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DIXMIER ALGEBRAS FOR CLASSICAL COMPLEX NILPOTENT
ORBITS VIA KRAFT-PROCESI MODELS 1

RANEE BRYLINSKI

Dedicated to Professor Alexander Kirillov on his 2° birthday

ABSTRACT. We attach a Dixmier algebra B to the closure O of any nilpotent orbit of
G where G is GL(n,C), O(n,C) or Sp(2n,C). This algebra B is a noncommutative
analog of the coordinate ring R of O, in the sense that B has a G-invariant algebra
filtration and gr B = R.

We obtain B by making a noncommutative analog of the Kraft-Procesi construction
which modeled O as the algebraic symplectic reduction of a finite-dimensional symplec-
tic vector space L. Indeed B is a subquotient of the Weyl algebra for L.

B identifies with the quotient of U(g) by a two-sided ideal J, where g = Lie(G).
Then grJ is the ideal J(O) in S(g) of functions vanishing on O. In every case where
O is connected, J is a completely prime primitive ideal.

1. INTRODUCTION

By means of symplectic reduction in the setting of complex algebraic varieties, Kraft
and Procesi ([22],[23]) constructed a model of the closure of any nilpotent coadjoint orbit
O of G when G is one of the classical groups GL(n,C), O(n,C) and Sp(2n,C). The
symplectic aspect is not actually mentioned, but the construction is clearly symplectic.

In this paper we give a noncommutative analog, or quantization, of the Kraft-Procesi
construction. The result is that we attach a Dixmier algebra B to each orbit closure O.
Our algebra B has a G-invariant algebra filtration and we show that gr B is isomorphic,
as a graded Poisson algebra, to the coordinate ring R of O.

In fact, B identifies, as a filtered algebra, with the quotient U(g)/J of the universal
enveloping algebra U(g) of g = Lie(G) by some two-sided ideal J. Then grJ is the ideal
J(O0) in S(g) defining O. We find that J is stable under the principal anti-automorphism
of U(g), and also under the anti-linear automorphism of U(g) defined by a Cartan invo-
lution of g.

The Kraft-Procesi construction attaches to O a complex symplectic vector space L
together with a Hamiltonian action of G x S on L, where S is an auxillary complex
reductive Lie group. The actions of G and S lie inside the symplectic group Sp(L,C).
Kraft and Procesi show that O is scheme-theoretically the algebraic symplectic reduction
of L by S. In this way, they obtain R as a subquotient of the algebra P of polynomial
functions on L. More precisely, R is realized as P /I where T is an ideal in P and
the superscript inv denotes taking S-invariants.
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It is nice from the viewpoint of representation theory to regard R as a subquotient of
the algebra P*" of even polynomials. (We can do this since P™" lies in P**".) For
P is the coordinate ring of the closure of the minimal nilpotent orbit ) of Sp(L, C).

To make a noncommutative analog of the Kraft-Procesi construction, we start from
the fact that there is a unique Dixmier algebra attached to ), namely the quotient
of U(sp(L,C)) by its Joseph ideal J. We can model U(sp(L,C))/J as the even part
wevren of the Weyl algebra W for L and then grWeve™ = P“" There is an obvious
quantization of the Hamiltonian S-action on L, namely the natural (s & s, S.)-module
structure on W. Here the subscript ¢ denotes taking a compact real form.

We define B to be the coinvariants for the (s ® s, S.)-action on We*". A priori, B is a
(g @ g, G.)-module with a G -invariant filtration, but B is not an algebra. However, we
easily identify B as the quotient by a two-sided ideal of W™ (where the superscript again
indicates taking S-invariants, or equivalently, S.-invariants). In this way, B becomes a
filtered algebra and a subquotient of W™,

Our main result (Theorem [E3) is to compute the associated graded algebra gr B. It is
easy to see that gr 3 is some quotient of P /T, but in fact we prove gr B = P /T,
To do this, we recognize B as the degree zero part of the relative Lie algebra homology
H(s ®s,S.; W), We consider the standard complex which computes this homology,
introduce a filtration and then apply the spectral sequence for a filtered complex. We
compute the F; term of the spectral sequence by using the fact proven by Kraft and
Procesi that Z is a complete intersection ideal. Then we easily show F; = E..

We establish some properties of B and the corresponding ideal J. If O is connected
then J is a completely prime primitive ideal (Corollary BH). In every case, B admits
a unique g*-invariant Hermitian inner product (-|-) such that (1/1) = 1, where g is a
real form of g @ g with g* ~ g (see Proposition Bl). This prompts the question as to
whether J is “good” in the sense that J is maximal and U(g)/J is unitarizable. The
latter property means (since B ~ U(g)/J) that (-|-) is positive-definite.

Attaching “good” ideals to O is an important problem in representation theory and
the orbit method. Quite a bit of work has been done on this (see e.g. some of the
references and authors cited below) but the problem for nilpotent orbits of a complex
semisimple Lie group remains unsolved.

If G = GL(n,C), then our J is good (see Remark E8(i) and [§] ). But G = GL(n,C)
is really a very special case for us as the geometry of O is incredibly nice, including but
not limited to the fact that O is always normal. For G = O(n,C) or G = Sp(2n, C), it is
not the case that J is always good. Certainly if O is not normal, we should not expect
J to be good.

Our point of view (to be justified in [d]) is that B is the “canonical” quantization of
the Kraft-Procesi construction, and so the failure of J to be good is really a statement
about O. The next step is then to investigate whether we can make a modification to
our quantization process in order to obtain some good ideals in U(g) attached to O (and
even its covers).

This paper is the first in a series. In the subsequent papers we make explicit the im-
portant role of Howe duality in our project. Indeed, WW*" is the Harish-Chandra module
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of the (even) oscillator representation of Sp(L,C), and the pair (G, S) constitutes a se-
quence of Howe dual pairs (see Remark FLT]). In taking coinvariants, we are implementing
a sequence of Howe duality “operations”. FEach “operation” is like implementing a Howe
duality correspondence, except that we do not pass to the the irreducible quotient. In
working on this project (which started in earnest in the summer of 2001 — and is part
of a program we began in 1994), we have been reading the Howe duality literature. We
have been influenced by especially the papers [18], [29], [1] and [25].

Our first construction of the Dixmier algebra B actually came out of the ideas of Howe
duality and quantization by constraints. This is given in [9] and lies more in the realm
of harmonic analysis than algebra. Our starting point there is the fact ([2I]) that L is
hyperkahler and the Kraft-Procesi construction is the algebraic analog of the hyperkahler
reduction of L by S..

The notion of Dixmier algebra for nilpotent orbits (including their closures and their
coverings) was first developed in work of McGovern, Joseph and Vogan. See e.g. [27],
[31], and [32]. The motivation for these authors and for most Dixmier algebra theorists is
the search for completely prime primitive ideals. This motivation is very important for us
too; we also find additional motivations coming from star products and from geometric
quantization.

The results in this paper should be compared with the work in [1, [3], [, 5], [6], [1],
[T0], [T4], 3], [16], 241, [25], [26], 27], [28], [29] and [B3]. Some of this comparison work
will be done in [§] and [9].

Part of this work was carried out while I was visiting the IML and the CPT of the
Université de la Méditerranée in the summer of 2001, and I thank my colleagues there
for their hospitality. I especially thank Christian Duval and Valentin Ovsienko for some
very valuable discussions.

It is a real pleasure to dedicate this article to Sasha Kirillov whose discoveries have
opened up so many new vistas, starting of course with the Orbit Method. I warmly
thank him for his friendship and his interest in my own work.

2. DIXMIER ALGEBRA FOR THE CLOSURE OF A COMPLEX NILPOTENT ORBIT

Let GG be a reductive complex algebraic group. Let g be the Lie algebra of G and let g*
be the dual space. Then G acts on g and g* by, respectively, the adjoint action and the
coadjoint action. The symmetric algebra S(g) = ©52,5(g) is the algebra of polynomial
functions on g*. The G-invariants form the graded subalgebra S(g)% = &52,57(g)¢. We
can fix some nondegenerate G-invariant bilinear form (-,-) on g.

The nullcone in g* is the set of A € g* which satisfy the following equivalent properties:

(i) the closure of the coadjoint orbit of A contains zero

(ii) the coadjoint orbit of A is stable under dilations of the vector space g*

(iii) every nonconstant homogeneous G-invariant in S(g) vanishes on A

(iv) A = (x,-) where z is a nilpotent in g
The nullcone is G-stable and breaks into finitely many orbits of G, which are then called

the nilpotent coadjoint orbits, or simply the nilpotent orbits, of G.
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Let O be a nilpotent orbit of G. The closure O is a complex algebraic subvariety of
g*; but O may be reducible if G is disconnected. The coordinate ring C[O] of O is the
quotient algebra

R =5(g)/3(0) (2.1)
where J(O) is the ideal of functions which vanish on @. Then J(O) is a graded ideal and
R = @y R is a graded algebra where R? = SP(g) /3(O)’. Each space R” is a finite
dimensional completely reducible representation of G. Kostant’s description of S(g) as
a module over S(g)¢ implies that all G-multiplicities in R are finite.

R inherits from S(g) the structure of a graded Poisson algebra where {R?, R} C
RPFTa=1. This Poisson bracket {-,-} on R is G-invariant and corresponds to the holomor-
phic Kirillov-Kostant-Souriau symplectic form on O.

In this situation, we define Dixmier algebras in the following way. We fix a Cartan

involution ¢ of g. Then ¢ corresponds to a compact real form G, of G with Lie algebra
g.. Let N={0,1,2,...}.

Definition 2.1. A Dizmier algebra for O is a quadruple (D, &, 7,19) where

e D is a filtered algebra with an increasing algebra filtration D = U,en D, such
that gr D is commutative.

e g — Dy, x — &% is a homomorphism of Lie algebras and ¢ induces an
isomorphism of graded Poisson algebras from S(g)/J(O) onto gr D.

e 7 is a filtered algebra anti-involution of D such that 7(£%) = —¢£”.

e ¥ is an anti-linear filtered algebra involution such that (&%) = £5@).

Here are some explanations about the definition. First, commutativity of gr D implies
that gr D has a natural structure of graded Poisson algebra; here the commutator in D
induces the Poisson bracket on grD. Second, £ extends naturally to a filtered algebra
homomorphism

£:U(g) =D (2.2)

Let J be the kernel of £&. Then grJ is a Poisson ideal of S (g), and grg induces a 1-to-1
homomorphism ¢ : S(g)/grJ — gr D of graded Poisson algebras. We require that ¢ is
surjective and

grJ =73(0) (2.3)
Notice that ¢ is surjective if and only if € is surjective in each filtration degree; then &
induces a filtered algebra isomorphism

ug)/J — D (2.
(

4)

Third, 7 satisfies 7(cA) = ¢7(A), T(A+ B) = 7(A) + 7(B), and 7(AB) = 7(B)71(A)

where A, B € D and ¢ € C. Fourth, ¥ satisfies ¥(cA) =¢9(A), ¥y(A+ B) = 9(A)+9(B),
and J(AB) = 9(A)Y(B). Clearly 79 = 9.

Notice that D and £ (and <) uniquely determine 7 and ¥, if the latter exist. Indeed,

the endomorphisms x — —z and x — ¢(x) of g extend uniquely to 7, and ¥,, where 7,

is an algebra anti-involution of U(g) and ¥, is an antilinear algebra involution of U(g).

Then, via [Z4), 7, and ¥4 induce 7 and 9.
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We have an obvious notion of isomorphism of Dixmier algebras for O: (D, &, 7,9) is
isomorphic to (D', &, 7/,¢) if there is a filtered algebra isomorphism 1 : D — D’ such
that ¢’ =no&, nor =7"0on, and nod = on. We can easily classify Dixmier algebras.

Observation 2.2. Suppose (D, &, 7,19) is a Dizmier algebra for O. In addition to [Z3),
J satisfies

15(J) =J and Vo(J) =J (2.5)
In this way, we get a bijection between (isomorphism classes of ) Dixmier algebras for O
and two-sided ideals J of U(g) satisfying [Z3) and Z3).

Proof. Clearly (Z3)) and (H) imply that (U(g)/J,¢,7,,7;) is a Dixmier algebra for O,
where ¢ is the obvious map and 7, and ¥ are induced by 73 and ;. Conversely, if

(D, &, 7,1) is given, then (U(g)/J, 1, 7,, ;) is isomorphic to it via ([Z.7). O

3. PROPERTIES OF DIXMIER ALGEBRAS

The hopes in constructing a Dixmier algebra are (i) J will be a completely prime
primitive ideal of U(g), or even better, a completely prime maximal ideal, and (ii) D will
be unitarizable. See [12, 3.1] for the definitions of the terms in (i).

To understand (ii), we observe that Definition 2Tl makes D into a (g & g, G.)-module.
Indeed, the natural (g @ g, G)-module structure on U(g)/J transfers over to D via (24).
Then g & g acts on D though the representation

II:g®g— EndD, (x,y) — 1Y (3.1)

where [I"Y(A) = €A — A&Y. The action of G, corresponds to the subalgebra {(x,x) :
T € g}

Next consider the subalgebra g* = {(z,5(z)) : * € g} of g g. We say D is unitarizable
if D admits a g'-invariant positive definite Hermitian inner product. In this event, by a
theorem of Harish-Chandra, the operators II*(®) correspond to a unitary representation
of GG on the Hilbert space completion of D. This unitary representation is then a quan-
tization of O in the sense of geometric quantization, if we view O as a real symplectic
manifold. (If C[O] # C[O], then this might be just a piece of a quantization of O.)

Notice that the following three properties are equivalent: (i) J is maximal, (ii) D is a
simple ring, and (iii) the representation II is irreducible.

Our formalism gives some partial results pertaining to hopes (i) and (ii). Notice that
Do = C by [Z4).
Proposition 3.1. Suppose (D, &, 7,9) is a Dizmier algebra for O and J = ker . Then

(i) J has an infinitesimal character.

(i) If O is irreducible then J is a completely prime primitive ideal in U(g).

(iii) There is a a unique G.-invariant projection T : D — C. This map T is a trace,
i.e., T(AB) = T (BA).

(iv) D admits a unique g*-invariant Hermitian inner product (-|) such that (1|1) = 1,
and it s given by

(A|B) = T(AB”). (3.2)
where BY = J(B).
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Proof. (i) This means (for any proper two-sided ideal J) that J contains a maximal ideal
of the center of U(g). This happens if and only gr.J contains ST(g)% = @,-057(g)°.
But grJ = J(0) and J(O) D ST(g)¢ since O lies in the nullcone. (ii) If O is irre-
ducible then J(O) is a prime ideal in S(g) and so J is a completely prime ideal in U(g).
This together with (i) implies, by a result of Dixmier, that J is primitive. (iii) Since
J3(0) D S*(g)¢ = ST(g)%, we have R = C and so D = C. Thus we get a unique G-
invariant projection map 7. Now G -invariance implies 7 ([¢*, A]) = 0 where z € g. We
can write this as 7 (£§7A) = T (A€”). Iteration gives 7 (71 --- ™ A) = T (AL - - &),
This proves 7(BA) = T(AB) since the £* generate D. (This is the same proof as
in [7, Proposition 8.4].) (iv) Suppose (-|-) is an inner product with the desired prop-
erties. Then (A[1) = T(A4). Now g'-invariance means that the operators II"<(®) are
skew-hermitian, or equivalently, (€*A|B) = (A|B&®). So for B = £t - .- €% we have
(A|B) = (5@ ... ¢s@) A1) = (BYA|1) = T(B”A). The result is now clear. O

Corollary 3.2. D is unitarizable if and only if the pairing defined by B2) is positive
definite. If D is unitarizable, then J is mazimal.

Proof. Both statements follow from the uniqueness in Proposition BLiv). O

Example 3.3. Suppose O is the minimal nilpotent orbit in g where g is simple and
g # sl(2,C). This is a case where C[O] = C[O]. Then there is a unique Dixmier algebra
for @. This follows by Observation since there is exactly one choice for J satisfying
(Z3) and EH). Moreover, (i) J is a completely prime maximal ideal of U(g), and (ii)
U(g)/J is unitarizable if g is classical.

Indeed, there is a unique two-sided ideal J satisfying ([Z3) and 74(J) = J; see [,
proof of Proposition 3.1]. Since the ideal J(O) is preserved by the antilinear algebra
involution of S(g) defined by ¢, it follows by the uniqueness of J that 9J4(J) = J. Since
O is irreducible, Proposition BI(ii) implies that J is completely prime. If g # sl(n, C),
then J is the Joseph ideal and this is maximal by [19, Theorem 7.4]. If g = sl(n,C)
(n > 3), then J is maximal by [30]. Finally, unitarizabilty is known; see [2, Theorem
9.1] for a uniform construction of these unitary representations on spaces of holomorphic

functions on O.

4. THE KRAFT-PROCESI CONSTRUCTION

In this section we recall how Kraft and Procesi in [22] and [23] constructed the closures
of complex classical nilpotent orbits. We add to their construction the framework of
algebraic symplectic reduction.

Let V' be a complex vector space with b a bilinear form on V. Let G be the symmetry
group of b. We consider only the following three cases.

(i) b is identically zero. Then G = GL(V,C).
(ii) b is nondegenerate and symmetric. Then G = O(V,C).

(iii) b is nondegenerate and symplectic. Then G = Sp(V, C).

Choose a nilpotent orbit O of G and an element A in @. Then \ corresponds (via the

trace functional on End V') to x € g; so « is in particular a nilpotent endomorphism of V.
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We note that O is connected, and so O is irreducible, except in the following situation.

If G = O(V,C) where dim V' is even and also the Jordan block size partition of O is

very even (i.e., all parts are even and occur with even multiplicities), then O has two

connected components and O has two irreducible components. See [23], [IT], Chapter 5].
Let V; be the image of ¢. Then

V=VoWVo>---DV,DV,1 =0 (4.1)
where 7 is the largest number such that 2" # 0. We define a complex vector space L by
L=L(Vo,V1)®L(Vi,Vo) &+ & L(V,-1,V;) (4.2)

where L(V;_1,V}) is obtained in the following way. If G = GL(V,C) then
L(Vy_1,Vy) = Hom(Vy, Vy_1) @ Hom(Vy_1, Vy) (4.3)

If G=0(V,C) or G = Sp(V,C), then
L(Vy_1,Vy) = Hom(Vy, Vy_q) (4.4)
Next we construct a complex Lie group S of the form

S=5 xXSyx---x%x85, (4.5)

where Sy is obtained in the following way. To begin with, we put bo = b and Sy = G.
If G = GL(V,C) then for each d we put by =0 and S; = GL(V,,C). If G = O(V,C) or
G = Sp(V,C), then V; admits an intrinsic nondegenerate complex bilinear form b, and
we define Sy to be the symmetry group of b,. In more detail, by is the bilinear form on
Vy defined by bg(z¢(u), 2% (v)) = b(u, 2%(v)). It turns out that by is nondegenerate. If
by_1 is orthogonal then by is symplectic and we put Sy = Sp(Vy, C). If by_; is symplectic
then by is orthogonal and we put S; = O(Vy, C).

Next we construct commuting actions of G and S on L. If G = GL(V,C), we make G
and S act by

(g, S1y-v., Sr) ° (Al, Bl, Ag, BQ, e ,AT, BT)
= (gA181_17 SlBlg_17 81A282_17 823281_17 CIENEIY ST—IATS;lu STBTS;_ll)

where A; € Hom(Vy, V1) and By € Hom(V,;_1,Vy). If G = O(V,C) or G = Sp(V,C),
we make G and S act by

(g, S1yv., Sr) [ ] (Cl, 02, NN CT) = (gClSl_l, 81C282_1, NN ST_10T8;1> (47)

where Cy € Hom(Vy, Vy_1).

L has a (complex) symplectic form 2 given by Q = Q; + Qy + - -+ 4+ Q. where Q4
is the symplectic form on L(V;_1,V};) defined in the following way. If G = GL(V,C),
then Q4(A + B,A' + B') = tr(AB’) — tr(BA"). If G = O(V,C) or G = Sp(V,C),
then Q4(C,C") = tr(C*C) where C* € Hom(V,_y,Vy) is the adjoint of C' defined by
by_1(u, C*(v)) = ba(C(u),v).

Now G and S act faithfully and symplectically on L. Thereby G and S identify
with commuting subgroups of the symplectic group Sp(L,C). The action of Sp(L,C) is
Hamiltonian with canonical moment map

L — sp(L,C)* (4.8)
7
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Hence our actions of G and S are Hamiltonian with induced moment maps (obtained by
projection)
~v:L—g" and o:L—s" (4.9)
Then ~ is G-equivariant and S-invariant, and ¢ is S-equivariant and G-invariant.
Here are the explicit formulas for v and . We may write these as g-valued and s-valued
maps, with the convention that the trace functional on End L induces isomorphisms
g —— g*and s — s*. If G = GL(V,C), then v and o are given by

(_AlBl) and (BlAl - A2B2a SR Br—lAr—l - ATBT7 BTAT’) (410)
If G=0(V,C) or G = Sp(V,C), then v and o are given by
(—C1CY) and (C7C,—CyCs, ..., Cr Cy — CLCE CEC,) (4.11)

Remark 4.1. For each d =1,...,r, Sg_1 and Sy act on L(V;_1,V}) as a Howe dual pair.

Let P be the algebra of polynomial functions on L. Then P = S(L*) is a graded
Poisson algebra with respect to the Poisson bracket {-,-} defined by Q. Our grading is
P = @®jc1n P’ where P/ = S¥(L*) and then {P?, Pk} C Pitk=1 (This choice of halving
the natural degrees is convenient as the aim is to obtain R as a subquotient of P.) The
momentum functions v, (y € g) and o, (z € s) are the component functions of v and
o; ie., v, (m) = (y(m),y) and o,(m) = (o(m),x) where m € L. The v, and o, lie in P!
and satisfy the bracket relations {vy, vy} = Yyu1s {02 0w} = O e and {7y, 0.} = 0.

Let Z be the ideal in P generated by the momentum functions o, where z € s. Then
7= @;’Z Iy T’ is a graded ideal stable under both G and S. Hence the quotient algebra

P /T is a graded algebra on which G and S act by graded algebra automorphisms. The
grading is
P/T = @jein(P/TY
where (P/Z)? = P7/77. Kraft and Procesi proved that Z is the full ideal of functions
vanishing on ¢7!(0). Thus P/Z is the coordinate ring C[o~'(0)] of the zero locus of o.
The algebraic symplectic reduction L™ of L by S is the Mumford quotient of o=1(0)
by S. Thus L™ is the affine complex algebraic variety with coordinate ring

C[L™"] = (P/T)™ = P™ |T™ (4.12)

where the superscript inv denotes taking S-invariants. Moreover 7" is a Poisson ideal
in P™. So C[L""] inherits the structure of a graded Poisson algebra.

Notice that S contains the center Zy = {1,—1} of Sp(L,C) and the action of Z,
induces the decomposition P = P @ P where the even part is the graded Poisson
algebra

peven _ @dEN Pd (413)
So P lies in P**", and thus P and C[L"?] are N-graded.
The symplectic version of the Kraft-Procesi result is

Theorem 4.2. 22, Theorem 3.3], [23, Theorem 5.3] The algebra homomorphism ~v* :
S(g) — P defined by y — 7, (y € g) induces a G-equivariant isomorphism of N-graded

Poisson algebras from R onto P™ /T,
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The cited results of Kraft and Procesi are given in geometric language, and the reader
who wants to read all the proofs in [22] and [23] will need some knowledge in algebraic
geometry. The statements in [22, Theorem 3.3] and [23, Theorem 5.3] are easy to trans-
late into algebra though, since we are dealing with affine varieties. Kraft and Procesi
show that v maps ¢~1(0) onto O, and moreover this surjection 7/ : 0=1(0) — O is a
quotient map for the action of S. In this setting of a reductive group acting on an affine
variety, “quotient map” has a very strong meaning coming from Mumford’s geometric
invariant theory, as explained in [22, §1.4] and [23), §0.11]. Precisely, 7/ being a quotient
map means that the corresponding map R — P/Z on coordinate rings is injective and
has image equal to (P /Z)™".

In symplectic language then, Kraft and Procesi proved that the moment map 7 in-
duces a G-isomorphism of affine complex algebraic varieties from L™? onto O. This
isomorphism is also equivariant with respect to the natural C*-actions on L™ and O.
Finally, since ~ is a moment map it follows that v* preserves the Poisson brackets. Thus
we get Theorem EE2.

5. WEYL ALGEBRA W FOR L

The Kraft-Procesi construction realized R as a subquotient, namely P /I of
P, Our aim is to make a noncommutative analog of their construction.

The image of the moment map ([X) is the closure ) of the minimal nilpotent orbit
Y of Sp(L,C), and P** = C[Y] as graded Poisson algebras. We know by Example
that ) has a unique Dixmier algebra (D, &p, Tp,¥p), and then D is the quotient
of U(sp(L,C)) by its Joseph ideal. In this section we will give a more concrete model
for this Dixmier algebra. Then in §8l we will perform the noncommutative analog of
reduction.

Let W be the Weyl algebra for L*. This means that W is the quotient of the tensor
algebra of L* by the two-sided ideal generated by the elements a®@b—b®a—{a, b} where
a and b lie in L*. Let a — a be the natural map L* — W. We can identify sp(L, C)
with S2L* and then we have the Lie algebra embedding

£:5p(L,C) — W, €% =ab+ba (5.1)

There is an increasing algebra filtration W = U, 1IN W; where W; is the image of

the space of tensors of degree at most 2j. We have W;, Wy| C W,ix—1. Thus the
associated graded algebra gr W = @, 1 Wi/ W,_ 1 is commutative and the commutator

in W induces a Poisson bracket (of degree —1) on gr)V. In this way grWW becomes a
graded Poisson algebra. Then gr WV identifies naturally with P.

The symplectic group Sp(L, C) acts naturally on W by algebra automorphisms. This
action respects &, the filtration on W, the Poisson bracket on gr W, etc. The correspond-
ing action of sp(L,C) on W is given by the operators [£%,].

We next choose a Cartan involution ¢ of sp(L,C). To do this, we go back into the
Kraft-Procesi construction. Recall that each space V, in (BJl) carried a bilinear form
by (d = 0,...,r). We can choose a positive definite hermitian form h, on V; which is

compatible with b, in the sense that the intersection of Sy with the unitary group of hy
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is a maximal compact subgroup Ky of S;. (This is an equivalent version of the setup in
[21].) These h, determine naturally a positive definite hermitian form h on L. Now we
define (7)) = =T for T € sp(L,C), where T is the adjoint of T" with respect to h.
Corresponding to ¢ is a compact real form Sp(L) of Sp(L,C) with Lie algebra sp(L).
For later use (see §f), we notice that G N Sp(L) = Ky and SN Sp(L) = Ky x --- x K,
are compact real forms of G and S, which we will denote by G. and S...
Now W is a (sp(L,C) @ sp(L, C), Sp(L))-module, where the representation

sp(L,C) @ sp(L,C) — End W (5.2)
is given by (z,y) - A = €A — A&Y and the action of Sp(L) corresponds to the subalgebra
{(z,x) : x € sp(L)}. The action of the center Z, of Sp(L) produces the decomposition

W = yyeven D Wodd (53)

where W is space of invariants for Z;. The induced filtration on W™ satisfies
vl = Wyt if p € N. So we might as well just consider the algebra filtration

Pty
WGU@’I’L — UdEN WS’UGTL (5'4>
Now we can make W into a Dixmier algebra.

Proposition 5.1. The Dizmier algebra for the closure Y of the minimal nilpotent orbit
of Sp(L,C) is the quadruple (W £, 1,9), for some unique choices of T and 9.

Proof. The map ¢ induces a filtered algebra isomorphism 7 : U(sp(L,C))/T — Weven
where J is the Joseph ideal (see [2, §5]). Clearly grve’e® = P“" and so 7 induces a
graded isomorphism S(sp(L,C))/J(Y) — P". Now everything follows by Example
5. U

6. DIXMIER ALGEBRA FOR O

weven is: by means of (), both a (g @ g, G¢)-module and an (s & s, S.)-module, and
these two actions commute.

Definition 6.1. B is the (g@®g, G.)-module obtained by taking the coinvariants of WWe'e"
in the category of (s @ s, S.)-modules.

This means that B is the quotient W™ / M where M is the subspace spanned by all
E"A — ALY and A — s- A where xz,y € 5, s € S, and A € W (see [20, Chapter II]).
Then B inherits from W™ an increasing G.-stable vector space filtration B = Ugen By.

Let W™ be the algebra of invariants for S.. Then W™ lies in W™ (since S, contains
Zy) and so W™ inherits from W™ an algebra filtration W = Ugey Wi™.

Lemma 6.2. The natural map

¢: W™ — B (6.1)
18 surjective in each filtration degree and its kernel is a two-sided ideal. In this way, B
becomes a filtered algebra. The corresponding map gr¢ : P™ — grB is a surjective
homomorphism of graded Poisson algebras.

Proof. We prove this in {7l O
10



Our main result is
Theorem 6.3. We have gr B =P™ /T"™. So gr B~ R as graded Poisson algebras.
Proof. The proof occupies §8. O

Corollary 6.4. The quadruple (B,&p, 75,95) is a Dizmier algebra for O, where &5, 75
and Vg are the maps induced by &, T, and 9.

Proof. We prove this in §al. O

Let J be the kernel of the algebra homomorphism ag : U(g) — B defined by &g.
Proposition Bl gives

Corollary 6.5. Suppose we exclude the cases where O is disconnected (so where G =
O(2n,C) and the Jordan block size partition of O is very even). Then J is a completely

prime primitive ideal of U(g) with grJ =J3(O) 14(J) = J, and 94(J) = J.
The methods we have used thus far give no information about the excluded cases.

Remark 6.6. (i) Suppose G = GL(n,C). Then the space L has a G x S-invariant
polarization, and using this we can describe B and ¢ in the following way. Let X be the
flag manifold of G of flags of the type in @). Let Dz(X) be the algebra of twisted
differential operators for the (locally defined) square root of the canonical bundle on X as
in [7]. We can show ([§]) that B identifies with D2 (X) in such a way that & corresponds
to the canonical mapping of g into D%(X ). Then by [7, Corollary 8.5], J is a maximal
ideal in U(g).

(i) Suppose G = O(n,C) or G = Sp(2n,C). If O is the minimal nilpotent orbit, then
B is the quotient of U(g) by its Joseph ideal. This follows by the result in Example B3

7. PROOF OF LEMMA

The action of S, on W is completely reducible and locally finite, and S and S, have the
same invariants and the same irreducible subspaces. So we can form the decomposition

Weren = Wint @ ¥ (7.1)

where X is the sum of all non-trivial S.-isotypic components. Then X is the span of the
elements A—s-A where A € W and s € S.. Then M = M"™ $X. Hence the natural
map ¢ is surjective and its kernel is M. I.e., we have vector space isomorphisms

Winv/Minv BN Weven/M N B (72)
The decomposition ([Z7]) is compatible with the filtration on W since the filtration is
S.-invariant. Consequently ¢ is surjective in each filtration degree. So W™ and W™
induce the same filtration on B.

Next we show that M is a two-sided ideal in W™, To begin with, M lies inside
the subspace M’ of M spanned by all £*A and AE* where x € s and A € We", This
follows using (). So it suffices to show that DM’ and M'D lie in M’ if D € W,
Obviously DAE” lies in M. Invariance of D gives £*D — DE* = 0 and so DEPA = E°DA

lies in M’. Thus DM’ C M’; similarly M’'D C M.
11



The associated graded algebra gr B is the quotient gr Wi [ or M. We find gr W =
P, Now the final assertion is clear.

Remark 7.1. If we replace W™ by W in Definition Bl then we get the same thing.
Le., if B is the module of coinvariants of W, then B identifies naturally with B. Indeed
B= w/ M where M is the subspace spanned by all £*A — A¢Y and A — s+ A where now
A € W. But then M = W g M and so the natural map ¢ : Winv — B is surjective
with the same kernel M. Also the filtration B = Ujeln B; induced by W reduces to

the one induced by W™ in the sense that (W) = By = B, L

8. PROOF OF THEOREM

We will compute gr B by using a homology spectral sequence. We will consider the
relative Lie algebra homology H (s @ s, S.; W™). By definition (see [20), Chapter II, §6-
7)), Hi(s®s, Sc; W) is the jth derived functor, in the category of (s & s, S.)-modules,
of the coinvariants. So

B = Hy(s & s, S,; W) (8.1)
The idea is that we will introduce a filtration of the complex that computes the homology
in such a way that the induced filtration on Hy(s @ s, S.; W) is the one we have
already defined on B. Then we will use the usual spectral sequence of a filtered complex
to compute gr Hy(s @ s, Se; W), The computation will rely on the geometric result of
Kraft and Procesi that (in the notation of ) ~'(0) is a complete intersection.

To begin with, we have s s = €@ p where ¢ = {(z,z) :x € s} and p = {(z, —2) : v €
s}. Then ¢ is the complexified Lie algebra of S.. The standard complex ([20, page 163])
for computing H(s @ s, S.; W) is

0 «— /\0 p ®5¢ Weven & /\1 p ®Sc Weven <i . & /\m p ®Sc Weven — 0 (82)
Here m = dims and ®g, denotes the S.-coinvariants of the tensor product. We call this

complex A where 'A = Afp @5, W,
The differential 0 in ([83) is given by

t
OYiA---ANY,@D)=> (-1)Vin-- AV A ANY, @ II"(D) (8.3)
=1
where the Y; lie in p, D € W and II is the representation (). (Notice the terms
involving [Y;, Y]] are not present because [p,p] C £.) To make the complex more trans-
parent, we identify p with s so that (z, —z) corresponds to x. Then (BZ) becomes

t
Iai A Axy@D)=> (=1)!as Ao AT A Aay @ (€7D + DE™) (8.4)
=1

Next we define an increasing filtration of A by the spaces
AT = A'p @, Wi (8.5)

where we set Wi** = 0 if j < 0. Then 0'A? C =14 This follows since the £ lie in

Wivre™ and so p- W' C W', So we have in hand a filtration of the complex ([&Tl). We
12



put A%? = 9t94% then d is the filtration degree and ¢ is the complementary degree. The
induced filtration on the homology is H (568, So; W) = Ugen F@ where F¢ = @ ez 41
and F'47 is the dth filtration piece of Hyy,(s®s, S.; W™). The associated graded space
gr H(s @ s, S.; W) is the direct sum of the spaces

gt Hyyo(s @ 5, S W) = Fha ) p-latl (8.6)

Notice that A = W™ and the filtration on %A defined by (BH) is the same one as in
[B&4)). So gr Ho(s @ s, Se; W) = gr B. Our goal is to prove

gr? Ho(s @ s, S; W) = (P /7)1 (8.7)

Now we consider the spectral sequence Ey, F1, ... associated to our filtered complex.
(See e.g., [20, Appendix D] or [I5, Chapter 1,§4] for the construction of this spectral
sequence in the general setting.) The Ey term is given by Eg? = A%4/A4-14+1 and so

Eg® = ATp @5, W W, (88)
The identification grWee" = P gives
EY = nHip gg P (8.9)

(Thus the Ey term occupies the octant of the d, ¢ plane where ¢ < 0 and d 4+ ¢ > 0.) So
Eg is the complex

0— A'p@s, T Alp @, PIH 2 B AT g P 0 (8.10)

The boundary 9y is induced by 0. We can easily compute 0y since the natural projection
maps Vg : Wy — P are given by 14(ay - - - agq) = ay - - - agq where a; € L* (cf. §H). So
for D € W, we have 1441(§°D) = ¥441(DEY) = 0,94(D). Thus (B4 gives

Q@i A Az @ f) =D (=D'as A AT A Ay @ (204, f) (8.11)
l

The total complex Ej is
0 «— /\0p ®Sc Peven & /\1 P ®Sc Peven & . & /\mp ®Sc Peven —0 (812)

The homology H(Fjy), together with a differential 0, is the E; term of the spectral
sequence. More precisely, V! = Hy, (ES").

To compute Fy, we observe that H(Ep) is the S.-coinvariants of the homology of the
complex

0e—A"p@ P L plp@ P B B AT PUT 0 (8.13)

Indeed, Ej is the S.-coinvariants of (813), and taking coinvariants commutes with taking
homology. The latter follows because each space Alp @ P is a locally finite S.-
representation, and for any such representation V), the natural map V° — Vg from
invariants to coinvariants is an isomorphism.

To compute the homology of ([8TI3), we recognize ([8I3) as the Koszul complex K of
the sequence oy, ,...,0,, in P where yi, ...,y is any basis of s. Recall from @ that
7 is the ideal in P generated by the o,,. Kraft and Procesi proved in [22, Theorem 3.3]
and [23, Theorem 5.3] that the subscheme o~!(0) of L is a reduced complete intersection,

ie., 0oy,...,0y, is aregular sequence in P. Let us consider the Koszul complex K of this
13



sequence in P. By a well known result of commutative algebra (see [17 [II, Proposition
7.10A]) the homology of K is concentrated in degree zero and Hy(K) = P /T as graded
algebras. But K is simply obtained from K by taking Zs-invariants. Hence the homology
of K is concentrated in degree zero and Hy(K) = P JT" as graded algebras. Then
the module Hy(K)s, of coinvariants identifies with P /2.

Thus E; is the complex

0 (_Pznv/l'znv ! P )| (6_1 . (8_10 —0 (814)
where the differentials 077 : — B are obviously zero and
Eii —d (va/z-mv) while Equ =0if ¢ 7& —d (815)

Now we can compute the rest of the spectral sequence. We know FE,.; is the homology
of E, with respect to a differential 9,; i.c. ESY = ker 9%9/im §4~"+1 where 9% maps
E%4 to Bd=ratr=1 For r > 1, we find that E? = E%? and the differentials %7 are all
zZero.

The E,, term of the spectral sequence satisfies

E% = gr? Hy\ (s © s, Se; W) (8.16)
Our final step is to show our spectral sequence converges in that
B = B (8.17)

This will finish off the proof of Theorem [E3 because then (BIH) gives the desired result
ED).

The convergence (BI7) follows formally from the two properties: (i) A? = 0if d < 0
where A% = @®,c7A4%7 and (ii) A has finite dimension. Indeed, following the notation

in [15), 1,84.2], we have

Ebt = Z0)(BY + 22

B = Z4a)(Bl0 + 25
where 299 = {z € A% : 9z € A4}, Z49 = A% Nker d, B4 = AN 9A" and B4 =
A41 N GA. Suppose we fix d and q. Then (i) gives Z47 = qu and Z07 4t = zd-tatl

if » > d, and (ii) gives BT 1= = B9 if r is large enough. Therefore E47 = Egéq for r large

enough. But we found E{ = E* (r > 1) and so (BI7) follows.
We remark that it also follows that gr H;(s & s, S.; W) = 0 for j > 0. Thus we
have proven

Proposition 8.1. H;(s ® s, S;; W) =0 if j > 0.

(8.18)

9. PROOF OF COROLLARY

S, and G, are commuting subgroups of Sp(L). Tt follows that £ maps g into W™ and
so ¢ induces &g where €5 is the composition g— W™ — B. Next 7 is Sp(L)-invariant
and so in particular is S,-invariant. Then 7 preserves W, We see that 7 preserves
M, and so T preserves M. Hence 7 induces a filtered algebra anti-involution 73 of

B =W /M. Finally, ¢ is Sp(L)-invariant and so in particular is Se-invariant. Then
14



9 preserves W, We see that o preserves M, and so ¢ induces an antilinear filtered
algebra involution 95 of B.

Thus we have in place our Dixmier algebra data for O. It is clear because of Proposition
BT that the axioms are satisfied.

1]
2]
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