Strings for $\mathfrak{sp}(2n)$

This is a possible Zelevinsky-type parametrization of irreducible modules for the Hecke algebra of type C_n with equal parameters. Equivalently, this is a parametrization of the orbits and the local systems (coming from the Springer correspondence) in Lusztig's classification for sp(2n).

Every irreducible module is parametrized by a multisegment

$$\kappa = (\gamma_1, \gamma_2, \dots, \gamma_k, \Lambda, -\gamma_k, \dots, -\gamma_2, -\gamma_1),$$

subject to the following conditions:

- 1) a gl-string γ_i is a segment, the entries are decreasing by 1.
- 2) the gl-strings are ordered: if $\gamma_i \neq \gamma_{i+1}$, then the first entry in γ_i is greater than the first entry in γ_{i+1} , or else $length(\gamma_i) > length(\gamma_{i+1})$.
- 3) the unique sp-string Λ , if nonempty, say of length 2m, $m \leq n$, corresponds to a partition $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0)$ of m, as follows: $\Lambda = \Lambda' \sqcup (-\Lambda')$, where

$$\Lambda' = \left(\underbrace{\frac{1}{2}, \frac{3}{2}, \dots, \lambda_1 - \frac{1}{2}}_{\lambda_1}, \underbrace{-\frac{1}{2}, \frac{1}{2}, \dots, \lambda_2 - \frac{3}{2}}_{\lambda_2}, \dots, \underbrace{-\ell + \frac{3}{2}, -\ell + \frac{1}{2}, \dots, \lambda_\ell - \ell + \frac{1}{2}}_{\lambda_\ell}\right).$$

For example, if m=4, there are 5 partitions of 4, and the corresponding strings are as follows:

Partition λ	Diagram	Λ
4	$\begin{array}{c cccc} \frac{1}{2} & \frac{3}{2} & \frac{5}{2} & \frac{7}{2} \end{array}$	$(\frac{7}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2}; -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}, -\frac{7}{2})$
3+1	$ \begin{array}{c cc} \frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\ -\frac{1}{2} & & & \\ \end{array} $	$(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2})$
2 + 2	$\begin{array}{c c} \frac{1}{2} & \frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{array}$	$(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2})$
2 + 1 + 1	$ \begin{array}{c c} \frac{1}{2} & \frac{3}{2} \\ -\frac{1}{2} & \\ -\frac{3}{2} & \\ \end{array} $	$(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}; \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2})$
1 + 1 + 1 + 1	$ \begin{array}{r} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{5}{2} \end{array} $	$(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}; \frac{5}{2}, \frac{3}{2}, \frac{1}{2}, -\frac{1}{2})$

1

If κ is a multisegment as above, the union of entries in all the segments of κ , with multiplicities, is called the *support* of κ , and denoted $|\kappa|$. (So the length of $|\kappa|$ is 2n.)

Conjecture 1. Let χ be a fixed dominant semisimple (diagonal) element in sp(2n).

- 1) The irreducible modules with central character χ are parameterized by all the possible multisegments κ with support $|\kappa| = \chi$. In other words, this is the parametrization of all local systems for the equal parameter case supported by the orbits of $G(\chi)$ on $\mathfrak{g}_2(\chi)$.
- 2) Two strings κ_1 and κ_2 correspond to the same orbit on $\mathfrak{g}_2(\chi)$, if one is obtained from the other by a transformations of the form:
 - (i) a permutation of the entries in the *sp*-string.
- (ii) one gl-string is identical to its negative, and the two are concatenated to the sp-string. For example: $((\frac{1}{2}, -\frac{1}{2}), (\frac{1}{2}, -\frac{1}{2})) \mapsto (\frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2})$, the sp-string in this case corresponding to the partition (1+1) in sp(4).
- 3) The closure ordering should be as in Zelevinsky, except when the relation involves the sp-string Λ , both a γ_j and $-\gamma_j$ must be used.

If one is interested in a parametrization of the orbits only, then a variant of the previous construction should suffice:

Conjecture 2. The orbits of $G(\chi)$ on $\mathfrak{g}_2(\chi)$ are parametrized by multisegments κ of the same form as before, but now Λ has the property that it is obtained from a partition $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_\ell > 0)$ of m, as follows: $\Lambda = \Lambda' \sqcup (-\Lambda')$, where

$$\Lambda' = \left(\underbrace{\frac{1}{2}, \frac{3}{2}, \dots, \lambda_1 - \frac{1}{2}}_{\lambda_1}, \underbrace{\frac{1}{2}, \frac{3}{2}, \dots, \lambda_2 - \frac{1}{2}}_{\lambda_2}, \dots, \underbrace{\frac{1}{2}, \frac{3}{2}, \dots, \lambda_\ell - \frac{1}{2}}_{\lambda_\ell}\right).$$

For example, if m = 4, there are only 2 partitions of 4 with distinct parts, and the corresponding strings are as follows:

Partition λ Diagram Λ

4
$$\frac{\frac{1}{2} \frac{3}{2} \frac{5}{2} \frac{7}{2}}{\frac{3}{2} \frac{5}{2} \frac{7}{2}} (\frac{7}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2}; -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}, -\frac{7}{2})$$

$$3+1 \qquad \qquad \frac{\frac{1}{2} \frac{3}{2} \frac{5}{2}}{\frac{1}{2}} (\frac{5}{2}, \frac{3}{2}, \frac{1}{2}; \frac{1}{2}; -\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2})$$

Example. For the central character $y = (\frac{3}{2} \ \frac{1}{2} \ \frac{1}{2} \ -\frac{1}{2} \ -\frac{1}{2} \ -\frac{3}{2})$

Example. For the central character $\chi=(\frac{3}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{3}{2})$ in sp(6), the parametrization is the following:

1)
$$(\frac{3}{2})$$
 $(\frac{1}{2})$ $(\frac{1}{2})$ $(-\frac{1}{2})$ $(-\frac{1}{2})$ $(-\frac{3}{2})$.
2) $(\frac{3}{2}, \frac{1}{2})$ $(\frac{1}{2})$ $(-\frac{1}{2})$ $(-\frac{1}{2}, -\frac{3}{2})$.

```
3) (\frac{3}{2}) (\frac{1}{2}) (\frac{1}{2}, -\frac{1}{2}) (-\frac{1}{2}) (-\frac{3}{2}).

4) (\frac{3}{2}, \frac{1}{2}) (\frac{1}{2}, -\frac{1}{2}) (-\frac{1}{2}, -\frac{3}{2}).

5) (\frac{3}{2}) (\frac{1}{2}, -\frac{1}{2}) (\frac{1}{2}, -\frac{1}{2}) (-\frac{3}{2}).

6) (\frac{3}{2}) (\frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2}) (-\frac{3}{2}).

7) (\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}) (\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}).

8) (\frac{1}{2}) (\frac{3}{2}, \frac{1}{2}; -\frac{1}{2}, -\frac{3}{2}) (-\frac{1}{2}).

9) (\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}).

10) (\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}; \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}).
```

4)
$$(\frac{3}{2}, \frac{1}{2})$$
 $(\frac{1}{2}, -\frac{1}{2})$ $(-\frac{1}{2}, -\frac{3}{2})$.

5)
$$(\frac{3}{2})(\frac{1}{2},-\frac{1}{2})(\frac{1}{2},-\frac{1}{2})(-\frac{3}{2})$$
.

6)
$$(\frac{3}{2})$$
 $(\frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2})$ $(-\frac{3}{2})$.

7)
$$(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2})$$
 $(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2})$.

8)
$$(\frac{1}{2})$$
 $(\frac{3}{2}, \frac{1}{2}; -\frac{1}{2}, -\frac{3}{2})$ $(-\frac{1}{2})$.

9)
$$(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2})$$
.

10)
$$(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}; \frac{3}{2}, \frac{1}{2}, -\frac{1}{2})$$

In this example, 5 and 6, respectively 9 and 10 belong to the same orbit. For the record, the IM involution in this case pairs (1,9), (3,10), (2,5), (4,7) and (6,8).