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If A is a weight of gl(n,C), the goal is to define functors:

Fy : O(gl(n,C)) — Rep(H,,), and

F, : HC(GL(n,R)) — Rep(H,),
where H, is the affine graded Hecke algebra of gl(n), such that:

(1) F) takes standard modules to standard modules (or zero).

(2) F) takes simple modules to simple modules (or zero).
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Set g = gl(n,C) with decomposition g =n~ + § +n™, and Borel
subalgebras b*,b~. Then A(g,h), A™(g,b), II(g, h), p are as

usual.

Let P denote the weights and
Pt ={xeb*: (&, \) & Zy, a € AT} the dominant weights.

For a weight p € h*, define the Verma module

M(p) =U(g) ®y(e+) Cp-

Let L(u) be the p-highest weight module, the unique irreducible
quotient of M ().

O(g), = the full subcategory of modules with the same
infinitesimal character as the Verma module M (u).
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Graded Hecke algebra

The affine graded Hecke algebra H (of GL(n,Q,) for our
purpose) is an associative algebra with unit, generated by

o {sq:a€cllgbh)} and
e {e: €€ b}, subject to

® 5o €— Sq(€) - Sq = — (v, €).

H is a degeneration of the Iwahori-Hecke algebra ZH of
GL(n,Q,) (Lusztig, Drinfeld).
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Rep(H)

Recall some facts about H. Let Rep(H) denote the category of
finite dimensional H-modules, and similarly define Rep(ZH).

BE The center of H is given by the W = S,, invariants in
Sym(h). For A € h*, let Rep(H), denote the subcategory of
H-modules with central character W - A.

Bo,Ca There is an equivalence of categories between the
admissible representations of GL(n,Q),) appearing in the
unramified principal series and Rep(ZH).

Lu Assume \ is hyperbolic. Then the categories Rep(ZH)y
and Rep(H), are equivalent.
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Let V,, = C™ denote the standard representation of g. Fix
A€ b*.

Define first the functor:

F) : O(g) — {finite dimensional vector spaces},

F\(X) = Hyn™, X @ V).
When X + p € P, this functor is exact.
If Y is any g-module, then
Hyn,Y)=Y/nY
is naturally a h-module.

Moreover Y € O(g),, 1 € b*, the weights of Hy(n™,Y) are all of
the form

wo p:=w(u+ p)—p, for some w e W.



Now we want to refine the image of F) to Rep(H). Define an
action of H on X ® V,&™.



H-ACTION

Now we want to refine the image of F)\ to Rep(H). Define an
action of H on X ® V,2".

Let {E;;}i; denote the usual basis of g. {FE;;};; and {Ej;};; are
dual bases with respect to the inner product (z,y) = tr(xzy).



H-ACTION

Now we want to refine the image of F)\ to Rep(H). Define an
action of H on X ® V,2".

Let {E;;}i; denote the usual basis of g. {FE;;};; and {Ej;};; are
dual bases with respect to the inner product (z,y) = tr(xzy).

DEFINITION (A-S)
For 0 < i,j < n define the operator ©;; € End(X ® V,®") by




H-ACTION

Now we want to refine the image of F)\ to Rep(H). Define an
action of H on X ® V,2".

Let {E;;}i; denote the usual basis of g. {FE;;};; and {Ej;};; are
dual bases with respect to the inner product (z,y) = tr(xzy).

DEFINITION (A-S)
For 0 < i,j < n define the operator ©;; € End(X ® V,®") by

Qij= > 1%Q@Eum®1% 71 @ Epy @ 1877,
1<km<n




H-ACTION

Now we want to refine the image of F)\ to Rep(H). Define an
action of H on X ® V,2".

Let {E;;}i; denote the usual basis of g. {FE;;};; and {Ej;};; are
dual bases with respect to the inner product (z,y) = tr(xzy).

DEFINITION (A-S)
For 0 < i,j < n define the operator ©;; € End(X ® V,®") by

O = Z 1@ Epm @191 QB @ 19777,
1<km<n

Note that for 1 < ¢ < j < n, {); ; is the natural permutation of
the V,,-factors.



Consider the group algebra of the affine Weyl group:

C[Wags] = CIW] x Symi(b).



ClWayyl

Consider the group algebra of the affine Weyl group:

C[Wayf] = CIW] x Sym(h).

THEOREM (A-S)
Set

@aff(sz') =41, 1 <i<n—1,
Oufre;) = Qo 1< j <.

Let X be a g-module. Then
(1) Basy defines an action of C[Wesg] on X @ V,&".

(2) Oupp commutes with the usual g-action on the tensor
product.




ClWayyl

Consider the group algebra of the affine Weyl group:

ClWays] = C[W] x Sym(b).

THEOREM (A-S)
Set

Ourf(si) = Qijit1, 1 <i<n—1,
Oufs(ej) =Qoj, 1 <j<m.




ClWayyl

Consider the group algebra of the affine Weyl group:

C[Wayf] = CIW] x Sym(h).

THEOREM (A-S)
Set

@aff(sz') =41, 1 <i<n—1,
Oufre;) = Qoy, 1< j <.

Let X be a g-module. Then




ClWayyl

Consider the group algebra of the affine Weyl group:

C[Wayf] = CIW] x Sym(h).

THEOREM (A-S)
Set

@aff(sz') =41, 1 <i<n—1,
Oufre;) = Qoy, 1< j <.

Let X be a g-module. Then
(1) Basy defines an action of C[Wesg] on X @ V,&".




ClWayyl

Consider the group algebra of the affine Weyl group:

C[Wayf] = CIW] x Sym(h).

THEOREM (A-S)
Set

®aff(32') =41, 1 <i<n—1,
Oufre;) = Qoy, 1< j <.

Let X be a g-module. Then
(1) Basy defines an action of C[Wesg] on X @ V,&".

(2) ©qff commutes with the usual g-action on the tensor
product.
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Evaluation homomorphism

It is known that for Hecke algebras of type A, there exists a
surjective homomorphism:

¢ H — C[Weysl,

® 9(Sa;) = Siit1,
® ¢ej) =€+ 515+ 525+ +85j-15
Clearly ¢ 0 ©4 defines a H-action.
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We will need to shift this action by a character:

e = (qu@aff) ®CnT—17m n—1.

’2

COROLLARY

(1) © defines an action of H on X ® V,2".

(2) The action of H on X ®@ V,¥™ given by © commutes with
the g-action.

So one sees that the functor F) can actually be defined as

Fy: O(g) — Rep(H).
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Image of Verma modules

M (p)= Verma module with highest weight .

If Y is finite dimensional, then

U
M(p) @Y = Indy (&, (C, ® Y1),
Then we have:

Fx(M(p)) = Ho(n™, M(p) @ Y)x

= A-highest weight vectors in M (u) @ Y

= A-highest weight vectors in Indggﬁl)((ﬁ“ ®Yp)

= (X — p)-weight vectors in Y|y.
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Key lemma

LEMMA (A-S)

Let Y be a finite dimensional g-module. The natural inclusion
Ya_p — (M(p) ®Y)y induces an isomorphism

(Y)a—p = Fa(M(p)).

When'Y = V.8" this is an isomorphism of W -modules.

In particular,
F\(M(p)) # 0 if and only if A — p is a weight of V,&".

In this case, \ — p = (¢1,...,0,) € N*, with > | {; = n.

Then, Fy(M(p)) = C[Wy/(Wey X --- x Wy,)]; as a
W -representation.
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Standard H-modules

The standard modules for H are constructed as follows: for
every partition )" ; £; = n, consider the subalgebra

Hy, ®---®Hy,.

Form

X(X15-- -5 xn) = Hy QHy, ®@Hy, (Cxp ®---®Cy,),

for every multiset x = (x1,...,xn) of central characters.

Every x; can be thought as a segment (a;,a; + 1,...,b;), with
bi—a;+1=14.
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Remarks

e X(x) has a cyclic vector 1, = 1,, ® -+ @ 1,,.
o X(x) =ZC[W,/(Wy x--- xW,,)] as a W-module.
o If x is nested (in the sense of Zelevinski), then X (x) has a

unique simple quotient X (x). Call such X (x) a standard
module.
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A= x (A, )

It remains only to choose the right x for the weights A, u:

Xi = (ai,a; +1,...,b;), with a; = (u+ p,€;), by = (N+ p,€).
We will refer to this x as x (A, u).

This choice is given by the matching of geometry and
Kazhdan-Lusztig polynomials.

In this setting, this was realized by Zelevinski (1981). (See
Peter’s talk for this and the explicit combinatorics.)

If \+p € P, then the multiset x is nested.
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Assume X\ is dominant. Then there is an isomorphism of
H-modules:

SECE U A

If A — € P(VE), then Fy(L(n)) = X(x(\ 1))-
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PROOF.

For the first part, it only remains to see that there exists a
vector in F\(M (u)), which transforms under O(¢;) like the
cyclic vector of X (x (A, ). This is a direct calculation which
uses the fact that Fy(M (u)) is a space of highest weight vectors.

The second part, i.e., the image of simple modules, is implied
from the matching of Kazhdan-Lusztig polynomials.

An alternate proof (Suzuki) goes as follows: one sees that the
Shapovalov form on M (4) induces a H-hermitian bilinear form
on X ® V¥ and then on F)\(M(p)).

In addition, a nondegenerate g-form on L(u) induces a
nondegenerate H-form on Fy(L(u)).
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Review

Assume A + p is dominant. The key steps were:
Q@ Fy:0(g) — Rep(H),
F\(X) = Homy () (Ho(n™, X @ V,#"),Cy)

is an exact functor.

Q@ A\(M(u) = (V2")a—p = Homy ) (V2" @ C,, Cy) as
W-modules.

@ There is a geometric matching of Kazhdan-Lusztig
polynomials (X, p — x(A, i)).

Q If X\ —p e P(V,®"), then Fy(M(p)) = X(x(X, p)).

@ From (3) and (4), it follows that F\(L(p)) = X (x(\, p))-
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How to do the construction for G = GL(n,R)?

e Peter explained the geometric matching of
Kazhdan-Lusztig-Vogan polynomials yesterday. In other words,
we have item (3).

e First, we present the construction of F), so item (1).

e We find the analogous statement for (2).

e (Then (3) follows by a calculation similar to that for category

0.
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Notation

0 is the Cartan involution of G and g;
H?® =T%A% C G is a f-stable Cartan subgroup;

BT = H*N*" is a Borel subgroup and B~ = HSN*%~ the
opposite;

A7 (g,b*) are the positive roots with respect to BY;

h*, n®~ etc. are the complexified Lie algebras.
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The functor f),

Let A € (h*)* be a weight such that A + p is weakly dominant
with respect to AT (g, h*%).

Let Cy be a character of HZ whose differential is A\. Regard C,
as a character of H® by restriction.

DEFINITION
Define the functor

fa : HC(G) — {finite dimensional vector spaces}, by

f)\(X) = Homys (Hg(ns’i, X), (C)\).

<

Assume X has an infinitesimal character. Then f)(X) # 0 only
if the infinitesimal character of X is A+ p (Casselman-Osborne).
So one can consider

fx : HCx4, — {vector spaces}.
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Frobenius reciprocity

In this setting (Casselman):

fA(X) = HOm&K(X, Indg- ((C)\ ®e’ ® 1)),

where Ind denotes normalized induction.

Note. A\ + p was assumed weakly regular.

If A+ p is regular, Indg- (Cy ® e” ® 1) has a unique irreducible
submodule (Langlands, Mili¢i¢).

If A+ p is singular, Indg- (C) ® e” ® 1) still has a unique
irreducible submodule, but this is particular to G = GL(n,R).
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The functor F)

As in the category O case, if X is an object in HC(G) x4, define

FA(X) = HW(X @ V).

Q: Is F\(X) a H-module?

Recall that the action of H on X ® V," (via €;;) was defined
for any g-module, and commutes with the g-action.

Q’: Does the diagonal K = O(n) action commute with the
H-action too?

For every x € K, if m(x) denotes the diagonal action on the
tensor product X @ V.2", we have

m(z) o Qjom(z™h) = Q.
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In conclusion, the functor F can be regarded as

Fy : HC(G)xtp — Rep(H).

Now, the main task is the computation of F)(X) for certain
standard modules in HC(G) 4 -

Q: What standard modules should we choose?

A: Final limit standard modules (Vogan) with unique simple
submodules.



X(P,8) =ndE( 1),

where
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Final limit standard modules (Vogan)

X(P,6) =ndS(5 @ 1),

where

e P = LN is a cuspidal parabolic subgroup, attached to a
f-stable Cartan H = T A,

e P D B, the fixed Borel, so in particular a C a®.

e § is a relative discrete series or a relative limit of discrete
series of L, and

e the character by which § acts on a is weakly antidominant

with respect to the roots of a in n.

X (P,d) has a unique simple submodule X (P,§).
Every irreducible module is such a submodule for some P, .
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Let P = LN,d, H =TA be as before.
Make a choice of positive roots A(g,h), such that

every root of a in n is the restriction of a root in A™ (g, h*).

This choice also determines A;-tn

roots.

Via the (unique) isomorphism A (g, h) = A* (g, b*), the
character Cy can be regarded as a character of H¢, and hence
of H.

(g,b), the positive imaginary

LKT*(6) is the space of H-highest weight vectors with respect
to A (g,b) in the lowest (L N K)-type of 4.

In GL(n,R), dim LKT*(§) = 1.
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Main computation

THEOREM

Suppose X = X (P,0) is a final limit standard module. Let F' be
a finite dimensional module of G. Then there is a natural
1isomorphism

H(X ®F) 2 Homy (F ® LKTT(5),Cy).

When F = V2" this is an isomorphism of W -modules.

Then the rest of the machinery can be applied.
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Future?

e Let Dy(F) denote the 4 dimensional central division
algebra over [F, where F = R or Q,,.
Assume n is even. It should be possible (easy?) to
immitate this construction for a functor (and matching of
KLV polynomials) between GL(n/2, D2(R)) and
GL(n/2D>(Qp)). This would complete the matching for
inner forms of GL(n).

e Jantzen’s filtration correspondence for GL(n) (generalize
Suzuki 1998).

e Functors for other classical groups? We have (a lot of the)
necessary combinatorics of the matching. How can one
define an action of the Hecke algebra H?

e We know the matching fails for exceptional groups, in Fj
for example. Is there a fix (or a good explanation)?



