91
91

91
91

Recall that the calculations with the intertwining operators are done in
the dual complex group G. Let s; be the reflection in the Weyl group
corresponding to the simple coroot &;, ¢ = 1,...,4. Recall that &y, do are
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the long simple coroots. The description of irreducible characters ordered
by dimension follows.

91
92
93
94

unit representation;

sign representation;

s1, s act by +1, s3, s4 by —1;

=1 ®14.

s1, So act trivially,

s3, s4 act by reflections as in the representation (21) of GL(3);
=21 ® 1y

s1, 2 act by reflections as in the representation (21) of GL(3),
s3, S4 act trivially;

=23 14.

=21 ®23;

the reflection representation;

=45 ® 1o;

=4y ® 13;

=49 ® 14.

second exterior power of 4o;

=060 ® 1y =69 ® 13.

=4®21; 8 =81Q14;8 =423 81 =83® la.

second symmetric power of 45 from which one substracts 11;
=9; ® 1g;
=9 ® 13;
=9 ® 1.

121 =61 ®21; 161 =41 ®4,.

Let

APPENDIX B. UNITARY SPHERICAL DUAL FOR G

G be the complex dual of a p-adic group of type Go. I use the following

parametrization for simple roots, coroots and coweights of G:

aq
a2

=2, -4 b a=(2-1,-1) = (1,1,-2)
= (—1,1,0) dta (110) = (0,1,-1)

Note that «; is the short simple root.

The closure ordering of the nilpotents orbits is:

Gg — Gg(al) — Avl — A1 — 1.

The following two sets of K—types are sufficient for the determination of
the spherical unitary dual:

{11713714722} and {11721722}'
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where 1; is the trivial representation, 21 is the reflection representation, 1o
is the sign representation, 13 is the one-dimensional on which ¢; acts by 1
and to by —1, 14 is the one-dimensional on which #; acts by —1 and 9 by 1
and 29 = 21 ® 13 (see [A]).

The long intertwining operators, corresponding to the long Weyl element
wo = (s152)3, for a parameter (associated to the trivial nilpotent orbit)
(v1,v1 + V2, =211 — 1) with 11 > 0, vy > 0 are:

1q: +1
1 . 1—v9 . 1—(3V1+2V2) . 1—(3V1+l/2)
3 142 14+@Bri+2v2) 14+(3vi+r2)
1y 1—(itve)  1-v  1=(2v1tva)
4- 1+(l/1+1/2) 14+v1 1+(2V1+l/2)
21, 29: are 2 X 2 matrices with determinant
1-vy  1-(Bvi+2v2) 1-(Britwe) 1-(vitve)  1-1vy  1-(2v1+vs)
1+ve  14+Bri+2v2) 14+@Britr2) 1+(vitv2) 141 14+(2vi+v2)

The lines of reducibility are 3v1 + 219 = 1, 311 + 10 = 1, 211 + 15 = 1,

ri4+r=1rvn=1and v, =1.

V2

(1,1)

(0,0) (1,0 (1,0 (1,0)

V1

F1cURE 12. Unitary spherical dual for Go

The spherical unitary parameters are (as seen in the picture):
{3v1 + 21 < 1};
{21/1 + 1 <1 <3+ 1/2};
(Vla V2) = (13 1)
The spherical unitary dual in the picture is partitioned by nilpotent orbits
as follows:
Gg: parameter p = (1,2,—3) corresponding in the picture to the point
(1,1). The standard module is just 1;.
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Gz(ap): parameter ws = (0,1, —1) corresponding to the point (0,1). The
K-structure of the standard module is (11 + 2;) + (13).
111: parameter %al + vwy = (1, —% + v, —% —v). The standard module has
K—structure 17 + 21 + 13 + 25. v = 0 corresponds to (%,0) in the picture.
The standard module decomposes as follows:
v Decomposition Spherical factor orbit

(11 +21) 4+ (13) + (22) Ga(ar)
2 (L) +(21+22+13) G

The complementary series is 0 < v < % The calculations with K-types
are (14 does not appear):

loeol—

1, : +1; v 17 13 29 2¢
13: 2=~ for v 0,and 0 at v = + + + +
3 (gl+z/) . )?é 2 % + + 0 +
2 s + + - +
LG+
(gQ_V% g 540 0 0
20 + - + -

Aq: parameter %ag +vwy = (—% + v, %4— v, —2v). The standard module has
K-structure 1; + 2; + 29 + 14. v = 0 corresponds to (0, %) in the picture.
The standard module decomposes as follows:

v Decomposition Spherical factor orbit

g (11 +21) + (22) + (14) Gg(al)

5 (1) +21+22+1) G

The complementary series is 0 < v < % The calculations with K-types

are (13 does not appear):

1, : +1; v 11 14 29 29

1, GG, o+ o+ o+

GGy Ly 0 0 +

2,: GG, + o+ -+
(§+V)(§+V) 3

L + - + -

1: parameter (11,11 + 2, —2v1 — 12); the complementary series is formed by
the two 2—dimensional unitary regions in the picture.

APPENDIX C. CONNECTIONS WITH THE REAL SPLIT CASE

In this appendix, I plan to present the connection between the calculation
of the spherical unitary dual in the split p—adic case, which is the subject of
Section 3, and the spherical unitary dual for real split groups. I will review
basic definitions and results from the theory of unitary representations of real
groups and summarize the results of D. Barbasch from [B2]. The following
exposition is fundamentally influenced by [B2] and the notes of D. Vogan in
[V2].

Let us fix the notation. G = G(R) will denote the R—points of a reduc-
tive algebraic group defined over R. In section C.3 we will restrict to split
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groups GG. K is a maximal compact subgroup (the fixed points of a Cartan
involution #). P will denote a parabolic subgroup with the (Langlands) de-
composition P = M AN and G = PK. In C.3, we will consider P to be a
Borel subgroup, P = B, which contains a largest split torus.

C.1. (g, K)-modules and unitarity. The problem is to determine the
irreducible representations (7, V') of G which are spherical, that is VX # {0}.

Definition C.1. (7,V) is called a (g, K)-module if V is a complex vector
space, which is alU(g)—module (U(g) denotes the enveloping algebra of g) and
a semisimple K —representation such that the two actions are compatible:
(1) w(k) -7n(X)v =7n(Adk(X)) -m(k)v,veV, ke K, X € U(g);
(2) if F is a K—stable finite dimensional subspace of V', then the repre-

sentation of K on F is differentiable and its differential is w|e (€ is
the Lie algebra of K ).

A (g, K)-module (m,V) decomposes into a sum of K-isotypic compo-
nents. We will always consider that the modules are admissible, which means
that all the K—isotypic components are finite dimensional.

If (7,V) is a representation of G, v € V is called smooth vector if the
orbit map ¢, : G — V, ¢,(g9) = m(g)v is C*°. v € V is called Kfinite if the
subspace generated by {m(k)v: k € K} is finite dimensional.

Let Vj be the space of smooth K—finite vectors of V. To a representation
(m,V) of G, one attaches the Harish—-Chandra module (mw, V), which is a
(g, K)-module. The unitarity question can be translated to the category of
(g, K)—modules.

Theorem C.2 (Harish-Chandra). V' — Vj defines a bijection from the set
of equivalence classes of irreducible unitary representations of G onto the
set of equivalence classes of irreducible (g, K)—modules admitting a positive
definite invariant Hermitian form.

From now on, by an irreducible (unitary) admissible representation of G
we will actually mean an irreducible (unitary) admissible (g, K)-module.
Moreover, the term “equivalent” for representations of GG will actually mean
“Infinitesimally equivalent” (the associated (g, K')-modules are equivalent).

C.2. Langlands Classification. I will present the construction of Lang-
lands representations and associated intertwining operators following [KZ].

Definition C.3. An admissible representation (m,V') of G is called a dis-
crete series if its matriz coefficients are in L*(G). (m,V) is called tempered
if its matriz coefficients are in L*T¢(G) for all € > 0.

Consider the following parameters:

(1) P = M AN a parabolic subgroup.
(2) 7 an irreducible tempered representation of M.
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(3) v a character of a, the Lie algebra of A such that Re v is in the open
dominant Weyl chamber given by the roots of A in P.

Note that v gives rise to an one—dimensional character of A, which will
be denoted e”.
Let I(P,m,v) be the induced module

I(P,m,v) =Ind% (7t ® e’ @ 1).

If P = M AN denotes the opposite parabolic subgroup, define the (integral)
intertwining operator

Ap(m,v) : I(P,7,v) — I(P,m,v), by

(Ap(m,v)f)(x) = /_f(wn) dn, f e I(P,m,v), z € G.
N
Define L(P, 7, v) to be the image of Ap(m,v). This is the Langlands quotient.

Theorem C.4 (Langlands). L(P,w,v) is irreducible admissible and every
wrreducible admissible representation of G is equivalent to a Langlands quo-
tient. Two sets of parameters, (P, m,v) and (P, 7', v'), parametrize the same
representation if and only if they are conjugate under G.

The unitarity question then amounts to classifying which Langlands quo-
tients L(P,m,v) are unitary. The following theorem gives the necessary and
sufficient conditions for the Langlands quotients to be Hermitian.

Theorem C.5 (Knapp—Zuckerman). Let L(P,7,v) be as in Theorem C.4.
Then L(P,7,v) admits an invariant Hermitian form if and only if there
exists w € W(G,A) W(G,A) = Ng(A)/Zc(A)) conjugating the triple
(P,m,v) to the triple (P, m,—1).

In this case, the Hermitian form is positive definite if and only if the in-
tertwining operator A := R(w)A(m,v), where R(w) denotes the right trans-
lation by w, is either positive semidefinite or negative semidefinite.

Three remarks regarding Theorem C.4:

a) If one required the parabolic subgroups in the parametrization to be
standard, the sets (P, 7, ) would always parametrize inequivalent represen-
tations.

b) The Langlands classification can be reformulated so that 7 is a discrete
series. This is because every irreducible tempered representation is equiv-
alent to a summand of an induced representation from a discrete series
(Langlands). In this formulation though, v would be required to be in the
closed Weyl chamber and the Langlands quotient as defined above would be
reducible and Langlands classification would state that every irreducible ad-
missible representation of G appears as a summand of a Langlands quotient
(see, for example, Theorem 14.92 in [Kn]).

c¢) For unitary representations, one can reduce the classification to the case
of real infinitesimal characters, i.e. one can assume v € a* is real (as in
Theorem 16.10 in [Kn]).
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In the next subsection, when we will restrict to the case of spherical
representations, the classification will become simpler and we will discuss
the intertwining operator in more detail. Furthermore, the intertwining
operator will be normalized so that the condition for unitarity as in the
Theorem C.5 will require the operator to be positive semidefinite.

C.3. The Spherical Split Case. Let B = M AN be a Borel subgroup. A
is the identity component of T', a largest split torus in G and M =T N K.
Consider the induced representations (principal series)

Xp(0,v) :=mdE(6 @ e’ @ 1),

where ¢ is a unitary character of T, trivial on M and v is a real character
of a.

Langlands classification for spherical representations says that any spheri-
cal representation of GG is equivalent to the Langlands quotient of an induced
representation X (9, ) with v dominant. Moreover, it is possible to reduce
the study of unitary spherical representations to the case when ¢ is trivial.
We will assume from now on that this is the case, so that the spherical
representations will be parametrized only by a dominant character v. Con-
sequently, they will be denoted L(v) and we will view them as the irreducible
quotients of Xp(v).

From Theorem C.5, we know that there is an intertwining operator A(v) :
Xp(v) — Xz(v) and let A(v) be normalized so that it is +1 on the K-fixed
vector. L(v) is the image of this operator and it is Hermitian if and only
if there exist w € W, such that wy = —v (recall that v is real). This is
equivalent in this case to wor = —v.

Let (u,V,) be a K-type of G (a representation of K). The following
construction is due to Barbasch and Vogan. The intertwining operator A(v)
induces a map

A,(v): Hompg (Vy, Xp(v)) — Homg (V,, X5(v)).
By Frobenius reciprocity
Hompg (V,, Xp(v)) = Homp (V,,C) = Homg (V,,, X5(v)).
Since Homps(V,,, C) = (V;)M, we obtain an operator
Au(v) = (VM — (VHM.

The normalization of the intertwining operator implies that A, (triv) = +1.
To summarize the discussion, we have:

Proposition C.6. A spherical representation L(v), v € a*, real and domi-
nant, is unitary if and only if wov = —v and all the operators A, (v) induced
on the spaces (V;)M are positive semidefinite.
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Since W = Nk (T')/M, there is an action of the Weyl group W on (V:)M.
Denote this W-representation by 7(u). In general 7(u) may be reducible.
Clearly, the dimension of 7(1) is the same as the multiplicity of p in X p(v).

The operator A(v) has a factorization corresponding to a reduced decom-
position of wy, so each operator A,(v) will have such a factorization. For
a given p, the factors of A, (s, V) corresponding to the simple roots a € II
can be described explicitly.

For each simple root o of T" in G, there is a homomorphism ¥, : SL(2,R) —
G, coming from the Lie algebra homomorphism which takes the Lie triple
of sl(2,R) to the Lie triple corresponding to a. Via ¥, SO(2) is embedded
into K. Therefore, the K-representation (i, V),) has a grading coming from
the action of SO(2):

Vo=@Vl Vul) ={v € Vi: p(Ta(a))v = x;(x)0}.
JEZ

Recall that the irreducible representations of SO(2) are parametrized by
integers: x;(e) = €Y, for e € SO(2) = St

The action of M C K preserves V,(j) + V,(—7) and it could have fixed
vectors only if j is even. Denote (V,(24)) := (V,(2j) + V,.(—25))*. Then
we have a grading on (V) )M

VM = P (Vu@)mH™.
JEL+
The following known result gives the action of A, (s, v) on each (V,,(25)*)M.
Theorem C.7. On (V,,(25)*),
Id ifj=0

0<I<] (
In order to match these operators to those from the p—adic case, we need

to restrict to a special class of K—types.

Definition C.8. A representation (u,V),) € K is called petite if, for every
simple root «, the representation of SO(2) (via V) on V), contains only the
characters x—_o2, xo and xa2.

For petite K—types, Theorem C.7 can be reformulated as follows.
Corollary C.9. If (u,V,) is a petite K-type, A,(sq,V) acts on (V;)M as:

1 on the (+1)-eigenspace of sq
Ay(sq,v) = —{
+

! .
: Y a; on the (—1)-eigenspace of sq.
1/7

joxt
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The corollary implies that on petite K-types, A,(v) is a product of
A, (sq,v) corresponding to the reduced decomposition of wg and it depends
only on the W —structure of (V*)M.

In the p—adic case, from the explicit description of the long intertwin-
ing operator on a Weyl representation (o, V,), we can see that r,(wg, V) :
(Vo)* — (V,)* decomposes into a product corresponding to the reduced de-
composition of wy and the action of each factor r,(s,, V) is given explicitly
by

1 on the (+1)-eigenspace of t,
ro(8a,v) =9 1= (v,a)

T4 on the (—1)—eigenspace of t,.

Note that s, € W and t, € C[W] have the same action on V. This shows
the connection between the real and p—adic case.

Theorem C.10 (Barbasch, Vogan). If (u,V),) is a petite real K-type, the
real operator A, (v) coincides with the p-adic operator ., (wo, V).

One can use this theorem to rule out nonunitary parameters in the real
case, based on the calculations for the p—adic case. In the p—adic case, we
have a list of relevant K—types, which are enough for the determination of
unitarity. The conjecture is that the relevant K—types match some petite
real K—types.

Conjecture C.11 (Barbasch). For each relevant K—type, o € W, for the
p—adic group, one can find a petite K—type p for the real group such that

T(u) =o.

In the classical cases, this conjecture was proven by Barbasch (see [B2]).
He calculates explicitly the petite K—type corresponding to each relevant
K-type in the list from Theorem 2.11 in Section 2. I reproduce here his
correspondence for the split noncompact classical groups.

Type Petite K—type Relevant K-type
A (2,...,2,0,...,0;+) (m,n —m)
—— ——
m n—m
B,D (1,...,1,0,...,0;+)®(1,...,1,0,...,0;4+) (n—m) x (m)
—— —— —— ——

m n—m m n—m
0,...,0;+)®(2,...,2,0,...,0;+) (m,n —m) x (0)
N—_—— —— ——

n m n—m

C (2,...,2,0,...,0) (n—m) x (m)
—— ——

m n—m
(1,...,1,0,...,0,—1,...,—1) (m,n —m) x (0)
—— ———
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G K Type
GL(n,R)  O(n) A

In the table, the real groups are: O(n,n) O(n) x O(n) B
Sp(n,R) U(n) c
On+1,n) On+1)x0O(n) D

and the notation for the representations of K is the classical one.

One hopes that the same machinery works for the exceptional groups and
that a similar correspondence between petite (real) K—types and relevant
(p—adic) K-types exists.

Finally, T should stress the point that Theorem C.10 gives a criterion
for nonunitarity. After ruling out the parameters which are not positive
semidefinite on the relevant K—types, one needs to show that the remaining
parameters are unitary. The method in the p-adic case relies on the fact
that the parameters corresponding to %71, where h is the middle element of a
nilpotent orbit O, are unitary (these are the so—called antitempered param-
eters). In the real case, the same parameters do not come from tempered
representations, but it is known that they are unitary (Barbasch). For a
proof of this fact, see [B3] (also section 9 in [B2]).
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