DIXMIER ALGEBRAS FOR CLASSICAL COMPLEX NILPOTENT ORBITS VIA KRAFT-PROCESI MODELS I

RANEE BRYLINSKI

Dedicated to Professor Alexander Kirillov on his 2⁶ birthday

ABSTRACT. We attach a Dixmier algebra \mathcal{B} to the closure $\overline{\mathcal{O}}$ of any nilpotent orbit of G where G is $GL(n,\mathbb{C})$, $O(n,\mathbb{C})$ or $Sp(2n,\mathbb{C})$. This algebra \mathcal{B} is a noncommutative analog of the coordinate ring \mathcal{R} of $\overline{\mathcal{O}}$, in the sense that \mathcal{B} has a G-invariant algebra filtration and $\operatorname{gr} \mathcal{B} = \mathcal{R}$.

We obtain \mathcal{B} by making a noncommutative analog of the Kraft-Procesi construction which modeled $\overline{\mathcal{O}}$ as the algebraic symplectic reduction of a finite-dimensional symplectic vector space L. Indeed \mathcal{B} is a subquotient of the Weyl algebra for L.

 \mathcal{B} identifies with the quotient of $\mathcal{U}(\mathfrak{g})$ by a two-sided ideal J, where $\mathfrak{g} = Lie(G)$. Then $\operatorname{gr} J$ is the ideal $\mathfrak{I}(\overline{\mathcal{O}})$ in $S(\mathfrak{g})$ of functions vanishing on $\overline{\mathcal{O}}$. In every case where \mathcal{O} is connected, J is a completely prime primitive ideal.

1. Introduction

By means of symplectic reduction in the setting of complex algebraic varieties, Kraft and Procesi ([22],[23]) constructed a model of the closure of any nilpotent coadjoint orbit \mathcal{O} of G when G is one of the classical groups $GL(n,\mathbb{C})$, $O(n,\mathbb{C})$ and $Sp(2n,\mathbb{C})$. The symplectic aspect is not actually mentioned, but the construction is clearly symplectic.

In this paper we give a noncommutative analog, or quantization, of the Kraft-Procesi construction. The result is that we attach a Dixmier algebra \mathcal{B} to each orbit closure $\overline{\mathcal{O}}$. Our algebra \mathcal{B} has a G-invariant algebra filtration and we show that $\operatorname{gr} \mathcal{B}$ is isomorphic, as a graded Poisson algebra, to the coordinate ring \mathcal{R} of $\overline{\mathcal{O}}$.

In fact, \mathcal{B} identifies, as a filtered algebra, with the quotient $\mathcal{U}(\mathfrak{g})/J$ of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of $\mathfrak{g} = Lie(G)$ by some two-sided ideal J. Then gr J is the ideal $\mathfrak{I}(\overline{\mathcal{O}})$ in $S(\mathfrak{g})$ defining $\overline{\mathcal{O}}$. We find that J is stable under the principal anti-automorphism of $\mathcal{U}(\mathfrak{g})$, and also under the anti-linear automorphism of $\mathcal{U}(\mathfrak{g})$ defined by a Cartan involution of \mathfrak{g} .

The Kraft-Procesi construction attaches to \mathcal{O} a complex symplectic vector space L together with a Hamiltonian action of $G \times S$ on L, where S is an auxillary complex reductive Lie group. The actions of G and S lie inside the symplectic group $Sp(L,\mathbb{C})$. Kraft and Procesi show that $\overline{\mathcal{O}}$ is scheme-theoretically the algebraic symplectic reduction of L by S. In this way, they obtain \mathcal{R} as a subquotient of the algebra \mathcal{P} of polynomial functions on L. More precisely, \mathcal{R} is realized as $\mathcal{P}^{inv}/\mathcal{I}^{inv}$ where \mathcal{I} is an ideal in \mathcal{P} and the superscript inv denotes taking S-invariants.

It is nice from the viewpoint of representation theory to regard \mathcal{R} as a subquotient of the algebra \mathcal{P}^{even} of even polynomials. (We can do this since \mathcal{P}^{inv} lies in \mathcal{P}^{even} .) For \mathcal{P}^{even} is the coordinate ring of the closure of the minimal nilpotent orbit \mathcal{Y} of $Sp(L, \mathbb{C})$.

To make a noncommutative analog of the Kraft-Procesi construction, we start from the fact that there is a unique Dixmier algebra attached to $\overline{\mathcal{Y}}$, namely the quotient of $\mathcal{U}(\mathfrak{sp}(L,\mathbb{C}))$ by its Joseph ideal \mathcal{J} . We can model $\mathcal{U}(\mathfrak{sp}(L,\mathbb{C}))/\mathcal{J}$ as the even part \mathcal{W}^{even} of the Weyl algebra \mathcal{W} for L and then gr $\mathcal{W}^{even} = \mathcal{P}^{even}$. There is an obvious quantization of the Hamiltonian S-action on L, namely the natural $(\mathfrak{s} \oplus \mathfrak{s}, S_c)$ -module structure on \mathcal{W} . Here the subscript c denotes taking a compact real form.

We define \mathcal{B} to be the coinvariants for the $(\mathfrak{s} \oplus \mathfrak{s}, S_c)$ -action on \mathcal{W}^{even} . A priori, \mathcal{B} is a $(\mathfrak{g} \oplus \mathfrak{g}, G_c)$ -module with a G_c -invariant filtration, but \mathcal{B} is not an algebra. However, we easily identify \mathcal{B} as the quotient by a two-sided ideal of \mathcal{W}^{inv} (where the superscript again indicates taking S-invariants, or equivalently, S_c -invariants). In this way, \mathcal{B} becomes a filtered algebra and a subquotient of \mathcal{W}^{even} .

Our main result (Theorem 6.3) is to compute the associated graded algebra gr \mathcal{B} . It is easy to see that gr \mathcal{B} is some quotient of $\mathcal{P}^{inv}/\mathcal{I}^{inv}$, but in fact we prove gr $\mathcal{B} = \mathcal{P}^{inv}/\mathcal{I}^{inv}$. To do this, we recognize \mathcal{B} as the degree zero part of the relative Lie algebra homology $H(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$. We consider the standard complex which computes this homology, introduce a filtration and then apply the spectral sequence for a filtered complex. We compute the E_1 term of the spectral sequence by using the fact proven by Kraft and Procesi that \mathcal{I} is a complete intersection ideal. Then we easily show $E_1 = E_{\infty}$.

We establish some properties of \mathcal{B} and the corresponding ideal J. If \mathcal{O} is connected then J is a completely prime primitive ideal (Corollary 6.5). In every case, \mathcal{B} admits a unique \mathfrak{g}^{\sharp} -invariant Hermitian inner product $(\cdot|\cdot)$ such that (1|1)=1, where \mathfrak{g}^{\sharp} is a real form of $\mathfrak{g} \oplus \mathfrak{g}$ with $\mathfrak{g}^{\sharp} \simeq \mathfrak{g}$ (see Proposition 3.1). This prompts the question as to whether J is "good" in the sense that J is maximal and $\mathcal{U}(\mathfrak{g})/J$ is unitarizable. The latter property means (since $\mathcal{B} \simeq \mathcal{U}(\mathfrak{g})/J$) that $(\cdot|\cdot)$ is positive-definite.

Attaching "good" ideals to \mathcal{O} is an important problem in representation theory and the orbit method. Quite a bit of work has been done on this (see e.g. some of the references and authors cited below) but the problem for nilpotent orbits of a complex semisimple Lie group remains unsolved.

If $G = GL(n, \mathbb{C})$, then our J is good (see Remark 6.6(i) and [8]). But $G = GL(n, \mathbb{C})$ is really a very special case for us as the geometry of \mathcal{O} is incredibly nice, including but not limited to the fact that $\overline{\mathcal{O}}$ is always normal. For $G = O(n, \mathbb{C})$ or $G = Sp(2n, \mathbb{C})$, it is not the case that J is always good. Certainly if $\overline{\mathcal{O}}$ is not normal, we should not expect J to be good.

Our point of view (to be justified in [9]) is that \mathcal{B} is the "canonical" quantization of the Kraft-Procesi construction, and so the failure of J to be good is really a statement about $\overline{\mathcal{O}}$. The next step is then to investigate whether we can make a modification to our quantization process in order to obtain some good ideals in $\mathcal{U}(\mathfrak{g})$ attached to \mathcal{O} (and even its covers).

This paper is the first in a series. In the subsequent papers we make explicit the important role of Howe duality in our project. Indeed, \mathcal{W}^{even} is the Harish-Chandra module

of the (even) oscillator representation of $Sp(L, \mathbb{C})$, and the pair (G, S) constitutes a sequence of Howe dual pairs (see Remark 4.1). In taking coinvariants, we are implementing a sequence of Howe duality "operations". Each "operation" is like implementing a Howe duality correspondence, except that we do *not* pass to the the irreducible quotient. In working on this project (which started in earnest in the summer of 2001 – and is part of a program we began in 1994), we have been reading the Howe duality literature. We have been influenced by especially the papers [18], [29], [1] and [25].

Our first construction of the Dixmier algebra \mathcal{B} actually came out of the ideas of Howe duality and quantization by constraints. This is given in [9] and lies more in the realm of harmonic analysis than algebra. Our starting point there is the fact ([21]) that L is hyperkähler and the Kraft-Procesi construction is the algebraic analog of the hyperkähler reduction of L by S_c .

The notion of Dixmier algebra for nilpotent orbits (including their closures and their coverings) was first developed in work of McGovern, Joseph and Vogan. See e.g. [27], [31], and [32]. The motivation for these authors and for most Dixmier algebra theorists is the search for completely prime primitive ideals. This motivation is very important for us too; we also find additional motivations coming from star products and from geometric quantization.

The results in this paper should be compared with the work in [1], [3], [4], [5], [6], [7], [10], [14], [13], [16], [24], [25], [26], [27], [28], [29] and [33]. Some of this comparison work will be done in [8] and [9].

Part of this work was carried out while I was visiting the IML and the CPT of the Université de la Méditerranée in the summer of 2001, and I thank my colleagues there for their hospitality. I especially thank Christian Duval and Valentin Ovsienko for some very valuable discussions.

It is a real pleasure to dedicate this article to Sasha Kirillov whose discoveries have opened up so many new vistas, starting of course with the Orbit Method. I warmly thank him for his friendship and his interest in my own work.

2. Dixmier Algebra for the closure of a complex nilpotent orbit

Let G be a reductive complex algebraic group. Let \mathfrak{g} be the Lie algebra of G and let \mathfrak{g}^* be the dual space. Then G acts on \mathfrak{g} and \mathfrak{g}^* by, respectively, the adjoint action and the coadjoint action. The symmetric algebra $S(\mathfrak{g}) = \bigoplus_{p=0}^{\infty} S^p(\mathfrak{g})$ is the algebra of polynomial functions on \mathfrak{g}^* . The G-invariants form the graded subalgebra $S(\mathfrak{g})^G = \bigoplus_{p=0}^{\infty} S^p(\mathfrak{g})^G$. We can fix some nondegenerate G-invariant bilinear form (\cdot, \cdot) on \mathfrak{g} .

The nullcone in \mathfrak{g}^* is the set of $\lambda \in \mathfrak{g}^*$ which satisfy the following equivalent properties:

- (i) the closure of the coadjoint orbit of λ contains zero
- (ii) the coadjoint orbit of λ is stable under dilations of the vector space \mathfrak{g}^*
- (iii) every nonconstant homogeneous G-invariant in $S(\mathfrak{g})$ vanishes on λ
- (iv) $\lambda = (x, \cdot)$ where x is a nilpotent in \mathfrak{g}

The nullcone is G-stable and breaks into finitely many orbits of G, which are then called the *nilpotent coadjoint orbits*, or simply the *nilpotent orbits*, of G.

Let \mathcal{O} be a nilpotent orbit of G. The closure $\overline{\mathcal{O}}$ is a complex algebraic subvariety of \mathfrak{g}^* ; but $\overline{\mathcal{O}}$ may be reducible if G is disconnected. The coordinate ring $\mathbb{C}[\overline{\mathcal{O}}]$ of $\overline{\mathcal{O}}$ is the quotient algebra

$$\mathcal{R} = S(\mathfrak{g})/\mathfrak{I}(\overline{\mathcal{O}}) \tag{2.1}$$

where $\mathfrak{I}(\overline{\mathcal{O}})$ is the ideal of functions which vanish on $\overline{\mathcal{O}}$. Then $\mathfrak{I}(\overline{\mathcal{O}})$ is a graded ideal and $\mathcal{R} = \bigoplus_{p=0}^{\infty} \mathcal{R}^p$ is a graded algebra where $\mathcal{R}^p = S^p(\mathfrak{g})/\mathfrak{I}(\overline{\mathcal{O}})^p$. Each space \mathcal{R}^p is a finite dimensional completely reducible representation of G. Kostant's description of $S(\mathfrak{g})$ as a module over $S(\mathfrak{g})^G$ implies that all G-multiplicities in \mathcal{R} are finite.

 \mathcal{R} inherits from $S(\mathfrak{g})$ the structure of a graded Poisson algebra where $\{\mathcal{R}^p, \mathcal{R}^q\} \subseteq \mathcal{R}^{p+q-1}$. This Poisson bracket $\{\cdot, \cdot\}$ on \mathcal{R} is G-invariant and corresponds to the holomorphic Kirillov-Kostant-Souriau symplectic form on \mathcal{O} .

In this situation, we define Dixmier algebras in the following way. We fix a Cartan involution ς of \mathfrak{g} . Then ς corresponds to a compact real form G_c of G with Lie algebra \mathfrak{g}_c . Let $\mathbb{N} = \{0, 1, 2, \dots\}$.

Definition 2.1. A Dixmier algebra for $\overline{\mathcal{O}}$ is a quadruple $(\mathcal{D}, \xi, \tau, \vartheta)$ where

- \mathcal{D} is a filtered algebra with an increasing algebra filtration $\mathcal{D} = \bigcup_{p \in \mathbb{N}} \mathcal{D}_p$ such that $\operatorname{gr} \mathcal{D}$ is commutative.
- $\xi: \mathfrak{g} \to \mathcal{D}_1, x \mapsto \xi^x$, is a homomorphism of Lie algebras and ξ induces an isomorphism of graded Poisson algebras from $S(\mathfrak{g})/\mathfrak{I}(\overline{\mathcal{O}})$ onto gr \mathcal{D} .
- τ is a filtered algebra anti-involution of \mathcal{D} such that $\tau(\xi^x) = -\xi^x$.
- ϑ is an anti-linear filtered algebra involution such that $\vartheta(\xi^x) = \xi^{\varsigma(x)}$.

Here are some explanations about the definition. First, commutativity of $\operatorname{gr} \mathcal{D}$ implies that $\operatorname{gr} \mathcal{D}$ has a natural structure of graded Poisson algebra; here the commutator in \mathcal{D} induces the Poisson bracket on $\operatorname{gr} \mathcal{D}$. Second, ξ extends naturally to a filtered algebra homomorphism

$$\widetilde{\xi}: \mathcal{U}(\mathfrak{g}) \to \mathcal{D}$$
 (2.2)

Let J be the kernel of $\widetilde{\xi}$. Then $\operatorname{gr} J$ is a Poisson ideal of $S(\mathfrak{g})$, and $\operatorname{gr} \widetilde{\xi}$ induces a 1-to-1 homomorphism $\zeta: S(\mathfrak{g})/\operatorname{gr} J \to \operatorname{gr} D$ of graded Poisson algebras. We require that ζ is surjective and

$$\operatorname{gr} J = \mathfrak{I}(\overline{\mathcal{O}}) \tag{2.3}$$

Notice that ζ is surjective if and only if $\tilde{\xi}$ is surjective in each filtration degree; then $\tilde{\xi}$ induces a filtered algebra isomorphism

$$\mathcal{U}(\mathfrak{g})/J \xrightarrow{\sim} \mathcal{D}$$
 (2.4)

Third, τ satisfies $\tau(cA) = c\tau(A)$, $\tau(A+B) = \tau(A) + \tau(B)$, and $\tau(AB) = \tau(B)\tau(A)$ where $A, B \in \mathcal{D}$ and $c \in \mathbb{C}$. Fourth, ϑ satisfies $\vartheta(cA) = \overline{c}\vartheta(A)$, $\vartheta(A+B) = \vartheta(A) + \vartheta(B)$, and $\vartheta(AB) = \vartheta(A)\vartheta(B)$. Clearly $\tau\vartheta = \vartheta\tau$.

Notice that \mathcal{D} and ξ (and ς) uniquely determine τ and ϑ , if the latter exist. Indeed, the endomorphisms $x \mapsto -x$ and $x \mapsto \varsigma(x)$ of \mathfrak{g} extend uniquely to $\tau_{\mathfrak{g}}$ and $\vartheta_{\mathfrak{g}}$, where $\tau_{\mathfrak{g}}$ is an algebra anti-involution of $\mathcal{U}(\mathfrak{g})$ and $\vartheta_{\mathfrak{g}}$ is an antilinear algebra involution of $\mathcal{U}(\mathfrak{g})$. Then, via (2.4), $\tau_{\mathfrak{g}}$ and $\vartheta_{\mathfrak{g}}$ induce τ and ϑ .

We have an obvious notion of isomorphism of Dixmier algebras for $\overline{\mathcal{O}}$: $(\mathcal{D}, \xi, \tau, \vartheta)$ is isomorphic to $(\mathcal{D}', \xi', \tau', \vartheta')$ if there is a filtered algebra isomorphism $\eta : \mathcal{D} \to \mathcal{D}'$ such that $\xi' = \eta \circ \xi$, $\eta \circ \tau = \tau' \circ \eta$, and $\eta \circ \vartheta = \vartheta' \circ \eta$. We can easily classify Dixmier algebras.

Observation 2.2. Suppose $(\mathcal{D}, \xi, \tau, \vartheta)$ is a Dixmier algebra for $\overline{\mathcal{O}}$. In addition to (2.3), J satisfies

$$\tau_{\mathfrak{g}}(J) = J \quad and \quad \vartheta_{\mathfrak{g}}(J) = J$$
(2.5)

In this way, we get a bijection between (isomorphism classes of) Dixmier algebras for $\overline{\mathcal{O}}$ and two-sided ideals J of $\mathcal{U}(\mathfrak{g})$ satisfying (2.3) and (2.5).

Proof. Clearly (2.3) and (2.5) imply that $(\mathcal{U}(\mathfrak{g})/J, \iota, \tau'_{\mathfrak{g}}, \vartheta'_{\mathfrak{g}})$ is a Dixmier algebra for $\overline{\mathcal{O}}$, where ι is the obvious map and $\tau'_{\mathfrak{g}}$ and $\vartheta'_{\mathfrak{g}}$ are induced by $\tau_{\mathfrak{g}}$ and $\vartheta_{\mathfrak{g}}$. Conversely, if $(\mathcal{D}, \xi, \tau, \vartheta)$ is given, then $(\mathcal{U}(\mathfrak{g})/J, \iota, \tau'_{\mathfrak{g}}, \vartheta'_{\mathfrak{g}})$ is isomorphic to it via (2.4).

3. Properties of Dixmier algebras

The hopes in constructing a Dixmier algebra are (i) J will be a completely prime primitive ideal of $\mathcal{U}(\mathfrak{g})$, or even better, a completely prime maximal ideal, and (ii) \mathcal{D} will be unitarizable. See [12, 3.1] for the definitions of the terms in (i).

To understand (ii), we observe that Definition 2.1 makes \mathcal{D} into a $(\mathfrak{g} \oplus \mathfrak{g}, G_c)$ -module. Indeed, the natural $(\mathfrak{g} \oplus \mathfrak{g}, G_c)$ -module structure on $\mathcal{U}(\mathfrak{g})/J$ transfers over to \mathcal{D} via (2.4). Then $\mathfrak{g} \oplus \mathfrak{g}$ acts on \mathcal{D} though the representation

$$\Pi: \mathfrak{g} \oplus \mathfrak{g} \to \operatorname{End} \mathcal{D}, \qquad (x, y) \mapsto \Pi^{x, y}$$
 (3.1)

where $\Pi^{x,y}(A) = \xi^x A - A\xi^y$. The action of G_c corresponds to the subalgebra $\{(x,x) : x \in \mathfrak{g}_c\}$.

Next consider the subalgebra $\mathfrak{g}^{\sharp} = \{(x, \varsigma(x)) : x \in \mathfrak{g}\}$ of $\mathfrak{g} \oplus \mathfrak{g}$. We say \mathcal{D} is unitarizable if \mathcal{D} admits a \mathfrak{g}^{\sharp} -invariant positive definite Hermitian inner product. In this event, by a theorem of Harish-Chandra, the operators $\Pi^{x,\varsigma(x)}$ correspond to a unitary representation of G on the Hilbert space completion of \mathcal{D} . This unitary representation is then a quantization of \mathcal{O} in the sense of geometric quantization, if we view \mathcal{O} as a real symplectic manifold. (If $\mathbb{C}[\overline{\mathcal{O}}] \neq \mathbb{C}[\mathcal{O}]$, then this might be just a piece of a quantization of \mathcal{O} .)

Notice that the following three properties are equivalent: (i) J is maximal, (ii) \mathcal{D} is a simple ring, and (iii) the representation Π is irreducible.

Our formalism gives some partial results pertaining to hopes (i) and (ii). Notice that $\mathcal{D}_0 = \mathbb{C}$ by (2.4).

Proposition 3.1. Suppose $(\mathcal{D}, \xi, \tau, \vartheta)$ is a Dixmier algebra for $\overline{\mathcal{O}}$ and $J = \ker \widetilde{\xi}$. Then

- (i) J has an infinitesimal character.
- (ii) If $\overline{\mathcal{O}}$ is irreducible then J is a completely prime primitive ideal in $\mathcal{U}(\mathfrak{g})$.
- (iii) There is a unique G_c -invariant projection $\mathcal{T}: \mathcal{D} \to \mathbb{C}$. This map \mathcal{T} is a trace, i.e., $\mathcal{T}(AB) = \mathcal{T}(BA)$.
- (iv) \mathcal{D} admits a unique \mathfrak{g}^{\sharp} -invariant Hermitian inner product $(\cdot|\cdot)$ such that (1|1)=1, and it is given by

$$(A|B) = \mathcal{T}(AB^{\vartheta}). \tag{3.2}$$

where $B^{\vartheta} = \vartheta(B)$.

Proof. (i) This means (for any proper two-sided ideal J) that J contains a maximal ideal of the center of $\mathcal{U}(\mathfrak{g})$. This happens if and only $\operatorname{gr} J$ contains $S^+(\mathfrak{g})^G = \bigoplus_{p \geq 0} S^p(\mathfrak{g})^G$. But $\operatorname{gr} J = \mathfrak{I}(\overline{\mathcal{O}})$ and $\mathfrak{I}(\overline{\mathcal{O}}) \supset S^+(\mathfrak{g})^G$ since $\overline{\mathcal{O}}$ lies in the nullcone. (ii) If $\overline{\mathcal{O}}$ is irreducible then $\mathfrak{I}(\overline{\mathcal{O}})$ is a prime ideal in $S(\mathfrak{g})$ and so J is a completely prime ideal in $U(\mathfrak{g})$. This together with (i) implies, by a result of Dixmier, that J is primitive. (iii) Since $\mathfrak{I}(\overline{\mathcal{O}}) \supset S^+(\mathfrak{g})^G = S^+(\mathfrak{g})^{G_c}$, we have $\mathcal{R}^{G_c} = \mathbb{C}$ and so $\mathcal{D}^{G_c} = \mathbb{C}$. Thus we get a unique G_c -invariant projection map \mathcal{T} . Now G_c -invariance implies $\mathcal{T}([\xi^x, A]) = 0$ where $x \in \mathfrak{g}$. We can write this as $\mathcal{T}(\xi^x A) = \mathcal{T}(A\xi^x)$. Iteration gives $\mathcal{T}(\xi^{x_1} \cdots \xi^{x_k} A) = \mathcal{T}(A\xi^{x_1} \cdots \xi^{x_k})$. This proves $\mathcal{T}(BA) = \mathcal{T}(AB)$ since the ξ^x generate \mathcal{D} . (This is the same proof as in $[7, \operatorname{Proposition} 8.4]$.) (iv) Suppose $(\cdot|\cdot)$ is an inner product with the desired properties. Then $(A|1) = \mathcal{T}(A)$. Now \mathfrak{g}^{\sharp} -invariance means that the operators $\Pi^{x,\varsigma(x)}$ are skew-hermitian, or equivalently, $(\xi^x A|B) = (A|B\xi^{\varsigma(x)})$. So for $B = \xi^{x_1} \cdots \xi^{x_k}$, we have $(A|B) = (\xi^{\varsigma(x_1)} \cdots \xi^{\varsigma(x_k)} A|1) = (B^{\vartheta}A|1) = \mathcal{T}(B^{\vartheta}A)$. The result is now clear.

Corollary 3.2. \mathcal{D} is unitarizable if and only if the pairing defined by (3.2) is positive definite. If \mathcal{D} is unitarizable, then J is maximal.

Proof. Both statements follow from the uniqueness in Proposition 3.1(iv).

Example 3.3. Suppose \mathcal{O} is the minimal nilpotent orbit in \mathfrak{g} where \mathfrak{g} is simple and $\mathfrak{g} \neq \mathfrak{sl}(2,\mathbb{C})$. This is a case where $\mathbb{C}[\overline{\mathcal{O}}] = \mathbb{C}[\mathcal{O}]$. Then there is a unique Dixmier algebra for $\overline{\mathcal{O}}$. This follows by Observation 2.2 since there is exactly one choice for J satisfying (2.3) and (2.5). Moreover, (i) J is a completely prime maximal ideal of $\mathcal{U}(\mathfrak{g})$, and (ii) $\mathcal{U}(\mathfrak{g})/J$ is unitarizable if \mathfrak{g} is classical.

Indeed, there is a unique two-sided ideal J satisfying (2.3) and $\tau_{\mathfrak{g}}(J) = J$; see [2, proof of Proposition 3.1]. Since the ideal $\mathfrak{I}(\overline{\mathcal{O}})$ is preserved by the antilinear algebra involution of $S(\mathfrak{g})$ defined by \mathfrak{s} , it follows by the uniqueness of J that $\vartheta_{\mathfrak{g}}(J) = J$. Since $\overline{\mathcal{O}}$ is irreducible, Proposition 3.1(ii) implies that J is completely prime. If $\mathfrak{g} \neq \mathfrak{sl}(n,\mathbb{C})$, then J is the Joseph ideal and this is maximal by [19, Theorem 7.4]. If $\mathfrak{g} = \mathfrak{sl}(n,\mathbb{C})$ ($n \geq 3$), then J is maximal by [30]. Finally, unitarizabilty is known; see [2, Theorem 9.1] for a uniform construction of these unitary representations on spaces of holomorphic functions on \mathcal{O} .

4. The Kraft-Procesi Construction

In this section we recall how Kraft and Procesi in [22] and [23] constructed the closures of complex classical nilpotent orbits. We add to their construction the framework of algebraic symplectic reduction.

Let V be a complex vector space with \mathbf{b} a bilinear form on V. Let G be the symmetry group of \mathbf{b} . We consider only the following three cases.

- (i) **b** is identically zero. Then $G = GL(V, \mathbb{C})$.
- (ii) **b** is nondegenerate and symmetric. Then $G = O(V, \mathbb{C})$.
- (iii) **b** is nondegenerate and symplectic. Then $G = Sp(V, \mathbb{C})$.

Choose a nilpotent orbit \mathcal{O} of G and an element λ in \mathcal{O} . Then λ corresponds (via the trace functional on End V) to $x \in \mathfrak{g}$; so x is in particular a nilpotent endomorphism of V.

We note that \mathcal{O} is connected, and so $\overline{\mathcal{O}}$ is irreducible, except in the following situation. If $G = O(V, \mathbb{C})$ where dim V is even and also the Jordan block size partition of \mathcal{O} is very even (i.e., all parts are even and occur with even multiplicities), then \mathcal{O} has two connected components and $\overline{\mathcal{O}}$ has two irreducible components. See [23], [11, Chapter 5]. Let V_d be the image of x^d . Then

$$V = V_0 \supset V_1 \supset \dots \supset V_r \supset V_{r+1} = 0 \tag{4.1}$$

where r is the largest number such that $x^r \neq 0$. We define a complex vector space L by

$$L = L(V_0, V_1) \oplus L(V_1, V_2) \oplus \cdots \oplus L(V_{r-1}, V_r)$$

$$\tag{4.2}$$

where $L(V_{d-1}, V_d)$ is obtained in the following way. If $G = GL(V, \mathbb{C})$ then

$$L(V_{d-1}, V_d) = \text{Hom}(V_d, V_{d-1}) \oplus \text{Hom}(V_{d-1}, V_d)$$
(4.3)

If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then

$$L(V_{d-1}, V_d) = \text{Hom}(V_d, V_{d-1}) \tag{4.4}$$

Next we construct a complex Lie group S of the form

$$S = S_1 \times S_2 \times \dots \times S_r \tag{4.5}$$

where S_d is obtained in the following way. To begin with, we put $\mathbf{b}_0 = \mathbf{b}$ and $S_0 = G$. If $G = GL(V, \mathbb{C})$ then for each d we put $\mathbf{b}_d = 0$ and $S_d = GL(V_d, \mathbb{C})$. If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then V_d admits an intrinsic nondegenerate complex bilinear form \mathbf{b}_d and we define S_d to be the symmetry group of \mathbf{b}_d . In more detail, \mathbf{b}_d is the bilinear form on V_d defined by $\mathbf{b}_d(x^d(u), x^d(v)) = \mathbf{b}(u, x^d(v))$. It turns out that \mathbf{b}_d is nondegenerate. If \mathbf{b}_{d-1} is orthogonal then \mathbf{b}_d is symplectic and we put $S_d = Sp(V_d, \mathbb{C})$. If \mathbf{b}_{d-1} is symplectic then \mathbf{b}_d is orthogonal and we put $S_d = O(V_d, \mathbb{C})$.

Next we construct commuting actions of G and S on L. If $G = GL(V, \mathbb{C})$, we make G and S act by

$$(g, s_1, \dots, s_r) \bullet (A_1, B_1, A_2, B_2, \dots, A_r, B_r)$$

$$= (gA_1s_1^{-1}, s_1B_1g^{-1}, s_1A_2s_2^{-1}, s_2B_2s_1^{-1}, \dots, s_{r-1}A_rs_r^{-1}, s_rB_rs_{r-1}^{-1})$$

$$(4.6)$$

where $A_d \in \text{Hom}(V_d, V_{d-1})$ and $B_d \in \text{Hom}(V_{d-1}, V_d)$. If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, we make G and S act by

$$(g, s_1, \dots, s_r) \bullet (C_1, C_2, \dots, C_r) = (gC_1s_1^{-1}, s_1C_2s_2^{-1}, \dots, s_{r-1}C_rs_r^{-1})$$
 (4.7)

where $C_d \in \text{Hom}(V_d, V_{d-1})$.

L has a (complex) symplectic form Ω given by $\Omega = \Omega_1 + \Omega_2 + \cdots + \Omega_r$ where Ω_d is the symplectic form on $L(V_{d-1}, V_d)$ defined in the following way. If $G = GL(V, \mathbb{C})$, then $\Omega_d(A + B, A' + B') = \operatorname{tr}(AB') - \operatorname{tr}(BA')$. If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then $\Omega_d(C, C') = \operatorname{tr}(C^*C)$ where $C^* \in \operatorname{Hom}(V_{d-1}, V_d)$ is the adjoint of C defined by $\mathbf{b}_{d-1}(u, C^*(v)) = \mathbf{b}_d(C(u), v)$.

Now G and S act faithfully and symplectically on L. Thereby G and S identify with commuting subgroups of the symplectic group $Sp(L,\mathbb{C})$. The action of $Sp(L,\mathbb{C})$ is Hamiltonian with canonical moment map

$$L \to \mathfrak{sp}(L, \mathbb{C})^* \tag{4.8}$$

Hence our actions of G and S are Hamiltonian with induced moment maps (obtained by projection)

$$\gamma: L \to \mathfrak{g}^*$$
 and $\sigma: L \to \mathfrak{s}^*$ (4.9)

Then γ is G-equivariant and G-invariant, and σ is S-equivariant and G-invariant.

Here are the explicit formulas for γ and σ . We may write these as \mathfrak{g} -valued and \mathfrak{s} -valued maps, with the convention that the trace functional on $\operatorname{End} L$ induces isomorphisms $\mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ and $\mathfrak{s} \xrightarrow{\sim} \mathfrak{s}^*$. If $G = GL(V, \mathbb{C})$, then γ and σ are given by

$$(-A_1B_1)$$
 and $(B_1A_1 - A_2B_2, \dots, B_{r-1}A_{r-1} - A_rB_r, B_rA_r)$ (4.10)

If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then γ and σ are given by

$$(-C_1C_1^*)$$
 and $(C_1^*C_1 - C_2C_2^*, \dots, C_{r-1}^*C_{r-1} - C_rC_r^*, C_r^*C_r)$ (4.11)

Remark 4.1. For each $d=1,\ldots,r,\,S_{d-1}$ and S_d act on $L(V_{d-1},V_d)$ as a Howe dual pair.

Let \mathcal{P} be the algebra of polynomial functions on L. Then $\mathcal{P} = S(L^*)$ is a graded Poisson algebra with respect to the Poisson bracket $\{\cdot,\cdot\}$ defined by Ω . Our grading is $\mathcal{P} = \bigoplus_{j \in \frac{1}{2}\mathbb{N}} \mathcal{P}^j$ where $\mathcal{P}^j = S^{2j}(L^*)$ and then $\{\mathcal{P}^j, \mathcal{P}^k\} \subseteq \mathcal{P}^{j+k-1}$. (This choice of halving the natural degrees is convenient as the aim is to obtain \mathcal{R} as a subquotient of \mathcal{P} .) The momentum functions γ_y ($y \in \mathfrak{g}$) and σ_x ($x \in \mathfrak{s}$) are the component functions of γ and σ ; i.e., $\gamma_y(m) = \langle \gamma(m), y \rangle$ and $\sigma_x(m) = \langle \sigma(m), x \rangle$ where $m \in L$. The γ_y and σ_x lie in \mathcal{P}^1 and satisfy the bracket relations $\{\gamma_y, \gamma_{y'}\} = \gamma_{[y,y']}, \{\sigma_x, \sigma_{x'}\} = \sigma_{[x,x']}$ and $\{\gamma_y, \sigma_x\} = 0$.

Let \mathcal{I} be the ideal in \mathcal{P} generated by the momentum functions σ_x where $x \in \mathfrak{s}$. Then $\mathcal{I} = \bigoplus_{j \in \frac{1}{2}\mathbb{N}}^{\infty} \mathcal{I}^j$ is a graded ideal stable under both G and S. Hence the quotient algebra \mathcal{P}/\mathcal{I} is a graded algebra on which G and S act by graded algebra automorphisms. The grading is

$$\mathcal{P}/\mathcal{I} = \bigoplus_{j \in \frac{1}{n} \mathbb{N}} (\mathcal{P}/\mathcal{I})^j$$

where $(\mathcal{P}/\mathcal{I})^j = \mathcal{P}^j/\mathcal{I}^j$. Kraft and Procesi proved that \mathcal{I} is the full ideal of functions vanishing on $\sigma^{-1}(0)$. Thus \mathcal{P}/\mathcal{I} is the coordinate ring $\mathbb{C}[\sigma^{-1}(0)]$ of the zero locus of σ .

The algebraic symplectic reduction L^{red} of L by S is the Mumford quotient of $\sigma^{-1}(0)$ by S. Thus L^{red} is the affine complex algebraic variety with coordinate ring

$$\mathbb{C}[L^{red}] = (\mathcal{P}/\mathcal{I})^{inv} = \mathcal{P}^{inv}/\mathcal{I}^{inv}$$
(4.12)

where the superscript inv denotes taking S-invariants. Moreover \mathcal{I}^{inv} is a Poisson ideal in \mathcal{P}^{inv} . So $\mathbb{C}[L^{red}]$ inherits the structure of a graded Poisson algebra.

Notice that S contains the center $\mathbb{Z}_2 = \{1, -1\}$ of $Sp(L, \mathbb{C})$ and the action of \mathbb{Z}_2 induces the decomposition $\mathcal{P} = \mathcal{P}^{even} \oplus \mathcal{P}^{odd}$ where the even part is the graded Poisson algebra

$$\mathcal{P}^{even} = \bigoplus_{d \in \mathbb{N}} \mathcal{P}^d \tag{4.13}$$

So \mathcal{P}^{inv} lies in \mathcal{P}^{even} , and thus \mathcal{P}^{inv} and $\mathbb{C}[L^{red}]$ are N-graded.

The symplectic version of the Kraft-Procesi result is

Theorem 4.2. [22, Theorem 3.3], [23, Theorem 5.3] The algebra homomorphism γ^* : $S(\mathfrak{g}) \to \mathcal{P}$ defined by $y \mapsto \gamma_y$ ($y \in \mathfrak{g}$) induces a G-equivariant isomorphism of \mathbb{N} -graded Poisson algebras from \mathcal{R} onto $\mathcal{P}^{inv}/\mathcal{I}^{inv}$.

The cited results of Kraft and Procesi are given in geometric language, and the reader who wants to read all the proofs in [22] and [23] will need some knowledge in algebraic geometry. The statements in [22, Theorem 3.3] and [23, Theorem 5.3] are easy to translate into algebra though, since we are dealing with affine varieties. Kraft and Procesi show that γ maps $\sigma^{-1}(0)$ onto $\overline{\mathcal{O}}$, and moreover this surjection $\gamma': \sigma^{-1}(0) \to \overline{\mathcal{O}}$ is a quotient map for the action of S. In this setting of a reductive group acting on an affine variety, "quotient map" has a very strong meaning coming from Mumford's geometric invariant theory, as explained in [22, §1.4] and [23, §0.11]. Precisely, γ' being a quotient map means that the corresponding map $\mathcal{R} \to \mathcal{P}/\mathcal{I}$ on coordinate rings is injective and has image equal to $(\mathcal{P}/\mathcal{I})^{inv}$.

In symplectic language then, Kraft and Procesi proved that the moment map γ induces a G-isomorphism of affine complex algebraic varieties from L^{red} onto $\overline{\mathcal{O}}$. This isomorphism is also equivariant with respect to the natural \mathbb{C}^* -actions on L^{red} and $\overline{\mathcal{O}}$. Finally, since γ is a moment map it follows that γ^* preserves the Poisson brackets. Thus we get Theorem 4.2.

5. Weyl algebra \mathcal{W} for L

The Kraft-Procesi construction realized \mathcal{R} as a subquotient, namely $\mathcal{P}^{inv}/\mathcal{I}^{inv}$, of \mathcal{P}^{even} . Our aim is to make a noncommutative analog of their construction.

The image of the moment map (4.8) is the closure $\overline{\mathcal{Y}}$ of the minimal nilpotent orbit \mathcal{Y} of $Sp(L,\mathbb{C})$, and $\mathcal{P}^{even} = \mathbb{C}[\overline{\mathcal{Y}}]$ as graded Poisson algebras. We know by Example 3.3 that $\overline{\mathcal{Y}}$ has a unique Dixmier algebra $(\mathcal{D}, \xi_{\mathcal{D}}, \tau_{\mathcal{D}}, \vartheta_{\mathcal{D}})$, and then \mathcal{D} is the quotient of $\mathcal{U}(\mathfrak{sp}(L,\mathbb{C}))$ by its Joseph ideal. In this section we will give a more concrete model for this Dixmier algebra. Then in §6 we will perform the noncommutative analog of reduction.

Let \mathcal{W} be the Weyl algebra for L^* . This means that \mathcal{W} is the quotient of the tensor algebra of L^* by the two-sided ideal generated by the elements $a \otimes b - b \otimes a - \{a, b\}$ where a and b lie in L^* . Let $a \mapsto \hat{a}$ be the natural map $L^* \to \mathcal{W}$. We can identify $\mathfrak{sp}(L, \mathbb{C})$ with S^2L^* and then we have the Lie algebra embedding

$$\xi : \mathfrak{sp}(L, \mathbb{C}) \longrightarrow \mathcal{W}, \quad \xi^{ab} = \hat{a}\hat{b} + \hat{b}\hat{a}$$
 (5.1)

There is an increasing algebra filtration $W = \bigcup_{j \in \frac{1}{2}\mathbb{N}} W_j$ where W_j is the image of the space of tensors of degree at most 2j. We have $[W_j, W_k] \subset W_{j+k-1}$. Thus the associated graded algebra $\operatorname{gr} W = \bigoplus_{j \in \frac{1}{2}\mathbb{N}} W_j / W_{j-\frac{1}{2}}$ is commutative and the commutator in W induces a Poisson bracket (of degree -1) on $\operatorname{gr} W$. In this way $\operatorname{gr} W$ becomes a graded Poisson algebra. Then $\operatorname{gr} W$ identifies naturally with \mathcal{P} .

The symplectic group $Sp(L, \mathbb{C})$ acts naturally on \mathcal{W} by algebra automorphisms. This action respects ξ , the filtration on \mathcal{W} , the Poisson bracket on gr \mathcal{W} , etc. The corresponding action of $\mathfrak{sp}(L, \mathbb{C})$ on \mathcal{W} is given by the operators $[\xi^{ab}, \cdot]$.

We next choose a Cartan involution ς of $\mathfrak{sp}(L,\mathbb{C})$. To do this, we go back into the Kraft-Procesi construction. Recall that each space V_d in (4.1) carried a bilinear form \mathbf{b}_d $(d=0,\ldots,r)$. We can choose a positive definite hermitian form \mathbf{h}_d on V_d which is compatible with \mathbf{b}_d in the sense that the intersection of S_d with the unitary group of \mathbf{h}_d

is a maximal compact subgroup K_d of S_d . (This is an equivalent version of the setup in [21].) These \mathbf{h}_d determine naturally a positive definite hermitian form \mathbf{h} on L. Now we define $\varsigma(T) = -T^{\dagger}$ for $T \in \mathfrak{sp}(L, \mathbb{C})$, where T^{\dagger} is the adjoint of T with respect to \mathbf{h} .

Corresponding to ς is a compact real form Sp(L) of $Sp(L, \mathbb{C})$ with Lie algebra $\mathfrak{sp}(L)$. For later use (see §6), we notice that $G \cap Sp(L) = K_0$ and $S \cap Sp(L) = K_1 \times \cdots \times K_r$ are compact real forms of G and S, which we will denote by G_c and S_c .

Now \mathcal{W} is a $(\mathfrak{sp}(L,\mathbb{C}) \oplus \mathfrak{sp}(L,\mathbb{C}), Sp(L))$ -module, where the representation

$$\mathfrak{sp}(L,\mathbb{C}) \oplus \mathfrak{sp}(L,\mathbb{C}) \to \operatorname{End} \mathcal{W}$$
 (5.2)

is given by $(x, y) \cdot A = \xi^x A - A\xi^y$ and the action of Sp(L) corresponds to the subalgebra $\{(x, x) : x \in \mathfrak{sp}(L)\}$. The action of the center \mathbb{Z}_2 of Sp(L) produces the decomposition

$$W = W^{even} \oplus W^{odd} \tag{5.3}$$

where W^{even} is space of invariants for \mathbb{Z}_2 . The induced filtration on W^{even} satisfies $W^{even}_{p+\frac{1}{2}} = W^{even}_p$ if $p \in \mathbb{N}$. So we might as well just consider the algebra filtration

$$\mathcal{W}^{even} = \bigcup_{d \in \mathbb{N}} \mathcal{W}_d^{even} \tag{5.4}$$

Now we can make \mathcal{W}^{even} into a Dixmier algebra.

Proposition 5.1. The Dixmier algebra for the closure $\overline{\mathcal{Y}}$ of the minimal nilpotent orbit of $Sp(L,\mathbb{C})$ is the quadruple $(\mathcal{W}^{even}, \xi, \tau, \vartheta)$, for some unique choices of τ and ϑ .

Proof. The map ξ induces a filtered algebra isomorphism $\pi: \mathcal{U}(\mathfrak{sp}(L,\mathbb{C}))/\mathcal{J} \to \mathcal{W}^{even}$ where \mathcal{J} is the Joseph ideal (see $[2, \S 5]$). Clearly gr $\mathcal{W}^{even} = \mathcal{P}^{even}$ and so π induces a graded isomorphism $S(\mathfrak{sp}(L,\mathbb{C}))/\mathfrak{I}(\overline{\mathcal{Y}}) \xrightarrow{\sim} \mathcal{P}^{even}$. Now everything follows by Example 3.3.

6. Dixmier Algebra for $\overline{\mathcal{O}}$

 \mathcal{W}^{even} is, by means of (5.2), both a $(\mathfrak{g} \oplus \mathfrak{g}, G_c)$ -module and an $(\mathfrak{s} \oplus \mathfrak{s}, S_c)$ -module, and these two actions commute.

Definition 6.1. \mathcal{B} is the $(\mathfrak{g} \oplus \mathfrak{g}, G_c)$ -module obtained by taking the coinvariants of \mathcal{W}^{even} in the category of $(\mathfrak{s} \oplus \mathfrak{s}, S_c)$ -modules.

This means that \mathcal{B} is the quotient $\mathcal{W}^{even}/\mathcal{M}$ where \mathcal{M} is the subspace spanned by all $\xi^x A - A \xi^y$ and $A - s \cdot A$ where $x, y \in \mathfrak{s}$, $s \in S_c$ and $A \in \mathcal{W}^{even}$ (see [20, Chapter II]). Then \mathcal{B} inherits from \mathcal{W}^{even} an increasing G_c -stable vector space filtration $\mathcal{B} = \bigcup_{d \in \mathbb{N}} \mathcal{B}_d$. Let \mathcal{W}^{inv} be the algebra of invariants for S_c . Then \mathcal{W}^{inv} lies in \mathcal{W}^{even} (since S_c contains \mathbb{Z}_2) and so \mathcal{W}^{inv} inherits from \mathcal{W}^{even} an algebra filtration $\mathcal{W}^{inv} = \bigcup_{d \in \mathbb{N}} \mathcal{W}^{inv}_d$.

$$\phi: \mathcal{W}^{inv} \to \mathcal{B} \tag{6.1}$$

is surjective in each filtration degree and its kernel is a two-sided ideal. In this way, \mathcal{B} becomes a filtered algebra. The corresponding map $\operatorname{gr} \phi : \mathcal{P}^{inv} \to \operatorname{gr} \mathcal{B}$ is a surjective homomorphism of graded Poisson algebras.

Proof. We prove this in
$$\S 7$$
.

Our main result is

Theorem 6.3. We have $\operatorname{gr} \mathcal{B} = \mathcal{P}^{inv}/\mathcal{I}^{inv}$. So $\operatorname{gr} \mathcal{B} \simeq \mathcal{R}$ as graded Poisson algebras.

Proof. The proof occupies $\S 8$.

Corollary 6.4. The quadruple $(\mathcal{B}, \xi_{\mathcal{B}}, \tau_{\mathcal{B}}, \vartheta_{\mathcal{B}})$ is a Dixmier algebra for $\overline{\mathcal{O}}$, where $\xi_{\mathcal{B}}$, $\tau_{\mathcal{B}}$ and $\vartheta_{\mathcal{B}}$ are the maps induced by ξ , τ , and ϑ .

Proof. We prove this in $\S 9$.

Let J be the kernel of the algebra homomorphism $\widetilde{\xi_B}: \mathcal{U}(\mathfrak{g}) \to \mathcal{B}$ defined by $\xi_{\mathcal{B}}$. Proposition 3.1 gives

Corollary 6.5. Suppose we exclude the cases where \mathcal{O} is disconnected (so where $G = O(2n, \mathbb{C})$ and the Jordan block size partition of \mathcal{O} is very even). Then J is a completely prime primitive ideal of $\mathcal{U}(\mathfrak{g})$ with $\operatorname{gr} J = \mathfrak{I}(\overline{\mathcal{O}})$ $\tau_{\mathfrak{q}}(J) = J$, and $\vartheta_{\mathfrak{q}}(J) = J$.

The methods we have used thus far give no information about the excluded cases.

- Remark 6.6. (i) Suppose $G = GL(n, \mathbb{C})$. Then the space L has a $G \times S$ -invariant polarization, and using this we can describe \mathcal{B} and ξ in the following way. Let X be the flag manifold of G of flags of the type in (4.1). Let $\mathcal{D}^{\frac{1}{2}}(X)$ be the algebra of twisted differential operators for the (locally defined) square root of the canonical bundle on X as in [7]. We can show ([8]) that \mathcal{B} identifies with $\mathcal{D}^{\frac{1}{2}}(X)$ in such a way that ξ corresponds to the canonical mapping of \mathfrak{g} into $\mathcal{D}^{\frac{1}{2}}(X)$. Then by [7, Corollary 8.5], J is a maximal ideal in $\mathcal{U}(\mathfrak{g})$.
- (ii) Suppose $G = O(n, \mathbb{C})$ or $G = Sp(2n, \mathbb{C})$. If \mathcal{O} is the minimal nilpotent orbit, then \mathcal{B} is the quotient of $\mathcal{U}(\mathfrak{g})$ by its Joseph ideal. This follows by the result in Example 3.3.

7. Proof of Lemma 6.2

The action of S_c on W is completely reducible and locally finite, and S and S_c have the same invariants and the same irreducible subspaces. So we can form the decomposition

$$\mathcal{W}^{even} = \mathcal{W}^{inv} \oplus \mathcal{X} \tag{7.1}$$

where \mathcal{X} is the sum of all non-trivial S_c -isotypic components. Then \mathcal{X} is the span of the elements $A-s\cdot A$ where $A\in \mathcal{W}^{even}$ and $s\in S_c$. Then $\mathcal{M}=\mathcal{M}^{inv}\oplus \mathcal{X}$. Hence the natural map ϕ is surjective and its kernel is \mathcal{M}^{inv} . I.e., we have vector space isomorphisms

$$\mathcal{W}^{inv}/\mathcal{M}^{inv} \xrightarrow{\sim} \mathcal{W}^{even}/\mathcal{M} \xrightarrow{\sim} \mathcal{B}$$
 (7.2)

The decomposition (7.1) is compatible with the filtration on \mathcal{W}^{even} , since the filtration is S_c -invariant. Consequently ϕ is surjective in each filtration degree. So \mathcal{W}^{even} and \mathcal{W}^{inv} induce the same filtration on \mathcal{B} .

Next we show that \mathcal{M}^{inv} is a two-sided ideal in \mathcal{W}^{inv} . To begin with, \mathcal{M}^{inv} lies inside the subspace \mathcal{M}' of \mathcal{M} spanned by all $\xi^x A$ and $A\xi^x$ where $x \in \mathfrak{s}$ and $A \in \mathcal{W}^{even}$. This follows using (7.1). So it suffices to show that $D\mathcal{M}'$ and $\mathcal{M}'D$ lie in \mathcal{M}' if $D \in \mathcal{W}^{inv}$. Obviously $DA\xi^x$ lies in \mathcal{M}' . Invariance of D gives $\xi^x D - D\xi^x = 0$ and so $D\xi^x A = \xi^x DA$ lies in \mathcal{M}' . Thus $D\mathcal{M}' \subseteq \mathcal{M}'$; similarly $\mathcal{M}'D \subseteq \mathcal{M}'$.

The associated graded algebra gr \mathcal{B} is the quotient gr $\mathcal{W}^{inv}/\operatorname{gr} \mathcal{M}^{inv}$. We find gr $\mathcal{W}^{inv} = \mathcal{P}^{inv}$. Now the final assertion is clear.

Remark 7.1. If we replace W^{even} by W in Definition 6.1, then we get the same thing. I.e., if $\widetilde{\mathcal{B}}$ is the module of coinvariants of W, then $\widetilde{\mathcal{B}}$ identifies naturally with \mathcal{B} . Indeed $\widetilde{\mathcal{B}} = W/\widetilde{\mathcal{M}}$ where $\widetilde{\mathcal{M}}$ is the subspace spanned by all $\xi^x A - A \xi^y$ and $A - s \cdot A$ where now $A \in W$. But then $\widetilde{\mathcal{M}} = W^{odd} \oplus \mathcal{M}$ and so the natural map $\widetilde{\phi} : W^{inv} \to \widetilde{\mathcal{B}}$ is surjective with the same kernel \mathcal{M}^{inv} . Also the filtration $\widetilde{\mathcal{B}} = \bigcup_{j \in \frac{1}{2}\mathbb{N}} \widetilde{\mathcal{B}}_j$ induced by W reduces to the one induced by W^{inv} in the sense that $\widetilde{\phi}(W_d^{inv}) = \widetilde{\mathcal{B}}_d = \widetilde{\mathcal{B}}_{d+\frac{1}{2}}$.

8. Proof of Theorem 6.3

We will compute $\operatorname{gr} \mathcal{B}$ by using a homology spectral sequence. We will consider the relative Lie algebra homology $H(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$. By definition (see [20, Chapter II, §6-7]), $H_j(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$ is the jth derived functor, in the category of $(\mathfrak{s} \oplus \mathfrak{s}, S_c)$ -modules, of the coinvariants. So

$$\mathcal{B} = H_0(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even}) \tag{8.1}$$

The idea is that we will introduce a filtration of the complex that computes the homology in such a way that the induced filtration on $H_0(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$ is the one we have already defined on \mathcal{B} . Then we will use the usual spectral sequence of a filtered complex to compute gr $H_0(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$. The computation will rely on the geometric result of Kraft and Procesi that (in the notation of §4) $\sigma^{-1}(0)$ is a complete intersection.

To begin with, we have $\mathfrak{s} \oplus \mathfrak{s} = \mathfrak{k} \oplus \mathfrak{p}$ where $\mathfrak{k} = \{(x, x) : x \in \mathfrak{s}\}$ and $\mathfrak{p} = \{(x, -x) : x \in \mathfrak{s}\}$. Then \mathfrak{k} is the complexified Lie algebra of S_c . The standard complex ([20, page 163]) for computing $H(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$ is

$$0 \longleftarrow \wedge^{0} \mathfrak{p} \otimes_{S_{c}} \mathcal{W}^{even} \stackrel{\partial}{\longleftarrow} \wedge^{1} \mathfrak{p} \otimes_{S_{c}} \mathcal{W}^{even} \stackrel{\partial}{\longleftarrow} \cdots \stackrel{\partial}{\longleftarrow} \wedge^{m} \mathfrak{p} \otimes_{S_{c}} \mathcal{W}^{even} \longleftarrow 0$$
 (8.2)

Here $m = \dim \mathfrak{s}$ and \otimes_{S_c} denotes the S_c -coinvariants of the tensor product. We call this complex A where ${}^tA = \wedge^t \mathfrak{p} \otimes_{S_c} \mathcal{W}^{even}$.

The differential ∂ in (8.2) is given by

$$\partial(Y_1 \wedge \dots \wedge Y_t \otimes D) = \sum_{l=1}^t (-1)^l Y_1 \wedge \dots \wedge \widehat{Y}_l \wedge \dots \wedge Y_t \otimes \Pi^{Y_l}(D)$$
 (8.3)

where the Y_i lie in \mathfrak{p} , $D \in \mathcal{W}^{even}$, and Π is the representation (5.2). (Notice the terms involving $[Y_i, Y_j]$ are not present because $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}$.) To make the complex more transparent, we identify \mathfrak{p} with \mathfrak{s} so that (x, -x) corresponds to x. Then (8.2) becomes

$$\partial(x_1 \wedge \dots \wedge x_t \otimes D) = \sum_{l=1}^t (-1)^l x_1 \wedge \dots \wedge \widehat{x_l} \wedge \dots \wedge x_t \otimes (\xi^{x_l} D + D \xi^{x_l})$$
 (8.4)

Next we define an increasing filtration of A by the spaces

$${}^{t}A^{d} = \wedge^{t}\mathfrak{p} \otimes_{S_{c}} \mathcal{W}_{d-t}^{even} \tag{8.5}$$

where we set $W_j^{even} = 0$ if j < 0. Then $\partial^t A^d \subseteq {}^{t-1}A^d$. This follows since the ξ^x lie in W_1^{even} and so $\mathfrak{p} \cdot W_d^{even} \subseteq W_{d+1}^{even}$. So we have in hand a filtration of the complex (8.1). We

put $A^{d,q} = {}^{d+q}A^d$; then d is the filtration degree and q is the complementary degree. The induced filtration on the homology is $H(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even}) = \bigcup_{d \in \mathbb{N}} F^d$ where $F^d = \bigoplus_{q \in \mathbb{Z}} F^{d,q}$ and $F^{d,q}$ is the dth filtration piece of $H_{d+q}(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$. The associated graded space gr $H(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even})$ is the direct sum of the spaces

$$\operatorname{gr}^{d} H_{d+q}(\mathfrak{s} \oplus \mathfrak{s}, S_{c}; \mathcal{W}^{even}) = F^{d,q}/F^{d-1,q+1}$$
(8.6)

Notice that ${}^{0}A = \mathcal{W}^{even}$ and the filtration on ${}^{0}A$ defined by (8.5) is the same one as in (5.4). So gr $H_0(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even}) = \operatorname{gr} \mathcal{B}$. Our goal is to prove

$$\operatorname{gr}^{d} H_{0}(\mathfrak{s} \oplus \mathfrak{s}, S_{c}; \mathcal{W}^{even}) = (\mathcal{P}^{inv}/\mathcal{I}^{inv})^{d}$$
(8.7)

Now we consider the spectral sequence E_0, E_1, \ldots associated to our filtered complex. (See e.g., [20, Appendix D] or [15, Chapter I,§4] for the construction of this spectral sequence in the general setting.) The E_0 term is given by $E_0^{d,q} = A^{d,q}/A^{d-1,q+1}$ and so

$$E_0^{d,q} = \wedge^{d+q} \mathfrak{p} \otimes_{S_c} \mathcal{W}_{-q}^{even} / \mathcal{W}_{-q-1}^{even}$$
(8.8)

The identification gr $\mathcal{W}^{even} = \mathcal{P}^{even}$ gives

$$E_0^{d,q} = \wedge^{d+q} \mathfrak{p} \otimes_{S_c} \mathcal{P}^{-q} \tag{8.9}$$

(Thus the E_0 term occupies the octant of the d, q plane where $q \leq 0$ and $d + q \geq 0$.) So E_0^d is the complex

$$0 \longleftarrow \wedge^{0} \mathfrak{p} \otimes_{S_{c}} \mathcal{P}^{d} \stackrel{\partial_{0}}{\longleftarrow} \wedge^{1} \mathfrak{p} \otimes_{S_{c}} \mathcal{P}^{d-1} \stackrel{\partial_{0}}{\longleftarrow} \cdots \stackrel{\partial_{0}}{\longleftarrow} \wedge^{m} \mathfrak{p} \otimes_{S_{c}} \mathcal{P}^{d-m} \longleftarrow 0$$
 (8.10)

The boundary ∂_0 is induced by ∂ . We can easily compute ∂_0 since the natural projection maps $\psi_d : \mathcal{W}_d \to \mathcal{P}^d$ are given by $\psi_d(\hat{a}_1 \cdots \hat{a}_{2d}) = a_1 \cdots a_{2d}$ where $a_i \in L^*$ (cf. §5). So for $D \in \mathcal{W}_d$ we have $\psi_{d+1}(\xi^x D) = \psi_{d+1}(D\xi^x) = \sigma_x \psi_d(D)$. Thus (8.4) gives

$$\partial_0(x_1 \wedge \dots \wedge x_t \otimes f) = \sum_l (-1)^l x_1 \wedge \dots \wedge \widehat{x_l} \wedge \dots \wedge x_t \otimes (2\sigma_{x_l} f)$$
 (8.11)

The total complex E_0 is

$$0 \longleftarrow \wedge^{0} \mathfrak{p} \otimes_{S_{c}} \mathcal{P}^{even} \stackrel{\partial_{0}}{\longleftarrow} \wedge^{1} \mathfrak{p} \otimes_{S_{c}} \mathcal{P}^{even} \stackrel{\partial_{0}}{\longleftarrow} \cdots \stackrel{\partial_{0}}{\longleftarrow} \wedge^{m} \mathfrak{p} \otimes_{S_{c}} \mathcal{P}^{even} \longleftarrow 0$$
 (8.12)

The homology $H(E_0)$, together with a differential ∂_1 , is the E_1 term of the spectral sequence. More precisely, $E_1^{d,q} = H_{d+q}(E_0^{d,*})$.

To compute E_1 , we observe that $H(E_0)$ is the S_c -coinvariants of the homology of the complex

$$0 \longleftarrow \wedge^{0} \mathfrak{p} \otimes \mathcal{P}^{even} \stackrel{\partial_{0}}{\longleftarrow} \wedge^{1} \mathfrak{p} \otimes \mathcal{P}^{even} \stackrel{\partial_{0}}{\longleftarrow} \cdots \stackrel{\partial_{0}}{\longleftarrow} \wedge^{m} \mathfrak{p} \otimes \mathcal{P}^{even} \longleftarrow 0$$
 (8.13)

Indeed, E_0 is the S_c -coinvariants of (8.13), and taking coinvariants commutes with taking homology. The latter follows because each space $\wedge^t \mathfrak{p} \otimes \mathcal{P}^{even}$ is a locally finite S_c -representation, and for any such representation \mathcal{V} , the natural map $\mathcal{V}^{S_c} \to \mathcal{V}_{S_c}$ from invariants to coinvariants is an isomorphism.

To compute the homology of (8.13), we recognize (8.13) as the Koszul complex K of the sequence $\sigma_{y_1}, \ldots, \sigma_{y_m}$ in \mathcal{P}^{even} where y_1, \ldots, y_m is any basis of \mathfrak{s} . Recall from §4 that \mathcal{I} is the ideal in \mathcal{P} generated by the σ_{y_i} . Kraft and Procesi proved in [22, Theorem 3.3] and [23, Theorem 5.3] that the subscheme $\sigma^{-1}(0)$ of L is a reduced complete intersection, i.e., $\sigma_{y_1}, \ldots, \sigma_{y_m}$ is a regular sequence in \mathcal{P} . Let us consider the Koszul complex \widetilde{K} of this

sequence in \mathcal{P} . By a well known result of commutative algebra (see [17, III, Proposition 7.10A]) the homology of \widetilde{K} is concentrated in degree zero and $H_0(\widetilde{K}) = \mathcal{P}/\mathcal{I}$ as graded algebras. But K is simply obtained from \widetilde{K} by taking \mathbb{Z}_2 -invariants. Hence the homology of K is concentrated in degree zero and $H_0(K) = \mathcal{P}^{even}/\mathcal{I}^{even}$ as graded algebras. Then the module $H_0(K)_{S_c}$ of coinvariants identifies with $\mathcal{P}^{inv}/\mathcal{I}^{inv}$.

Thus E_1 is the complex

$$0 \longleftarrow \mathcal{P}^{inv}/\mathcal{I}^{inv} \stackrel{\partial_1}{\longleftarrow} 0 \stackrel{\partial_1}{\longleftarrow} \cdots \stackrel{\partial_1}{\longleftarrow} 0 \longleftarrow 0 \tag{8.14}$$

where the differentials $\partial_1^{d,q}: E_1^{d,q} \to E_1^{d-1,q}$ are obviously zero and

$$E_1^{d,-d} = (\mathcal{P}^{inv}/\mathcal{I}^{inv})^d$$
 while $E_1^{d,q} = 0 \text{ if } q \neq -d$ (8.15)

Now we can compute the rest of the spectral sequence. We know E_{r+1} is the homology of E_r with respect to a differential ∂_r ; i.e. $E_{r+1}^{d,q} = \ker \partial_r^{d,q} / \operatorname{im} \partial_r^{d+r,q-r+1}$ where $\partial_r^{d,q}$ maps $E_r^{d,q}$ to $E_r^{d-r,q+r-1}$. For $r \geq 1$, we find that $E_1^{d,q} = E_r^{d,q}$ and the differentials $\partial_r^{d,q}$ are all zero

The E_{∞} term of the spectral sequence satisfies

$$E_{\infty}^{d,q} = \operatorname{gr}^{d} H_{d+q}(\mathfrak{s} \oplus \mathfrak{s}, S_{c}; \mathcal{W}^{even})$$
(8.16)

Our final step is to show our spectral sequence converges in that

$$E_1^{d,q} = E_{\infty}^{d,q} \tag{8.17}$$

This will finish off the proof of Theorem 6.3 because then (8.15) gives the desired result (8.7).

The convergence (8.17) follows formally from the two properties: (i) $A^d = 0$ if d < 0 where $A^d = \bigoplus_{q \in \mathbb{Z}} A^{d,q}$ and (ii) $A^{d,q}$ has finite dimension. Indeed, following the notation in [15, I,§4.2], we have

$$E_r^{d,q} = Z_r^{d,q}/(B_{r-1}^{d,q} + Z_{r-1}^{d-1,q+1})$$

$$E_{\infty}^{d,q} = Z_{\infty}^{d,q}/(B_{\infty}^{d,q} + Z_{\infty}^{d-1,q+1})$$
(8.18)

where $Z_r^{d,q} = \{z \in A^{d,q} : \partial z \in A^{d-r}\}$, $Z_{\infty}^{d,q} = A^{d,q} \cap \ker \partial$, $B_r^{d,q} = A^{d,q} \cap \partial A^{d+r}$ and $B_{\infty}^{d,q} = A^{d,q} \cap \partial A$. Suppose we fix d and q. Then (i) gives $Z_r^{d,q} = Z_{\infty}^{d,q}$ and $Z_{r-1}^{d-1,q+1} = Z_{\infty}^{d-1,q+1}$ if r > d, and (ii) gives $B_{r-1}^{d,q} = B_{\infty}^{d,q}$ if r is large enough. Therefore $E_r^{d,q} = E_{\infty}^{d,q}$ for r large enough. But we found $E_1^{d,q} = E_r^{d,q}$ ($r \ge 1$) and so (8.17) follows.

We remark that it also follows that $\operatorname{gr} H_j(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even}) = 0$ for j > 0. Thus we have proven

Proposition 8.1. $H_j(\mathfrak{s} \oplus \mathfrak{s}, S_c; \mathcal{W}^{even}) = 0$ if j > 0.

9. Proof of Corollary 6.4

 S_c and G_c are commuting subgroups of Sp(L). It follows that ξ maps \mathfrak{g} into \mathcal{W}^{inv} and so ξ induces $\xi_{\mathcal{B}}$ where $\xi_{\mathcal{B}}$ is the composition $\mathfrak{g} \xrightarrow{\xi} \mathcal{W}^{inv} \to \mathcal{B}$. Next τ is Sp(L)-invariant and so in particular is S_c -invariant. Then τ preserves \mathcal{W}^{inv} . We see that τ preserves \mathcal{M} , and so τ preserves \mathcal{M}^{inv} . Hence τ induces a filtered algebra anti-involution $\tau_{\mathcal{B}}$ of $\mathcal{B} = \mathcal{W}^{inv}/\mathcal{M}^{inv}$. Finally, ϑ is Sp(L)-invariant and so in particular is S_c -invariant. Then

 ϑ preserves \mathcal{W}^{inv} . We see that ϑ preserves \mathcal{M} , and so ϑ induces an antilinear filtered algebra involution $\vartheta_{\mathcal{B}}$ of \mathcal{B} .

Thus we have in place our Dixmier algebra data for $\overline{\mathcal{O}}$. It is clear because of Proposition 5.1 that the axioms are satisfied.

References

- [1] J. Adams and D. Barbasch, Reductive dual pair correspondence for complex groups, J. Funct. Anal. 132 (1995), 1-42.
- [2] A. Astashkevich and R. Brylinski, Non-Local Equivariant Star Product on the Minimal Nilpotent Orbit, math.QA/0010257 v2, Adv. Math. 171 (2002), 86-102
- [3] D. Barbasch, The unitary dual for complex classical Lie groups, Inv. Math. 96 (1989), 103–176.
- [4] D. Barbasch, Orbital integrals of nilpotent orbits, The Mathematical Heritage of Harish-Chandra, R. S. Doran and V. S. Varadarajan, eds., Proc. Symp. Pure Math., vol. 68, AMS, 2000, 97–110.
- [5] D. Barbasch and D.A. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. **259** (1982), 152–199.
- [6] D. Barbasch and D.A. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math. 121 (1985), 41–110.
- [7] R. Brylinski, Equivariant Deformation Quantization for the Cotangent Bundle of a Flag Manifold, math.QA/0010258, Ann. Inst. Fourier **52**:3 (2002), 881-897.
- [8] R. Brylinski, Dixmier Algebras for Classical Complex Nilpotent Orbits via Kraft-Procesi Models II, in preparation.
- [9] R. Brylinski, Quantization of Classical Complex Nilpotent Orbits, in preparation.
- [10] M. Cahen and S. Gutt, An algebraic construction of * product on the regular orbits of semi simple Lie groups, Gravitation and Geometry, W. Rindler and A. Trautman eds., 73–82, Bibliopolis, 1987.
- [11] D.H. Collingwood and W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, 1993.
- [12] J. Dixmier, Enveloping Algebras, North-Holland, 1977.
- [13] M. Duflo, Représentations unitaires irréductibles des groupes simples complexes de rang deux, Bull. Soc. Math. France 107 (1979), 55–96.
- [14] C. Duval, P. Lecomte and V. Ovsienko, Conformally equivariant quantization: existence and uniqueness, Ann. Inst. Fourier 49:6 (1999), 1999–2029.
- [15] R. Godement, Théorie des Faisceaux, Hermann, Paris, third edition, 1973.
- [16] K.I. Gross, The dual of a parabolic subgroup and a degenerate principal series of $Sp(n, \mathbb{C})$, Amer Jour Math 93 (1971), 399-428.
- [17] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math 52, Springer-Verlag New York, 1977.
- [18] R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535–552.
- [19] A. Joseph, The minimal orbit in a simple Lie algebra and associated maximal ideal, Ann. Scient. Ec. Norm. Sup. 9 (1976), 1–30.
- [20] A. Knapp and D.A. Vogan, Cohomological Induction and Unitary Representations, Princeton University Press, 1995.
- [21] P.Z. Kobak and A. Swann, Classical nilpotent orbits as hyperkähler quotients, Int. J. Math. 7 (1996), 193–210.
- [22] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Inv. Math. 53 (1979), 227–247.
- [23] H. Kraft and C. Procesi, On the geometry of conjugacy classes in clasical groups, Comment. Math. Helv. 57 (1982), 539–602.

- [24] T. Levasseur and J.T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc., number 412, 1989.
- [25] J-S Li, Singular unitary representations of classical groups, Inv. Math. 97 (1989), 237–255.
- [26] W. McGovern, Quantization of nilpotent orbits and their covers in complex classical groups, preprint, Yale University (1989).
- [27] W. McGovern, Completely prime maximal ideals and quantization, Mem. Amer. Math. Soc., number 519, 1994.
- [28] C. Moeglin, Idéaux complètement premiers de l'algèbre enveloppante de $gl_n(\mathbb{C})$, J. Alg. 87 (1987), 287–366.
- [29] C. Moeglin, Correspondance de Howe pour les paires réductives duales, quelques calculs dans le cas Archimedien, J. Funct. Anal. 85 (1989), 1–85.
- [30] M. Van den Bergh, Differential operators on semi-invariants for tori and weighted projective spaces, Topics in Invariant Theory (Paris 1989/90), 255-272, Lecture Notes in Math. 1478, Springer, Berlin 1991.
- [31] D.A. Vogan, Noncommutative algebras and unitary representations, The Mathematical Heritage of Hermann Weyl, 35–60, Proc. Symp. Pure Math., vol. 48, Amer. Math. Soc., Providence, 1988.
- [32] D.A. Vogan, Dixmier algebras, sheets and representation theory, Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, 333–396, Progress in Math, vol. 92, Birkhäuser, 1990.
- [33] D.A. Vogan, Associated varieties and unipotent representations, in Harmonic Analysis on Reductive Lie Groups, 315-388, Progress in Math, vol. 101, Birkhäuser, 1991.

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY, UNIVERSITY PARK 16802 CURRENT MAILING ADDRESS (2002-...): P.O.Box 1089, Truro MA 02666-1089

E-mail address: rkb248@yahoo.com URL: www.math.psu.edu/rkb