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Functors

If λ is a weight of gl(n,C), the goal is to define functors:

Fλ : O(gl(n,C))→ Rep(Hn), and

Fλ : HC(GL(n,R))→ Rep(Hn),

where Hn is the affine graded Hecke algebra of gl(n), such that:

(1) Fλ takes standard modules to standard modules (or zero).
(2) Fλ takes simple modules to simple modules (or zero).



Functors

If λ is a weight of gl(n,C), the goal is to define functors:

Fλ : O(gl(n,C))→ Rep(Hn), and

Fλ : HC(GL(n,R))→ Rep(Hn),

where Hn is the affine graded Hecke algebra of gl(n), such that:

(1) Fλ takes standard modules to standard modules (or zero).
(2) Fλ takes simple modules to simple modules (or zero).



Functors

If λ is a weight of gl(n,C), the goal is to define functors:

Fλ : O(gl(n,C))→ Rep(Hn), and

Fλ : HC(GL(n,R))→ Rep(Hn),

where Hn is the affine graded Hecke algebra of gl(n), such that:

(1) Fλ takes standard modules to standard modules (or zero).
(2) Fλ takes simple modules to simple modules (or zero).



Functors

If λ is a weight of gl(n,C), the goal is to define functors:

Fλ : O(gl(n,C))→ Rep(Hn), and

Fλ : HC(GL(n,R))→ Rep(Hn),

where Hn is the affine graded Hecke algebra of gl(n), such that:

(1) Fλ takes standard modules to standard modules (or zero).
(2) Fλ takes simple modules to simple modules (or zero).



Functors

If λ is a weight of gl(n,C), the goal is to define functors:

Fλ : O(gl(n,C))→ Rep(Hn), and

Fλ : HC(GL(n,R))→ Rep(Hn),

where Hn is the affine graded Hecke algebra of gl(n), such that:

(1) Fλ takes standard modules to standard modules (or zero).

(2) Fλ takes simple modules to simple modules (or zero).



Functors

If λ is a weight of gl(n,C), the goal is to define functors:

Fλ : O(gl(n,C))→ Rep(Hn), and

Fλ : HC(GL(n,R))→ Rep(Hn),

where Hn is the affine graded Hecke algebra of gl(n), such that:

(1) Fλ takes standard modules to standard modules (or zero).
(2) Fλ takes simple modules to simple modules (or zero).



Category O

Set g = gl(n,C) with decomposition g = n− + h + n+, and Borel
subalgebras b+, b−. Then ∆(g, h), ∆+(g, h), Π(g, h), ρ are as
usual.

Let P denote the weights and
P+ = {λ ∈ h∗ : 〈α̌, λ〉 /∈ Z<0, α ∈ ∆+} the dominant weights.

For a weight µ ∈ h∗, define the Verma module

M(µ) = U(g)⊗U(b+) Cµ.

Let L(µ) be the µ-highest weight module, the unique irreducible
quotient of M(µ).

O(g)µ = the full subcategory of modules with the same
infinitesimal character as the Verma module M(µ).
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Graded Hecke algebra

The affine graded Hecke algebra H (of GL(n,Qp) for our
purpose) is an associative algebra with unit, generated by

• {sα : α ∈ Π(g, h)} and

• {ε : ε ∈ h}, subject to

• sα · ε− sα(ε) · sα = −〈α, ε〉.

H is a degeneration of the Iwahori-Hecke algebra IH of
GL(n,Qp) (Lusztig, Drinfeld).
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Rep(H)

Recall some facts about H. Let Rep(H) denote the category of
finite dimensional H-modules, and similarly define Rep(IH).

Be The center of H is given by the W = Sn invariants in
Sym(h). For λ ∈ h∗, let Rep(H)λ denote the subcategory of
H-modules with central character W · λ.

Bo,Ca There is an equivalence of categories between the
admissible representations of GL(n,Qp) appearing in the
unramified principal series and Rep(IH).

Lu Assume λ is hyperbolic. Then the categories Rep(IH)λ
and Rep(H)λ are equivalent.
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H0(n
−, ·)

Let Vn = Cn denote the standard representation of g. Fix
λ ∈ h∗.

Define first the functor:

Fλ : O(g)→ {finite dimensional vector spaces},

Fλ(X) = H0(n−, X ⊗ V ⊗nn )λ.

When λ+ ρ ∈ P+, this functor is exact.

If Y is any g-module, then

H0(n−, Y ) = Y/n−Y

is naturally a h-module.

Moreover Y ∈ O(g)µ, µ ∈ h∗, the weights of H0(n−, Y ) are all of
the form

w ◦ µ := w(µ+ ρ)− ρ, for some w ∈W.
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H-action

Now we want to refine the image of Fλ to Rep(H). Define an
action of H on X ⊗ V ⊗nn .

Let {Eij}i,j denote the usual basis of g. {Eij}i,j and {Eji}i,j are
dual bases with respect to the inner product (x, y) = tr(xy).

Definition (A-S)

For 0 ≤ i, j ≤ n define the operator Ωij ∈ End(X ⊗ V ⊗nn ) by

Ωi,j =
∑

1≤k,m≤n
1⊗i ⊗ Ekm ⊗ 1⊗j−i−1 ⊗ Emk ⊗ 1⊗n−j .

Note that for 1 ≤ i < j ≤ n, Ωi,j is the natural permutation of
the Vn-factors.
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C[Waff ]

Consider the group algebra of the affine Weyl group:

C[Waff ] = C[W ] n Sym(h).

Theorem (A-S)

Set

Θaff (si) = Ωi,i+1, 1 ≤ i ≤ n− 1,
Θaff (εj) = Ω0,j , 1 ≤ j ≤ n.

Let X be a g-module. Then

(1) Θaff defines an action of C[Waff ] on X ⊗ V ⊗nn .
(2) Θaff commutes with the usual g-action on the tensor

product.
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Evaluation homomorphism

It is known that for Hecke algebras of type A, there exists a
surjective homomorphism:

φ : H→ C[Waff ],

• φ(sαi) = si,i+1,

• φ(εj) = εj + s1,j + s2,j + · · ·+ sj−1,j .

Clearly φ ◦Θaff defines a H-action.
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We will need to shift this action by a character:

Θ = (φ ◦Θaff )⊗ Cn−1
2
,...,n−1

2
.

Corollary

(1) Θ defines an action of H on X ⊗ V ⊗nn .

(2) The action of H on X ⊗ V ⊗nn given by Θ commutes with
the g-action.

So one sees that the functor Fλ can actually be defined as

Fλ : O(g)→ Rep(H).
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Image of Verma modules

M(µ)= Verma module with highest weight µ.

If Y is finite dimensional, then

M(µ)⊗ Y = IndU(g)
U(b+)

(Cµ ⊗ Y |h).

Then we have:

Fλ(M(µ)) = H0(n−,M(µ)⊗ Y )λ

= λ-highest weight vectors in M(µ)⊗ Y
= λ-highest weight vectors in IndU(g)

U(b+)
(Cµ ⊗ Y |h)

= (λ− µ)-weight vectors in Y |h.
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Key lemma

Lemma (A-S)

Let Y be a finite dimensional g-module.

The natural inclusion
Yλ−µ → (M(µ)⊗ Y )λ induces an isomorphism

(Y )λ−µ ∼= Fλ(M(µ)).

When Y = V ⊗nn , this is an isomorphism of W -modules.

In particular,
Fλ(M(µ)) 6= 0 if and only if λ− µ is a weight of V ⊗nn .

In this case, λ− µ = (`1, . . . , `n) ∈ Nn, with
∑n

i=1 `i = n.

Then, Fλ(M(µ)) ∼= C[Wn/(W`1 × · · · ×W`n)], as a
W -representation.
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Standard H-modules

The standard modules for H are constructed as follows:

for
every partition

∑n
i=1 `i = n, consider the subalgebra

H`1 ⊗ · · · ⊗H`n .

Form

X(χ1, . . . , χn) = Hn ⊗H`1
⊗···⊗H`n

(Cχ1 ⊗ · · · ⊗ Cχn),

for every multiset χ = (χ1, . . . , χn) of central characters.

Every χi can be thought as a segment (ai, ai + 1, . . . , bi), with
bi − ai + 1 = `i.
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Remarks

• X(χ) has a cyclic vector 1χ = 1χ1 ⊗ · · · ⊗ 1χn .

• X(χ) ∼= C[Wn/(W`1 × · · · ×W`n)] as a W -module.

• If χ is nested (in the sense of Zelevinski), then X(χ) has a
unique simple quotient X(χ). Call such X(χ) a standard
module.
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λ, µ 7→ χ(λ, µ)

It remains only to choose the right χ for the weights λ, µ:

χi = (ai, ai + 1, . . . , bi), with ai = 〈µ+ ρ, εi〉, bi = 〈λ+ ρ, εi〉.

We will refer to this χ as χ(λ, µ).

This choice is given by the matching of geometry and
Kazhdan-Lusztig polynomials.
In this setting, this was realized by Zelevinski (1981). (See
Peter’s talk for this and the explicit combinatorics.)

If λ+ ρ ∈ P+, then the multiset χ is nested.
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Theorem

Theorem (A-S)

Assume λ is dominant. Then there is an isomorphism of
H-modules:

Fλ(M(µ)) =
{
X(χ(λ, µ)), if λ− µ ∈ P (V ⊗nn ),

0, otherwise.

If λ− µ ∈ P (V ⊗nn ), then Fλ(L(µ)) = X(χ(λ, µ)).
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Proof.

For the first part, it only remains to see that there exists a
vector in Fλ(M(µ)), which transforms under Θ(εi) like the
cyclic vector of X(χ(λ, µ)).

This is a direct calculation which
uses the fact that Fλ(M(µ)) is a space of highest weight vectors.

The second part, i.e., the image of simple modules, is implied
from the matching of Kazhdan-Lusztig polynomials.

An alternate proof (Suzuki) goes as follows: one sees that the
Shapovalov form on M(µ) induces a H-hermitian bilinear form
on X ⊗ V ⊗nn , and then on Fλ(M(µ)).
In addition, a nondegenerate g-form on L(µ) induces a
nondegenerate H-form on Fλ(L(µ)).
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Review

Assume λ+ ρ is dominant. The key steps were:

1 Fλ : O(g)→ Rep(H),

Fλ(X) = HomU(h)(H0(n−, X ⊗ V ⊗nn ),Cλ)

is an exact functor.

2 Fλ(M(µ)) ∼= (V ⊗nn )λ−µ ∼= HomU(h)(V ⊗nn ⊗ Cµ,Cλ) as
W -modules.

3 There is a geometric matching of Kazhdan-Lusztig
polynomials (λ, µ 7→ χ(λ, µ)).

4 If λ− µ ∈ P (V ⊗nn ), then Fλ(M(µ)) = X(χ(λ, µ)).

5 From (3) and (4), it follows that Fλ(L(µ)) = X(χ(λ, µ)).
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2 Fλ(M(µ)) ∼= (V ⊗nn )λ−µ ∼= HomU(h)(V ⊗nn ⊗ Cµ,Cλ) as
W -modules.

3 There is a geometric matching of Kazhdan-Lusztig
polynomials (λ, µ 7→ χ(λ, µ)).

4 If λ− µ ∈ P (V ⊗nn ), then Fλ(M(µ)) = X(χ(λ, µ)).

5 From (3) and (4), it follows that Fλ(L(µ)) = X(χ(λ, µ)).
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How to do the construction for G = GL(n,R)?

• Peter explained the geometric matching of
Kazhdan-Lusztig-Vogan polynomials yesterday. In other words,
we have item (3).

• First, we present the construction of Fλ, so item (1).

• We find the analogous statement for (2).

• (Then (3) follows by a calculation similar to that for category
O.)
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Notation

θ is the Cartan involution of G and g;

Hs = T sAs ⊂ G is a θ-stable Cartan subgroup;

B+ = HsN s,+ is a Borel subgroup and B− = HsN s,− the
opposite;

∆+(g, hs) are the positive roots with respect to B+;

hs, ns,− etc. are the complexified Lie algebras.
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The functor fλ

Let λ ∈ (hs)∗ be a weight such that λ+ ρ is weakly dominant
with respect to ∆+(g, hs).

Let Cλ be a character of Hs
C whose differential is λ. Regard Cλ

as a character of Hs by restriction.

Definition

Define the functor

fλ : HC(G)→ {finite dimensional vector spaces}, by

fλ(X) = HomHs(H0(ns,−, X),Cλ).

Assume X has an infinitesimal character. Then fλ(X) 6= 0 only
if the infinitesimal character of X is λ+ ρ (Casselman-Osborne).
So one can consider

fλ : HCλ+ρ → {vector spaces}.
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Frobenius reciprocity

In this setting (Casselman):

fλ(X) = Homg,K(X, IndB−(Cλ ⊗ eρ ⊗ 1)),

where Ind denotes normalized induction.

Note. λ+ ρ was assumed weakly regular.

If λ+ ρ is regular, IndB−(Cλ ⊗ eρ ⊗ 1) has a unique irreducible
submodule (Langlands, Miličić).

If λ+ ρ is singular, IndB−(Cλ ⊗ eρ ⊗ 1) still has a unique
irreducible submodule, but this is particular to G = GL(n,R).
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The functor Fλ

As in the category O case, if X is an object in HC(G)λ+ρ, define

Fλ(X) = fλ(X ⊗ V ⊗nn ).

Q: Is Fλ(X) a H-module?

Recall that the action of H on X ⊗ V ⊗nn (via Ωij) was defined
for any g-module, and commutes with the g-action.

Q’: Does the diagonal K = O(n) action commute with the
H-action too?

Lemma

For every x ∈ K, if π(x) denotes the diagonal action on the
tensor product X ⊗ V ⊗nn , we have

π(x) ◦ Ωij ◦ π(x−1) = Ωij .
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In conclusion, the functor Fλ can be regarded as

Fλ : HC(G)λ+ρ → Rep(H).

Now, the main task is the computation of Fλ(X) for certain
standard modules in HC(G)λ+ρ.

Q: What standard modules should we choose?

A: Final limit standard modules (Vogan) with unique simple
submodules.
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Final limit standard modules (Vogan)

X(P, δ) = IndGP (δ ⊗ 1),

where

• P = LN is a cuspidal parabolic subgroup, attached to a
θ-stable Cartan H = TA,
• P ⊃ B, the fixed Borel, so in particular a ⊂ as.

• δ is a relative discrete series or a relative limit of discrete
series of L, and

• the character by which δ acts on a is weakly antidominant
with respect to the roots of a in n.

X(P, δ) has a unique simple submodule X(P, δ).
Every irreducible module is such a submodule for some P, δ.
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Let P = LN, δ,H = TA be as before.

Make a choice of positive roots ∆(g, h), such that

every root of a in n is the restriction of a root in ∆+(g, hs).

This choice also determines ∆+
im(g, h), the positive imaginary

roots.
Via the (unique) isomorphism ∆+(g, h) ∼= ∆+(g, hs), the
character Cλ can be regarded as a character of HC, and hence
of H.

Definition

LKT+(δ) is the space of H-highest weight vectors with respect
to ∆+

im(g, h) in the lowest (L ∩K)-type of δ.

In GL(n,R), dimLKT+(δ) = 1.
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Main computation

Theorem

Suppose X = X(P, δ) is a final limit standard module. Let F be
a finite dimensional module of G. Then there is a natural
isomorphism

fλ(X ⊗ F ) ∼= HomH(F ⊗ LKT+(δ),Cλ).

When F = V ⊗nn , this is an isomorphism of W -modules.

Then the rest of the machinery can be applied.
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Future?

• Let D2(F) denote the 4 dimensional central division
algebra over F, where F = R or Qp.
Assume n is even. It should be possible (easy?) to
immitate this construction for a functor (and matching of
KLV polynomials) between GL(n/2, D2(R)) and
GL(n/2D2(Qp)). This would complete the matching for
inner forms of GL(n).

• Jantzen’s filtration correspondence for GL(n) (generalize
Suzuki 1998).

• Functors for other classical groups? We have (a lot of the)
necessary combinatorics of the matching. How can one
define an action of the Hecke algebra H?

• We know the matching fails for exceptional groups, in F4

for example. Is there a fix (or a good explanation)?
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