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0. Introduction

The main aim of this paper is to introduce global q–Whittaker func-
tions as the limit t → 0 of the (renormalized) generalized symmetric
spherical functions constructed in [C5] for arbitrary reduced root sys-
tems (see [Sto] in the C∨C–case). This work is inspired by [GLO1]
and [GLO2], though our approach is different. For instance, we ob-
tain a q–version of the classical Shintani-Casselman-Shalika formula
[Shi, CS] via the q–Mehta -Macdonald integral in the Jackson setting.
The Shintani-type formulas (in the case of GLn) play an important role
in [GLO1, GLO2], but the q–Gauss integrals are not considered there
as well as globally-defined q–Whittaker functions. We use these for-
mulas to obtain a q, t–generalization of the Harish-Chandra asymptotic
formula for the classical spherical function.

0.1. Results and applications. The key observation is that the def-
inition of the symmetric q, t–spherical functions from [C5] is compat-
ible with taking the Whittaker limit and results in globally-defined
q–Whittaker functions. The definition from [C5] is based on the q–
Mehta- Macdonald integrals calculated there for the constant term
functional, i.e., in the setting of Laurent series. In this paper, we mainly
treat the spherical functions as global ones, analytic or meromorphic.

The q–Whittaker functions are solutions of the q–Toda eigenvalue
problem and are expected to have important applications in math-
ematics and physics, including the Langlands program. Concerning
the latter and relations to the affine flag varieties, see, for instance,
[GiL, BF, Ion2]. The q–Shintani-Casselman-Shalika formula gives a
(relatively simple) example of the Langlands correspondence. The
affine Toda lattice provides another link; it is (presumably) dual to
the q–Toda lattice in the sense of [KL]).

It is important to note that the coefficients of the expansion of our
Whittaker function are essentially polynomials in terms of q with pos-
itive integral coefficients. It can be verified using the intertwining ope-
rators or via the relation to the Demazure characters. This fact is of
obvious importance for the “categorization” of the q–Whittaker func-
tion and its geometric applications. The “q–integrality” has no known
counterpart in the general q, t–theory (with a reservation concerning
the stable GL–case); one of the parameters, q or t, has to be eliminated
or expressed in terms of the remaining one. However, the q, t–spherical
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functions are of more fundamental nature and more convenient to deal
with in many other aspects.

The cornerstone of their theory is the duality based on the DAHA-
Fourier transform; see [C8] and[C9]. It is missing in the theory of
q–Whittaker functions and for many other degenerations, including
the Harish-Chandra theory (q → 1), the p–adic limit (q → ∞) and q–
Hermite polynomials (t → 0). A specific problem with the Whittaker
limiting procedure among other degenerations, is that it destroys the
W–invariance; it gives another reason for treating Whittaker functions
as limits of the spherical functions rather than for creating their intrin-
sic theory. On the other hand, the Whittaker functions satisfy quite
a few identities that cannot be obtained from the q, t–theory. These
identities, the q–integrality of the coefficients and various applications
obviously make the q–Whittaker functions an important independent
direction, requiring developing specific methods.

At the end of the paper, we outline the approach to the global sphe-
rical and Whittaker functions via the harmonic analysis. Our formu-
las for these functions are actually equivalent to certain fundamental
properties of the corresponding integral transforms in the space of Lau-
rent polynomials multiplied by the Gaussian. The latter space is the
simplest and the most natural choice here, but the same functions can
serve other algebraic and analytic situations. This direction seems very
promising. For instance, the existence of the q–Whittaker limit of the
global spherical function appears a boundary case of the growth esti-
mates for the q, t–spherical function with respect to x together with k
(a new feature of the q, t–theory).

0.2. Growth estimates. Provided that ℜ(x),ℜ(λ) are inside the pos-
itive Weyl chamber C+ (the exact choice of C is not important but the
walls must be avoided), the global spherical function for 0 < q < 1
approaches asymptotically in the limit of large ℜ(x)

|W| CT Θ(ρk)
Θ(x + λ − ρk)

Θ(x)Θ(λ)

∏

α∈R+

Γq(λ
∨
α)

Γq(λ∨
α + kα)

for the theta-series Θ and q–Gamma function associated with a given
root system R; t = qk, ρk = kρ in the simply-laced case, CT is the
constant term of the celebrated Macdonald function. No inequalities for
(fixed) k are necessary but (rational negative) k where the polynomial
representation of DAHA becomes non-semisimple must be excluded.
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Up to a periodic function, the x–dependence of this function is
q(x, ρk−λ), so this theorem is an exact q, t–analog of the Harish-Chandra
formula [HC] describing the asymptotic behavior of the classical spheri-
cal function in terms of the c–function (the case of complex Lie groups).
In the Whittaker limit, ρk is removed and ℜ(x) must be taken from
−C+ (the Whittaker function it is not W–invariant with respect to x).

It is one of the major results of this paper, which seems a beginning
of fruitful analytic q–theory.

0.3. Our approach. It is different from that of [GLO1, GLO2] (and
we deal with arbitrary reduced root systems). The technique of the
Gaussians is the key to introduce the global q–Whittaker function and
prove the Shintani-type formulas. The q–Whittaker function is mainly
treated in [GLO1, GLO2] as a discrete function on the weight lattice
for GLn satisfying the q–Toda system of difference equations.

The space of all solutions is, generally, |W|–dimensional over the field
of periodic functions, playing the role of constants in the difference
theory; upon the restriction to the weight lattice it is |W|–dimensional
over C. Choosing the “right” Whittaker function in this space re-
quires certain growth conditions; using the W–symmetric dependence
on the spectral parameters gives another approach. There is no in-
trinsic definition of the q–Whittaker function so far, but our formula
and the growth conditions we establish clarify what can be expected.
First, only positive powers appear in its Laurent series expansion (af-
ter dropping the Gaussians). Second, our x–asymptotic formula for the
q–Whittaker function inside the negative Weyl chamber is sufficient to
fix it uniquely.

We note that in the differential setting, the spherical and Whit-
taker functions can be uniquely determined from the eigenvalue prob-
lem (subject to the W–invariance for the spherical function and certain
growth conditions in the Whittaker case). It simplifies the starting def-
initions. However the difference theory is more universal and, remark-
ably, has important algebraic and analytic advantages. The self-duality
of the DAHA-Fourier transform and the technique of the Gaussians are
the key; these are special features of the q, t–setting and are mainly ab-
sent in the trigonometric-differential and p–adic cases. In this respect,
the q, t–theory is somewhat similar to the rational-differential theory
of (multi-variable) Bessel functions.
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0.4. Difference spherical functions. The global nonsymmetric and
symmetric q, t–spherical functions were defined in [C5] and then in [Sto]
(the C∨C–case) as the reproducing kernels of the Fourier transform of
the standard polynomial representation twisted by the Gaussian. In
this approach, the spherical function is determined uniquely (the Mac-
donald eigenvalue problem fixes it only up to periodic factors). Using
the Gaussians, among other things, provides the global convergence.
These construction appeared compatible with the Whittaker limit.

The Gaussians play the key role in our approach to the Shintani-
Casselman-Shalika formula. In the q, t–setting, it becomes the Mehta
-Macdonald formula in the Jackson case from [C5], where a special
vector, −ρk, is taken as the origin of the Jackson summation.

Developing this direction, we conclude the paper with the Jackson-
Gauss integrals for the global spherical and Whittaker functions; such
formulas were given only for Macdonald polynomials in [C5]. These for-
mulas seem an important step toward systematic difference harmonic
analysis, although the case of the real integration is still beyond the ex-
isting theory. Now, with the q, t–Harish-Chandra asymptotic formulas
from this paper, it seems that there are no obstacles for developing the
real integration theory generalizing the classical “non-compact” case.

Conceptually, as it was observed in [GLO2], the q–variant of the
Shintani-Casselman-Shalika formula is nothing but the duality formula
for the Macdonald polynomials from [C3] considered upon the limit
t → 0. However, establishing exact relations is, generally, a subtle
problem. The Shintani-type formulas play the major role in the paper,
including the growth estimates.

This interpretation gives evidence that the DAHA-Fourier transform
is connected with the (local quantum) geometric Langlands correspon-
dence. Generally, the DAHA–localization functor, which includes the
modular transformation q 7→ q′, is expected to play its role in the quan-
tum geometric Langlands correspondence; the DAHA-Fourier trans-
form is likely to be one of its ingredients.

We note that DAHA leads to a theory that is a priori more general
than the one needed for the (local) quantum Langlands correspondence
because it contains an extra parameter t. However, there is growing ev-
idence that the general q, t–DAHA appear in the Langlands program.
It makes important the exact relations between the q, t–spherical func-
tions and q–Whittaker ones (which are already a part of the Langlands
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program). We expect this paper to trigger interesting new develop-
ments.

It is worth mentioning that the approach to spherical functions via
the Fourier transform significantly depends on the choice of the corre-
sponding representation of the double affine Hecke algebra. Technically,
the choice of this space influences only the normalization; spherical
function are defined up to periodic factors. However, the analytic prop-
erties of the q, t–spherical function, exact factors in the Shintani-type
formulas and many other similar features do depend on the considered
representation (equivalently, the choice of the normalization).

For instance, if the Gaussian is interpreted as a theta-function, then
the corresponding spherical function is meromorphic but not analytic.
Treating the Gaussian as qx2/2 (not as a Laurent series), i.e., using a
somewhat different analytic setting, leads to the q, t–spherical functions
analytic everywhere, but not single-valued in terms of qx. If the Gaus-
sians are omitted in this definition, i.e., the DAHA-Fourier transform
acts from the polynomial representation to the space of delta-functions,
then the corresponding spherical function will become a generalized
function. The problem of its convergence and meromorphic continua-
tion (upon a proper renormalization) is, generally, much more involved
than for the global functions.

0.5. The setting of the paper. Only the symmetric theory will be
considered in this work; the (truly) nonsymmetric q–Whittaker func-
tion can be defined as certain limits of the nonsymmetric global spheri-
cal function, but the construction becomes more involved and will be a
subject of the next work(s). Nevertheless, we begin the paper with the
account of the nonsymmetric Macdonald polynomials including their
(straight) degeneration as t → 0, which is closely related to the De-
mazure characters of irreducible affine Lie algebras; see [San, Ion1].
We mainly need the formulas in terms of the intertwining operators
to justify some of our claims and estimates; the intertwiners can be
naturally defined only in the nonsymmetric theory.

We mention that the Macdonald symmetric polynomials considered
under the limit t → 0 generalize the classical q–Hermite polynomials,
so the main result of the paper is in establishing the formula for the
q–Whittaker function in terms of multi-variable q–Hermite polynomi-
als. Presumably, when the theory of nonsymmetric Whittaker limit is
completed (it is beyond this paper), the nonsymmetric q–Whittaker
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function will be a generating function for all Demazure characters, not
only the ones for anti-dominant weights. Such interpretation can clar-
ify the role of Whittaker functions in the Kac-Moody theory and may
have connections to [GiL] and to questions and conjectures from [BF].

There are two possible setups in the DAHA theory for the non-
simply-laced root systems, which correspond to two possible choices
of the affine extension. In this paper, we introduce the affine root
system using α0 = [−ϑ, 1] in terms of the maximal short root ϑ. The
conjugation by the Gaussian and the Fourier transform preserve the
double affine Hecke algebra in this setup. By the way, it is exactly the
case where a relation to the Demazure characters can be established
according to [Ion1], Theorem 1.

The case of the “standard” affine root system with α0 = [−θ, 1] for
the maximal long root θ is analogous, although the Fourier transform
acts from the double affine Hecke algebra to its dual in the B, C–cases.
This is the setting that is expected to be related to the geometric
Langlands correspondence. Technically, the switch to the “standard”
DAHA can be achieved by changing only one formula in this paper,
namely, that for the action of T0 in the polynomial representation. This
change influences the relations of T0 with the X–operators (indexed by
the weights). The Y –operators become labeled by the coweights for
such choice of T0; they are labeled by the weights in this paper.

In this paper, the difference between these two DAHA–theories is
not crucial. Generally, quite a few formulas become more “symmetric”
when the standard affine extension is considered (cf. [C9]), but the
main constructions are, generally, more transparent in our setting.

Acknowledgements. The author is thankful to D. Kazhdan for
alerting me to the works of Gerasimov et. al and for our various con-
versations on the Whittaker functions and the Langlands correspon-
dence. I indebted to D. Gaitsgory for the discussion of the quantum
geometric Langlands duality. Special thanks go to A. Gerasimov for
his explanations of the results of [GLO1, GLO2], which influenced this
paper a great deal.

1. Double Hecke algebra

Let R = {α} ⊂ Rn be a root system of type A, B, ..., F, G with re-
spect to a euclidean form (z, z′) on Rn ∋ z, z′, W the Weyl group gen-
erated by the reflections sα, R+ the set of positive roots (R− = −R+)
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corresponding to fixed simple roots α1, ..., αn, Γ the Dynkin diagram
with {αi, 1 ≤ i ≤ n} as the vertices. Respectively,

R∨ = {α∨ = 2α/(α, α)}.

The root lattice and the weight lattice are:

Q = ⊕n
i=1Zαi ⊂ P = ⊕n

i=1Zωi,

where {ωi} are fundamental weights: (ωi, α
∨
j ) = δij for the simple

coroots α∨
i . Replacing Z by Z± = {m ∈ Z,±m ≥ 0} we obtain Q±, P±.

Here and further see [B].
The form will be normalized by the condition (α, α) = 2 for the short

roots in this paper. Thus,

να
def
== (α, α)/2 can be either 1, or {1, 2}, or {1, 3}.

This normalization leads to the inclusions Q ⊂ Q∨, P ⊂ P ∨, where
P ∨ is defined to be generated by the fundamental coweights {ω∨

i } dual
to {αi}.

We set νi = ναi
, νR = {να, α ∈ R} and

ρν
def
== (1/2)

∑

να=ν

α =
∑

νi=ν

ωi, where α ∈ R+, ν ∈ νR.(1.1)

Note that (ρν , α
∨
i ) = 1 as νi = ν.

1.1. Affine Weyl group. The vectors α̃ = [α, ναj] ∈ Rn ×R ⊂ Rn+1

for α ∈ R, j ∈ Z form the affine root system R̃ ⊃ R (z ∈ Rn are

identified with [z, 0]). We add α0
def
== [−ϑ, 1] to the simple roots for

the maximal short root ϑ ∈ R+. It is also the maximal positive coroot
because of the choice of normalization.

The corresponding set R̃+ of positive roots equals R+∪{[α, ναj], α ∈
R, j > 0}. Indeed, any positive affine root [α, ναj] is a linear combi-
nations with non-negative integral coefficients of {αi, 0 ≤ i ≤ n}.

We complete the Dynkin diagram Γ of R by α0 (by −ϑ, to be more

exact); it is called affine Dynkin diagram Γ̃. One can obtain it from
the completed Dynkin diagram from [B] for the dual system R∨ by
reversing all arrows.

The set of the indices of the images of α0 by all the automorphisms

of Γ̃ will be denoted by O (O = {0} for E8, F4, G2). Let O′ = {r ∈
O, r 6= 0}. The elements ωr for r ∈ O′ are the so-called minuscule
weights: (ωr, α

∨) ≤ 1 for α ∈ R+.
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Given α̃ = [α, ναj] ∈ R̃, b ∈ P , let

seα(z̃) = z̃ − (z, α∨)α̃, b′(z̃) = [z, ζ − (z, b)](1.2)

for z̃ = [z, ζ ] ∈ Rn+1.

The affine Weyl group W̃ is generated by all seα (we write W̃ =

〈seα, α̃ ∈ R̃+〉). One can take the simple reflections si = sαi
(0 ≤ i ≤ n)

as its generators and introduce the corresponding notion of the length.
This group is the semidirect product W⋉Q′ of its subgroups W =
〈sα, α ∈ R+〉 and Q′ = {a′, a ∈ Q}, where

α′ = sαs[α, να] = s[−α, να]sα for α ∈ R.(1.3)

The extended Weyl group Ŵ generated by W and P ′ (instead of
Q′) is isomorphic to W⋉P ′:

(wb′)([z, ζ ]) = [w(z), ζ − (z, b)] for w ∈ W, b ∈ B.(1.4)

From now on, b and b′, P and P ′ will be identified.
Given b ∈ P+, let wb

0 be the longest element in the subgroup W b
0 ⊂ W

of the elements preserving b. This subgroup is generated by simple
reflections. We set

ub = w0w
b
0 ∈ W, πb = b(ub)

−1 ∈ Ŵ , ui = uωi
, πi = πωi

,(1.5)

where w0 is the longest element in W, 1 ≤ i ≤ n.

The elements πr
def
== πωr , r ∈ O′ and π0 = id leave Γ̃ invariant and

form a group denoted by Π, which is isomorphic to P/Q by the natural
projection {ωr 7→ πr}. As to {ur}, they preserve the set {−ϑ, αi, i > 0}.
The relations πr(α0) = αr = (ur)

−1(−ϑ) distinguish the indices r ∈ O′.
Moreover,

Ŵ = Π⋉W̃ , where πrsiπ
−1
r = sj if πr(αi) = αj , 0 ≤ j ≤ n.(1.6)

We will need the following affine action of Ŵ on z ∈ Rn:

(wb)((z)) = w(b + z), w ∈ W, b ∈ P,

seα((z)) = z − ((z, α∨) + j)α, α̃ = [α, ναj] ∈ R̃.(1.7)

For instance, (bw)((0)) = b for any w ∈ W. The relation to the above

action is given in terms of the affine pairing ([z, l], z′ +d)
def
== (z, z′)+ l :

(ŵ([z, l]), ŵ((z′)) + d) = ([z, l], z′ + d) for ŵ ∈ Ŵ ,(1.8)

where we treat d formally.
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1.2. The length on Ŵ . Setting ŵ = πrw̃ ∈ Ŵ , πr ∈ Π, w̃ ∈ W̃ , the
length l(ŵ) is by definition the length of the reduced decomposition
w̃ = sil ...si2si1 in terms of the simple reflections si, 0 ≤ i ≤ n. The
number of si in this decomposition such that νi = ν is denoted by
lν(ŵ).

The length can be also defined as the cardinality |λ(ŵ)| of the λ–set
of ŵ :

λ(ŵ)
def
== R̃+ ∩ ŵ−1(R̃−) = {α̃ ∈ R̃+, ŵ(α̃) ∈ R̃−}, ŵ ∈ Ŵ .(1.9)

Respectively,

λ(ŵ) = ∪νλν(ŵ), λν(ŵ)
def
== {α̃ ∈ λ(ŵ), ν(α̃) = ν}.(1.10)

The coincidence with the previous definition is based on the equiva-
lence of the length equality

(a) lν(ŵû) = lν(ŵ) + lν(û) for ŵ, û ∈ Ŵ(1.11)

and the cocycle relation

(b) λν(ŵû) = λν(û) ∪ û−1(λν(ŵ)),(1.12)

which, in its turn, is equivalent to the positivity condition

(c) û−1(λν(ŵ)) ⊂ R̃+(1.13)

and is also equivalent to the embedding condition

(d) λν(û) ⊂ λν(ŵ).(1.14)

See, e.g., [C4, C8] and also [B, Hu]. Applying (1.12) to the reduced
decomposition ŵ = πrsil · · · si2si1,

λ(ŵ) = { α̃l = w̃−1sil(αil), . . . , α̃3 = si1si2(αi3),

α̃2 = si1(αi2), α̃1 = αi1 }.(1.15)

1.3. Reduction modulo W . It generalizes the construction of the
elements πb for b ∈ P+; see [C4] or [C8].

Proposition 1.1. Given b ∈ P , there exists a unique decomposition
b = πbub, ub ∈ W satisfying one of the following equivalent conditions:

(i) l(πb) + l(ub) = l(b) and l(ub) is the greatest possible,
(ii) λ(πb) ∩ R = ∅.
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The latter condition implies that l(πb) + l(w) = l(πbw) for any

w ∈ W. Besides, the relation ub(b)
def
== b− ∈ P− = −P+ holds, which,

in its turn, determines ub uniquely if one of the following equivalent
conditions is imposed:

(iii) l(ub) is the smallest possible,
(iv) if α ∈ λ(ub) then (α, b) 6= 0.

�

Condition (ii) readily gives a complete description of the set πP =
{πb, b ∈ P}, namely, only [ α < 0, ναj > 0 ] can appear in λ(πb).

Explicitly,

λ(b) = {α̃ > 0, (b, α∨) > j ≥ 0 if α ∈ R+,(1.16)

(b, α∨) ≥ j > 0 if α ∈ R−},

λ(πb) = {α̃ > 0, α ∈ R−, (b−, α∨) > j > 0 if u−1
b (α) ∈ R+,(1.17)

(b−, α∨) ≥ j > 0 if u−1
b (α) ∈ R−},

For instance, l(b) = l(b−) = −2(ρ∨, b−) for 2ρ∨ =
∑

α>0 α∨.

The element b− = ub(b) is a unique element from P− that belongs
to the orbit W (b). Thus the equality c− = b− means that b, c belong

to the same orbit. We will also use b+
def
== w0(b−), a unique element in

W (b) ∩ P+. In terms of πb,

ubπb = b−, πbub = b+.

Note that l(πbw) = l(πb) + l(w) for all b ∈ P, w ∈ W. For instance,

l(b−w) = l(b−) + l(w), l(wb+) = l(b+) + l(w),(1.18)

l(ubπbw) = l(ub) + l(πb) + l(w) for b ∈ P, w ∈ W.

Partial ordering on P . It is necessary in the theory of nonsym-
metric polynomials. See [Op, M3]. This ordering was also used in
[C2] in the process of calculating the coefficients of Y –operators. The
definition is as follows:

b ≤ c, c ≥ b for b, c ∈ P if c − b ∈ Q+,(1.19)

b � c, c � b if b− < c− or {b− = c− and b ≤ c}.(1.20)

Recall that b− = c− means that b, c belong to the same W–orbit. We
write <, >,≺,≻ respectively if b 6= c.
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The following sets

σ(b)
def
== {c ∈ P, c � b}, σ∗(b)

def
== {c ∈ P, c ≻ b},

σ−(b)
def
== σ(b−), σ+(b)

def
== σ∗(b+) = {c ∈ P, c− > b−}.(1.21)

are convex. By convex, we mean that if c, d = c + rα ∈ σ for α ∈
R+, r ∈ Z+, then

{c, c + α, ..., c + (r − 1)α, d} ⊂ σ.(1.22)

1.4. More notations. By m, we denote the least natural number such
that (P, P ) = (1/m)Z. Thus m = 2 for D2k, m = 1 for B2k and Ck,
otherwise m = |Π|.

We will need to include the case t = 0 in our definition, which
requires minor deviations from the definitions of [C8],[C4] and other

author’s papers. Namely, we multiply all Ti there by t
1/2
i and change

the formulas correspondingly.
The double affine Hecke algebra depends on the parameters q, tν , ν ∈

{να}. It will be defined over the ring

Qq,t
def
== Q[q±1/m, tν ]

formed by polynomials in terms of q±1/m and {tν}. We set

teα = tα = tνα, ti = tαi
, qeα = qνα, qi = qναi ,

where α̃ = [α, ναj] ∈ R̃, 0 ≤ i ≤ n.(1.23)

It will be convenient to use the parameters {kν} together with {tν},
setting

tα = tν = qkν
α for ν = να, and ρk = (1/2)

∑

α>0

kαα.

Note that (ρk, α
∨
i ) = ki = kαi

= ((ρk)
∨, αi) for i > 0; (ρk)

∨ def
==∑

kν(ρν)
∨. Using that w0(ρk) = −ρk, we obtain that (ρk,−w0(b)) =

(ρk, b). For instance, (ρk, b+) = −(ρk, b−), where b+
def
== w0(b−) (see

above).

By q(ρk,α), we mean
∏

ν∈νR
t
((ρν )∨,α)
ν ; here α ∈ R, (ρν)

∨ = ρν/ν, and
this product contains only integral powers of tsht and tlng.
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For pairwise commutative X1, . . . , Xn,

Xeb =
n∏

i=1

X li
i qj if b̃ = [b, j], ŵ(Xeb) = X

bw(eb).(1.24)

where b =
n∑

i=1

liωi ∈ P, j ∈
1

m
Z, ŵ ∈ Ŵ .

For instance, X0
def
== Xα0 = qX−1

ϑ .

We set (̃b, c̃) = (b, c) ignoring the affine extensions in this pairing.

1.5. Main definition. We note that π−1
r is πr∗ and u−1

r is ur∗ for
r∗ ∈ O , ur = π−1

r ωr. The reflection ∗ is induced by an involution of
the nonaffine Dynkin diagram Γ.

Definition 1.2. The double affine Hecke algebra HH is generated over
Qq,t by the elements {Ti, 0 ≤ i ≤ n}, pairwise commutative {Xb, b ∈
P} satisfying (1.24), and the group Π, where the following relations are
imposed:

(o) (Ti − ti)(Ti + 1) = 0, 0 ≤ i ≤ n;
(i) TiTjTi... = TjTiTj ..., mij factors on each side;
(ii) πrTiπ

−1
r = Tj if πr(αi) = αj;

(iii) TiXb = XbX
−1
αi

{tiT
−1
i } if (b, α∨

i ) = 1, 0 ≤ i ≤ n;
(iv) TiXb = XbTi if (b, α∨

i ) = 0 for 0 ≤ i ≤ n;
(v) πrXbπ

−1
r = Xπr(b) = Xu−1

r (b)q
(ωr∗ ,b), r ∈ O′.

Here and further the brackets {·} will be used to show explicitly the
elements that belong to HH . One can rewrite (iii,iv) as in [L]):

TiXb − Xsi(b)Ti = (ti − 1)
Xsi(b) − Xb

Xαi
− 1

, 0 ≤ i ≤ n.(1.25)

Given w̃ ∈ W̃ , r ∈ O, the product

Tπr ew
def
== πr

l∏

k=1

Tik , where w̃ =
l∏

k=1

sik , l = l(w̃),(1.26)

does not depend on the choice of the reduced decomposition (because
{T} satisfy the same “braid” relations as {s} do). Moreover,

TbvT bw = Tbv bw whenever l(v̂ŵ) = l(v̂) + l(ŵ) for v̂, ŵ ∈ Ŵ .(1.27)
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In particular, we arrive at the pairwise commutative elements:

Yb = q(b+−b, ρk)
n∏

i=1

Y li
i if b =

n∑

i=1

liωi ∈ P, Yi
def
== Tωi

, b ∈ P.(1.28)

The factors here are needed to make them from HH ; b+ is a unique
element in W (b) ∩ P+. Note that YbY−b = q−2(b+,ρk).

Generally, if we replace si by Ti or T−1
i in any reduced decomposition

of ŵ ∈ Ŵ , then such product belongs to HH upon the multiplication
by the product of ti corresponding to the terms T−1

i .
The relations dual to (iii,iv) hold (for i > 0 only):

{tiT
−1
i }Yb = Ysi(b)Ti if (b, α∨

i ) = 1,

TiYb = YbTi if (b, α∨
i ) = 0, 1 ≤ i ≤ n.(1.29)

The counterpart of (1.25) is as follows:

TiYb − Ysi(b)Ti = (ti − 1)
Yb − Ysi(b)

1 − q−(θ′,ρk)Y−αi

, 1 ≤ i ≤ n,(1.30)

where θ′ = θ, ϑ respectively for long, short αi (it is the only root in the
intersection W (αi) ∩ P+).

Here and below we use that given b ∈ P , replacing all T±1
i by

t±1
i in the product of (1.28) for Yb results in the t–power q2(ρk,b) =∏

ν t
2((ρν )∨, b)
ν .

Also, Yb for any b can be represented as the product πrT
±1
il

· · ·T±1
i1

for a given reduced decomposition b = πrsil · · · si1 and proper choice of
{±}. Here l = l(b) = 2(ρ∨, b+). Only positive powers T+1

i will appear
in this product when b ∈ P+. The total number of the terms T±1

i with
νi = ν in this product equals 2((ρν)

∨, b+).

2. Polynomial representation

From now on, we will switch from HH to its intermediate subalgebra
HH♭ ⊂ HH with P replaced by a lattice B between Q and P (see [C7]).
Respectively, Π is changed to the preimage Π♭ of B/Q in Π. Generally,
there can be two different lattices BX and BY for X and Y. We consider
only BX = B = BY in the paper; respectively, a, b ∈ B in Xa, Yb.

We also set Ŵ ♭ = B · W ⊂ Ŵ , and replace m by the least m̃ ∈ N

such that m̃(B, B) ⊂ Z in the definition of the Qq,t.
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Note that HH♭ and the polynomial representations (and their rational
and trigonometric degenerations) are actually defined over Z extended
by the parameters of DAHA. However the field Qq,t will be sufficient
in this paper.

The Demazure-Lusztig operators are as follows:

Ti = tisi + (ti − 1)(Xαi
− 1)−1(si − 1), 0 ≤ i ≤ n;(2.1)

they obviously preserve Q[q, tν ][Xb]. We note that only the formula for
T0 involves q:

T0 = t0s0 + (t0 − 1)(X0 − 1)−1(s0 − 1), where

X0 = qX−1
ϑ , s0(Xb) = XbX

−(b,ϑ)
ϑ q(b,ϑ), α0 = [−ϑ, 1].(2.2)

The map sending Tj to the corresponding operator from (2.1), Xb

to Xb (see (1.24)) and πr 7→ πr induces a Qq,t–linear homomorphism

from HH♭ to the algebra of linear endomorphisms of Qq,t[X]. This

HH♭ -module is faithful and remains faithful when q, t take any nonzero
complex values assuming that q is not a root of unity. It will be called
the polynomial representation; the notation is

V
def
== Qq,t[Xb] = Qq,t[Xb, b ∈ B].

The images of the Yb are called the difference-trigonometric Dunkl
operators.

The polynomial representation is the HH♭ –module induced from the
one-dimensional representation Ti 7→ ti, Yb 7→ q2(ρk ,b) of the affine
Hecke subalgebra H♭

Y = 〈Ti, Yb〉.

2.1. Macdonald polynomials. There are two equivalent definitions

of the nonsymmetric Macdonald polynomials , denoted by Eb(X) = E
(k)
b

for b ∈ B; they belong to Q(q, t)[Xa, a ∈ B]. The first is based on the
truncated theta function due to Macdonald:

µ = µ(k) =
∏

α∈R+

∞∏

j=0

(1 − Xαqj
α)(1 − X−1

α qj+1
α )

(1 − Xαtαqj
α)(1 − X−1

α tαqj+1
α )

.(2.3)

We will mainly consider µ as a Laurent series with the coefficients
in the ring Q[tν ][[qν ]] for ν ∈ νR = {νsht, νlng}. The constant term of a
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Laurent series f(X) will be denoted by 〈f〉. Then

〈µ〉 =
∏

α∈R+

∞∏

j=1

(1 − q(ρk ,α)+j να)2

(1 − tαq(ρk,α)+j να)(1 − t−1
α q(ρk,α)+j να)

.(2.4)

Recall that q(z,α) = q
(z,α∨)
α , tα = qkα

α . This equality is equivalent to the
Macdonald constant term conjecture proved in complete generality in
[C2].

Let µ◦
def
== µ/〈µ〉. The coefficients of the Laurent series µ◦ are from

the field of rationals Q(q, t)
def
== Q(qν , tν), where ν ∈ νR.

The polynomials Eb are uniquely determined from the relations

Eb − Xb ∈ ⊕c≻bQ(q, t)Xc, 〈EbX
−1
c µ◦〉 = 0 for B ∋ c ≻ b.(2.5)

for generic q, t and form a basis in Q(q, t)[Xb].
This definition is due to Macdonald (for ksht = klng ∈ Z+), who

extended the construction from [Op]. The general (reduced) case was
considered in [C4].

Another approach is based on the Y –operators. We continue using
the same notation X, Y, T for these operators acting in the polynomial
representation. Let Xa(q

b) = q(a,b) as a, b ∈ P.

Proposition 2.1. The polynomials {Eb, b ∈ B} are unique (up to
proportionality) eigenfunctions of the operators Ya (a ∈ P ) acting in
Qq,t[X] :

Ya(Eb) = q(a+, ρk)−(a,b♯) Eb for b♯
def
== b − u−1

b (ρk),(2.6)

ub = π−1
b b is from Proposition 1.1, b♯ = πb((−ρk)).

�

The coefficients of the Macdonald polynomials are rational functions
in terms of qν , tν .

2.2. Symmetric polynomials. Following Proposition 2.1, the sym-

metric Macdonald polynomials Pb = P
(k)
b can be introduced as eigen-

functions of the W–invariant difference operators

La+ = RedW (
∑

a′∈W (a+)

Ya′) for a+ ∈ B+ ,(2.7)



18 IVAN CHEREDNIK

where RedW is the restriction to the space V W of W–invariants of V.
Explicitly,

La+(Pb−) = q(a+ , ρk)(
∑

a′∈W (a+)

q−(a′, b−−ρk)) Pb−, b− ∈ B−,

Pb− =
∑

b∈W (b−)

Xb mod ⊕c−≻b− Q(q, t)Xc.(2.8)

These polynomials were introduced in [M2, M1]. They were used for
the first time in Kadell’s unpublished work (classical root systems). In
the case of A1, they are due to Rogers.

The connection between E and P is as follows

Pb− = Pb+Eb+ , b− ∈ B−, b+ = w0(b−),

Pb+
def
==

∑

c∈W (b+)

Twc , where(2.9)

wc ∈ W is the element of the least length such that c = wc(b+). Taking
the complete t–symmetrization P here (with the summation over all
w), one obtains Pb− up to proportionality. See [Op, M3, C4].

There are two different kinds of inner products in V from [C8] and
other works. In the symmetric setting, they essentially coincide. We
will need here only the inner products of the symmetric polynomials
Pb for b = b− :

〈Pb(X)Pc(X
−1)µ◦〉(2.10)

= δbc

∏

α>0

−(α∨,b)−1∏

j=0

((1 − qj+1
α t−1

α Xα(qρk))(1 − qj
αtαXα(qρk))

(1 − qj
αXα(qρk))(1 − qj+1

α Xα(qρk))

)
.

2.3. Using intertwiners. The following map can be uniquely ex-
tended to an automorphism of HH♭ where proper fractional powers
of q are added (see [C1],[C4],[C7]):

τ+ : Xb 7→ Xb, πr 7→ q−(ωr ,ωr)Xrπr, Yr 7→ XrYrq
−

(ωr,ωr)
2 ,

τ+ : T0 7→ X−1
0 {t0T

−1
0 }, Yϑ 7→ X−1

0 {t0T
−1
0 }Tsϑ

.(2.11)

This automorphism fixes Ti (i ≥ 1), tν , q and fractional powers of q.
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The Y –intertwiners serve as creation operators in the theory of non-
symmetric Macdonald polynomials. Following [C6, C8], let

Ψc
i = τ+(Ti) + (ti − 1)(Xαi

(qc♯) − 1)−1, 0 ≤ i ≤ n.(2.12)

We will use the pairing from (1.8) and the affine action ŵ((c)) from
(1.7).

Theorem 2.2. Given c ∈ B, 0 ≤ i ≤ n such that (αi, c + d) > 0,

q(c,c)/2−(b,b)/2Eb = Ψc
i(Ec) for b = si((c)).(2.13)

If (αi, c + d) = 0, then

τ+(Ti)(Ec) = tiEc, 0 ≤ i ≤ n,(2.14)

which results in the relations si(Ec) = Ec as i > 0. For b = πr((c)),
where the indices r are from O′,

q(c,c)/2−(b,b)/2Eb = τ+(πr)(Ec) = Xωrq
−(ωr,ωr)/2πr(Ec).(2.15)

Also τ+(πr)(Ec) 6= Ec for πr 6=id, since πr((c)) 6= c for any c ∈ B.

�

If (αi, c) > 0 and i > 0, then the set λ(πb) is obtained from λ(πc)
by adding [α, (c−, α)] for α = uc(αi) ∈ R− and (c−, α∨) = (c, α∨

i ) >
0. When i = 0 and (α0, c + d) = −(c, ϑ) + 1 > 0, then the root
[α, (c−, α) + 1] is added to λ(πc) for α = uc(−ϑ) = α∨ ∈ R− and
(c−, α) = −(c, ϑ) ≥ 0.

In each of these two cases, (αi, u
−1
c (ρ)) = (α, ρ) < 0 and the powers

of tν in

Xαi
(qc♯) = q(αi,c−u−1

c (ρk)+d) = q(ali,c+d)
∏

ν

t−(α,(ρν)∨)
ν(2.16)

are from Z+ with that of ti strictly positive.

Due to Theorem 2.2 (see also [C6], Corollary 5.3), the polynomial
Eb exists if ∏

[α,j]∈λ ′ (πb)

(
1 − qj

αXα(qρk)
)
6= 0.

If b ∈ B− and the latter inequality holds for b+ = w0(b) ∈ B+, then
the symmetric polynomials Pb is well defined.
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2.4. Spherical polynomials. The following renormalization of the E-
polynomials is of major importance in the Fourier analysis (see [C4]):

Eb
def
== Eb(X)(Eb(q

−ρk))−1, where b ∈ B,(2.17)

Eb(q
−ρk) = q(ρk,b−)

∏

[α,j]∈λ ′ (πb)

(1 − qj
αtαXα(qρk)

1 − qj
αXα(qρk)

)
.

This definition requires the t–localization.
We call them nonsymmetric spherical polynomials . Formula (2.17)

is the Macdonald evaluation conjecture in the nonsymmetric variant
from [C4]. See [C3] for the symmetric evaluation conjecture.

The following duality formula holds for b, c ∈ B :

Eb(q
c♯) = Ec(q

b♯), b♯ = b − u−1
b (ρk),(2.18)

which is the main justification of the definition of Eb.
Given b ∈ B, the polynomial Eb is well defined for q, t ∈ C∗ if

∏

[α,j]∈λ ′ (πb)

(
1 − qj

αtαXα(qρk)
)

6= 0.(2.19)

In the symmetric setting,

Pb
def
== Pb(X)(Pb(q

−ρk))−1 where b ∈ B− ,(2.20)

Pb(q
−ρk) = Pb(q

ρk) = q(ρk ,b−)
∏

α>0

−(α∨,b)−1∏

j=0

(1 − qj
αtαXα(qρk)

1 − qj
αXα(qρk)

)
.

The symmetric duality reads as follows:

Pb(q
c−ρk) = Pc(q

b−ρk), for b, c ∈ B− .(2.21)

The norm formula becomes entirely conceptual:

(〈Pb(X)Pb(X
−1)µ◦〉)

−1 =
∑

a∈W (b)

µ(πa)µ(id)−1,(2.22)

where µ(ŵ)
def
== µ(ŵ((q−ρk))) for ŵ ∈ Ŵ .

It is a direct corollary of the fact that the Fourier transform sends the
P–polynomials to the delta-functions; see [C8].
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2.5. The limit t → 0. Let HH
♭

by the reduction of HH♭ as tν = 0
for ν ∈ νR. It can be called the nil-DAHA or the crystal DAHA. The
polynomials Eb, P b− are well defined and linearly generate V and V W

correspondingly; V = Qq[Xb, b ∈ B].
Theorem 2.2 holds under this specialization and gives quite a con-

structive approach to the E–polynomials. The intertwiners Ψc
i from

(2.12) that appear in the formulas for Eb are all in the form τ+(Ti) + 1
in this limit. It is directly connected with the fact that T ′

i = Ti + 1
satisfy the same homogeneous Coxeter relations as {Ti, 0 ≤ i ≤ n}
do, a special feature of the nil-DAHA. It results from the theory of
intertwiners and, of course, can be checked directly too.

The action of πr on {T ′
i} by conjugation obviously remains un-

changed. Thus relations (i,ii) from Definition 1.2 hold and, given

ŵ ∈ Ŵ , the element T ′
bw = πrT

′
il
· · ·T ′

i1
does not depend on the choice

of the reduced decomposition ŵ = πrsil · · · si1 . For instance, opera-

tors Π′
i

def
== τ+(T ′

−ωi
) for i = 1, . . . , n are pairwise commutative and,

importantly, W–invariant. One has : Π′
b =

∏n
i=1 (Π′

i)
ni for B− ∋ b =

−
∑

ni ωi.
The W–invariance of {Πb, b ∈ B−} simplifies significantly the rela-

tion of the E–polynomials to the P–polynomials:

P b = Eb for b = b− ∈ B− .(2.23)

In more detail, we have the following explicit proposition.

Proposition 2.3. (i) In the representation V of HH
♭
, the polynomial

τ+(T ′
bw)(1) equals qrb Eb for ŵ = πb, b ∈ B, rb ∈ Q.

(ii) In the symmetric case,

Π′
b(1) = qrbP b for b ∈ B− , rb ∈ Q,(2.24)

where Π′
i can be replaced by their restrictions RedW (Π′

i) to V
W

, which
are pairwise commutative W–invariant difference operators. �

We note that only positive powers of q appear in the coefficients
of Eb. As q → 0, the polynomials Eb− become the classical finite
dimensional Lie characters, which can be seen from (2.28) (upon the
symmetrization).

For the affine root systems considered in this paper (with α0 in terms
of the maximal short root ϑ), the connection was established between
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the polynomials Eb(t → ∞) and the Demazure characters of the cor-
responding irreducible affine Lie algebras. See [San] and, especially,
[Ion1], Theorem 1. Paper [Ion1] is based on the technique of intertwin-
ers (from [KS] in the GLn–case and [C6] for arbitrary reduced root
systems). We will not discuss this direction in this paper.

There is a relation between the limit t → 0 used here and the one
t → ∞. It goes through the general formula

E∗
b =

∏

ν∈νR

tlν(ub)−lν(w0)
ν Tw0(Eς(b)), where(2.25)

X∗ = X−1, q∗ = q−1, t∗ = t−1, ς(b) = −w0(b),

form [C8] and other author’s works. This connection is especially sim-
ple for the symmetric polynomials: Pb(X)∗ = Pb(X

−1) as b = b−, i.e.,
P b = Pb(t → 0) = Pς(b)(t → ∞). We use that Pb(X

−1) = Pς(b)(X).

Concerning the orthogonality of P , the denominator of the µ–function
from (2.26) vanishes in the limit:

µ =
∏

α∈R+

∞∏

j=0

(1 − Xαqj
α)(1 − X−1

α qj+1
α ).(2.26)

The constant term formula becomes a well-known identity:

〈µ〉 =

n∏

i=1

∞∏

j=1

1

1 − qj
i

, where qi = qνi.(2.27)

For b, c ∈ B− , the norm formula from (2.10) reads as:

〈P b(X)P c(X
−1)µ◦〉 = δbc

n∏

i=1

−(α∨

i ,b)∏

j=1

(1 − qj
i ) .(2.28)

3. Spherical and Whittaker functions

We will begin with the identities involving the Gaussians, which are
essentially from [C5]; then their limits t → 0 will be considered.

The second part of this section is devoted to the Whittaker limit of
the q, t–spherical function from [C5], which results in a formula for the
q–Whittaker function in terms of the P–polynomials.
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We note that the Whittaker limit is a general procedure that can be
applied to any solutions of the Macdonald eigenvalue problem (and its
various degenerations and generalizations).

3.1. Gauss-type integrals. By the Gaussians γ̃ we mean

γ̃⊕ =
∑

b∈B

q−(b,b)/2Xb, γ̃⊖ =
∑

b∈B

q(b,b)/2Xb.(3.1)

The multiplication by γ̃⊖ preserves the space of Laurent series with
coefficients in Q[t][[q

1
2 em ]], where m̃(B, B) = Z is from the definition

of Qq,t. Respectively, the coefficients must be taken from Q[t][[q−
1

2 em ]]
when the Gaussian γ̃⊕ is taken.

We will also use the real Gaussians defined as

γ±1 = q±x2/2, where Xb
def
== qxb , xb = (x, b), x2 =

∑

i

xαi
xω∨

i
.(3.2)

Note that considering γ̃⊕,⊖ as holomorphic functions (provided that
|q| > 1 and, respectively, |q| < 1) the functions γ̃⊕ /γ and γ̃⊖ γ are
B–periodic in terms of x.

The q–Mehta–Macdonald identity from [C5]

〈γ̃⊖µ◦〉 =
∏

α∈R+

∞∏

j=1

(1 − t−1
α q

(ρk ,α∨)+j
α

1 − q
(ρk,α∨)+j
α

)
(3.3)

provides the normalization constant for the q–Gauss integrals

〈Pb(X)Pc(X)γ̃⊖µ◦〉(3.4)

= q
(b,b)+(c,c)

2
−(b+c , ρk)Pc(q

b−ρk)Pb(q
−ρk)〈γ̃⊖µ◦〉,

where b, c ∈ B− . Obviously, it implies the duality formula (2.21).
Formula (3.4) can be naturally extended to the E–polynomials (the
proof even becomes simpler), but we do not need it in this paper.

There are counterparts of (3.4) for γ̃ + (with |q| > 1 if it is treated as
an analytic function), and for the Jackson summation taken instead of
the constant term functional. See [C5, C8]. The considerations from
this paper can be readily extended to these cases.

Taking the limit. Let us tend t → 0 in (3.4). The definition of the
P–polynomials implies that

lim
t→0

q−(c, ρk)Pc(q
z−ρk) = q(c+ , z) for c ∈ B− , c+ = wo(c).(3.5)
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Note that −(c, ρk) = (c+, ρk). For instance, it matches the evaluation
formula in (2.20): limt→0 q−(c,ρk)Pc(q

−ρk) = 1.
We come to the following formulas (c ∈ B− ):

〈γ̃⊖µ◦〉 =

n∏

i=1

∞∏

j=1

(1 − qj
i ),(3.6)

〈P b(X)P c(X)γ̃⊖µ◦〉 = q
(b,b)+(c,c)

2 Xc+(qb) 〈γ̃⊖µ◦〉.(3.7)

Here Xc+(qb) = q(c+,b) = q(c,b+) = Xb+(qc).

3.2. Global spherical function. One of the main advantages of the
technique of Gaussians is a possibility to introduce the spherical func-
tion as a reproducing kernel of the Fourier transform from Vγ−1, the
polynomial representation multiplied by the Gaussian γ−1, to the HH♭ –

module Vγ. We will need only the symmetric case here. We assume
that |q| < 1, which makes the considerations “naturally” compatible
with the limit t → 0. In this setting, the construction below is directly
related to the identities (3.4) (respectively, (3.7) in the limit).

We note that if the whole polynomial representation is considered,
then the corresponding anti-involutions of HH♭, generally, require the
t–localizations. Correspondingly, the definition of the Whittaker limit
of the nonsymmetric counterpart of formula (3.9) below (see [C5]) be-
comes more subtle.

We will use the notation γ̃λ and γλ for the Gaussians defined for
another set of variables Λ completely analogous to X (γ̃x, γx are old

γ̃, γ). Thus, γ̃λ = γ̃(qλ) and γλ = γ(qλ) = qλ2/2. We will also use

〈γ〉ρk

def
==

∑

a∈B

q
(ρk+a,ρk+a)

2 = γ̃⊖(qρk)q
(ρk,ρk)

2 .(3.8)

Theorem 3.1. Provided that |q| < 1, the function Ψ from the relation

γ̃⊖
x γ̃⊖

λ P◦(X, Λ)/γ̃⊖
x (qρk)

= Ψ(X, Λ; q, t)
def
==

∑

b∈B−

q
(b,b)

2
−(ρk,b) Pb(X) Pb(Λ

−1)

〈Pb(X)Pb(X−1)µ◦〉
(3.9)

is a well-defined Laurent series. It is an analytic function for all X, Λ
and for any choice of tν assuming that all P–polynomials exist (the
conditions |tν | < 1 are sufficient).
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The function P◦(X, Λ) defined via (3.9) is meromorphic for all X, Λ
and analytic apart from the zeros of γ̃⊖

x γ̃⊖
λ . Replacing γ̃⊖

x γ̃⊖
λ by γ−1

x γ−1
λ

in this definition, the corresponding function will be denoted simply by
P(X, Λ); it becomes totally analytic but not a (single-valued) function
in terms of Xb, Λb.

Both functions, P◦(X, Λ) and P(X, Λ), are X ↔ Λ–symmetric, W–

invariant with respect to X and Λ and satisfy the following extension
of the eigenvalue problem from (2.8):

La+(P(X, Λ)) = q(a+ , ρk)(
∑

a′∈W (a+)

Λ−1
a′ ) P(X, Λ).(3.10)

�

We note that Pb(X
−1)Pb(Λ) = Pςb(X)Pςb(Λ

−1) in (3.9); recall that
ς(x) = −w0(x) and Pςb(X) = Pb(X

−1). Applying ς to the summation
index b does not change the result. Thus:

P◦(X, Λ) = P◦(Λ, X) = P◦(ς(X), ς(Λ)).

The following can be used for an abstract (i.e., without an explicit
formula) definition of the function P◦(X, Λ). It goes through the spher-
ical polynomials {Pc = Pc/Pc(q

−ρk), c ∈ B−} with a common coefficient
of proportionality:

P◦(X, qc−ρk)) =
Pc(X)

Pc(q−ρk)

∏

α∈R+

∞∏

j=1

( 1 − q
(ρk ,α∨)+j
α

1 − t−1
α q

(ρk ,α∨)+j
α

)
.(3.11)

Here we substitute λ = c♯, Λ = qc♯ in the left-hand side of (3.10)
and divide it by the Gaussian γ̃⊖

x . This formula can be considered as
a q, t–generalization of the Shintani-Casselman-Shalika formula from
[Shi, CS]. Its limit as t → 0 will be discussed in the next section.

3.3. Global Whittaker function. We are now in a position to define

the global q–Whittaker function P̃◦
x(X, Λ) from the relation

γ̃⊖
x P̃◦

x(X)
def
== lim

t→0

γ̃⊖(qx−ρk)

γ̃⊖(qρk)
P◦(q−ρkX).(3.12)

Here we always assume that tν → 0 for all ν. The function P̃x is
defined for γ−1 instead of γ̃⊖:

P̃x(X, Λ))
def
== lim

t→0
q(x , ρk)P(q−ρkX, Λ).(3.13)
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More explicitly, provided that |q| < 1,

P̃x(X)
def
== γx lim

k→∞
q

(ρk,ρk)

2

(
γ−1

x P
)
(qx−ρk) =(3.14)

lim
k→∞

q
(ρk,ρk)

2 q−
(x−ρk,x−ρk)

2 P(qx−ρk) = lim
k→∞

q(x , ρk) P(qx−ρk).

In this definition, Λ remains untouched, so the limit is a W–invariant
function with respect to Λ. As a matter of fact, the key fact we need
is the existence of the limit

lim
k→∞

Ψ(qx−ρk, Λ; q, t) = Ψ̃(X, Λ; q))(3.15)

for Ψ(X, Λ; q, t) from (3.9). Let us calculate the Whittaker Ψ̃ in full
detail. It is essentially a generating function for the P–polynomials ;
see Proposition 2.3.

Theorem 3.2. (i) Provided that |q| < 1, the Whittaker function P̃◦
x is

given by the formula

P̃◦
x(X, Λ)γ̃⊖

x γ̃⊖
λ

= Ψ̃(X, Λ; q)
def
==

∑

b∈B−

q
(b,b)

2
Xb+ P b(Λ

−1)
∏n

i=1

∏−(α∨

i ,b)
j=1 (1 − qj

i )
,(3.16)

where the power series in the right-hand side is well defined coefficient-
wise and converges everywhere; see (3.5) and (2.28). The formula for

P̃x is with γ−1
x γ−1

λ instead of γ̃⊖
x γ̃⊖

λ and with the same summation in
the right-hand side.

(ii) The ratio of the functions P̃◦
x(X, Λ), P̃x(X, Λ) is B–periodic

with respect to X and Λ. The dependence on Λ is governed by (3.10)

for the limits L
Λ

a+
of the operators La+ as t → 0 upon X 7→ Λ :

L
Λ

a+
(P̃x(X, Λ)) = X−1

a
−

P̃x(X, Λ), X−1
a
−

= X−w0(a+ ).(3.17)

In terms of X, these functions satisfy the q–Toda system of difference
equations:

L̃a+(P̃(X, Λ)) = (
∑

a′∈W (a+)

Λ−1
a′ ) P̃(X, Λ),(3.18)

L̃a+

def
== lim

t→0
q−(a+ , ρk)

(
q(x , ρk)(Γ−1

ρk
La+ Γρk

)q−(x , ρk)
)
,(3.19)

Γb(F (X)) = F (qbX), ΓbXa = q(b,a)XaΓb for b ∈ Cn.
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Here the difference operators La+(a+ ∈ B+) from (2.8) are conjugated
by the translation Γ−ρk

(it is (ρk)
′ in the notation from (1.2)) and then

by the operator of multiplication by q(x , ρk). �

We note that Xb+ P b(Λ
−1) in the summation for Ψ̃ can be replaced

by X−1
b P b(Λ). Recall that, generally, Pb(X

−1) = Pς(b)(X) and b 7→
ς(b) = −w0(b) does not change the coefficients in the summation from
(3.16).

Concerning the notation, one can use P̃◦
λ, P̃λ for the Whittaker

limits with Λ, λ instead of X, x, but we do not need these functions in

the paper. We put x in P̃x (not always) only to emphasize that the
Whittaker limit makes the dependence on X and Λ asymmetric.

The construction of the Toda operators in terms of the Macdonald
operators (and their various degenerations) is essentially due to In-
ozemtsev and Etingof. The paper [Et] contains a systematic consider-
ation of various Whittaker functions and related objects. This paper
is mainly about GLn, but our (3.19) is quite analogous to the limiting
procedure there, as was expected in Remark 1 at the end of [Et].

We remark that our q–Toda operators are “dual” to those from [Et,
GLO1] (the translation operators must be replaced by their inverses),
which is connected with our choice of the limit t → 0 versus t → ∞ in
these papers. It will be discussed below in greater detail.

Theorem 3.3. Continuing the previous theorem, let X = qc for c ∈
B− . Then the Shintani-type identity holds:

γ̃⊖(1) P̃◦(qc, Λ) = P c(Λ)

n∏

i=1

∞∏

j=1

( 1

1 − qj
i

)
,(3.20)

where γ̃⊖(1) =
∑

b∈B qb2/2. More explicitly,

∑

b∈B−

q(c−b,c−b)/2 P b(Λ)
∏n

i=1

∏(α∨

i , b+)
j=1 (1 − qj

i )

= γ̃⊖(Λ)P c(Λ)
n∏

i=1

∞∏

j=1

( 1

1 − qj
i

)
.(3.21)

Proof. Due to (3.12),

γ̃⊖(qc)P̃◦
x(q

c, Λ)) = lim
t→0

γ̃⊖(qc−ρk)

γ̃⊖(q−ρk)

(
P◦(qc−ρk, Λ)

)
.(3.22)
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Applying the identity (3.11) for X transposed with Λ (the duality)

inside
(
·
)
,

γ̃⊖(qc)P̃◦
x(q

c, Λ)) = lim
t→0

γ̃⊖(qc−ρk)

γ̃⊖(q−ρk)

( Pc(Λ)

Pc(q−ρk)

n∏

i=1

∞∏

j=1

1

1 − qj
i

)
.(3.23)

Recall that

〈γ〉ρk
= 〈γ〉c−ρk

= γ̃⊖(qc−ρk)q
(c−ρk,c−ρk)

2 ,(3.24)

where we use that c is from B; see (3.8). Hence,

γ̃⊖(qc−ρk)

γ̃⊖(q−ρk)
= q(c, ρk)−c2/2,(3.25)

Moving q(c,ρk) from (3.25) to the denominator and combining it with
Pc(q

−ρk), we apply (3.5):

lim
t→0

q−(c,ρk)Pc(q
−ρk) = 1.

Finally, we move q−c2/2 from (3.25) to the left-hand side of (3.23)

and observe that qc2/2γ̃⊖(qc) does not depend on c, so it equals γ̃⊖(1).
�

We note that by making q = 0 in (3.21), we arrive at the trivial
identity P b(Λ; q = 0) = P b(Λ; q = 0), where P b(Λ; q = 0) is the classical
character for the dominant weight w0(b).

The p–adic limit q → 0 (in this setting) transforms (3.11) to the clas-
sical Shintani-Casselman-Shalika formulas. See [C8] concerning the p–
adic degeneration of the DAHA theory (the limit q → ∞ is considered
there).

3.4. One-dimensional theory. We will begin with the explicit for-
mula for the P–polynomials in the case of A1. The formulas for the
Rogers polynomials are well known as well as for their limits as t → 0.
Such limits are the q–Hermite polynomials introduced by Szegö and
considered in many works; see, e.g., [ASI]. Let us reestablish the for-
mulas we need for these polynomials using the (nonsymmetric) inter-
twining operators.

Let α = αi = ϑ, s = s1, ω = ω1 = ρ; so α = 2ω and the standard
invariant form is (nω, mω) = nm/2. Similarly,

X = Xω = qx, X(qnω) = qn/2, Γ(F (X)) = F (q1/2X),
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i.e., x(nω) = n/2, Γ(x) = x + 1/2, ΓX = q1/2XΓ.

We will also use π
def
== sΓ : X 7→ q1/2X−1; then π2 =id and Y = Yω =

πT in DAHA of type A1. Concerning the Gaussians, (x, x) = xαxω =

2x2 and γ = q(x,x)/2 = qx2
; note that γ(qnω) = qn2(ω, ω)/2 = qn2/4. Also,

x − ρk = Γ−k(x) = x − k/2 and q(x,ρk) = qxk in the formulas for the
Whittaker limit.

We set t = t0 = qk for k ∈ C,

P n = P−nω = E−nω.

Then P 1 = 1, P 2 = X + X−1,

P 2 =X2 + X−2 + 1 + q, P 3 = X3 + X−3 +
1 − q3

1 − q
(X + X−1),

P 4 = X4 + X−4 +
1 − q4

1 − q
(X2 + X−2) +

(1 − q4)(1 − q3)

(1 − q)(1 − q2)
.(3.26)

Generally, for the monomial symmetric functions M0 = 1, Mn = Xn +
X−n as n > 1,

P n = Mn +

[n/2]∑

j=1

(1 − qn) · · · (1 − qn−j+1)

(1 − q) · · · (1 − qj)
Mn−2j .(3.27)

The norm formulas from (2.26), (2.27), (2.28) read as follows:

〈Pm(X)P n(X)µ◦〉 = δmn

n∏

j=1

(1 − qj) ,(3.28)

where m, n = 0, 1, . . ., µ◦ = µ/〈µ◦〉 for the classical theta-function

µ =
∞∏

j=0

(1 − X2qj)(1 − X−2qj+1), 〈µ〉 =
∞∏

j=1

1

1 − qj
.(3.29)

Due to Theorem 2.2, the composition R = (1 + T )Xπ is the raising
operator for the P–polynomials. Namely, upon the restriction, Red, to
the symmetric polynomials:

q
n
2 R(P n) = P n+1, where R = Red(R) =

X2Γ−1 − X−2Γ

X − X−1
.(3.30)

This readily gives (3.27).
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The L–operators. We will begin with the formula for the q–Toda
operator from (3.19):

L̃ = lim
t→0

(
qkx Γ−1

k L Γk q−kx
)

= (1 − X−2)Γ + Γ−1(3.31)

for L = Lω = Y + tY −1 , where ΓkX = tk/2XΓk. We will also use

L̃γ = γ−1L̃γ = q1/4
(
XΓ + X−1(Γ−1 − Γ)

)
for γ = qx2

.(3.32)

Similarly for the straight specialization of L at t = 0,

L = lim
t→0

L = (1 − X2)Γ + (1 − X−2)Γ−1,

Lγ = γ−1Lγ = −q1/4(X − X−1)−1(Γ − Γ−1).(3.33)

This operator is proportional to the so-called Askey -Wilson divided
difference operator. The latter serves as the shift operator in the the-
ory of Rogers’ polynomials (with any t) and the basic hypergeometric
function. See [AI] and also [C8], Chapter 2.

Its defining property is the relation

Lγ(P n) = −q1/4(qn − q−n)P n−1, n = 1, 2 . . . .(3.34)

Let us give a convenient reference concerning (3.30),(3.34): [OS], for-
mulas (20-25).

3.5. Whittaker function for A1. Provided that |q| < 1, we can now

introduce the Whittaker function P̃◦
x from the relation:

P̃◦
x(X, Λ)γ̃⊖

x γ̃⊖
λ = Ψ̃(X, Λ)

def
==

∞∑

n=0

q
n2

4
Xn P n(Λ)∏n
j=1(1 − qj)

,(3.35)

where γ̃⊖
x =

∑∞
j=−∞ qj2/4Xj (γ̃⊖

λ is defined in terms of λ).

The function Ψ̃(X, Λ) is actually the so-called generating function
for q–Hermite polynomials; see, e.g., [Sus] formulas (26),(27) and the
references there. Its interpretation as a q–Whittaker function (upon
the multiplication by the Gaussians) does not seem to have been no-

ticed, although the difference equation for Ψ̃(X, Λ) was certainly known
(formula (19) ibid.).

The power series Ψ̃(X, Λ) converges everywhere. The Λ–dependence
(see (3.17)) readily follows from (3.34):

L
Λ

γ (Ψ̃(X, Λ)) = X Ψ̃(X, Λ), L
Λ

γ = Lγ(X 7→ Λ).(3.36)
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In terms of X, the function Ψ̃ satisfies the γ–twisted q–Toda equa-
tion, which reads as follows:

L̃γ (Ψ̃(X, Λ)) = (Λ + Λ−1) Ψ̃(X, Λ).(3.37)

Shintani-type formula. Let us consider Theorem 3.3 in the A1–

case; we plug in X = q−n/2 for n = 0, 1, . . . , . Then

qn2/4 Ψ̃(q−n/2, Λ) = γ̃⊖(Λ)P n(Λ)

∞∏

j=1

( 1

1 − qj

)
.(3.38)

Recall that γ̃⊖(qλ) =
∑

j∈Z
qjλ+j2/4. Here the left-hand side and the

right-hand side coincide as Laurent series or as analytic functions.
This formula becomes a trivial identity for q = 0, i.e., in the case of

the classical characters

P n(X; q = 0) =
Xn+1 − X−n−1

X − X−1
.

3.6. The case |q| > 1. Generally, the Whittaker-type limiting pro-
cedure as t → ∞ is naturally connected with the theory at |q| > 1 and
can lead to new formulas. However, in the symmetric setting of this
paper, there is a direct connection between the Whittaker functions
defined as |q| < 1, t → 0 and |q| > 1, t → ∞, which we are going to
discuss now.

We follow [C5] and use γ̃⊕ instead of γ̃⊖ and γ instead of γ−1. In
the nonsymmetric setting, the corresponding global spherical function
is really different from that for |q| < 1. However, there exists a simple
connection in the symmetric case.

The q, t–definition we need is as follows (cf. (3.9)):

γ̃⊕
x γ̃⊕

λ P◦
⋆/γ̃

⊕(qρk) =
∑

b∈B−

q−
(b,b)

2
+(ρk ,b) Pb(X) Pb(Λ)

〈Pb(X)Pb(X−1)µ◦〉
,(3.39)

where q > 1 and P◦
⋆ satisfies the claims of Theorem 3.1. The Whit-

taker limiting procedure requires here taking t → ∞ for ensuring the
convergence.
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The formulas are:

γ̃⊕
λ γ̃⊕

x P̃◦
⋆ = γ̃⊕

λ lim
t→∞

γ̃⊕
x (qx−ρk)

γ̃⊕
x (qρk)

P◦
⋆(q

−ρkX)(3.40)

def
== Ψ̃⋆(X, Λ; q) =

∑

b∈B−

q−
(b,b)

2
Xb Pb(Λ; q, t → ∞)

∏n
i=1

∏−(α∨

i ,b)
j=1 (1 − q−j

i )
.(3.41)

Cf. (3.12) and (3.16). Here

lim
t→∞

Pb(Λ; q, t) = lim
t−1→0

Pb(Λ
−1; q−1, t−1) = P b(Λ

−1; q−1).(3.42)

Therefore Ψ̃⋆(X, Λ; q) simply coincides with Ψ̃(X−1, Λ; q−1) in the no-
tation from (3.16).

We conclude that P̃◦
⋆ satisfies the eigenvalue problem

L̃⋆
a+

(P̃⋆(X, Λ)) = (
∑

a′∈W (a+)

Λ−1
a′ ) P̃⋆(X, Λ),(3.43)

L̃⋆
a+

def
== lim

t→∞
q−(a+ , ρk)

(
q−(x , ρk)(Γ−1

ρk
La+ Γρk

)q(x , ρk)
)
,(3.44)

where Γb(F (X)) = F (qbX). Compare with (3.19); the conjugation
by q(x , ρk) there is replaced by the conjugation by q−(x , ρk). Thus the
operators L⋆

a+
(X, q−1) generalize those considered in [Et, GLO2]. For

instance, in the one-dimensional case in the notation from (3.31):

L̃⋆ = lim
t→∞

(
q−kx Γ−1

k L Γk qkx
)

(3.45)

= lim
t→∞

t−1/2
(t(t−1X2) − 1

t−1X2 − 1
(t1/2Γ) +

t(tX−2) − 1

tX−2 − 1
(t−1/2Γ−1)

)

= (1 − X2)Γ + Γ−1.

4. Harmonic analysis topics

The real integration or Jackson integration is, generally, necessary
when the Gaussian γ−1 in the constructions above is replaced by γ.
A typical example is as follows. Let us consider the DAHA-Fourier
transform in terms of the constant term functional (or using the imag-
inary integration) in the space of Laurent polynomials multiplied by
γ−1. Then the inverse transform will involve the Jackson (or real)
integration and the proper choice of the Gaussian is γ instead of γ−1.
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Such “switch” of the Gaussians is necessary algebraically due to the
properties of the involution of DAHA that governs the Fourier trans-
form. Correspondingly, the contour of integration, real or imaginary,
must ensure the convergence, i.e., its choice is of analytic nature. The
direction is real for γ and imaginary for γ−1. It is of course for |q| < 1;
if |q| > 1 then it must be the other way round. Generally, especially,
in the absence of the Gaussians (for instance, in the Harish-Chandra
theory), the directions, real or imaginary, are selected to match the
growth estimates for the spherical function, used as kernels of the cor-
responding transforms.

We establish such estimates in the real direction. The theory appears
surprisingly “precise”, although the results of the paper are far from
being complete. Only the first term of the asymptotic expansion is
obtained. We note that in our setting, the global spherical function is
periodic in the imaginary direction, so the imaginary growth estimates
are irrelevant. We stick to the Jackson integration, which is actually
very similar to the “classical” case of real integration; the estimates we
obtain serve both theories.

4.1. Growth estimates. It is possible to evaluate the growth of the
global q, t–spherical function P(X, Λ; q, t) from Theorem 3.1 in the real
directions. Let 0 < q < 1, tν = qkν

ν (or, simply, t = qk) for kν ∈ C

provided the existence of all spherical symmetric polynomials {Pb−},
equivalently, provided that the polynomial representation is semisim-
ple and the radical of the evaluation pairing vanishes (see [C9]). The
assumption ℜkν > −1/hν for the Coxeter numbers hν = 1 + (ρ, (θ′)∨),
where θ′ = θ, ϑ for ν = νlng, νsht, is sufficient (but not necessary).

For x ∈ Cn, let x+
def
== u(x) where u(ℜ(x)) is a unique vector belong-

ing to the closure C+ =
∑n

i=1 R+ ωi of the standard positive nonaffine
Weyl chamber C+ =

∑n
i=1 R>0 ωi.

Given a p–sequence of vectors x′ = {x′
1, . . . , x

′
p} ⊂ Rn and a p–

sequence of positive integers n = {n1, . . . , np}, we use the dot-notation
n · x′ for

∑p
j=1 njx

′
j .

Theorem 4.1. (i) For arbitrary x, λ ∈ Cn, kν ∈ C, we set :

P◦
†(x, λ; q, k)

def
==

γ̃⊖(qx)γ̃⊖(qλ)

γ̃⊖(qx++λ+−ρk)γ̃⊖(qρk)
P◦(qx, qλ; q, qk).(4.1)
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Given a real p–sequence x′, let the components of n tend to +∞ in any
way provided that (n · x′)+ ∈ C+. Then the limit

lim
n→∞

P◦
†(x + n · x′, λ; q, k)(4.2)

exists if ℜ(λ)+ ∈ C+; moreover, it depends only on λ and is nonzero for
all such λ. Here we choose x to ensure that γ̃⊖(q(x+n·x′)++(λ)+−ρk) 6= 0
for any n.

Under the same constraints, consider P◦
†(x + n · x′, λ + n · λ′; q, k)

for a real p–sequence λ′ satisfying (n ·λ′)+ ∈ C+ . Then the limit exists
too and is an absolute nonzero constant depending only on q, k.

(ii) In the case of the Whittaker function P̃, we remove k from the
formulas and replace x+ by −x:

P̃◦
†(x, λ; q)

def
==

γ̃⊖(qx)γ̃⊖(qλ)

γ̃⊖(qλ+−x)
P̃◦(qx, qλ; q) .(4.3)

Provided that n · x′ ∈ −C+ (it was not needed in the q, t–case), the
claims from (i) hold true for

lim
n→∞

P̃◦
†(x + n · x′, λ + n · λ′; q).(4.4)

Here γ̃⊖(q{·}) is nonzero at (λ + n · λ′)+ − (x + n · x′) ; we continue
to assume that (n · x′)+ ∈ C+ and, respectively, either ℜ(λ)+ ∈ C+ as
λ′= 0 or (n · λ′)+ ∈ C+ . �

The justification of (i) involves the analysis of the corresponding
difference equations for P in the limit of large x and/or large λ, but we
use the explicit formulas too. We note that the asymptotic difference
equations provide the asymptotic limit (the factor in the definition of
P◦

† from (4.3)) only up to a periodic function. So we need to use that
both, P◦ and P◦

† , are meromorphic. Part (ii) is obtained as a limit of
(i).

Taking x′ and λ′ real vectors is, actually, insignificant in the theorem.
Since P◦ and P◦

† are 2πi log(q)P ∨–periodic in the imaginary direction,
it suffices to impose the conditions from (i,ii) for their real parts only.

Due to the claim that the limits do not depend on the particular way
the integers {ni} approach the infinity, the estimates can be calculated
precisely using the Shintani-type formulas. Moreover, this approach
provides the best justification of (i) if one involves here that P◦ is a
unique (in its class) solution of the spherical eigenvalue problem that
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“goes through” the P–polynomials in the sense of Shintani-type for-
mulas.

4.2. Exact asymptotic formulas. Let us obtain them in the (most
important) case λ′ = 0. The key ingredient is the inverse of the positive
half of the µ–function, a direct q, t–counterpart of the celebrated the
Harish-Chandra c–function [HC]:

σ(X; q, t) =
∏

α∈R+

∞∏

j=0

1 − tαXαqj
α

1 − Xαqj
α

.(4.5)

Corollary 4.2. (i) Provided the conditions of part (i) of the theorem
as λ′ = 0, including ℜ(λ)+ ∈ C+,

lim
n→∞

P◦
†(x + n · x′, λ; q, k) = ̺(q, t) 〈µ〉 σ(qλ+; q, t)(4.6)

for ̺(q, t)
def
== 〈µ〉

∏

α>0

1 − q(ρk,α)

1 − tαq(ρk ,α)

=
∏

α>0

∞∏

j=1

(1 − q(ρk ,α)+(j−1) να)(1 − q(ρk ,α)+j να)

(1 − tαq(ρk,α)+(j−1) να)(1 − t−1
α q(ρk,α)+j να)

,(4.7)

where 〈µ〉 is the constant term of µ from (2.4); ̺ = 〈
∑

w∈W w(µ) 〉.
(ii) Correspondingly, imposing n ·x′ ∈ −C+ and the other conditions

in the Whittaker case,

lim
n→∞

P̃◦
†(x + n · x′, λ; q) = 〈µ 〉 σ(qλ+ ; q, 0)(4.8)

=
n∏

i=1

∞∏

j=0

1

( 1 − qj+1
i ) ( 1 − q

(λ+ , α∨

i )+j
i )

.

In contrast to this formula, assuming that (n · λ′)+ ∈ C+, the λ–limit
does not depend on x:

lim
n→∞

P̃†(x, λ + n · λ′; q) = 〈µ 〉 =

n∏

i=1

∞∏

j=1

1

1 − qj
i

.(4.9)

The limit remains the same if we substitute x 7→ x + n · x′ in (4.9) for
x′ such that ℜ((n · λ′)+ − n · x′) ∈ C+.

Proof. It suffices to calculate

lim
c+→∞

P◦
†(c − ρk, λ; q, k), where c ∈ B− ,(4.10)
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and by c+ → ∞, we mean that (αi, c+) → ∞ for all i = 1, · · · , n.
Recall that c+ = w0(c), where c is always from B− in this calculation.

Using the definition and formula (3.11),

P◦
†(c − ρk, λ; q, k) =

γ̃⊖(qc−ρk)γ̃⊖(qλ)

γ̃⊖(qλ+−c)γ̃⊖(qρk)
(4.11)

×
Pc(q

λ)

Pc(q−ρk)

∏

α∈R+

∞∏

j=1

( 1 − q
(ρk, α∨)+j
α

1 − t−1
α q

(ρk, α∨)+j
α

)
.(4.12)

The special value Pc(q
−ρk) is given by (2.20); it is the exponent q(ρk , c)

times the product term, which will be combined (in the limit of large
c+) with the product from (4.12). The result is exactly ̺(q, t), the
constant term of the symmetrization of µ from [M1, M2, C2].

We note that 〈µ〉 was obtained in this calculation without any refer-
ence to its “true” meaning as the constant term of µ. It is interesting
but not very much surprising; in [C8] the norm-formula for Macdo-
nald polynomials (including the constant term formula) was actually
deduced from the evaluation formula. Something similar occurs here.

Since c ∈ B (actually c ∈ B−), we can remove it from the theta-
functions γ̃⊖(qc−ρk) and γ̃⊖(qλ+−c), the multiplicators are the same as

for the Gaussians q−(c−ρk)2/2 and q−(λ+−c)2/2. It gives:

γ̃⊖(qc−ρk)γ̃⊖(qλ)

γ̃⊖(qλ+−c)γ̃⊖(qρk)
= q(c, ρk−λ+).(4.13)

The factor q(c, ρk) will cancel the same term from Pc(q
−ρk) (in the de-

nominator). The remaining part of (i) is taking the limit

lim
c+→∞

q−(c, λ+)Pc(q
λ),

which is a subject of the following lemma.

Lemma 4.3. Provided that |q| < 1 and ℜ(x+) ∈ C+,

lim
c+→∞

q−(c, λ+)Pc(q
x) = σ(qx+; q, t).

Proof. In the multiplicative notations, q(c, x+) = q(w−1(c), x) = Xw(c)

for w(ℜ(x)) ∈ C+, i.e., this monomial is from the leading symmetric
monomial function of the Pc(X). Its coefficient is 1 by construction.
One can assume here that w = 1 due to the W–invariance of Pc. Then
X−1

c Pc will be a power series in terms of Xαi
for i = 1, · · · , n.
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Calculating the corresponding difference equations (in the limit of
large c+) is the most direct way to identify its expansion with σ(X).
It suffices to uses the leading terms of the L–operators serving the
symmetric Macdonald polynomials calculated in [C2], Proposition 3.4.
Then we observe that σ(X) is a solution of this system of equations. It
gives the required since both are power series in terms of Xαi

with the
constant term 1. It is also possible to involve the inner product from
the theory of Macdonald polynomials. �

The lemma gives (4.6). The Whittaker variants from (ii) are its
straightforward limits; the condition ℜ(x) ∈ −C+ must be imposed in
(4.8) and no such conditions are necessary in (4.9). A direct calculation
of these two limits via the Shintani-type formula (3.20) is possible as
well. �

The lemma is known for the Askey-Wilson polynomials [Is] ([FZ]
contains a comprehensive discussion of the A1–case). See [vD] and
references therein for a counterpart of this lemma in the case of Koorn-
winder polynomials (the root system C∨Cn). We note that the Laurent
expansion of the rank one µ–function is very explicit, and Lemma 4.3 is
straightforward. As for Corollary 4.2, its one-dimensional versions (for
the basic hypergeometric function or similar) are likely to be known.

The Harish-Chandra formula. The corollary is an exact general-
ization of the Harish-Chandra fundamental asymptotic formula for the
classical spherical functions. Indeed, in terms of P◦, asymptotically,

lim
n→∞

P◦(x + n · x′, λ; q, k)(4.14)

= ̺(q, t)
γ̃⊖(qx++λ+−ρk)γ̃⊖(qρk)

γ̃⊖(qx+)γ̃⊖(qλ+)
σ(qλ+; q, t).

Up to a simple W–invariant and B–periodic factor C(x, λ), depending
of course on q, k (it is Z–periodic in terms of k), we can switch to P

here, replacing all γ̃⊖(qx) by γ−1(qx) = q−x2/2. It gives that in the limit
of large ℜ(x)+ ∈ C+,

P◦(x, λ; q, k) ∼ C(x, λ) ̺(q, t) q−(x+, λ+−ρk)+(λ+, ρk) σ(qλ+ ; q, t).(4.15)

Corollary 4.4. We continue to assume that all spherical polynomial
{Pb−} exist; for instance, the conditions kν 6∈ −1/hν − Q+ for the
Coxeter numbers hν of R are sufficient. Provided that ℜ(λ)+ ∈ C+,
the global spherical function P◦(x, λ; q, k) is bounded in terms of x as
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C+ ∋ ℜ(x)+ → ∞ if and only if

0 < (ℜ(λ)+, α∨
i ) ≤ ℜ(ki) for i = 1, . . . , n, which implies ℜ(kν) > 0.

If ℜ(λ)+ ∈ C+ is allowed, then P◦
†(x, λ; q, k) asymptotically approaches

a polynomial in terms of {xi} of degree no greater than n, the rank of
the root system. �

The dependence of x in the right-hand side of (4.15) is as in the
Harish-Chandra formula [HC]. The corresponding degeneration of HH
(and all related objects) is the procedure q → 1, where we set Xb = e−zb

and zb, λb, k are considered the basic new variables upon the degenera-
tion. We take −zb here because the base q is smaller than 1. The limit
of the right-hand side of (4.15) can be readily controlled using the func-
tional equation for the theta-function γ̃⊖. Up to some renormalization,
it becomes (for large ℜ(z+)):

Const

n∏

i=1

Z
(α∨

i , λ)−ki

i

∏

α∈R+

Γ(λ∨
α)

Γ(λ∨
α + kα)

for Z = ez, z = z+, λ = λ+.

The factor q−(λ+, ρk), which ensures the X ↔Λ– duality of the q, t–
formula, vanishes in the limit; the duality collapses under the degener-
ation to the Harish-Chandra theory.

Respectively, Corollary 4.4 is a q, t–version of the description of the
bounded spherical functions from [HJ].

Technically, (4.15) matches the growth estimates for complex Lie
groups because real Lie group result in the terms like Γ(λ∨

α/2) in this
formula, which is not the case.

The discussion of the limit q → 1 in more detail, including managing
the global spherical functions, i.e., the left-hand side of (4.15), will
be continued elsewhere. It should be possible to reprove the classical
estimates using the q, t–theory.

Claim (i) of the theorem can be naturally extended toward including
the Whittaker limit as follows.

4.3. When k → ∞ . Let as reformulate (4.17) entirely in terms of the
function Ψ from (3.9). Namely, provided the conditions from Theorem
4.5,(i), the limit of the function

Ψ†(x, λ; q, k)
def
==

(
γ̃⊖(qx++λ+−ρk)

)−1
Ψ(X, Λ; q, t)(4.16)
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exists. Similarly, Ψ̃†(x, λ; q)
def
==

(
γ̃⊖(qλ+−x)

)−1
Ψ̃(X, Λ; q). The Whit-

taker limit becomes simply:

lim
k→∞

Ψ(qx−ρk, qλ; q, qk) = Ψ̃(qx, qλ; q)).

See (3.15).

Given real k′
ν ≥ 0, let us replace k by k +n′k′ for n′ ∈ N in (4.2) and

analyze the limit

lim
{n,n′}→∞

Ψ†(x + n · x′, λ + n · λ′; q, k + n′k′).(4.17)

In the non-simply-laced case, n′ can be treated as a 2–vector {n′
sht, n

′
lng}

and n′·k′ considered instead of n′k′; then both components are supposed
to approach infinity (in this paper).

Theorem 4.5. We represent k′
ν = uν + vν for non-negative real uν, vν

and pick the directions x′, λ′ such that

(a) (n · x′)+ − n′ρu ∈ C+ ∋ ℜ(λ)+ when λ′ = 0 or(4.18)

(b) (n · x′)+ − n′ρu ∈ C+ ∋ (n · λ′)+ − n′ρv when λ′ 6= 0

for all n, n′. Then the limit (4.17) exists subject to conditions from part
(i) of Theorem 4.1, including the strict positivity requirement ℜ(λ)+ ∈
C+. It does not depend on x in case (a) and is a x, λ–constant under
(b). If k′ > 0 then the limit does not depend on k too, i.e., depends
only on x for (a) and is an absolute constant for (b). �

Theorem 4.1 corresponds to the case k′ = 0; then the limit does
depend on k. The rule here is that the limit does not depend on the
vectors x, λ or k involved in the limit, provided that the corresponding
directions and the values of the vectors which are fixed are generic.

The Whittaker limiting procedure can be treated as an extreme case
of the theorem as follows. Let k = n′k′ assuming that k′ > 0 and
n = {n′}. We take λ′ = 0, x′ = −ρk ′ . Then the limit (4.17) still exists
but now it depends on x (and depends on λ too because we set λ′ = 0).
Explicitly,

Ψ†(x, λ; q, k) =
(
γ̃⊖(qλ+−x)

)−1
Ψ(qx+n′ x′

, qλ; q, qn′ k′

),

since (x + n′x′)+ = ρk − x for sufficiently large n′. Actually, we do not
need Ψ† here; the correction factor (γ̃⊖(qλ+−x))−1 does not depend on
n′. We arrive at the procedure from (3.12).
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We believe that the following calculation is clarifying. Let us take
generic extreme x′ and λ′ in (4.18):

x′ = ρu , λ′ = ρv, so x′
+ + λ′

+ − ρ′
k = 0.

Similar to the Whittaker case, we do not need Ψ† here. Assuming that
all uν and vν are nonzero,

lim
n′→∞

Ψ(x + n′ x′, λ + n′ λ′; q, k + n′k′)

=
∑

b∈B+

q
(b,b)

2
Xb Λς

b∏n
i=1

∏(α∨

i , b)
j=1 (1 − qj

i )
(4.19)

for Λς = w0(Λ
−1). Thus, we obtain a non-constant dependence on x

and λ here, but the output is (one of the variants of) the multi-variable
q–exponential function, i.e., significantly simpler that the Whittaker
one.

A Whittaker variant of this calculation is actually an extreme case
of formula (4.9). It is:

lim
n→∞

Ψ̃(x + (n · y′)+, λ + n · y′; q)(4.20)

=
∑

b∈B+

q
(b,b)

2
qxb−λb

∏n
i=1

∏(α∨

i , b)
j=1 (1 − qj

i )
,

where we use the same y′ for x and λ (but in somewhat different
way), assuming that ℜ(n · y′)+ ∈ C+. Note the sign of (n · y′)+;
the growth estimates for the q–Whittaker functions considered above
required taking the direction from the negative Weyl chamber. The
proof is simple; we only need to know the leading coefficient of P b is 1.

Discussion. The theorems guarantee exponential growth (to be
exact, no greater) of the function P◦ including the boundaries of the
domains in the theorems.

In more detail, the Gaussian-type corrections used in the definitions
of P–functions and the corresponding Ψ–functions are not sufficient
to ensure the existence of the limits on the boundary of the domains
considered in Theorem 4.1 and 4.5. Even if they are sufficient for the
convergence (as in the Whittaker case), then the limits can depend on
the initial x, λ. For instance, when (n · x′)+, (n · λ′)+ belong to faces
of the Weyl chamber C+, the limits are expected to be connected with
the spherical (and Whittaker) functions for subsystems of R.
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The role of the condition ℜ(λ)+ ∈ C+ as λ′ = 0 is also important
and not clarified in full. As it was claimed, if ℜ(λ)+ 6∈ C+ then (4.16),
generally, diverges, but the growth is polynomial.

A description of such and similar extreme situations and the corre-
sponding asymptotic systems of difference equations is a natural chal-
lenge.

Numerical experiments in the rank one case confirm that the con-
vergence condition (4.18) is sharp. It is not clear what happens if
x′ is taken non-proportional to ρk ′ (especially in the non-simply-laced
case when k = {ksht, klng}). Generally, for any x′ ∈ C+, the conver-
gence of Ψ(x + n′x′, λ; q, k + n′k′)† is granted for 0 ≤ k′ < ko, where
ko = ko(x

′) > 0. What is the formula for ko(x
′) and for which x′ the

limit exists at such extreme ko(x
′) ?

4.4. Jackson integrals. We are going to integrate the product of
two global spherical functions for the µ–measure twisted by the plus-
Gaussian. The previous section guarantees that the growth of this
function in real directions is no greater than exponential. Due to the
presence of the Gaussian, this is sufficient to ensure the convergence
of the Jackson summations in the theorem below. This theorem is not
from [C5], but its proof is based on the same technique (see also [C8]).

Let us fix ξ ∈ Cn and define the Jackson summation as follows:

〈f〉ξ
def
== |W |−1

∑

w∈W,b∈B

f(qw(ξ)+b), where w(ξ) + b = (bw)((ξ)).

Here the affine action of Ŵ from (1.7) is used; f can be any function
well defined at the set {qw(ξ)+b}. Recall that the notation 〈f〉 was used
for the constant term of a Laurent series f . We continue to assume
that |q| < 1.

As above, Xα(qξ) = q(α,ξ), γ(qz) = q(z,z)/2, (z, z) =
∑n

i=1 zizαi
, say,

(z, z)/2 = z2
1 − z1z2 + z2

2 for A2. For instance,

〈γ〉ξ =
∑

a∈B

q(ξ+a,ξ+a)/2 = γ̃⊖(qξ)q(ξ,ξ)/2, γγ̃⊖ =
∑

a∈B

a((γ)).

We will constantly use that 〈γ〉ξ is periodic with respect to the substi-
tutions ξ 7→ ξ + b, b ∈ B.
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Let us normalize the µ–function at qξ: µ•
def
== µ/µ(qξ). Explicitly,

using the sets λ(bw) = R̃+ ∩ (bw)−1(−R̃+),

µ•(q
w(ξ)+b) =

∏

[α,ναj]∈λ(bw)

(t
−1/2
α − t

1/2
α q(α,ξ)+ναj

t
1/2
α − t

−1/2
α q(α,ξ)+ναj

)
.(4.21)

Theorem 4.6. For arbitrary weights Λ = qλ, Λ ′ = qλ ′

,

(γ̃⊖(qρk))2 〈P◦(X, Λ)P◦(X−1, Λ ′) γµ•〉ξ(4.22)

= 〈γµ•〉ξ γ̃⊖
λ γ̃⊖

λ′ P
◦(Λ, Λ ′)

∏

α∈R+

∞∏

j=1

( 1 − q
(ρk ,α∨)+j
α

1 − t−1
α q

(ρk ,α∨)+j
α

)
,

〈γµ•〉ξ = µ(qξ; t−1) |W |−1〈γ〉ξ
∏

α∈R+

∞∏

j=0

(1 − t−1
α q

−(ρk,α∨)+j
α

1 − q
−(ρk ,α∨)+j
α

)
,

where by µ(qξ; t−1) we mean the µ–function evaluated at X = qξ with
all tα replaced by t−1

α . �

In these formulas tν are arbitrary provided the existence of all {Pb}.
The products are considered as the limits if kν ∈ Z+ \ {0}. The nor-
malization factor is obtained by taking Λ = q−ρk , Λ′ = q−ρk . Indeed,

P◦(X, q−ρk) =
∏

α∈R+

∞∏

j=1

( 1 − q
(ρk ,α∨)+j
α

1 − t−1
α q

(ρk,α∨)+j
α

)
P◦(qρk , q−ρk) and

〈P◦(X, q−ρk)P◦(X, q−ρk) γµ•〉ξ

=
∏

α∈R+

∞∏

j=1

( 1 − q
(ρk,α∨)+j
α

1 − t−1
α q

(ρk ,α∨)+j
α

)
P◦(qρk , q−ρk)〈γµ•〉ξ(4.23)

due to formula (3.11).

4.5. The special case ξ = −ρk. The theory of Jackson-Gauss in-
tegrals is essentially algebraic, similar to that for the constant term
functional. Analytically, we need only the exponential growth of P

in real directions; (4.2) is more than sufficient. The growth estimates
can be equally used in the theory based on the real integration instead
of the Jackson summation. This theory is a q–generalization of the
so-called non-compact case in the harmonic analysis on the symmetric
spaces. Formulas like (4.22) hold in such theory but the corresponding
factors of proportionality (generally, periodic functions in terms of X
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and Λ) are not calculated so far with a reservation about the A1–case
(see [C8]).

There is a special case when (4.22) becomes a straightforward alge-
braic exercise; it occurs for ξ = −ρk taken as the starting point of the
Jackson summation. In this case, µ•(q

w(ξ)+b) is nonzero if and only if
bw = πb = bu−1

b , i.e., at b♯ = πb((−ρk)) = b − u−1
b (ρk) in the notations

from Proposition 1.1. One has:

µ•(q
b♯) = q2(b−,ρk)

∏

ν

tlν(ub)
ν

∏

[α,j]∈λ′(πb)

( 1 − tαq
(α∨,ρk)+j
α

1 − t−1
α q

(α∨,ρk)+j
α

)
,(4.24)

where λ′(πb) = { [α, j] | [−α, ναj] ∈ λ(πb) }. Then 〈γ〉ξ = 〈γ〉ρk
and

〈γµ•〉−ρk
= |W|−1〈γ〉ρk

∏

α∈R+

∞∏

j=1

( 1 − q
(ρk,α∨)+j
α

1 − t−1
α q

(ρk ,α∨)+j
α

)
.(4.25)

Formula (4.23) reads as follows:

|W| (γ̃⊖(qρk))2 〈P◦(X, Λ)P◦(X−1, Λ′) γµ•〉−ρk

= 〈γ〉ρk
γ̃⊖

λ γ̃⊖
λ′

∏

α∈R+

∞∏

j=1

( 1 − q
(ρk,α∨)+j
α

1 − t−1
α q

(ρk ,α∨)+j
α

)2

P◦(Λ, Λ′).(4.26)

It is important to note that (4.26) is not a new identity. It formally
results from the definition of P◦ and the duality of the P–polynomials
if the Shintani-type relations from (2.22) are supposed to be known.
Thus, we can say that the special case trivializes the Jackson integrals.

Actually, relations (2.22) were deduced in [C5] from the general ξ–
theory of Jackson integration, so the special case is analogical to the
normalization condition in the theory of spherical functions only with
some reservations.

4.6. Taking the limit. Let us interpret the identity (4.26) upon the

Whittaker limit. The Jackson summation will be now over B: 〈f〉⋄
def
==∑

b∈B f(qb); notice that there is no |W |–factor versus the previous def-
inition. For instance, 〈γ〉⋄ = γ̃⊖(1). The corresponding µ–measure is
nonzero only on B+:

µ⋄(q
b+) =

n∏

i=1

(α∨

i , b+)∏

j=1

(1 − qj
i )

−1.(4.27)
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We come to the following “reformulation” of the definition of P̃◦:

〈γ〉⋄ 〈q
(x,λ) P̃◦(X−1, Λ′) γµ⋄〉⋄

= γ̃⊖
λ γ̃⊖

λ′

n∏

i=1

∞∏

j=1

( 1

1 − qj
i

)
P̃◦(Λ, Λ′).(4.28)

Here the Shintani-type formulas were employed.
It is instructional to obtain (4.28) as a Whittaker-type limit of (4.26).

We suggest the following way.

First, let us make k a positive integer; to be exact, k = N for N =
{Nν ∈ N}. Then ρN ∈ P+ and, for instance, 〈γ〉λ+ρN

= 〈γ〉λ, which will
be used constantly. Second, let us renormalize the µ–measure (4.24):

µ̃•(q
b♯) = q−2(b−, ρk) µ•(q

b♯)

=
∏

ν

tlν(ub)
ν

∏

[α,j]∈λ′(πb)

( 1 − tαq
(α∨,ρk)+j
α

1 − t−1
α q

(α∨,ρk)+j
α

)
.(4.29)

The limit of µ̃•(q
b♯) as N → ∞ exists for any b ∈ B and is nonzero

only for b = b−. Namely,

lim
N→∞

µ̃•(q
b−) = µ⋄(q

b+).

Third, we will use the following property of the spherical polynomials:

lim
N→∞

Pb(q
λ−ρN ) = q(λ,b+) for b = b−,(4.30)

which is a reformulation of (3.5).
Forth, we observe that the condition ρN ∈ B guarantees that

〈γ〉x−ρ
N

=
∑

b

q(b+x−ρ
N

, b+x−ρ
N

)/2 = 〈γ〉x.

for any x. Therefore the limiting procedure for obtaining P̃◦ from P◦

from (3.12) coincides with that for P̃ from (3.13):

P̃◦(X, Λ)) = lim
N→∞

q(x , ρ
N

)P◦(q−ρ
N X, Λ).(4.31)
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Replacing now λ by λ − ρN in (4.26), one obtains:

〈γ〉−1
⋄ (γ̃⊖(qρk))2〈P◦(X, qλ−ρN )P◦(X−1, Λ′) γµ•〉−ρN

(4.32)

= {q−
(λ−ρN )2

2 〈γ〉λ} γ̃⊖
λ′

∏

α∈R+

∞∏

j=1

( 1 − q
(ρN , α∨)+j
α

1 − t−1
α q

(ρN , α∨)+j
α

)2

P◦(q−(λ−ρN ), Λ′).

Here |W| is not present due to our definition of the Jackson summation
in the Whittaker case.

We can restrict ourselves only with b = b−, since the other b appear

in (4.29) with strictly positive t–factors
∏

ν t
lν(ub)
ν . Then the left-hand

side of (4.32) modulo higher powers of t is as follows: LHS mod (t) =

Q
∑

b∈B−

q
(b−)2

2 µ̃•(b−)P◦(qb− −ρ
N , qλ−ρ

N ){q(b−, ρ
N

) P◦(q−b+−ρ
N , Λ′)}

= Q
∑

b∈B−

q
(b−)2

2 µ̃•(b−) {P(qλ−ρ
N ) Π} {q(−b+, ρ

N
) P◦(q−b+−ρ

N , Λ′)}

for Q
def
== { qρ2

N
/2 γ̃⊖(qρ

N )/〈γ〉ρ
N
} γ̃⊖(qρ

N ) = γ̃⊖(qρ
N )

and Π
def
==

∏

α∈R+

∞∏

j=1

1 − q
(ρN , α∨)+j
α

1 − t−1
α q

(ρN , α∨)+j
α

.

Transforming correspondingly the right-hand side of (4.32), one ar-
rives at

RHS = q−
ρ2
N
2 {q−

λ2

2 〈γ〉λ} γ̃⊖
λ′ Π

2 {q(λ, ρ
N

) P◦(qλ−ρ
N , Λ′)}.

The term q−ρ2
N /2 can be moved to the LHS and combined with Q,

namely,

qρ2
N /2 γ̃⊖(qρ

N ) = 〈γ〉ρ
N
.

One Π can be reduced in the LHSmod (t) and the RHS.
Then we use (4.30) for P(qλ−ρ

N ) and the definition of the Whit-
taker limit (4.31) for P◦(q−b+−ρ

N , Λ′) and for P◦(qλ−ρ
N , Λ′). Replacing

(back) q−
λ2

2 〈γ〉λ by γ̃⊖(λ) and changing the summation set in the LHS
from B− to B+, we eventually obtain (4.28).

This calculation is expected to be a sample for the general ξ–Jackson
integration theory in the Whittaker case (presumably, for the real inte-
gration too); it will be discussed elsewhere. We note that the term q(x,λ)

in the integrand of (4.28) can be naturally combined with γ = qx2/2
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and “eliminated” upon the change of variables x + λ 7→ x. However
this substitution will change the summation set from B+ to λ + B+,
i.e., the general Jackson summation (with an arbitrary starting vector)
naturally emerges even in the special case under consideration.

The extreme case. There is no “natural” way to eliminate Λ, Λ′

from (4.28) by evaluating this formula at certain special points. Gener-
ally, it may lead to interesting identities that contain only q. However,
one can try to take λ ∼ λ′ and tend them to infinity for Λ = qλ, Λ′ = qλ.
Let us perform this calculation in detail.

We will use (4.9):

lim
n→∞

Ψ̃(λ + (n · y′)+, λ′ + n · y′; q)(4.33)

=
∑

b∈B+

q
(b,b)

2
qλb−λ′

b

∏n
i=1

∏(α∨

i , b)
j=1 (1 − qj

i )
,

where (n · y′)+ ∈ C+. In this limit, formula (4.28) reads as:

〈γ〉⋄
∑

b∈B+

q(b, λ) γ̃⊖(qλ′

++b)

γ̃⊖(qλ′

+)γ̃⊖(qb)
γ(qb)µ⋄(q

b)

=
∑

b∈B+

q
(b,b)

2
qλb−λ′

b

∏n
i=1

∏(α∨

i , b)
j=1 (1 − qj

i )
,(4.34)

where we canceled out 〈µ〉 =
∏n

i=1

∏∞
j=1(1−qj

i )
−1 in both sides. Moving

b from the arguments of γ̃⊖ and using that 〈γ〉⋄ = γ̃⊖(1), we come to
an identical equality. No new formulas appear in this way.

Discussion. We think that the growth estimates and formula (4.28)
show great potential of the q–theory of Whittaker functions in har-
monic analysis. For instance, an immediate interpretation of (4.28) is
the fact that the global q–Whittaker function multiplied by the Gauss-
ian is essentially invariant with respect to the q–Fourier-Jackson trans-
form for the measure µ⋄ from (4.27), which is very much standard in
the theory of q–functions.

This paper seems a convincing demonstration of the key role of
Shintani-type formulas in the algebraic and analytic theory of sphe-
rical and Whittaker functions. Even a q–generalization of the Harish-
Chandra asymptotic formula, which, naturally, is a cornerstone of the
analytic theory, can be deduced from these formulas. This is different
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from the differential setting and makes the q–theory significantly more
algebraic than the classical harmonic analysis on the symmetric spaces.

We would like to mention that global spherical and Whittaker func-
tions have properties similar to celebrated Ramanujan’s mock theta
functions, including the theory at |q| = 1. For instance, certain (but
not direct) counterparts of Maas forms can be introduced following the
same lines. To be more exact, the natural objects are Maas-type theta
functions ; they are not holomorphic in terms of x, λ but satisfy the
modular equation with respect to q.

Also, the q, t–theory has connections with the mock theta functions
at level of formulas. It is not very surprising because the basic hyper-
geometric function is known to be related to (some) mock functions.
Our global spherical functions are its multi-variable generalizations.
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baki 47:797 (1995), 01–18. 12, 18

[OS] S. Odakea, and R. Sasaki, q-oscillator from the q-Hermite Polynomial,
Preprint arXiv:0710.2209v2 [hep-th]. 30

[Op] E. Opdam, Harmonic analysis for certain representations of graded Hecke

algebras, Acta Math. 175 (1995), 75–121. 12, 17, 18
[San] Y. Sanderson, On the Connection Between Macdonald Polynomials and

Demazure Characters, J. of Algebraic Combinatorics, 11 (2000), 269–275.
7, 22

[Shi] T. Shintani, On an explicit formula for class 1 Whittaker functions on

GLn over p-adic fields, Proc. Japan Acad. 52 (1976), 180–182. 3, 25
[Sto] J. Stokman, Difference Fourier transforms for nonreduced root systems,

Preprint arXiv:math/0111221 [math.QA]. 3, 6
[Sus] S. Suslov, Another addition theorem for the q-exponential function, J.

Phys. A: Math. Gen. 33: 41 (2000) L375-L380. 30

(I. Cherednik) Department of Mathematics, UNC Chapel Hill, North

Carolina 27599, USA, chered@email.unc.edu


	0. Introduction
	0.1. Results and applications
	0.2. Growth estimates
	0.3. Our approach
	0.4. Difference spherical functions
	0.5. The setting of the paper

	1. Double Hecke algebra
	1.1. Affine Weyl group
	1.2. The length 
	1.3. Reduction modulo W
	1.4. More notations
	1.5. Main definition

	2. Polynomial representation
	2.1. Macdonald polynomials
	2.2. Symmetric polynomials
	2.3. Using intertwiners
	2.4. Spherical polynomials
	2.5. The limit t=0

	3. Spherical and Whittaker functions
	3.1. Gauss-type integrals
	3.2. Global spherical function
	3.3. Global Whittaker function
	3.4. One-dimensional theory
	3.5. Whittaker function for A1
	3.6. The case of large |q|

	4. Harmonic analysis topics
	4.1. Growth estimates
	4.2. Exact asymptotic formulas
	4.3. When t goes to 0 
	4.4. Jackson integrals
	4.5. The special case 
	4.6. Taking the limit

	References

