Functors for Matching Kazhdan-Lusztig polynomials for $GL(n,\mathbb{F})$

Dan Ciubotaru (joint with Peter E. Trapa)

Department of Mathematics University of Utah

July 17, 2006

Plan

Plan

• Review the construction of Arakawa and Suzuki for category $\mathcal O$ of $gl(n,\mathbb C)$.

Plan

- Review the construction of Arakawa and Suzuki for category \mathcal{O} of $gl(n,\mathbb{C})$.
- Define the functor for $GL(n, \mathbb{R})$.

References

- T. Arakawa, T. Suzuki, A. Tsuchiya: Degenerate double affine Hecke algebras..., Proceedings Kyoto, 1997.
- T. Arakawa, T. Suzuki: Duality between $sl_n(\mathbb{C})$ and the degenerate affine Hecke algebra, J. Algebra 209, 1998.
- T. Suzuki: Rogawski's conjecture..., Represent. Theory 2, 1998.

If λ is a weight of $gl(n,\mathbb{C})$, the goal is to define functors:

If λ is a weight of $gl(n,\mathbb{C})$, the goal is to define functors:

$$F_{\lambda}: \mathcal{O}(gl(n,\mathbb{C})) \to Rep(\mathbb{H}_n)$$
, and

If λ is a weight of $gl(n,\mathbb{C})$, the goal is to define functors:

$$F_{\lambda}: \mathcal{O}(gl(n,\mathbb{C})) \to Rep(\mathbb{H}_n)$$
, and

$$F_{\lambda}: \mathcal{HC}(GL(n,\mathbb{R})) \to Rep(\mathbb{H}_n),$$

If λ is a weight of $gl(n,\mathbb{C})$, the goal is to define functors:

$$F_{\lambda}: \mathcal{O}(gl(n,\mathbb{C})) \to Rep(\mathbb{H}_n)$$
, and

$$F_{\lambda}: \mathcal{HC}(GL(n,\mathbb{R})) \to Rep(\mathbb{H}_n),$$

where \mathbb{H}_n is the affine graded Hecke algebra of gl(n), such that:

If λ is a weight of $gl(n,\mathbb{C})$, the goal is to define functors:

$$F_{\lambda}: \mathcal{O}(gl(n,\mathbb{C})) \to Rep(\mathbb{H}_n)$$
, and

$$F_{\lambda}: \mathcal{HC}(GL(n,\mathbb{R})) \to Rep(\mathbb{H}_n),$$

where \mathbb{H}_n is the affine graded Hecke algebra of gl(n), such that:

(1) F_{λ} takes standard modules to standard modules (or zero).

If λ is a weight of $gl(n,\mathbb{C})$, the goal is to define functors:

$$F_{\lambda}: \mathcal{O}(gl(n,\mathbb{C})) \to Rep(\mathbb{H}_n)$$
, and

$$F_{\lambda}: \mathcal{HC}(GL(n,\mathbb{R})) \to Rep(\mathbb{H}_n),$$

where \mathbb{H}_n is the affine graded Hecke algebra of gl(n), such that:

- (1) F_{λ} takes standard modules to standard modules (or zero).
- (2) F_{λ} takes simple modules to simple modules (or zero).

Set $\mathfrak{g} = gl(n,\mathbb{C})$ with decomposition $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}^+$, and Borel subalgebras \mathfrak{b}^+ , \mathfrak{b}^- . Then $\Delta(\mathfrak{g},\mathfrak{h})$, $\Delta^+(\mathfrak{g},\mathfrak{h})$, $\Pi(\mathfrak{g},\mathfrak{h})$, ρ are as usual.

Set $\mathfrak{g} = gl(n,\mathbb{C})$ with decomposition $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}^+$, and Borel subalgebras \mathfrak{b}^+ , \mathfrak{b}^- . Then $\Delta(\mathfrak{g},\mathfrak{h})$, $\Delta^+(\mathfrak{g},\mathfrak{h})$, $\Pi(\mathfrak{g},\mathfrak{h})$, ρ are as usual.

Let P denote the weights and $P^+ = \{\lambda \in \mathfrak{h}^* : \langle \check{\alpha}, \lambda \rangle \notin \mathbb{Z}_{<0}, \ \alpha \in \Delta^+ \}$ the dominant weights.

Set $\mathfrak{g} = gl(n,\mathbb{C})$ with decomposition $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}^+$, and Borel subalgebras \mathfrak{b}^+ , \mathfrak{b}^- . Then $\Delta(\mathfrak{g},\mathfrak{h})$, $\Delta^+(\mathfrak{g},\mathfrak{h})$, $\Pi(\mathfrak{g},\mathfrak{h})$, ρ are as usual.

Let P denote the weights and $P^+ = \{\lambda \in \mathfrak{h}^* : \langle \check{\alpha}, \lambda \rangle \notin \mathbb{Z}_{<0}, \ \alpha \in \Delta^+ \}$ the dominant weights.

For a weight $\mu \in \mathfrak{h}^*$, define the Verma module

$$M(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \mathbb{C}_{\mu}.$$

Set $\mathfrak{g} = gl(n,\mathbb{C})$ with decomposition $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}^+$, and Borel subalgebras \mathfrak{b}^+ , \mathfrak{b}^- . Then $\Delta(\mathfrak{g},\mathfrak{h})$, $\Delta^+(\mathfrak{g},\mathfrak{h})$, $\Pi(\mathfrak{g},\mathfrak{h})$, ρ are as usual.

Let P denote the weights and $P^+ = \{\lambda \in \mathfrak{h}^* : \langle \check{\alpha}, \lambda \rangle \notin \mathbb{Z}_{<0}, \ \alpha \in \Delta^+ \}$ the dominant weights.

For a weight $\mu \in \mathfrak{h}^*$, define the Verma module

$$M(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \mathbb{C}_{\mu}.$$

Let $L(\mu)$ be the μ -highest weight module, the unique irreducible quotient of $M(\mu)$.

Set $\mathfrak{g} = gl(n,\mathbb{C})$ with decomposition $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}^+$, and Borel subalgebras \mathfrak{b}^+ , \mathfrak{b}^- . Then $\Delta(\mathfrak{g},\mathfrak{h})$, $\Delta^+(\mathfrak{g},\mathfrak{h})$, $\Pi(\mathfrak{g},\mathfrak{h})$, ρ are as usual.

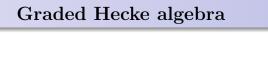
Let P denote the weights and $P^+ = \{\lambda \in \mathfrak{h}^* : \langle \check{\alpha}, \lambda \rangle \notin \mathbb{Z}_{\leq 0}, \ \alpha \in \Delta^+ \}$ the dominant weights.

For a weight $\mu \in \mathfrak{h}^*$, define the Verma module

$$M(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \mathbb{C}_{\mu}.$$

Let $L(\mu)$ be the μ -highest weight module, the unique irreducible quotient of $M(\mu)$.

 $\mathcal{O}(\mathfrak{g})_{\mu}$ = the full subcategory of modules with the same infinitesimal character as the Verma module $M(\mu)$.



•
$$\{s_{\alpha} : \alpha \in \Pi(\mathfrak{g}, \mathfrak{h})\}$$
 and

- $\{s_{\alpha} : \alpha \in \Pi(\mathfrak{g}, \mathfrak{h})\}$ and
- $\{\epsilon : \epsilon \in \mathfrak{h}\}$, subject to

- $\{s_{\alpha} : \alpha \in \Pi(\mathfrak{g}, \mathfrak{h})\}$ and
- $\{\epsilon : \epsilon \in \mathfrak{h}\}$, subject to
- $s_{\alpha} \cdot \epsilon s_{\alpha}(\epsilon) \cdot s_{\alpha} = -\langle \alpha, \epsilon \rangle$.

The affine graded Hecke algebra \mathbb{H} (of $GL(n, \mathbb{Q}_p)$ for our purpose) is an associative algebra with unit, generated by

•
$$\{s_{\alpha} : \alpha \in \Pi(\mathfrak{g}, \mathfrak{h})\}$$
 and

•
$$\{\epsilon : \epsilon \in \mathfrak{h}\}$$
, subject to

•
$$s_{\alpha} \cdot \epsilon - s_{\alpha}(\epsilon) \cdot s_{\alpha} = -\langle \alpha, \epsilon \rangle$$
.

 \mathbb{H} is a degeneration of the Iwahori-Hecke algebra \mathcal{IH} of $GL(n, \mathbb{Q}_p)$ (Lusztig, Drinfeld).

Recall some facts about \mathbb{H} . Let $Rep(\mathbb{H})$ denote the category of finite dimensional \mathbb{H} -modules, and similarly define $Rep(\mathcal{IH})$.

Recall some facts about \mathbb{H} . Let $Rep(\mathbb{H})$ denote the category of finite dimensional \mathbb{H} -modules, and similarly define $Rep(\mathcal{IH})$.

BE The center of \mathbb{H} is given by the $W = S_n$ invariants in $Sym(\mathfrak{h})$. For $\lambda \in \mathfrak{h}^*$, let $Rep(\mathbb{H})_{\lambda}$ denote the subcategory of \mathbb{H} -modules with central character $W \cdot \lambda$.

Recall some facts about \mathbb{H} . Let $Rep(\mathbb{H})$ denote the category of finite dimensional \mathbb{H} -modules, and similarly define $Rep(\mathcal{IH})$.

- BE The center of \mathbb{H} is given by the $W = S_n$ invariants in $Sym(\mathfrak{h})$. For $\lambda \in \mathfrak{h}^*$, let $Rep(\mathbb{H})_{\lambda}$ denote the subcategory of \mathbb{H} -modules with central character $W \cdot \lambda$.
- Bo,CA There is an equivalence of categories between the admissible representations of $GL(n, \mathbb{Q}_p)$ appearing in the unramified principal series and $Rep(\mathcal{IH})$.

Recall some facts about \mathbb{H} . Let $Rep(\mathbb{H})$ denote the category of finite dimensional \mathbb{H} -modules, and similarly define $Rep(\mathcal{IH})$.

- BE The center of \mathbb{H} is given by the $W = S_n$ invariants in $Sym(\mathfrak{h})$. For $\lambda \in \mathfrak{h}^*$, let $Rep(\mathbb{H})_{\lambda}$ denote the subcategory of \mathbb{H} -modules with central character $W \cdot \lambda$.
- Bo,CA There is an equivalence of categories between the admissible representations of $GL(n, \mathbb{Q}_p)$ appearing in the unramified principal series and $Rep(\mathcal{IH})$.
 - Lu Assume λ is hyperbolic. Then the categories $Rep(\mathcal{IH})_{\lambda}$ and $Rep(\mathbb{H})_{\lambda}$ are equivalent.

$H_0(\mathfrak{n}^-,\cdot)$

Let $V_n = \mathbb{C}^n$ denote the standard representation of \mathfrak{g} . Fix $\lambda \in \mathfrak{h}^*$.

$$H_0(\mathfrak{n}^-,\cdot)$$

Define first the functor:

$$F_{\lambda}: \mathcal{O}(\mathfrak{g}) \to \{\text{finite dimensional vector spaces}\},\$$

$$H_0(\mathfrak{n}^-,\cdot)$$

Define first the functor:

$$F_{\lambda}: \mathcal{O}(\mathfrak{g}) \to \{\text{finite dimensional vector spaces}\},$$

$$F_{\lambda}(X) = H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n})_{\lambda}.$$

$$H_0(\mathfrak{n}^-,\cdot)$$

Define first the functor:

$$F_{\lambda}: \mathcal{O}(\mathfrak{g}) \to \{\text{finite dimensional vector spaces}\},\$$

$$F_{\lambda}(X) = H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n})_{\lambda}.$$

When $\lambda + \rho \in P^+$, this functor is exact.

$$H_0(\mathfrak{n}^-,\cdot)$$

Define first the functor:

$$F_{\lambda}: \mathcal{O}(\mathfrak{g}) \to \{\text{finite dimensional vector spaces}\},\$$

$$F_{\lambda}(X) = H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n})_{\lambda}.$$

When $\lambda + \rho \in P^+$, this functor is exact.

If Y is any \mathfrak{g} -module, then

$$H_0(\mathfrak{n}^-, Y) = Y/\mathfrak{n}^- Y$$

is naturally a h-module.

$$H_0(\mathfrak{n}^-,\cdot)$$

Define first the functor:

$$F_{\lambda}: \mathcal{O}(\mathfrak{g}) \to \{\text{finite dimensional vector spaces}\},\$$

$$F_{\lambda}(X) = H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n})_{\lambda}.$$

When $\lambda + \rho \in P^+$, this functor is exact.

If Y is any \mathfrak{g} -module, then

$$H_0(\mathfrak{n}^-, Y) = Y/\mathfrak{n}^- Y$$

is naturally a h-module.

Moreover $Y \in \mathcal{O}(\mathfrak{g})_{\mu}$, $\mu \in \mathfrak{h}^*$, the weights of $H_0(\mathfrak{n}^-, Y)$ are all of the form

$$w \circ \mu := w(\mu + \rho) - \rho$$
, for some $w \in W$.

H-ACTION

Now we want to refine the image of F_{λ} to $Rep(\mathbb{H})$. Define an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.

H-ACTION

Now we want to refine the image of F_{λ} to $Rep(\mathbb{H})$. Define an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.

Let $\{E_{ij}\}_{i,j}$ denote the usual basis of \mathfrak{g} . $\{E_{ij}\}_{i,j}$ and $\{E_{ji}\}_{i,j}$ are dual bases with respect to the inner product (x,y) = tr(xy).

H-ACTION

Now we want to refine the image of F_{λ} to $Rep(\mathbb{H})$. Define an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.

Let $\{E_{ij}\}_{i,j}$ denote the usual basis of \mathfrak{g} . $\{E_{ij}\}_{i,j}$ and $\{E_{ji}\}_{i,j}$ are dual bases with respect to the inner product (x,y) = tr(xy).

DEFINITION (A-S)

For $0 \le i, j \le n$ define the operator $\Omega_{ij} \in \text{End}(X \otimes V_n^{\otimes n})$ by

H-ACTION

Now we want to refine the image of F_{λ} to $Rep(\mathbb{H})$. Define an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.

Let $\{E_{ij}\}_{i,j}$ denote the usual basis of \mathfrak{g} . $\{E_{ij}\}_{i,j}$ and $\{E_{ji}\}_{i,j}$ are dual bases with respect to the inner product (x,y) = tr(xy).

DEFINITION (A-S)

For $0 \le i, j \le n$ define the operator $\Omega_{ij} \in \text{End}(X \otimes V_n^{\otimes n})$ by

$$\Omega_{i,j} = \sum_{1 \le k, m \le n} 1^{\otimes i} \otimes E_{km} \otimes 1^{\otimes j - i - 1} \otimes E_{mk} \otimes 1^{\otimes n - j}.$$

H-ACTION

Now we want to refine the image of F_{λ} to $Rep(\mathbb{H})$. Define an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.

Let $\{E_{ij}\}_{i,j}$ denote the usual basis of \mathfrak{g} . $\{E_{ij}\}_{i,j}$ and $\{E_{ji}\}_{i,j}$ are dual bases with respect to the inner product (x,y) = tr(xy).

DEFINITION (A-S)

For $0 \le i, j \le n$ define the operator $\Omega_{ij} \in \text{End}(X \otimes V_n^{\otimes n})$ by

$$\Omega_{i,j} = \sum_{1 \le k, m \le n} 1^{\otimes i} \otimes E_{km} \otimes 1^{\otimes j - i - 1} \otimes E_{mk} \otimes 1^{\otimes n - j}.$$

Note that for $1 \leq i < j \leq n$, $\Omega_{i,j}$ is the natural permutation of the V_n -factors.

$$\mathbb{C}[W_{aff}]$$

$$\mathbb{C}[W_{aff}] = \mathbb{C}[W] \ltimes Sym(\mathfrak{h}).$$

$$\mathbb{C}[W_{aff}]$$

$$\mathbb{C}[W_{aff}] = \mathbb{C}[W] \ltimes Sym(\mathfrak{h}).$$

THEOREM (A-S)

Set

$$\Theta_{aff}(s_i) = \Omega_{i,i+1}, \ 1 \le i \le n-1,$$

$$\Theta_{aff}(\epsilon_j) = \Omega_{0,j}, \ 1 \le j \le n.$$

Let X be a \mathfrak{g} -module. Then

- (1) Θ_{aff} defines an action of $\mathbb{C}[W_{aff}]$ on $X \otimes V_n^{\otimes n}$.
- (2) Θ_{aff} commutes with the usual \mathfrak{g} -action on the tensor product.

$$\mathbb{C}[W_{aff}]$$

$$\mathbb{C}[W_{aff}] = \mathbb{C}[W] \ltimes Sym(\mathfrak{h}).$$

THEOREM (A-S)

Set

$$\Theta_{aff}(s_i) = \Omega_{i,i+1}, \ 1 \le i \le n-1,$$

$$\Theta_{aff}(\epsilon_j) = \Omega_{0,j}, \ 1 \le j \le n.$$

$$\mathbb{C}[W_{aff}]$$

$$\mathbb{C}[W_{aff}] = \mathbb{C}[W] \ltimes Sym(\mathfrak{h}).$$

THEOREM (A-S)

Set

$$\Theta_{aff}(s_i) = \Omega_{i,i+1}, \ 1 \le i \le n-1,$$

$$\Theta_{aff}(\epsilon_j) = \Omega_{0,j}, \ 1 \le j \le n.$$

Let X be a \mathfrak{g} -module. Then

$$\mathbb{C}[W_{aff}]$$

$$\mathbb{C}[W_{aff}] = \mathbb{C}[W] \ltimes Sym(\mathfrak{h}).$$

THEOREM (A-S)

Set

$$\Theta_{aff}(s_i) = \Omega_{i,i+1}, \ 1 \le i \le n-1,$$

$$\Theta_{aff}(\epsilon_j) = \Omega_{0,j}, \ 1 \le j \le n.$$

Let X be a \mathfrak{g} -module. Then

(1) Θ_{aff} defines an action of $\mathbb{C}[W_{aff}]$ on $X \otimes V_n^{\otimes n}$.

$$\mathbb{C}[W_{aff}]$$

$$\mathbb{C}[W_{aff}] = \mathbb{C}[W] \ltimes Sym(\mathfrak{h}).$$

THEOREM (A-S)

Set

$$\Theta_{aff}(s_i) = \Omega_{i,i+1}, \ 1 \le i \le n-1,$$

$$\Theta_{aff}(\epsilon_j) = \Omega_{0,j}, \ 1 \le j \le n.$$

Let X be a \mathfrak{g} -module. Then

- (1) Θ_{aff} defines an action of $\mathbb{C}[W_{aff}]$ on $X \otimes V_n^{\otimes n}$.
- (2) Θ_{aff} commutes with the usual \mathfrak{g} -action on the tensor product.

$$\phi: \mathbb{H} \to \mathbb{C}[W_{aff}],$$

$$\phi: \mathbb{H} \to \mathbb{C}[W_{aff}],$$

$$\bullet \ \phi(s_{\alpha_i}) = s_{i,i+1},$$

$$\phi: \mathbb{H} \to \mathbb{C}[W_{aff}],$$

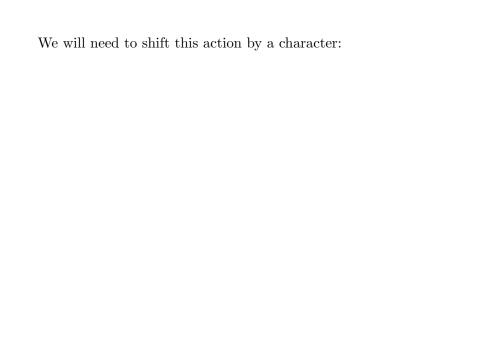
- $\bullet \ \phi(s_{\alpha_i}) = s_{i,i+1},$
- $\bullet \ \phi(\epsilon_j) = \epsilon_j + s_{1,j} + s_{2,j} + \dots + s_{j-1,j}.$

It is known that for Hecke algebras of type A, there exists a surjective homomorphism:

$$\phi: \mathbb{H} \to \mathbb{C}[W_{aff}],$$

- $\bullet \ \phi(s_{\alpha_i}) = s_{i,i+1},$
- $\bullet \ \phi(\epsilon_j) = \epsilon_j + s_{1,j} + s_{2,j} + \dots + s_{j-1,j}.$

Clearly $\phi \circ \Theta_{aff}$ defines a \mathbb{H} -action.



$$\Theta = (\phi \circ \Theta_{aff}) \otimes \mathbb{C}_{\frac{n-1}{2}, \dots, \frac{n-1}{2}}.$$

$$\Theta = (\phi \circ \Theta_{aff}) \otimes \mathbb{C}_{\frac{n-1}{2}, \dots, \frac{n-1}{2}}.$$

COROLLARY

(1) Θ defines an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.

$$\Theta = (\phi \circ \Theta_{aff}) \otimes \mathbb{C}_{\frac{n-1}{2}, \dots, \frac{n-1}{2}}.$$

COROLLARY

- (1) Θ defines an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.
- (2) The action of \mathbb{H} on $X \otimes V_n^{\otimes n}$ given by Θ commutes with the \mathfrak{g} -action.

$$\Theta = (\phi \circ \Theta_{aff}) \otimes \mathbb{C}_{\frac{n-1}{2}, \dots, \frac{n-1}{2}}.$$

COROLLARY

- (1) Θ defines an action of \mathbb{H} on $X \otimes V_n^{\otimes n}$.
- (2) The action of \mathbb{H} on $X \otimes V_n^{\otimes n}$ given by Θ commutes with the \mathfrak{g} -action.

So one sees that the functor F_{λ} can actually be defined as

$$F_{\lambda}: \mathcal{O}(\mathfrak{g}) \to Rep(\mathbb{H}).$$

 $M(\mu)$ = Verma module with highest weight μ .

 $M(\mu)$ = Verma module with highest weight μ .

If Y is finite dimensional, then

$$M(\mu) \otimes Y = \operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}}).$$

 $M(\mu)$ = Verma module with highest weight μ .

If Y is finite dimensional, then

$$M(\mu) \otimes Y = \operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}}).$$

Then we have:

 $M(\mu)$ = Verma module with highest weight μ .

If Y is finite dimensional, then

$$M(\mu) \otimes Y = \operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}}).$$

Then we have:

$$F_{\lambda}(M(\mu)) = H_0(\mathfrak{n}^-, M(\mu) \otimes Y)_{\lambda}$$

 $M(\mu)$ = Verma module with highest weight μ .

If Y is finite dimensional, then

$$M(\mu) \otimes Y = \operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}}).$$

Then we have:

$$F_{\lambda}(M(\mu)) = H_0(\mathfrak{n}^-, M(\mu) \otimes Y)_{\lambda}$$

= λ -highest weight vectors in $M(\mu) \otimes Y$

 $M(\mu)$ = Verma module with highest weight μ .

If Y is finite dimensional, then

$$M(\mu) \otimes Y = \operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}}).$$

Then we have:

$$F_{\lambda}(M(\mu)) = H_0(\mathfrak{n}^-, M(\mu) \otimes Y)_{\lambda}$$

- = λ -highest weight vectors in $M(\mu) \otimes Y$
- = λ -highest weight vectors in $\operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}})$

 $M(\mu)$ = Verma module with highest weight μ .

If Y is finite dimensional, then

$$M(\mu) \otimes Y = \operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}}).$$

Then we have:

$$F_{\lambda}(M(\mu)) = H_0(\mathfrak{n}^-, M(\mu) \otimes Y)_{\lambda}$$

- = λ -highest weight vectors in $M(\mu) \otimes Y$
- = λ -highest weight vectors in $\operatorname{Ind}_{U(\mathfrak{b}^+)}^{U(\mathfrak{g})}(\mathbb{C}_{\mu} \otimes Y|_{\mathfrak{h}})$
- $= (\lambda \mu)$ -weight vectors in $Y|_{\mathfrak{h}}$.

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module.

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module. The natural inclusion $Y_{\lambda-\mu} \to (M(\mu) \otimes Y)_{\lambda}$ induces an isomorphism

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module. The natural inclusion $Y_{\lambda-\mu} \to (M(\mu) \otimes Y)_{\lambda}$ induces an isomorphism

$$(Y)_{\lambda-\mu} \cong F_{\lambda}(M(\mu)).$$

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module. The natural inclusion $Y_{\lambda-\mu} \to (M(\mu) \otimes Y)_{\lambda}$ induces an isomorphism

$$(Y)_{\lambda-\mu} \cong F_{\lambda}(M(\mu)).$$

When $Y = V_n^{\otimes n}$, this is an isomorphism of W-modules.

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module. The natural inclusion $Y_{\lambda-\mu} \to (M(\mu) \otimes Y)_{\lambda}$ induces an isomorphism

$$(Y)_{\lambda-\mu} \cong F_{\lambda}(M(\mu)).$$

When $Y = V_n^{\otimes n}$, this is an isomorphism of W-modules.

In particular,

 $F_{\lambda}(M(\mu)) \neq 0$ if and only if $\lambda - \mu$ is a weight of $V_n^{\otimes n}$.

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module. The natural inclusion $Y_{\lambda-\mu} \to (M(\mu) \otimes Y)_{\lambda}$ induces an isomorphism

$$(Y)_{\lambda-\mu} \cong F_{\lambda}(M(\mu)).$$

When $Y = V_n^{\otimes n}$, this is an isomorphism of W-modules.

In particular,

 $F_{\lambda}(M(\mu)) \neq 0$ if and only if $\lambda - \mu$ is a weight of $V_n^{\otimes n}$.

In this case, $\lambda - \mu = (\ell_1, \dots, \ell_n) \in \mathbb{N}^n$, with $\sum_{i=1}^n \ell_i = n$.

Lemma (A-S)

Let Y be a finite dimensional \mathfrak{g} -module. The natural inclusion $Y_{\lambda-\mu} \to (M(\mu) \otimes Y)_{\lambda}$ induces an isomorphism

$$(Y)_{\lambda-\mu} \cong F_{\lambda}(M(\mu)).$$

When $Y = V_n^{\otimes n}$, this is an isomorphism of W-modules.

In particular,

 $F_{\lambda}(M(\mu)) \neq 0$ if and only if $\lambda - \mu$ is a weight of $V_n^{\otimes n}$.

In this case, $\lambda - \mu = (\ell_1, \dots, \ell_n) \in \mathbb{N}^n$, with $\sum_{i=1}^n \ell_i = n$.

Then, $F_{\lambda}(M(\mu)) \cong \mathbb{C}[W_n/(W_{\ell_1} \times \cdots \times W_{\ell_n})]$, as a W-representation.

Standard \mathbb{H} -modules

The standard modules for $\mathbb H$ are constructed as follows:

Standard H-modules

The standard modules for \mathbb{H} are constructed as follows: for every partition $\sum_{i=1}^{n} \ell_i = n$, consider the subalgebra

Standard **H**-modules

The standard modules for \mathbb{H} are constructed as follows: for every partition $\sum_{i=1}^{n} \ell_i = n$, consider the subalgebra

$$H_{\ell_1}\otimes\cdots\otimes H_{\ell_n}.$$

Standard H-modules

The standard modules for \mathbb{H} are constructed as follows: for every partition $\sum_{i=1}^{n} \ell_i = n$, consider the subalgebra

$$H_{\ell_1}\otimes\cdots\otimes H_{\ell_n}.$$

Form

$$X(\chi_1,\ldots,\chi_n)=\mathbb{H}_n\otimes_{H_{\ell_1}\otimes\cdots\otimes H_{\ell_n}}(\mathbb{C}_{\chi_1}\otimes\cdots\otimes\mathbb{C}_{\chi_n}),$$

Standard H-modules

The standard modules for \mathbb{H} are constructed as follows: for every partition $\sum_{i=1}^{n} \ell_i = n$, consider the subalgebra

$$H_{\ell_1} \otimes \cdots \otimes H_{\ell_n}$$
.

Form

$$X(\chi_1,\ldots,\chi_n)=\mathbb{H}_n\otimes_{H_{\ell_1}\otimes\cdots\otimes H_{\ell_n}}(\mathbb{C}_{\chi_1}\otimes\cdots\otimes\mathbb{C}_{\chi_n}),$$

for every multiset $\underline{\chi} = (\chi_1, \dots, \chi_n)$ of central characters.

Standard H-modules

The standard modules for \mathbb{H} are constructed as follows: for every partition $\sum_{i=1}^{n} \ell_i = n$, consider the subalgebra

$$H_{\ell_1}\otimes\cdots\otimes H_{\ell_n}.$$

Form

$$X(\chi_1,\ldots,\chi_n)=\mathbb{H}_n\otimes_{H_{\ell_1}\otimes\cdots\otimes H_{\ell_n}}(\mathbb{C}_{\chi_1}\otimes\cdots\otimes\mathbb{C}_{\chi_n}),$$

for every multiset $\underline{\chi} = (\chi_1, \dots, \chi_n)$ of central characters.

Every χ_i can be thought as a segment $(a_i, a_i + 1, \dots, b_i)$, with $b_i - a_i + 1 = \ell_i$.

• $X(\underline{\chi})$ has a cyclic vector $1_{\underline{\chi}} = 1_{\chi_1} \otimes \cdots \otimes 1_{\chi_n}$.

- $X(\underline{\chi})$ has a cyclic vector $1_{\underline{\chi}} = 1_{\chi_1} \otimes \cdots \otimes 1_{\chi_n}$.
- $X(\chi) \cong \mathbb{C}[W_n/(W_{\ell_1} \times \cdots \times W_{\ell_n})]$ as a W-module.

- $X(\underline{\chi})$ has a cyclic vector $1_{\underline{\chi}} = 1_{\chi_1} \otimes \cdots \otimes 1_{\chi_n}$.
- $X(\underline{\chi}) \cong \mathbb{C}[W_n/(W_{\ell_1} \times \cdots \times W_{\ell_n})]$ as a W-module.
- If $\underline{\chi}$ is nested (in the sense of Zelevinski), then $X(\underline{\chi})$ has a unique simple quotient $\overline{X}(\underline{\chi})$.

- $X(\underline{\chi})$ has a cyclic vector $1_{\underline{\chi}} = 1_{\chi_1} \otimes \cdots \otimes 1_{\chi_n}$.
- $X(\chi) \cong \mathbb{C}[W_n/(W_{\ell_1} \times \cdots \times W_{\ell_n})]$ as a W-module.
- If $\underline{\chi}$ is nested (in the sense of Zelevinski), then $X(\underline{\chi})$ has a unique simple quotient $\overline{X}(\underline{\chi})$. Call such $X(\underline{\chi})$ a standard module.

$$\lambda, \mu \mapsto \chi(\lambda, \mu)$$

$$\lambda, \mu \mapsto \chi(\lambda, \mu)$$

$$\chi_i = (a_i, a_i + 1, \dots, b_i), \text{ with } a_i = \langle \mu + \rho, \epsilon_i \rangle, \ b_i = \langle \lambda + \rho, \epsilon_i \rangle.$$

We will refer to this $\underline{\chi}$ as $\underline{\chi}(\lambda, \mu)$.

$$\lambda, \mu \mapsto \chi(\lambda, \mu)$$

$$\chi_i = (a_i, a_i + 1, \dots, b_i), \text{ with } a_i = \langle \mu + \rho, \epsilon_i \rangle, \ b_i = \langle \lambda + \rho, \epsilon_i \rangle.$$

We will refer to this χ as $\chi(\lambda, \mu)$.

This choice is given by the *matching* of geometry and Kazhdan-Lusztig polynomials.

$$\lambda, \mu \mapsto \chi(\lambda, \mu)$$

$$\chi_i = (a_i, a_i + 1, \dots, b_i), \text{ with } a_i = \langle \mu + \rho, \epsilon_i \rangle, \ b_i = \langle \lambda + \rho, \epsilon_i \rangle.$$

We will refer to this χ as $\chi(\lambda, \mu)$.

This choice is given by the *matching* of geometry and Kazhdan-Lusztig polynomials.

In this setting, this was realized by Zelevinski (1981).

$$\lambda, \mu \mapsto \chi(\lambda, \mu)$$

$$\chi_i = (a_i, a_i + 1, \dots, b_i), \text{ with } a_i = \langle \mu + \rho, \epsilon_i \rangle, \ b_i = \langle \lambda + \rho, \epsilon_i \rangle.$$

We will refer to this χ as $\chi(\lambda, \mu)$.

This choice is given by the *matching* of geometry and Kazhdan-Lusztig polynomials.

In this setting, this was realized by Zelevinski (1981). (See Peter's talk for this and the explicit combinatorics.)

$$\lambda, \mu \mapsto \chi(\lambda, \mu)$$

$$\chi_i = (a_i, a_i + 1, \dots, b_i), \text{ with } a_i = \langle \mu + \rho, \epsilon_i \rangle, \ b_i = \langle \lambda + \rho, \epsilon_i \rangle.$$

We will refer to this χ as $\chi(\lambda, \mu)$.

This choice is given by the *matching* of geometry and Kazhdan-Lusztig polynomials.

In this setting, this was realized by Zelevinski (1981). (See Peter's talk for this and the explicit combinatorics.)

If $\lambda + \rho \in P^+$, then the multiset $\underline{\chi}$ is nested.

THEOREM (A-S)

THEOREM (A-S)

$$F_{\lambda}(M(\mu)) = \begin{cases} X(\underline{\chi}(\lambda, \mu)), & \text{if } \lambda - \mu \in P(V_n^{\otimes n}), \\ 0, & \text{otherwise.} \end{cases}$$

THEOREM (A-S)

$$F_{\lambda}(M(\mu)) = \begin{cases} X(\underline{\chi}(\lambda, \mu)), & \text{if } \lambda - \mu \in P(V_n^{\otimes n}), \\ 0, & \text{otherwise.} \end{cases}$$

If
$$\lambda - \mu \in P(V_n^{\otimes n})$$
,

THEOREM (A-S)

$$F_{\lambda}(M(\mu)) = \begin{cases} X(\underline{\chi}(\lambda, \mu)), & \text{if } \lambda - \mu \in P(V_n^{\otimes n}), \\ 0, & \text{otherwise.} \end{cases}$$

If
$$\lambda - \mu \in P(V_n^{\otimes n})$$
, then $F_{\lambda}(L(\mu)) = \overline{X}(\underline{\chi}(\lambda, \mu))$.

For the first part, it only remains to see that there exists a vector in $F_{\lambda}(M(\mu))$, which transforms under $\Theta(\epsilon_i)$ like the cyclic vector of $X(\chi(\lambda, \mu))$.

For the first part, it only remains to see that there exists a vector in $F_{\lambda}(M(\mu))$, which transforms under $\Theta(\epsilon_i)$ like the cyclic vector of $X(\underline{\chi}(\lambda,\mu))$. This is a direct calculation which uses the fact that $F_{\lambda}(M(\mu))$ is a space of highest weight vectors.

For the first part, it only remains to see that there exists a vector in $F_{\lambda}(M(\mu))$, which transforms under $\Theta(\epsilon_i)$ like the cyclic vector of $X(\underline{\chi}(\lambda,\mu))$. This is a direct calculation which uses the fact that $F_{\lambda}(M(\mu))$ is a space of highest weight vectors.

The second part, i.e., the image of simple modules, is implied from the matching of Kazhdan-Lusztig polynomials.

For the first part, it only remains to see that there exists a vector in $F_{\lambda}(M(\mu))$, which transforms under $\Theta(\epsilon_i)$ like the cyclic vector of $X(\underline{\chi}(\lambda,\mu))$. This is a direct calculation which uses the fact that $F_{\lambda}(M(\mu))$ is a space of highest weight vectors.

The second part, i.e., the image of simple modules, is implied from the matching of Kazhdan-Lusztig polynomials.

An alternate proof (Suzuki) goes as follows:

For the first part, it only remains to see that there exists a vector in $F_{\lambda}(M(\mu))$, which transforms under $\Theta(\epsilon_i)$ like the cyclic vector of $X(\underline{\chi}(\lambda,\mu))$. This is a direct calculation which uses the fact that $F_{\lambda}(M(\mu))$ is a space of highest weight vectors.

The second part, i.e., the image of simple modules, is implied from the matching of Kazhdan-Lusztig polynomials.

An alternate proof (Suzuki) goes as follows: one sees that the Shapovalov form on $M(\mu)$ induces a \mathbb{H} -hermitian bilinear form on $X \otimes V_n^{\otimes n}$, and then on $F_{\lambda}(M(\mu))$.

For the first part, it only remains to see that there exists a vector in $F_{\lambda}(M(\mu))$, which transforms under $\Theta(\epsilon_i)$ like the cyclic vector of $X(\underline{\chi}(\lambda,\mu))$. This is a direct calculation which uses the fact that $F_{\lambda}(M(\mu))$ is a space of highest weight vectors.

The second part, i.e., the image of simple modules, is implied from the matching of Kazhdan-Lusztig polynomials.

An alternate proof (Suzuki) goes as follows: one sees that the Shapovalov form on $M(\mu)$ induces a \mathbb{H} -hermitian bilinear form on $X \otimes V_n^{\otimes n}$, and then on $F_{\lambda}(M(\mu))$.

In addition, a nondegenerate \mathfrak{g} -form on $L(\mu)$ induces a nondegenerate \mathbb{H} -form on $F_{\lambda}(L(\mu))$.

Assume $\lambda + \rho$ is dominant. The key steps were:

Assume $\lambda + \rho$ is dominant. The key steps were:

$$F_{\lambda}(X) = \operatorname{Hom}_{U(\mathfrak{h})}(H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n}), \mathbb{C}_{\lambda})$$

Assume $\lambda + \rho$ is dominant. The key steps were:

$$F_{\lambda}(X) = \operatorname{Hom}_{U(\mathfrak{h})}(H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n}), \mathbb{C}_{\lambda})$$

$$P_{\lambda}(M(\mu)) \cong (V_n^{\otimes n})_{\lambda - \mu}$$

Assume $\lambda + \rho$ is dominant. The key steps were:

$$F_{\lambda}(X) = \operatorname{Hom}_{U(\mathfrak{h})}(H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n}), \mathbb{C}_{\lambda})$$

is an exact functor.

 $F_{\lambda}(M(\mu)) \cong (V_n^{\otimes n})_{\lambda-\mu} \cong \operatorname{Hom}_{U(\mathfrak{h})}(V_n^{\otimes n} \otimes \mathbb{C}_{\mu}, \mathbb{C}_{\lambda}) \text{ as } W\text{-modules.}$

Assume $\lambda + \rho$ is dominant. The key steps were:

$$F_{\lambda}(X) = \operatorname{Hom}_{U(\mathfrak{h})}(H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n}), \mathbb{C}_{\lambda})$$

- $F_{\lambda}(M(\mu)) \cong (V_n^{\otimes n})_{\lambda-\mu} \cong \operatorname{Hom}_{U(\mathfrak{h})}(V_n^{\otimes n} \otimes \mathbb{C}_{\mu}, \mathbb{C}_{\lambda}) \text{ as } W\text{-modules.}$
- **3** There is a geometric matching of Kazhdan-Lusztig polynomials $(\lambda, \mu \mapsto \underline{\chi}(\lambda, \mu))$.

Assume $\lambda + \rho$ is dominant. The key steps were:

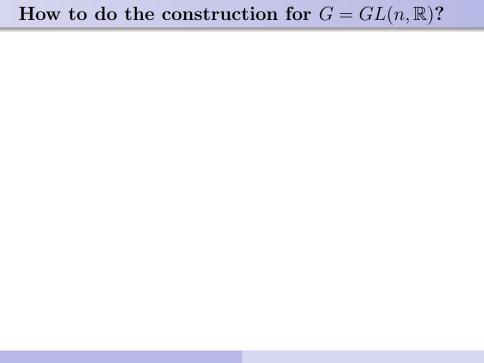
$$F_{\lambda}(X) = \operatorname{Hom}_{U(\mathfrak{h})}(H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n}), \mathbb{C}_{\lambda})$$

- $F_{\lambda}(M(\mu)) \cong (V_n^{\otimes n})_{\lambda-\mu} \cong \operatorname{Hom}_{U(\mathfrak{h})}(V_n^{\otimes n} \otimes \mathbb{C}_{\mu}, \mathbb{C}_{\lambda}) \text{ as } W\text{-modules.}$
- **1** There is a geometric matching of Kazhdan-Lusztig polynomials $(\lambda, \mu \mapsto \underline{\chi}(\lambda, \mu))$.

Assume $\lambda + \rho$ is dominant. The key steps were:

$$F_{\lambda}(X) = \operatorname{Hom}_{U(\mathfrak{h})}(H_0(\mathfrak{n}^-, X \otimes V_n^{\otimes n}), \mathbb{C}_{\lambda})$$

- $F_{\lambda}(M(\mu)) \cong (V_n^{\otimes n})_{\lambda-\mu} \cong \operatorname{Hom}_{U(\mathfrak{h})}(V_n^{\otimes n} \otimes \mathbb{C}_{\mu}, \mathbb{C}_{\lambda}) \text{ as } W\text{-modules.}$
- **③** There is a geometric matching of Kazhdan-Lusztig polynomials $(\lambda, \mu \mapsto \chi(\lambda, \mu))$.
- $\bullet \ \text{If } \lambda \mu \in P(V_n^{\otimes n}), \text{ then } F_{\lambda}(M(\mu)) = X(\chi(\lambda, \mu)).$
- **3** From (3) and (4), it follows that $F_{\lambda}(L(\mu)) = \overline{X}(\underline{\chi}(\lambda, \mu))$.



• Peter explained the geometric matching of Kazhdan-Lusztig-Vogan polynomials yesterday. In other words, we have item (3).

- Peter explained the geometric matching of Kazhdan-Lusztig-Vogan polynomials yesterday. In other words, we have item (3).
- First, we present the construction of F_{λ} , so item (1).

- Peter explained the geometric matching of Kazhdan-Lusztig-Vogan polynomials yesterday. In other words, we have item (3).
- First, we present the construction of F_{λ} , so item (1).
- We find the analogous statement for (2).

- Peter explained the geometric matching of Kazhdan-Lusztig-Vogan polynomials yesterday. In other words, we have item (3).
- First, we present the construction of F_{λ} , so item (1).
- We find the analogous statement for (2).
- (Then (3) follows by a calculation similar to that for category \mathcal{O} .)

Notation

Notation

 θ is the Cartan involution of G and $\mathfrak{g};$

 $H^s = T^s A^s \subset G$ is a θ -stable Cartan subgroup;

Notation

 θ is the Cartan involution of G and \mathfrak{g} ;

 $H^s = T^s A^s \subset G$ is a θ -stable Cartan subgroup;

 $B^+ = H^s N^{s,+}$ is a Borel subgroup and $B^- = H^s N^{s,-}$ the opposite;

 $\Delta^+(\mathfrak{g},\mathfrak{h}^s)$ are the positive roots with respect to B^+ ;

 $\mathfrak{h}^s,\,\mathfrak{n}^{s,-}$ etc. are the complexified Lie algebras.

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let \mathbb{C}_{λ} be a character of $H^s_{\mathbb{C}}$ whose differential is λ .

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let \mathbb{C}_{λ} be a character of $H^s_{\mathbb{C}}$ whose differential is λ . Regard \mathbb{C}_{λ} as a character of H^s by restriction.

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let \mathbb{C}_{λ} be a character of $H^s_{\mathbb{C}}$ whose differential is λ . Regard \mathbb{C}_{λ} as a character of H^s by restriction.

DEFINITION

Define the functor

$$f_{\lambda}: \mathcal{HC}(G) \to \{\text{finite dimensional vector spaces}\}, \text{ by}$$

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let \mathbb{C}_{λ} be a character of $H^s_{\mathbb{C}}$ whose differential is λ . Regard \mathbb{C}_{λ} as a character of H^s by restriction.

DEFINITION

Define the functor

$$f_{\lambda}: \mathcal{HC}(G) \to \{\text{finite dimensional vector spaces}\}, \text{ by}$$

$$f_{\lambda}(X) = \operatorname{Hom}_{H^s}(H_0(\mathfrak{n}^{s,-}, X), \mathbb{C}_{\lambda}).$$

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let \mathbb{C}_{λ} be a character of $H^s_{\mathbb{C}}$ whose differential is λ . Regard \mathbb{C}_{λ} as a character of H^s by restriction.

DEFINITION

Define the functor

$$f_{\lambda}: \mathcal{HC}(G) \to \{\text{finite dimensional vector spaces}\}, \text{ by}$$

$$f_{\lambda}(X) = \operatorname{Hom}_{H^s}(H_0(\mathfrak{n}^{s,-}, X), \mathbb{C}_{\lambda}).$$

Assume X has an infinitesimal character. Then $f_{\lambda}(X) \neq 0$ only if the infinitesimal character of X is $\lambda + \rho$ (Casselman-Osborne).

Let $\lambda \in (\mathfrak{h}^s)^*$ be a weight such that $\lambda + \rho$ is weakly dominant with respect to $\Delta^+(\mathfrak{g}, \mathfrak{h}^s)$.

Let \mathbb{C}_{λ} be a character of $H^s_{\mathbb{C}}$ whose differential is λ . Regard \mathbb{C}_{λ} as a character of H^s by restriction.

Definition

Define the functor

$$f_{\lambda}: \mathcal{HC}(G) \to \{\text{finite dimensional vector spaces}\}, \text{ by}$$

$$f_{\lambda}(X) = \operatorname{Hom}_{H^s}(H_0(\mathfrak{n}^{s,-}, X), \mathbb{C}_{\lambda}).$$

Assume X has an infinitesimal character. Then $f_{\lambda}(X) \neq 0$ only if the infinitesimal character of X is $\lambda + \rho$ (Casselman-Osborne). So one can consider

$$f_{\lambda}: \mathcal{HC}_{\lambda+\rho} \to \{\text{vector spaces}\}.$$

In this setting (Casselman):

$$f_{\lambda}(X) = \operatorname{Hom}_{\mathfrak{g},K}(X,\operatorname{Ind}_{B^{-}}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)),$$

where Ind denotes normalized induction.

In this setting (Casselman):

$$f_{\lambda}(X) = \operatorname{Hom}_{\mathfrak{g},K}(X, \operatorname{Ind}_{B^{-}}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)),$$

where Ind denotes normalized induction.

Note. $\lambda + \rho$ was assumed *weakly* regular.

In this setting (Casselman):

$$f_{\lambda}(X) = \operatorname{Hom}_{\mathfrak{g},K}(X, \operatorname{Ind}_{B^{-}}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)),$$

where Ind denotes *normalized* induction.

Note. $\lambda + \rho$ was assumed *weakly* regular.

If $\lambda + \rho$ is regular, $\operatorname{Ind}_{B^-}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)$ has a unique irreducible submodule (Langlands, Miličić).

In this setting (Casselman):

$$f_{\lambda}(X) = \operatorname{Hom}_{\mathfrak{g},K}(X, \operatorname{Ind}_{B^{-}}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)),$$

where Ind denotes normalized induction.

Note. $\lambda + \rho$ was assumed *weakly* regular.

If $\lambda + \rho$ is regular, $\operatorname{Ind}_{B^-}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)$ has a unique irreducible submodule (Langlands, Miličić).

If $\lambda + \rho$ is singular, $\operatorname{Ind}_{B^-}(\mathbb{C}_{\lambda} \otimes e^{\rho} \otimes 1)$ still has a unique irreducible submodule, but this is particular to $G = GL(n, \mathbb{R})$.

As in the category \mathcal{O} case, if X is an object in $\mathcal{HC}(G)_{\lambda+\rho}$, define

$$F_{\lambda}(X) = f_{\lambda}(X \otimes V_n^{\otimes n}).$$

As in the category \mathcal{O} case, if X is an object in $\mathcal{HC}(G)_{\lambda+\rho}$, define

$$F_{\lambda}(X) = f_{\lambda}(X \otimes V_n^{\otimes n}).$$

Q: Is $F_{\lambda}(X)$ a \mathbb{H} -module?

As in the category \mathcal{O} case, if X is an object in $\mathcal{HC}(G)_{\lambda+\rho}$, define

$$F_{\lambda}(X) = f_{\lambda}(X \otimes V_n^{\otimes n}).$$

Q: Is $F_{\lambda}(X)$ a \mathbb{H} -module?

Recall that the action of \mathbb{H} on $X \otimes V_n^{\otimes n}$ (via Ω_{ij}) was defined for any \mathfrak{g} -module, and commutes with the \mathfrak{g} -action.

As in the category \mathcal{O} case, if X is an object in $\mathcal{HC}(G)_{\lambda+\rho}$, define

$$F_{\lambda}(X) = f_{\lambda}(X \otimes V_n^{\otimes n}).$$

Q: Is $F_{\lambda}(X)$ a \mathbb{H} -module?

Recall that the action of \mathbb{H} on $X \otimes V_n^{\otimes n}$ (via Ω_{ij}) was defined for any \mathfrak{g} -module, and commutes with the \mathfrak{g} -action.

Q': Does the diagonal K = O(n) action commute with the \mathbb{H} -action too?

As in the category \mathcal{O} case, if X is an object in $\mathcal{HC}(G)_{\lambda+\rho}$, define

$$F_{\lambda}(X) = f_{\lambda}(X \otimes V_n^{\otimes n}).$$

Q: Is $F_{\lambda}(X)$ a \mathbb{H} -module?

Recall that the action of \mathbb{H} on $X \otimes V_n^{\otimes n}$ (via Ω_{ij}) was defined for any \mathfrak{g} -module, and commutes with the \mathfrak{g} -action.

Q': Does the diagonal K = O(n) action commute with the \mathbb{H} -action too?

LEMMA

For every $x \in K$, if $\pi(x)$ denotes the diagonal action on the tensor product $X \otimes V_n^{\otimes n}$, we have

As in the category \mathcal{O} case, if X is an object in $\mathcal{HC}(G)_{\lambda+\rho}$, define

$$F_{\lambda}(X) = f_{\lambda}(X \otimes V_n^{\otimes n}).$$

Q: Is $F_{\lambda}(X)$ a \mathbb{H} -module?

Recall that the action of \mathbb{H} on $X \otimes V_n^{\otimes n}$ (via Ω_{ij}) was defined for any \mathfrak{g} -module, and commutes with the \mathfrak{g} -action.

Q': Does the diagonal K = O(n) action commute with the \mathbb{H} -action too?

LEMMA

For every $x \in K$, if $\pi(x)$ denotes the diagonal action on the tensor product $X \otimes V_n^{\otimes n}$, we have

$$\pi(x) \circ \Omega_{ij} \circ \pi(x^{-1}) = \Omega_{ij}.$$

$$F_{\lambda}: \mathcal{HC}(G)_{\lambda+\rho} \to Rep(\mathbb{H}).$$

$$F_{\lambda}: \mathcal{HC}(G)_{\lambda+\rho} \to Rep(\mathbb{H}).$$

Now, the main task is the computation of $F_{\lambda}(X)$ for certain standard modules in $\mathcal{HC}(G)_{\lambda+\rho}$.

$$F_{\lambda}: \mathcal{HC}(G)_{\lambda+\rho} \to Rep(\mathbb{H}).$$

Now, the main task is the computation of $F_{\lambda}(X)$ for certain standard modules in $\mathcal{HC}(G)_{\lambda+\rho}$.

Q: What standard modules should we choose?

$$F_{\lambda}: \mathcal{HC}(G)_{\lambda+\rho} \to Rep(\mathbb{H}).$$

Now, the main task is the computation of $F_{\lambda}(X)$ for certain standard modules in $\mathcal{HC}(G)_{\lambda+\rho}$.

Q: What standard modules should we choose?

A: Final limit standard modules (Vogan) with unique simple submodules.

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

where

• P = LN is a cuspidal parabolic subgroup, attached to a θ -stable Cartan H = TA,

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

- P = LN is a cuspidal parabolic subgroup, attached to a θ -stable Cartan H = TA,
- $P \supset B$, the fixed Borel, so in particular $\mathfrak{a} \subset \mathfrak{a}^s$.

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

- P = LN is a cuspidal parabolic subgroup, attached to a θ -stable Cartan H = TA,
- $P \supset B$, the fixed Borel, so in particular $\mathfrak{a} \subset \mathfrak{a}^s$.
- δ is a relative discrete series or a relative limit of discrete series of L, and

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

- P = LN is a cuspidal parabolic subgroup, attached to a θ -stable Cartan H = TA,
- $P \supset B$, the fixed Borel, so in particular $\mathfrak{a} \subset \mathfrak{a}^s$.
- δ is a relative discrete series or a relative limit of discrete series of L, and
- the character by which δ acts on $\mathfrak a$ is weakly antidominant with respect to the roots of $\mathfrak a$ in $\mathfrak n$.

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

where

- P = LN is a cuspidal parabolic subgroup, attached to a θ -stable Cartan H = TA,
- $P \supset B$, the fixed Borel, so in particular $\mathfrak{a} \subset \mathfrak{a}^s$.
- δ is a relative discrete series or a relative limit of discrete series of L, and
- the character by which δ acts on $\mathfrak a$ is weakly antidominant with respect to the roots of $\mathfrak a$ in $\mathfrak n$.

 $X(P,\delta)$ has a unique simple submodule $\overline{X}(P,\delta)$.

$$X(P,\delta) = \operatorname{Ind}_P^G(\delta \otimes 1),$$

where

- P = LN is a cuspidal parabolic subgroup, attached to a θ -stable Cartan H = TA,
- $P \supset B$, the fixed Borel, so in particular $\mathfrak{a} \subset \mathfrak{a}^s$.
- δ is a relative discrete series or a relative limit of discrete series of L, and
- the character by which δ acts on $\mathfrak a$ is weakly antidominant with respect to the roots of $\mathfrak a$ in $\mathfrak n$.

 $X(P,\delta)$ has a unique simple submodule $\overline{X}(P,\delta)$. Every irreducible module is such a submodule for some P,δ . Let $P = LN, \delta, H = TA$ be as before.

Let $P = LN, \delta, H = TA$ be as before. Make a *choice* of positive roots $\Delta(\mathfrak{g}, \mathfrak{h})$, such that

every root of \mathfrak{a} in \mathfrak{n} is the restriction of a root in $\Delta^+(\mathfrak{g},\mathfrak{h}^s)$.

This choice also determines $\Delta_{im}^+(\mathfrak{g},\mathfrak{h})$, the positive imaginary roots.

Let $P = LN, \delta, H = TA$ be as before. Make a *choice* of positive roots $\Delta(\mathfrak{g}, \mathfrak{h})$, such that

every root of \mathfrak{a} in \mathfrak{n} is the restriction of a root in $\Delta^+(\mathfrak{g},\mathfrak{h}^s)$.

This choice also determines $\Delta_{im}^+(\mathfrak{g},\mathfrak{h})$, the positive imaginary roots.

Via the (unique) isomorphism $\Delta^+(\mathfrak{g}, \mathfrak{h}) \cong \Delta^+(\mathfrak{g}, \mathfrak{h}^s)$, the character \mathbb{C}_{λ} can be regarded as a character of $H_{\mathbb{C}}$, and hence of H.

Let $P = LN, \delta, H = TA$ be as before. Make a *choice* of positive roots $\Delta(\mathfrak{g}, \mathfrak{h})$, such that

every root of \mathfrak{a} in \mathfrak{n} is the restriction of a root in $\Delta^+(\mathfrak{g},\mathfrak{h}^s)$.

This choice also determines $\Delta_{im}^+(\mathfrak{g},\mathfrak{h})$, the positive imaginary roots.

Via the (unique) isomorphism $\Delta^+(\mathfrak{g},\mathfrak{h}) \cong \Delta^+(\mathfrak{g},\mathfrak{h}^s)$, the character \mathbb{C}_{λ} can be regarded as a character of $H_{\mathbb{C}}$, and hence of H.

DEFINITION

 $LKT^+(\delta)$ is the space of H-highest weight vectors with respect to $\Delta_{im}^+(\mathfrak{g},\mathfrak{h})$ in the lowest $(L\cap K)$ -type of δ .

Let $P = LN, \delta, H = TA$ be as before.

Make a *choice* of positive roots $\Delta(\mathfrak{g}, \mathfrak{h})$, such that

every root of \mathfrak{a} in \mathfrak{n} is the restriction of a root in $\Delta^+(\mathfrak{g},\mathfrak{h}^s)$.

This choice also determines $\Delta_{im}^+(\mathfrak{g},\mathfrak{h})$, the positive imaginary roots.

Via the (unique) isomorphism $\Delta^+(\mathfrak{g}, \mathfrak{h}) \cong \Delta^+(\mathfrak{g}, \mathfrak{h}^s)$, the character \mathbb{C}_{λ} can be regarded as a character of $H_{\mathbb{C}}$, and hence of H.

DEFINITION

 $LKT^+(\delta)$ is the space of H-highest weight vectors with respect to $\Delta^+_{im}(\mathfrak{g},\mathfrak{h})$ in the lowest $(L\cap K)$ -type of δ .

In $GL(n, \mathbb{R})$, dim $LKT^+(\delta) = 1$.

THEOREM

Suppose $X = X(P, \delta)$ is a final limit standard module. Let F be a finite dimensional module of G. Then there is a natural isomorphism

THEOREM

Suppose $X = X(P, \delta)$ is a final limit standard module. Let F be a finite dimensional module of G. Then there is a natural isomorphism

$$f_{\lambda}(X \otimes F) \cong \operatorname{Hom}_{H}(F \otimes LKT^{+}(\delta), \mathbb{C}_{\lambda}).$$

THEOREM

Suppose $X = X(P, \delta)$ is a final limit standard module. Let F be a finite dimensional module of G. Then there is a natural isomorphism

$$f_{\lambda}(X \otimes F) \cong \operatorname{Hom}_{H}(F \otimes LKT^{+}(\delta), \mathbb{C}_{\lambda}).$$

When $F = V_n^{\otimes n}$, this is an isomorphism of W-modules.

Theorem

Suppose $X = X(P, \delta)$ is a final limit standard module. Let F be a finite dimensional module of G. Then there is a natural isomorphism

$$f_{\lambda}(X \otimes F) \cong \operatorname{Hom}_{H}(F \otimes LKT^{+}(\delta), \mathbb{C}_{\lambda}).$$

When $F = V_n^{\otimes n}$, this is an isomorphism of W-modules.

Then the rest of the machinery can be applied.

• Let $D_2(\mathbb{F})$ denote the 4 dimensional central division algebra over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{Q}_p .

• Let $D_2(\mathbb{F})$ denote the 4 dimensional central division algebra over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{Q}_p . Assume n is even. It should be possible (easy?) to immitate this construction for a functor (and matching of KLV polynomials) between $GL(n/2, D_2(\mathbb{R}))$ and $GL(n/2D_2(\mathbb{Q}_p))$. This would complete the matching for inner forms of GL(n).

- Let $D_2(\mathbb{F})$ denote the 4 dimensional central division algebra over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{Q}_p . Assume n is even. It should be possible (easy?) to immitate this construction for a functor (and matching of KLV polynomials) between $GL(n/2, D_2(\mathbb{R}))$ and $GL(n/2D_2(\mathbb{Q}_p))$. This would complete the matching for inner forms of GL(n).
- Jantzen's filtration correspondence for GL(n) (generalize Suzuki 1998).

- Let $D_2(\mathbb{F})$ denote the 4 dimensional central division algebra over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{Q}_p . Assume n is even. It should be possible (easy?) to immitate this construction for a functor (and matching of KLV polynomials) between $GL(n/2, D_2(\mathbb{R}))$ and $GL(n/2D_2(\mathbb{Q}_p))$. This would complete the matching for inner forms of GL(n).
- Jantzen's filtration correspondence for GL(n) (generalize Suzuki 1998).
- Functors for other classical groups? We have (a lot of the) necessary combinatorics of the matching. How can one define an action of the Hecke algebra H?

- Let $D_2(\mathbb{F})$ denote the 4 dimensional central division algebra over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{Q}_p . Assume n is even. It should be possible (easy?) to immitate this construction for a functor (and matching of KLV polynomials) between $GL(n/2, D_2(\mathbb{R}))$ and $GL(n/2D_2(\mathbb{Q}_p))$. This would complete the matching for inner forms of GL(n).
- Jantzen's filtration correspondence for GL(n) (generalize Suzuki 1998).
- Functors for other classical groups? We have (a lot of the) necessary combinatorics of the matching. How can one define an action of the Hecke algebra \mathbb{H} ?
- We know the matching fails for exceptional groups, in F_4 for example. Is there a fix (or a good explanation)?