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Abstract. The determination of the Iwahori-spherical unitary repre-
sentations for split p-adic groups can be reduced to the classification of
unitary representations with real infinitesimal character for associated
graded Hecke algebras. We determine the unitary modules with real
infinitesimal character for the graded Hecke algebra of type E6.

1. Introduction

1.1. The Iwahori-Hecke algebra. Let F denote a p-adic field with the
ring of integers R and unique prime ideal P. Let G be the F-points of
a split reductive algebraic group defined over F. K = G(R) is a maximal
compact open subgroup in G. Let B be a Borel subgroup such that G = KB.
B = AN , where A is a maximal split torus and N is the unipotent radical.

There is a surjective homomorphism K → G(R/P). Define the Iwahori
subgroup, I ⊂ G, to be the inverse image in K of a Borel subgroup in G(R/P).
Then I is a compact open subgroup of G.

Definition. A smooth admissible representation (π, V ) of G is called I-
spherical (spherical) if V I 6= 0 (respectively V K 6= 0).

Define the Iwahori-Hecke algebra, H = H(I\G/I), to be the set of com-
pactly supported I-biinvariant functions on G. This is an algebra under the
convolution of functions. If (π, V ) is an I-spherical representation of G, then
H acts on V I via:

π(f)v =

∫

G
f(g)(π(g)v) dg, for v ∈ V I and f ∈ H. (1.1.1)

Let ν denote a character of A. The representation I(ν) obtained by
normalized induction (which preserves unitarity) from ν is called a principal
series. ν is called unramified if its restriction to A ∩ K is trivial. Consider
the following two categories of representations:

C(I) = admissible finite length representations of G such that all their

subquotients are generated by their Iwahori fixed vectors,

(1.1.2)

C(H) = finite dimensional representations of H.

Date: November 18, 2005.

1



2 DAN CIUBOTARU

Theorem. ([Bo],[Cas])

(1) The functor V → V I is an equivalence of categories between C(I)
and C(H).

(2) The irreducible objects of C(I) are the irreducible subquotients of the
unramified principal series I(ν).

The algebra H has a star operation defined as f → f ∗,

f∗(g) := f(g−1) (1.1.3)

and therefore one can define Hermitian and unitary modules for H. The
results of [BM1] and [BM2] reduce the problem of classifying the irreducible
unitary representations in C(I) to the determination of the simple unitary
modules in C(H) with real infinitesimal character. It is known that the
characters of the center of H, the infinitesimal characters, correspond to
Weyl group conjugacy classes of semisimple elements s in the dual complex
group LG. An infinitesimal character is called real if the corresponding s is
a hyperbolic element.

Theorem. ([BM1]) Assume G has connected center. An irreducible hermit-
ian representation with real infinitesimal character (π, V ) ∈ C(I) is unitary
if and only if V I ∈ C(H) is unitary.

The subject of [BM2] is to remove the restrictions on G and on the in-
finitesimal character. This is accomplished via a reduction to the affine
graded Hecke algebra H introduced in [L1]. Let C(I, s) be the subcategory
of C(I) of representations with (non-real) infinitesimal character conjugate
to s. Let se be the elliptic part of s and let CLG(se) be the centralizer in the
dual complex group. This is a connected group when G has connected center.
In general, the classification of unitary representations in C(I, s) is reduced
to the determination of simple unitary modules with real infinitesimal char-
acter for the graded Hecke algebra attached to the identity component of
CLG(se).

1.2. Outline of the paper. In section 2.1-2.4, we review the definition
of the affine graded Hecke algebra H, the Kazhdan-Lusztig and Langlands
classifications for simple H-modules and Springer’s correspondence. The
main references that we use are [KL], [L1], [E] and [BM2].

In sections 2.5 and 2.6, we recall the construction of intertwining oper-
ators and hermitian forms (as in [BM3]) which we will use for the deter-
mination of unitary modules. The intertwining operators induce operators
(and hermitian forms) on W-representations and the main criterion for prov-
ing nonunitarity is to compute the signature of these operators on certain
W-representations.

Section 2.7 recalls the definition of the Iwahori-Matsumoto involution IM
of H. Since IM preserves hermitian and unitary modules, we will use it in
section 3 to prove the unitarity of some isolated representations.
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Sections 2.8 and 2.9 present the special case of spherical H-modules and
spherical intertwining operators. We need to recall some results about the
spherical unitary dual for Hecke algebras of classical types as in [Ba] and
particularly theorems 2.8 and 2.9. We end section 2, with the relation be-
tween restrictions to W-representations of hermitian forms for irreducible
modules associated to a fixed nilpotent orbit O, on one hand, and spheri-
cal hermitian forms restricted to representations of the Weyl group of the
centralizer of O, on the other (2.10; more details in [BC2]).

Section 3 presents the classification of unitary H-module (with real in-
finitesimal character) when H is of type E6. In 3.1, we treat the case of
irreducible modules attached to nilpotent orbits which are induced from
Levi components of maximal parabolic subalgebras.

Sections 3.2-3.5 contain the main results of the paper. The unitary dual
of H is partitioned into pieces U(O) labelled by nilpotent orbits and theorem
3.2 says that, in E6, U(O) is the same as the spherical unitary dual for z(O),
the centralizer of O with one exception (the nilpotent orbit 3A1), when
it is larger. In particular, the complementary series for O (definition in
section 2.8) are identical with the spherical complementary series for z(O).
We do not know at this point to which extent such a description of the
unitary dual of H may hold in general. The corresponding statement about
complementary series is always true for classical types ([Ba]) and almost
always true for exceptional groups (e.g., one exception in F4, see [Ci]). The
explicit description of each U(O) and the relevant calculations (including
the determination of hyperplanes of reducibility for standard modules) are
in section 3.4. One important consequence of this description is the unitarity
of certain Arthur parameters of E6 (section 3.3).

Section 3.5 concludes the classification by identifying the spherical com-
plementary series for type E6. We mention that, independently, the spheri-
cal unitary dual for type E6 (also F4 and E7) was determined by computer
calculations by J. Stembridge (see atlas.math.umd.edu/) and that his result
agrees completely with our results for spherical modules (although the form
of the answer is different).

The present paper is part of a joint project with Dan Barbasch - fol-
lowing the work of Barbasch and Moy ([BM1]-[BM3], [Ba]) - to study the
I-spherical unitary representations, in particular, to classify the unitary dual
of graded Hecke algebras of exceptional types (see [BC1], [BC2] for results
in this sense). The new results in this paper refer mainly to non-generic
modules.

2. Hermitian Forms

2.1. The Affine Graded Hecke Algebra. Let G be a reductive connected
algebraic group over C and let g be its Lie algebra. Let H be a maximal torus
and B a Borel subgroup, H ⊂ B ⊂ G and let (X,R, X̌, Ř,Π) be the based
root datum associated to G, H and B. More precisely, X = Hom(H,Gm)
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is the lattice of rational characters of H (Gm is the multiplicative group of
C), X̌ = Hom(Gm,H) is the lattice of one-parameter subgroups, Π ⊂ R+ ⊂
R ⊂ X are the simple roots, positive roots and roots determined by B and
H. Similarly for coroots, Π̌ ⊂ Ř+ ⊂ Ř ⊂ X̌.

Set h∗ = X ⊗Z C and h = X̌ ⊗Z C. Denote by W the Weyl group and
C[W ] the group algebra of W . The roots will be denoted by α and the
corresponding reflections in the Weyl group by sα. Let c : R → Z+ be a
function such that cα = cα′ if α and α′ are W -conjugate.

As a vector space,
H = C[W ]⊗ A, (2.1.1)

where A is the symmetric algebra over h∗. The generators are tw ∈ C[W ],
w ∈W and ω ∈ h∗. The relations between the generators are:

twt
′
w = tww′, for all w,w′ ∈W ;

t2s = 1, for any simple reflection s ∈W ;

tsω = s(ω)ts + cα〈ω, α̌〉, for simple reflections s = sα.

(2.1.2)

When the function c is not identically 1, we will refer to H as the Hecke
algebra with parameter c. In the simply-laced case, the only values of c one
needs to consider are c ≡ 1 and c ≡ 0. We mention that when c ≡ 0, the
affine graded Hecke algebra degenerates into the affine Weyl group, AoC[W ].

Theorem. ([L1]) The center of H is AW .

On simple finite dimensionalH-module, the center ofH acts by characters,
called infinitesimal character. Theorem 2.1 implies that the infinitesimal
characters correspond to W -conjugacy classes of semisimple elements s ∈ h.

Definition. An infinitesimal character is called real if the corresponding
semisimple element s is hyperbolic.

H has a star operation (and therefore one can define hermitian and unitary
modules) given on generators as follows (as in [BM2]):

t∗w = tw−1 , w ∈W ;

ω∗ = −ω +
∑

α∈R+

〈ω, α̌〉tα, ω ∈ h∗.

(2.1.3)

2.2. Simple H-modules. We need to recall the classification of simple H-
module (as it follows from [KL] and [L1]).

Theorem ([L1]). The irreducible H-modules are parametrized by G-conjugacy
classes (s, e, ψ), where s ∈ g is semisimple, e ∈ g is a nilpotent element, such

that [s, e] = e and ψ ∈ Â(s, e) is an irreducible representation of A(s, e), the
component group of the centralizer of s and e in G. The representations ψ
that appear come from the Springer correspondence.
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We will recall the Springer correspondence in section 2.3. If (s, e) is
a parameter as in theorem 2.2, embed e into a Lie triple {e, h, f} for the
corresponding nilpotent orbitO. To each pair (s,O), one attaches a standard
module X(s,O). The standard module decomposes into a direct sum:

X(s,O) =
⊕

ψ∈Â(s,e)

X(s,O, ψ). (2.2.1)

In this direct sum, not all ψ ∈ Â(s, e) appear (see section 2.3). If s is
dominant, each standard module X(s,O, ψ) has a unique irreducible quo-
tient X(s,O, ψ) and each irreducible H-module is isomorphic to such an
X(s,O, ψ).

From now on, all the parameters will be assumed real (i.e., the
semisimple element s is hyperbolic). If (s, e) is a parameter as in theorem
2.2, then s can be written as

s =
h

2
+ ν, with ν ∈ z(O), the centralizer of the triple {e, h, f}. (2.2.2)

Definition. Let (s,O, ψ) be a parameter corresponding to a simple H-module.
It is called tempered if ν = 0. If, in addition, O is distinguished i.e., it does
not meet any proper Levi component, the parameter is called a discrete se-
ries.

The above definitions are justified by theorem 1.1 and the results in [KL]
and [L1]. An essential fact for us is that simple tempered H-modules (as
definition 2.2) are formed of the Iwahori-fixed vectors of tempered repre-
sentations for the p-adic group G and, therefore, they are unitary. They
represent the starting point for building the (real) unitary dual of H.

2.3. Lowest W-types and Springer’s correspondence. Let X(s,O) be
a standard module and e ∈ O be a nilpotent element as in the Kazhdan-
Lusztig classification (theorem 2.2). We recall some facts about the W -
structure of standard modules as treated in [BM1].

Let u = exp(e) be the corresponding unipotent element in the group G.
Consider Bu, the complex variety of Borel subgroups of G containing u and
H∗(Bu), the cohomology groups of Bu. The component group A(e) acts on
H∗(Bu) and let

H∗(Bu)φ = HomA(e)[φ : H∗(Bu)] (2.3.1)

be the φ-isotypic component of H∗(Bu), φ ∈ Â(e). There is an action of W
on each H∗(Bu)φ (Springer). If du is the dimension of Bu, then (Hdu(Bu))φ

is either zero or it is an irreducible representation of W . Denote this repre-
sentation σ(O, φ). The resulting correspondence

Â(e)→ Ŵ , φ→ σ(O, φ) 6= 0 (2.3.2)

is the Springer correspondence.
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As W -representations ([KL])

X(s,O)|W ∼= H∗(Bu)⊗ sgn (2.3.3)

Then A(s, e) acts on the right hand side via the inclusion A(s, e) ⊂ A(e).

Fix ψ ∈ Â(s, e). If φ ∈ Â(e) appears in the Springer correspondence (2.3.2)
and HomA(s,e)[ψ : φ] 6= 0, then

HomW [(σ(O, φ) ⊗ sgn) : X(s,O, ψ)] 6= 0. (2.3.4)

Following [BM1], we will call such W-representations lowest W-types for
X(s,O, ψ).

Moreover, if the parameter is tempered (s = 1
2h), then A(s, e) = A(e)

and X(s,O, ψ) has a unique lowest W-type σ(O, ψ)⊗sgn (with multiplicity
one).

2.4. Langlands classification. If P = MN is a (standard) parabolic sub-
group of G with the Levi component M , denote by HM the affine graded
Hecke algebra associated to M . Let V be an irreducible module for the
affine graded Hecke algebra HM associated to M , and let RM ⊂ R denote
the root subsystem associated to the Levi component M . One can form the
induced module

I(M,V ) = H⊗HM V. (2.4.1)

We recall the Langlands classification for graded Hecke algebras (as in [BM2]
and [E]).

Theorem. Every simple (real) module of H appears as the unique irreducible
quotient L(M,V, ν) of an induced module X(M,V, ν) = I(M,V ⊗ν), where:

(1) M is a Levi component of a parabolic subgroup of G;
(2) V is a tempered irreducible representation of HM ;
(3) ν ∈ h, ν real, satisfying 〈ν, α〉 = 0, for all α ∈ R+

M and 〈ν, α〉 > 0,

for all α ∈ R+ −R+
M .

Moreover, L(M,V, ν) ∼= L(M ′, V ′, ν ′) if and only if M = M ′, V ∼= V ′ and
ν = ν ′.

The irreducible quotients in theorem 2.4 are called Langlands quotients.

We need to explain the connection between the Kazhdan-Lusztig and
Langlands classifications. Suppose XG(s,O) is a standard module for H =
HG and that s = h

2 +ν and {e, h, f} ⊂ O are contained in a Levi component
m ⊂ g. Let M ⊂ G be the Levi subgroup whose Lie algebra is m. One can
form the standard module XM (s,OM ) (OM is the M -orbit of e in m). Then

XG(s,O) = I(M,XM (s,OM )). (2.4.2)

For φ ∈ ̂AM (s, e), the induced module from XM (s,OM , φ) breaks into a
direct sum of standard modules of G corresponding to the representations
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of AG(s, e) which contain φ in their restriction to AM (s, e) (we view AM (s, e)
as a subgroup of AG(s, e)):

I(M,XM (s,OM , φ)) =
⊕

ψ∈ÂG(s,e)

[ψ|AM (s,e) : φ]XG(s,O, ψ). (2.4.3)

If M denotes the centralizer in G of ν, the standard modules XG(s,O, ψ)
can also be seen as induced modules:

XG(s,O, ψ) = I(M,XM (
h

2
,OM , φ) ⊗ Cν), for some φ in the restriction

of ψ to AM (s, e). (2.4.4)

By definition 2.2, V = XM (h2 ,OM , φ) is a tempered module of HM .
A factor of I(M,V ⊗ν) has Langlands parameter (M ′, V ′, ν ′) with ||ν ′|| ≤

||ν||, with equality if and only if (M ′, V ′, ν ′) = (M,V, ν). This follows from
lemma 2.8. in chapter XI of [BW]. This fact is crucial for the method of
determination of the unitary modules used in this paper.

Proposition. ([KL],[BW]) All the composition factors of the standard mod-
ule X(s,O, ψ) other than X(s,O, ψ) have parameters (s,O ′, ψ′) with O′ 6= O
and O ⊂ O′. In particular, in the notation of section 2.3, X(e, s, ψ) is
characterized by the fact that it contains the Weyl group representation
σ(O, φ)⊗ sgn with multiplicity [φ |A(s,e) : ψ].

2.5. Intertwining Operators and Hermitian Forms. We recall the con-
struction of hermitian forms and intertwining operators from [BM3]. Let
(M,V, ν) be a Langlands parameter and let wm denote a shortest element
in the double coset W (w0M)\W/W (M), where w0 denotes the long Weyl
element and W (M) is the Weyl group of M viewed as a subgroup of W .
Recall that ν is real.

Proposition. ([BM3]) The hermitian dual of the irreducible Langlands quo-
tient L(M,V, ν) is L(w0M,wmV,−wmν). In particular, L(M,V, ν) is her-
mitian if and only if

w0M = M, wmV ∼= V and wmν = −ν.
If this is the case, we will denote by am the isomorphism between V and

wmV .
Let w = s1 . . . sk be a reduced decomposition of w. For each simple root

α, define
rα = tαα− 1; rw = rα1 . . . rαk (2.5.1)

A priori, rw could depend on the reduced expression of w, but lemma 1.6.
in [BM3] shows that actually rw is well-defined. w0 denotes the long Weyl
group element. Denote by W (M) ⊂W the Weyl group of M .

Assume L(M,V, ν) is hermitian. Define

A(M,V, ν) : I(M,V⊗ν)→ I(M,V⊗−ν), x⊗(v⊗1ν)→ xrwm⊗(am(v)⊗1−ν)
(2.5.2)
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It is shown in [BM3] that this is in fact an intertwining operator.
As a C[W ]-module,

I(M,V ⊗ ν) |W= C[W ]⊗C[W (M)] (V |W ). (2.5.3)

For any W-type (σ, Vσ), A(M,V, ν) induces an operator

rσ(w,M, ν) : HomW (σ,C[W ]⊗C[W (M)] V )→ HomW (σ,C[W ]⊗C[W (M)] V ).
(2.5.4)

By Frobenius reciprocity,

HomW (σ,C[W ]⊗C[W (M)] V ) ∼= HomW (M)(σ, V ). (2.5.5)

In conclusion, A(M,V, ν) gives rise to operators

rσ(M,V, ν) : HomC[W (M)](σ, V )→ HomC[W (M)](σ, V ). (2.5.6)

As seen in section 2.3 and 2.4, each irreducible H-module contains some
special W-types, the lowest W-types. It is true that in all cases there exists
a lowest W-type, call it σ0, which appears with multiplicity one. For the
classical types, all component groups are products of Z2’s, so this fact is
automatic, and for the exceptional types, this is checked case by case when
the component group is not abelian. For E6, the details are in section 3.4.

Then the operator rσ0(M,V, ν) is a scalar and we normalize the inter-
twining operator A(M,V, ν) by this scalar.

Theorem ([BM3]). Let M be the Levi component, V be a tempered module
for HM and ν a real character as before.

(1) A(M,V, ν) is an intertwining operator.
(2) The image of the operator A(M,V, ν) is the Langlands quotient L(M,V, ν)

and the hermitian form on L(M,V, ν) is given by:

〈x⊗ (v ⊗ 1ν), y ⊗ (v′ ⊗ 1ν)〉 = (x⊗ (v ⊗ 1ν), yrw ⊗ (am(v′)⊗ 1−ν))h,

where ( , )h denotes the pairing with the hermitian dual.

Theorem 2.5 implies that if the Langlands quotient were unitary, all the
operators rσ(w,M, ν), obtained by the restriction to W-types, would be
positive semidefinite. As in [BM3], [Ba] and [Ci], one of the main tools
for showing modules are not unitary is to compute the signature of these
operators.

2.6. Decomposition of intertwining operators. Let M be a Levi com-
ponent, and V be a tempered module of HM . Assume that ν is such that
(ν, α) = 0 for α ∈ RM , but (ν, α) > 0 for some simple root α. This is
always the case, unless ν is antidominant. Let Mα be the Levi component
generated by M and the root vectors corresponding to ±α. Then there is
a shortest Weyl group element wα ∈ W (Mα) so that wαν is nonpositive on
the roots in R+

Mα
. Using a reduced decomposition for wα, we can construct

an intertwining operator

Aα(M,V, ν) : I(M,V ⊗ ν) −→ I(wα(M), wα(V )⊗ wα(ν)), (2.6.1)
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which is induced from the corresponding intertwining operator for HMα. The
data (wα(M), wα(V )) are similar to (M,V ). But wα(ν) is positive on fewer
(positive) roots than ν. Furthermore, M and wα(M) are Levi components
of maximal parabolic subgroups of Mα.

Apply this idea repeatedly to a Langlands parameter (M,V, ν) (with ν
positive on roots not in RM ). We find that the element wm (notation as in
section 2.5) decomposes into

wm =
∏

wαi , `(wm) =
∑

`(wαi). (2.6.2)

As before, write wi = wαk−i+1
. . . wαk . The intertwining operator Am decom-

poses accordingly into a product

A(M,V, ν) =
∏
Ai(wi(M), wi(V ), wi(ν)). (2.6.3)

Each Ai is induced from a similar operator on a Levi component, and there
are no poles when (M,V, ν) is the parameter of a standard module.

2.7. The Iwahori-Matsumoto involution. We recall that the graded
Hecke algebra has an involution called the Iwahori-Matsumoto involution,
IM , defined on the generators as follows:

IM(tw) = (−1)`(w)tw, IM(ω) = −ω, ω ∈ h∗. (2.7.1)

IM acts therefore on the modules of H.
The induced action of the Iwahori-Matsumoto involution on the W-types

is tensoring with the sign representation of W . The use of IM in our context
is justified by the following fact.

Remark. V is a (hermitian) unitary H-module if and only if IM(V ) is
(hermitian) unitary.

The Steinberg representation of H is defined as:

St(tw) = (−1)`(w), St(ω) = −ω. (2.7.2)

Then IM(St) = triv.

2.8. Spherical H-modules. We present the special case of spherical mod-
ules and the results for classical groups from [Ba]. The general machinery
presented so far can be described in considerably simpler terms for this case.

Definition. An H-module V is called spherical (generic) if HomW [triv, V ] 6=
0 (respectively, HomW [sgn, V ] 6= 0).

Note that IM takes spherical modules into generic modules. If a simple
generic H-module is parametrized by a Kazhdan-Lusztig triple (s,O, ψ), the
representation ψ must be the trivial representation. Moreover, the semisim-
ple element s determines the nilpotent orbit uniquely. Fix a semisimple s ∈ g
(actually, one can assume s ∈ h). The characterization of the nilpotent orbit
O is the following:
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Proposition ([BM3]). Let s ∈ h be a semisimple element and O the asso-
ciated nilpotent orbit constructed before. Let {e, h, f} be a Lie triple for the
orbit O. Then O has the property that it is unique subject to the following
two conditions:

(1) there exists w ∈ W such that ws = h
2 + ν, where ν is a semisimple

element in the Lie algebra z(O) of the centralizer of the Lie triple;
(2) if s satisfies the first property for a different O ′, then O′ ⊂ O.

For the spherical case, consider the principal series module

X(s) = H⊗A Cs, s ∈ h. (2.8.1)

Since X(s) is isomorphic as a W -representation to C[W ], it follows that
the trivialW -representation appears with multiplicity one inX(s) and there-
fore, there is a unique spherical subquotient X(s). Consequently, we will
refer to a semisimple element s as unitary if X(s) is unitary.

Consider the long intertwining operator given by w0, the long element in
the Weyl group. Since this is determined by s, we will simply denote it by
A(s).

Theorem ([Ba]). If s is dominant (i.e., 〈s, α〉 ≥ 0 for all positive roots
α ∈ R+) the image of A(s) is X(s).

Moreover, X(s) is Hermitian if and only if w0s = −s.
Note that rw0 = rα1 · · · rαk acts on the right and therefore, each αj in the

decomposition into rαj ’s can be replaced by the scalar 〈αj , sj+1sj+2 · · · sk(ν)〉
in the intertwining operator A(ν). Consequently, we can think of rw0 as an
element in C[W ].

The discussion about the intertwining operators and Hermitian forms in
section 2.5 implies the following remark in the spherical case.

Remark. Assume w0s = −s. The long intertwining operator gives rise to
operators on the W-types (σ, Vσ):

rσ(s) : σ∗ → σ∗.

They are normalized so that rtriv ≡ 1. The Hermitian form on X(s) is
positive definite if and only if all the operators rσ(s) are positive semidefinite.

Note that this fact suggests the following combinatorial description of the
spherical unitary dual. One can consider (real) parameters s in the dominant
Weyl chamber. They parametrize spherical H-modules. Since in the Weyl
group of type E6, w0 doesn’t act by −1, we only consider s in the (−1)-
eigenspace of w0. In order to determine if s is unitary, one would have to
compute the operators rσ(s) on the W-type σ. An operator rσ(s) can only
change its signature in the dominant Weyl chamber on a hyperplane where
〈s, α〉 = 1 for α ∈ R+ or 〈s, α〉 = 0 for α ∈ Π (see for example theorem 2.4.
in [BC1]).

Therefore, the spherical unitary dual can be viewed as a (bounded) union
of closed facets in this arrangement of hyperplanes.
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For the explicit description, the spherical unitary dual is partitioned into
subsets, each subset being parametrized by a nilpotent orbit O in g.

Definition. The set of spherical (equivalently, generic) parameters s =
1
2h + ν associated to a nilpotent orbit O which are unitary are called the
complementary series attached to O.

The explicit description of the spherical unitary dual of H of classical type
([BM3] and [Ba]) can be summarized in the following theorem. We mention
that the unitary dual for p-adic GL(n,F) had already been classified in [T].

Theorem. ([Ba]) Let s ∈ h be a (real) semisimple element and O be the
unique maximal nilpotent orbit such that s = 1

2h + ν, with ν a semisimple
element in z(O).

(1) s is in the complementary series of O if and only if ν is in the
complementary series of the trivial nilpotent orbit of z(O).

(2) The (real) parameters s = (ν1, ν2, . . . , νn) in the complementary se-
ries associated to the trivial nilpotent orbit are:

A : s = (ν1, . . . , νk,−νk, . . . ,−ν1) or (ν1, . . . , νk, 0,−νk, . . . ,−ν1),
with 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νk < 1

2 .

C : 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νn < 1
2 .

B,D : 0 ≤ ν1 ≤ · · · ≤ νi < 1 − νi−1 < νi+1 < · · · < νn < 1, so that
between any νj < νj+1, i ≤ j < n, there is an odd number of
(1− νl), 1 ≤ l < i.

(Note that the types A-D in the theorem refer to the Hecke algebra)

2.9. Relevant W-types. In view of Remark 2.8, the spherical unitary dual
for classical groups is determined by the operators restricted to a small set
of W-types, as follows from [Ba].

Theorem ([Ba]). For H of classical type, a spherical parameter s is unitary
if and only if the operators rσ(s) are positive semidefinite for the following
representations σ of W :

(1) A: (m,n−m), 0 ≤ m ≤ [n2 ].
(2) B, C: (n−m)× (m), 0 ≤ m ≤ n and (m,n−m)× (0), m ≤ [ n2 ].
(3) D: (n−m)× (m), 0 ≤ m ≤ [n2 ] and (m,n−m)× (0), m ≤ [n2 ].

We will also need the description of the spherical unitary dual for the
Hecke algebra of type G2. The unitary dual for p-adic G2 was determined
in [M], and the following reformulation in terms of the Hecke algebra can
be found in [Ci]. We use the roots α1 = (2

3 ,−1
3 ,−1

3) and α2 = (−1, 1, 0) for
G2.

Proposition. Let G be of type G2 and s = (ν1, ν1 + ν2,−2ν1 − ν2), ν1 ≥ 0,
ν2 ≥ 0, is a spherical parameter.

(1) s is unitary if and only if {3ν1 +2ν2 ≤ 1}, {2ν1 +ν2 ≤ 1 ≤ 3ν1 +ν2}
or (ν1, ν2) = (1, 1).
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(2) s is unitary if and only if the operators rσ(s) are positive semidefinite
on the W-types {(1, 0), (2, 1), (2, 2)}.

The labelling of irreducible W (G2)-representations is as in [Ca].

Definition. The sets of W-types appearing in theorem 2.9 and proposition
2.9 are called relevant W-types.

2.10. Matching of intertwining operators. In this section, we provide
a brief summary of the relevant constructions from [BC2]. The notation is
the same as in sections 2.1-2.6.

Fix a nilpotent orbit O ⊂ g with a Lie triple {e, h, f} and let s be a (real)
semisimple element associated to O, that is s = h

2 + ν, where ν ∈ z(O), the
Lie algebra of the centralizer Z(O) in G of the triple {e, h, f}. Let Z0(O)
be the identity component of Z(O) and A(O) be the component group. Let
a be a Cartan subalgebra in z(O), ν ∈ a.

As in section 2.4, we define a Levi component M and a nilpotent or-
bit OM , such that each standard module of O, X(s,O, ψ) is obtained as
induced from a standard module XM (h2 ,OM , φ) ⊗ Cν (see (2.4.4) and the
discussion preceding it). To reconcile notation with sections 2.5-2.6, put
V = XM (h2 ,OM , φ).

The goal is to relate the intertwining operators rσ(M,V, ν) (see (2.5.6) for
certain W-types σ with spherical operators for the Hecke algebra associated
to Z0.

Lemma. If G is a complex algebraic group with identity component G0 and
component group A(G), and h ⊂ g is a Cartan subalgebra, with W the Weyl
group of h ⊂ g, then

NG(h)/CG(h)0
∼= W oA(G).

Proof. There is a short exact sequence

1→W (g, h)→ NG(h)/CG(h)0 → A(G)→ 1. (2.10.1)

Let h ⊂ b ⊂ g be a Borel subalgebra. Then the section is given by the map
A(G) ∼= NG(b, h)/CG(h)0 → NG(h)/CG(h)0. �

Applying this lemma to Z(O), we find that

NZ(a)/CZ (a)0
∼= W (z)oA(O). (2.10.2)

Define

N(a) = {w ∈W : w · a = a}
C(a) = {w ∈W : w · a = a, w(R+

M ) = R+
M}

(2.10.3)

Note that

N(a) = W (M)o C(a). (2.10.4)
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Proposition. ([BC2]) There is a surjective group homomorphism W (z) o
A(O) ∼= NZ(a)/CZ (a)0 −→ C(a).

Proof. The homomorphism is obtained by the composition of maps

NZ(a)/CZ (a)0 → NZ(a)/CZ (a) ↪→ NG(a)/CG(a) = NZ(a)/M ∼= C(a),
(2.10.5)

where the first homomorphism is a surjection. We will skip the proof of the
surjectivity for the resulting map (see [BC2] for details). �

For σ ∈ Ŵ , the operator (2.5.6) is defined on the space HomW (M)(σ, V ).

C(a) acts on W (M) and it acts on σ since σ ∈ Ŵ and C(a) ⊂ W . Since

C(a) acts on W (M), it will act on Ŵ (M). In section 3.4, we check in each
case, that C(a) also preserves V .

Recall that σ0 is a lowest W-type of X(M,V, ν) which appears with mul-
tiplicity one. Then let σM,0 be the unique lowest W-type of V (V is tem-
pered). σM,0 appears in the restriction of σ0 to V with multiplicity one. In
the actual calculations in section 3.4, we will only consider the W-types σ in
X(M,V, ν) with the property that HomW (M)[σ : V ] = HomW (M)[σ : σM,0],
so that the condition we need is that C(a) preserves σM,0. However, since
V is tempered, this is equivalent to C(a) preserves V .

In conclusion, HomW (M)(σ, V ) has a structure of a representation of C(a)
and via the map from proposition 2.10, it is a W (z)oA(O)-representation.
It also descends to a representation of W (z). Call this representation ρ(σ).
In 3.2, we will investigate under what conditions the operator rσ(M,V, ν)
(in H(G)) is identical with the spherical operator rρ(σ)(ν) (in H(Z0)).

3. The unitary H(E6)-modules with real infinitesimal character

3.1. Maximal parabolic cases. We retain the notation from section 2. In
view of section 2.6, we investigate first the case of intertwining operators for
induced modules from Levi components of maximal parabolic subalgebras.

Let O ⊂ g be a nilpotent orbit which is induced from a Levi component
M of a maximal parabolic subgroup. The corresponding nilpotent orbit OM
of m is distinguished. Let V be a discrete series module for HM attached
to OM with lowest W-type σM,0. Form the standard module X(M,V, ν) =
I(M,V ⊗ ν). In this case, ν is a nonnegative scalar.

From proposition 2.5, it follows that L(M,V, ν) is hermitian if and only if
w0M = M and w0ν = −ν. Note that, since V is a discrete series of M , the
condition w0M = M automatically implies wmV ∼= V . Assume (M,V, ν) is
hermitian data. We need a lemma first (this is proposition 2.4. in [BM3]).

Lemma. ([BM3]) Assume the W-type σ satisfies the conditions:

|HomW [σ : X(M,V, ν)]| = 1 and HomW (M)[σ : V ] = HomW (M)[σ : σM,0].

Then the signature at ∞ of the operator rσ(M,V, ν) depends only on the
lowest harmonic degree of σ.
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There are two cases depending on the type of the centralizer Z(O) of the
orbit.

Proposition. Let (M,V, ν) be a hermitian maximal parabolic data attached
to a nilpotent orbit O.

(1) If Z(O) is of type A1, L(M,V, ν) is unitary if and only if 0 ≤ ν ≤ ν0,
where ν0 is the first reducibility point of X(M,V, ν) on the half-line
ν ≥ 0.

(2) If Z(O) is of type T1, L(M,V, ν) is never unitary for ν > 0.

Proof. We use the same argument as used for classical groups in [BM3] (the
details for E6 are checked in each case in 3.4).

If Z(O) = T1 and (M,V, ν) (equivalently (M,ν)) is hermitian, then Z(O)
is not connected and the standard module X(M,V, ν) has two lowest W-
types σ0 and σ′0 both appearing with multiplicity one and having lowest
harmonic degrees of opposite parity. At ν = 0, X(M,V, 0) is reducible and
each factor is a tempered module, therefore unitary. If ν > 0, σ0 and σ′0
are always together in L(M,V, ν) and they have opposite signature (having
opposite signature at ∞). This implies L(M,V, ν) is not unitary for ν > 0.

If Z(O) = A1, the standard module X(M,V, ν) has a unique lowest W-
type σ0. X(M,V, 0) is irreducible and tempered, therefore it is unitary until
the first point of reducibility, ν = ν0. At ν = ν0, all factors other than
L(M,V, ν) are parametrized by strictly larger nilpotent orbits (proposition
2.4). We find a factor corresponding to an orbit O ′ (immediately above O)
with a lowest W-type σ1 satisfying the conditions in lemma 3.1. Moreover
σ1 should have harmonic degree of opposite parity to σ0. We verify that for
ν > ν0, the two W-types σ0 and σ1 are always in the factor L(M,V, ν) and
therefore, L(M,V, ν) is not unitary for ν > ν0.

�

Proposition 3.1 holds in all classical cases and also in G2, F4 and E6. We
should mention that in E6 actually only case (2) of the proposition appears.
In E6, in the maximal parabolic cases, if the centralizer is of type T1, the
data (M,ν) is never hermitian (for ν > 0).

There is a second remark which follows from the proof of proposition 3.1.

Corollary. In the notation of proposition 3.1:

(1) If Z(O) is of type A1, then rσ0(M,V, ν) = 1 and rσ1(M,V, ν) =(
ν0−ν
ν0+ν

)`
, where ` is some odd positive integer.

(2) If Z(O) is of type T1, then rσ0(M,V, ν) = +1 and rσ′0(M,V, ν) = −1
for ν > 0.

Remark. In fact, for all cases that we need in section 3.4, explicit calcu-
lations in the classical groups show that the integer ` from corollary 3.1 is
always 1 (moreover ν0 is always 1 or 1

2).
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We mention that some of the calculations of this type can also be extracted
from [Ba]. Although remark 3.1 seems to hold in general, we do not know
at this point a conceptual proof for it.

3.2. Main results. In this section we present the main result of this paper.
The explicit case by case calculations are presented in 3.4. Recall that we
only consider modules with real infinitesimal characters.

Let O be a nilpotent orbit in g with Lie triple {e, h, f}. As in section 2,
we attach to O real semisimple elements s = 1

2h+ν with ν ∈ z(O) (notation
as in section 2.2 and 2.10). Define

U(O) = {X(s,O, ψ) unitary : (s,O, ψ) is a Kazhdan-Lusztig parameter}.
(3.2.1)

Recall that, in general, not all ψ ∈ Â(s, e) appear. However, in type E6, all
such ψ appear in Kazhdan-Lusztig parameters.

The unitary dual of H is the disjoint union of U(O) for nilpotent orbits
O, so we will describe all U(O). For any Hecke algebra H, let SU(H) denote
its spherical unitary dual.

For O, let H(Z0(O)) be the graded Hecke algebra associated to the iden-
tity component of the centralizer of O. Since A(O), the component group of
the centralizer Z(O) acts on the data associated to Z0(O) (and toH(Z0(O))),
we can define the algebra

H(O) = H(Z0(O))oA(O). (3.2.2)

Lemma. Let (M,V, ν) be a (Langlands) parameter associated to (O, φ), φ ∈
Â(O). Then there exist a set of W-types {σ0, σ1, . . . , σk} in X(M,V, ν) (σ0 a
lowest W-type with multiplicity one) such that the corresponding W (z(O))-
types {ρ(σ0), ρ(σ1), . . . , ρ(σk)} are relevant for H(Z0(O)) (with ρ(σ0) the
trivial representation) and

rσ(M,V, ν) = rρ(σ)(ν), for all σ ∈ {σ0, σ1, . . . , σk}.
Proof. The method of calculation is uniform, but the details need to be
checked in each case. We will outline the method here.

Let A(M,V, ν) be the intertwining operator (for the Weyl group element
wm) in H which induces the operators rσ(M,V, ν). Recall from section 2.10,
that a denotes a Cartan subalgebra of z(O) with ν ∈ a and C(a) ⊂ W is
defined by (2.10.3) and it is the image of a homomorphism of W (z)oA(O)
to W .

The idea is to decompose A(M,V, ν) into a product of factors similar
to the usual decomposition of the (spherical) long intertwining operator for
H(z), such that the restriction of each factor in A(M,V, ν) to σ is identical
to the corresponding simple factor in the long intertwining operator of H(z).
It is a case by case observation that W (z) embeds in C(a). We remark that
actually in almost all cases in E6, A(O) = 1 and C(a) ∼= W (z).

For each simple root ᾱ ∈ z(O), we find an element s̄α ∈ C(a), which
induces the corresponding simple reflection on a. Then the s̄α’s generate a
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subgroup of C(a) isomorphic to W (z). Let w0(z) be the long Weyl group
element in W (z) and w0(z) its image in C(a). Note that by the definition of
C(a), wm ∈ C(a). There are two cases:

a) wm 6= w0(z). In this case, we show that L(M,V, ν) has two lowest
W-types with opposite signature (same type of argument as in section 3.1)
and therefore it is not unitary.

b) wm = w0(z). Then A(M,V, ν) decomposes into a product of the form
(same idea as in section 2.6)

∏
Aᾱ(M,V, νᾱ), (3.2.3)

corresponding to the Weyl group elements s̄α. Each s̄α preserves (M,V ). In
order to calculate the factors Aᾱ(M,V, νᾱ), we decompose each one further
into a product of maximal parabolic factors A(wiM,wiV,wiνᾱ) (as in section
2.6, equation (2.6.3)).

Let σ0 be a lowest W-type in X(M,V, ν) appearing with multiplicity one
and let σM,0 be the lowest W (M)-type of V . Let M ′ be a Levi component
such that M ⊂ M ′ and M comes from a maximal parabolic in M ′. The
nilpotent orbit OM , which parametrizes V in HM , has a set of lowest W-
types attached to it in HM ′ . Call them σM ′,0, σ′M ′,0 etc., where σM ′,0 is

the one appearing in the restriction of σ0. Let σM ′,1, σ′M ′,1 etc. denote the

corresponding W (M ′)-types from corollary 3.1 and remark 3.1.

Then we find the set {σ0, σ1, . . . , σk} ⊂ Ŵ , such that each σ in this set
satisfies the following conditions:

(i) HomW (M)[σ, V ] = HomW (M)[σ, σM,0] 6= 0;
(ii) if w0(M ′)M 6= M,HomW (M ′)[σ, µ] = 0, for all µ 6= σM ′,0;

(iii) if w0(M ′)M = M,HomW (M ′)[σ, µ] = 0, for all µ /∈ {σM ′,0, σ′M ′,0, . . . ,
σM ′,1, σ

′
M ′,1, . . . }.

(3.2.4)

Conditions (3.2.4) are set so that in the decomposition of the operators
Aᾱ(M,V, να) into maximal parabolic factors, the non-hermitian factors do
not contribute for σ. In addition, on the hermitian factors, we want the
normalized operators to look exactly like a simple reflection factor in the
decomposition of the spherical long intertwining operator of W (z). This is
the content of the third condition, in conjunction with remark 3.1. It follows
that the operators rσ(M,V, ν) and rρ(σ)(ν) are identical.

�

The description of the (real) unitary dual for H is summarized next. The
explicit description appears in section 3.4

Note that the following result is a tautology whenO is the trivial nilpotent
orbit, that is for the spherical H-modules. SU(H) is formed of the comple-
mentary series attached to each nontrivial nilpotent orbit O (see section 2.8)
and the spherical complementary series for type E6, which is determined in
section 3.5. The labelling of nilpotent orbits is as in [Ca].
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Theorem. Let O be a nilpotent orbit in the Lie algebra g of type E6, and
(s,O, ψ) be a Kazhdan-Lusztig parameter with s = h

2 + ν, ν ∈ z(O).

(1) X(s,O, ψ) is hermitian if and only if the parameter ν is (spherical)
hermitian for H(O) = H(z)oA(O). Moreover, if ν is not hermitian
for H(z), then X(s,O, ψ) is not unitary.

(2) SU(H(z)) ⊂ U(O) i.e., X(s,O, ψ) is unitary if the corresponding ν
is a spherical unitary parameter for SU(H(z)). In particular, the
complementary series for O is identical with the spherical comple-
mentary series for H(z).

(3) Except in the case of the nilpotent orbit 3A1, X(s,O, ψ) is unitary
if and only if ν is a spherical unitary parameter for SU(H(z)).

Proof. The proof is given in the calculations of the next section. We make
some remarks about the methods employed.

(1) is checked case by case. The component group A(O) only makes a
difference for two nilpotent orbits D4(a1) and A2. If ν is not hermitian
for H(z), we show that X(s,O, ψ) always contains two lowest W-types with
multiplicity one and opposite signature at ∞.

(2). The set of representations from lemma 3.2 always contains the rele-
vant W (z)-types which are sufficient for the determination of the spherical
complementary series of H(z). For each ν in the spherical complementary se-
ries, we show that the corresponding s can be deformed, so that X(s,O, ψ)
stays irreducible, until we reach a point where X(s,O, ψ) is unitarily in-
duced irreducible from a unitary module on a smaller rank algebra. From
this argument, it follows that the complementary series attached to O is the
same with the one for H(z).

When the set of representations from lemma 3.2 gives all the relevant
W (z)-types, we obtain an inclusion U(O) ⊂ SU(H(z)). Then we want to
show “equality”. We organize the analysis by the nilpotent orbits in z(O),
since SU(H(z)) is partitioned by them. For ν ∈ SU(H(z)), we show that
X(s,O, ψ) is unitary by one of the following methods: deformation argu-
ments as for the complementary series, IM -dual of a unitary module or
direct calculation of intertwining operators. In order to use the Iwahori-
Matsumoto involution effectively, we compute decompositions of standard
modules and the W-structure of the unitary irreducible quotients.

We only use an explicit computation with intertwining operators in the
case when a parameter is isolated for a nilpotent orbit and its IM -dual
is also isolated. At this point, we do not have a good way to treat these
cases, and therefore to complete the classification we find their W-structure
and compute the operators rσ(M,V, ν) on all W-types which appear with
nonzero multiplicity. We remark that usually these isolated modules are
small and that in E6 there are only two places where such calculations are
needed.

If the set of W-types from lemma 3.2 does not give all the relevant W (z)-

types, we need, in addition, to compute the operators on some σ ∈ Ŵ , such



18 DAN CIUBOTARU

that ρ(σ) contains the unmatched relevant W (z)-types, in order to rule out
the remaining nonunitary modules.

The nilpotent orbit 3A1 is one of the cases where we cannot match all the
relevant W (z)-types (z is of type A2 +A1 here), but it is the only case when
we obtain a larger set of unitary modules than the spherical unitary dual of
the H(z) (see figure 1).

�
3.3. Arthur parameters. We present an important consequence of theo-
rem 3.2 (and the calculations in the next section). Let s be a semisimple
element (attached to the nilpotent O) of the form

s =
h

2
+
hz
2
, for hz the middle element of a nilpotent orbit Oz ⊂ z. (3.3.1)

The question is to decide the unitarity of the associated modules X(s,O, ψ).
These are instances of Arthur parameters, they correspond to maps

Φ : SL(2,C)× SL(2,C)→ g. (3.3.2)

When Oz is the trivial nilpotent orbit of z (s = h
2 ), the corresponding

modules X(s,O, ψ) are all irreducible tempered, therefore unitary.
When O is the trivial nilpotent orbit of g, the centralizer z = g and the as-

sociated modules are the spherical unipotent X( hO2 ) (hO varies over the mid-

dle elements of all nilpotent orbitsO). SinceX( hO2 ) = IM(X(hO2 ,O, trivial))
(and IM preserves unitarity), it follows that X( hO2 ) are also unitary.

From theorem 3.2 it follows that:

Corollary. For the Hecke algebra of type E6, if s is a parameter of the form
(3.3.1), then the associated modules X(s,O, ψ) are unitary.

3.4. Calculations for E6. Throughout this section, we will use the follow-
ing realization of the root system of type E6 (αi are the simple roots and ωi
the corresponding simple coweights):

α1 = 1
2(1,−1,−1,−1,−1,−1,−1, 1) ω1 = (0, 0, 0, 0, 0,− 2

3 ,−2
3 ,

2
3)

α2 = (1, 1, 0, 0, 0, 0, 0, 0) ω2 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−1

2 ,−1
2 ,

1
2 )

α3 = (−1, 1, 0, 0, 0, 0, 0, 0) ω3 = (−1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−5

6 ,−5
6 ,

5
6)

α4 = (0,−1, 1, 0, 0, 0, 0, 0) ω4 = (0, 0, 1, 1, 1,−1,−1, 1)

α5 = (0, 0,−1, 1, 0, 0, 0, 0) ω5 = (0, 0, 0, 1, 1,− 2
3 ,−2

3 ,
2
3)

α6 = (0, 0, 0,−1, 1, 0, 0, 0) ω6 = (0, 0, 0, 0, 1,− 1
3 ,−1

3 ,
1
3)

The Weyl group representations (W-types) for type E6 were classified by
Frame and we will use his labelling of the irreducible characters. The W-
structure of standard modules is given by the Green polynomials calculated
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in [BS]; we also made use of the (unpublished) tables of Alvis (see [A]). For
restrictions of W-types and for the computation of the associated W (z)-type
ρ(σ) to a given W-type σ, we used the software “GAP”. For explicit com-
putations with intertwining operators, we used J. Adams’ integer matrix
models for W (E6) (atlas.math.umd.edu/weyl/) and the software “Mathe-
matica”.

1. E6 : distinguished orbit. X(E6) is St, the Steinberg representation, with
lowest W-type 1′p (even degree). The infinitesimal character is

ρ(E6) = (0, 1, 2, 3, 4,−4,−4, 4).

2. E6(a1) : distinguished orbit. X(E6(a1)) is a discrete series,

X(E6(a1) |W= 6′p + 1′p,

with lowest W-type 6′p (odd degree). The infinitesimal character is

(0, 1, 1, 2, 3,−3,−3, 3).

3. D5 : centralizer T1 (connected).

X(D5)|W = 20′p + 6′p + 1′p,

with lowest W-type 20′p (even degree). The infinitesimal character is

s = (0, 1, 2, 3, 4, 0, 0, 0) + νω1, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to ( 1

2 ,
1
2 ,

3
2 ,

3
2 ,

5
2 ,−5

2 ,−5
2 ,

5
2).

For ν > 0, X(D5, ν) = L(D5, St, ν), which is never hermitian. The points
of reducibility are ν = 3, 6, with generic factors X(E6(a1)), and X(E6). At
the first point of reducibility

X(D5, 3) = X(E6(a1)) +X(D5, 3), X(D5, 3)|W = 20′p.

There is no complementary series.

4. E6(a3) : distiguished orbit, component group Z2,

X(E6(a3) = X(E6(a3), (2)) +X(E6(a3), (11))

are discrete series.

X(E6(a3), (2))|W = 30′p + 20′p + 6′p + 1′p, X(E6(a3), (11))|W = 15′p + 6′p,

with lowest W-types 30′p (odd degree), respectively 15′p (odd degree). The
infinitesimal character is

(0, 0, 1, 1, 2,−2,−2, 2).

5. D5(a1) : centralizer T1 (connected).

X(D5(a1))|W = 64′p + 30′p + 15′p + 2 · 20′p + 2 · 6′p + 1′p,
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with lowest W-type 64′p (even degree). The infinitesimal character is

s = (0, 1, 1, 2, 3, 0, 0, 0) + νω1, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to ( 1

4 ,
3
4 ,

3
4 ,

5
4 ,−7

4 ,−7
4 ,

7
4 ).

For ν > 0, X(D5(a1), ν) = L(D5, (73), ν), where σ = (73) denotes the
discrete series parametrized by the nilpotent orbit (73) in D5. Therefore
X(D5(a1), ν) is never hermitian for ν > 0. The points of reducibility are
ν = 3

2 ,
7
2 ,

9
2 , with generic factors X(E6(a3), (2)), X(D5, 1), and E6(a1). At

the first reducibility point, ν = 3
2 ,

X(D5(a1),
3

2
) = X(E6(a3)) +X(D5(a1),

3

2
), X(D5(a1),

3

2
)|W = 64′p + 20′p.

There is no complementary series.

6. A5 : centralizer A1 (connected).

X(A5)|W = 15′q + 30′p + 20′p + 6′p + 1′p,

with lowest W-type 15′q (even degree). The infinitesimal character is

(−11

4
,−7

4
,−3

4
,

1

4
,
5

4
,−5

4
,−5

4
,
5

4
) + νω2, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to (0, 1

2 ,
1
2 , 1, 2,−2,−2, 2).

For ν > 0, X(A5, ν) = L(A5, St, ν) is always hermitian and it has to
remain unitary until the first point of reducibility. The points of reducibility
are ν = 1

2 ,
5
2 ,

7
2 ,

11
2 , with generic factors X(E6(a3), (2)), X(D5), X(E6(a1))

and X(E6). At the first point of reducibility ν = 1
2 ,

X(A5,
1

2
) = X(E6(a3), (2)) +X(A5,

1

2
), X(A5,

1

2
)|W = 15′q.

For ν > 1
2 , since E6(a3) is a distinguished orbit, there can’t be any factors

parametrized by E6(a3) and therefore 30′p, the lowest W-type of E6(a3) has

to stay in the same factor as 15′q, that is, in X(A5, ν). Since 15′q and 30′p
have opposite signature at ∞, it follows that X(A5, ν) is not unitary for
ν > 1

2 .

Complementary series: 0 ≤ ν ≤ 1
2 .

7. A4 + A1 : centralizer T1 (connected).

X(A4 +A1)|W = 60′p + 64′p + 15′q + 30′p + 2 · 20′p + 6′p + 1′p,

with lowest W-type 60′p. The infinitesimal character is

(
9

4
,−5

4
,−1

4
,

3

4
,
7

4
,−1

4
,−1

4
,
1

4
) + νω3, ν ≥ 0.

For ν = 0, the module is tempered and irreducible and the infinitesimal
character is W-conjugate to (0, 1

2 ,
1
2 , 1,

3
2 ,−3

2 ,−3
2 ,

3
2).
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For ν > 0, X(A4 + A1, ν) = L(A4 + A1, St, ν) is never hermitian. The
points of reducibility are ν = 3

2 ,
5
2 ,

7
2 ,

9
2 , with generic factors X(E6(a3), (2)),

X(D5, 1), X(D5, 4) and X(E6).

There is no complementary series.

8. D4 : centralizer A2 (connected).

X(D4)|W = 24p + 2 · 64′p + 30′p + 15′p + 3 · 20′p + 2 · 6′p + 1′p,

with lowest W-type 24′p (even degree). The hermitian parameter is (M,σ) =
(D4, St) with (hermitian) infinitesimal character

s = (0, 1, 2, 3, 0, 0, 0, 0) + ν(ω1 + ω6) = (0, 1, 2, 3, ν,−ν,−ν, ν), ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to ( 1

2 ,
1
2 ,

3
2 ,

3
2 ,

3
2 ,−3

2 ,−3
2 ,

3
2).

For ν > 0, the hermitian intertwining operator is given by the element
rwm , where wm = w0 ·w0(M). Note that wm(D4, St, ν) = (D4, St,−ν). The
subgroup W (z) ∼= W (A2) is generated by:

s̄1 = wm(D′5,M)
s̄2 = wm(D′′5 ,M)

Here D′5 denotes the Levi subgroup generated by {α1, α2, α3, α4, α5},
while D′′5 is generated by {α2, α3, α4, α5, α6}.

Note that wm = s̄1 · s̄2 · s̄1 and the intertwining operator decomposes
accordingly:

AE6(D4, St, ν) = AD′5(D4, St) ◦ AD′′5 (D4, St) ◦ AD′5(D4, St).

The restrictions of W-types are:
Nilpotent D4 D5(a1) E6(a3) E6(a3)
W-type 24′p 64′p 30′p 15′p
Multiplicity 1 2 1 1
D4 ⊂ D5 213 × 0 213 × 0, 14 × 1 14 × 1 14 × 1
Z = A2 (3) (21) (13) (13)

In the Hecke algebra of type D5, the nilpotent orbit is D4 = (91), with
lowest W-type 213 × 0. The corresponding (restriction of the) infinitesi-
mal character is (0, 1, 2, 3, ν̄), where ν̄ takes the values: ν, 2ν and ν. The
reducibility points are ν̄ = 1, 4. The intertwining operators in D5 are:

213 × 0 1
14 × 1 1−ν̄

1+ν̄

It follows that the points of reducibility for X(D4, ν) are ν = 1
2 , 1, 2, 4.

For the centralizer A2, the spherical hermitian infinitesimal character in
standard coordinates is (ν, 0,−ν). Therefore, the matching of intertwining
operators is:
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W -type W (z)-type
24′p: (3)
64′p: (21)
30′p: (13)
15′p: (13)

All W-types of A2 are matched in this way, which implies that U(E6, D4) ⊂
SU(H(A2)). SU(H(A2)) is formed of 0 ≤ ν < 1

2 , attached to the nilpotent

orbit (13), ν = 1
2 , attached to (21) and ν = 1, attached to (3).

Clearly, X(D4, ν) has to be unitary for 0 ≤ ν ≤ 1
2 . The complementary

series is 0 ≤ ν < 1
2 .

At the endpoint of the complemetary series ν = 1
2 ,

X(D4,
1

2
) = X(D5(a1)) +X(D4,

1

2
), X(D4,

1

2
)|W = 60′p + 64′p + 20′p.

At the isolated point ν = 1, the decomposition is:

X(D4, 1) = X(E6(a3), (2)) +X(E6(a3), (11)) + 2 ·X(D5(a1),
3

2
) +X(D4, 1),

X(D4, 1)|W = 24′p.

Since X(D4, 1) is hermitian and its restriction to W is a single W-type,
it must be unitary.

In conclusion, U(E6, D4) = SU(H(A2)).

9. A4 : centralizer A1 + T1 (connected).

X(A4)|W = 81′p + 60′p + 2 · 64′p + 15′q + 2 · 30′p + 15′p + 3 · 20′p + 2 · 6′p + 1′p,

with lowest W-type 81′p (even degree). The hermitian parameter is (M,σ) =
(A5, (51)), where (51) denotes the tempered representation parametrized by
the orbit (51) in A5, and (hermitian) infinitesimal character

(−2,−1, 0, 1, 2, 0, 0, 0) + νω2, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to ( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

3
2 ,−3

2 ,−3
2 ,

3
2).

For ν > 0, note that wm(A5, σ, ν) = (A5, σ,−ν), σ = (51). The sub-
group W (z) of the Weyl group corresponding to the (semisimple part of)
the centralizer Z = A1 is generated by wm. wm decomposes as follows:

wm = wm(D′′5 , A4) · s1 · wm(D′′5 , A4).

The intertwining operator decomposes:

AE6(A5, (51), ν) = AD′′5 (A4, St) ◦ AA1(0, St) ◦ AD′′5 (A4, St).

Restrictions of W-types are:
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Nilpotent A4 A4 +A1

W-type 81′p 60′p
Multiplicity 1 1
A4 ⊂ D5 13 × 12 13 × 12

0 ⊂ A1 (2) (11)
Z = A1 (2) (11)

In the Hecke algebra of type D5, the nilpotent orbit is A5 = (55), with
lowest W-types 13 × 12. The corresponding (restriction of the) infinitesimal
character are (−2,−1, 0, 1, 2) + ν( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2) with reducibility at ν = 2, 4.

It follows that the points of reducibility for X(A4, ν) are ν = 1
2 , 2, 4.

The matching of intertwining operators is:
W -type W (z)-type
81′p: (2) +1

60′p: (11)
1
2
−ν

1
2

+ν

Therefore, U(E6, A4) ⊂ SU(H(A1)) = {0 ≤ ν ≤ 1
2}. Clearly, X(A4, ν) is

unitary for 0 ≤ ν < 1
2 , being unitary at ν = 0 and irreducible for 0 ≤ ν < 1

2 .

The complementary series is 0 ≤ ν ≤ 1
2 .

At the endpoint of the complementary series ν = 1
2 ,

X(A4,
1

2
) = X(A4+A1)+X(A4,

1

2
), X(A4,

1

2
)|W = 81′p+64′p+30′p+15′p+20′p+6′p.

In conclusion, U(E6, A4) = SU(H(A1)).

10. D4(a1) : centralizer T2 with component group S3.

X(D4(a1)) = X(D4(a1), (3)) + 2 ·X(D4(a1), (21)) +X(D4(a1), (13)),

X(D4(a1), (3))|W : 80s + 81′p + 24′p + 2 · 60′p + 2 · 64′p + 15′q + 2 · 30p
+6′p + 1′p

X(D4(a1), (21))|W : 90s + 81′p + 2 · 64′p + 30′p + 15′p + 20′p + 6′p
X(D4(a1), (13))|W : 20s + 15′p

with lowest W-types 80s (odd degree), 90s (even degree) and 20s (even
degree). The hermitian parameter is (M,σ) = (D4, (53)), where (53) de-
notes the discrete series parametrized by the nilpotent orbit (53) in D4, and
hermitian infinitesimal character

s = (0, 1, 1, 2, 0, 0, 0, 0) + ν(ω1 + ω6) = (0, 1, 1, 2, ν,−ν,−ν, ν), ν ≥ 0.

For ν = 0, the module decomposes into four irreducible tempered modules
and the infinitesimal character is W-conjugate to (0, 0, 1, 1, 1,−1,−1, 1).

For ν > 0, the three lowest W-types always stay in the same factor (the
component group A(s, e) doesn’t change). wm(D4, (53), ν) = (D4, (53),−ν).
W (z) = 1 and W (Z) = W (A(O)) ∼= S3 is generated by:

s̄1 = wm(D′5,M)
s̄2 = wm(D′′5 ,M)
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wm = s̄1 · s̄2 · s̄1 and the intertwining operator decomposes:

AE6(D4, (53), ν) = AD′5(D4, (53)) ◦ AD′′5 (D4, (53)) ◦ AD′5(D4, (53)).

The restrictions of W-types are:
Nilpotent D4(a1) D4(a1) D4(a1)
W-type 80s 90s 20s
Multiplicity 1 2 1
D4(a1) ⊂ D5 211× 1 211×, 13 × 2 13 × 2
W (Z) = S3 (3) (21) (13)

In the Hecke algebra of type D5, the nilpotent orbit is D4(a1) = (53) with
lowest W-types 211 × 1 and 13 × 2. The corresponding (restriction of the)
infinitesimal character is (0, 1, 1, 2, ν̄), where ν̄ takes the values ν, 2ν and
ν. The two lowest W-types are always in the same factor for ν̄ > 0. The
reducibility points are ν̄ = 2, 3. The intertwining operators in D5 are:

211× 1 : +1
13 × 2 : −1

It follows that the points of reducibility forX(D4(a1), ν) are ν = 1, 3
2 , 2, 3.

We match the intertwining operators for the nilpotent D4(a1) with oper-
ators for the Hecke algebra of type A2 with zero parameter:

W -type W (Z)-type
80s: (3) +1

90s: (21)

(
1 0
0 −1

)

20s: (13) −1
There is no complementary series.

11. A3 + A1 : centralizer A1 + T1 (connected). X(A3 + A1) has lowest W-
type 60s (even degree). The hermitian parameter is (M,σ) = (A5, (42)),
where (42) is a tempered module of A5 (realize (42) = A3 +A1 ⊂ A5 by the
roots {α1, α3, α4, α6}), and (hermitian) infinitesimal character

s = (−5

4
,−1

4
,
3

4
,−5

4
,−1

4
,−3

4
,−3

4
,

3

4
) + νω2, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to (0, 1

2 ,
1
2 , 1, 1,−1,−1, 1).

For ν > 0, wm(A5, (42), ν) = (A5, (42),−ν). W (z) ∼= W (A1) is generated
by wm. wm decomposes as follows:

wm = wm(A4, A
′
3) · wm(D5, D3 +A1) · wm(A4, A3),

where A4 is realized by the roots {α1, α3, α4, α2}, A3 by {α1, α3, α4} and A′3
by {α3, α4, α2}.

The intertwining operator decomposes:

AE6(A5, (42), ν) = AA4(A3, St) ◦ AD5(D3 +A1, St) ◦ AA4(A3, St).

The restrictions of W-types are:
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Nilpotent A3 +A1 D4(a1) D4(a1)
W-type 60s 80s 90s
Multiplicity 1 1 1
A3 ⊂ A4 (213) (213) (213)
D5 221 × 0 211 × 1 211 × 1
W (z) = S2 (2) (11) (11)

The reducibility point coming from the factor AA4(A3, St, ν) is ν = 5
2 .

In the Hecke algebra of type D5, the nilpotent is (5221) with lowest W-
type 221 × 0. The corresponding (restriction of the) infinitesimal character
is (0, 1, 2,− 1

2 ,
1
2) + ν(0, 0, 0, 1, 1), with reducibility at ν = 1

2 ,
3
2 ,

5
2 ,

7
2 . The

intertwinining operators are:
221× 0 1

211× 1
1
2
−ν

1
2

+ν

It follows that the reducibility points forX(A3+A1, ν) are ν = 1
2 ,

3
2 ,

5
2 ,

7
2 .

The matching of intertwining operators is:
W -type W (z)-type
60s (2) 1

80s (11)
1
2
−ν

1
2

+ν

90s (11)
1
2
−ν

1
2

+ν

Therefore U(E6, A3 + A1) ⊂ SU(H(A1)) = {0 ≤ ν ≤ 1
2}. X(A3 + A1, ν)

is unitary (actually tempered) at ν = 0 and irreducible for 0 ≤ ν < 1
2 , so it

is unitary in the entire interval. The complementary series is 0 ≤ ν < 1
2 .

At the endpoint of the complementary series, ν = 1
2 ,

X(A3 +A1,
1

2
) = X(D4(a1), (3)) +X(D4(a1), (21)) +X(A3 +A1,

1

2
),

X(A3 +A1,
1

2
)|W = 60s + 60′p + 15′q.

In conclusion, U(E6, A3 +A1) = SU(H(A1)).

12. 2A2 + A1 : centralizer A1 (connected). X(2A2 +A1) has lowest W-type
10s (odd degree). The infinitesimal character is

(0, 1,−3

2
,−1

2
,
1

2
,−1

2
,−1

2
,
1

2
) + νω4, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to (0, 0, 1

2 ,
1
2 , 1,−1,−1, 1).

For ν > 0, X(2A2 +A1, ν) = L(2A2 +A1, St, ν) and it is always hermitian.
It has to remain unitary until the first reducibility point. The points of
reducibility are ν = 1

2 , 1, 3
2 ,

5
2 ,

7
2 , with generic factors X(D4(a1), (2)),

X(A4 +A1), X(E6(a3), (2)), X(E6(a1)) and X(E6).
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At the first reducibility point, ν = 1
2 ,

X(2A2 +A1,
1

2
) = X(D4(a1), (3)) +X(A3 +A1,

1

2
) +X(2A2 +A1,

1

2
),

X(2A2 +A1,
1

2
)|W = 10s.

For ν > 1
2 , any factor parametrized by the orbit A3 +A1 would also have

to contain the W-type 90s. Since 90s does not appear in X(2A2 + A1),
it follows that 60s, the lowest W-type of A3 + A1 has to stay in the same
factor with 10s, that is in X(2A2 +A1, ν). Since 10s and 60s have opposite
signature at ∞, X(2A2 +A1, ν) is not unitary for ν > 1

2 .

The complementary series is 0 ≤ ν < 1
2 and U(E6, 2A2+A1) = SU(H(A1)).

13. A3 : centralizer B2+T1 (connected). X(A3) has lowest W-type 81p (even
degree). The hermitian parameter is (M,σ) = (A3, St), (A3 is realized by
{α3, α4, α5}) with hermitian infinitesimal character

s = (−3

2
,−1

2
,

1

2
,

3

2
, 0, 0, 0, 0)+ν1(0, 0, 0, 0,

1

2
,−1

2
,−1

2
,
1

2
)+ν2(

1

2
,
1

2
,
1

2
,

1

2
, 0, 0, 0, 0),

ν1 ≥ ν2 ≥ 0.
For (ν1, ν2) = (0, 0), the module is tempered irreducible and the infinites-

imal character is conjugate to ( 1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1).

For ν1 ≥ ν2 > 0, wm(A3, St, ν) = (A3, St,−ν). The subgroup W (z) =
W (B2) is generated by:

s̄1 : ν1 → ν2 wm(D4,M)
s̄2 : ν1 → −ν1 (wm(A4, A3)) · s6 · (wm(A4, A

′
3)),

where A4 is realized by the roots {α1, α3, α4, α5} and A′3 by {α1, α3, α4}.
The intertwining operator decomposes accordingly:

AE6(A3, St, (ν1, ν2)) = A1(−ν2,−ν1)◦A2(−ν2, ν1)◦A1(ν1,−ν2)◦A2(ν1, ν2),

where A1 = AD4(A3, St) and A2 = AA4(A′3, St) ◦ AA1(0, St) ◦ AA4(A3, St).
The restrictions of W-types are:
Nilpotent A3 A3 +A1 D4(a1) D4(a1)
W-type 81p 60s 80s 20s
Multiplicity 1 1 2 1
A4 (213) (213) 2 · (213) (213)
D4 11× 11+ 11× 11+ 11× 11+, 1

3 × 1 13 × 1
A1 (2) (11) (2), (11) (2)
W (z) = W (B2) 2× 0 11× 0 1× 1 0× 2

The reducibility lines coming from the factor AA1(0, St) are ν1 ± ν2 = 1,
while the factors AA4(A3, St) give reducibility at ν1 ± ν2 = 5.

In the Hecke algebra of type D4, the nilpotent orbit is (44)+ with lowest
W-type 11×11+. The corresponding infinitesimal character is (− 3

2 ,−1
2 ,

1
2 ,

3
2)+

ν̄(1
2 ,

1
2 ,

1
2 ,

1
2 ), where ν̄ can be ν1 and ν2. The reducibility points are ν̄ = 1, 3.

The intertwining operators in D4 are:
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11× 11+ 1
13 × 1 1−ν̄

1+ν̄

It follows that the lines of reducibility for X(A3, (ν1, ν2)) are ν1 = 1,
ν2 = 1, ν1 ± ν2 = 1 (as for B2) and ν1 = 3, ν2 = 3 and ν1 ± ν2 = 5.

The matching of intertwining operators with operators in the Hecke alge-
bra of type B2 is:

W -type W (z)-type
81p: 2× 0
60s: 11× 0
80s: 1× 1
20s: 0× 2

All the relevant W-types for B2 are matched, which implies U(E6, A3) ⊂
SU(H(B2)). SU(H(B2)) is partitioned by the B2-nilpotent orbits: (15),
(221), (311) and (5). We analyze the unitarity of the corresponding param-
eters in A3 ⊂ E6.

(15) : in SU(H(B2)), this is the spherical complementary series 0 ≤ ν2 ≤
ν1 < 1− ν2. For A3 ⊂ E6, X(A3, (ν1, ν2)) is tempered irreducible at (0, 0),
so it remains unitary until the first reducibility line ν1 + ν2 = 1. It follows
that the complementary series is the same, 0 ≤ ν2 ≤ ν1 < 1− ν2.

(221) : these are endpoints of the complementary series, (ν1, ν2) = (1
2 +

ν,−1
2 + ν) with 0 ≤ ν < 1

2 , so that they are automatically unitary.

X(A3, (
1

2
+ν,−1

2
+ν)) = X(A3 +A1) +X(A3, (

1

2
+ν,−1

2
+ν)), 0 ≤ ν < 1

2
,

X(A3, (
1

2
+ ν,−1

2
+ ν))|W = 81p + 80s + · · ·+ 2 · 20′p + 6′p.

(311) : (ν1, ν2) = (1, 0) is an endpoint of the complementary series, so it
is unitary.

X(A3, (1, 0)) = X(D4(a1)) +X(A3, (1, 0)),

X(A3, (1, 0)) = 81p + 80s + · · ·+ 20′p.

(5) : (ν1, ν2) = (2, 1) is isolated.

X(A3, (2, 1)) = X(A4) +X(D4(a1), 1) +X(A3 +A1,
3

2
) +X(A3, (2, 1)),

X(A3, (2, 1)) = 81p + 81′p.

Note that X(A3, (2, 1)) is self IM -dual. We calculate explicitly the inter-
twining operator AE6(A3, St, (2, 1)) and find that it is positive on 81′p. It

follows that X(A3, (2, 1)) is unitary.

In conclusion, U(E6, A3) = SU(H(B2)).

14. A2 + 2A1 : the centralizer is A1 + T1 (connected). X(A2 + 2A1) has
lowest W-type 60p (odd degree). The hermitian parameter is (M,σ) = (A2+
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2A1, St) (A2+2A1 is realized by {α1, α2, α4, α6}) and hermitian infinitesimal
character

s = (
5

4
,−1

4
,
3

4
,−3

4
,
1

4
,−1

4
,−1

4
,
1

4
) + ν(−1

2
,
1

2
,
1

2
,
3

2
,

3

2
,−3

2
,−3

2
,
3

2
), ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to (− 1

4 ,
1
4 ,

1
4 ,

3
4 ,

3
4 ,−3

4 ,−3
4 ,

3
4).

For ν > 0, wm(A2 + 2A1, St, ν) = (A2 + 2A1, St,−ν). The subgroup
W (z) ∼= S2 of the Weyl group is generated by wm. wm decomposes as
follows:

wm = wm(A4, A2A1)·wm(A2, A1)·wm(D5, D2A2)·wm(A2, A
′
1)·wm(A4, (A2A1)′),

where in A4 = {α1, α3, α4, α2}, A2 + A1 = {α1, α4, α2}, (A2 + A1)′ =
{α1, α3, α2}, and in A2 = {α5, α6}, A1 = {α6} and A′1 = {α5}.

The intertwining operator decomposes:

AE6(A2 +2A1, St, ν) = AA4((A2 +A1)′, St)◦AA2(A′1, St)◦AD5(D2 +A2, St)

◦AA2(A1, St) ◦ AA4((A2 +A1), St).

The restrictions of W-types are:
Nilpotent A2 + 2A1 A3

W-type 60′p 81′p
Multiplicity 1 1
A3 ⊂ A4 (221) (221)
A1 ⊂ A2 (21) (21)
D2 +A2 ⊂ D5 22× 1 21× 11
W (z) = S2 (2) (11)

There are reducibility points ν = 3
2 ,

5
2 from the factors AA4(A2 +A1, St),

and ν = 1
2 from the factors AA2(A1, St).

In the Hecke algebra of type D5, the nilpotent orbit is (331) with lowest
W-type 22×1. The corresponding infinitesimal character is (0, 1,−1, 0, 1)+
(ν̄)(0, 0, 1, 1, 1), with ν̄ = 2ν. The reducibility points are ν̄ = 1, 2, 3. The
intertwining operators in D5 are

22× 1: 1
21× 11: 1−ν̄

1+ν̄

It follows that the reducibility points forX(A2+2A1, ν) are ν = 1
2 , 1, 3

2 ,
5
2 .

The intertwining operators are:
W -type W (z)-type
60p: (2) 1

81p: (11)
1
2
−ν

1
2

+ν

Therefore, U(E6, A2 +2A1) ⊂ SU(H(A1)) = {0 ≤ ν ≤ 1
2}. X(A2 +2A1, ν)

is unitary at ν = 0 and irreducible for 0 ≤ ν < 1
2 . Then the complementary

series is 0 ≤ ν < 1
2 .

At the endpoint of the complementary series:
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X(A2 + 2A1,
1
2) = X(D4(a1), (3)) +X(D4(a1), (21)) +X(A3, (1, 0))+

X(2A2 +A1,
1
2 ) + 2 ·X(A3 +A1,

1
2) +X(A2 + 2A1,

1
2 ),

X(A2 + 2A1,
1

2
) = 60p + 60s + 80s + 60′p.

U(E6, A2 + 2A1) = SU(H(A1)).

15. 2A2 : the centralizer is G2 (connected). X(2A2) has lowest W-type 24p
(even degree). The hermitian parameter is (M,σ) = (2A2, St), (2A2 realized
by {α1, α3, α5, α6}) and infinitesimal character

s = (−1

2
,
1

2
,−3

2
,−1

2
,
1

2
,−1

2
,−1

2
,

1

2
) + ν1(0, 0, 1, 1, 1,−1,−1, 1)+

ν2(
1

2
,

1

2
,
1

2
,
1

2
,
1

2
,−1

2
,−1

2
,

1

2
), ν1 ≥ 0, ν2 ≥ 0.

For (ν1, ν2) = (0, 0), the module is tempered irreducible and the infinites-
imal character is W-conjugate to (0, 0, 0, 0, 1,−1,−1, 1).

For (ν1, ν2) 6= (0, 0), wm(2A2, St, (ν1, ν2)) = (2A2, St, (−ν1,−ν2)). The
subgroup W (z) ∼= W (G2) of the Weyl group is generated by:

s̄1 = wm(A5, 2A2)
s̄2 = s2

Note that wm = (s1 · s2)3 and the intertwining operator decomposes as

AE6(2A2, St, (ν1, ν2)) = (AA5(2A2, St) ◦ AA1(0, St))3.

The restriction of W-types are:
Nilpotent 2A2 2A2A1 A3A1 D4(a1) D4(a1) D4

W-type 24p 10s 60s 80s 90s 24′p
Multiplicity 1 1 2 2 1 1
2A2 ⊂ A5 (23) (23) (23), (2212) (23), (2212) (2212) (2212)
A1 (2) (11) (2), (11) (2), (11) (2) (11)
W (z) = W (G2) (1, 0) (1, 3)′′ (2, 2) (2, 1) (1, 3)′ (1, 6)

In the factor AA1(0, St), the root α2 takes values ν2, 3ν1+ν2 and 3ν1+2ν2.
In the Hecke algebra of type A5, the nilpotent orbit is (33) with lowest W-

type (23). The corresponding infinitesimal character is (−1, 0, 1,−1, 0, 1) +
ν̄(−1

2 ,−1
2 ,−1

2 ,
1
2 ,

1
2 ,

1
2), where ν̄ can be ν1, ν1 + ν2 and 2ν1 + ν2. The re-

ducibility points are ν̄ = 1, 2, 3. The intertwining operators in A5 are:
(222): 1
(2211): 1−ν̄

1+ν̄

It follows that the lines of reducibility for X(2A2, St, (ν1, ν2)) are ν1, ν1 +
ν2, 2ν1+ν2 = 1, ν2, 3ν1+ν2, 3ν1+2ν2 = 1 (as forG2) and ν1, ν1+ν2, 2ν1+ν2 =
2, 3.

The matching of intertwining operators with operators from the Hecke
algebra of type G2 is:
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W -type W (z)-type
24p (1, 0) (trivial representation)
10s (1, 3)′′ (−1 on the long roots)
60s (2, 2)
80s (2, 1) (the reflection representation)
90s (1, 3)′ (−1 on the short roots)
24′p (1, 6) (sign representation)

Note that all the W-types forG2 are matched, which implies U(E6, 2A2) ⊂
SU(H(G2)). SU(H(G2)) is partitioned by the G2-nilpotent orbits: 1, A1, Ã1,
G2(a1) and G2. We analyze the unitarity of the corresponding parameters
in 2A2 ⊂ E6.

1: in SU(H(G2)) this is the spherical complementary series {3ν1 + 2ν2 <
1} ∪ {2ν1 + ν2 < 1 < 3ν1 + ν2}. For 2A2 ⊂ E6, X(2A2, (ν1, 0) is irreducible
for 0 ≤ ν1 <

1
2 , ν1 6= 1

3 and unitarily induced from a unitary module, and
therefore, it is unitary. This implies that the complementary series is the
same as the one for G2.
A1: these are endpoints of the complementary series (ν1, ν2) = (−1

2 +ν, 1),

0 ≤ ν < 1
2 , so they are unitary. The decomposition of the standard module

is:

X(2A2, (−
1

2
+ ν, 1)) = X(2A2 +A1, ν) +X(2A2, (−

1

2
+ ν, 1)),

X(2A2, (−
1

2
+ ν, 1))|W = 24p + 60s + · · ·+ 20′p + 6′p.

Ã1: they are endpoints of the complementary series, (ν1, ν2) = (1,− 3
2 +ν),

0 ≤ ν < 1
2 , so they are unitary. The decomposition of the standard module

is:

X(2A2, (1,−
3

2
+ ν)) = X(A3 +A1, ν) +X(2A2, (1,−

3

2
+ ν)),

X(2A2, (1,−
3

2
+ ν))|W = 24p + 10s + 60s + · · ·+ 30′p + 15′q.

G2(a1): (ν1, ν2) = (0, 1) is an endpoint of the complementary series, so it
is unitary.

X(2A2, (0, 1)) = X(D4(a1), (3)) +X(D4(a1), (21)) + 2 ·X(A3 +A1,
1
2)

+X(2A2 +A1,
1
2) +X(2A2, (0, 1)).

X(2A2, (0, 1))|W = 24p + 80s + 81′p + 30′p.

G2: (ν1, ν2) = (1, 1) is isolated. X(2A2, (1, 1)) is the IM -dual ofX(D4, 1),
X(2A2, (1, 1))|W = 24p, and therefore it is unitary.

In conclusion, U(E6, 2A2) = SU(H(G2)).

16. A2 + A1 : the centralizer is A2 +T1 (connected). X(A2 +A1) has lowest
W-type 64p (odd degree). The hermitian parameter is (M,σ) = (A5, (3211))
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(A2 + A1 = (3211) ⊂ A5 is realized as {α1, α3, α5}), with hermitian infini-
tesimal character

s = (−1

2
,

1

2
,−1, 0,−1

2
,−1

2
,−1

2
,
1

2
) + νω2, ν ≥ 0.

For ν = 0, the module is tempered irreducible and the infinitesimal char-
acter is W-conjugate to ( 1

4 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,−3

4 ,−3
4 ,

3
4).

For ν > 0, wm(A5, (3211), ν) = (A5, (3211),−ν). The subgroup W (z) ∼=
W (A2) of the Weyl group is generated by:

s̄1 = s2

s̄2 = wm(A4, A2 +A1) · wm(A3, A2) · s2 · wm(A3, A
′
2) · wm(A4, (A2 +A1)′),

where in A4 = {α1, α3, α4, α5}, A2 +A1 = {α1, α3, α5} and (A2 +A1)′ =
{α1, α4, α5}, and in A3 = {α4, α5, α6}, A2 = {al4, α5} and A′2 = {α5, α6}.

Note that wm = s̄1 · s̄2 · s̄1. The intertwining operator AE6(A5, (3211), ν)
decomposes accordingly into a product of operators

AA4(A2 +A1, St), AA3(A2, St) and AA1(0, St).

The restrictions of W-types are:
Nilpotent A2 +A1 2A2 A2 + 2A1 2A2 +A1

W-type 64p 24p 60p 10s
Multiplicity 1 1 2 1
A1 (2) (2) (2), (11) (11)
A2 ⊂ A3 (211) (211) 2 · (211) (211)
A2 +A1 (221) (221) 2 · (221) (221)
W (z) = S3 (3) (3) (21) (13)

There are reducibility points ν = 3
2 ,

5
2 from the factors AA4(A2 +A1, St),

ν = 2 from AA3(A2, St) and ν = 1
2 , 1 from AA1(0, St).

Therefore, the points of reducibility forX(A2+A1, ν) are ν = 1
2 , 1, 3

2 , 2, 5
2 .

The intertwining operators match operators from the Hecke algebra of
type A2, as follows:

W -type W (z)-type
64p: (3)
24p: (3)
60p: (21)
10s: (13)

All W-types of A2 are matches, which implies that U(E6, A2 + A1) ⊂
SU(H(A2)). SU(H(A2)) is formed of 0 ≤ ν < 1

2 attached to the A2-nilpotent

orbit (13), ν = 1
2 attached to (21) and ν = 1 attached to (3).

X(A2, ν) is irreducible for 0 ≤ ν < 1
2 and unitary at ν = 0. The comple-

mentary series is 0 ≤ ν < 1
2 .

At the endpoint of the complementary series, ν = 1
2 ,

X(A2 +A1,
1

2
) = X(A2 + 2A1) +X(A2 +A1,

1

2
),

X(A2 +A1,
1

2
)|W = 64p + 24p + 60p + · · ·+ 2 · 15′p + 2 · 20′p + 6′p.
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The point ν = 1 is isolated. The decomposition of the standard module
is

X(A2 +A1, 1) = X(2A2 +A1) + 2 ·X(A2 + 2A1, νnh) +X(A2 +A1, 1),

X(A2+A1, 1)|W = 64p+24p+81p+80s+2·90s+20s+2·81′p+64′p+30′p+15′p.

We calculate explicitly the intertwining operator AE6(A5, (3211), 1) on the
W-types of X(A2 +A1, 1) and find that it is positive. It follows that X(A2 +
A1, 1) is unitary.

In conclusion, U(E6, A2 +A1) = SU(H(A2)).

17. A2 : the centralizer is A2 + A2, with component group Z2. X(A2) =
X(A2, (2)) + X(A2, (11)), with lowest W-types 30p, respectively 15p (both
having odd degrees). There are two non-conjugate choices for the hermitian
parameter:

a) (M,σ) = (A3, (31)), (whereA3 is realized by {α3, α4, α5} andA2 = (31)
by {α4, α5}) with hermitian infinitesimal character

s = (0,−1, 0, 1, 0, 0, 0, 0) + ν1(−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,−1

2
,−1

2
,
1

2
)

+ν2(
1

2
,
1

2
,

1

2
,

1

2
,
1

2
,
1

2
,
1

2
,

1

2
), ν1 ≥, ν2 ≥ 0.

b) (M,σ) = (A2, St), (A2 is realized by {al2, α4}) with hermitian infini-
tesimal character

s = (1, 0, 1, 0, 0, 0, 0, 0) + ν ′1(0, 0, 0, 0, 1,−1,−1, 1)

+ν ′2(−1

2
,
1

2
,

1

2
,
3

2
, 0, 0, 0, 0), ν ′1 ≥ 0, ν ′2 ≥ 0.

We analyze these two cases next.

a) The two lowest W-types are separate if ν1 = ν2 = ν ≥ 0. wm =
w0(A3) · w0(E6), wm(A3, σ, (ν1, ν2)) = (A3, σ, (−ν1,−ν2)), where σ = (31).
The subgroup W (z) ∼= W (A2) ×W (A2) of the Weyl group is generated by
s̄1, s̄2, s̄3, s̄4, where:

s̄1 = s1

s̄2 = (s3s4s5) · s6 · (s5s4s3)
s̄3 = (s2s4s5) · (s3s4s2) · (s1s3s4) · s5 · (s4s3s1)(s2s4s3)(s5s4s2)
s̄4 = (s2s4s5) · (s3s4s2) · (s1s3s4) · s6 · (s4s3s1)(s2s4s3)(s5s4s2).

The factors in the paranthesis are all of the form wm(A3, A2), for some
A2 ⊂ A3 ⊂ E6.

The intertwining operator decomposes accordingly into a product of fac-
tors of the form

AA3(A2, St), and AA1(0, St).

The restrictions of W-types are:
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Nilpotent A2 A2 A2 +A1 2A2

W-type 30p 15p 64p 24p
Multiplicity 1 + 0 0 + 1 2 + 2 1 + 1
A2 ⊂ A3 (211) (211) 4 · (211) 2 · (211)
A1 (2) (2) 3 · (2), (11) (2), (11)
W (A2)×W (A2) (3) ⊗ (3) (3)⊗ (3) (21) × (3) (13)× (3)

(3) ⊗ (21) (3)⊗ (13)

For ν1 6= ν2, X(A2, (ν1, ν2) has the following reducibility lines: ν1 = 2,
ν2 = 2, ν1 ± ν2 = 2 and ν2 − ν1 = 2, from the factors AA3(A2, St) and
ν1 = 1

2 , 1, ν2 = 1
2 , 1, from AA1(0, St).

When ν1 6= ν2, the intertwining operators match operators from the Hecke
algebra of type A2 ×A2 as follows:

W -type W (A2)×W (A2)-type
30p: (3)⊗ (3)
15p: (3)⊗ (3)
64p: (21) ⊗ (3) + (3)⊗ (21)
24p: (13)⊗ (3) + (3)⊗ (13)

If ν1 = ν2 = ν, there are two standard modules X(A2, (ν, ν), (2)) and
X(A2, (ν, ν), (11), (the lowest W-types 30p and 15p are separate) and the
operators on each factor match operators in the Hecke algebra of type A2:

X(A2, (ν, ν), (2)) :

W -type W (A2)-type
30p: (3)
64p: (21)
24p: (13)

X(A2, (ν, ν), (11)) :

W -type W (A2)-type
15p: (3)
64p: (21)
24p: (13)

Since all the relevant W-types of A2 × A2 are matched, it follows that
U(A2) ⊂ SU(H(A2))×SU(H(A2)). SU(H(A2))×SU(H(A2)) is partitioned
by nilpotent orbits O ⊗O′, with O,O′ ∈ {(3), (21), (13)}. We mention that
for O 6= O′, the case O′ ⊗O is completely analogous to O ⊗O′.

(13)⊗(13) : this is the complementary series 0 ≤ ν1 <
1
2 , 0 ≤ ν2 <

1
2 , with

the observation that along 0 ≤ ν1 = ν2 <
1
2 there are two standard modules.

At (ν1, ν2) = (0, 0), the standard modules X(A2, (2)) and X(A2, (11)) are
tempered, thus unitary. For ν1 6= ν2, close to (0, 0), the standard module
X(A2, (ν1, ν2) is irreducible. Then it is unitary if and only if the signatures
of 30p and 15p are the same. From the calculation above, the intertwining
operators on both 30p and 15p are equal to +1, so X(A2, (ν1, ν2) is unitary in

the region (complementary series) 0 ≤ ν1 6= ν2 <
1
2 and on the line ν1 = ν2,

both standard modules X(A2, (ν, ν), (2)) and X(A2, (ν, ν), (11)) are unitary
for 0 ≤ ν1 = ν2 = ν < 1

2 .

(13)⊗ (21) : the parameter is (ν1, ν2) = (ν, 1
2), 0 ≤ ν < 1

2 . This is unitary
being endpoints of the complementary series. The decomposition of the
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standard module is:

X(A2, (ν,
1

2
)) = X(A2 +A1, ν) +X(A2, (ν,

1

2
)), 0 ≤ ν < 1

2

X(A2, (ν,
1

2
))|W = 30p + 15p + 3 · 64p + 24p + · · ·+ 3 · 20′p + 6′p.

(21) ⊗ (21) : the parameter is (ν1, ν2) = (1
2 ,

1
2). This is unitary, being an

endpoint of the complementary series. The decompositions of the standard
modules are:

X(A2, (
1

2
,

1

2
), (2)) = X(A2 + 2A1) +X(A2 +A1,

1

2
) +X(A2, (

1

2
,
1

2
), (2)),

X(A2, (
1

2
,
1

2
), (2))|W = 30p + 64p + · · · + 3 · 64′p + 30′p + 20′p;

X(A2, (
1

2
,
1

2
), (11)) = X(A2 +A1,

1

2
) +X(A2, (

1

2
,
1

2
), (11)),

X(A2, (
1

2
,

1

2
), (11))|W = 15p + 64p + · · ·+ 15′p.

(13) ⊗ (3) : the parameter is (ν1, ν2) = (ν, 1), with 0 ≤ ν < 1
2 . The

decomposition of the standard module is

X(A2, (ν, 1)) = X(2A2, (ν, 0))+2·X(A2+A1, νnh)+X(A2, (ν, 1)), 0 ≤ ν < 1

2
,

X(A2, (ν, 1))|W = 30p + 15p + 2 · 64p + 24p + 3 · 81p + 2 · 20s + 4 · 90s+

+2 · 80s + 2 · 81′p + 24′p + 2 · 64′p + 15′p + 30′p.

Note that X(A2, (ν, 1)), 0 ≤ ν < 1
2 , is self IM -dual. We check by an

explicit computation that the intertwining operators on these W-types are
positive for ν = 0. Since the W-structure of X(A2, (ν, 1)) doesn’t change for
0 ≤ ν < 1

2 , it follows that X(A2, (ν, 1)) is unitary for 0 ≤ ν < 1
2 .

(21) ⊗ (3) : the parameter is (ν1, ν2) = (1
2 , 1). The module X(A2, (

1
2 , 1))

is the IM -dual of X(A2 +A1, 1) which was proved to be unitary. Therefore
X(A2, (

1
2 , 1)) is also unitary.

(3)⊗(3) : the parameter is (ν1, ν2) = (1, 1). The module X(A2, (1, 1), (2))
is IM -dual to X(2A2, (0, 1)) and the module X(A2, (1, 1), (11)) is IM -dual
to X(D4(a1), (13)), so they are both unitary.

b) (M,σ) = (A2, St), (A2 realized by {α2, α4}) and infinitesimal character
s = (1, 0, 1, 0, 0, 0, 0, 0) + ν ′1(0, 0, 0, 0, 1,−1,−1, 1) + ν ′2(−1

2 ,
1
2 ,

1
2 ,

3
2 , 0, 0, 0, 0),

ν ′1 ≥ 0, ν ′2 ≥ 0. The two lowest W-types are separate if ν ′2 = 0. We will show
that for ν ′2 6= 0, the two lowest W-types have opposite signature always and
therefore the factor containing them, X(A2, (ν

′
1, ν
′
2)) is not unitary.

wm = w0(A2)·w0(E6) and wm(A2, St, (ν
′
1, ν
′
2)) = (A2, St, (−ν ′1,−ν ′2)). wm

decomposes as wm = s̄′1 · s̄′2, where
s̄′1 : ν1 → −ν1 wm(E6, D4) = s1 · (s3s4s2)(s5s4s3)(s6s5s4) · s2 · s3 · s1·

s3 · (s4s5s6) · (s3s4s5) · (s2s4s3) · s1

s̄′2 : ν2 → −ν2 wm(D4, A2)
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The intertwining operator decomposes accordingly into a product of op-
erators of the form

AA1(0, St), AA3(A2, St) and AD4(A2, St).

The restrictions of W-types are:
Nilpotent A2 A2

W-type 30p 15p
Multiplicity 1 + 0 0 + 1
A2 ⊂ A3 (31) (31)
A1 (2) (2)
A2 ⊂ D4 21× 1 2× 11

In the Hecke algebra of type D4, the nilpotent orbit is (3311) with lowest
W-types 21×1 and 2×11. The corresponding restriction of the infinitesimal
character is (1, 0, 1, 0)+ν ′2(−1

2 ,
1
2 ,

1
2 ,

3
2). For ν ′2 6= 0, the lowest W-types 21×1

and 2×11 are in the same factor and their intertwining operators in D4 are:
21× 1: +1
2× 11: −1

It follows that the operators in A2 ⊂ E6, for ν ′2 6= 0 are:
30p: +1
15p: −1

For ν ′2 = 0, the moduleX(A2, (ν
′
1, 0)) is isomorphic to the moduleX(A2, (ν, ν))

from a), with ν = ν ′1. Therefore, the same discussion applies.

In conclusion, U(A2) = SU(H(A2 ×A2)oZ2), the spherical unitary dual
of the Hecke algebra H(A2 ×A2)o Z2.

18. 3A1 : the centralizer A2 +A1 (connected). X(3A1) has lowest W-type
15q (even degree). The hermitian parameter is (M,σ) = (3A1, St) (3A1 is
realized as {α2, α3, α5}), with hermitian infinitesimal character

s = (0, 1,−1

2
,

1

2
, 0, 0, 0, 0) + (0, 0, ν2, ν2, ν1,−ν1,−ν1, ν1), ν1 ≥ 0, ν2 ≥ 0.

For (ν1, ν2) = (0, 0), the module is tempered irreducible and the infinites-
imal character is W-conjugate to (0, 0, 1

2 ,
1
2 ,

1
2 ,−1

2 ,−1
2 ,

1
2).

For (ν1, ν2) 6= (0, 0), wm(3A1, St, (ν1, ν2)) = (3A1, St, (−ν1,−ν2)). The
subgroup W (z) = W (A2)×W (A1) is generated by:

W (A2) s̄1 = (s1s3) · (s4s2s5s4) · (s3s1)
s̄2 = (s6s5) · (s4s2s3s4) · (s5s6)

W (A1) s̄3 = wm(D4, 3A1),
where the factors in the paranthesis are of the form wm(A2, A1) or wm(A3, 2A1).
Note that wm = (s̄1s̄2s̄1)·(s̄3), and the intertwining operatorAE6(3A1, St, (ν1, ν2))

decomposes similarly into a product of operators of the form

AA3(2A1, St), AA2(A1, St) and AD4(3A1, St).

The restrictions of W-types are:
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Nilpotent 3A1 A2 A2 +A1 2A2

W-type 15q 30p 64p 24p
Multiplicity 1 1 2 1
3A1 ⊂ D4 22× 0 21 × 1 2 · 21 × 1 21× 1
A1 ⊂ A2 (21) (21) 2 · (21) (21)
2A1 ⊂ A3 (22) (22) (22), (211) (211)
W (z) (3)⊗ (2) (3) ⊗ (11) (21) ⊗ (11) (13)⊗ (11)

The reducibility lines coming from the factors AA2(A1, St) are ν1±ν2 = 3
2 ,

ν2 − ν1 = 3
2 , 2ν1 ± ν2 = 3

2 and ν2 − 2ν1 = 3
2 .

In the Hecke algebra of type A3, the nilpotent orbit is (22), with lowest
W-type (22). The corresponding infinitesimal character is (− 1

2 ,
1
2 ,−1

2 ,
1
2) +

ν̄(1
2 ,

1
2 ,−1

2 ,−1
2), with ν̄ taking values ν1 and 2ν1. The reducibility points

are ν̄ = 1, 2. The intertwining operators in A3 are:
(22): 1
(211): 1−ν̄

1+ν̄
In the Hecke algebra of type D4, the nilpotent orbit is (3221) with lowest

W-type 22 × 0. The corresponding infinitesimal character is (0, 1,− 1
2 ,

1
2) +

ν̄(0, 0, 1, 1), where ν̄ = ν2. The reducibility points are ν̄ = 1
2 ,

3
2 ,

5
2 . The

intertwining operators in D4 are:
22× 0: 1

21× 1:
1
2
−ν̄

1
2

+ν̄
.

It follows that the lines of reducibility for the standard moduleX(3A1, (ν1, ν2))
are:

ν2 = 1
2 ,

3
2 ,

5
2 ν1 ± ν2 = 3

2 2ν1 ± ν2 = 3
2

ν1 = 1
2 , 1, 2 ν2 − ν1 = 3

2 ν2 − 2ν1 = 3
2

The matching of the intertwining operators with operators in the Hecke
algebra of type A2 ×A1 is:

W -type W (z)-type
15q: (3)⊗ (2)
30p: (3)⊗ (11)
64p: (21) ⊗ (11)
24p: (13)⊗ (11)

Not all relevant W-types of A2×A1 are matched, so U(3A1) could be larger
than SU(H(A2 × A1)) = {0 ≤ ν1 ≤ 1

2 , 0 ≤ ν2 ≤ 1
2} ∪ {ν1 = 1, 0 ≤ ν2 ≤ 1

2}.
We organize the analysis of the unitarity of X(3A1, (ν1, ν2)), as before, by
the nilpotent orbits in the centralizer A2 × A1. The matched W-types are
sufficient for proving nonunitarity for all (ν1, ν2) with ν2 6= 1

2 , but they do

not give any information on the line ν2 = 1
2 .

(13) ⊗ (12): this is the complementary series {0 ≤ ν1 <
1
2 , 0 ≤ ν2 <

1
2}.

The moduleX(3A1, (ν1, ν2)) is unitary at (0, 0) and irreducible in this region,
therefore X(3A1) has the same complementary series as A2 +A1.

(21)⊗ (12): the parameter is (ν1, ν2) = (1
2 , ν), 0 ≤ ν < 1

2 . This is unitary,
being an endpoint of the complementary series. The decomposition of the
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standard module is:

X(3A1, (
1

2
, ν)) = X(A2 +A1, ν) +X(3A1, (

1

2
, ν)), 0 ≤ ν < 1

2
,

X(3A1, (
1

2
, ν))|W = 15q + 30p + 64p + · · ·+ 15′q + 30′p + 20′p.

(3)⊗ (12): the parameter is (ν1, ν2) = (1, ν), 0 ≤ ν < 1
2 . This is IM -dual

to X(2A2, (1,−3
2 + ν)), which implies it is unitary.

(13)⊗ (2): the parameter is (ν1, ν2) = (ν, 1
2). In SU(H(A2×A1)), the cor-

responding unitary parameter is 0 ≤ ν < 1
2 . For 0 ≤ ν < 1

2 , X(3A1, (ν,
1
2 ))

is also unitary, being endpoint of the complementary series. The decompo-
sition of the standard module is

X(3A1, (ν,
1

2
)) = X(A2, (ν, ν), (2)) +X(3A1, (ν,

1

2
)), 0 ≤ ν < 1

2
,

X(3A1, (ν,
1

2
))|W = 15q + 2 · 60p + 80s + 3 · 60s + 10s + 2 · 60′p + 15′q.

Note that X(3A1, (ν,
1
2)) is self IM -dual. We know it is unitary for 0 ≤

ν < 1
2 . The W-structure of X(3A1, (ν,

1
2)) can only change at ν = 1

2 , 1

and 2. At ν = 1
2 , the generic factor is parametrized by the nilpotent orbit

A2 + 2A1, which has lowest W-type 60p. This implies that 60p (also any
higher W-type) cannot come out of X(3A1, (ν,

1
2 )) at ν = 1

2 , and therefore

X(3A1, (ν,
1
2)) is unitary for 0 ≤ ν < 1.

We confirm this by an explicit calculation of the intertwining operator on
60p along the line ν1 = ν, ν2 = 1

2 :

60p :

(
2−ν
2+ν 0

0 (2−ν)(1−ν)
(2+ν)(1+ν)

)
.

The operator on 60p also shows that X(3A1, (ν,
1
2)) is non-unitary for ν >

1, ν 6= 2.
At (ν1, ν2) = (2, 1

2), X(3A1, (2,
1
2 )) is the IM -dual of X(A5,

1
2), therefore

X(3A1, (2,
1
2))|W = 15q and it is unitary.

(21) ⊗ (2): this is the point (ν1, ν2) = (1
2 ,

1
2) and it is unitary by the

previous discussion.
(3)⊗(2): (ν1, ν2) = (1, 1

2). X(3A1, (1,
1
2)) is the IM -dual of X(A3+A1,

1
2),

therefore it is unitary and X(3A1, (1,
1
2))|W = 15q + 60p + 60s.

In conclusion, U(3A1) = SU(H(A2×A1))∪{ν2 = 1
2 ,

1
2 < ν1 < 1}∪{(2, 1

2)}.

19. 2A1 : the centralizer is B3 +T1 (connected). X(2A1) has lowest W-type
20p (even degree). The hermitian parameter is (M,σ) = (2A1, St) (2A1 is
realized as {α3, α5}), and hermitian infinitesimal character

s = (−1

2
,
1

2
,−1

2
,

1

2
, 0, 0, 0, 0) + ν1(0, 0, 0, 0,

1

2
,−1

2
,−1

2
,

1

2
)+

ν2(
1

2
,

1

2
,
1

2
,
1

2
, 0, 0, 0, 0) + ν3(−1

2
,−1

2
,
1

2
,
1

2
, 0, 0, 0, 0), ν1 ≥ ν2 ≥ ν3 ≥ 0.
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Figure 1. Unitary parameters for the nilpotent orbit 3A1

At (0, 0, 0), the module is tempered irreducible.
For ν1 ≥ ν2 ≥ ν3 ≥ 0, wm(2A1, St, (ν1, ν2, ν3)) = (2A1, St,−(ν1, ν2, ν3)).

The subgroup W (z) ∼= W (B3) is generated by:
s̄1 : ν1 → ν2 (s1s3) · (s4s5) · s6 · (s5s4) · (s3s1)
s̄2 : ν2 → ν3 s2

s̄3 : ν3 → −ν3 (s4s3s5s4),
where the factors in the paranthesis are of the form wm(A2, A1) or wm(A3, 2A1).

Note that

wm = s̄1s̄2s̄3s̄2s̄1s̄2s̄3s̄2s̄3,

and AE6(2A1, St) decomposes accordingly into a product of operators

AA1(0, St), AA2(A1, St) and AA3(2A1, St).

The restrictions of W-types are:
Nilpotent 2A1 3A1 A2 A2

W-type 20p 15q 30p 15p
Multiplicity 1 2 3 1
2A1 ⊂ A3 (22) 2 · (22) 2 · (22), (211) (211)
A1 ⊂ A2 (21) 2 · (21) 3 · (21) (21)
A1 (2) (2), (11) 2 · (2), (11) (2)
W (z) = W (B3) 3× 0 21× 0 2× 1 0× 3

The reducibility planes for X(2A1, (ν1, ν2, ν3)) are: ±ν1 ± ν2 ± ν3 = 3,
coming from the factors AA2(A1, St), νi ± νj = 1, 1 ≤ j < i ≤ 3, from
the factors AA1(0, St) and νi = 1, 2, from the factors AA3(2A1, St). So, in
addition to the reducibility planes matching the centralizer B3, the extra
reducibility planes are νi = 2, 1 ≤ i ≤ 3 and ±ν1 ± ν2 ± ν3 = 3.

The matching of the intertwining operators with operators in B3 is as
follows:

W -type W (z)-type
20p: 3× 0
15q: 12× 0
30p: 2× 1
15p: 0× 3
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In addition to these, 1× 2 is also a relevant W-type for B3, but it doesn’t
have a correspondent among the W-types ofX(2A1). Therefore, we will need
to use a calculation with the W-type 64p, which appears with multiplicity 8
in X(2A1) and for which the restriction to W (z) = W (B3) contains a copy
of 1× 2 (but the corresponding intertwining operators do not match).
U(2A1) could be larger than SU(H(B3)) and we organize the analysis by

the nilpotent orbits of B3.

(17): the complementary series for B3 is

{ν1 + ν2 < 1} ∪ {ν1 < 1, ν2 + ν3 < 1, ν1 + ν3 > 1},
and for its determination 2× 1 and 12× 0 are sufficient. In the first region
any parameter can be deformed irreducibly to ν3 = 0, while in the second
region, any parameter can be deformed irreducibly to ν3 = ν2. For the
corresponding parameters in E6, X(2A1) is irreducible and unitarily induced
from a unitary module, thus unitary. Since, none of the extra hyperplanes
of reducibility of X(2A1) cut the two regions, it follows that X(2A1) has
the same complementary series as B3.

(2213): the parameter is ( 1
2 + ν1,−1

2 + ν1, ν2). In B3, 2 × 1 and 12 ×
0 are sufficient for the determination of the unitary region, {0 ≤ ν1 <
1
2 , 0 ≤ ν2 < 1}. The corresponding parameters for X(2A1) are endpoints of
the complementary series and therefore unitary. The decomposition of the
standard module is

X(2A1, ν) = X(3A1) +X(2A1, ν), ν = (
1

2
+ ν1,−

1

2
+ ν1, ν2),

X(2A1, ν)|W = 20p + 2 · 30p + · · ·+ 6′p, 0 ≤ ν1 <
1

2
, 0 ≤ ν2 < 1.

(314): the parameter is (ν1, ν2, 1). In B3, 2 × 1 and 12 × 0 are sufficient
for the determination of the unitary region, {0 ≤ ν2 ≤ ν1 < 1 − ν2}. The
corresponding parameters in X(2A1) are endpoints of the complementary
series, thus unitary. The standard module decomposes:

X(2A1, ν) = X(A2) +X(2A1, ν), ν = (ν1, ν2, 1),

X(2A1, ν)|W = 20p + 2 · 30p + · · ·+ 2 · 30′p + 20′p, 0 ≤ ν2 ≤ ν1 < 1− ν2.

Note that X(2A1, ν) is self IM -dual.
(322): the parameter is ( 1

2 + ν,−1
2 + ν, 1). In B3, the W-types 2 × 1

and 12 × 0 are sufficient for the determination of the unitary region {0 ≤
ν < 1

2}. The corresponding parameter for X(2A1), is on the boundary

of the complementary series, therefore unitary. X(2A1, (
1
2 + ν,−1

2 + ν, 1)),

0 ≤ ν < 1
2 , is also the IM -dual of X(3A1, (

1
2 , ν)), which confirms it.

(331): the parameter is (1 + ν, ν,−1 + ν). In B3, the only unitary point
is ν = 0. The operator on 12 × 0 is 0, and 2 × 1 and 0 × 3 rule out ν > 0,
except for 1 < ν < 2. For this, 1 × 2 is needed. By an explicit calculation,
we find that, in E6, the corresponding parameter of X(2A1) on the W-type
64p is negative. At the remaining point, X(2A1, (1, 1, 0)) is unitary, being
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on the boundary of the complementary series. Note that X(2A1, (1, 1, 0)) is
also the IM -dual of X(A2, (

1
2 ,

1
2 ), (2)).

(511): the parameter is (ν, 2, 1). In B3, the only unitary point is ν = 0 and
2×1, 12×0 are sufficient to rule out ν > 0. In E6, for ν = 0, X(2A1, (2, 1, 0))
is the IM -dual of X(A3, (1, 0)), therefore it is unitary.

(7): the parameter is (3, 2, 1). X(2A1, (3, 2, 1)) is the IM -dual ofX(D4,
1
2),

thus unitary.

In conclusion, U(2A1) = SU(H(B3)).

20. A1 : the centralizer is A5 (connected). The hermitian parameter is
(M,σ) = (A1, St) (A1 is realized by {al2}) and hermitian infinitesimal char-
acter:

s = (
1

2
,

1

2
, 0, 0, 0, 0, 0, 0) + ν1(−1

2
,
1

2
,−1

2
,
1

2
,
1

2
,−1

2
,−1

2
,

1

2
)+

ν2(
1

2
,−1

2
,
1

2
,−1

2
,
1

2
,−1

2
,−1

2
,
1

2
) + ν3(0, 0, 1, 1, 0, 0, 0, 0),

with ν1 ≥ ν2 ≥ ν3 ≥ 0. In the centralizer A5, the corresponding hermitian
parameter in standard coordinates is (ν1, ν2, ν3,−ν3,−ν2,−ν1).

For (0, 0, 0), the module is tempered and irreducible. wm(A1, St, ν) =
(A1, St,−ν). The subgroup W (z) ∼= W (A5) is generated by:

s̄1: s3

s̄2: s1

s̄3: (s4s2) · (s3s4) · s5 · (s4s3)(s2s4)
s̄4: s6

s̄5: s5

The factors in the paranthesis are of the form wm(A2, A1).

wm = s̄3s̄2s̄4s̄3s̄4s̄2s̄1s̄5s̄2s̄4s̄3s̄4s̄2s̄5s̄1,

and the intertwining operator AE6(A1, St) decomposes accordingly into a
product of factors of the form

AA2(A1, St) and AA1(0, St).

The restrictions of W-types are:
Nilpotent A1 2A1 3A1 A2 A2

W-type 6p 20p 15q 30p 15p
Multiplicity 1 5 5 10 5
A1 ⊂ A2 (21) 5 · (21) 5 · (21) 9 · (21), (13) 4 · (21), (13)
A1 (2) 4 · (2), (11) (2), 4 · (11) 7 · (2), 3 · (11) 4 · (2), (11)
W (z) (6) (51) (33) (6) + (42) (51)

The planes of reducibility for X(A1, (ν1, ν2, ν3)) are νi = 1
2 , 1 ≤ i ≤ 3,

from factors AA1(0, St), νi± νj = 1, 0 ≤ j < i ≤ 3 from factors AA2(A1, St)

(matching the centralizer A5), and νi = 3
2 , 1 ≤ i ≤ 3 and ±ν1 ± ν2 ± ν3 = 3

2
from AA2(A1, St) (extra planes of reducibility).

The matching of intertwining operators with operators from the central-
izer A5 is as follows:
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W -type W (z)-type
6p: (6)
20p: (51)
15q: (33)

In addition to these types, (42) is also a relevant W-type for A5 and it
doesn’t have a correspondent in the W-types of X(A1). The operator on
30p does not match the operator on (6) + (42). However, we will need to
use a calculation with 30p, and also with 15p (alternatively, one can use 64p,
which appears with multiplicity 24 in X(A1)).
U(A1) could be larger than SU(H(A5)). We organize the analysis of

X(2A1), as before, by the nilpotent orbits in the centralizer A5. In A5,
the W-types (51) and (33) (which are matched in E6) are sufficient for the
determination of the entire spherical unitary dual SU(H(A5)), except for
the parts attached to the nilpotents (33) and (222), where the W-type (42)
is also needed.

(16): the parameter is (ν1, ν2, ν3), with 0 ≤ ν3 ≤ ν2 ≤ ν1 <
1
2 . X(2A1) is

irreducible and unitary at (0, 0, 0), therefore it stays unitary until the first
plane of reducibility, which is ν1 = 1

2 . It follows that the complementary
series is the same as for A5.

(214): the parameter is (ν1, ν2,
1
2), with 0 ≤ ν2 ≤ ν1 <

1
2 . The correspond-

ing X(A1) are unitary, being endpoints of the complementary series. The
decomposition of the standard module is

X(A1, ν) = X(2A1) +X(A1, ν), ν = (ν1, ν2,
1

2
),

X(A1, ν)|W = 6p + 4 · 20p + · · ·+ 4 · 20′p + 6′p, 0 ≤ ν2 ≤ ν1 <
1

2
.

Note that X(A1, ν) is self IM -dual.
(2211): the parameter is ( 1

2 +ν1,−1
2 +ν1, ν2), with 0 ≤ ν1 <

1
2 , 0 ≤ ν2 <

1
2 .

The decomposition of the standard module is:

X(A1, (
1

2
+ν1,−

1

2
+ν1, ν2)) = X(3A1, (ν1, ν2))+2·X(2A1, (

1

2
+ν2,−

1

2
+ν2, 2ν1))

+X(A1, (
1

2
+ ν1,−

1

2
+ ν1, ν2)) 0 ≤ ν1, ν2 <

1

2
.

X(A1, (
1
2 +ν1,−1

2 +ν1, ν2)) is the IM -dual of X(2A1, (
1
2 +ν2,−1

2 +ν2, 2ν1))

for 0 ≤ ν1, ν2 <
1
2 , and therefore unitary.

(222): the parameter is ( 1
2 + ν,−1

2 + ν, 1
2). In A5, the unitary region is

0 ≤ ν < 1
2 , but (42) is needed in order to rule out the interval 1

2 < ν < 1.

X(A1, (
1
2 + ν,−1

2 + ν, 1
2)), for 0 ≤ ν < 1

2 and 1
2 < ν < 1 are the IM -dual of

the modules X(A2, (ν, ν), (11)), and therefore, are unitary for 0 ≤ ν < 1
2 and

non-unitary for 1
2 < ν < 1. Note also that for 0 ≤ ν < 1

2 , X(A1, (
1
2 +ν,−1

2 +

ν, 1
2)) is an endpoint of the unitary region for X(A1, (

1
2 + ν1,−1

2 + ν1, ν2))

(for ν2 = 1
2 , ν1 = ν) attached to (2211).
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The W-structure for X(A1, (
1
2 + ν,−1

2 + ν, 1
2)) (0 ≤ ν < 1, ν 6= 1

2) is
6p + 2 · 20p + 3 · 15p + 3 · 30p + 15q + · · · + 15′p. For this parameter a direct
computation with the intertwining operators on 15p and 30p shows that in
the interval 1

2 < ν < 1, 15p is (+ +−) and 30p is (+ + +), and therefore 15p
rules out 1

2 < ν < 1 (also 64p is negative in this interval).

(313): the parameter is (ν, 1, 0), with 0 ≤ ν < 1
2 . In E6, X(A1, (ν, 1, 0)),

0 ≤ ν < 1
2 are unitary being endpoints of the unitary region attached to

(2211), X(A1, (
1
2+ν1,−1

2+ν1, ν2)) (for ν1 = 1
2 , ν2 = ν). Also, X(A1, (ν, 1, 0)),

0 ≤ ν < 1
2 is the IM -dual of X(A2, (ν,

1
2), which was shown to be unitary.

(321): the parameter is (1, 1
2 , 0). X(A1, (1,

1
2 , 0)) is the IM -dual ofX(A2+

A1,
1
2) and therefore it is unitary. Note also that it the endpoint of the

unitary interval for X(A1, (ν, 1, 0)) attached to (313).
(33): the parameter is (1 + ν, ν,−1 + ν). In A5, this is unitary for 0 ≤

ν < 1
2 , but one needs the W-type (42) to rule out the interval 1 < ν < 3

2 .

For 0 ≤ ν < 1
2 and 1 < ν < 3

2 , X(A1, (1 + ν, ν,−1 + ν)) is the IM -dual

of X(2A2, (−1
2 + ν)), which implies that it is unitary for 0 ≤ ν < 1

2 and

non-unitary for 1 < ν < 3
2 .

The W-structure of X(A1, (1 + ν, ν,−1 + ν)) (on these intervals) is 6p +
20p + 15p + 2 · 30p + · · · + 24′p. A direct computation with the intertwining

operators on 15p and 30p shows that in the interval 1 < ν < 3
2 , 15p is positive

and 30p is (+−), and therefore 30p rules out 1 < ν < 3
2 .

(411): the parameter is (ν, 3
2 ,

1
2 ), 0 ≤ ν < 1

2 . For 0 ≤ ν < 1
2 , X(A1, ν,

3
2 ,

1
2)

is IM -dual to X(A3, (
1
2 + ν,−1

2 + ν) and therefore it is unitary.

(42): the parameter is ( 3
2 ,

1
2 ,

1
2). X(A1, (

3
2 ,

1
2 ,

1
2 )) is IM -dual to the tem-

pered module X(D4(a1), (21)), thus unitary.
(51): the parameter is (2, 1, 0). X(A1, (2, 1, 0)) is IM -dual to X(A4,

1
2),

therefore unitary.
(6): the parameter is ( 5

2 ,
3
2 ,

1
2). X(A1, (

5
2 ,

3
2 ,

1
2)) is unitary, being the IM -

dual of the tempered module X(E6(a3), (11)).

In conclusion, U(A1) = SU(H(A5)).

21. 0: this is the trivial nilpotent orbit, so the centralizer is the full E6.
The lowest W-type is the trivial representation, 1p, and therefore U(1) is the
spherical unitary dual SU(H(E6)). Recall that via the Iwahori-Matsumoto
involution, the spherical modules are transformed into generic modules, and
therefore the spherical unitary dual is precisely the disjoint union of all the
(IM -dual of) complementary series attached to nilpotent orbits.

In order to complete the calculation, we only need to determine the spher-
ical complementary series which will be the subject of the next subsection.

3.5. The spherical complementary series for E6. The standard module
for the trivial nilpotent orbit is the principal series X(ν), where ν is real
and dominant for the root system of type E6. We denote by X(ν) its
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unique irreducible quotient. The hermitian parameter has the property that
w0ν = −ν, which is equivalent to

〈α1, ν〉 = 〈α6, ν〉, and 〈α3, ν〉 = 〈α5, ν〉. (3.5.1)

Recall that if α is a positive root, and α =
∑

αi∈Πmiαi (Π is the set

of simple roots), the height of α, ht(α) is defined as ht(α) =
∑
mi. This

gives a partial ordering of the positive roots (α > α′ if α − α′ is a sum
of positive roots) by levels (level k is formed of all the positive roots with
height k). The simple roots are level 1 and, in E6, the highest root is α36 =
1
2(1, 1, 1, 1, 1,−1,−1, 1) on level 11.

Let τ : R → R be the outer automorphism of the root system R of type
E6:

τ2 = 1, τ(α1) = α6, τ(α3) = α5, τ(α2) = α2, τ(α4) = α4. (3.5.2)

Then Rτ is generated by { 1
2 (α1 +α6), 1

2 (α3+α5), α4, α2} and it is isomorphic
to the root system of type F4. We will use the following coordinates for F4:

γ1 = ε1 − ε2 − ε3 − ε4
γ2 = 2ε4

γ3 = ε3 − ε4
γ4 = ε2 − ε3.

(3.5.3)

We write the hermitian dominant parameter ν so that in Rτ it corresponds
to the standard coordinates of F4. In E6, it has the form:

ν =

(
ν1 − ν2

2
− ν3,

ν1 − ν2

2
− ν4,

ν1 − ν2

2
+ ν4,

ν1 − ν2

2
+ ν3,

ν1 + ν2

2
,

−ν1 + ν2

2
,−ν1 + ν2

2
,
ν1 + ν2

2

)
, ν1 − ν2 − ν3 − ν4 ≥ 0, ν2 ≥ ν3 ≥ ν4 ≥ 0.

(3.5.4)

X(ν) is irreducible if and only if 〈α, ν〉 6= 1 for all α ∈ R. We call regions
the connected components of the complement of all hyperplanes 〈α, ν〉 6= 1
in the hermitian parameter space.

The following theorem describes the (real) parameters ν with the property
that X(ν) is irreducible and unitary.

Theorem. The spherical complementary series for type E6 is formed of the
dominant parameters ν as in (3.5.4) in the following two regions:

(1) 2ν1 < 1
(2) ν1 + ν2 + ν3 − ν4 < 1 < ν1 + ν2 + ν3 + ν4

We remark that, in these coordinates, the spherical complementary se-
ries for E6 is identical with the spherical complementary series for F4 (see
theorem 3.5. in [Ci]).
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Proof. If X(ν) are unitary for ν in an open region F , then X(ν) (and all the
other irreducible subquotients) are unitary ν on all the walls of the closure
of the region F . We analyze first which roots α can give walls of unitary
regions.

a) Assume that τ(α) 6= α. Consider a point ν (in general position) on
the hyperplane 〈α, ν〉 = 1. Note that the parameter ν is three-dimensional.
X(ν) is the spherical module. Then IM(X(ν)) is the standard module
parametrized by the nilpotent orbit 2A1, X(2A1, ν

′) for some parameter ν ′ of
2A1. The relation between ν ′ and ν is that ν is W -conjugate to 1

2h(2A1)+ν ′.
The only other nilpotent orbit which can parametrize a factor of X(ν) is

A1, for some parameter ν ′′ of A1.
From these considerations and from the W-structure of the modules (also

recall that X(ν) is isomorphic as an W -module with C[W ]), it follows that
the decomposition of the standard module at ν is

X(ν) = X(ν) +X(2A1, ν
′) +X(A1, ν

′′) + IM(X(A1, ν
′′)). (3.5.5)

If ν were on a wall of a unitary region, all the factors in the decomposition
(3.5.5) would be unitary. But the irreducible module X(A1, ν

′′) (which is
not a standard module for A1) is not unitary, since ν ′′ is three-dimensional
and the only three-dimensional unitary parameters for A1 are in the com-
plementary series of A1.

It follows that the these roots cannot give walls of unitary regions.
b) Assume that τ(α) = α. Similarly, consider a point ν on the hyperplane

〈α, ν〉 = 1. Then IM(X(ν)) is the standard module parametrized by the
nilpotent orbit A1, X(A1, ν

′) for some parameter ν ′ of A1. The decomposi-
tion of the standard module X(ν) is

X(ν) = X(ν) +X(A1, ν
′). (3.5.6)

Assume ν is on a wall of a unitary region. Then X(A1, ν
′) has to be in the

complementary series of A1, or equivalently, ν ′ is in the spherical comple-
mentary series for the centralizer A5. A particular fact about the parameters
in the spherical complementary series of type A is that all positive roots are
< 1 on these parameters. We mention that this fact does not hold in general
(it is also true for type C, but not for B, D etc.).

This fact implies that, in E6, a necessary condition for a root α, (τ(α) =
α) to give a wall of a unitary region is that

there are no positive roots β such that 〈β, α〉 = 0 and β > α. (3.5.7)

In E6, we verify condition (3.5.7) and obtain that there are only three pos-
itive roots which satisfy it (on levels 9, 10, 11):

α36 =
1

2
(1, 1, 1, 1, 1,−1,−1, 1), α35 =

1

2
(−1,−1, 1, 1, 1,−1,−1, 1)

α34 =
1

2
(−1, 1,−1, 1, 1,−1,−1, 1).

(3.5.8)
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They form three regions inside the dominant Weyl chamber and next we
will check if they are unitary. We will use the same argument in all three
cases: if ν is a parameter in an open region, deform ν continuously such that
X(ν) stays irreducible until we reach a point ν ′ on the wall of the dominant
Weyl chamber. Then X(ν) is unitary if and only if X(ν ′) is. But X(ν ′) is
unitarily induced irreducible from a spherical module on a Hecke algebra of
smaller rank and therefore we can test its unitarity there.

In these cases, we will need to use the spherical complementary series for
D4. From theorem 2.8, it follows that in the standard (dominant) coordi-
nates of D4, 0 ≤ |ν̃1| ≤ ν̃2 ≤ ν̃3 ≤ ν̃4, this is:

D4 :{ν̃3 + ν̃4 < 1} and

{ν̃1 + ν̃4 < 1,−ν̃1 + ν̃4 < 1, ν̃2 + ν̃3 < 1, ν̃2 + ν̃4 > 1}
(3.5.9)

(i) 〈α36, ν〉 < 1. In coordinates, this is the region 2ν1 < 1. Since X(ν) is
unitary and irreducible at ν = 0, this region has to be unitary, 〈α36, ν〉 = 1
being the first hyperplane of reducibility.

Moreover, one can deform ν4 continuously to 0 (this is the wall α4 = 0).
When ν4 becomes 0, the corresponding module X(ν ′) is unitarily induced
irreducible from the spherical module in D4 corresponding to the parameter
(ν̃1, ν̃2, ν̃3, ν̃4) = (ν3, ν3, ν1− ν2, ν1 + ν2). Since ν̃3 + ν̃4 = 2ν1 < 1, by (3.5.9),
the D4 parameter is unitary.

(ii) 〈α35, ν〉 < 1 < 〈α36, ν〉. In coordinates, this is the region ν1 + ν2 +
ν3 + ν4 < 1 < 2ν1. As in (i), we can deform ν4 irreducibly to 0. Now the
parameter (ν̃1, ν̃2, ν̃3, ν̃4) = (ν3, ν3, ν1 − ν2, ν1 + ν2) in D4 has the property
that ν̃2 + ν̃4 < 1 < ν̃3 + ν̃4 and (3.5.9) implies that it is not unitary in D4.

(iii) 〈α34, ν〉 < 1 < 〈α35, ν〉. In coordinates, this is the region ν1+ν2+ν3−
ν4 < 1 < ν1 +ν2 +ν3 +ν4. Deform ν1−ν2−ν3−ν4 continuously to 0 (this is
the wall α2 = 0). When ν1 = ν2 +ν3+ν4, the corresponding module X(ν ′) is
unitarily induced irreducible from the spherical module in D4 corresponding
to the parameter (ν̃1, ν̃2, ν̃3, ν̃4) = (ν3 − ν4, ν3 + ν4, ν3 + ν4, 2ν2 + ν3 + ν4).
One can easily verify that this parameter is in the second unitary region of
D4 as in (3.5.9).

�
From the proof and from the discussion about the operators for the mini-

mal nilpotent orbit A1 in the previous section, the following corollary follows
immediately.

Corollary. The irreducible spherical principal series X(ν) in E6 is unitary
if and only if the spherical operators rσ(ν) are positive definite for σ ∈
{1p, 6p, 20p}.
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