
ON THE UNITARY DUAL OF HECKE ALGEBRAS WITH

UNEQUAL PARAMETERS

DAN CIUBOTARU

Abstract. We determine the unitary dual of the geometric Hecke al-
gebras with unequal parameters which appear in [Lu6]’s classification
of unipotent representations for exceptional p-adic groups. The largest
such algebra is of type F4. Via the [BM1]-[BM2] correspondences ap-
plied to this setting, this is equivalent to the identification of the unitary
unipotent (in the sense of [Lu6]) representations of the p-adic group.
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1. Introduction

In this paper, we extend to the setting of (geometric) Hecke algebras H

with unequal parameters the methods of [BC2] for computing signatures of
Hermitian forms on Hecke algebras modules via comparison with signatures
of Hermitian modules of spherical modules for certain Hecke algebras at-
tached to centralizers of nilpotent orbits. As an application, we determine
the unitary dual of the Hecke algebras of types G2 and F4, with unequal
parameters, which appear in [Lu6], in the classification of unipotent repre-
sentations of p-adic groups.

We give an outline of the paper. In section 2.1-2.6, we present the neces-
sary definitions and background on the representation theory of H, assuming
the parameters are arbitrary. In particular, we recall the Langlands classifi-
cation (actually, the reduction to tempered modules) as in [Ev], the unitar-
ity of tempered modules, as it follows from [Op1], and the results about the
Hermitian forms and intertwining operators from [BM3]. In section 2.7, we
present a reduction to real central (“infinitesimal”) character for the unitary
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dual problem, which is the complete analogue of the result for real reductive
groups, as in [Kn], XVI.4. This is, of course, well-known to the specialists.

From section 3 on, we restrict to the case of geometric Hecke algebras,
i.e. those for which there exists a geometric classification, as in [Lu2]-[Lu4].
We recall the relevant results about the classification of simple H-modules,
and the generalized Springer correspondence ([Lu5]). An important conse-
quence is that the set of irreducible tempered H-modules with real central
character are linearly independent in the Grothendieck group of W . There-
fore the methods of [BM1],[BM2] hold, and the correspondence with unitary
(unipotent) representations of p-adic groups can be verified.

In section 4, we analyze Hermitian forms and intertwining operators for
simple modules. We restrict, as we may, to modules with real central char-
acter. A particular case is that of spherical modules. In this case, we extend
a theorem from [BC1] which says that the signature of the Hermitian form
is constant over the faces of the arrangement of positive root hyperplanes.
As an easy application of these methods, we present the spherical unitary
dual for type G2 with arbitrary unequal parameters. (In fact, if we factor
in the Iwahori-Matsumoto involution, definition (4.2.1), and the tempered
modules, one obtains all the unitary modules with real central character of
G2.)

Section 5 presents a more interesting application. We determine the uni-
tary dual of the Hecke algebra (of type F4) constructed in [Lu2] from a
cuspidal local system on the principal nilpotent orbit in the Levi (3A1)

′′ of
E7. Besides the equal parameter case, this is, essentially, the only Hecke
algebra of type F4 which appears in the classification of unipotent rep-
resentations of p-adic groups from [Lu6] (the equal parameter H(F4) was
treated in [Ci]). Although the methods employed are mostly uniform, de-
tails need to be checked case by case for each nilpotent orbit in E7 in the
classification. The answer is summarized in theorems 5.1 and 5.4. Since the
Iwahori-Matsumoto involution, IM , preserves unitary module, we verify (in
section 5.3) that our answer is closed under IM. In order to use IM, we
compute need to compute the decompositions of standard modules and the
W -structure of unitary modules.

2. Preliminaries

2.1. Let h be a finite dimensional vector space, R ⊂ h∗ a root system, with
Π = {α1, . . . , αn} the set of simple roots, Ř ⊂ h the set of coroots, and W
the Weyl group. Let c : R→ Z>0 be a function such that cα = cβ, whenever
α and β are W -conjugate. As a vector space,

H = C[W ] ⊗ C[r] ⊗ A, (2.1.1)
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where A is the symmetric algebra over h∗. The generators are tw ∈ C[W ],
w ∈W and ω ∈ h∗. The relations between the generators are:

twt
′
w = tww′, for all w,w′ ∈W ;

t2s = 1, for any simple reflection s ∈W ;

tsω = s(ω)ts + rcαω(α̌), for simple reflections s = sα.

(2.1.2)

Assume the root system R is irreducible. If R is simply-laced, the function c
must be constant. In the two root lengths case, we will denote the function
c by the pair (cl, cs) ∈ Z

2
>0, where cl, cs specify the values of c on the

long and short roots, respectively (in this order). Let k ∈ Z>0 be the ratio
k = (αl, αl)/(αs, αs) for some long root αl and short root αs. Then it is
straightforward to see that H(R, (c1, c2)) ∼= H(R, (kc2, c1)). For example,
H(F4, (1, 2)) ∼= H(F4, (4, 1)).

2.2. By [Lu1], the center of H is C[r] ⊗ A
W .

On any simple (finite dimensional) H-module, the center of H acts by
character, which we will call a central character. The central characters
correspond to W -conjugacy classes of semisimple elements (r0, s) ∈ C ⊕ h.

Definition. A central character (r0, s) is called real if (r0, s) ∈ R ⊕ hR.

2.3. H has a ∗- operation given on generators as follows (as in [BM2], section
5):

t∗w = tw−1 , w ∈W ; r∗ = r; (2.3.1)

ω∗ = −ω + r
∑

α∈R+

cαω(α̌)tsα , ω ∈ h∗.

The H-module V is called Hermitian if it admits a Hermitian form 〈 , 〉
such that

〈x · v1, v2〉 = 〈v1, x
∗ · v2〉, for all v1, v2 ∈ V, x ∈ H. (2.3.2)

It is called unitary, if in addition the Hermitian form is positive definite.

2.4. We present the Langlands classification for H as in [Ev].
If V is a (finite dimensional) simple H-module, A induces a generalized

weight space decomposition

V =
⊕

λ∈h

Vλ. (2.4.1)

Call λ a weight if Vλ 6= 0.

Definition. The irreducible module σ is called tempered if ωi(λ) ≤ 0, for
all weights λ ∈ h of σ and all fundamental weights ωi ∈ h∗. If σ is tempered
and ωi(λ) < 0, for all λ, ωi as above, σ is called a discrete series.
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For every ΠM ⊂ Π, define RM ⊂ R to be the set of roots generated
by ΠM , ŘM ⊂ Ř the corresponding set of coroots, and W (M) ⊂ W the
corresponding Weyl subgroup. Let HM be the Hecke algebra attached to
(h, RM ). It can be regarded naturally as a subalgebra of H.

Define t = {ν ∈ h : 〈α, ν〉 = 0, for all α ∈ ΠM} and t∗ = {λ ∈ h∗ :
〈λ, α̌〉 = 0, for all α ∈ ΠM}. Then HM decomposes as

HM = HM0 ⊗ S(t∗),

where HM0 is the Hecke algebra attached to (C〈ΠM 〉, RM ).
We will denote by I(M,U) the induced module I(M,U) = H ⊗HM

U.

Theorem ([Ev]).

(1) Every irreducible H-module is a quotient of a standard induced mod-
ule X(M,σ, ν) = I(M,σ ⊗ Cν), where σ is a tempered module for
HM0 , and ν ∈ t+ = {ν ∈ t : Re(α(ν)) > 0, for all α ∈ Π \ ΠM}.

(2) Assume the notation from (1). Then X(M,σ, ν) has a unique irre-
ducible quotient, denoted by L(M,σ, ν).

(3) If L(M,σ, ν) ∼= L(M ′, σ′, ν ′), then M = M ′, σ ∼= σ′ as HM0-modules,
and ν = ν ′.

We will call a triple (M,σ, ν) as in theorem 2.4 a Langlands parameter.

2.5. We need to recall some results about the affine Hecke algebra as in
[Op1], and their implications for H. Fix q > 1. The affine Hecke algebra H
is the C-algebra with basis {Tw : w ∈ Waff} (Waff is the affine Weyl group)
which satisfies the relations:

(1) TwTw′ = Tww′ if `(ww′) = `(w) + `(w′).
(2) (Tsα + 1)(Tsα − qcα) = 0, for all simple affine reflections sα.

The ∗-operation for H is given by T ∗
w = Tw−1 . The algebra H has a trace,

τ : H → C, given by

τ(Tw) = δw,1. (2.5.1)

It is easy to check that τ defines an inner product on H via

(x, y) := τ(x∗y), x, y ∈ H, (2.5.2)

and the basis {Tw : w ∈ Waff} is orthogonal with respect to ( , ). Note
that τ is easy to define using the Iwahori-Matsumoto presentation, but not
so if one uses instead the Bernstein-Lusztig presentation, H = HW ⊗ A.
(See [Op2] for details.) Similarly to section 2.4, one defines tempered and
discrete series modules for H using the weights of the abelian subalgebra A
(Casselman’s criteria).

Definition. Let H be the Hilbert space completion of H with respect to ( , ).

Proposition ([Op1],2.22). A finite dimensional representation σ of H is a
discrete series if and only if it is a subrepresentation of H. In particular, σ
is a unitary ∗-representation of H.
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A standard argument then implies the unitarity of tempered H-modules
as well. We can transfer this results to the graded Hecke algebra, using
theorem 9.3 in [Lu1] and theorem 4.3 [BM2].

In conclusion, all tempered modules of H are unitary.

2.6. Given a module V , let V h denote the Hermitian dual.
Every element x ∈ H can be written uniquely as x =

∑
w∈W/W (M) twxw,

with xw ∈ HM . Let εM : H → HM be the map defined by εM (x) = x1,
that is, the component of the identity element 1 ∈W. In the particular case
ΠM = ∅, we will denote the map by ε : H → A.

Lemma ([BM3], 1.4). If U is module for HM , and 〈 , 〉M denotes the
Hermitian pairing with Uh, then the Hermitian dual of I(M,U) is I(M,U h),
and the Hermitian pairing is given by

〈tx ⊗ vx, ty ⊗ vy〉h = 〈εM (t∗ytx)vx, vy〉M , x, y ∈W/W (M), vx, vy ∈ U.
Applying this result to a Langlands parameter (M,σ, ν) as in section 2.4,

we find that the Hermitian dual of X(M,σ, ν) is I(M,σ ⊗ C−ν).
Let w0 denote the longest Weyl group element in W , and let W (w0M) be

the subgroup of W generated by the reflections in w0RM . Let wm denote a
shortest element in the double coset W (w0M)w0W (M). Then wmΠM is a
subset of Π, which we denote by ΠwmM .

Proposition ([BM3], 1.5). The Hermitian dual of the irreducible Lang-
lands quotient L(M,σ, ν) is L(wmM,wmσ,−wmν). In particular, L(M,σ, ν)
is Hermitian if and only if there exists w ∈W such that

wM = M, wσ ∼= σ and wν = −ν.
If this is the case, we will denote by aw : wσ → σ.
Let w = s1 . . . sk be a reduced decomposition of w. For each simple root

α, define

rsα = tsαα− cα; rw = rsα1
. . . rsαk

. (2.6.1)

Lemma 1.6 in [BM3] (based on proposition 5.2 in [Lu1]) proves that rw does
not depend on the reduced expression of w.

Assume L(M,σ, ν) is Hermitian. Define

A(M,σ, ν) : X(M,σ, ν) → I(M,σ⊗C−ν), x⊗(v⊗1ν) 7→ xrw⊗(aw(v)⊗1−ν).
(2.6.2)

One can verify, as in section 1.6 of [BM3], that this is an intertwining oper-
ator. The image of A(M,σ, ν) is the Langlands quotient L(M,σ, ν).

2.7. Let (M,σ, ν) be a Langlands parameter as in section 2.4, and ν =
Re ν +

√
−1Im ν with Im ν 6= 0. Set

RM1 = {α ∈ R : 〈Im ν, α〉 = 0, RN1 = {α ∈ R : 〈Im ν, α〉 > 0}. (2.7.1)

Clearly, ΠM ⊂ RM1 . Moreover, RM1 is a root subsystem of R. Set R+
M1

=

RM1 ∩R+, and let ∆M1 denote the set of corresponding simple roots. Note



6 DAN CIUBOTARU

that ΠM ⊂ ∆M1 , but ∆M1 need not be a subset of Π. But HM is naturally
a subalgebra of HM1 .

Assume L(M,σ, ν) is Hermitian and let w ∈ W be as in proposition 2.6.
From wν = −ν, it follows that w ∈W (M1).

The triple (M,σ,Re ν) is a Langlands triple for HM1 , so it makes sense
to consider σ1 = LM1(M,σ,Re ν). Moreover, σ1 is Hermitian in HM1 .

Proposition. With the notation as above,

I(M1, (σ1 ⊗ CIm ν)) ∼= L(M,σ, ν).

Proof. It is known that there exists w′ ∈W (of shortest length) which maps
∆M1 onto a subset ΠM ′ of Π. This defines an isomorphism aw′ : HM1 → HM ′ ,
and, similarly to section 2.6, an intertwining operator A(M1 : M ′,V, ν ′).
Setting V = XM1(M,σ,Re ν) and ν ′ = Im ν, we find that this operator is
invertible.

X(M,σ, ν) ∼= I(M1, XM1(M,σ,Re ν) ⊗ CIm ν). (2.7.2)

Now, X(M,σ, ν) maps onto L(M,σ, ν) via the operator A(M,σ, ν) in (2.6.2).
On the other hand,XM1(M,σ,Re ν) maps onto σ1 by the operator AM1(M,σ,Re ν),
and by induction (which is an exact functor) we find a map from the
right hand side of (2.7.2) onto I(M1, (σ1 ⊗ CIm ν) whose kernel is H ⊗HM1

(kerAM1(M,σ,Re ν)) ∼= kerA(M ′, σ, ν), which is identical to kerA(M,σ, ν).
�

Corollary. Assuming the previous notation, L(M,σ, ν) is unitary if and
only if LM1(M,σ,Re ν) is unitary.

Proof. This follows immediately from proposition 2.7, and the fact that if
χ is a purely imaginary character and I(M,U ⊗ Cχ) is irreducible, then
I(M,U ⊗ Cχ) is unitary for H if and only if U is unitary for HM . �

3. Geometric Hecke algebras

We will restrict to the case of geometric Hecke algebras, as in [Lu2]-[Lu4].
We review some facts about these algebras and their geometric classification.

3.1. For an algebraic group G and a G-variety X, let H •
G

(X) = H•
G

(X,C),

respectively HG
• (X) = HG

• (X,C) denote the equivariant cohomology, re-
spectively homology (as in section 1 of [Lu2]). The component group of G,

A(G) = G/G0 acts naturally on H•
G0(X) and HG0

• (X). The cup product

defines a structure of graded H•
G

(X)-module on HG
• (X). If pt is a point of

X, one uses the notation H•
G

= H•
G

({pt}), respectively HG
• = HG

• ({pt}).
There is a C-algebra homomorphism H•

G
→ H•

G
(X) induced by the map

X → {pt}, and therefore H•
G

and HG
• can both‘ be considered as H•

G
-

modules.
For a subset S of G, or g, let ZG(S), NG(S) denote the centralizer,

respectively the normalizer of S in G.
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Let G be a reductive connected complex algebraic group, with Lie algebra
g. Let P = LN denote a parabolic subgroup, with p = l+n the corresponding
Lie algebras, such that l admits an irreducible L-equivariant cuspidal local
system (as in [Lu2],[Lu5]) L on a nilpotent L-orbit C ⊂ l. The classification
of cuspidal local systems can be found in [Lu5]. In particular, W = N(L)/L
is a Coxeter group.

LetH be the center of L with Lie algebra h, and let R be the set of nonzero
weights α for the ad-action of h on g, and R+ ⊂ R the set of weights for
which the corresponding weight space gα ⊂ n. For each parabolic Pj = LjNj,
j = 1, n, such that P ⊂ Pj maximally and L ⊂ Lj, let R+

j = {α ∈ R+ :

α(z(lj)) = 0}, where z(lj) denotes the center of lj . It is shown in [Lu2] that
each R+

j contains a unique αj such that αj /∈ 2R.

Let ZG(C) denote the centralizer in G of a Lie triple for C, and z(C) its
Lie algebra.

Proposition ([Lu2]).
(a) R is a (possibly non-reduced) root system in h∗, with simple roots

Π = {α1, . . . , αn}. Moreover, W is the corresponding Weyl group.
(b) H is a maximal torus in Z0 = Z0

G(C).
(c) W is isomorphic to W (Z0

G(C)) = NZ0(H)/H.
(d) The set of roots in z(C) with respect to h is exactly the set of non-

multipliable roots in R.

For each j = 1, n, let cj ≥ 2 be such that

ad(e)cj−2 : lj ∩ n → lj ∩ n 6= 0, and ad(e)cj−1 : lj ∩ n → lj ∩ n = 0. (3.1.1)

By proposition 2.12 in [Lu2], ci = cj whenever αi and αj are W -conjugate.
Therefore, one can define a Hecke algebra H as in (2.1.1),(2.1.2). In view of
the proposition above, one can think of this algebra as essentially a graded
Hecke algebra with unequal parameters for the centralizer z(C). The explicit
algebras which may appear are listed in 2.13 of [Lu2]. The more familiar
case of Hecke algebras with equal parameters arise when one takes P to be
a Borel subgroup, and C and L to be trivial.

The geometric realization of H is obtained as follows. Consider the vari-
eties

ġN = {(x, gP ) ∈ g ×G/P | Ad(g−1)x ∈ n}, (3.1.2)

g̈N = {(x, gP, g′P ) ∈ g ×G/P ×G/P | (x, gP ), (x, g′P ) ∈ ġN}.
Clearly g̈N ⊂ ġN × ġN . The local system L gives a local systems L̇ on ġN

and L̈ on g̈N .
The group G × C

∗ acts on g by (g1, λ) · x = λ−2Ad(g1)x, for every x ∈
g, g1 ∈ G,λ ∈ C

∗. In [Lu2], the vector space HG×C∗

• (g̈N , L̈) is endowed with
left and right actions of W and S(h∗ ⊕ C) ∼= H•

G×C∗(ġN ), and it is proved
(theorem 6.3 and corollary 6.4) that

HG×C∗

• (g̈N ,C) ∼= H, as H-bimodules. (3.1.3)
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3.2. Now we recall the construction of standard modules for H. Fix a
nilpotent element e in g, and let Pe be the variety

Pe = {gP ∈ G/P : Ad(g−1)e ∈ C + n}. (3.2.1)

The centralizer ZG×C∗(e) acts on Pe by (g1, λ).gP = (g1g)P.

[Lu2] constructs actions of W and S(h∗ ⊕ C) on H
Z0

G×C∗(e)
• (Pe, L̇), and

proves that these are compatible with the relations between the generators
of H, therefore obtaining a module of H (theorem 8.13). The component

group AG×C∗(e) acts on H
Z0

G×C∗ (e)
• (Pe, L̇), and commutes with the H-action

(8.5).
Consider the variety V of semisimple Z0

G×C∗(e)-orbits on the Lie algebra
zG×C∗(e) = {(x, r0) ∈ g ⊕ C : [x, e] = 2r0e} of ZG×C∗(e). The affine variety
V has H•

Z0
G×C∗(e)

as the coordinate ring. Define the H-modules

X(s, r0, e) = C(s,r0) ⊗H•

Z0
G×C∗

(e)
H

Z0
G×C∗ (e)

• (Pe, L̇), (3.2.2)

where C(s,r0) denotes theH•
Z0

G×C∗(e)
-module given by the evaluation at (s, r0) ∈

V, H•
Z0

G×C∗(e)
→ C.

Let AG×C∗(e, s, r0) denote the stabilizer of (s, r0) in AG×C∗(e). For each

ψ ∈ ÂG×C∗(e, s, r0), define

X(s, r0, e, ψ) = HomAG×C∗(e,s,r0)[ψ : X(s, r0, e)]. (3.2.3)

In particular, when (s, r0) = 0, we have (7.2, 8.9 in [Lu2] and 10.12(d) in
[Lu3])

X(0, e) ∼= H
{1}
• (Pe, L̇) as W ×AG(e)-modules. (3.2.4)

Let Â0
G(e) and Â0

G(e, s) denote the set of representations ψ which ap-

pear in the AG(e)-module H
{1}
• (Pe, L̇), respectively in the restriction of this

module to AG(e, s).

Theorem ([Lu2],[Lu3]). Assume r0 6= 0.

(a)([Lu2],8.10) X(s, r0, e, ψ) 6= 0 if and only if ψ ∈ Â0
G(e, s, r0).

(b)([Lu2],8.15) Any simple H-module on which r acts by r0 is a quotient

X(s, r0, e, ψ) of an X(s, r0, e, ψ), where ψ ∈ Â0
G(e, s).

(c)([Lu3],8.18) The set of isomorphism classes of simple H-modules with
central character (s, r0) is in 1-1 correspondence with the set

Ms,r0 = ZG(s)-conjugacy classes on {(e, ψ) : [s, e] = 2r0e, ψ ∈ Â0
G(e, s)}.

(3.2.5)

3.3. Fix a semisimple class (s, r0) ∈ V. The following theorem is immedi-
ately implied by the results in [Lu3], 10.5-10.7.

Theorem ([Lu3]). If a composition factor Y of the standard module X(s, r0, e, ψ)
is parametrized by the class (e′, ψ′) ∈ Ms,r0, then necessarily O ⊂ O′, where
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O, O′ are the ZG(s)-orbits of e, respectively e′ in Ms,r0 . Moreover, O = O′

if and only if Y = X(s, r0, e, ψ).

This is the geometric equivalent of the classical results for real and p-adic
groups concerning the minimality of the Langlands parameter in a standard
module (see [BW], IV.4.13 and XI.2.13).

Finally, an immediate corollary of theorem 3.3 (see 8.17 in [Lu2], equiv-
alently 10.9 in [Lu3]) is that, if O is the unique open ZG(s)-orbit in Ms,r0 ,

then X(s, r0, e, ψ), ψ ∈ Â0
G(e, s) is simple.

3.4. An important role in the determination of the unitary dual will be
played by the W-structure of standard and simple modules.

The continuation argument in 10.13 in [Lu3] in conjunction with (3.2.4)
shows that

X(s, r0, e)|W ∼= H
{1}
• (Pe, L̇), as W ×AG(s, e)-representations. (3.4.1)

(By definition, H
{1}
j (X,L) = H

2dim(X)−j
c (X,L∗)∗, where H•

c denotes the
cohomology with compact support, while ∗ denotes the dual vector space or
local system.)

Let NG denote the set G-conjugacy classes of pairs {(e, φ) : e ∈ gN , φ ∈
ÂG(e)}. The generalized Springer correspondence ([Lu5]) gives, in particular,
an injection

ΦC,L : Ŵ ↪→ NG. (3.4.2)

(Recall that W = NG(L)/L.) For the classical Springer correspondence (P
a Borel subgroup).

More precisely, let (e, φ) be a G-conjugacy class NG. Set Oe = G · e, and
let εφ be the local system on Oe corresponding to φ. Then [Lu5] (6.2,6.3)
attaches to (e, φ) a unique G-conjugacy class (L′, C′,L′), where L′ ⊂ P ′ is a
Levi subgroup, C ′ a nilpotent L′-orbit in l′, and L′ is a local system on C ′,
such that:

(a) Hdim(Oe)−dim(C′)
c (Oe ∩ (C′ + n′), εφ) 6= 0; (3.4.3)

(b) P ′ is minimal with respect to (a).

The local system L′ on C′ is constructed from εφ (see [Lu5], 6.2, for the
precise definition). (Note that in fact, (3.4.3) gives a definition of cuspidal:
one could define L′ to be a cuspidal local system for G if in (3.4.3), P ′ = G.)
It is shown in [Lu5] that all L′ appearing in this way must be cuspidal for
the corresponding L′.

If we denote by MC,L the subset of NG attached to (L, C,L) by (3.4.3),
the generalized Springer correspondence (3.4.2) can be reformulated as a bi-

jection MC,L ↔ Ŵ . For (e, φ) ∈ MC,L, there corresponds an irreducible W -
representation, which we will denote by µ(Oe, φ), constructed in HomA(e)[φ :

H•
c (Pe, L̇)].
With respect to the closure ordering of nilpotent orbits, the smallest orbit,

Omin, appearing in ImΦC,L is G · C, and the largest orbit, Omax, is the
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Lusztig-Spaltenstein induced orbit IndG
L (C). Moreover, they both appear

exactly once.
The correspondence is normalized such that

µ(Omin, φmin) = trivial and µ(Omax, φmax) = sgn.

3.5. The previous discussion gives a classification of simple H-modules via
lowest W-types.

Fix ψ ∈ ÂG(s, e). If φ ∈ Â0
G(e) and

HomW [(µ(Oe, φ) : X(s, r0, e, ψ)] 6= 0, (3.5.1)

then we will call µ(O, φ) a lowest W-type for X(s, r0, e, ψ).

Proposition. The simple module X(s, r0, e, ψ) is the unique composition
factor of X(s, r0, e, ψ) which contains the lowest W -types σ(Oe, φ) with mul-
tiplicity [φ |AG(s,e) : ψ].

Proof. It follows directly from theorem 3.3 and the discussion in section 3.4,
particularly, equation (3.4.1). �

3.6. If s ∈ g is semisimple, let s = shyp + sell denote its decomposition into
hyperbolic and elliptic parts.

Theorem ([Lu4]). A simple H-module X(s, r0, e, ψ) is tempered if and only
if {shyp, e} can be embedded into a Lie triple of Oe. In this case X(s, r0, e, ψ) =
X(s, r0, e, ψ).

If in addition, Oe is a distinguished nilpotent orbit, then X(s, r0, e, ψ) is
a discrete series.

Note that, if (s, e, φ) is the geometric parameter of a real (sell = 0) tem-
pered simple H-module, AG(s, e) = AG(e), and X(s, r0, e, φ) has a unique
lowest W-type, namely µ(Oe, φ). In addition, µ(Oe, φ) has multiplicity one.

This gives a bijection between Ŵ and simple tempered H-modules with
real central character. In particular, we have the following result.

Corollary. The set of simple tempered H-modules with real central character
is linearly independent in the Grothendieck group of W .

4. Hermitian forms

We retain the notation from the previous sections. The graded Hecke al-
gebra H will be assumed geometric and all parameters and central characters
are assumed to be real. We will fix r0 = 1/2 and drop it from the notation.
(It is sufficient to determine the unitary dual of H for one particular value
r0 6= 0.)
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4.1. Let (M,σ, ν), ν real, be a Hermitian Langlands parameter as in section
2.6. We constructed the intertwining operator

A(M,σ, ν) : X(M,σ, ν) → I(M,σ⊗C−ν), x⊗(v⊗1ν) 7→ xrw⊗(aw(v)⊗1−ν),
(4.1.1)

where w is such that wM = M, aw : wσ
∼=−→ σ, and wν = −ν.

By the results in the previous section, X(M,σ, ν) contains a special set
of W -representations, the lowest W-types. It is an empirical fact that ev-
ery L(M,σ, ν) contains one lowest W-type µ0 with multiplicity 1. (This is
verified case by case for the exceptional Hecke algebra, for those of classical
types this is automatic from the fact that the component groups AG(e) of
nilpotent elements e are always abelian.)

As a C[W ]-module,

I(M,σ ⊗ Cν) |W = C[W ] ⊗C[W (M)] (σ |W ). (4.1.2)

For any W-type (µ, Vµ), A(M,σ, ν) induces an operator

rµ(M,σ, ν) : HomW (µ,C[W ] ⊗C[W (M)] σ) → HomW (µ,C[W ] ⊗C[W (M)] σ).
(4.1.3)

By Frobenius reciprocity,

HomW (µ,C[W ] ⊗C[W (M)] σ) ∼= HomW (M)(µ, σ). (4.1.4)

In conclusion, A(M,σ, ν) gives rise to operators

rµ(M,σ, ν) : HomC[W (M)](µ, σ) → HomC[W (M)](µ, σ). (4.1.5)

The operator rµ0(M,σ, ν) is a scalar, and we normalize the intertwining
operator A(M,σ, ν) so that this scalar is 1.

Recall the map ε : H → A (section 2.6). We denote by ε(x)(ν), the
evaluation of an element ε(x) ∈ A = S(h∗) at ν ∈ h.

Theorem ([BM3]). Let (M,σ, ν) be a Hermitian Langlands parameter.

(1) The map A(M,σ, ν) is an intertwining operator.
(2) The image of the operator A(M,σ, ν) is L(M,σ, ν) and the Hermit-

ian form on L(M,σ, ν) is given by:

〈tx ⊗ (vx ⊗ 1ν), ty ⊗ (vy ⊗ 1ν)〉 = 〈tx ⊗ (vx ⊗ 1ν), tyrwm ⊗ (am(vy) ⊗ 1−ν)〉h,
= 〈ε(t∗ytxrwm)(ν)am(vx), vy〉M .

The discussion in this section can be summarized in the following corollary.

Corollary. A Langlands parameter (M,σ, ν), ν real, is unitary if and only
if the following two conditions are satisfied:

(1) wmM = M , wmV ∼= V, wmν = −ν;
(2) the normalized operators rµ(M,σ, ν) are positive semidefinite for all

µ ∈ Ŵ , such that HomW (M)[µ : V ] 6= 0.

One of the main tools for showing H-modules are not unitary is to compute
the signature of certain rµ(M,σ, ν).
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4.2. We consider now the particular case of spherical modules.

Definition. A H-module V is called spherical if HomW [V, triv] 6= 0. It is
called generic if HomW [V, sgn] 6= 0.

In the case of Hecke algebra with equal parameters, these definitions are
motivated by the correspondence with the representations of p-adic groups.
(In that case, spherical, respectively generic, H-modules correspond to repre-
sentations of the p-adic group having fixed vectors under a maximal compact
open subgroup, respectively admitting Whittaker models.)

The Iwahori-Matsumoto involution, IM , defined by

IM(tw) := (−1)l(w)tw,

IM(ω) := −ω, ω ∈ h∗,
(4.2.1)

interchanges spherical and generic modules. From (2.3.1), it follows that IM
commutes with the ∗-operation on H. From (2.3.2), it follows immediately
then that IM preserves Hermitian and unitary modules.

Let X(ν) = H ⊗A Cν, ν ∈ hR, be a principal series module. Clearly,
X(ν) ∼= C[W ], as W -modules, and in particular, X(ν) has a unique subquo-
tient containing the triv representation of W . Denote this by L(ν). Let h+

R

denote the dominant parameters in hR. The Langlands classification and the
considerents about intertwining operators presented in the previous sections
are summarized as follows.

Proposition. Assume ν ∈ h+
R
.

(1) The principal series X(ν) has a unique irreducible quotient, L(ν), which
is spherical. Moreover, every spherical H-module appears in this way.
(2) A spherical module L(ν) is Hermitian if and only if w0ν = −ν.
(3) If w0ν = −ν, the image of the intertwining operator

A(ν) : X(ν) → X(−ν), A(ν)(x⊗ 1ν) = xrw0 ⊗ 1−ν ,

normalized so that it is +1 on the spherical vector, is L(ν).

In particular, X(ν) is reducible if and only if 〈α, ν〉 = cα, for some α ∈ R+.

For every µ ∈ Ŵ , let

rµ(ν) : µ∗ → µ∗ (4.2.2)

be the operator defined by (4.1.5). Let w0 = s1 · · · sk be a reduced decom-
position of w0 (k = |R+|), where sj = sαj

, αj ∈ Π. The operator rµ(ν) has
a decomposition

rµ(ν) = rµ,s1(s2 · · · skν) · rµ,s2(s3 · · · skν) · · · rµ,sk
(ν), (4.2.3)

where each rµ,sj
(ν ′) is determined by the equation

rµ,sj
(ν ′) =

{
1, on the (+1)-eigenspace of sj on µ∗

cαj
−ν′

cαj
+ν′ , on the (−1)-eigenspace of sj on µ∗.

(4.2.4)
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4.3. As in corollary 4.1, a spherical Hermitian module L(ν) is unitary if and

only if rµ(ν) are positive semidefinite for all µ ∈ Ŵ .

Definition. Define the 0-complementary series to be the set {ν ∈ h+
R

:
X(ν) = L(ν) unitary}.

The 0-complementary series when H is of type Bn/Cn, with arbitrary
unequal parameters, were determined in [BC1]. For type G2, using the
machinery presented in the previous section, in particular the signatures of
rµ(ν), it is an easy calculation. We record the result, without proof, next.
We use the simple roots

α1 = (
2

3
,−1

3
,−1

3
) and α2 = (−1, 1, 0).

The Hecke algebra H(G2) has cα1 = 1 and cα2 = c > 0.

Proposition. Let ν = (ν1, ν1+ν2,−2ν1−ν2), ν1 ≥ 0, ν2 ≥ 0, be a dominant
(spherical) parameter for H(G2). There are nine cases depending on the
parameter c. The 0-complementary series are as follows.
(1) 0 < c < 1 : {3ν1 + 2ν2 < c} ∪ {3ν1 + ν2 > c, ν2 < c, 2ν1 + ν2 < 1}.
(2) c = 1 : {3ν1 + 2ν2 < 1} ∪ {3ν1 + ν2 > 1, 2ν1 + ν2 < 1}.
(3) 1 < c < 3

2 : {3ν1 + 2ν2 < c} ∪ {3ν1 + ν2 > c, 2ν1 + ν2 < 1}.
(4) c = 3

2 : {3ν1 + 2ν2 <
3
2}.

(5) 3
2 < c < 2 : {3ν1 + 2ν2 < c, 2ν1 + ν2 < 1}.

(6) c = 2 : {2ν1 + ν2 < 1}.
(7) 2 < c < 3 : {2ν1 + ν2 < 1} ∪ {ν1 + ν2 > 1, 3ν1 + 2ν2 < c}.
(8) c = 3 : {2ν1 + ν2 < 1} ∪ {ν1 + ν2 > 1, 3ν1 + 2ν2 < 3}.
(9) c > 3 : {2ν1 + ν2 < 1} ∪ {ν1 + ν2 > 1, ν1 < 1, 3ν1 + 2ν2 < c}.

In addition, the only other unitary spherical representations are the end-
points of the 0-complementary series, and the trivial representation, for
which (ν1, ν2) = (1, c).

In this notation, the Hecke algebras of typeG2 which appear geometrically
in [Lu6] are the cases c = 1 (equal parameters) and c = 9. The latter
corresponds to a cuspidal local system on the nilpotent 2A2 in E6.

4.4. Recall the arrangement of hyperplanes 〈α, ν〉 = cα in the dominant
Weyl chamber. A face F in h+

R
is a set determined by the roots α ∈ R+

being = 0, > cα, = cα, or < cα. It is natural to expect that the spherical
operators rµ(ν) have constant signature as ν varies over a face F . For the
Hecke algebra with equal parameters (i.e. cα = 1, for all α), this is theorem
2.4 in [BC1]. We prove a generalization here.

Theorem. Let H be a geometric Hecke algebra. The multiplicities of the
W -types in the spherical irreducible module L(ν) are constant as ν ranges
over a face F .
Proof. Similar to [BC1]. Details to follow. �
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5. Geometric Hecke algebra of type F4

We present the classification of the unitary dual for the Hecke algebra
H with unequal parameters of type F4, which appears geometrically in the
classification of [Lu6]. It has labels 1 on the long roots, and 2 on the short
roots. We use the following choice for the roots:

α1 = ε1 − ε2 − ε3 − ε4, α2 = 2ε4, α3 = ε3 − ε4, α4 = ε2 − ε3.

This algebra is attached to the cuspidal local system on the nilpotent orbit
(3A1)

′′ in E7. The simple modules are parametrized therefore by a subset
of the nilpotent orbits in E7, larger in the closure ordering than (3A1)

′′.
We list these nilpotent orbits O, each with the corresponding infinitesimal
character in H, the W -types coming from the generalized Springer corre-
spondence (LWT), and the centralizer z(O) in E7. The generalized Springer
correspondence for this case was computed in [Sp]. The closure ordering for
complex nilpotent orbits in E7 can be found in [Ca]. (We mention that there
is a typographical error in [Ca], the nilpotent orbits D6(a2) and D5(a1)+A1

are comparable, see figure 2.)

Table 1: Nilpotent orbits for (3A1)
′′ in E7

O Central character z(O) LWT

(3A1)
′′ (ν1, ν2, ν3, ν4) F4 11

4A1 (ν1, ν2, ν3,
1

2
) C3 23

A2 + 3A1 ( 1

2
,− 1

2
,− 1

2
, 1

2
) + ν1(2, 1, 1, 0) + ν2(1, 1, 0, 0) G2 13

(A3 +A1)
′′ (0, 0, 1,−1) + ν1(

1

2
, 1

2
, 0, 0) + ν2(

1

2
,− 1

2
, 0, 0) B3 42

+ν3(0, 0,
1

2
, 1

2
)

A3 + 2A1 (ν1, 1 + ν2,−1 + ν2,
1

2
) 2A1 83

D4(a1) +A1 (ν1, ν2,
3

2
, 1

2
) 2A1 91, 21

A3 +A2 +A1 ( 1

2
, 1

2
,− 3

2
, 1

2
) + ν(2, 1, 1, 0) A1 44

D4 +A1 (ν1, ν2,
5

2
, 1

2
) B2 93

(A5)
′′ (ν2 + 3ν1

2
, 2 + ν1

2
, ν1

2
,−2 + ν1

2
) G2 81

D5(a1) +A1 ( 3

2
+ ν,− 3

2
+ ν, 3

2
, 1

2
) A1 41

A5 +A1 ( 1

4
, 7

4
,− 1

4
,− 9

4
) + ν( 3

2
, 1

2
, 1

2
, 1

2
) A1 61

D6(a2) (ν, 5

2
, 3

2
, 1

2
) A1 161

E7(a5) ( 5

2
, 3

2
, 1

2
, 1

2
) 1 121, 62

D5 +A1 (2 + ν,−2 + ν, 5

2
, 1

2
) A1 22

D6(a1) (ν, 7

2
, 3

2
, 1

2
) A1 92

E7(a4) ( 7

2
, 3

2
, 1

2
, 1

2
) 1 43, 82

D6 (ν, 9

2
, 5

2
, 1

2
) A1 94

E7(a3) ( 9

2
, 5

2
, 1

2
, 1

2
) 1 84, 12

E7(a2) ( 11

2
, 5

2
, 3

2
, 1

2
) 1 45

E7(a1) ( 13

2
, 7

2
, 3

2
, 1

2
) 1 24

E7 ( 17

2
, 9

2
, 5

2
, 1

2
) 1 14
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5.1. Results. Let (M,σ, ν) be a (Hermitian) Langlands parameter, where
σ is a limit of discrete series for HM (or rather HM0 , notation as in section
2.4). We construct a Hecke algebra Hσ with possibly unequal parameters,
with Weyl group Wσ.

Proposition. With the notation above, there exists a set of W -types {µ0, µ1, . . . , µl}
in X(M,σ, ν) such that, if the corresponding Wσ-types are {ρ(µ0), ρ(µ1), . . . , ρ(µl)},
then

rµ(M,σ, ν) = rρ(µ)(ν), for all µ ∈ {µ0, . . . , µl},
where rµ(M,σ, ν) is the operator in H (defined as in (4.1.5)), and rρ(µ) is
the spherical operator in Hσ.

Proof. Details to follow.
�

The spherical unitary dual is listed in table 3. These are the unitary
modules parametrized by Omin. For the rest of the nilpotents, the unitary
sets are presented next. For every nilpotent O in table 1, with {e, h, f} ⊂ O
a Lie triple, and φ ∈ ÂG(e)0, let

U(O, φ) = {(ν, ψ) : s =
h

2
+ ν, φ ∈ ÂG(s, e)0,HomA(s,e)[ψ : φ] 6= 0,

X(s, e, ψ) is unitary} (5.1.1)

denote the set of unitary parameters associated to (O, φ).

Theorem. With the notation as before (particularly table 1 and (5.1.1)),
the unitary (real) parameters for H(F4, (1, 2)) are:

O µ(O, φ) Unitary ν
E7 14 D.S.

E7(a1) 24 D.S.
E7(a2) 45 D.S.
E7(a3) 84 D.S.
E7(a3) 12 D.S.
D6 94 SU(A1, (1))

E7(a4) 43 D.S.
22 D.S.

D6(a1) 92 SU(A1, (1))
D5 +A1 82 SU(A1, (1))
E7(a5) 121 D.S.

62 D.S.
D6(a2) 161 SU(A1, (1))
A5 +A1 61 SU(A1, (1))

D5(a1) +A1 41 0 ≤ ν ≤ 1
(A5)

′′ 81 SU(G2, (1, 1))
D4 +A1 93 SU(B2, (1,

3

2
))

A3A2A1 44 SU(A1, (2))
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Table 2 – continued from previous page
D4(a1) +A1 91 {0 ≤ ν2 < ν1 ≤ 3 − ν2, ν1 ≤ 5

2
} ∪ {0 ≤ ν2 = ν1 ≤ 3

2
}

21 {0 ≤ ν2 < ν1 ≤ 3 − ν2, ν1 ≤ 5

2
} ∪ {0 ≤ ν2 = ν1 ≤ 5

2
}

A3 + 2A1 83 {0 ≤ ν1 ≤ 1

2
, ν1 + 2ν2 ≤ 3

2
} ∪

{0 ≤ ν1 ≤ 1

2
, 0 ≤ ν2 ≤ 3

2
, 2ν2 − ν1 ≥ 3

2
}

(A3 +A1)
′′ 42 SU(B3, (1, 1)) ∪ {(1 + ν, ν,−1 + ν) : 1 < ν < 2}

A2 + 3A1 13 SU(G2, (2, 1)) ∪ {ν1 + ν2 = 1, 0 < ν2 < 1} ∪
{ν1 = 1, 0 ≤ ν2 ≤ 1} ∪ {3ν1 + ν2 = 2, 1

2
< ν2 ≤ 2}

4A1 23 {ν1 + ν2 + ν3 ≤ 3

2
} ∪ {ν1 + ν2 − ν3 ≥ 3

2
, ν1 <

3

2
, ν1 + ν2 < 2}

∪{(ν1, ν2, 3

2
) : ν1 + ν2 ≤ 3, ν1 ≤ 5

2
}

∪{(ν1, 1 + ν2,−1 + ν2) : 0 ≤ ν1 ≤ 1

2
, 0 ≤ ν2 ≤ 1

2
}

∪{(ν1, 1 + ν2,−1 + ν2) : ν1 + 2ν2 = 3

2
, 1

2
≤ ν1 ≤ 3

2
}

∪{(ν, 3

2
, 1

2
) : 0 ≤ ν ≤ 5

2
} ∪ {(1 + ν,−1 + ν, 3

2
) : 0 ≤ ν < 3

2
}

∪{(2 + ν, ν,−2 + ν) : 0 ≤ ν < 1

2
} ∪ {(ν, 7

2
, 3

2
) : 0 ≤ ν < 1

2
}

∪{( 5

2
, 3

2
, 1

2
)} ∪ {( 7

2
, 3

2
, 1

2
)} ∪ {( 13

2
, 7

2
, 3

2
)}

(3A1)
′′ 11 SU(F4, (1, 2)), see table 3

We will present, in detail, in the next two sections, the calculations giving
the unitary dual of H(F4, (1, 2)). The discussion is organized by nilpotent
orbits.

For the distinguished orbits, there is nothing to do. They parametrize
discrete series, and the lowest W-types and infinitesimal characters can be
read from tables 1 and 2.

5.2. Maximal parabolic cases. First we treat the cases of those nilpotent
orbits which, in the Bala-Carter classification, correspond to Levi subalge-
bras of maximal parabolic subalgebras. In terms of the (classical) Langlands
classification, they correspond to the induced modules from discrete series
on Levi components of maximal parabolic subalgebras.
D6 : The infinitesimal character is (ν, 9

2 ,
5
2 ,

1
2 ), the lowest W-type is 94, and

z = A1. The standard module is induced from the Steinberg representation
on the Hecke subalgebra of type C3. The W-structure is

X(D6)|W = 94 + 84 + 45 + 24 + 14.

We calculate the intertwining operators for arbitrary parameter c. In that
case, the infinitesimal character is (ν, 2c+ 1

2 , c+ 1
2 ,

1
2).

94 1;

84
c− 3

2
−ν

c− 3
2
+ν

;

45
c+ 3

2
−ν

c+ 3
2
+ν

;

24
(c− 3

2
−ν)(3c− 1

2
−ν)

(c− 3
2
+ν)(3c− 1

2
+ν)

;

14
(c+ 3

2
−ν)(3c+ 5

2
−ν)

(c+ 3
2
+ν)(3c+ 5

2
+ν)

.
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In particular, when c = 2, the calculation implies that X(D6, ν) is unitary
if and only if 0 ≤ ν ≤ 1

2 .

D6(a1) : The infinitesimal character is (ν, 7
2 ,

3
2 ,

1
2), the lowest W-type is 92,

and z = A1. In terms of Langlands classification, the standard module is
induced from a one-dimensional discrete series in C3. The W-structure is

X(D6(a1))|W = Ind
W (F4)
W (C3)(111 × 0) = 92 + 43 + 84 + 12 + 24.

The intertwining operators in this case give:
92 1;

43

1
2
−ν

1
2
+ν

;

84

7
2
−ν

7
2
+ν

;

12
( 1
2
−ν)( 7

2
−ν)

( 1
2
+ν)( 7

2
+ν)

;

24
( 7
2
−ν)( 13

2
−ν)

( 7
2
+ν)( 13

2
+ν)

.

This indicates that X(D6(a1), ν) is unitary if and only if 0 ≤ ν ≤ 1
2 . At

ν = 1
2 , the standard module decomposes as

X(D6(a1),
1

2
) = X(D6(a1),

1

2
) +X(E7(a4), φ1)

X(D6(a1),
1

2
) = 92 + 84 + 24.

D5 + A1 : The infinitesimal character is (2 + ν,−2 + ν, 5
2 ,

1
2), the lowest W-

type is 82, and z = A1. The standard module is induced from the Steinberg
representation on the Hecke subalgebra of type B3. The W-structure is

X(D5 +A1)|W = 82 + 22 + 94 + 45 + 14.

We calculate the intertwining operators for arbitrary parameter c. In that
case, the infinitesimal character is ( c

2 + 1 + ν,− c
2 − 1 + ν, c+ 1

2 ,
1
2).

82 +1;

22

c−3
2

+ν
c−3
2

−ν
;

94

3c−1
2

−ν
3c−1

2
+ν

;

45
( 3c−1

2
−ν)( 3c+1

2
−ν)

( 3c−1
2

+ν)( 3c+1
2

+ν)
;

14
( 3c−1

2
−ν)( 3c+1

2
−ν( 5c+3

2
−ν))

( 3c−1
2

+ν)( 3c+1
2

+ν)( 5c+3
2

+ν)
.

In particular, if c = 2, X(D5 +A1, ν) is unitary if and only if 0 ≤ ν ≤ 1
2 .

At ν = 1
2 , the standard module decomposes as

X(D5 +A1,
1

2
) = X(D5 +A1,

1

2
) +X(E7(a4), φ2)

X(D5 +A1,
1

2
)|W = 82 + 94 + 45 + 14.
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D6(a2) : The infinitesimal character is (ν, 5
2 ,

3
2 ,

1
2), the lowest W-type is 161,

and z = A1. In terms of Langlands classification, the standard module is
induced from a four dimensional discrete series on C3. The W-structure is

X(D6(a2))|W = Ind
W (F4)
W (C3)(1 × 11 + 0 × 111)

= 161 + 24 + 92 + 2 · 94 + 2 · 84 + 121 + 82 + 2 · 45 + 62 + 14.

The intertwining operators are (for the W-types with multiplicity greater
than 1, we only give the determinant):

161 +1;

121

1
2
−ν

1
2
+ν

;

62

1
2
−ν

1
2
+ν

;

24
( 5
2
−ν)( 9

2
−ν)

( 5
2
+ν)( 9

2
+ν)

;

82
( 1
2
−ν)( 5

2
−ν)

( 1
2
+ν)( 5

2
+ν)

;

14
( 1
2
−ν)( 5

2
−ν)( 9

2
−ν)( 11

2
−ν)

( 1
2
+ν)( 5

2
+ν)( 9

2
+ν)( 11

2
+ν)

;

92

5
2
−ν

5
2
+ν

84 Det=
( 1
2
−ν)( 5

2
−ν)( 9

2
−ν)

( 1
2
+ν)( 5

2
+ν)( 9

2
+ν)

;

45 Det=
( 1
2
−ν)2( 5

2
−ν)( 9

2
−ν)( 11

2
−ν)

( 1
2
+ν)2( 5

2
+ν)( 9

2
+ν)( 11

2
+ν)

.

It follows that X(D6(a2), ν) is unitary if and only if 0 ≤ ν ≤ 1
2 . At ν = 1

2 ,
the standard module decomposes as

X(D6(a2),
1

2
) = X(D6(a2),

1

2
) +X(E7(a5), φ1) +X(E7(a5), φ2)

X(D6(a2),
1

2
)|W = 161 + 24 + 92 + 84 + 94.

A5 + A1 : The infinitesimal character is ( 1
4 ,

7
4 ,−1

4 ,−9
4) + ν(3

2 ,
1
2 ,

1
2 ,

1
2), the

lowest W-type is 61, and z = A1. In terms of Langlands classification, the

standard module is induced from the Steinberg representation on Ã2 +A1.

X(A5 +A1)|W = Ind
W (F4)

W ( eA2+A1)
((111) ⊗ (11))

= 61 + 161 + 2 · 84 + 82 + 43 + 45 + 121 + 92 + 2 · 94 + 24 + 14.

We compute the intertwining operator for arbitrary parameter c. In that
case, the infinitesimal character is ( 1

4 , c− 1
4 ,−1

4 ,−1
4 − c) + ν( 3

2 ,
1
2 ,

1
2 ,

1
2).
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61 1;

161

1
2
−ν

1
2
+ν

;

82
( 1
2
−ν)2( 3

2
−ν)

( 1
2
+ν)2( 3

2
+ν)

;

121
( 1
2
−ν)2

( 1
2
+ν)2

;

92
( 1
2
−ν)(2c− 3

2
−ν)

( 1
2
+ν)(2c− 3

2
+ν)

;

43
2c− 3

2
−ν

2c− 3
2
+ν

;

24
( 1
2
−ν)(c+ 1

2
−ν)(2c− 3

2
−ν)(2c+ 1

2
−ν)

( 1
2
+ν)(c+ 1

2
+ν)(2c− 3

2
+ν)(2c+ 1

2
+ν)

;

45
( 1
2
−ν)2( 3

2
−ν)(c+ 1

2
−ν)(2c+ 1

2
−ν)

( 1
2
+ν)2( 3

2
+ν)(c+ 1

2
+ν)(2c+ 1

2
+ν)

;

14
( 1
2
−ν)2( 3

2
−ν)(c+ 1

2
−ν)(2c+ 1

2
−ν)(2c+ 3

2
−ν)

( 1
2
+ν)2( 3

2
−ν)(c+ 1

2
+ν)(2c+ 1

2
+ν)(2c+ 3

2
+ν)

;

84 Det=
( 1
2
−ν)3(c+ 1

2
−ν)(2c− 3

2
−ν)(2c+ 1

2
−ν)

( 1
2
+ν)3(c+ 1

2
+ν)(2c− 3

2
+ν)(2c+ 1

2
+ν)

;

94 Det=
( 1
2
−ν)3( 3

2
−ν)(c+ 1

2
−ν)(2c+ 1

2
−ν)

( 1
2
+ν)3( 3

2
+ν)(c+ 1

2
+ν)(2c+ 1

2
+ν)

.

It follows that in the case c = 2, X(A5 + A1, ν) is unitary if and only if
0 ≤ ν ≤ 1

2 . At ν = 1
2 , the standard module decomposes as

X(A5A1,
1

2
) = X(A5A1,

1

2
) +X(D6(a2),

1

2
) +X(E7(a5), φ1)

X(A5A1,
1

2
) = 61 + 43.

D5(a1) + A1 : The infinitesimal character is ( 3
2 +ν,−3

2 +ν, 3
2 ,

1
2), the lowest

W-type is 41, and z = A1. In terms of Langlands classification, the standard
module is induced from a two-dimensional discrete series on B3. The W-
structure is

X(D5(a1) +A1))|W = Ind
W (F4)
W (B3)(0 × 12) = 41 + 161 + 24 + 94 + 92 + 84.

The intertwining operators are:
41 1;
161

1−ν
1+ν ;

92
(1−ν)(2−ν)
(1+ν)(2+ν) ;

94
(1−ν)(4−ν)
(1+ν)(4+ν) ;

84
(1−ν)(2−ν)(4−ν)
(1+ν)(2+ν)(4+ν) ;

24
(1−ν)(2−ν)(4−ν)(5−ν)
(1+ν)(2+ν)(4+ν)(5+ν) .

It follows that X(D5(a1) + A1) is unitary if and only if 0 ≤ ν ≤ 1. At
ν = 1, the standard module decomposes as

X(D5(a1) +A1, 1) = X(D5(a1) +A1, 1) +X(D6(a2),
1

2
)

X(D5(a1) +A1, 1)|W = 41.
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A3 + A2 + A1 : The infinitesimal character is ( 1
2 ,

1
2 ,−3

2 ,
1
2)+ν(2, 1, 1, 0), the

lowest W-type is 44, and z = A1. In terms of Langlands classification, the

standard module is induced from the Steinberg representation on A2 + Ã1.
The W-structure is:

X(A3 +A2 +A1)|W = Ind
W (F4)

W (A2+ eA1)
((111) ⊗ (11))

= 44 + 161 + 84 + 2 · 82 + 45 + 121 + 61 + 93 + 2 · 94 + 22 + 14.

We compute the intertwining operators for general parameter c. In that
case the infinitesimal character is ( 1

2 ,
c−1
2 ,− c+1

2 , 1
2 ) + ν(2, 1, 1, 0).

44 1;

93

c
2
−ν

c
2
+ν ;

61

3c−2
2

−ν
3c−2

2
+ν

;

161
( c
2
−ν)( 3c−2

2
−ν)

( c
2
+ν)( 3c−2

2
+ν)

;

121
( c
2
−ν)2( 3c−2

2
−ν)

( c
2
+ν)2( 3c−2

2
+ν)

;

84
( c
2
−ν)2( 3c−2

2
−ν)( 3c

2
−ν)

( c
2
+ν)2( 3c−2

2
+ν)( 3c

2
+ν)

;

22
( c
2
−ν)( c+1

2
−ν)( c+2

2
−ν)

( c
2
+ν)( c+1

2
+ν)( c+2

2
+ν)

;

45
( c
2
−ν)2( c+1

2
−ν)( c+2

2
−ν)( 3c−2

2
−ν)( 3c

2
−ν)

( c
2
+ν)2( c+1

2
+ν)( c+2

2
+ν)( 3c−2

2
+ν)( 3c

2
+ν)

;

14
( c
2
−ν)2( c+1

2
−ν)( c+2

2
−ν)( 3c−2

2
−ν)( 3c

2
−ν)( 3c+2

2
−ν)

( c
2
+ν)2( c+1

2
+ν)( c+2

2
+ν)( 3c−2

2
+ν)( 3c

2
+ν)( 3c+2

2
+ν)

;

82 Det=
( c
2
−ν)3( c+1

2
−ν)( c+2

2
−ν)( 3c−2

2
−ν)

( c
2
+ν)3( c+1

2
+ν)( c+2

2
+ν)( 3c−2

2
+ν)

;

94 Det=
( c
2
−ν)3( c+1

2
−ν)( c+2

2
−ν)( 3c−2

2
−ν)2( 3c

2
−ν)

( c
2
+ν)3( c+1

2
+ν)( c+2

2
+ν)( 3c−2

2
+ν)2( 3c

2
+ν)

.

In the case c = 2, it follows that X(A3 +A2 +A1, ν) is unitary if and only
if 0 ≤ ν ≤ 1. At ν = 1, the standard module decomposes as

X(A3A2A1, 1) = X(A3A2A1, 1) +X(D4A1, (
3

2
,
1

2
)) +X(E7(a5), φ1)

X(A3A2A1, 1)|W = 44 + 61.

Note that X(A3A2A1, 1) is the IM-dual of X(A5A1,
1
2).

5.3. Matching of intertwining operators.

(A5)′′ : The infinitesimal character is (ν2+ 3ν1
2 , 2+ ν2

2 ,
ν1
2 ,−2+ ν1

2 ), the lowest
W-type is 81, and z = G2. In the Langlands classification, the standard mod-

ule is induced from the Steinberg representation on Ã2. The W-structure
is

X((A5)
′′)|W = Ind

W (F4)

W ( eA2)
((111)).

The restrictions of the nearby W-types are as follows:
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Nilpotent (A5)
′′ A5A1 D6(a2) E7(a5) E7(a5)

W-type 81 61 161 121 62

Multiplicity 1 1 2 2 1

Ã2 ⊂ Ã2 +A1 (2) (11) (2), (11) (2), (11) (2)

Ã2 ⊂ C3 11 × 1 11 × 1 11 × 1, 1 × 11 11 × 1, 1 × 11 1 × 11
W (z) = W (G2) (1, 0) (1, 3)′′ (2, 2) (2, 1) (1, 3)′

We need the intertwining operators for the induced module from the Stein-
berg representation on A2 in the Hecke algebra of type C3, with parameters
2–2⇐1. The operators are

11 × 1 : 1, 1 × 11 :
1
2 − ν
1
2 + ν

, 111 × 0 :
3
2 − ν
3
2 + ν

.

Therefore, the matching of operators is with the Hecke algebra of type G2

with equal parameters, H(G2). The nearby W-types match all the relevant
W (G2)-types, so the unitary set U(A′′

5) is included in the spherical unitary
dual of H(G2). The modules of H(G2) are parametrized by nilpotent orbits in
the Lie algebra of type G2. We analyze the composition series and unitarity
of X(A′′

5) by cases corresponding to these nilpotent orbits.
(1) : In H(G2), this is the spherical complementary series

{3ν1 + 2ν2 < 1} ∪ {3ν1 + ν2 > 1 > 2ν1 + ν2}. (5.3.1)

The standard module X(A′′
5) is irreducible in these regions, and therefore

unitary (being unitarily induced and unitary when ν2 = 0).
A1 : The parameters are of the form (ν1, ν2) = (−1

2 + ν, 1). They are

unitary for 0 ≤ ν < 1
2 , being endpoints of the complementary series (5.3.1).

The decomposition of the standard module is

X(A′′
5 , (1,−

1

2
+ ν)) = X(A′′

5 , (1,−
1

2
+ ν)) +X(A5 +A1, ν)

X(A′′
5 , (1,−

1

2
+ ν))|W = 81 + 161 + 121 + 62 + 2 · 84 + 43 + 45 + 2 · 92

+ 94 + 24 + 12.

Ã1 : The parameters are of the form (ν1, ν2) = (1,− 3
2 + ν, 1). They are

unitary for 0 ≤ ν < 1
2 , being endpoints of the complementary series (5.3.1).

The decomposition of the standard module is

X(A′′
5 , (−

3

2
+ ν, 1)) = X(A′′

5 , (−
3

2
+ ν, 1)) +X(D6(a2), ν)

X(A′′
5 , (−

3

2
+ ν, 1))|W = 81 + 61 + 161 + 121 + 2 · 84 + 2 · 43 + 2 · 92

+ 94 + 24 + 12.

G2(a1) : This is the parameter (ν1, ν2) = (0, 1). It is unitary, being an
endpoint of the complementary series (5.3.1). The decomposition of the
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standard module is

X(A′′
5 , (0, 1)) = X(A′′

5 , (0, 1)) +X(A5A1,
1

2
) +X(D6(a2),

1

2
)

+X(E7(a5), φ1) +X(E7(a5), φ2)

X(A′′
5 , (0, 1))|W = 81 + 121 + 84 + 92 + 12.

G2 : This is the parameter (ν1, ν2) = (1, 1). In H(G2), it is isolated.
We compute the W-structure of the standard module. In addition to the
operators given by the nearby W-types, we need to check the operator on
92.

X(A′′
5 , (1, 1)) = X(A′′

5 , (1, 1)) +X(A5A1,
3

2
) +X(D6(a2),

5

2
)

+X(D5A1,
1

2
) +X(D6(a1),

1

2
) +X(E7(a4), φ2)

X(A′′
5 , (1, 1))|W = 81 + 92.

Moreover, the operator on 92 is positive at (1, 1), so this point is unitary.

In conclusion, the unitary parameter set U(A′′
5) is identical with the spher-

ical unitary dual SU(H(G2)).

D4 + A1 : The infinitesimal character is (ν1, ν2,
5
2 ,

1
2), the lowest W-type is

93, and z = B2. In Langlands classification, the standard module is induced
from the Steinberg representation on C2. The W-structure is

X(D4 +A1)|W = Ind
W (F4)
W (C2)(0 × 11).

The restrictions of the nearby W-types are as follows:
Nilpotent D4 +A1 D5(a1)A1 D6(a2) E7(a5) D6(a1)
W-type 93 41 161 121, 62 92

Multiplicity 1 1 2 1, 1 1
B2 ⊂ B3 1 × 11 0 × 12 0 × 12, 1 × 11 1 × 11 0 × 12
C2 ⊂ C3 0 × 12 0 × 12 0 × 12, 1 × 11 1 × 11 1 × 11
W (z) = W (B2) 2 × 0 11 × 0 1 × 1 0 × 2 0 × 11
We need the intertwining operators for the induced modules from the

Steinberg representation of C2 = B2 in the Hecke algebras of types B3, and
C3, with parameters 1–1⇒2, respectively 2–2⇐1.

In B3 (1–1⇒2), the infinitesimal character is (ν, 3, 2), and the standard
module is the induced from the Steinberg representation on B2. The opera-
tors are

1 × 11 : 1, 0 × 12 :
1 − ν

1 + ν
, 0 × 111 :

4 − ν

4 + ν
.

In C3 (2–2⇐1), the infinitesimal character is (ν, 5
2 ,

1
2), and the standard mod-

ule is the induced from the Steinberg representation on C2. The operators
are

0 × 12 : 1, 1 × 11 :
3
2 − ν
3
2 + ν

, 0 × 111 :
(3
2 − ν)(9

2 − ν)

(3
2 + ν)(9

2 + ν)
.
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Therefore, the matching of operators is with the Hecke algebra of type
B2 with parameters 1⇒3/2. The nearby W-types match all the W (B2)-
representations of this B2, therefore, the unitary parameter set U(D4 +
A1) is included in the spherical unitary dual of H(B2, 1, 3/2). The modules
of H(B2, 1, 3/2) are parametrized by a cuspidal local system on sp(2) ⊕
C

2 ⊂ sp(6). Specifically the nilpotent orbits of sp(6) which enter in the
parametrization are (6), (42), (411), (222), (214). We analyze the composition
series and unitarity of X(D4 +A1) by cases corresponding to these nilpotent
orbits.

(214) : In H(B2, 1, 3/2), this is the spherical complementary series

{ν1 + ν2 < 1} ∪ {ν1 − ν2 > 1, ν1 <
3

2
}. (5.3.2)

The standard module X(D4 +A1) is irreducible in these regions, and there-
fore unitary (being unitarily induced and unitary when ν2 = 0).

(222) : The parameters are of the form (ν1, ν2) = (1
2 +ν,−1

2 +ν). They are

unitary for 0 ≤ ν < 3
2 , being endpoints of the complementary series (5.3.2).

The standard module decomposes as follows

X(D4A1, (
1

2
+ ν,−1

2
+ ν)) = X(D4A1, (

1

2
+ ν,−1

2
+ ν) +X(D5(a1)A1, ν)

X(D4A1, (
1

2
+ ν,−1

2
+ ν)|W = 93 + 161 + 121 + 2 · 94 + 84 + 2 · 82 + 62

+ 2 · 45 + 22 + 14.

(411) : The parameters are (ν1, ν2) = (ν, 3
2). They are unitary for 0 ≤ ν ≤ 1

2 ,
being endpoints of the complementary series (5.3.2). The standard module
decomposes as follows

X(D4A1, (ν,
3

2
)) = X(D4A1, (ν,

3

2
)) +X(D6(a2), ν)

X(D4A1, (ν,
3

2
))|W = 93 + 161 + 82 + 41 + 22 + 94.

(42) : The parameters are (ν1, ν2) = (3
2 ,

1
2 ). This is an endpoint of the

complementary series (5.3.2), therefore unitary. The decomposition of the
standard module is

X(D4A1, (
3

2
,
1

2
)) = X(D4A1, (

3

2
,
1

2
)) +X(D5(a1)A1, 1) +X(D6(a2),

1

2
)

+X(E7(a5), φ1) +X(E7(a5), φ2)

X(D4A1, (
3

2
,
1

2
))|W = 93 + 161 + 82 + 94 + 22.

(6) : The parameters are (ν1, ν2) = (5
2 ,

3
2). This point is isolated. From

the W-structure of X(D4A1, (ν,
3
2)), we see that the only W-types which

can be present in X(D4A1, (
5
2 ,

3
2 )) are 93, 161, 82, 41, 22, 94. By virtue of the

matching with operators in H(B2, 1, 3/2), we know 161 and 41 cannot be
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present. We compute the operators on the remaining ones and find that the
W-structure is

X(D4A1, (
5

2
,
3

2
)) = 93 + 82.

Moreover, the operator on 82 is positive, so X(D4A1, (
5
2 ,

3
2 )) is unitary. Note

also that X(D4A1, (
5
2 ,

3
2 )) is the IM-dual of X(A′′

5 , (1, 1)).

In conclusion, the unitary set U(D4+A1) is identical with SU(H(B2, 1, 3/2).

D4(a1) + A1 : The infinitesimal character is (ν1, ν2,
3
2 ,

1
2), the lowest W-

types are 91 and 21, and z = 2A1. The two lowest W-types are separate
when ν1 = ν2. If ν1 6= ν2, then the (Langlands classification) standard
module is induced from a one dimensional discrete series on B2 (1⇒2). As
a W-module

X(D4(a1)A1, (ν1, ν2))|W = Ind
W (F4)
W (B2)(0 × 2), if ν1 6= ν2.

When ν1 = ν2 = ν, there are two standard modules, corresponding to the
two lowest W-types, induced from two tempered representations of B3 (1–
1⇒2). As W-modules,

X(D4(a1)A1, (ν, ν), φ1)|W = Ind
W (F4)
W (B3)

(1 × 2 + 0 × 12) = 91 + 81 + 43 + 61

+ 2 · 92 + 2 · 161 + 2 · 84 + 94 + 121 + 41 + 24.

X(D4(a1)A1, (ν, ν), φ2)|W = Ind
W (F4)
W (B3)

(0 × 3) = 21 + 81 + 43 + 92 + 12.

The restrictions of the nearby W-types are:
Nilpotent D4(a1)A1 D4(a1)A1 A′′

5 A3A2A1 D5(a1)A1

W-type 91 21 81 43 41

Multiplicity 1 + 0 0 + 1 1 + 1 1 + 1 1 + 0
B2 ⊂ B3 1 × 2 0 × 3 1 × 2, 0 × 3 1 × 2, 0 × 3 0 × 12
C2 ⊂ C3 12 × 0 12 × 0 12 × 0, 11 × 1 11 × 1, 111 × 0 0 × 12
W (B2) = 2 × 0 11 × 0 1 × 1 1 × 1 11 × 0
W (z) o Z/2
The matching of the intertwining operators is with the Hecke algebra

H(B2, 0, 5/2). More specifically,
91 : 1;
21 : 1;

81 :




5
2
−ν1

5
2
−ν2

0

0
5
2
−ν2

5
2
+ν2


 .

For the calculations, we need some intertwining operators on modules in
the Hecke algebras of type B3 and C3.

In H(B3, 1, 2), the infinitesimal character is (ν, 2, 1). There are two lowest
W-types 1 × 2 and 0 × 3, which are separate at ν = 0 only. When ν > 0,
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the operators are

1 × 2 : 1, 0 × 3 : 1, 0 × 12 :
3 − ν

3 + ν
.

In H(C3, 2, 1), the infinitesimal character is (ν, 3
2 ,

1
2 ). The lowest W-type is

12 × 0. The operators are

12 × 0 : 1, 11 × 1 :
5
2 − ν
5
2 + ν

, 111 × 0 :
7
2 − ν
7
2 + ν

.

From this calculations, it follows that the reducibility lines forX(D4(a1), A1, (ν1, ν2)),
when ν1 6= ν2, are ν1 ± ν2 = 3, νi = 5

2 ,
7
2 , i = 1, 2. The operator on 81 shows

that the unitary set U(D4(a1)A1) is included in 0 ≤ ν2 ≤ ν ≤ 5
2 . However,

the line ν1 + ν2 = 3 cuts this region. The restrictions in the table above
imply that the operator on 41 is

41 :
(3 − (ν1 + ν2))(3 − (ν1 − ν2))

(3 + (ν1 + ν2))(3 + (ν1 − ν2))
.

So for ν1 6= ν2, X(D4(a1)A1, (ν1, ν2)) is unitary if and only if

{ν1 + ν2 < 3, ν1 <
5

2
}.

We also note thatX(D4(a1)A1, (ν,
5
2)), 0 ≤ ν < 1

2 is the IM-dual ofX(D4A1, (ν,
3
2)),

and X(D4(a1)A1, (
5
2 ,

1
2)) is the IM-dual of X(D4A1, (

3
2 ,

1
2)). On ν1 + ν2 = 3,

we write the parameters as ( 3
2 +ν,−3

2 +ν) (which are unitary for 0 ≤ ν ≤ 1).
The W-structure here is

X(D4(a1)A1, (
3

2
+ ν,−3

2
+ ν)) = X(D4(a1)A1, (

3

2
+ ν,−3

2
+ ν)) +X(D5(a1)A1, ν)

X(D4(a1)A1, (
3

2
+ ν,−3

2
+ ν))|W = 91 + 21 + 2 · 94 + 161 + 84 + 2 · 81

+ 2 · 43 + 121 + 61 + 12.

It remains to analyze the case ν1 = ν2 = ν. The calculation on 81 can
be used to conclude that both Langlands quotients X(D4(a1)A1, (ν, ν)) fail
to be unitary for ν > 5

2 . Moreover, the calculation for 41 implies that

X(D4(a1)A1, (ν, ν), φ1) is not unitary for ν > 3
2 .

For φ1, the first possible reducibility point is ν = 3
2 (this is seen by looking

at the W-types in X(D4(a1)A1, (ν, ν), φ1) and their corresponding nilpotent
orbits). So it is unitary for 0 ≤ ν ≤ 3

2 . The decomposition at ν = 3
2 is

X(D4(a1)A1, (
3

2
,
3

2
), φ1) = X(D4(a1)A1, (

3

2
,
3

2
), φ1) +X(D5(a1)A1, 0)

X(D4(a1)A1, (
3

2
,
3

2
), φ1)|W = 91 + 92 + 161 + 84 + 81 + 121 + 61 + 43.

For φ2, the first possible reducibility point is ν = 5
2 , so this is unitary if

and only if 0 ≤ ν ≤ 5
2 . Note that X(D4(a1)A1, (

5
2 ,

5
2 ), φ2) is the IM-dual of

X(E7(a4), φ1). As a W-representation, it is just 21.
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In conclusion, the unitary set U(D4(a1)A1) is given by:

(1) {ν1 + ν2 ≤ 3, ν1 ≤ 5
2}, if ν1 6= ν2.

(2) 0 ≤ ν ≤ 3
2 , if ν1 = ν2 = ν for the φ1-factor.

(3) 0 ≤ ν ≤ 5
2 , if ν1 = ν2 = ν for the φ2-factor.

A3 + 2A1 : The infinitesimal character is (ν1, 1 + ν2,−1 + ν2,
1
2), the lowest

W-type 83, and z = 2A1. In terms of Langlands classification, the standard
module is induced from the Steinberg representation on the Hecke algebra

of type A1 + Ã1. As a W-module,

X(A3 + 2A1)|W = Ind
W (F4)

W (A1+ eA1)
((11) ⊗ (11)).

The restrictions of nearby W-types are:
Nilpotent A3 + 2A1 D4(a1)A1 A3A2A1 A′′

5 D4A1 D5(a1)A1

W-type 83 91 44 81 93 41

Multiplicity 1 1 1 1 2 1
C1 ×A1 ⊂ C3 1 × 2 1 × 2 1 × 2 11 × 1 1 × 2, 0 × 12 0 × 12
B1 ×A1 ⊂ B3 11 × 1 1 × 2 11 × 1 1 × 2 1 × 2, 2 × 1 0 × 12
A1 ⊂ A2 (21) (21) (13) (21) (21), (13) (21)

Ã1 ⊂ Ã2 (21) (21) (13) (21) (21), (21) (21)
We need the following calculations from the Hecke algebras of type B3

and C3.
In H(C3, 2, 1), the infinitesimal character is (1+ν,−1+ν, 1

2). The standard
module is induced from the Steinberg module on C1×A1, and it is reducible
at ν = 3

2 ,
5
2 ,

7
2 . The relevant operators are:

1 × 2 : 1, 11 × 1 :
5
2 − ν
5
2 + ν

, 0 × 12 :
3
2 − ν
3
2 + ν

.

In H(B3, 1, 2), the infinitesimal character is ( 1
2+ν,−1

2+ν, 2). The standard
module is induced from the Steinberg module on B1×A1, and it is reducible
at ν = 1

2 ,
5
2 ,

7
2 . The relevant operators are:

11 × 1 : 1, 1 × 2 :
1
2 − ν
1
2 + ν

, 1 × 11 :
5
2 − ν
5
2 + ν

.

The reducibility lines for X(A3 + 2A1, (ν1, ν2)) are ν1 = 1
2 ,

5
2 ,

7
2 , ν2 =

3
2 ,

5
2 ,

7
2 , and ±ν1±2ν2 = 3

2 and ±ν1±ν2 = 3. (The last two types come from

the restrictions of the operators to A1 ⊂ A2 and Ã1 ⊂ Ã2.)
From the restrictions we that the operators are as follows:
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83 : 1;

91 :
1
2
−ν1

1
2
+ν1

;

41 :
( 1
2
−ν1)(

5
2
−ν1)( 3

2
−ν2)

( 1
2
+ν1)(

5
2
+ν1)( 3

2
+ν2)

;

81 :
( 1
2
−ν1)(

5
2
−ν2)

( 1
2
+ν1)(

5
2
+ν2)

;

44 :
( 3
2
−(ν1+2ν2))(

3
2
−(ν1−2ν2)

( 3
2
+(ν1+2ν2))(

3
2
+(ν1−2ν2)

;

93 : Det=
( 3
2
−ν2)(

5
2
−ν1)(

3
2
−(ν1+2ν2))( 3

2
−(ν1−2ν2)

( 3
2
+ν2)(

5
2
+ν1)(

3
2
+(ν1+2ν2))( 3

2
+(ν1−2ν2)

.

In this case, it is natural to try to match the unitary set U(A3 + 2A1)
with the spherical unitary dual of A1 + A1 with parameters 1 and 3. This
is just the set {0 ≤ ν1 ≤ 1

2 , 0 ≤ ν2 ≤ 3
2}. The operators above imply that

actually the unitary set is

U(A3+2A1) = {0 ≤ ν1 ≤ 1

2
, ν1+2ν2 ≤ 3

2
}∪{0 ≤ ν1 ≤ 1

2
, 0 ≤ ν2 ≤ 3

2
, 2ν2−ν1 ≥ 3

2
}.

We also record the relevant decompositions and W-structure of the standard
module. On ν2 = 3

2 , 0 ≤ ν1 <
1
2 , the decomposition is

X(A3 + 2A1, (ν,
3

2
)) = X(A3 + 2A1, (ν,

3

2
)) +X(D4 +A1, (ν,

1

2
).

Moreover, X(A3 + 2A1, (ν,
3
2)) is self IM-dual.

On ν1 = 1
2 , 0 ≤ ν2 <

1
2 and 1 < ν2 <

3
2 , the decomposition is

X(A3 + 2A1, (
1

2
, ν)) = X(A3 + 2A1, (

1

2
, ν)) +X(D4(a1) +A1, (ν, ν), φ1).

The IM-dual of X(A3 + 2A1, (
1
2 , ν)) is a spherical module.

On 2ν2 ± ν1 = 3
2 , we write the parameter as (ν1, ν2) = (−1

2 + 2ν, 1
2 + ν).

Then it is unitary for 0 < ν < 1
2 . Here, the decomposition is

X(A3 + 2A1, (−
1

2
+ 2ν,

1

2
+ ν)) = X(A3 + 2A1, (−

1

2
+ 2ν,

1

2
+ ν)) +X(A3 +A2 +A1, ν).

(5.3.3)

The IM-dual of X(A3 + 2A1, (−1
2 + 2ν, 1

2 + ν)) is parametrized by 4A1.

At (1
2 ,

1
2 ), the decomposition is

X(A3 + 2A1, (
1

2
,
1

2
)) = X(A3 + 2A1, (

1

2
,
1

2
)) +X(D4(a1)A1, (

1

2
,
1

2
), φ1) +X(A3A2A1, 0)

X(A3 + 2A1, (
1

2
,
1

2
))|W = 83 + 161 + 82 + 121 + 62 + 93 + 94 + 45.

The similar decomposition (and identical W-structure) holds at (1, 1).
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Finally, at the point ( 1
2 ,

3
2), the decomposition is

X(A3 + 2A1, (
1

2
,
3

2
)) = X(A3 + 2A1, (

1

2
,
3

2
)) +X(D4(a1)A1, (

3

2
,
3

2
), φ1)

+X(D4A1, (
1

2
,
1

2
)) +X(D5(a1)A1, 0)

X(A3 + 2A1, (
1

2
,
3

2
))|W = 83 + 161 + 82 + 44 + 121 + 61 + 93 + 94.

Note that X(A3 + 2A1, (
1
2 ,

3
2)) is the IM-dual of X(D4(a1)A1, (

3
2 ,

3
2), φ1).

(A3 + A1)′′ : The infinitesimal character is ( ν1+ν2
2 , ν1−ν2

2 , 1 + ν2
2 ,−1 + ν2

2 ),
the lowest W-type is 42, and centralizer B3. In the Langlands classification,

the standard module is induced from the Steinberg representation on Ã1, so

as a W-module, it is X((A3 +A1)
′′)|W = Ind

W (F4)

W ( eA1)
((11)).

The restrictions of nearby W-types are:
Nilpotent (A3A1)

′′ A32A1 D4(a1)A1 D4(a1)A1 A′′
5

W-types 42 83 91 21 81

Ã1 ⊂ Ã2 (21) 2 · (21) 3 · (21) (21) 3 · (21), (13)
A1 (2) (2), (11) 2 · (2), (11) (2) 3 · (2), (11)
A1 ⊂ C2 1 × 1 2(1 × 1) 2(1 × 1), 11 × 0 11 × 0 2(1 × 1), 2(11 × 0)
W (z) 3 × 0 12 × 0 2 × 1 0 × 3 3 × 0 + 1 × 2

We need a calculation from the Hecke algebra of type C2, 2⇐1. The
infinitesimal character is (1+ν,−1+ν), and the standard module is induced

from the Steinberg representation on Ã1. Then the reducibility points are
ν = 1

2 ,
3
2 , and the operators are

1 × 1 : 1, 11 × 0 :
1
2 − ν
1
2 + ν

.

It follows that the reducibility hyperplanes for X((A3 + A1)
′′, (ν1, ν2))

are νi = 1, 3 (from A1 ⊂ C2), νi ± νj = 1 (from Ã1 ⊂ Ã1 + A1), and

ν1 ± ν2 ± ν3 = 6 (from Ã1 ⊂ Ã2).
The matching of operators is with the spherical operators for H(B3), the

Hecke algebra of type B3 with equal parameters. From the tables, we see
that we can match the operators on all relevant W (B3)-types, except 1× 2.

(The operator on 81 fails to match it because of the restriction to Ã1 ⊂ Ã2.)
The representation 1 × 2 in B3 is the only one which rules out the interval
{(1 + ν, ν,−1 + ν) : 1 < ν < 2} in the spherical dual. It follows that the
unitary set U((A3A1)

′′) is included in the union SU(H(B3))∪{(1+ν, ν,−1+
ν) : 1 < ν < 2}. We also note that the extra hyperplanes of reducibility of
X((A3 +A1)

′′) which do not correspond to B3, intersect this union only in
the point (3, 2, 1). We analyze the parameters in U((A3A1)

′′) partitioned by
the nilpotent orbits in type so(7) (that is, in the same way we parametrize
the spherical dual of H(B3)).
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(17) : The parameters are (ν1, ν2, ν3); the spherical complementary series
for H(B3) is

{ν1 + ν2 < 1} ∪ {nu1 + ν3 > 1, ν2 + ν3 < 1, ν1 < 1}. (5.3.4)

In these regions, X((A3 + A1)
′′) is irreducible, and it is unitarily induced

and unitary for ν3 = 0, so it is unitary in (5.3.4).
(2213) : The parameters are ( 1

2 + ν1,−1
2 + ν1, 2ν2), unitary for {0 ≤ ν1 <

1
2 , 0 ≤ ν2 <

1
2}, being endpoints of the complementary series (5.3.4). The

decomposition of the standard module in this region is

X((A3A1)
′′,

1

2
+ ν1,−

1

2
+ ν1, 2ν2)) = X((A3A1)

′′,
1

2
+ ν1,−

1

2
+ ν1, 2ν2))

+X(A3 + 2A1, (ν1, ν2)).

The IM-dual of X((A3A1)
′′, 1

2 + ν1,−1
2 + ν1, 2ν2)) is parametrized by 4A1.

(314) : The parameters are (ν1+ν2, ν1−ν2, 1), unitary for {ν1 <
1
2}, being

endpoints of (5.3.4). The decomposition of the standard module is

X((A3A1)
′′, (ν1 + ν2, ν1 − ν2, 1)) = X((A3A1)

′′, (ν1 + ν2, ν1 − ν2, 1))

+X(D4(a1)A1, (ν1, ν2)).

The IM-dual of X((A3A1)
′′, (ν1 + ν2, ν1 − ν2, 1)) is a spherical module.

(322) : The parameters are ( 1
2 +ν,−1

2 +ν, 1), unitary for 0 ≤ ν < 1
2 (again

endpoints of (5.3.4). The standard module decomposes as

X((A3A1)
′′, (

1

2
+ ν,−1

2
+ ν, 1)) = X((A3A1)

′′, (
1

2
+ ν,−1

2
+ ν, 1))

+X(A3 + 2A1, (ν,
1

2
) +X(D4(a1)A1, (ν,

1

2
))

Moreover, X((A3A1)
′′, (1

2 + ν,−1
2 + ν, 1)) is self IM-dual.

(331) : The parameters are (1 + ν, ν,−1 + ν). At ν = 0, we have a uni-
tary module, endpoint of (5.3.4). (Note also that X((A3A1)

′′, (1, 1, 0)) is the
IM-dual of X(A3 + 2A1, (

1
2 ,

1
2)).) In H(B3), this is the only such parameter

which is unitary. In F4 however, by the observations preceding this analy-
sis, we need to also consider the segment 1 < ν < 2. In this interval, the
decomposition is

X((A3 +A1)
′′, (1 + ν,ν,−1 + ν)) = X((A3 +A1)

′′, (1 + ν, ν,−1 + ν))

+ 2 ·X(A3 + 2A1, (−
1

2
+ ν,

1

2
+
ν

2
)) +X(A3A2A1,

ν

2
)

X((A3 +A1)
′′, (1 + ν,ν,−1 + ν))|W = 42 + 91 + 21 + 62 + 2 · 81 + 43

+ 2 · 92 + 121 + 161 + 84 + 12.

This segment is isolated, so to prove that it is unitary, we compute explicitly
the signatures on all the W-types which appear in the restriction of X((A3 +
A1)

′′, (1+ν, ν,−1+ν))|W . The IM-dual of X((A3+A1)
′′, (1+ν, ν,−1+ν)) is

a module parametrized by A2 +3A1, and our calculations will be confirmed
by the unitarity of those duals.
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(511) : The parameters are (ν, 2, 1), which are not unitary for ν > 0.
At ν = 0, X((A3A1)

′′, (2, 1, 0)) is the IM-dual of X(A3 + 2A1, (
1
2 , 1)), and

therefore it is unitary.
(7) : The parameter is (3, 2, 1). ThenX((A3+A1)

′′, (3, 2, 1)) is the IM-dual
of X(E7(a5), φ2), and therefore it is unitary.

In conclusion, U((A3 +A1)
′′) = SU(H(B3))t{(1+ ν, ν,−1+ ν) : 1 < ν <

2}.

A2 + 3A1 : The infinitesimal character is ( 1
2 ,−1

2 ,−1
2 ,

1
2) + ν1(2, 1, 1, 0) +

ν2(1, 1, 0, 0), the lowest W-type is 13, and z = G2. In terms of Langlands
classification, the standard module is induced from the Steinberg represen-

tation on A2, and as a W-module, X(A2 + 3A1) = Ind
W (F4)
W (A2)

((111)).

The restrictions of nearby W-types are:
Nilpotent A23A1 A32A1 A3A2A1 D4A1 A5A1

W-type 13 83 44 93 61

Multiplicity 1 1 2 3 1
A2 ⊂ B3 111 × 0 11 × 1 111 × 0 111 × 0, 1 × 11 11 × 1

11 × 1 11 × 1

A2 ⊂ A2 + Ã1 (2) (2) (2), (11) 2 · (2), (11) (11)
W (z) (1, 0) (1, 3)′ (2, 1) (1, 0) + (2, 2) (1, 6)
We need a calculation in the Hecke algebra H(B3, 1, 2). The infinitesimal

character is (ν +1, ν,−1 + ν), and the standard module is induced from the
Steinberg representation on A2. The reducibility points are 1, 2, 3, and the
relevant operators are

111 × 0 : 1, 11 × 1 :
1 − ν

1 + ν
, 1 × 11 :

(1 − ν)(2 − ν)

(1 + ν)(2 + ν)
.

Then the reducibility lines for X(A2 + 3A1, (ν1, ν2)) are ν1, ν1 + ν2, 2ν1 +
ν2 = 1, 2, 3, and ν2, 3ν1 + ν2, 3ν1 + 2ν2 = 2. The matching of operators is
with H(G2, 1, 2), the Hecke algebra of type G2: 1<≡2. From the tables,
it follows that we are able to match only the operators on (1, 0), (1, 3)′,
and (2, 1) in G2. We will also use the operator on 93 (which is the closets
one to match (2, 2)). The spherical unitary dual of H(G2, 1, 2) consists of
the closed region {2ν1 + ν2 ≤ 1}, and the isolated points ( 1

2 ,
1
2) and (1, 2).

The matched operators are sufficient to conclude that, when irreducible,
X(A2 + 3A1, (ν1, ν2)) is unitary only in the region 2ν1 + ν2 < 1, but on the
lines we need more information.

On the line ν1 = −1 + ν, ν2 = 2, the decomposition is

X(A2 + 3A1, (−1 + ν, 2)) = X(A2 + 3A1, (−1 + ν, 2)) +X(A3 +A2 +A1, ν)

X(A2 + 3A1, (−1 + ν, 2))|W = 13 + 83 + 44 + 62 + 161 + 2 · 82 + 2 · 93

+ 121 + 94 + 22 + 45.
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To simplify notation, set X1(ν) = X(A2 + 3A1, (−1 + ν, 2)). The matched
operators give

83 : −(1
2 − ν)(2 − ν)

(1
2 + ν)(2 + ν)

, 44 :
2 − ν

2 + ν
,

showing that X1(ν) can only be unitary for 1
2 ≤ ν ≤ 2. The operator on 93

has two nonzero eigenvalues with product − ( 1
2
−ν)(1−ν)(2−ν)2(3−ν)

( 1
2
+ν)(1+ν)(2+ν)2(3+ν)

, so the only

segment which can be unitary is 1
2 ≤ ν ≤ 1. At ν = 1

2 , X1(ν) decomposes
further:

X1(
1

2
) = X(A2 + 3A1, (

1

2
,
1

2
)) +X(A3 + 2A1, (

1

2
,
1

2
))

X(A2 + 3A1, (
1

2
,
1

2
))|W = 13 + 44 + 82 + 93 + 22.

Since X(A2 +3A1, (
1
2 ,

1
2 )) is the IM-dual of X(D4(a1)A1, φ2) (which is tem-

pered), it must be unitary. Also the other factor is unitary, because X(A3 +
2A1, (

1
2 ,

1
2)) is. Since 92 appears in both factors, and the operator on it is

positive for 1
2 < ν < 1, it follows that X1(ν) is unitary for 1

2 < ν < 1. Note

also that X1(ν) is the IM-dual of X((A3 +A1)
′′, 1 + 2ν, 2ν,−1 + 2ν), which

confirms its unitarity.

On the line ν1 = 1, ν2 = −3
2 + ν, the decomposition is

X(A2 + 3A1, (1,−
3

2
+ ν)) = X(A2 + 3A1, (1,−

3

2
+ ν)) +X(A3 + 2A1, (

1

2
, ν))

X(A2 + 3A1, (1,−
3

2
+ ν))|W = 13 + 44 + 82 + 93 + 22. (5.3.5)

Denote X2(ν) = X(A2 + 3A1, (1,−3
2 + ν)). The intertwining operators cal-

culations give us

44 :
7
2 − ν
7
2 + ν

, 93 :
(5
2 − ν)(7

2 − ν)

(5
2 + ν)(7

2 + ν)
.

So the only interval on which X2(ν) can be unitary is 0 ≤ ν ≤ 5
2 . But on

this interval, X2(ν) is the IM-dual of X(D4(a1)A1, (ν, ν), φ2), so it is in fact
unitary. Note that at the endpoint, ν = 5

2 , X(A2+3A1, (1, 1)) is the IM-dual
of the discrete series X(E7(a4), φ2).

Finally, at the point (1, 2), X(A2 + 3A1, (1, 2)) is the IM-dual of the
discrete series X(E7(a3), φ2).

In conclusion, the unitary set U(A2+3A1) is the one pictured in the figure
1. It is strictly larger than the spherical unitary dual SU(H(G2, 1, 2)).

4A1 : The parameters are (ν1, ν2, ν3,
1
2 ), the lowest W-type is 23, and z = C3.

In terms of Langlands classification, the standard module is induced from
the Steinberg representation on A1, and as a W-representation, X(4A1) =

Ind
W (F4)
W (A1)((11)).
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(0, 1) ( 1

2
, 0) ( 2

3
, 0) (1, 0)

( 1

2
, 1

2
)

(0, 1)

(0, 2)
(1, 2)

ν1

ν2

( 3

2
, 0)

(0, 3)

Figure 1. Unitary parameters and reducibility lines for A2 + 3A1

The restrictions of the nearby W-types are:
Nilpotent 4A1 (A3A1)

′′ A23A1 A32A1 D4(a1)A1 A3A2A1

W-type 23 42 13 83 91 44

Multiplicity 1 1 1 4 3 3
C1 ⊂ C2 0 × 2 1 × 1 0 × 2 2(0 × 2) 0 × 2 2(0 × 2)

2(1 × 1) 2(1 × 1) 1 × 1
A1 ⊂ A2 (21) (21) (13) 3(21), (13) 3(21) (21), 2(13)

Ã1

W (z) 3 × 0 0 × 3 3 × 0 0 × 3 + 2 × 1 1 × 2 2 × 1
We need one calculation in the Hecke algebra H(C2, 2, 1) of type C2, 2⇐1.

The standard module is induced from the Steinberg representation on C1,
and it has infinitesimal character (ν, 1

2 ). The operators are

0 × 2 : 1, 1 × 1 :
3
2 − ν
3
2 + ν

, 0 × 11 :
(3
2 − ν)(5

2 − ν)

(3
2 + ν)(5

2 + ν)
.

The matching of intertwining operators is with the spherical operators for
H(C3, 2, 3), the Hecke algebra of type C3, 2–2⇐3. The only W-types which
give matchings are

23 with 3 × 0;
42 with 0 × 3;
91 with 1 × 2;
81 with 0 × 12.

The last one is irrelevant for the calculation. To get an inclusion of U(4A1)
into SU(H(C3, 2, 3)), we would have needed to find matchings for theW (C3)-
types 2×1 and 12×0 as well. TheW (F4)-type 83 fails to match 2×1 because
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of its restriction to A1 ⊂ A2, but we will have to use it in the calculation
nevertheless. We will also use the operators on 13 and 41.

The hyperplanes of reducibility for X(4A1), (ν1, ν2, ν3)) are: νi ± νj = 2,
νi = 3

2 (as in H(C3, 2, 3)), but also νi = 5
2 , and ν1 ± ν2 ± ν3 = 3

2 . Especially
the second extra family of hyperplanes of reducibility will affect the unitarity
in an essential way.

The Hecke algebra H(C3, 2, 3) arises geometrically from a cuspidal local
system on SL(3)3 in Spin(13); its dual is parametrized by a subset of the
nilpotent orbits in type B6.. We organize our analysis of the unitary set
U(4A1) by infinitesimal characters corresponding to these orbits.

(261) : In H(C3, 2, 3), these are parameters (ν1, ν2, ν3) in the complement
of the hyperplanes νi±νj = 2, νi = 3

2 . In H(C3, 2, 3) the unitary regions are:

(i) {ν1 <
3
2 , ν1 + ν2 < 2}.

(ii) {ν1 <
3
2 , ν1 + ν3 > 2, ν2 + ν3}.

But the operators on the matched W (C3)-types 3× 0, 0× 3, 1× 2 (equiv-
alently, on the W (F4)-operators 23, 42, respectively 91) are also positive in
the region

(iii) {ν3 <
3
2 , ν2 >

3
2 , ν1 + ν3 > 2, ν1 − ν3 < 2, ν2 + ν3 < 2}.

In F4, X(4A1) becomes reducible also on the hyperplanes ν1±ν2±ν3 = 3
2 ,

some of which cut the regions (i)–(iii). More specifically, region (i) is cut by
the hyperplanes ν1 + ν2 + ν3 = 3

2 and ν1 + ν2 − ν3 = 3
2 , and region (ii) is

cut by ν1 + ν2 − ν3 = 3
2 . We use the operators on 12 and 84 and these are

indefinite in all the resuting (sub)regions except

{ν1 + ν2 + ν3 ≤ 3

2
} ∪ {ν1 + ν2 − ν3 ≥ 3

2
, ν1 <

3

2
, ν1 + ν2 < 2}. (5.3.6)

In these two remaining regions, one can deform ν3 to 0, and X(4A1) stays
irreducible, and for ν3 = 0, it is unitarily induced and unitary. So the
parameters in (5.3.6) are unitary. On the hyperplanes ν1 + ν2 ± ν3 = 3

2 , in
(5.3.6), the decomposition is

X(4A1) = X(4A1) +X(A2 + 3A1),

and the factor X(4A1) is self IM-dual.
(524) : The parameter is (ν1, ν2,

3
2). In H(C3, 2, 3), the corresponding pa-

rameters are unitary for {ν1 <
1
2}∪{ν2 >

1
2 , ν1+ν < 2}. However, out of the

matched operators, the only nontrivial one is on 91, and it is
( 7
2
−ν1)(

7
2
−ν2)

( 7
2
+ν1)(

7
2
+ν2)

.

We also need the operators on 13 and 41:

13 :

{
(3−(ν1−ν2))(3−(ν1+ν2))
(3+(ν1−ν2))(3+(ν1+ν2))

, ν1 6= ν2

0, ν1 = ν2

, 41 :
(5
2 − ν1)(

5
2 − ν2)(

7
2 − ν1)(

7
2 − ν2)

(5
2 + ν1)(

5
2 + ν2)(

7
2 + ν1)(

7
2 + ν2)

.

From these calculations, it follows that for ν1 6= ν2, the only unitary param-
eters are in the region {ν1 +ν2 < 3, ν1 <

5
2} (and its closure). In this region,
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the decomposition of the standard module is

X(4A1, (ν1, ν2,
3

2
)) = X(4A1, (ν1, ν2,

3

2
)) +X((A3A1)

′′, (ν1 + ν2, ν1 − ν2, 1))

+X(D4(a1)A1, (ν1, ν2)).

Moreover, X(4A1, (ν1, ν2,
3
2)) is the IM-dual of X(D4(a1) + A1), so it is

indeed unitary.
When ν1 = ν2 = ν, the decomposition is

X(4A1, (ν, ν,
3

2
)) = X(4A1, (ν, ν,

3

2
)) +X((A3A1)

′′, (2ν, 1, 0))

X(A2 + 3A1, (1,−
3

2
+ ν)) +X(D4(a1)A1, (ν, ν)).

The factor X(4A1, (ν, ν,
3
2)) is the IM-dual of X(D4(a1)A1, (ν, ν), phi1), so

it is unitary if and only if 0 ≤ ν ≤ 3
2 .

(44221) : The parameters are (ν1, 1 + ν2,−1 + ν2). In H(C3, 2, 3), they
are unitary in the region {ν1 <

3
2 , ν2 <

1
2}. In F4, the unitary set will be

different. Generically, here the standard module decomposes as

X(4A1, (ν1, 1+ν2,−1+ν2)) = X(4A1, (ν1, 1+ν2,−1+ν2))+X(A3+2A1, (ν1, ν2)),

and X(4A1) is the IM-dual of X((A3 +A1)
′′, (1

2 + ν1,−1
2 + ν1, 2ν2)), which

is unitary for {0 ≤ ν1 <
1
2 , 0 ≤ ν2 <

1
2}.

Similar calculations as in the previous case ((524)) show that the parame-
ters (ν1, 1+ν2,−1+ν2) can be unitary only for {0 ≤ ν1 <

1
2 , 0 ≤ ν2 <

1
2} (by

the remark in the previous paragraph, X(4A1, (ν1, 1+ν2,−1+ν2)) has to be
unitary in this region), and on the segment ν1 +2ν2 = 3

2 , for
1
2 ≤ ν1 ≤ 3

2 . For
this, we use, in addition to the matched W-types, the operators on 13, 41, 83.

It remains to analyze the segment ν1+2ν2 = 3
2 .We rewrite the parameters

as ν1 = 1
2 +2ν, ν2 = 1

2 −ν. Then the factor X(4A1, (
1
2 +2ν, 1

2 +ν,−3
2 +ν)) is

the IM-dual of X(A3 +2A1, (−1
2 +ν, 1

2 +ν)), which is unitary for 0 ≤ ν < 1
2 ,

which is precisely the segment we were looking at. Therefore, this segment
is also unitary for X(4A1).

(53221) : The infinitesimal character is (ν, 3
2 ,

1
2). In H(C3, 2, 3), the corre-

sponding spherical module is unitary for 0 ≤ ν < 3
2 .

In F4, the only nonzero matched operator is on 91, and it is
7
2
−ν

7
2
+ν
. The

operator on 13 is
( 5
2
−ν)( 7

2
−ν)

( 5
2
+ν)( 7

2
+ν)

. So it remains to check the segment 0 ≤ ν ≤ 5
2 .

For 0 ≤ ν ≤ 5
2 , X(4A1, (ν,

3
2 ,

1
2 )) is the IM-dual of X(D4(a1)A1, (ν,

1
2)), so it

is indeed unitary.
(544) : The infinitesimal character is (1 + ν,−1 + ν, 3

2). In H(C3, 2, 3),

the corresponding spherical module is unitary for 0 ≤ ν < 3
2 . In F4, the

matched operator on 94 gives
( 5
2
−ν)( 9

2
−ν)

( 5
2
+ν)( 9

2
+ν)

. The operator on 12 is
3
2
−ν

3
2
+ν
, which

implies the only unitary parameters can be in 0 ≤ ν ≤ 3
2 . For 0 ≤ ν < 3

2 ,
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X(4A1, (1 + ν,−1 + ν, 3
2 )) is the IM-dual of X(D4(a1)A1, (1 + ν,−1 + ν)),

so it is unitary.
(661) : The infinitesimal character is (2 + ν, ν,−2 + ν). In H(C3, 2, 3),

the corresponding spherical module is unitary for 0 ≤ ν < 1
2 . In F4, the

matched operators give 45 :
( 1
2
+ν)( 3

2
−ν)( 7

2
−ν)

( 1
2
−ν)( 3

2
+ν)( 7

2
+ν)

, respectively 94 :
( 3
2
−ν)( 7

2
−ν)

( 3
2
+ν)( 7

2
+ν)

.

For 0 ≤ ν < 1
2 , the factor X(4A1, (2 + ν, ν,−2 + ν)) is the IM-dual of

X((A5)
′′, (1,−1

2 + ν)), therefore it is unitary.

(751) : The infinitesimal character is ( 5
2 ,

3
2 ,

1
2), which is unitary in H(C3, 2, 3).

In F4, X(4A1, (
5
2 ,

3
2 ,

1
2 )) is unitary as well, being the IM-dual ofX(D6(a1),

1
2).

(922) : The infinitesimal character is (ν, 7
2 ,

3
2), which in H(C3, 2, 3) is uni-

tary for 0 ≤ ν < 1
2 . In F4, the matched operators are 0, but the operators

on 12 and 84 are
( 1
2
+ν)( 13

2
−ν)

( 1
2
−ν)( 13

2
+ν)

, respectively
13
2
−ν

13
2

+ν
.

For 0 ≤ ν < 1
2 , the factor X(4A1, (ν,

7
2 ,

3
2)) is the IM-dual of X(D6(a1), ν),

and therefore unitary. But also the point ν = 13
2 is unitary, sinceX(4A1, (

13
2 ,

7
2 ,

3
2))

is the IM-dual ofX(E7(a1)). (This point has no correspondent in H(C3, 2, 3).)
(931) : The infinitesimal character is ( 7

2 ,
3
2 ,

1
2), which is unitary in H(C3, 2, 3).

It is also unitary in F4, as X(4A1, (
7
2 ,

3
2 ,

1
2)) is the IM-dual of X(D6(a1),

1
2).

(13) : The infinitesimal character is ( 11
2 ,

7
2 ,

3
2). In H(C3, 2, 3) the corre-

sponding spherical module is the trivial representation. ButX(4A1, (
11
2 ,

7
2 ,

3
2))

is not unitary as seen from the operators for (922) at ν = 11
2 .

5.4. Spherical modules. The spherical modules are parameterized by the
nilpotent orbit (3A1)”. If a spherical module does not contain the sign W -
representation, via IM its unitarity was already determined in the previous
section. We record those results next.

Table 3: Spherical unitary modules for H(F4, (1, 2))

Nilpotent Central character Unitary

E7 ( 17

2
, 9

2
, 5

2
, 1

2
)

E7(a2) ( 11

2
, 5

2
, 3

2
, 1

2
)

D6 (ν, 9

2
, 5

2
, 1

2
) {0 ≤ ν ≤ 1

2
}

D5 +A1 (2 + ν,−2 + ν, 5

2
, 1

2
) {0 ≤ ν ≤ 1

2
}

E7(a5) ( 5

2
, 3

2
, 1

2
, 1

2
)

D6(a2) (ν, 5

2
, 3

2
, 1

2
) {0 ≤ ν < 1

2
}

A5 +A1 ( 1

4
, 7

4
,− 1

4
,− 9

4
) + ν( 3

2
, 1

2
, 1

2
, 1

2
) {0 ≤ ν < 1

2
}

(A5)” (ν2 + 3ν1

2
+ 2 + ν1

2
, ν1

2
,−2 + ν1

2
) {3ν1 + 2ν2 < 1}

{2ν1 + ν2 < 1 < 3ν1 + ν2}
D4 +A1 (ν1, ν2,

5

2
, 1

2
) {ν1 + ν2 < 1}

{ν1 − ν2 > 1, ν1 <
3

2
}

( 1

2
+ ν,− 1

2
+ ν, 5

2
, 1

2
) {0 ≤ ν < 3

2
}

A3A2A1 ( 1

2
, 1

2
,− 3

2
, 1

2
) + ν(2, 1, 1, 0) {0 ≤ ν < 1}

A3 + 2A1 (ν1, 1 + ν2,−1 + ν2,
1

2
) {0 ≤ ν1 <

1

2
, ν1 + 2ν2 <

3

2
}

{0 ≤ ν1 <
1

2
, 0 ≤ ν2 <

3

2
, 2ν2 − ν1 >

3

2
}
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Table 3 – continued from previous page
(1 + ν,−1 + ν, 1

2
, 1

2
) {0 ≤ ν1 <

1

2
} ∪ {1 < ν < 3

2
}

(A3 +A1)” ( ν1+ν2

2
, ν1−ν2

2
, 1 + ν3

2
,−1 + ν3

2
) {0 ≤ ν3 ≤ ν2 ≤ ν1 < 1 − ν2}

{0 ≤ ν3 ≤ ν2 < 1 − ν3 < ν1 < 1}
(ν1, ν2,

3

2
, 1

2
) {0 ≤ ν2 ≤ ν1 <

1

2
}

A2 + 3A1 ( 1

2
,− 1

2
,− 1

2
, 1

2
) + ν1(2, 1, 1, 0) {2ν1 + ν2 < 1}

+ν2(1, 1, 0, 0)
4A1 (ν1, ν2, ν3,

1

2
) {ν1 + ν2 + ν3 <

3

2
}

{ν1 + ν2 − ν3 >
3

2
, ν1 <

3

2
, ν1 + ν2 < 2}

It remains to determine the unitarity of the irreducible spherical principal
series.

5.5. The 0-complementary series. In this section we determine the uni-
tary irreducible spherical series X(ν). The parameter ν = (ν1, ν2, ν3, ν4) is
assumed in the dominant Weyl chamber C. This is partitioned by the hy-
perplanes

〈αl, ν〉 = 1, αl long root and 〈αs, ν〉 = c, αs short root. (5.5.1)

We assume first that c > 1 is arbitrary. The principal series X(ν) is re-
ducible precisely when ν is on one of the hyperplanes in (5.5.1). If F is an
open connected component of the complement of (5.5.1) in C (we call F a

region), then all the intertwining operators rσ(ν), σ ∈ Ŵ , are invertible, and
therefore have constant signature in F . We say that the region F is unitary
if X(ν) is unitary for all (equivalently, any) ν ∈ F . The walls of any region
F are of the form (5.5.1), or of the form 〈α, ν〉 = 0, for α ∈ Π.

Proposition. Consider the half-space Ks = {ν : 〈ε1 + ε2, ν〉 < c}. The
unitary regions F in C ∩K are:

(F1) {2ν1 < 1, ν1 + ν2 < c};
(F2) {ν1 + ν2 + ν3 + ν4 > 1, ν1 + ν2 + ν3 − ν4 < 1, ν1 + ν2 < c};
(F3) {ν1 + ν2 − ν3 + ν4 > 1, ν1 − ν2 + ν3 + ν4 < 1, ν1 + ν2 − ν3 − ν4 <

1, ν1 + ν2 < c};
(F4) {ν1 − ν2 + ν3 + ν4 < 1, 2ν2 > 1, ν1 + ν2 < c};
(F5) {2ν2 > 1, ν1 − ν2 + ν3 − ν4 > 1, 2ν3 < 1, ν1 − ν2 − ν3 + ν4 <

1, ν1 + ν2 < c};
(F6) {2ν2 > 1, ν1 − ν2 − ν3 − ν4 > 1, 2ν3 < 1, ν1 + ν2 < c};
(F7) {ν1 − ν2 − ν3 − ν4 > 1, 2ν4 > 1, ν1 + ν2 < c}.

Proof. The proof is a case by case analysis, which we sketch here.
Note that ε1 + ε2 is the highest short root of F4. The condition that F

be in the half-space K means that the walls of F can only be of the form
〈αl, ν〉 = 1, 〈α, ν〉 = 0 (or ν1 + ν2 = c). From the partial order relation
among the (long) roots, we see that there are 19 such regions. A case by
case analysis gives that each of these regions has a wall of the form 〈α, ν〉 = 0.



ON THE UNITARY DUAL OF HECKE ALGEBRAS 37

If F has a wall of the form 〈α, ν〉 = 0, then on this wall, X(ν) is unitarily
induced irreducibly from a principal series XM (ν ′) for a Hecke subalgebra
HM , with M Levi of type B3 or C3. In [BC1], theorem 3.4 and 3.6, the
unitary irreducible spherical principal series for the Hecke algebras of type
Bn/Cn with arbitrary unequal parameters are determined, so in particular
we know the unitarity of XM (ν ′), and therefore of X(ν).

�

In [BC1], one was able to prove by hand that, in type Bn, if the highest
short root is greater than c, then no region F can be unitary. This is false
in F4, as seen in the following example.

Example. The region F8 = {ν1 − ν2 − ν3 − ν4 > 1, 2ν4 > 1, ν1 + ν3 >
c, ν1 + ν4 < c} is unitary.

Proof. The region F8 has a wall given by 〈ε2 − ε3, ν〉 = 0. We deform the
parameter ν to this wall, i.e. ν2 = ν3. The corresponding module X(ν) is
unitarily induced irreducible from the principal series XB3(ν

′), where ν ′ =
(ν ′1, ν

′
2, ν

′
3) satisfy ν ′1 − ν ′2 > 1, ν ′2 − ν ′3 > 1, and ν ′1 < c. These parameters ν ′

are unitary in B3, cf. [BC1], theorem 3.6. �

In order to show that the regions F1 − F8 are the only unitary regions,
we determined by brute force computer calculations the signatures of rσ(ν),
with σ ∈ {11, 42, 91}, and ν ∈ F , for F any region in C.
Corollary. In the case of the geometric Hecke algebra H(F4, (1, 2)), the 0-
complementary series is given by the regions F1 −F5 from proposition 5.5.

(When c = 2, the regions F6 − F8, in the notation as before, become
empty.)
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Figure 2. Nilpotent orbits parametrizing (3A1)
′′ ⊂ E7


