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DIXMIER ALGEBRAS FOR CLASSICAL COMPLEX NILPOTENT
ORBITS VIA KRAFT-PROCESI MODELS I

RANEE BRYLINSKI

Dedicated to Professor Alexander Kirillov on his 26 birthday

Abstract. We attach a Dixmier algebra B to the closure O of any nilpotent orbit of
G where G is GL(n, C), O(n, C) or Sp(2n, C). This algebra B is a noncommutative
analog of the coordinate ring R of O, in the sense that B has a G-invariant algebra
filtration and grB = R.

We obtain B by making a noncommutative analog of the Kraft-Procesi construction
which modeled O as the algebraic symplectic reduction of a finite-dimensional symplec-
tic vector space L. Indeed B is a subquotient of the Weyl algebra for L.

B identifies with the quotient of U(g) by a two-sided ideal J , where g = Lie(G).
Then grJ is the ideal I(O) in S(g) of functions vanishing on O. In every case where
O is connected, J is a completely prime primitive ideal.

1. Introduction

By means of symplectic reduction in the setting of complex algebraic varieties, Kraft
and Procesi ([22],[23]) constructed a model of the closure of any nilpotent coadjoint orbit
O of G when G is one of the classical groups GL(n, C), O(n, C) and Sp(2n, C). The
symplectic aspect is not actually mentioned, but the construction is clearly symplectic.

In this paper we give a noncommutative analog, or quantization, of the Kraft-Procesi
construction. The result is that we attach a Dixmier algebra B to each orbit closure O.
Our algebra B has a G-invariant algebra filtration and we show that grB is isomorphic,
as a graded Poisson algebra, to the coordinate ring R of O.

In fact, B identifies, as a filtered algebra, with the quotient U(g)/J of the universal
enveloping algebra U(g) of g = Lie(G) by some two-sided ideal J . Then gr J is the ideal
I(O) in S(g) defining O. We find that J is stable under the principal anti-automorphism
of U(g), and also under the anti-linear automorphism of U(g) defined by a Cartan invo-
lution of g.

The Kraft-Procesi construction attaches to O a complex symplectic vector space L
together with a Hamiltonian action of G × S on L, where S is an auxillary complex
reductive Lie group. The actions of G and S lie inside the symplectic group Sp(L, C).
Kraft and Procesi show that O is scheme-theoretically the algebraic symplectic reduction
of L by S. In this way, they obtain R as a subquotient of the algebra P of polynomial
functions on L. More precisely, R is realized as P inv/I inv where I is an ideal in P and
the superscript inv denotes taking S-invariants.

Key words and phrases. nilpotent coadjoint orbit, Dixmier algebra, symplectic reduction.
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It is nice from the viewpoint of representation theory to regard R as a subquotient of
the algebra P even of even polynomials. (We can do this since P inv lies in P even.) For
P even is the coordinate ring of the closure of the minimal nilpotent orbit Y of Sp(L, C).

To make a noncommutative analog of the Kraft-Procesi construction, we start from
the fact that there is a unique Dixmier algebra attached to Y, namely the quotient
of U(sp(L, C)) by its Joseph ideal J . We can model U(sp(L, C))/J as the even part
Weven of the Weyl algebra W for L and then grWeven = P even. There is an obvious
quantization of the Hamiltonian S-action on L, namely the natural (s ⊕ s, Sc)-module
structure on W. Here the subscript c denotes taking a compact real form.

We define B to be the coinvariants for the (s⊕ s, Sc)-action on Weven. A priori, B is a
(g ⊕ g, Gc)-module with a Gc-invariant filtration, but B is not an algebra. However, we
easily identify B as the quotient by a two-sided ideal of W inv (where the superscript again
indicates taking S-invariants, or equivalently, Sc-invariants). In this way, B becomes a
filtered algebra and a subquotient of Weven.

Our main result (Theorem 6.3) is to compute the associated graded algebra grB. It is
easy to see that grB is some quotient of P inv/I inv, but in fact we prove grB = P inv/I inv.
To do this, we recognize B as the degree zero part of the relative Lie algebra homology
H(s⊕ s, Sc;Weven). We consider the standard complex which computes this homology,
introduce a filtration and then apply the spectral sequence for a filtered complex. We
compute the E1 term of the spectral sequence by using the fact proven by Kraft and
Procesi that I is a complete intersection ideal. Then we easily show E1 = E∞.

We establish some properties of B and the corresponding ideal J . If O is connected
then J is a completely prime primitive ideal (Corollary 6.5). In every case, B admits
a unique g!-invariant Hermitian inner product (·|·) such that (1|1) = 1, where g! is a
real form of g ⊕ g with g! # g (see Proposition 3.1). This prompts the question as to
whether J is “good” in the sense that J is maximal and U(g)/J is unitarizable. The
latter property means (since B # U(g)/J) that (·|·) is positive-definite.

Attaching “good” ideals to O is an important problem in representation theory and
the orbit method. Quite a bit of work has been done on this (see e.g. some of the
references and authors cited below) but the problem for nilpotent orbits of a complex
semisimple Lie group remains unsolved.

If G = GL(n, C), then our J is good (see Remark 6.6(i) and [8] ). But G = GL(n, C)
is really a very special case for us as the geometry of O is incredibly nice, including but
not limited to the fact that O is always normal. For G = O(n, C) or G = Sp(2n, C), it is
not the case that J is always good. Certainly if O is not normal, we should not expect
J to be good.

Our point of view (to be justified in [9]) is that B is the “canonical” quantization of
the Kraft-Procesi construction, and so the failure of J to be good is really a statement
about O. The next step is then to investigate whether we can make a modification to
our quantization process in order to obtain some good ideals in U(g) attached to O (and
even its covers).

This paper is the first in a series. In the subsequent papers we make explicit the im-
portant role of Howe duality in our project. Indeed, Weven is the Harish-Chandra module
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of the (even) oscillator representation of Sp(L, C), and the pair (G, S) constitutes a se-
quence of Howe dual pairs (see Remark 4.1). In taking coinvariants, we are implementing
a sequence of Howe duality “operations”. Each “operation” is like implementing a Howe
duality correspondence, except that we do not pass to the the irreducible quotient. In
working on this project (which started in earnest in the summer of 2001 – and is part
of a program we began in 1994), we have been reading the Howe duality literature. We
have been influenced by especially the papers [18], [29], [1] and [25].

Our first construction of the Dixmier algebra B actually came out of the ideas of Howe
duality and quantization by constraints. This is given in [9] and lies more in the realm
of harmonic analysis than algebra. Our starting point there is the fact ([21]) that L is
hyperkähler and the Kraft-Procesi construction is the algebraic analog of the hyperkähler
reduction of L by Sc.

The notion of Dixmier algebra for nilpotent orbits (including their closures and their
coverings) was first developed in work of McGovern, Joseph and Vogan. See e.g. [27],
[31], and [32]. The motivation for these authors and for most Dixmier algebra theorists is
the search for completely prime primitive ideals. This motivation is very important for us
too; we also find additional motivations coming from star products and from geometric
quantization.

The results in this paper should be compared with the work in [1], [3], [4], [5], [6], [7],
[10], [14], [13], [16], [24], [25], [26], [27], [28], [29] and [33]. Some of this comparison work
will be done in [8] and [9].

Part of this work was carried out while I was visiting the IML and the CPT of the
Université de la Méditerranée in the summer of 2001, and I thank my colleagues there
for their hospitality. I especially thank Christian Duval and Valentin Ovsienko for some
very valuable discussions.

It is a real pleasure to dedicate this article to Sasha Kirillov whose discoveries have
opened up so many new vistas, starting of course with the Orbit Method. I warmly
thank him for his friendship and his interest in my own work.

2. Dixmier Algebra for the closure of a complex nilpotent orbit

Let G be a reductive complex algebraic group. Let g be the Lie algebra of G and let g∗

be the dual space. Then G acts on g and g∗ by, respectively, the adjoint action and the
coadjoint action. The symmetric algebra S(g) = ⊕∞

p=0S
p(g) is the algebra of polynomial

functions on g∗. The G-invariants form the graded subalgebra S(g)G = ⊕∞
p=0S

p(g)G. We
can fix some nondegenerate G-invariant bilinear form (·, ·) on g.

The nullcone in g∗ is the set of λ ∈ g∗ which satisfy the following equivalent properties:
(i) the closure of the coadjoint orbit of λ contains zero
(ii) the coadjoint orbit of λ is stable under dilations of the vector space g∗

(iii) every nonconstant homogeneous G-invariant in S(g) vanishes on λ
(iv) λ = (x, ·) where x is a nilpotent in g

The nullcone is G-stable and breaks into finitely many orbits of G, which are then called
the nilpotent coadjoint orbits, or simply the nilpotent orbits, of G.
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Let O be a nilpotent orbit of G. The closure O is a complex algebraic subvariety of
g∗; but O may be reducible if G is disconnected. The coordinate ring C[O] of O is the
quotient algebra

R = S(g)/I(O) (2.1)

where I(O) is the ideal of functions which vanish on O. Then I(O) is a graded ideal and
R = ⊕∞

p=0R
p is a graded algebra where Rp = Sp(g)/I(O)

p
. Each space Rp is a finite

dimensional completely reducible representation of G. Kostant’s description of S(g) as
a module over S(g)G implies that all G-multiplicities in R are finite.

R inherits from S(g) the structure of a graded Poisson algebra where {Rp,Rq} ⊆
Rp+q−1. This Poisson bracket {·, ·} on R is G-invariant and corresponds to the holomor-
phic Kirillov-Kostant-Souriau symplectic form on O.

In this situation, we define Dixmier algebras in the following way. We fix a Cartan
involution ς of g. Then ς corresponds to a compact real form Gc of G with Lie algebra
gc. Let N = {0, 1, 2, . . .}.

Definition 2.1. A Dixmier algebra for O is a quadruple (D, ξ, τ, ϑ) where

• D is a filtered algebra with an increasing algebra filtration D = ∪p∈N Dp such
that grD is commutative.

• ξ : g → D1, x (→ ξx, is a homomorphism of Lie algebras and ξ induces an
isomorphism of graded Poisson algebras from S(g)/I(O) onto grD.

• τ is a filtered algebra anti-involution of D such that τ(ξx) = −ξx.
• ϑ is an anti-linear filtered algebra involution such that ϑ(ξx) = ξς(x).

Here are some explanations about the definition. First, commutativity of grD implies
that grD has a natural structure of graded Poisson algebra; here the commutator in D
induces the Poisson bracket on grD. Second, ξ extends naturally to a filtered algebra
homomorphism

ξ̃ : U(g) → D (2.2)

Let J be the kernel of ξ̃. Then grJ is a Poisson ideal of S(g), and gr ξ̃ induces a 1-to-1
homomorphism ζ : S(g)/ grJ → grD of graded Poisson algebras. We require that ζ is
surjective and

grJ = I(O) (2.3)

Notice that ζ is surjective if and only if ξ̃ is surjective in each filtration degree; then ξ̃
induces a filtered algebra isomorphism

U(g)/J
∼
−→ D (2.4)

Third, τ satisfies τ(cA) = c τ(A), τ(A + B) = τ(A) + τ(B), and τ(AB) = τ(B)τ(A)
where A, B ∈ D and c ∈ C. Fourth, ϑ satisfies ϑ(cA) = c ϑ(A), ϑ(A+B) = ϑ(A)+ϑ(B),
and ϑ(AB) = ϑ(A)ϑ(B). Clearly τϑ = ϑτ .

Notice that D and ξ (and ς) uniquely determine τ and ϑ, if the latter exist. Indeed,
the endomorphisms x (→ −x and x (→ ς(x) of g extend uniquely to τg and ϑg, where τg

is an algebra anti-involution of U(g) and ϑg is an antilinear algebra involution of U(g).
Then, via (2.4), τg and ϑg induce τ and ϑ.
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We have an obvious notion of isomorphism of Dixmier algebras for O: (D, ξ, τ, ϑ) is
isomorphic to (D′, ξ′, τ ′, ϑ′) if there is a filtered algebra isomorphism η : D → D′ such
that ξ′ = η ◦ ξ, η ◦ τ = τ ′ ◦ η, and η ◦ ϑ = ϑ′ ◦ η. We can easily classify Dixmier algebras.

Observation 2.2. Suppose (D, ξ, τ, ϑ) is a Dixmier algebra for O. In addition to (2.3),
J satisfies

τg(J) = J and ϑg(J) = J (2.5)

In this way, we get a bijection between (isomorphism classes of ) Dixmier algebras for O
and two-sided ideals J of U(g) satisfying (2.3) and (2.5).

Proof. Clearly (2.3) and (2.5) imply that (U(g)/J, ι, τ ′g, ϑ
′
g) is a Dixmier algebra for O,

where ι is the obvious map and τ ′g and ϑ′
g are induced by τg and ϑg. Conversely, if

(D, ξ, τ, ϑ) is given, then (U(g)/J, ι, τ ′g, ϑ
′
g) is isomorphic to it via (2.4). !

3. Properties of Dixmier algebras

The hopes in constructing a Dixmier algebra are (i) J will be a completely prime
primitive ideal of U(g), or even better, a completely prime maximal ideal, and (ii) D will
be unitarizable. See [12, 3.1] for the definitions of the terms in (i).

To understand (ii), we observe that Definition 2.1 makes D into a (g⊕ g, Gc)-module.
Indeed, the natural (g⊕g, Gc)-module structure on U(g)/J transfers over to D via (2.4).
Then g⊕ g acts on D though the representation

Π : g⊕ g → EndD, (x, y) (→ Πx,y (3.1)

where Πx,y(A) = ξxA − Aξy. The action of Gc corresponds to the subalgebra {(x, x) :
x ∈ gc}.

Next consider the subalgebra g! = {(x, ς(x)) : x ∈ g} of g⊕g. We say D is unitarizable
if D admits a g!-invariant positive definite Hermitian inner product. In this event, by a
theorem of Harish-Chandra, the operators Πx,ς(x) correspond to a unitary representation
of G on the Hilbert space completion of D. This unitary representation is then a quan-
tization of O in the sense of geometric quantization, if we view O as a real symplectic
manifold. (If C[O] += C[O], then this might be just a piece of a quantization of O.)

Notice that the following three properties are equivalent: (i) J is maximal, (ii) D is a
simple ring, and (iii) the representation Π is irreducible.

Our formalism gives some partial results pertaining to hopes (i) and (ii). Notice that
D0 = C by (2.4).

Proposition 3.1. Suppose (D, ξ, τ, ϑ) is a Dixmier algebra for O and J = ker ξ̃. Then

(i) J has an infinitesimal character.
(ii) If O is irreducible then J is a completely prime primitive ideal in U(g).
(iii) There is a a unique Gc-invariant projection T : D → C. This map T is a trace,

i.e., T (AB) = T (BA).
(iv) D admits a unique g!-invariant Hermitian inner product (·|·) such that (1|1) = 1,

and it is given by
(A|B) = T (ABϑ). (3.2)

where Bϑ = ϑ(B).
5



Proof. (i) This means (for any proper two-sided ideal J) that J contains a maximal ideal
of the center of U(g). This happens if and only grJ contains S+(g)G = ⊕p>0Sp(g)G.
But grJ = I(O) and I(O) ⊃ S+(g)G since O lies in the nullcone. (ii) If O is irre-
ducible then I(O) is a prime ideal in S(g) and so J is a completely prime ideal in U(g).
This together with (i) implies, by a result of Dixmier, that J is primitive. (iii) Since
I(O) ⊃ S+(g)G = S+(g)Gc , we have RGc = C and so DGc = C. Thus we get a unique Gc-
invariant projection map T . Now Gc-invariance implies T ([ξx, A]) = 0 where x ∈ g. We
can write this as T (ξxA) = T (Aξx). Iteration gives T (ξx1 · · · ξxkA) = T (Aξx1 · · · ξxk).
This proves T (BA) = T (AB) since the ξx generate D. (This is the same proof as
in [7, Proposition 8.4].) (iv) Suppose (·|·) is an inner product with the desired prop-
erties. Then (A|1) = T (A). Now g!-invariance means that the operators Πx,ς(x) are
skew-hermitian, or equivalently, (ξxA|B) = (A|Bξς(x)). So for B = ξx1 · · · ξxk, we have
(A|B) = (ξς(x1) · · · ξς(xk)A|1) = (BϑA|1) = T (BϑA). The result is now clear. !

Corollary 3.2. D is unitarizable if and only if the pairing defined by (3.2) is positive
definite. If D is unitarizable, then J is maximal.

Proof. Both statements follow from the uniqueness in Proposition 3.1(iv). !

Example 3.3. Suppose O is the minimal nilpotent orbit in g where g is simple and
g += sl(2, C). This is a case where C[O] = C[O]. Then there is a unique Dixmier algebra
for O. This follows by Observation 2.2 since there is exactly one choice for J satisfying
(2.3) and (2.5). Moreover, (i) J is a completely prime maximal ideal of U(g), and (ii)
U(g)/J is unitarizable if g is classical.

Indeed, there is a unique two-sided ideal J satisfying (2.3) and τg(J) = J ; see [2,
proof of Proposition 3.1]. Since the ideal I(O) is preserved by the antilinear algebra
involution of S(g) defined by ς, it follows by the uniqueness of J that ϑg(J) = J . Since
O is irreducible, Proposition 3.1(ii) implies that J is completely prime. If g += sl(n, C),
then J is the Joseph ideal and this is maximal by [19, Theorem 7.4]. If g = sl(n, C)
(n ≥ 3), then J is maximal by [30]. Finally, unitarizabilty is known; see [2, Theorem
9.1] for a uniform construction of these unitary representations on spaces of holomorphic
functions on O.

4. The Kraft-Procesi Construction

In this section we recall how Kraft and Procesi in [22] and [23] constructed the closures
of complex classical nilpotent orbits. We add to their construction the framework of
algebraic symplectic reduction.

Let V be a complex vector space with b a bilinear form on V . Let G be the symmetry
group of b. We consider only the following three cases.

(i) b is identically zero. Then G = GL(V, C).
(ii) b is nondegenerate and symmetric. Then G = O(V, C).
(iii) b is nondegenerate and symplectic. Then G = Sp(V, C).

Choose a nilpotent orbit O of G and an element λ in O. Then λ corresponds (via the
trace functional on EndV ) to x ∈ g; so x is in particular a nilpotent endomorphism of V .
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We note that O is connected, and so O is irreducible, except in the following situation.
If G = O(V, C) where dim V is even and also the Jordan block size partition of O is
very even (i.e., all parts are even and occur with even multiplicities), then O has two
connected components and O has two irreducible components. See [23], [11, Chapter 5].

Let Vd be the image of xd. Then

V = V0 ⊃ V1 ⊃ · · · ⊃ Vr ⊃ Vr+1 = 0 (4.1)

where r is the largest number such that xr += 0. We define a complex vector space L by

L = L(V0, V1)⊕ L(V1, V2)⊕ · · · ⊕ L(Vr−1, Vr) (4.2)

where L(Vd−1, Vd) is obtained in the following way. If G = GL(V, C) then

L(Vd−1, Vd) = Hom(Vd, Vd−1)⊕Hom(Vd−1, Vd) (4.3)

If G = O(V, C) or G = Sp(V, C), then

L(Vd−1, Vd) = Hom(Vd, Vd−1) (4.4)

Next we construct a complex Lie group S of the form

S = S1 × S2 × · · · × Sr (4.5)

where Sd is obtained in the following way. To begin with, we put b0 = b and S0 = G.
If G = GL(V, C) then for each d we put bd = 0 and Sd = GL(Vd, C). If G = O(V, C) or
G = Sp(V, C), then Vd admits an intrinsic nondegenerate complex bilinear form bd and
we define Sd to be the symmetry group of bd. In more detail, bd is the bilinear form on
Vd defined by bd(xd(u), xd(v)) = b(u, xd(v)). It turns out that bd is nondegenerate. If
bd−1 is orthogonal then bd is symplectic and we put Sd = Sp(Vd, C). If bd−1 is symplectic
then bd is orthogonal and we put Sd = O(Vd, C).

Next we construct commuting actions of G and S on L. If G = GL(V, C), we make G
and S act by

(g, s1, . . . , sr) • (A1, B1, A2, B2, . . . , Ar, Br)

= (gA1s
−1
1 , s1B1g

−1, s1A2s
−1
2 , s2B2s

−1
1 , . . . , sr−1Ars

−1
r , srBrs

−1
r−1)

(4.6)

where Ad ∈ Hom(Vd, Vd−1) and Bd ∈ Hom(Vd−1, Vd). If G = O(V, C) or G = Sp(V, C),
we make G and S act by

(g, s1, . . . , sr) • (C1, C2, . . . , Cr) = (gC1s
−1
1 , s1C2s

−1
2 , . . . , sr−1Crs

−1
r ) (4.7)

where Cd ∈ Hom(Vd, Vd−1).
L has a (complex) symplectic form Ω given by Ω = Ω1 + Ω2 + · · · + Ωr where Ωd

is the symplectic form on L(Vd−1, Vd) defined in the following way. If G = GL(V, C),
then Ωd(A + B, A′ + B′) = tr(AB′) − tr(BA′). If G = O(V, C) or G = Sp(V, C),
then Ωd(C, C ′) = tr(C∗C) where C∗ ∈ Hom(Vd−1, Vd) is the adjoint of C defined by
bd−1(u, C∗(v)) = bd(C(u), v).

Now G and S act faithfully and symplectically on L. Thereby G and S identify
with commuting subgroups of the symplectic group Sp(L, C). The action of Sp(L, C) is
Hamiltonian with canonical moment map

L → sp(L, C)∗ (4.8)
7



Hence our actions of G and S are Hamiltonian with induced moment maps (obtained by
projection)

γ : L → g∗ and σ : L → s∗ (4.9)

Then γ is G-equivariant and S-invariant, and σ is S-equivariant and G-invariant.
Here are the explicit formulas for γ and σ. We may write these as g-valued and s-valued

maps, with the convention that the trace functional on EndL induces isomorphisms
g

∼
−→ g∗ and s

∼
−→ s∗. If G = GL(V, C), then γ and σ are given by

(−A1B1) and (B1A1 −A2B2, . . . , Br−1Ar−1 −ArBr, BrAr) (4.10)

If G = O(V, C) or G = Sp(V, C), then γ and σ are given by

(−C1C
∗
1) and (C∗

1C1 − C2C
∗
2 , . . . , C

∗
r−1Cr−1 − CrC

∗
r , C∗

r Cr) (4.11)

Remark 4.1. For each d = 1, . . . , r, Sd−1 and Sd act on L(Vd−1, Vd) as a Howe dual pair.

Let P be the algebra of polynomial functions on L. Then P = S(L∗) is a graded
Poisson algebra with respect to the Poisson bracket {·, ·} defined by Ω. Our grading is
P = ⊕j∈ 1

2
N Pj where Pj = S2j(L∗) and then {Pj,Pk} ⊆ Pj+k−1. (This choice of halving

the natural degrees is convenient as the aim is to obtain R as a subquotient of P .) The
momentum functions γy (y ∈ g) and σx (x ∈ s) are the component functions of γ and
σ; i.e., γy(m) = 〈γ(m), y〉 and σx(m) = 〈σ(m), x〉 where m ∈ L. The γy and σx lie in P1

and satisfy the bracket relations {γy, γy′} = γ[y,y′], {σx, σx′} = σ[x,x′] and {γy, σx} = 0.
Let I be the ideal in P generated by the momentum functions σx where x ∈ s. Then

I = ⊕∞
j∈ 1

2
N
Ij is a graded ideal stable under both G and S. Hence the quotient algebra

P/I is a graded algebra on which G and S act by graded algebra automorphisms. The
grading is

P/I = ⊕j∈ 1

2
N(P/I )j

where (P/I )j = Pj/Ij . Kraft and Procesi proved that I is the full ideal of functions
vanishing on σ−1(0). Thus P/I is the coordinate ring C[σ−1(0)] of the zero locus of σ.

The algebraic symplectic reduction Lred of L by S is the Mumford quotient of σ−1(0)
by S. Thus Lred is the affine complex algebraic variety with coordinate ring

C[Lred] = (P/I )inv = P inv/I inv (4.12)

where the superscript inv denotes taking S-invariants. Moreover I inv is a Poisson ideal
in P inv. So C[Lred] inherits the structure of a graded Poisson algebra.

Notice that S contains the center Z2 = {1,−1} of Sp(L, C) and the action of Z2

induces the decomposition P = P even ⊕P odd where the even part is the graded Poisson
algebra

P even = ⊕d∈N Pd (4.13)

So P inv lies in P even, and thus P inv and C[Lred] are N-graded.
The symplectic version of the Kraft-Procesi result is

Theorem 4.2. [22, Theorem 3.3], [23, Theorem 5.3] The algebra homomorphism γ∗ :
S(g) → P defined by y (→ γy (y ∈ g) induces a G-equivariant isomorphism of N-graded

Poisson algebras from R onto P inv/I inv.
8



The cited results of Kraft and Procesi are given in geometric language, and the reader
who wants to read all the proofs in [22] and [23] will need some knowledge in algebraic
geometry. The statements in [22, Theorem 3.3] and [23, Theorem 5.3] are easy to trans-
late into algebra though, since we are dealing with affine varieties. Kraft and Procesi
show that γ maps σ−1(0) onto O, and moreover this surjection γ′ : σ−1(0) → O is a
quotient map for the action of S. In this setting of a reductive group acting on an affine
variety, “quotient map” has a very strong meaning coming from Mumford’s geometric
invariant theory, as explained in [22, §1.4] and [23, §0.11]. Precisely, γ′ being a quotient
map means that the corresponding map R → P/I on coordinate rings is injective and
has image equal to (P/I )inv.

In symplectic language then, Kraft and Procesi proved that the moment map γ in-
duces a G-isomorphism of affine complex algebraic varieties from Lred onto O. This
isomorphism is also equivariant with respect to the natural C∗-actions on Lred and O.
Finally, since γ is a moment map it follows that γ∗ preserves the Poisson brackets. Thus
we get Theorem 4.2.

5. Weyl algebra W for L

The Kraft-Procesi construction realized R as a subquotient, namely P inv/I inv, of
P even. Our aim is to make a noncommutative analog of their construction.

The image of the moment map (4.8) is the closure Y of the minimal nilpotent orbit
Y of Sp(L, C), and P even = C[Y ] as graded Poisson algebras. We know by Example
3.3 that Y has a unique Dixmier algebra (D, ξD, τD, ϑD), and then D is the quotient
of U(sp(L, C)) by its Joseph ideal. In this section we will give a more concrete model
for this Dixmier algebra. Then in §6 we will perform the noncommutative analog of
reduction.

Let W be the Weyl algebra for L∗. This means that W is the quotient of the tensor
algebra of L∗ by the two-sided ideal generated by the elements a⊗b−b⊗a−{a, b} where
a and b lie in L∗. Let a (→ â be the natural map L∗ → W. We can identify sp(L, C)
with S2L∗ and then we have the Lie algebra embedding

ξ : sp(L, C) −→W, ξab = âb̂ + b̂â (5.1)

There is an increasing algebra filtration W = ∪j∈ 1

2
N Wj where Wj is the image of

the space of tensors of degree at most 2j. We have [Wj ,Wk] ⊂ Wj+k−1. Thus the
associated graded algebra grW = ⊕j∈ 1

2
NWj/Wj− 1

2

is commutative and the commutator

in W induces a Poisson bracket (of degree −1) on grW. In this way grW becomes a
graded Poisson algebra. Then grW identifies naturally with P .

The symplectic group Sp(L, C) acts naturally on W by algebra automorphisms. This
action respects ξ, the filtration on W, the Poisson bracket on grW, etc. The correspond-
ing action of sp(L, C) on W is given by the operators [ξab, ·].

We next choose a Cartan involution ς of sp(L, C). To do this, we go back into the
Kraft-Procesi construction. Recall that each space Vd in (4.1) carried a bilinear form
bd (d = 0, . . . , r). We can choose a positive definite hermitian form hd on Vd which is
compatible with bd in the sense that the intersection of Sd with the unitary group of hd
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is a maximal compact subgroup Kd of Sd. (This is an equivalent version of the setup in
[21].) These hd determine naturally a positive definite hermitian form h on L. Now we
define ς(T ) = −T † for T ∈ sp(L, C), where T † is the adjoint of T with respect to h.

Corresponding to ς is a compact real form Sp(L) of Sp(L, C) with Lie algebra sp(L).
For later use (see §6), we notice that G ∩ Sp(L) = K0 and S ∩ Sp(L) = K1 × · · · ×Kr

are compact real forms of G and S, which we will denote by Gc and Sc.
Now W is a (sp(L, C)⊕ sp(L, C), Sp(L))-module, where the representation

sp(L, C)⊕ sp(L, C)→ EndW (5.2)

is given by (x, y) ·A = ξxA−Aξy and the action of Sp(L) corresponds to the subalgebra
{(x, x) : x ∈ sp(L)}. The action of the center Z2 of Sp(L) produces the decomposition

W = Weven ⊕Wodd (5.3)

where Weven is space of invariants for Z2. The induced filtration on Weven satisfies
Weven

p+ 1

2

= Weven
p if p ∈ N. So we might as well just consider the algebra filtration

Weven = ∪d∈N Weven
d (5.4)

Now we can make Weven into a Dixmier algebra.

Proposition 5.1. The Dixmier algebra for the closure Y of the minimal nilpotent orbit
of Sp(L, C) is the quadruple (Weven, ξ, τ, ϑ), for some unique choices of τ and ϑ.

Proof. The map ξ induces a filtered algebra isomorphism π : U(sp(L, C))/J → Weven

where J is the Joseph ideal (see [2, §5]). Clearly grWeven = P even and so π induces a
graded isomorphism S(sp(L, C))/I(Y)

∼
−→ P even. Now everything follows by Example

3.3. !

6. Dixmier Algebra for O

Weven is, by means of (5.2), both a (g⊕ g, Gc)-module and an (s⊕ s, Sc)-module, and
these two actions commute.

Definition 6.1. B is the (g⊕g, Gc)-module obtained by taking the coinvariants of Weven

in the category of (s⊕ s, Sc)-modules.

This means that B is the quotient Weven/M where M is the subspace spanned by all
ξxA − Aξy and A − s · A where x, y ∈ s, s ∈ Sc and A ∈ Weven (see [20, Chapter II]).
Then B inherits from Weven an increasing Gc-stable vector space filtration B = ∪d∈N Bd.

Let W inv be the algebra of invariants for Sc. Then W inv lies in Weven (since Sc contains
Z2) and so W inv inherits from Weven an algebra filtration W inv = ∪d∈N W inv

d .

Lemma 6.2. The natural map
φ : W inv → B (6.1)

is surjective in each filtration degree and its kernel is a two-sided ideal. In this way, B
becomes a filtered algebra. The corresponding map grφ : P inv → grB is a surjective
homomorphism of graded Poisson algebras.

Proof. We prove this in §7. !
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Our main result is

Theorem 6.3. We have grB = P inv/I inv. So grB # R as graded Poisson algebras.

Proof. The proof occupies §8. !

Corollary 6.4. The quadruple (B, ξB, τB, ϑB) is a Dixmier algebra for O, where ξB, τB
and ϑB are the maps induced by ξ, τ , and ϑ.

Proof. We prove this in §9. !

Let J be the kernel of the algebra homomorphism ξ̃B : U(g) → B defined by ξB.
Proposition 3.1 gives

Corollary 6.5. Suppose we exclude the cases where O is disconnected (so where G =
O(2n, C) and the Jordan block size partition of O is very even). Then J is a completely
prime primitive ideal of U(g) with grJ = I(O) τg(J) = J , and ϑg(J) = J .

The methods we have used thus far give no information about the excluded cases.

Remark 6.6. (i) Suppose G = GL(n, C). Then the space L has a G × S-invariant
polarization, and using this we can describe B and ξ in the following way. Let X be the
flag manifold of G of flags of the type in (4.1). Let D

1

2 (X) be the algebra of twisted
differential operators for the (locally defined) square root of the canonical bundle on X as
in [7]. We can show ([8]) that B identifies with D

1

2 (X) in such a way that ξ corresponds
to the canonical mapping of g into D

1

2 (X). Then by [7, Corollary 8.5], J is a maximal
ideal in U(g).

(ii) Suppose G = O(n, C) or G = Sp(2n, C). If O is the minimal nilpotent orbit, then
B is the quotient of U(g) by its Joseph ideal. This follows by the result in Example 3.3.

7. Proof of Lemma 6.2

The action of Sc on W is completely reducible and locally finite, and S and Sc have the
same invariants and the same irreducible subspaces. So we can form the decomposition

Weven = W inv ⊕X (7.1)

where X is the sum of all non-trivial Sc-isotypic components. Then X is the span of the
elements A−s·A where A ∈ Weven and s ∈ Sc. Then M = Minv⊕X . Hence the natural
map φ is surjective and its kernel is Minv. I.e., we have vector space isomorphisms

W inv/Minv ∼
−→Weven/M

∼
−→ B (7.2)

The decomposition (7.1) is compatible with the filtration on Weven, since the filtration is
Sc-invariant. Consequently φ is surjective in each filtration degree. So Weven and W inv

induce the same filtration on B.
Next we show that Minv is a two-sided ideal in W inv. To begin with, Minv lies inside

the subspace M′ of M spanned by all ξxA and Aξx where x ∈ s and A ∈ Weven. This
follows using (7.1). So it suffices to show that DM′ and M′D lie in M′ if D ∈ W inv.
Obviously DAξx lies in M′. Invariance of D gives ξxD−Dξx = 0 and so DξxA = ξxDA
lies in M′. Thus DM′ ⊆M′; similarly M′D ⊆M′.

11



The associated graded algebra grB is the quotient grW inv/ grMinv. We find grW inv =
P inv. Now the final assertion is clear.

Remark 7.1. If we replace Weven by W in Definition 6.1, then we get the same thing.
I.e., if B̃ is the module of coinvariants of W, then B̃ identifies naturally with B. Indeed
B̃ = W/M̃ where M̃ is the subspace spanned by all ξxA−Aξy and A− s ·A where now
A ∈ W. But then M̃ = Wodd ⊕M and so the natural map φ̃ : W inv → B̃ is surjective
with the same kernel Minv. Also the filtration B̃ = ∪j∈ 1

2
N B̃j induced by W reduces to

the one induced by W inv in the sense that φ̃(W inv
d ) = B̃d = B̃d+ 1

2

.

8. Proof of Theorem 6.3

We will compute grB by using a homology spectral sequence. We will consider the
relative Lie algebra homology H(s⊕ s, Sc;Weven). By definition (see [20, Chapter II, §6-
7]), Hj(s⊕ s, Sc;Weven) is the jth derived functor, in the category of (s⊕ s, Sc)-modules,
of the coinvariants. So

B = H0(s⊕ s, Sc;W
even) (8.1)

The idea is that we will introduce a filtration of the complex that computes the homology
in such a way that the induced filtration on H0(s ⊕ s, Sc;Weven) is the one we have
already defined on B. Then we will use the usual spectral sequence of a filtered complex
to compute grH0(s⊕ s, Sc;Weven). The computation will rely on the geometric result of
Kraft and Procesi that (in the notation of §4) σ−1(0) is a complete intersection.

To begin with, we have s⊕ s = k⊕ p where k = {(x, x) : x ∈ s} and p = {(x,−x) : x ∈
s}. Then k is the complexified Lie algebra of Sc. The standard complex ([20, page 163])
for computing H(s⊕ s, Sc;Weven) is

0←−∧0 p⊗Sc
Weven ∂

←−∧1 p⊗Sc
Weven ∂

←−· · ·
∂
←−∧m p⊗Sc

Weven ←−0 (8.2)

Here m = dim s and ⊗Sc
denotes the Sc-coinvariants of the tensor product. We call this

complex A where tA = ∧tp⊗Sc
Weven.

The differential ∂ in (8.2) is given by

∂(Y1 ∧ · · · ∧ Yt ⊗D) =
t∑

l=1

(−1)lY1 ∧ · · · ∧ Ŷl ∧ · · · ∧ Yt ⊗Π
Yl(D) (8.3)

where the Yi lie in p, D ∈ Weven, and Π is the representation (5.2). (Notice the terms
involving [Yi, Yj] are not present because [p, p] ⊆ k.) To make the complex more trans-
parent, we identify p with s so that (x,−x) corresponds to x. Then (8.2) becomes

∂(x1 ∧ · · · ∧ xt ⊗D) =
t∑

l=1

(−1)lx1 ∧ · · · ∧ x̂l ∧ · · · ∧ xt ⊗ (ξxlD + Dξxl) (8.4)

Next we define an increasing filtration of A by the spaces
tAd = ∧tp⊗Sc

Weven
d−t (8.5)

where we set Weven
j = 0 if j < 0. Then ∂ tAd ⊆ t−1Ad. This follows since the ξx lie in

Weven
1 and so p ·Weven

d ⊆ Weven
d+1 . So we have in hand a filtration of the complex (8.1). We
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put Ad,q = d+qAd; then d is the filtration degree and q is the complementary degree. The
induced filtration on the homology is H(s⊕s, Sc;Weven) = ∪d∈N F d where F d = ⊕q∈Z F d,q

and F d,q is the dth filtration piece of Hd+q(s⊕s, Sc;Weven). The associated graded space
gr H(s⊕ s, Sc;Weven) is the direct sum of the spaces

grd Hd+q(s⊕ s, Sc;W
even) = F d,q/F d−1,q+1 (8.6)

Notice that 0A = Weven and the filtration on 0A defined by (8.5) is the same one as in
(5.4). So gr H0(s⊕ s, Sc;Weven) = gr B. Our goal is to prove

grd H0(s⊕ s, Sc;W
even) = (P inv/I inv)d (8.7)

Now we consider the spectral sequence E0, E1, . . . associated to our filtered complex.
(See e.g., [20, Appendix D] or [15, Chapter I,§4] for the construction of this spectral
sequence in the general setting.) The E0 term is given by Ed,q

0 = Ad,q/Ad−1,q+1 and so

Ed,q
0 = ∧d+q p ⊗Sc

Weven
−q /Weven

−q−1 (8.8)

The identification grWeven = P even gives

Ed,q
0 = ∧d+q p ⊗Sc

P−q (8.9)

(Thus the E0 term occupies the octant of the d, q plane where q ≤ 0 and d + q ≥ 0.) So
Ed

0 is the complex

0 ←−∧0 p⊗Sc
Pd ∂0←−∧1 p⊗Sc

Pd−1 ∂0←−· · ·
∂0←−∧m p⊗Sc

Pd−m ←−0 (8.10)

The boundary ∂0 is induced by ∂. We can easily compute ∂0 since the natural projection
maps ψd : Wd → Pd are given by ψd(â1 · · · â2d) = a1 · · ·a2d where ai ∈ L∗ (cf. §5). So
for D ∈ Wd we have ψd+1(ξxD) = ψd+1(Dξx) = σxψd(D). Thus (8.4) gives

∂0(x1 ∧ · · · ∧ xt ⊗ f) =
∑

l

(−1)lx1 ∧ · · · ∧ x̂l ∧ · · · ∧ xt ⊗ (2σxl
f) (8.11)

The total complex E0 is

0←−∧0 p⊗Sc
P even ∂0←−∧1 p⊗Sc

P even ∂0←−· · ·
∂0←−∧m p⊗Sc

P even ←−0 (8.12)

The homology H(E0), together with a differential ∂1, is the E1 term of the spectral
sequence. More precisely, Ed,q

1 = Hd+q(E
d,∗
0 ).

To compute E1, we observe that H(E0) is the Sc-coinvariants of the homology of the
complex

0←−∧0 p⊗ P even ∂0←−∧1 p⊗ P even ∂0←−· · ·
∂0←−∧m p⊗ P even ←−0 (8.13)

Indeed, E0 is the Sc-coinvariants of (8.13), and taking coinvariants commutes with taking
homology. The latter follows because each space ∧tp ⊗ P even is a locally finite Sc-
representation, and for any such representation V, the natural map VSc → VSc

from
invariants to coinvariants is an isomorphism.

To compute the homology of (8.13), we recognize (8.13) as the Koszul complex K of
the sequence σy1

, . . . , σym
in P even where y1, . . . , ym is any basis of s. Recall from §4 that

I is the ideal in P generated by the σyi
. Kraft and Procesi proved in [22, Theorem 3.3]

and [23, Theorem 5.3] that the subscheme σ−1(0) of L is a reduced complete intersection,
i.e., σy1

, . . . , σym
is a regular sequence in P . Let us consider the Koszul complex K̃ of this
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sequence in P . By a well known result of commutative algebra (see [17, III, Proposition
7.10A]) the homology of K̃ is concentrated in degree zero and H0(K̃) = P/I as graded
algebras. But K is simply obtained from K̃ by taking Z2-invariants. Hence the homology
of K is concentrated in degree zero and H0(K) = P even/I even as graded algebras. Then
the module H0(K)Sc

of coinvariants identifies with P inv/I inv.
Thus E1 is the complex

0←−P inv/I inv ∂1←−0
∂1←−· · ·

∂1←−0 ←−0 (8.14)

where the differentials ∂d,q
1 : Ed,q

1 → Ed−1,q
1 are obviously zero and

Ed,−d
1 = (P inv/I inv)d while Ed,q

1 = 0 if q += −d (8.15)

Now we can compute the rest of the spectral sequence. We know Er+1 is the homology
of Er with respect to a differential ∂r; i.e. Ed,q

r+1 = ker ∂d,q
r /im ∂d+r,q−r+1

r where ∂d,q
r maps

Ed,q
r to Ed−r,q+r−1

r . For r ≥ 1, we find that Ed,q
1 = Ed,q

r and the differentials ∂d,q
r are all

zero.
The E∞ term of the spectral sequence satisfies

Ed,q
∞ = grd Hd+q(s⊕ s, Sc;W

even) (8.16)

Our final step is to show our spectral sequence converges in that

Ed,q
1 = Ed,q

∞ (8.17)

This will finish off the proof of Theorem 6.3 because then (8.15) gives the desired result
(8.7).

The convergence (8.17) follows formally from the two properties: (i) Ad = 0 if d < 0
where Ad = ⊕q∈ZAd,q and (ii) Ad,q has finite dimension. Indeed, following the notation
in [15, I,§4.2], we have

Ed,q
r = Zd,q

r /(Bd,q
r−1 + Zd−1,q+1

r−1 )

Ed,q
∞ = Zd,q

∞ /(Bd,q
∞ + Zd−1,q+1

∞ )
(8.18)

where Zd,q
r = {z ∈ Ad,q : ∂z ∈ Ad−r}, Zd,q

∞ = Ad,q ∩ker ∂, Bd,q
r = Ad,q ∩ ∂Ad+r and Bd,q

∞ =
Ad,q ∩ ∂A. Suppose we fix d and q. Then (i) gives Zd,q

r = Zd,q
∞ and Zd−1,q+1

r−1 = Zd−1,q+1
∞

if r > d, and (ii) gives Bd,q
r−1 = Bd,q

∞ if r is large enough. Therefore Ed,q
r = Ed,q

∞ for r large
enough. But we found Ed,q

1 = Ed,q
r (r ≥ 1) and so (8.17) follows.

We remark that it also follows that grHj(s ⊕ s, Sc;Weven) = 0 for j > 0. Thus we
have proven

Proposition 8.1. Hj(s⊕ s, Sc;Weven) = 0 if j > 0.

9. Proof of Corollary 6.4

Sc and Gc are commuting subgroups of Sp(L). It follows that ξ maps g into W inv and
so ξ induces ξB where ξB is the composition g

ξ
−→W inv → B. Next τ is Sp(L)-invariant

and so in particular is Sc-invariant. Then τ preserves W inv. We see that τ preserves
M, and so τ preserves Minv. Hence τ induces a filtered algebra anti-involution τB of
B = W inv/Minv. Finally, ϑ is Sp(L)-invariant and so in particular is Sc-invariant. Then
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ϑ preserves W inv. We see that ϑ preserves M, and so ϑ induces an antilinear filtered
algebra involution ϑB of B.

Thus we have in place our Dixmier algebra data forO. It is clear because of Proposition
5.1 that the axioms are satisfied.
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Birkhäuser, 1990.

[33] D.A. Vogan, Associated varieties and unipotent representations, in Harmonic Analysis on Re-
ductive Lie Groups, 315-388, Progress in Math, vol. 101, Birkhäuser, 1991.
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