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0. INTRODUCTION

The main aim of this paper is to introduce global ¢—Whittaker func-
tions as the limit ¢ — 0 of the (renormalized) generalized symmetric
spherical functions constructed in [C5] for arbitrary reduced root sys-
tems (see [Sto] in the C'VC—case). This work is inspired by [GLO1]
and [GLO2|, though our approach is different. For instance, we ob-
tain a g—version of the classical Shintani-Casselman-Shalika formula
[Shi, CS] via the g¢—Mehta -Macdonald integral in the Jackson setting.
The Shintani-type formulas (in the case of GL,,) play an important role
in [GLO1, GLO2], but the g—Gauss integrals are not considered there
as well as globally-defined g—Whittaker functions. We use these for-
mulas to obtain a ¢, t—generalization of the Harish-Chandra asymptotic
formula for the classical spherical function.

0.1. Results and applications. The key observation is that the def-
inition of the symmetric ¢, t—spherical functions from [C5] is compat-
ible with taking the Whittaker limit and results in globally-defined
g—Whittaker functions. The definition from [C5] is based on the ¢—
Mehta- Macdonald integrals calculated there for the constant term
functional, i.e., in the setting of Laurent series. In this paper, we mainly
treat the spherical functions as global ones, analytic or meromorphic.

The g—Whittaker functions are solutions of the g—Toda eigenvalue
problem and are expected to have important applications in math-
ematics and physics, including the Langlands program. Concerning
the latter and relations to the affine flag varieties, see, for instance,
|GiL, BF, Ion2|. The ¢—Shintani-Casselman-Shalika formula gives a
(relatively simple) example of the Langlands correspondence. The
affine Toda lattice provides another link; it is (presumably) dual to
the g—Toda lattice in the sense of [KL]).

It is important to note that the coefficients of the expansion of our
Whittaker function are essentially polynomials in terms of ¢ with pos-
itive integral coefficients. It can be verified using the intertwining ope-
rators or via the relation to the Demazure characters. This fact is of
obvious importance for the “categorization” of the ¢—Whittaker func-
tion and its geometric applications. The “g—integrality” has no known
counterpart in the general ¢,t—theory (with a reservation concerning
the stable G L—case); one of the parameters, ¢ or t, has to be eliminated
or expressed in terms of the remaining one. However, the ¢, t—spherical
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functions are of more fundamental nature and more convenient to deal
with in many other aspects.

The cornerstone of their theory is the duality based on the DAHA-
Fourier transform; see [C8] and[C9]. It is missing in the theory of
g—Whittaker functions and for many other degenerations, including
the Harish-Chandra theory (¢ — 1), the p—adic limit (¢ — oco) and ¢—
Hermite polynomials (¢ — 0). A specific problem with the Whittaker
limiting procedure among other degenerations, is that it destroys the
W—invariance; it gives another reason for treating Whittaker functions
as limits of the spherical functions rather than for creating their intrin-
sic theory. On the other hand, the Whittaker functions satisfy quite
a few identities that cannot be obtained from the ¢,t—theory. These
identities, the g—integrality of the coefficients and various applications
obviously make the ¢g—Whittaker functions an important independent
direction, requiring developing specific methods.

At the end of the paper, we outline the approach to the global sphe-
rical and Whittaker functions via the harmonic analysis. Our formu-
las for these functions are actually equivalent to certain fundamental
properties of the corresponding integral transforms in the space of Lau-
rent polynomials multiplied by the Gaussian. The latter space is the
simplest and the most natural choice here, but the same functions can
serve other algebraic and analytic situations. This direction seems very
promising. For instance, the existence of the ¢—Whittaker limit of the
global spherical function appears a boundary case of the growth esti-
mates for the ¢, t—spherical function with respect to x together with k
(a new feature of the ¢, t—theory).

0.2. Growth estimates. Provided that £(z), R(\) are inside the pos-
itive Weyl chamber € (the exact choice of € is not important but the
walls must be avoided), the global spherical function for 0 < ¢ < 1
approaches asymptotically in the limit of large R(x)
Oz + A — p) I'y(Aa)
mero) Zseyemy U mo
acRy

for the theta-series © and ¢—Gamma function associated with a given
root system R; t = ¢*, p, = kp in the simply-laced case, CT is the
constant term of the celebrated Macdonald function. No inequalities for
(fixed) k are necessary but (rational negative) k where the polynomial
representation of DAHA becomes non-semisimple must be excluded.
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Up to a periodic function, the x—dependence of this function is
¢ Pe= 5o this theorem is an ezact g, t—analog of the Harish-Chandra
formula [HC] describing the asymptotic behavior of the classical spheri-
cal function in terms of the c—function (the case of complex Lie groups).
In the Whittaker limit, pj is removed and R(z) must be taken from
—C, (the Whittaker function it is not W—invariant with respect to x).

It is one of the major results of this paper, which seems a beginning
of fruitful analytic g—theory.

0.3. Our approach. It is different from that of [GLO1, GLO2| (and
we deal with arbitrary reduced root systems). The technique of the
Gaussians is the key to introduce the global g—Whittaker function and
prove the Shintani-type formulas. The g—Whittaker function is mainly
treated in [GLO1, GLO2| as a discrete function on the weight lattice
for GL,, satisfying the ¢—Toda system of difference equations.

The space of all solutions is, generally, |I¥|—dimensional over the field
of periodic functions, playing the role of constants in the difference
theory; upon the restriction to the weight lattice it is |W|—dimensional
over C. Choosing the “right” Whittaker function in this space re-
quires certain growth conditions; using the WW—symmetric dependence
on the spectral parameters gives another approach. There is no in-
trinsic definition of the g—Whittaker function so far, but our formula
and the growth conditions we establish clarify what can be expected.
First, only positive powers appear in its Laurent series expansion (af-
ter dropping the Gaussians). Second, our z—asymptotic formula for the
g—Whittaker function inside the negative Weyl chamber is sufficient to
fix it uniquely.

We note that in the differential setting, the spherical and Whit-
taker functions can be uniquely determined from the eigenvalue prob-
lem (subject to the W—invariance for the spherical function and certain
growth conditions in the Whittaker case). It simplifies the starting def-
initions. However the difference theory is more universal and, remark-
ably, has important algebraic and analytic advantages. The self-duality
of the DAHA-Fourier transform and the technique of the Gaussians are
the key; these are special features of the ¢, t—setting and are mainly ab-
sent in the trigonometric-differential and p—adic cases. In this respect,
the ¢,t—theory is somewhat similar to the rational-differential theory
of (multi-variable) Bessel functions.
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0.4. Difference spherical functions. The global nonsymmetric and
symmetric g, t—spherical functions were defined in [C5] and then in [Sto]
(the CVC—case) as the reproducing kernels of the Fourier transform of
the standard polynomial representation twisted by the Gaussian. In
this approach, the spherical function is determined uniquely (the Mac-
donald eigenvalue problem fixes it only up to periodic factors). Using
the Gaussians, among other things, provides the global convergence.
These construction appeared compatible with the Whittaker limit.
The Gaussians play the key role in our approach to the Shintani-
Casselman-Shalika formula. In the ¢, t—setting, it becomes the Mehta
-Macdonald formula in the Jackson case from [C5], where a special
vector, —py, is taken as the origin of the Jackson summation.
Developing this direction, we conclude the paper with the Jackson-
Gauss integrals for the global spherical and Whittaker functions; such
formulas were given only for Macdonald polynomials in [C5]. These for-
mulas seem an important step toward systematic difference harmonic
analysis, although the case of the real integration is still beyond the ex-
isting theory. Now, with the ¢, t-—Harish-Chandra asymptotic formulas
from this paper, it seems that there are no obstacles for developing the
real integration theory generalizing the classical “non-compact” case.

Conceptually, as it was observed in [GLO2|, the g—variant of the
Shintani-Casselman-Shalika formula is nothing but the duality formula
for the Macdonald polynomials from [C3] considered upon the limit
t — 0. However, establishing exact relations is, generally, a subtle
problem. The Shintani-type formulas play the major role in the paper,
including the growth estimates.

This interpretation gives evidence that the DAHA-Fourier transform
is connected with the (local quantum) geometric Langlands correspon-
dence. Generally, the DAHA—localization functor, which includes the
modular transformation ¢ — ¢/, is expected to play its role in the quan-
tum geometric Langlands correspondence; the DAHA-Fourier trans-
form is likely to be one of its ingredients.

We note that DAHA leads to a theory that is a priori more general
than the one needed for the (local) quantum Langlands correspondence
because it contains an extra parameter t. However, there is growing ev-
idence that the general ¢q,t—DAHA appear in the Langlands program.
It makes important the exact relations between the ¢, t—spherical func-
tions and g—Whittaker ones (which are already a part of the Langlands
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program). We expect this paper to trigger interesting new develop-
ments.

It is worth mentioning that the approach to spherical functions via
the Fourier transform significantly depends on the choice of the corre-
sponding representation of the double affine Hecke algebra. Technically,
the choice of this space influences only the normalization; spherical
function are defined up to periodic factors. However, the analytic prop-
erties of the ¢, t—spherical function, exact factors in the Shintani-type
formulas and many other similar features do depend on the considered
representation (equivalently, the choice of the normalization).

For instance, if the Gaussian is interpreted as a theta-function, then
the corresponding spherical function is meromorphic but not analytic.
Treating the Gaussian as q“"’2/ 2 (not as a Laurent series), i.e., using a
somewhat different analytic setting, leads to the ¢, t—spherical functions
analytic everywhere, but not single-valued in terms of ¢”. If the Gaus-
sians are omitted in this definition, i.e., the DAHA-Fourier transform
acts from the polynomial representation to the space of delta-functions,
then the corresponding spherical function will become a generalized
function. The problem of its convergence and meromorphic continua-
tion (upon a proper renormalization) is, generally, much more involved
than for the global functions.

0.5. The setting of the paper. Only the symmetric theory will be
considered in this work; the (truly) nonsymmetric g—Whittaker func-
tion can be defined as certain limits of the nonsymmetric global spheri-
cal function, but the construction becomes more involved and will be a
subject of the next work(s). Nevertheless, we begin the paper with the
account of the nonsymmetric Macdonald polynomials including their
(straight) degeneration as t — 0, which is closely related to the De-
mazure characters of irreducible affine Lie algebras; see [San, Ionl].
We mainly need the formulas in terms of the intertwining operators
to justify some of our claims and estimates; the intertwiners can be
naturally defined only in the nonsymmetric theory.

We mention that the Macdonald symmetric polynomials considered
under the limit ¢ — 0 generalize the classical g—Hermite polynomials,
so the main result of the paper is in establishing the formula for the
g—Whittaker function in terms of multi-variable q—Hermite polynomi-
als. Presumably, when the theory of nonsymmetric Whittaker limit is
completed (it is beyond this paper), the nonsymmetric g—Whittaker
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function will be a generating function for all Demazure characters, not
only the ones for anti-dominant weights. Such interpretation can clar-
ify the role of Whittaker functions in the Kac-Moody theory and may
have connections to [GiL] and to questions and conjectures from [BF].

There are two possible setups in the DAHA theory for the non-
simply-laced root systems, which correspond to two possible choices
of the affine extension. In this paper, we introduce the affine root
system using oy = [—9, 1] in terms of the maximal short root J. The
conjugation by the Gaussian and the Fourier transform preserve the
double affine Hecke algebra in this setup. By the way, it is exactly the
case where a relation to the Demazure characters can be established
according to [Tonl], Theorem 1.

The case of the “standard” affine root system with oy = [—6, 1] for
the maximal [ong root # is analogous, although the Fourier transform
acts from the double affine Hecke algebra to its dual in the B, C—cases.
This is the setting that is expected to be related to the geometric
Langlands correspondence. Technically, the switch to the “standard”
DAHA can be achieved by changing only one formula in this paper,
namely, that for the action of T} in the polynomial representation. This
change influences the relations of Ty with the X—operators (indexed by
the weights). The Y—operators become labeled by the coweights for
such choice of Tj; they are labeled by the weights in this paper.

In this paper, the difference between these two DAHA—theories is
not crucial. Generally, quite a few formulas become more “symmetric”
when the standard affine extension is considered (cf. [C9]), but the
main constructions are, generally, more transparent in our setting.

Acknowledgements. The author is thankful to D. Kazhdan for
alerting me to the works of Gerasimov et. al and for our various con-
versations on the Whittaker functions and the Langlands correspon-
dence. I indebted to D. Gaitsgory for the discussion of the quantum
geometric Langlands duality. Special thanks go to A. Gerasimov for
his explanations of the results of [GLO1, GLO2], which influenced this
paper a great deal.

1. DOUBLE HECKE ALGEBRA

Let R = {a} C R™ be a root system of type A, B, ..., F, G with re-
spect to a euclidean form (z,z") on R" 3 z, 2/, W the Weyl group gen-
erated by the reflections s,, R, the set of positive roots (R_ = —R.)
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corresponding to fixed simple roots oy, ..., a,, I' the Dynkin diagram
with {a;, 1 <i < n} as the vertices. Respectively,

RY ={a" =2a/(a,a)}.
The root lattice and the weight lattice are:

where {w;} are fundamental weights: (w;,af) = d; for the simple
coroots o). Replacing Z by Z. = {m € Z,+m > 0} we obtain Q, Px.
Here and further see [B].

The form will be normalized by the condition («, o) = 2 for the short

roots in this paper. Thus,

Ve & (v, @) /2 can be either 1, or {1,2}, or {1, 3}.

This normalization leads to the inclusions ) C @V, P C PV, where
PV is defined to be generated by the fundamental coweights {w,’} dual
to {a;}.

We set v; = v,,, Vr = {Va,a € R} and

(1.1) p,,d:ef(l/2)Za = Zwi, where o € Ry, v € vp.

Vo=V vi=v

Note that (p,, ) =1 as v; = v.

1.1. Affine Weyl group. The vectors a = [o,1,j] € R" x R C R™*!

for « € R,j € Z form the affine root system R O R (2 € R"™ are

identified with [z,0]). We add ag aot [—0, 1] to the simple roots for

the mazimal short root ¥ € R,. It is also the mazimal positive coroot
because of the choice of normalization.

The corresponding set R, of positive roots equals R, U{[a, V4], a €
R, j > 0}. Indeed, any positive affine root [«,1,j] is a linear combi-
nations with non-negative integral coefficients of {a;, 0 < i < n}.

We complete the Dynkin diagram I" of R by «g (by —%, to be more
exact); it is called affine Dynkin diagram . One can obtain it from
the completed Dynkin diagram from [B] for the dual system R by
reversing all arrows.

The set of the indices of the images of o by all the automorphisms
of I" will be denoted by O (O = {0} for Eg, Fy,Gsy). Let O' = {r €
O,r # 0}. The elements w, for r € O are the so-called minuscule
weights: (w,,a¥) <1 for a« € R,.
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Given & = [, v4j] € R, b e P, let
(1.2) sa(2) = Z-(z,a")a, V(2) = [z,¢—(2,0)]
for Z = [z,(] € R"*.

The affine Weyl group W is generated by all sz (we write W =
(sa,a € Ry)). One can take the simple reflections s; = s,, (0 <7 < n)
as its generators and introduce the corresponding notion of the length.

This group is the semidirect product Wix Q" of its subgroups W =
(sa,x € Ry) and Q' = {d’,a € Q}, where

(1.3) @' = SaSja,u] = Sl—a,va]Sa fOr a € R.
The extended Weyl group W generated by W and P’ (instead of
@’) is isomorphic to Wx P":
14)  (@)([C) = [w(=),¢ ~ (2,)] for weW,be B,
From now on, b and ¥/, P and P’ will be identified.
Given b € Py, let w} be the longest element in the subgroup W ¢ W

of the elements preserving b. This subgroup is generated by simple
reflections. We set

(1.5) up = wowg e W, m=buy)™* € W, Up = Uy, T = Ty,
where wy is the longest element in W, 1 <1 < n.

The elements 7, def To,, 7 € O" and 7y = id leave I' invariant and
form a group denoted by II, which is isomorphic to P/ by the natural
projection {w, — m,.}. Asto {u,}, they preserve the set {1, a;,7 > 0}.
The relations 7,.(ag) = a,, = (u,)~*(—1) distinguish the indices r € O'.
Moreover,

(1.6) W =TIxW, where msim b =s; if m(oy)=a;, 0<j<n.

We will need the following affine action of W on z € R™:

(wb)(2)) = w(b+2), we W,be P,

(1.7) sal(2) = 2= ((z.0") + ), @ = [a,vaj] € R.
For instance, (bw)((0)) = b for any w € W. The relation to the above
action is given in terms of the affine pairing ([z,1], 2’ +d) def (z,2")+1:

(1.8) (W([z,1]), w(") +d) = ([z1],2 +d) for Dew,

where we treat d formally.
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1.2. The length on w. Setting w = m,w € ﬁ/\, m € ll,w € W, the
length [(w) is by definition the length of the reduced decomposition
W = S;,...8,5; in terms of the simple reflections SZ,O < ¢ < n. The
number of s; in this decomposition such that v; = v is denoted by
[, ().

The length can be also defined as the cardinality |[A(w)| of the A—set
of w:

190 MN@) LR, N (R.)={aecR,, (@) eR.}, teW.
Respectively,
(L10)  A(@) = U\ (D), A (@) & {d € \(@), (@) = v}.

The coincidence with the previous definition is based on the equiva-
lence of the length equality

o~

(1.11) (a) l,(wu) =1,(w)+1,(u) for w,ueW
and the cocycle relation

(1.12) () M (@8) = A (@) UG (A(@)),
which, in its turn, is equivalent to the positivity condition
(1.13) (¢) T (\(@)) C Ry

and is also equivalent to the embedding condition

(1.14) (d) A, (u) C A ().

See, e.g., [C4, C8] and also [B, Hu|. Applying (1.12) to the reduced
decomposition W = 7,8;, - - - 84,54,
M) ={a =a" Lsi (), .y @ = 84,80, (uy),
(115) &2 = Siy (ai2>7 a' = Oy }

1.3. Reduction modulo W. It generalizes the construction of the
elements m, for b € Py; see [C4] or [C8].

Proposition 1.1. Given b € P, there exists a unique decomposition
b = myup, up € W satisfying one of the following equivalent conditions:
(1) Um) +Uup) = U(b) and l(up) is the greatest possible,
(ii) AMm)NR = 0
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The latter condition implies that I(m,) + l(w) = l(mw) for any

w € W. Besides, the relation uy(b) e epP = — P, holds, which,

i its turn, determines u, uniquely if one of the following equivalent
conditions is imposed:
(11i) (uyp) is the smallest possible,
(iv) if a € N uy) then (a,b) # 0.
O

Condition (ii) readily gives a complete description of the set 7p =
{m,b € P}, namely, only [a <0, v,j > 0] can appear in A(m).

Explicitly,
(1.16) Ab)={a>0,(ba’)>j>0 if a€R,,
a'y>j>0 if aeR_},

;oY) > >0 if u'(a) € Ry,
b_,a ) >4 >0 if u,'(a)€ R},
For instance, [(b) = [(b—) = =2(p",b_) for 2p¥ =" _,a".

The element b_ = u(b) is a unique element from P_ that belongs
to the orbit W (b). Thus the equality ¢. = b_ means that b, ¢ belong

to the same orbit. We will also use by 9= wo(b-), a unique element in
W(b) N Py. In terms of 7,

b
b,

(
(
(L.17) Amp) ={a >0, a€ R_, (b
(

UpTy — b_, TpUp — b+.
Note that I(mw) = I(m) 4+ I(w) for all b € P, w € W. For instance,
(1.18) I(b_w) =1(b_) + l(w), l(wby) =1(by) + l(w),

lupmpw) = U(up) + U(mp) + l(w) for be P, weW.

Partial ordering on P. It is necessary in the theory of nonsym-
metric polynomials. See [Op, M3]. This ordering was also used in
[C2] in the process of calculating the coefficients of Y—operators. The
definition is as follows:

(1.19) b<c,c>b for bjce P if c—be @y,
(1.20) b<c,cr=b if b <c_or{b_=c_andb<c}.

Recall that b_ = c_ means that b, c belong to the same W—orbit. We
write <, >, <, > respectively if b # c.
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The following sets

def def

o(b) = {ce€ P,c = b}, 0.(b) = {c € P,c> b},
(1.21) - (b)) ZL o), or(b) ZL o, (by) = {ce P >b_}.
are convex. By conver, we mean that if ¢,d = ¢+ ra € o for a €
Riy,r € Zy, then

(1.22) {¢, c+a,...,c+(r—1a, d} Co.

1.4. More notations. By m, we denote the least natural number such
that (P, P) = (1/m)Z. Thus m = 2 for Do, m =1 for By, and Cj,
otherwise m = |II|.

We will need to include the case t = 0 in our definition, which
requires minor deviations from the definitions of [C8],[C4] and other
author’s papers. Namely, we multiply all T; there by t; 2 and change
the formulas correspondingly.

The double affine Hecke algebra depends on the parameters ¢, t,, v €
{vo}. It will be defined over the ring

def m
Qq,t = Q[qil/ 7tl/]
formed by polynomials in terms of ¢*/ and {t,}. We set

ta = ta = tua, tz - ta“ da = qya7 qi = quaia
(1.23) where @ = [, vaj] € R, 0 <i <n.

It will be convenient to use the parameters {k,} together with {¢,},
setting

to =1, = qg” for v =v,, and pp = (1/2) Zkaa.

a>0

Note that (pr,a)) = ki = ko, = ()", ) for i > 05 (py)Y 2

> ku(py)Y. Using that wy(px) = —pk, we obtain that (pg, —wo(b)) =
(pr,b). For instance, (pg,bs) = —(px,b_), where by et wo(b_) (see
above).

By ¢»»®) we mean [Le, (P79 here o € R, (p,)Y = py/v, and
this product contains only integral powers of tg, and ti,g.
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For pairwise commutative Xy, ..., X,

(1.24) X = [[XEd if b=1D.4), D(X;) = Xy

i=1

i 1 e~
where b = E liw, € P, je—7Z, weW.
m
i=1

. def _
For instance, Xy = X,, = ¢X, L

We set (b, ¢) = (b, ¢) ignoring the affine extensions in this pairing.

1.5. Main definition. We note that 7! is .« and u, ! is u,« for
r* € O, u, = 7, 'w,. The reflection * is induced by an involution of
the nonaffine Dynkin diagram T.

Definition 1.2. The double affine Hecke algebra FH is generated over
Qg by the elements {T;, 0 < i < n}, pairwise commutative {X,, b €
P} satisfying (1.24), and the group 11, where the following relations are
imposed.:

(o) (T; —t)(T; +1) = 0,0 < 1 < n;

(1) TIT;... = T;T.T;..., my; factors on each side;

(ii) Tt = T if m ()= ay;

(iii) T, Xy = Xo X HtT7'} if (oY) =1, 0<i<mn;

(w) T; Xy, = XpT; if (b,a)) =0 for 0<i<n;

(v) mXpr b = Xp g = Xu;l(b)q(“’f'*’b), re0.

Here and further the brackets {-} will be used to show explicitly the
elements that belong to 7. One can rewrite (iii,iv) as in [L]):

Xom — X
(1.25) TX, = XowTi = (ti— )=, 0<i<n.
Given w € W, r € O, the product
l l
(1.26) Tro <= m [[ Ty where @ =[] si,.1 = (@),
k=1 k=1

does not depend on the choice of the reduced decomposition (because
{T} satisfy the same “braid” relations as {s} do). Moreover,

(1.27) TsTs = Tsg whenever [(00) = (D) + (@) for 0,0 € W.
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In particular, we arrive at the pairwise commutative elements:
(1.28) Y=gt b [V if b=) lw; € P Y, Q. beP.
i=1 i=1

The factors here are needed to make them from 7 ; b, is a unique
element in W (b) N P,. Note that Y, Y_, = ¢~ 2b+x).

Generally, if we replace s; by T; or T, * in any reduced decomposition
of w € ﬁ/\, then such product belongs to H{ upon the multiplication
by the product of #; corresponding to the terms 7, ".

The relations dual to (iii,iv) hold (for ¢ > 0 only):

{tiT;'_l}YEJ = Y;i(b)Ti if (b,OéZ\-/)Il,
(1.29) Y, = YT if (b,a/) =0, 1<i<n.

The counterpart of (1.25) is as follows:
Yy, — Y0
1 — q_(9/7pk)Y_ai

where 0’ = 0,1 respectively for long, short a; (it is the only root in the
intersection W (a;) N Py).

Here and below we use that given b € P, replacing all 7! by
71 in the product of (1.28) for Y; results in the t—power ¢t =
T, 2",

Also, Y} for any b can be represented as the product T} 1. Tffl
for a given reduced decomposition b = 7,s;, - - - s;, and proper choice of
{+}. Here I = 1(b) = 2(p", b,). Only positive powers T;"" will appear
in this product when b € P,. The total number of the terms 7;-' with
v; = v in this product equals 2((p,)", by).

2. POLYNOMIAL REPRESENTATION

From now on, we will switch from 7 to its intermediate subalgebra
T’ C M with P replaced by a lattice B between @ and P (see [C7]).
Respectively, IT is changed to the preimage II” of B/Q in II. Generally,
there can be two different lattices By and By for X and Y. We consider
only Bx = B = By in the paper; respectively, a,b € B in X,,Y}.

We also set W® = B-W C ﬁ/\, and replace m by the least m € N
such that m(B, B) C Z in the definition of the Q.
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Note that 74’ and the polynomial representations (and their rational
and trigonometric degenerations) are actually defined over Z extended
by the parameters of DAHA. However the field Q,; will be sufficient

in this paper.

The Demazure-Lusztig operators are as follows:
(2.1) T, = tisi + (ti—1)(Xo, —1)7'(si— 1), 0<i<my

they obviously preserve Q|g,t,][X;]. We note that only the formula for
T}, involves g:

TO = toS(] + (t(] — 1)(X0 — 1)_1(80 — 1), where
(22)  Xo=qX;", s0(Xp) = XX, "V ap = [-0,1].

The map sending 7} to the corresponding operator from (2.1), X,
to X, (see (1.24)) and 7, — 7, induces a Q, ~linear homomorphism
from 74’ to the algebra of linear endomorphisms of Q,,[X]. This
HH’ -module is faithful and remains faithful when ¢, ¢ take any nonzero
complex values assuming that ¢ is not a root of unity. It will be called
the polynomial representation; the notation is

V& QuulX] = Quu[Xo,b € Bl.
The images of the Y, are called the difference-trigonometric Dunkl
operators.
The polynomial representation is the 7’ —module induced from the

one-dimensional representation T, — t;, Y, — ¢*#? of the affine
Hecke subalgebra H3 = (T}, Y}).

2.1. Macdonald polynomials. There are two equivalent definitions
of the nonsymmetric Macdonald polynomials, denoted by E,(X) = Elgk)
for b € B; they belong to Q(gq,t)[X,,a € B]. The first is based on the
truncated theta function due to Macdonald:

[e.9]

23) ST e s

a€Ry j= 0 - X taqa)(l_Xa toGa )

We will mainly consider i as a Laurent series with the coefficients
in the ring Q[t,|[[¢.]] for v € vg = {Veht, Ving}- The constant term of a
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Laurent series f(X) will be denoted by (f). Then
1 — q(pkv a)+j Va>2

(24) H H (1 — toaqlrme)tive) (1 — t1glPec)tiva)”

acRy j= 1

Recall that ¢ = ¢ ¢, = q"e. This equality is equivalent to the
Macdonald constant term conjecture proved in complete generality in
[C2].

Let i, 2 i/ {u). The coefficients of the Laurent series p, are from
the field of rationals Q(q,t) — dof Q(gy,t,), where v € vp.

The polynomials Ej, are uniquely determined from the relations
(25) By, — Xy € ®etQ(q, ) Xe, (EyX o) =0 for B >c=b.

for generic ¢,t and form a basis in Q(q, t)[X,)].

This definition is due to Macdonald (for kg = kg € Z4), who
extended the construction from [Op|. The general (reduced) case was
considered in [C4].

Another approach is based on the Y—operators. We continue using
the same notation X, Y, T for these operators acting in the polynomial
representation. Let X,(¢?) = ¢* asa,be P.

Proposition 2.1. The polynomials {Ey,b € B} are unique (up to
proportionality) eigenfunctions of the operators Y, (a € P) acting in

Qe[ X]
(2.6) Yo(Ey) = e~ B for by defy uy M (pr),
uy, = m, 'b is from Proposition 1.1, by = m,(—py).

O
The coefficients of the Macdonald polynomials are rational functions
in terms of q,,1,

2.2. Symmetric polynomials. Following Proposition 2.1, the sym-

metric Macdonald polynomials P, = Pb(k) can be introduced as eigen-
functions of the W—invariant difference operators

(2.7) Lo, =Redw( Y Yu) for ay € By,

a’'eW(aq)
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where Redyy is the restriction to the space VW of W—invariants of V.
Explicitly,

I/a+ (Pb,) — q(a+7pk)( Z q—(a” bi_pk))Pbi, b_ c B_,
a'eW(ay)

(2.8) Po= Y X, mod @& .y Qq,t)X

beW (b_)

These polynomials were introduced in [M2, M1]. They were used for
the first time in Kadell’s unpublished work (classical root systems). In
the case of A, they are due to Rogers.

The connection between £ and P is as follows

Pb7 = Pb+Eb+, b_e B_, by :wo(b_),
(2.9) Z we, Where

CEW b+

w, € W is the element of the least length such that ¢ = w.(by). Taking
the complete t—symmetrization P here (with the summation over all
w), one obtains P, up to proportionality. See [Op, M3, C4].

There are two different kinds of inner products in V from [C8] and
other works. In the symmetric setting, they essentially coincide. We
will need here only the inner products of the symmetric polynomials

B, for b=10b_:
(2.10) (Bp(X)F. (X_l)uo>

(1 — g/t Xo(q7)) (1 = ¢l ta Xo(q?))
- 5bcH H ( (1 — @ Xa(g?))(1 = gd™ Xa(g™)) )

a>0 7=0

2.3. Using intertwiners. The following map can be uniquely ex-

tended to an automorphism of M4’ where proper fractional powers
of ¢ are added (see [C1],[C4],[CT]):

(wr,wr)

Ty Xp— Xy, m q_(“*’w")Xﬂrr, Y, — X, Y.q 2 |
(2.11) 7 Ty X HtoTy '}, Yo = Xg HtoTy '),

This automorphism fixes T; (i > 1), ¢,, ¢ and fractional powers of g.
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The Y—intertwiners serve as creation operators in the theory of non-
symmetric Macdonald polynomials. Following [C6, C8], let

(212) W= (T) + (t — 1)(Xay(g%) —1)L0< i <.

We will use the pairing from (1.8) and the affine action w((c)) from
(1.7).

Theorem 2.2. Given c € B, 0 <i <n such that (a;,c+ d) > 0,

(2.13) eI E — WYE,) for b= s(c).
If (aj,c+d) =0, then
(2.14) 7 (T)(E.) = t;E,, 0<i<n,

which results in the relations s;(E.) = E. as i > 0. For b = m,.((c)),
where the indices r are from O,

(2.15) g2 E — ¢ (r ) (E.) = Xu,.q @ ?n(E,).
Also 1(m,)(E.) # E. for m, #id, since m.((c)) # ¢ for any ¢ € B.

O

If (a,¢) > 0 and ¢ > 0, then the set \(m,) is obtained from A(m,)
by adding [«, (c_, )] for & = u.(ey) € R_ and (c_,a") = (¢, )) >
0. When @ = 0 and (ap,c +d) = —(¢,9) + 1 > 0, then the root
[, (c_, ) + 1] is added to A(m.) for a = u.(—9) = a¥ € R_ and
(c_,a) =—(c, ) > 0.

In each of these two cases, (o, u;'(p)) = (a, p) < 0 and the powers
of t, in

(2.16) X, (¢%) = q(aivc—“;l(ﬁk)+d) = glelietd) H t;(a,(pu)v)

are from Z, with that of t; strictly positive.

Due to Theorem 2.2 (see also [C6], Corollary 5.3), the polynomial
FE, exists if
H (1 - qnga(qpk)) # 0.
[a,5]EN ()
If b € B_ and the latter inequality holds for b, = wy(b) € By, then
the symmetric polynomials P, is well defined.
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2.4. Spherical polynomials. The following renormalization of the E-
polynomials is of major importance in the Fourier analysis (see [C4]):

(2.17) & L E(X)(Ey(q ™))", where b€ B,

Eb(q—pk) — q(Pk,IL) H 1 - qétaXa(qu .
1-— q(jXXa(qpk)

[a.5]eX’ (mb)

This definition requires the t—localization.

We call them nonsymmetric spherical polynomials. Formula (2.17)
is the Macdonald evaluation conjecture in the nonsymmetric variant
from [C4]. See [C3] for the symmetric evaluation conjecture.

The following duality formula holds for b,c € B :

(2.18) E(q%) = Eclq™), be=b—u; " (pn),

which is the main justification of the definition of &,.
Given b € B, the polynomial &, is well defined for ¢,t € C* if

(2.19) [I @-dtaXa@) # 0.

[a,g]€A ()

In the symmetric setting,

def 1

(2.20) Py, = Po(X)(Py(q ")) where be B_,

aV,b)—1

= J Pk
Pb(q_Pk) — Pb(q”’“) — q(%bf) H H (1 - qataXa(q ))

a>0  j=0 1 — gaXa(grr)

The symmetric duality reads as follows:

(2.21) Py(q° %) = P.(¢" "), for bce B_.

The norm formula becomes entirely conceptual:
(2.22) (Po(X)Py (X pe)) ™ = > pulma)u(id) ™,
acW (b)
where (@) 2L j(@((g"™) for @€ W.

It is a direct corollary of the fact that the Fourier transform sends the
P—polynomials to the delta-functions; see [C8].



WHITTAKER LIMITS OF DIFFERENCE SPHERICAL FUNCTIONS 21

9.5. The limit ¢ — 0. Let 7H by the reduction of #{’ as t, = 0
for v € vg. It can be called the nil-DAHA or the crystal DAHA. The
polynomials Ej, P,_ are well defined and linearly generate ¥ and V"W
correspondingly; V = Q,[X,, b € B.

Theorem 2.2 holds under this specialization and gives quite a con-
structive approach to the E—polynomials. The intertwiners ¢ from
(2.12) that appear in the formulas for E} are all in the form 7, (T;) + 1
in this limit. It is directly connected with the fact that 7] = T; + 1
satisfy the same homogeneous Coxeter relations as {7;, 0 < i < n}
do, a special feature of the nil-DAHA. It results from the theory of
intertwiners and, of course, can be checked directly too.

The action of m, on {7/} by conjugation obviously remains un-
changed. Thus relations (i,ii) from Definition 1.2 hold and, given
@ € W, the element Ty = w15 - - T} does not depend on the choice
of the reduced decomposition w = m,s; ---s;,. For instance, opera-

tors 11, et T (T",,) for i = 1,...,n are pairwise commutative and,
importantly, W—invariant. One has: II} = [[;_, (II})™ for B_ 3 b =
> n;w;.

The W—invariance of {II,, b € B_} simplifies significantly the rela-
tion of the E—polynomials to the P—polynomials:

(2.23) P, = E, for b=b_€ B_.

In more detail, we have the following explicit proposition.

Proposition 2.3. (i) In the representation V of T , the polynomial
7(TEH)(1) equals ¢™ Ey forw =m, be B, r, € Q.
(i1) In the symmetric case,

(2.24) (1) = ¢"P, for be B_, r, €Q,

where 11, can be replaced by their restrictions Redy (11)) to VW, which
are pairwise commutative W—invariant difference operators. 0

We note that only positive powers of ¢ appear in the coefficients
of By. As q — 0, the polynomials E,_ become the classical finite
dimensional Lie characters, which can be seen from (2.28) (upon the
symmetrization).

For the affine root systems considered in this paper (with aq in terms
of the maximal short root ¥), the connection was established between
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the polynomials E,(t — oo) and the Demazure characters of the cor-
responding irreducible affine Lie algebras. See [San| and, especially,
[fonl], Theorem 1. Paper [lonl] is based on the technique of intertwin-
ers (from [KS] in the GL,—case and [C6] for arbitrary reduced root
systems). We will not discuss this direction in this paper.

There is a relation between the limit ¢ — 0 used here and the one
t — oo. It goes through the general formula

(2.25) Ey =[]t T, (E ), where
VEVR

X" = X_laq* = q_lat* = t_lv g(b) = _wO(b>7

form [C8] and other author’s works. This connection is especially sim-
ple for the symmetric polynomials: F(X)" = P(X Y asb=10b_, ie.,
P, = Pb(t — O) = Pg(b)(t — OO) We use that Pb(X_l) = Pg(b)(X)

Concerning the orthogonality of P, the denominator of the y—function
from (2.26) vanishes in the limit:

(2.26) ro=I1 I10 - Xeg) (1 = X 'al).

aceR4 j=0

The constant term formula becomes a well-known identity:

n oo

(2.27) @ =]

i=1 j=1

1

1—qf’

where ¢; = ¢".

For b,c € B_, the norm formula from (2.10) reads as:

22s)  BOPXE) = a ] [ a-a).

3. SPHERICAL AND WHITTAKER FUNCTIONS

We will begin with the identities involving the Gaussians, which are
essentially from [C5]; then their limits ¢ — 0 will be considered.

The second part of this section is devoted to the Whittaker limit of
the g, t—spherical function from [C5], which results in a formula for the
¢—Whittaker function in terms of the P—polynomials.
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We note that the Whittaker limit is a general procedure that can be
applied to any solutions of the Macdonald eigenvalue problem (and its
various degenerations and generalizations).

3.1. Gauss-type integrals. By the Gaussians ¥ we mean
(3.1) 7% = Z g O02x, 7O = Z qOD2x,.
beB beB

The multiplication by 5© preserves the space of Laurent series with
1 ~ . o .
coefficients in Q[t][[¢27]], where m(B, B) = Z is from the definition

of Qg4 Respectively, the coefficients must be taken from Q[f][[¢~ 27 ]
when the Gaussian 7% is taken.
We will also use the real Gaussians defined as

(32) 7i1 - q:l:x2/2’ where Xb g qxba Ty = (ZIZ’, b)a 1'2 = Z Lo I’W;/'

Note that considering 7%:© as holomorphic functions (provided that
lg| > 1 and, respectively, |g| < 1) the functions 7% /v and 3°~ are
B—periodic in terms of z.

The g—Mehta—Macdonald identity from [C5]

V)+i

oo e = ()

a€R4 j=1

provides the normalization constant for the ¢—Gauss integrals
(3.4) (Py(X) Po(X)F7 o)

_ q(b,b);(c,c)_(b+c7pk)Pc(qb—pk)Pb(q—pk)(,‘y’@ ,Uo>,

where b,c € B_. Obviously, it implies the duality formula (2.21).
Formula (3.4) can be naturally extended to the E—polynomials (the
proof even becomes simpler), but we do not need it in this paper.

There are counterparts of (3.4) for ¥ 1 (with |g| > 1 if it is treated as
an analytic function), and for the Jackson summation taken instead of
the constant term functional. See [C5, C8]. The considerations from
this paper can be readily extended to these cases.

Taking the limit. Let us tend ¢ — 0 in (3.4). The definition of the
P—polynomials implies that

(3.5) }fmol g EPIP(FPR) = ¢ for ¢ € B_, ey = w,(c).
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Note that —(c, px) = (¢4, pr). For instance, it matches the evaluation
formula in (2.20): lim; o g~ @) P,(¢7P) = 1.
We come to the following formulas (¢ € B_):

(3.6) Fm) = [TTIa- ),

i=1 j=1

(b,b)+(c,c)

(3.7) (Py(X)P(X)3°0,) = q 2 X (¢") (377,
Here X, (¢*) = ¢+ = ¢*) = X3, (¢°).

3.2. Global spherical function. One of the main advantages of the
technique of Gaussians is a possibility to introduce the spherical func-
tion as a reproducing kernel of the Fourier transform from Vy~!, the
polynomial representation multiplied by the Gaussian v, to the M{’ —
module Vvy. We will need only the symmetric case here. We assume
that |g| < 1, which makes the considerations “naturally” compatible
with the limit ¢ — 0. In this setting, the construction below is directly
related to the identities (3.4) (respectively, (3.7) in the limit).

We note that if the whole polynomial representation is considered,
then the corresponding anti-involutions of M{’, generally, require the
t—localizations. Correspondingly, the definition of the Whittaker limit
of the nonsymmetric counterpart of formula (3.9) below (see [C5]) be-
comes more subtle.

We will use the notation 7, and ~, for the Gaussians defined for
another set of variables A completely analogous to X (7,,7, are old

7). Thus, » = F(¢") and v = v(¢*) = ¢**/2. We will also use
def (pptapgta) (G309
(3.8) Mo =Y a2 =7%¢™)q ¢ .
acB

Theorem 3.1. Provided that |q| < 1, the function ¥ from the relation
Vo B, A) /A7 (07)

_ def @0 _(y, b) Py(X) By (A1)
B9 = MR R AT

s a well-defined Laurent series. It is an analytic function for all X, A
and for any choice of t, assuming that all P—polynomials exist (the
conditions |t,| < 1 are sufficient).
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The function B°(X, A) defined via (3. 9) is meromorphz’c for all X A
and analytic apart from the zeros of S5y . Replacing 3535 by 75 vy '
in this definition, the corresponding functwn will be denoted simply by
PB(X, A); it becomes totally analytic but not a (single-valued) function
in terms of Xy, Ay.

Both functions, B°(X, A) and P(X, A), are X — A—symmetric, W—
invariant with respect to X and A and satisfy the following extension
of the eigenvalue problem from (2.8):

(3.10) Lo, (B(X, ) = g2 Y A A)

a’eW(ay)

O

We note that P,(X 1) Py(A) = Py(X)Py(A™h) in (3.9); recall that
s(z) = —wo(z) and Py(X) = P(X ). Applying ¢ to the summation
index b does not change the result. Thus:

PX,A) = P (A, X) = P (o(X), ¢(A)).

The following can be used for an abstract (i.e., without an explicit
formula) definition of the function §°(X, A). It goes through the spher-
ical polynomials {P, = P./P.(¢""*),c € B_} with a common coefficient
of proportionality:

(Pk a¥)+j
O = 18 (=]
QERJrj 1
Here we substitute A = ¢;, A = ¢% in the left-hand side of (3.10)
and divide it by the Gaussian 75. This formula can be considered as
a ¢, t—generalization of the Shintani-Casselman-Shalika formula from
[Shi, CS]. Its limit as t — 0 will be discussed in the next section.

3.3. Global Whittaker function. We are now in a position to define
the global q—Whittaker function 35 (X, A) from the relation

e def Y@ ™"*) cnor
(3.12) Vo Bo(X) = ll—I%W PB(g™ ™ X).

Here we always assume that t, — 0 for all . The function §3x is
defined for v~! instead of 7°:

(3.13) Pa(X, A)) S lim g™ IP(g XN,
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More explicitly, provided that |q| < 1,

=~ (PE:PE)
(3.14)  Po(X) EL oy tim ¢ (171 (") =
Jim ¢ 75 g () = Tim g ) (g,

In this definition, A remains untouched, so the limit is a W—invariant
function with respect to A. As a matter of fact, the key fact we need
is the existence of the limit

(3.15) lim W(g" %, Asg,t) = (X, Asq))

for U(X,A;q,1) from (3.9). Let us calculate the Whittaker ¥ in full
detail. It is essentially a generating function for the P—polynomials;
see Proposition 2.3.

Theorem 3.2. (i) Provided that |q| < 1, the Whittaker function 53¢ is
given by the formula

213 (X, M)A
B (A1
(3.16) = BN ALY (Pb(bA )
beB_ Hz 1H 1 ( —q)
where the power series in the right-hand side is well defined coefficient-
wise and converges everywhere; see (3.5) and (2.28). The formula for
P, is with v, 'y5 " instead of 3575 and with the same summation, in
the right-hand side.
(ii) The ratio of the functions B2(X,A), B.(X,A) is B—periodic
with respect to X and A. The dependence on A is governed by (5.10)
for the limits f;i of the operators Lo, ast — 0 upon X +— A:

(B17) I, (FlXA) = X PBu(X,A), X, =Xy

).

+

In terms of X, these functions satisfy the q—Toda system of difference
equations:

(3.18)  La, (B(X, (3 ALY BXA),
a GW([I+
(319) Lo, #lim g p")(q“’p’”@;k L, Tp)g ),

IW(F(X)) = F(¢"X), I'X, = ¢®9X,T, for beC"
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Here the difference operators L, (ay € By) from (2.8) are conjugated
by the translation I'_,, (it is (p)’ in the notation from (1.2)) and then
by the operator of multiplication by ¢ #x). O

We note that X;, P,(A™") in the summation for ¥ can be replaced
by X, ' Py(A). Recall that, generally, P,(X~!) = P,4)(X) and b
¢(b) = —wo(b) does not change the coefficients in the summation from
(3.16).

Concerning the notation, one can use iﬁi, 53,\ for the Whittaker
limits with A, A instead of X, z, but we do not need these functions in
the paper. We put x in 8, (not always) only to emphasize that the
Whittaker limit makes the dependence on X and A asymmetric.

The construction of the Toda operators in terms of the Macdonald
operators (and their various degenerations) is essentially due to In-
ozemtsev and Etingof. The paper [Et] contains a systematic consider-
ation of various Whittaker functions and related objects. This paper
is mainly about GL,,, but our (3.19) is quite analogous to the limiting
procedure there, as was expected in Remark 1 at the end of [Et].

We remark that our ¢—Toda operators are “dual” to those from [Et,
GLO1] (the translation operators must be replaced by their inverses),
which is connected with our choice of the limit ¢ — 0 versus t — oo in
these papers. It will be discussed below in greater detail.

Theorem 3.3. Continuing the previous theorem, let X = ¢¢ for ¢ €
B_ . Then the Shintani-type identity holds:

(3.20) T2 P(g", )

7

i=1 j=1 1_ q,
where Y9 (1) = >, ¢"’2. More explicitly,
Z glebeb)/2 Fb(A) |
& IS L (1= a))

(3.21) = FWPW ]I —)
Proof. Due to (3.12),
322 TR A) = i T ().
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Applying the identity (3.11) for X transposed with A (the duality)
inside ( - ),
_ @) PoA) oy 1
oyl C o] C . q C
323) (@Bl ) =l T (GRS TT T )

t—0 YO (q=Pr q) 0 11_%?

Recall that

-~ —pr. (c—pp.c—pPL)
(3.24) MNoe = Me-pe = 7™ 2,
where we use that ¢ is from B; see (3.8). Hence,
(325) /?/:e(qc_Pk) — (C,pk)—cz/27
Yo (q=*)

Moving ¢(“?*) from (3.25) to the denominator and combining it with
P.(g™"*), we apply (3.5):

Pr%q_(C’pk)Pc(q_pk) - 1
Finally, we move ¢~¢/2 from (3.25) to the left-hand side of (3.23)
and observe that ¢°/23°(¢%) does not depend on ¢, so it equals 7°(1).
[

We note that by making ¢ = 0 in (3.21), we arrive at the trivial
identity Py(A;q = 0) = Py(A; ¢ = 0), where Py(A; ¢ = 0) is the classical
character for the dominant weight wq(b).

The p—adic limit ¢ — 0 (in this setting) transforms (3.11) to the clas-
sical Shintani-Casselman-Shalika formulas. See [C8] concerning the p—
adic degeneration of the DAHA theory (the limit ¢ — oo is considered
there).

3.4. One-dimensional theory. We will begin with the explicit for-
mula for the P—polynomials in the case of A;. The formulas for the
Rogers polynomials are well known as well as for their limits as ¢t — 0.
Such limits are the ¢—Hermite polynomials introduced by Szegd and
considered in many works; see, e.g., [ASI]. Let us reestablish the for-
mulas we need for these polynomials using the (nonsymmetric) inter-
twining operators.

Let o =a; =9, s = s1, w=w; = p; soO @ = 2w and the standard
invariant form is (nw,mw) = nm/2. Similarly,

X =X,=¢" X(¢™) =q¢"* T(F(X))=F(¢"*X),
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ie., r(nw) =n/2, T'(z) =2 +1/2, TX = ¢"/?XT.

We will also use 7 =2 sT': X+ ¢"/2X 1 then 72 =id and Y = Y, =
7T in DAHA of type A;. Concerning the Gaussians, (z,r) = x,%, =
222 and vy = ¢»/2 = ¢**: note that (¢") = ¢ ©«)/2 = ¢"*/*_ Also,
r—pp =I"%2z) =2 —k/2 and ¢ = ¢"* in the formulas for the
Whittaker limit.

We set t = tg = ¢* for ke C,

?n = ?—nw = E—nw-

Then Py =1, Py =X + X,

3
(X +X7),

_ _ 1 —
Py =X’ + X414 Py= X"+ X4 1
—q

4 1— 2 (1 - q4)(1 - qg)
(3.26) P,=X + X +1 q(X + X~ )+ (1—q)(1—q2)'

Generally, for the monomial symmetric functions My =1, M, = X" +
X"asn>1,

(1—g¢")---(1—g"7*)
(1=q)--(1=¢)

The norm formulas from (2.26), (2.27), (2.28) read as follows:

(3.27) Po=M,+) M,_s;.

(3.28) (Po(X)Pou(X)) = bn [ [(1 =),

j=1
where m,n = 0,1, ..., i, = /(i) for the classical theta-function

(3.29) ﬁl—X2 — X72¢Y, (m) ﬁ

Jj=1

1—q

Due to Theorem 2.2, the composition R = (1 +7') X7 is the raising
operator for the P—polynomials. Namely, upon the restriction, Red, to
the symmetric polynomials:

Xt —-XxX-°r
X —-X"1

(3.30) ¢*R(P,) = Pn41, where R=Red(R)=

This readily gives (3.27).
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The L—operators. We will begin with the formula for the ¢—Toda
operator from (3.19):

(3.31) L=lim(¢" I LTkg ™) = (1= X0+ 1!

for L=L,=Y +tY~" where I';X = t*?2XT},. We will also use

(3.32) L,=~"'Ly=¢"* (XT+ X (I =T)) for v= 7.
Similarly for the straight specialization of L at ¢t = 0,
L =1lmL = (1-X)I+(1-X)r 1

t—0
(3.33) Ly=~7"Ty=—-¢""(X - X)) 4T —-T7").

This operator is proportional to the so-called Askey -Wilson divided
difference operator. The latter serves as the shift operator in the the-
ory of Rogers’ polynomials (with any ¢) and the basic hypergeometric
function. See [AI] and also [C8], Chapter 2.

Its defining property is the relation

(3.34) ZV(F,L) = —q1/4(q" — q_")ﬁn_l, n=12....

Let us give a convenient reference concerning (3.30),(3.34): [OS], for-
mulas (20-25).

3.5. Whittaker function for A;. Provided that |¢| < 1, we can now
introduce the Whittaker function 37 from the relation:

. To (X MRS = (X, A) S 5 K Pl
(3.35)  Po(X, AT (X, A) ;q T e)
where 77 = 377 ¢* X7 (3% is defined in terms of ).

The function W(X,A) is actually the so-called generating function
for ¢—Hermite polynomials; see, e.g., [Sus] formulas (26),(27) and the
references there. Its interpretation as a g—Whittaker function (upon
the multiplication by the Gaussians) does not seem to have been no-
ticed, although the difference equation for EI(X , \) was certainly known
(formula (19) ibid.)

The power series W(X, A) converges everywhere. The A—dependence
(see (3.17)) readily follows from (3.34):

(3.36) I (U(X,N) = XU(X,A), I = T,(X = A).
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In terms of X, the function U satisfies the ~y—twisted g—Toda equa-
tion, which reads as follows:

(3.37) L, (U(X,A) = (A+A)T(X,A).

Shintani-type formula. Let us consider Theorem 3.3 in the A;—

case; we plug in X = ¢ "2 forn=0,1,...,. Then

~ _ i 1
. A2 A) = F2(A)PL(A ( )
(3.38) q ("5 A) = F7(A) Pl )jl:[ll_qj

Recall that 79(¢%) = 3¢5 ¢*7*/* . Here the left-hand side and the
right-hand side coincide as Laurent series or as analytic functions.
This formula becomes a trivial identity for ¢ = 0, i.e., in the case of
the classical characters
Xn+1 _ X—n—l
X — X!

P,(X;q=0) =

3.6. The case |q| > 1. Generally, the Whittaker-type limiting pro-
cedure as t — oo is naturally connected with the theory at |¢| > 1 and
can lead to new formulas. However, in the symmetric setting of this
paper, there is a direct connection between the Whittaker functions
defined as |¢| < 1,t — 0 and |¢| > 1,1 — oo, which we are going to
discuss now.

We follow [C5] and use 7% instead of 3 and ~ instead of y~!. In
the nonsymmetric setting, the corresponding global spherical function
is really different from that for |¢| < 1. However, there exists a simple
connection in the symmetric case.

The ¢, t—definition we need is as follows (cf. (3.9)):

Py(X) Py(A)
(Py(X)Po(X ) o)

(339) AW/ = doa T
beB_

where ¢ > 1 and ‘B satisfies the claims of Theorem 3.1. The Whit-
taker limiting procedure requires here taking t — oo for ensuring the
convergence.
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The formulas are:

~OxD 7:?(qx_pk) of _—p
(3.40) FIAEP: = hlglo So(qr) B¢ ™ X)
(341)  ZU(X,Ag) = Y ¢ )n(b Pb(_/(\;_vq;)t — OO_), .
beB_ Hi:l Hj:ll T(1-q)

Cf. (3.12) and (3.16). Here
(3.42) tlim Py(A;q,t) = lim0 P (A gt ) = Po(A g7 h.
—00 t—1—
Therefore U, (X, A; q) simply coincides with W(X~!, A;¢~") in the no-

tation from (3.16).
We conclude that 37 satisfies the eigenvalue problem

(343) L (BX,A) = (D AZ)BuXA),
GGW([I+
N* def a —(x _ =
Bag) Ly 2 i ) (I () L T ) ),

where T',(F (X)) = F(¢®X). Compare with (3.19); the conjugation
by ¢\ 7%) there is replaced by the conjugation by ¢~ #%). Thus the
operators L} (X,q~") generalize those considered in [Et, GLO2]. For
instance, in the one-dimensional case in the notation from (3.31):

(3.45) L = lim (¢! LT g™)
e ttTIX?) =1 tEX72) =1, g
— 22\ ) 2 1/2 WA ) =L 1201
(St S )
=(1-X)r+T71

4. HARMONIC ANALYSIS TOPICS

The real integration or Jackson integration is, generally, necessary
when the Gaussian v~! in the constructions above is replaced by ~.
A typical example is as follows. Let us consider the DAHA-Fourier
transform in terms of the constant term functional (or using the imag-
inary integration) in the space of Laurent polynomials multiplied by
y~!. Then the inverse transform will involve the Jackson (or real)

integration and the proper choice of the Gaussian is 7 instead of y~!
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Such “switch” of the Gaussians is necessary algebraically due to the
properties of the involution of DAHA that governs the Fourier trans-
form. Correspondingly, the contour of integration, real or imaginary,
must ensure the convergence, i.e., its choice is of analytic nature. The
direction is real for v and imaginary for y~1. It is of course for |¢| < 1;
if |g| > 1 then it must be the other way round. Generally, especially,
in the absence of the Gaussians (for instance, in the Harish-Chandra
theory), the directions, real or imaginary, are selected to match the
growth estimates for the spherical function, used as kernels of the cor-
responding transforms.

We establish such estimates in the real direction. The theory appears
surprisingly “precise”, although the results of the paper are far from
being complete. Only the first term of the asymptotic expansion is
obtained. We note that in our setting, the global spherical function is
periodic in the imaginary direction, so the imaginary growth estimates
are irrelevant. We stick to the Jackson integration, which is actually
very similar to the “classical” case of real integration; the estimates we
obtain serve both theories.

4.1. Growth estimates. It is possible to evaluate the growth of the
global ¢, t—spherical function PB(X, A; ¢, t) from Theorem 3.1 in the real
directions. Let 0 < ¢ < 1, t, = ¢* (or, simply, t = ¢*) for k, € C
provided the existence of all spherical symmetric polynomials {P,_},
equivalently, provided that the polynomial representation is semisim-
ple and the radical of the evaluation pairing vanishes (see [C9]). The
assumption Rk, > —1/h, for the Cozeter numbers h, =1+ (p, (6')"),
where 0" = 0,0 for v = vy, Vg, is sufficient (but not necessary).

For z € C", let y 2 u(z) where u(R(z)) is a unique vector belong-
ing to the closure €, = Y | R, w; of the standard positive nonaffine
Weyl chamber €, =>"" R.gw;.

Given a p—sequence of vectors x' = {z},...,2,} C R" and a p—
sequence of positive integers n = {ny,...,n,}, we use the dot-notation
n-x for 7% n;x).

Theorem 4.1. (i) For arbitrary x,\ € C", k, € C, we set:

PV STPN ALY P
(@) gk (¢")7"(a%)

o T A k
~y (qx++/\+_pk)79(q%’k) ;B (q , 4 54,4 )
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Given a real p—sequence X', let the components of n tend to +oo in any
way provided that (n-x'), € €. Then the limit

(4.2) lim P2 (z +n-x', \; ¢, k)

exists if R(A\) . € €, ; moreover, it depends only on A and is nonzero for
all such \. Here we choose x to ensure that 3°(q@Hn>)++N+=pr) oL
for any n.

Under the same constraints, consider 3 (x+n-xX' A+n-XN;qk)
for a real p—sequence X' satisfying (n-N'), € €, . Then the limit ezists
too and is an absolute nonzero constant depending only on g, k.

(i1) In the case of the Whittaker function B, we remove k from the
formulas and replace x by —x:

= er 7°(4°)7°(0Y) &
43 o, Ay q) 2 L L e (g )
( ) q&[( ) ’Ye(qAJr_m) ‘,]3 ( )
Provided that n - x' € —€, (it was not needed in the q,t—case), the
claims from (1) hold true for

4.4 lim Pz +n-x, A +n-N:q).
T

Here 7°(q'}) is nonzero at (A +n-X), — (v +n-x'); we continue
to assume that (n-x"), € €, and, respectively, either R(\); € €, as
AIIO or (n~)\')+€(’:+. O

The justification of (i) involves the analysis of the corresponding
difference equations for 9B in the limit of large x and/or large A, but we
use the explicit formulas too. We note that the asymptotic difference
equations provide the asymptotic limit (the factor in the definition of
P2 from (4.3)) only up to a periodic function. So we need to use that
both, P° and P?, are meromorphic. Part (ii) is obtained as a limit of
(i).

Taking x" and A’ real vectors is, actually, insignificant in the theorem.
Since P° and P are 27ilog(q) PY—periodic in the imaginary direction,
it suffices to impose the conditions from (i,ii) for their real parts only.

Due to the claim that the limits do not depend on the particular way
the integers {n;} approach the infinity, the estimates can be calculated
precisely using the Shintani-type formulas. Moreover, this approach
provides the best justification of (i) if one involves here that J° is a
unique (in its class) solution of the spherical eigenvalue problem that
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“goes through” the P—polynomials in the sense of Shintani-type for-
mulas.

4.2. Exact asymptotic formulas. Let us obtain them in the (most
important) case A’ = 0. The key ingredient is the inverse of the positive
half of the py—function, a direct q,t—counterpart of the celebrated the
Harish-Chandra c—function [HC]:

(4.5) o(X;q.0) = [] H 11_t o Xatt
a€R4 j=0 o aqo‘

Corollary 4.2. (i) Provided the conditions of part (i) of the theorem
as X' =0, including R(\) 4 € €,

(4.6) lim Pz +n-x', Xiq k) = o(q,t) (1) o(q™5 ¢, 1)
d_ef ]_ —_ q(pkva)
fOT Q(Q7t) - <:U’> ];[0 1— taq(pk’o‘)

(1 — glPe@)+G=Nva) (] — glowa)tiva)

(4.7) = HH 1_,5 P G0 va) (1 — ¢ 1glra)tive)’

a>0 j= 1

where () is the constant term of p from (2.4); 0 = (3 ,ew W) ).
(i1) Correspondingly, imposing n-x" € —€, and the other conditions
in the Whittaker case,

(4.8) lim (2 +0-x, X q) = (7)o(¢54,0)
- ﬁﬁ j+1 1 Ay ay)+i
i:lj:O(l_qi )(1—gq ' )

In contrast to this formula, assuming that (n- X)), € €., the A—limit
does not depend on x:

n [e.e]

(4.9) lim Pi(z, A +n-N;q

=1 j5=1 1_(]2

The limit remains the same if we substitute x — x4+ n-x' in (4.9) for
x' such that R((n-AN')y —n-x') €&,

Proof. 1t suffices to calculate
(4.10) lim P(c— pr, A;jq, k), where c€ B_,
cy—00
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and by ¢y — oo, we mean that (a;,cy) — oo forall i = 1,--- n.
Recall that ¢, = wy(c), where ¢ is always from B_ in this calculation.
Using the definition and formula (3.11),

32> )7°(q*)

(4.11) Pi(c— o, Aig, k) = 3o ()50 (g)
1 _ q pIm )+]
(4.12) Pulg—) H H( g >+j)‘
aER Jj=1

The special value P.(¢™"*) is given by (2.20); it is the exponent ¢+
times the product term, which will be combined (in the limit of large
¢, ) with the product from (4.12). The result is exactly o(q,t), the
constant term of the symmetrization of p from [M1, M2, C2].

We note that (u) was obtained in this calculation without any refer-
ence to its “true” meaning as the constant term of p. It is interesting
but not very much surprising; in [C8] the norm-formula for Macdo-
nald polynomials (including the constant term formula) was actually
deduced from the evaluation formula. Something similar occurs here.

Since ¢ € B (actually ¢ € B_), we can remove it from the theta-
functions 7°(¢°=*) and 7°(¢*+~°), the multiplicators are the same as
for the Gaussians q_(c‘p’ﬂ)z/2 and q_()‘+_0)2/2. It gives:

= c—pr\~ A
(4.13) TG emea)

(g )7 (g)
The factor ¢'®?¥) will cancel the same term from P,(¢~**) (in the de-
nominator). The remaining part of (i) is taking the limit

lim ¢~ P.(¢"),

Cc4—00

which is a subject of the following lemma.
Lemma 4.3. Provided that |q| <1 and R(xy) € €,
lim ¢~ “*P(¢") = a(q™*;q.1).

c4—00
Proof. In the multiplicative notations, ¢(@*+) = ¢ '(©).2) — Xuw(e)
for w(R(z)) € €4, i.e., this monomial is from the leading symmetric
monomial function of the P.(X). Its coefficient is 1 by construction.
One can assume here that w = 1 due to the W—invariance of P.. Then
X 1P, will be a power series in terms of X, fori=1,--- n.
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Calculating the corresponding difference equations (in the limit of
large cy) is the most direct way to identify its expansion with o(X).
It suffices to uses the leading terms of the L—operators serving the
symmetric Macdonald polynomials calculated in [C2], Proposition 3.4.
Then we observe that (X)) is a solution of this system of equations. It
gives the required since both are power series in terms of X,, with the
constant term 1. It is also possible to involve the inner product from
the theory of Macdonald polynomials. O

The lemma gives (4.6). The Whittaker variants from (ii) are its
straightforward limits; the condition R(z) € —€, must be imposed in
(4.8) and no such conditions are necessary in (4.9). A direct calculation
of these two limits via the Shintani-type formula (3.20) is possible as
well. U

The lemma is known for the Askey-Wilson polynomials [Is| ([FZ]
contains a comprehensive discussion of the A;—case). See [vD] and
references therein for a counterpart of this lemma in the case of Koorn-
winder polynomials (the root system CVC,,). We note that the Laurent
expansion of the rank one py—function is very explicit, and Lemma 4.3 is
straightforward. As for Corollary 4.2, its one-dimensional versions (for
the basic hypergeometric function or similar) are likely to be known.

The Harish-Chandra formula. The corollary is an exact general-
ization of the Harish-Chandra fundamental asymptotic formula for the
classical spherical functions. Indeed, in terms of P°, asymptotically,

(4.14) lim Po(r+n-x,\qk)
;G(O;x++>\+—0k)§9(qpk)
) @)
Up to a simple W—invariant and B—periodic factor C'(x, A), depending
of course on ¢, k (it is Z—periodic in terms of k), we can switch to

here, replacing all 7°(¢*) by v~ (¢”) = ¢~**/2. It gives that in the limit
of large R(z), € €,

(4.15) P°(z, X0, k) ~ Oz, \) 0(q, t) g~ @ 7T Oe o) (g ),

Mg, t).

= o(g,t o(q

Corollary 4.4. We continue to assume that all spherical polynomial
{P,_} exist; for instance, the conditions k, ¢ —1/h, — Q. for the
Coxeter numbers h, of R are sufficient. Provided that R(\), € €,
the global spherical function B°(x, \; q, k) is bounded in terms of x as
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¢, 3 R(z)y — oo if and only if
0< RNy, o)) <R(k;) for i=1,...,n, which implies R(k,) > 0.

If R(\) 4 € & is allowed, then B (x, A; ¢, k) asymptotically approaches
a polynomial in terms of {x;} of degree no greater than n, the rank of
the root system. O

The dependence of z in the right-hand side of (4.15) is as in the
Harish-Chandra formula [HC]. The corresponding degeneration of 7
(and all related objects) is the procedure ¢ — 1, where we set X, = e~ %
and zp, \p, k are considered the basic new variables upon the degenera-
tion. We take —z;, here because the base ¢ is smaller than 1. The limit
of the right-hand side of (4.15) can be readily controlled using the func-
tional equation for the theta-function 4. Up to some renormalization,
it becomes (for large R(z)):

Y Nk L'\
Const 11 ZZ-( N H % for Z=¢€*z=2,,A=A,.
i= aER

The factor ¢~M+ 7% which ensures the X < A— duality of the ¢,t—
formula, vanishes in the limit; the duality collapses under the degener-
ation to the Harish-Chandra theory.

Respectively, Corollary 4.4 is a ¢, t—version of the description of the
bounded spherical functions from [HJ].

Technically, (4.15) matches the growth estimates for complex Lie
groups because real Lie group result in the terms like I'(\Y/2) in this
formula, which is not the case.

The discussion of the limit ¢ — 1 in more detail, including managing
the global spherical functions, i.e., the left-hand side of (4.15), will
be continued elsewhere. It should be possible to reprove the classical
estimates using the ¢, t—theory.

Claim (i) of the theorem can be naturally extended toward including
the Whittaker limit as follows.

4.3. When k — oo . Let as reformulate (4.17) entirely in terms of the
function ¥ from (3.9). Namely, provided the conditions from Theorem
4.5,(1), the limit of the function

def

(4.16) Uiz, A g, k) S (32 (g 7)) TH(X A g, t)
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. . ~ Sy def e v a1l T _ .
exists. Similarly, Wi(x, \; q) :(fy (g™ )) U(X,A;q). The Whit-
taker limit becomes simply:

lim (g™, % q,¢") = ¥(q",q"q))-
See (3.15).

Given real k!, > 0, let us replace k by k+n'k’ for n’ € N in (4.2) and
analyze the limit
(4.17) { lir}n Ui(z+n-x, A+n-N;q k+n'k).
n,n’}—oo
In the non-simply-laced case, n’ can be treated as a 2—vector {n{, ny,, }
and n'-k’ considered instead of n’k’; then both components are supposed
to approach infinity (in this paper).

Theorem 4.5. We represent k!, = u, + v, for non-negative real u,, v,
and pick the directions X', X’ such that

(4.18) (a) (n-x")y —n'p, € € > R(N\)y when XN =0 or
(b) (m-x")y —n'p, € €& > (n-XN)y —n'p, when N #0

for alln,n'. Then the limit (4.17) exists subject to conditions from part
(i) of Theorem .1, including the strict positivity requirement R(\), €
¢.. It does not depend on x in case (a) and is a x, \—constant under
(b). If k' > 0 then the limit does not depend on k too, i.e., depends
only on x for (a) and is an absolute constant for (b). O

Theorem 4.1 corresponds to the case k' = 0; then the limit does
depend on k. The rule here is that the limit does not depend on the
vectors x, A or k involved in the limit, provided that the corresponding
directions and the values of the vectors which are fixed are generic.

The Whittaker limiting procedure can be treated as an extreme case
of the theorem as follows. Let & = n’k’ assuming that £’ > 0 and
n = {n'}. We take \' =0, 2’ = —py+. Then the limit (4.17) still exists
but now it depends on = (and depends on A too because we set \' = 0).
Explicitly,

~ —z\\ 1 z+n'x’ n’
Uiz, A g, k) = (3%(¢) (@™, ¢ q.4" "),

since (x 4+ n'z’"), = pr, — x for sufficiently large n’. Actually, we do not
need W; here; the correction factor (7°(¢*+~*))~! does not depend on
n’. We arrive at the procedure from (3.12).

!



40 IVAN CHEREDNIK

We believe that the following calculation is clarifying. Let us take

generic extreme &’ and X' in (4.18):
= p,, N = p,, so 2+ XN, —p,=0.
Similar to the Whittaker case, we do not need W; here. Assuming that
all u, and v, are nonzero,

lim W(x+n' 2", \+n'N;q, k+n'k)

: Xy A3

@) =3 oo

beB. [T L2 (1 —4)

for AS = wo(A™"). Thus, we obtain a non-constant dependence on x
and A here, but the output is (one of the variants of) the multi-variable
g—exponential function, i.e., significantly simpler that the Whittaker
one.

A Whittaker variant of this calculation is actually an extreme case
of formula (4.9). It is:
(4.20) lim ¥(z+ (n-y')s, A +n-y';q)

n—oo

N (o ;) j
beB, H?:1 Hjil (1—q)

where we use the same y’ for x and A (but in somewhat different
way), assuming that R(n -y’), € €,. Note the sign of (n-y’);
the growth estimates for the ¢g—Whittaker functions considered above
required taking the direction from the negative Weyl chamber. The
proof is simple; we only need to know the leading coefficient of Py is 1.

Tp—Ap

)

Discussion. The theorems guarantee exponential growth (to be
exact, no greater) of the function 9B° including the boundaries of the
domains in the theorems.

In more detail, the Gaussian-type corrections used in the definitions
of P—functions and the corresponding WU—functions are not sufficient
to ensure the existence of the limits on the boundary of the domains
considered in Theorem 4.1 and 4.5. Even if they are sufficient for the
convergence (as in the Whittaker case), then the limits can depend on
the initial 2, \. For instance, when (n-x’),, (n- X’), belong to faces
of the Weyl chamber €, the limits are expected to be connected with
the spherical (and Whittaker) functions for subsystems of R.
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The role of the condition R(\); € €, as A’ = 0 is also important
and not clarified in full. As it was claimed, if (\), &€ €, then (4.16),
generally, diverges, but the growth is polynomial.

A description of such and similar eztreme situations and the corre-
sponding asymptotic systems of difference equations is a natural chal-
lenge.

Numerical experiments in the rank one case confirm that the con-
vergence condition (4.18) is sharp. It is not clear what happens if
2’ is taken non-proportional to px, (especially in the non-simply-laced
case when k = {kgu, king}). Generally, for any 2’ € €, the conver-
gence of W(x 4+ n'a’, \;q, k + n'k'); is granted for 0 < k' < k,, where
ko = ko(z") > 0. What is the formula for k,(2’) and for which 2" the
limit exists at such extreme k,(z’)?

4.4. Jackson integrals. We are going to integrate the product of
two global spherical functions for the y—measure twisted by the plus-
Gaussian. The previous section guarantees that the growth of this
function in real directions is no greater than exponential. Due to the
presence of the Gaussian, this is sufficient to ensure the convergence
of the Jackson summations in the theorem below. This theorem is not
from [C5], but its proof is based on the same technique (see also [C8]).
Let us fix £ € C" and define the Jackson summation as follows:

(He W ST f(guO), where w(€) +b = (bw)(€).

weW,beB

Here the affine action of W from (1.7) is used; f can be any function
well defined at the set {¢g*©**}. Recall that the notation (f) was used
for the constant term of a Laurent series f. We continue to assume
that |¢| < 1.

As above, X, (q°) = ¢\ y(q?) = 22, (2,2) = Y| 2iza,, say,
(2,2)/2 = 2} — 2129 + 23 for Ay. For instance,

(Me =Y g2 =539(¢5)g 0%, 7% = " a((7).

aeB a€EB

We will constantly use that (), is periodic with respect to the substi-
tutions £ — £+ b,b € B.
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Let us normalize the y—function at q5 ,u. — ,u/ u(q®). Explicitly,
using the sets A(bw) = Ry N (bw) ™' (—R.),

~1/2 1/2 (a.6)4vai
(4.21) ,u.(qw(ﬁ)-irb) _ H to '~ — to ( )+ ])

[a,vaf]lEX(bw)

1/2 N t—1/2q(a ) tvaj

Theorem 4.6. For arbitrary weights A = ¢*, A" = ¢’

(4.22) (72 ()% (B° (X, AP (X A yjna)e
_ 0 1_q(Pk7 V)+i
_ ShviS)
= e ) T ()
acRy j=1
1 1 _t q —(pr,a)+j
(vpe)e = plat™) W e T H( o ),
acRy j=0

where by (g% t™Y) we mean the u—function evaluated at X = ¢* with
all t, replaced by t;'. O

In these formulas t, are arbitrary provided the existence of all {Py}.
The products are considered as the limits if k, € Z, \ {0}. The nor-
malization factor is obtained by taking AN=qg P, N =q P Indeed,

wxe = I i) T ) and

acRy j=1

(P(X, g )PBX, q7%) Yite)e
(o, )+ij

(4.23) - T TI( 1‘tq1 sy ) B ) (e

acR; j=1

due to formula (3.11).

4.5. The special case & = —pg. The theory of Jackson-Gauss in-
tegrals is essentially algebraic, similar to that for the constant term
functional. Analytically, we need only the exponential growth of P
in real directions; (4.2) is more than sufficient. The growth estimates
can be equally used in the theory based on the real integration instead
of the Jackson summation. This theory is a g—generalization of the
so-called non-compact case in the harmonic analysis on the symmetric
spaces. Formulas like (4.22) hold in such theory but the corresponding
factors of proportionality (generally, periodic functions in terms of X
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and A) are not calculated so far with a reservation about the A;—case
(see [C8]).

There is a special case when (4.22) becomes a straightforward alge-
braic exercise; it occurs for & = —p;. taken as the starting point of the
Jackson summation. In this case, pe(¢”®*?) is nonzero if and only if
bw =m = by, ', ie., at by = m(—pr) = b — u;, '(pr) in the notations
from Proposition 1.1. One has:

1—¢ q((x Viok)+d
(424) ,U.(qbu) f— q2(b7,pk) H tf/u(ub) H ( « > :

_ 4—1 (O! 7pk)+J
fgleN(m) 1~ ta da

where X (m,) = { [, j] | [—, vaj] € A(mp) }. Then (y >5 = (v)p;c and

(4.25) (Ytbe)—pp = Von H ﬁ( s )+J’)’

acRy j=1

Formula (4.23) reads as follows:

W] (5%(g™))* (B°(X, )P (XL A) ype) -,
(P )+i

(426) = Pk ?}?&?’ H H( ! _t—qlq(kaav)"‘j )2 ‘BO(Aa A/)

acRy j=1

It is important to note that (4.26) is not a new identity. It formally
results from the definition of 8 and the duality of the P—polynomials
if the Shintani-type relations from (2.22) are supposed to be known.
Thus, we can say that the special case trivializes the Jackson integrals.

Actually, relations (2.22) were deduced in [C5] from the general £~
theory of Jackson integration, so the special case is analogical to the
normalization condition in the theory of spherical functions only with
some reservations.

4.6. Taking the limit. Let us interpret the identity (4.26) upon the

Whittaker limit. The Jackson summation will be now over B: (f), def
> pep f(g"); notice that there is no |W|—factor versus the previous def-
inition. For instance, (), = 7°(1). The corresponding fi—measure is
nonzero only on B:

n (a;/7 +

(4.27) i) =] ] a-¢)™"
=1 j=1



44 IVAN CHEREDNIK

We come to the following “reformulation” of the definition of ‘iv3°:

(7)o (g PO(XTY A) Vo

(4.28) = 75 HH( ) (AN,

i=1 j=1 1_q

Here the Shintani-type formulas were employed.
It is instructional to obtain (4.28) as a Whittaker-type limit of (4.26).
We suggest the following way.

First, let us make k a positive integer; to be exact, k = N for N =
{N, € N}. Then py € P, and, for instance, (7)r1,y = (7)a, which will
be used constantly. Second, let us renormalize the y—measure (4.24):

fie(q") = q 7207 pg(g")
1—¢ (@Y,pr)+j

o(u ala
(4.29) — Htf/( b) H (1 my—c pk)ﬂ)

[a.g]eN ()

The limit of 1,(¢%) as N — oo exists for any b € B and is nonzero
only for b = b_. Namely,

dim Jio(q") =7.(¢").

Third, we will use the following property of the spherical polynomials:

(4.30) lim Py(q*PN) = ¢W+) for b=1b_,

which is a reformulation of (3.5).
Forth, we observe that the condition py € B guarantees that

x PN qu—l—x P e pN)/ = <7>x

for any x. Therefore the limiting procedure for obtaining ‘fio from B°
from (3.12) coincides with that for 8 from (3.13):

(4.31) TeXA) = lim ¢@ /P (v X, A).
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Replacing now A by A — py in (4.26), one obtains:

(4.32) (N G2 (@)(B(X, )P (X A) Vi)
Goop)? (N, aY)+g
:{q : 2 = )\}7)\’ H H( ! q pN a\/)_,_])2q30(q_(>\_pN)>A/).
a€R j=1

Here |WV] is not present due to our definition of the Jackson summation
in the Whittaker case.

We can restrict ourselves only with b = b_, since the other b appear
in (4.29) with strictly positive t—factors [], £ Then the left-hand
side of (4.32) modulo higher powers of t is as follows: LHSmod (t) =

)% _

QS g T R (b )P (g, ) {g ) (g A))

beB_

(b_ )2

=Q Y ¢ 7 (o) {P(g ) I} {00 o) o (g0 )}

beB_

def ~ ~ ~
for Q == {¢"N*7°(¢")/()py, }A°(@) = 7°(¢™)

00 (pn,aY)+j

def 1—qa

and Il = H Hl—t > pNa)ﬂ.
acRy j=1

Transforming correspondingly the right-hand side of (4.32), one ar-
rives at

RHS = ¢ % {q % (7)) 5 112 {gM o) B (g P A)

The term ¢ "~/2 can be moved to the LHS and combined with Q,
namely,

2 ~

NP (N) = (1), -

One II can be reduced in the LHSmod (¢) and the RHS.

Then we use (4.30) for P(¢**~) and the definition of the Whit-

taker limit (4.31) for P°(g~"+ "~ , A’) and for P°(¢* "~ , A’). Replacing
2

(back) ¢~ () by 39()\) and changing the summation set in the LHS

from B_ to By, we eventually obtain (4.28).

This calculation is expected to be a sample for the general {—Jackson
integration theory in the Whittaker case (presumably, for the real inte-
gration too); it will be discussed elsewhere. We note that the term ¢
in the integrand of (4.28) can be naturally combined with v = ¢**/2
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and “eliminated” upon the change of variables © + A — x. However
this substitution will change the summation set from B, to A + By,
i.e., the general Jackson summation (with an arbitrary starting vector)
naturally emerges even in the special case under consideration.

The extreme case. There is no “natural” way to eliminate A, A’
from (4.28) by evaluating this formula at certain special points. Gener-
ally, it may lead to interesting identities that contain only ¢q. However,
one can try to take A ~ ) and tend them to infinity for A = ¢*, A’ = ¢
Let us perform this calculation in detail.

We will use (4.9):

(4.33) lim WA+ (n-y)s, N +n-y:q)

n—oo

beB, Hz 1 H (1 - qz)

where (n-y’)y € €. In this limit, formula (4.28) reads as:

e 3 g ”95 D) )

= R

(4.34) - =R o~
ZBQ [ 157 (1 - )

where we canceled out () =[], [T,=,(1— ¢/)~" in both sides. Moving
b from the arguments of 7° and using that (y), = 7°(1), we come to
an identical equality. No new formulas appear in this way:.

Discussion. We think that the growth estimates and formula (4.28)
show great potential of the g—theory of Whittaker functions in har-
monic analysis. For instance, an immediate interpretation of (4.28) is
the fact that the global ¢—Whittaker function multiplied by the Gauss-
ian is essentially invariant with respect to the g—Fourier-Jackson trans-
form for the measure 7i, from (4.27), which is very much standard in
the theory of g—functions.

This paper seems a convincing demonstration of the key role of
Shintani-type formulas in the algebraic and analytic theory of sphe-
rical and Whittaker functions. Even a g—generalization of the Harish-
Chandra asymptotic formula, which, naturally, is a cornerstone of the
analytic theory, can be deduced from these formulas. This is different
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from the differential setting and makes the g—theory significantly more
algebraic than the classical harmonic analysis on the symmetric spaces.

We would like to mention that global spherical and Whittaker func-
tions have properties similar to celebrated Ramanujan’s mock theta
functions, including the theory at |¢| = 1. For instance, certain (but
not direct) counterparts of Maas forms can be introduced following the
same lines. To be more exact, the natural objects are Maas-type theta
functions; they are not holomorphic in terms of x, A\ but satisfy the
modular equation with respect to q.

Also, the ¢, t—theory has connections with the mock theta functions
at level of formulas. It is not very surprising because the basic hyper-
geometric function is known to be related to (some) mock functions.
Our global spherical functions are its multi-variable generalizations.
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