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1 Introduction

In this article, we determine the irreducible projective representations of the symmetric
group Sy and the alternating group Ay over an algebraically closed field of characteristic
p # 2. These matters are well understood in the case p = 0, thanks to the fundamental work
of Schur [19] in 1911, as well as the much more recent work of Nazarov [16, 17] and others.
So the focus here is primarily on the case of positive characteristic, where surprisingly little
is known as yet. In particular, we obtain a natural combinatorial labelling of the irreducibles
in terms of a certain set 3%, (d) of restricted p-strict partitions of d. Such partitions arose
recently in work of Kashiwara et. al. [9] and Leclerc and Thibon [12] on the ¢g-deformed Fock
space of the Kac-Moody algebra of type Az(i)l' In particular, Leclerc and Thibon proposed
that %‘Bp(d) should label the irreducible projective representations in some natural way,
and we show here how this can be done. Note that for p = 3.5, the labelling problem was
solved in [1, 2], and if p = 2 the irreducible projective representations are just ordinary,
non-projective representations so do not need to be considered further here.

To be more precise, recall that A is a partition of d if A = (A1, Ag,...) is a non-increasing
sequence of non-negative integers summing to d. Call \ a p-strict partition if

. 1 ifp | A,
0<Ai—Xip1 +6; fori=1,2,..., whered; = { 0 otherwise.
(To include p = 0, our convention is that 0 only divides 0.) Call X a restricted p-strict
partition if either p = 0, or p > 0 and

L oifp| A,

0< XA —Aig1+6; <p fori=1,2,..., whered; = { 0 otherwise.

Let B, (d) denote the set of all p-strict partitions of d, and RP,(d) C P,(d) denote the
restricted p-strict partitions of d. Also, define hy (A) to be the number of parts of A not
divisible by p. Then, our construction leads to a labelling of the irreducible projective
representations of Sy over an algebraically closed field of characteristic p # 2 by pairs (A, €)
where A € R, (d) and e = 0 if d — hy(A) is even or £1 if d — hy(A) is odd. For Ay, the
labelling is by pairs (), e) where A € RB,,(d) and € = £1 if d — hy ()) even or 0 if d — hy (A)
is odd.



The construction is based closely on ideas of Sergeev and Nazarov in the characteris-
tic 0 theory. In particular, the key step in our approach is to determine the irreducible
“polynomial” representations of the strange Lie supergroup Q(n) in characteristic p. These
turn out to be labelled naturally according to high-weight theory by all p-strict partitions
with at most n non-zero parts. ;jFrom this, we use Sergeev’s superalgebra analogue [20]
of Schur-Weyl duality to determine the irreducible spin representations of a certain double
cover of the hyperoctahedral group, then pass from there to the symmetric group using a
Clifford theory argument due to Nazarov [17].

2 Associative superalgebras

In this section, we record a number of standard, generally well-known results about the
representation theory of finite dimensional associative superalgebras. As useful general
references, but sometimes with different conventions to us, we cite [6, 15] and [14, ch.3].

Let k be an algebraically closed field of characteristic p # 2. By a superspace we mean a
Z9-graded k-vector space V = V5 @ V5. Given a homogeneous vector 0 # v € V| we denote
its degree by d(v) € Zy. A superspace map f : V — W between two superspaces means a
linear map with f(V;) C W; for each i € Zs; note as a general rule, we are writing scalars on
the right and maps on the left, unless we explicitly say otherwise. A subsuperspace U C V
means a subspace U of V such that U = (U N V) @ (U N V;). Define the superspace map
Sy : V. — V on homogeneous vectors by dy(v) = (—1)?®w. Then obviously, a subspace
U C V is a subsuperspace if and only if U is stable under dy .

Let V and W be superspaces. We view the direct sum V & W as a superspace with
(Ve W); =V, ®W,;, and the tensor product V@ W as a superspace with (V @ W); =
Vo @ Wy @ Vi ® Wi and (V ® W)i =V W; e V; @ W;. Also, we make Homk(V, W) into a
superspace with Homy (V, W); consisting of the homogeneous maps of degree i, that is, the
maps 0 : V. — W with 6(V;) C W,y for j € Zy. Given in addition superspaces V', W' and
homogeneous maps f € Homy(V, W) and f’ € Homy(V', W'), we write f ® f’ for the map
VeV - WeW with (f @ f')(ved) = (=1)2090) f(4) @ f'(v') for all homogeneous
v € V,v' € V'; this gives us a natural superspace map Homy(V, W) ® Homy(V', W') —
Homy(V @ V!, W ® W'). The dual superspace V* means the superspace Homy (V. k), where
we view k as a superspace concentrated in degree 0. So as a special case of the preceeding
definition, we obtain a natural injective superspace map (V*) @ (W*) < (V ® W)*, which
is an isomorphism if V and W are both finite dimensional.

An associative superalgebra is a superspace A with the additional structure of an associa-
tive, unital k-algebra such that A;A; C A;; for ¢,5 € Zy. A superalgebra homomorphism
(resp. antihomomorphism) 6 : A — B is a superspace map that is an algebra homomorphism
(resp. antihomomorphism) in the usual sense, and its kernel is a superideal, i.e. an ordinary
two-sided ideal that is also a subsuperspace. Most importantly, given two superalgebras
A and B, we view the tensor product A ® B as a superalgebra with the induced grading
and multiplication defined by (a ® b)(a’ ® b') = (—1)?®%()(ga’) @ (bY') for homogeneous
elements a,a’ € A,b,b' € B. We note that A® B = B ® A, the isomorphism being given
by the supertwist map Tap: A®QB - B®A,a®@b— (71)8(“)8(1’)6 ® a for homogeneous
a € Abe B.



2.1. Example. Let V = V3®Vj be a superspace of dimension m+n. The tensor superalgebra
is the tensor algebra T'(V') regarded as a superalgebra with the induced grading. As a
quotient of T'(V'), we have the symmetric superalgebra, namely,

S(V)=T(V)/(v®w— (=1)°™2®)y @ | for all homogeneous vectors v, w € V).

If we have in mind fixed bases vy, ..., vy, for V5 and vy,41, ..., v, for Vi, we denote the super-
algebras T' (V') and S(V) instead by T'(m,n) and S(m,n), respectively the free superalgebra
and the free commutative superalgebra on m + n generators. Set S(m) := S(m,0), just the
usual polynomial algebra on m generators concentrated in degree 0, and A(n) := S(0,n),
just the usual exterior algebra but with generators assigned the degree 1. The superalgebra
A(n) is called the Grassmann superalgebra. We have that

S(m)=S(1)®@---®S5(1) (m times),
/\(n) &~ /\(1) ®--® /\(1) (n times),
S(m,n) = S(m) ® \(n).

2.2. Example. Another basic example that we will meet is the Clifford superalgebra, namely,
the associative superalgebra C(n) on generators ci, ..., ¢, all of degree 1, subject to the re-
lations ¢; =1 fori =1,...,n and cicj = —cjc; for all i # j. If, slightly more generally, one
has in mind non-zero scalars A\q,..., A, € k*, the superalgebra with generators by,...,b,
subject to the relations b? = );, b;b; = —b;b; is isomorphic to C(n), the obvious isomorphism

sending b; — v/A;c;. The crucial point is that C(ny + ng) = C(n1) ® C(nz). Indeed, the
generators ¢; ® 1,...,¢,, ®1,1®c¢y,...,1 ¢y, of C(n1) ® C(ny) satisfy the same relations
as the generators ci,...,¢Cn,,Cni+1;- -5 Cny+n, Of the left hand algebra. It follows at once
that C(n) = C(1)® ---®@ C(1) (n times).

Let A be an associative superalgebra. A left A-supermodule is a superspace M which is a
left A-module in the usual sense, such that A;M; C M;; for i,j € Zo (there is of course an
analogous notion of right supermodule, which we omit). Saying that M is an A-supermodule
is equivalent to saying that the associated representation p: A — Endyg (M) is a homomor-
phism of associative superalgebras. A homomorphism between two A-supermodules means
the same as an ordinary A-module homomorphism; it is important now however to write
homomorphisms between left A-supermodules on the right (and vice versa). So, if M and
N are left A-supermodules, an A-supermodule homomorphism f : M — N means a linear
map such that a(mf) = (am)f for all a € A,m € M. Writing f = f5 + f; for unique
homogeneous maps f; of degree i, both of f; and f; are A-supermodule homomorphisms.
So, the space Homy (M, N) of all A-supermodule homomorphisms from M to N decom-
poses as Hom4 (M, N)g ® Hom 4 (M, N);, where Hom 4 (M, N); is the set of all homogeneous
A-supermodule homomorphisms of degree i from M to N. Define the category mod(A)
to be the category of all left A-supermodules, morphisms being the A-supermodule homo-
morphisms as just defined. It is a superadditive category in the sense of [14, §3.7], i.e. an
additive category such that each Hom 4 (M, N) is Zy-graded in a way that is compatible with
composition of morphisms. When talking about functors between superadditive categories,
we always mean functors which preserve the grading of morphisms.



A subsupermodule of an A-supermodule means an A-submodule in the usual sense
that is a subsuperspace. An A-supermodule M is called irreducible if it has no proper
A-subsupermodules, and absolutely irreducible if it is irreducible when viewed just as an
ordinary A-module. Let M be a finite dimensional A-supermodule that is irreducible but
not absolutely irreducible. Then, we can find an irreducible A-submodule N of M that
is not a subsupermodule, i.e. is not dys-stable. It is elementary to check that 0y, (V)
is also an irreducible A-submodule of M. Hence, N & dp/(N) is an A-submodule of M,
even a subsupermodule since it is now dps-stable. Since M was an irreducible supermod-
ule, we deduce that in fact M = N & dp(N). Let uq,...,u, be a basis for N. Then,
Onr(ur), ..., 0p(up) is a basis for 057 (N) so uy + 0pr(ur), ..., up + dar(uy) is a basis for Mg
and uy —dpr(u1), - ., up — dpr(uy) is a basis for M. The following lemma now follows easily:

2.3. Lemma. If M is a finite dimensional irreducible but not absolutely irreducible A-
supermodule, then there exist bases vi,...,vy for Mg and v_y,...,v_y for M7 such that

M = span{vy +v_1,...,0p +v_p} B span{vy —v_1,..., 0, — V_p}

as a direct sum of two non-isomorphic irreducible A-submodules. Moreover, the endomor-
phism Jyr : M — M, v; — v_; commutes with the action of A on M.

If M is an A-supermodule, Ends (M) denotes the superalgebra of all A-supermodule
endomorphisms of M. We stress again that we write the action of elements of End4 (M)
on M on the opposite side to the action of A. We have the following analogue of Schur’s
lemma, which is easily proved (given Lemma 2.3) in the same way as the classical version:

2.4. Lemma (Schur’s lemma). Let M be a finite dimensional irreducible A-supermodule.
Then,
span{idas} if M is absolutely irreducible,

End 4 (M) = { span{idys, Jys}  otherwise,

where Jy; is as in Lemma 2.3.

We say that an A-supermodule M is completely reducible if it can be decomposed into
a direct sum of irreducible A-supermodules. Call A a simple superalgebra if A has no non-
trivial superideals, and a semisimple superalgebra if A is completely reducible viewed as a
left A-supermodule. Equivalently, A is semisimple if every left A-supermodule is completely
reducible. We have:

2.5. Lemma (Wedderburn’s theorem). Let A be a finite dimensional associative super-
algebra. The following are equivalent:

(i) A is simple;

(ii) A is semisimple with only one irreducible supermodule up to isomorphism;

(iii) there is a finite dimensional superspace V such that either A = Endg(V) or A =
{6 € Endg(V) |0 o J = Job} for some involution J € Endyg(V);.
Moreover, if A is semisimple then it is isomorphic to a direct sum of simple superalgebras.



Notice in view of Lemma 2.3 that if A is a semisimple superalgebra, then it is a semisimple
algebra. The converse is also true, and is proved e.g. in [15, (1.4¢)]; it can also be deduced
from Wedderburn’s theorem by considering the effect of the map 4 on the simple ideals of
A. Somewhat more generally, we have:

2.6. Lemma. Let A be a finite dimensional associative superalgebra. Then, the Jacobson
radical of A (viewed just as an ordinary algebra) can be characterized as the smallest su-
perideal K of A such that A/K is a semisimple superalgebra.

Proof. Let J be the Jacobson radical of A viewed as an ordinary algebra, and K be the
unique smallest superideal of A such that A/K is a semisimple superalgebra. We know that
A/K is semisimple as an ordinary algebra by Lemma 2.3, so J C K. Conversely, we observe
that J is a superideal since J is invariant under the algebra automorphism d4 of A. So, A/J
is a superalgebra that is semisimple as an algebra. Hence, by [15, (1.4¢)], it is a semisimple
superalgebra, and K C J. O

We point out another immediate consequence of Wedderburn’s theorem and Lemma 2.6:

2.7. Corollary. Let A be a finite dimensional associative superalgebra, and {Vi,...,V,} be

a complete set of irreducible A-supermodules such that Vi, ..., Vy, are absolutely irreducible
and Vipi1,...,Vy are not. For i = m+ 1,...,n, decompose V; as Vi+ ®V, as a direct
sum of two non-isomorphic irreducible A-modules. Then, {Vi,...,Vy, anzEH’ e ,Vni} 5 a

complete set of irreducible A-modules.

Given left supermodules M and N over arbitrary associative superalgebras A and B
respectively, the (outer) tensor product M ® N is an A® B-supermodule with action defined
by (a @ b)(m @n) = (—1)?®™) gm @ bn for all homogeneous a € A,b € B,m € M,n € N.
(Analogously, if M and N are right supermodules, the action of A® B on M ® N is defined
instead by (m@n)(a®b) = (—1)%@9)ma@nb for all homogeneous a € A,b € B,m € M,n €
N.)If f: M — M (resp. g: N — N') is a homomorphism between two left A- (resp. B-)
supermodules, then f @ g : M @ N - M' ® N’ is an A ® B-supermodule homomorphism;
this works precisely because of our convention to write the homomorphisms f,g and f ® g
on the right, i.e. f® g means the map with (m ®@ n)(f ® g) = (-1)2M%)mf @ ng. The
following lemma gives the other basic facts about outer tensor products that we need:

2.8. Lemma. Suppose that A and B are finite dimensional associative superalgebras, and
that M, N are irreducible supermodules over A, B respectively.

(i) If both M and N are absolutely irreducible, then M ® N is an absolutely irreducible
A ® B-supermodule.

(ii) If exactly one of the modules M or N is absolutely irreducible, then M ® N is an
irreducible but not absolutely irreducible AR B-supermodule.

(iii) If neither M or N are absolutely irreducible, then M ® N decomposes as a direct
sum of two isomorphic, absolutely irreducible A ® B-supermodules.

Moreover, all irreducible A® B-supermodules arise as constituents of M QN for some choice
of M,N.



Combining Lemma 2.8 with Wedderburn’s theorem, it follows in particular that if A
and B are finite dimensional semisimple associative superalgebras then A ® B is also a
semisimple superalgebra.

2.9. Example. The Grassmann algebra A(1) has just one irreducible supermodule up to
isomorphism, namely, k itself with elements of A(1); acting as zero. This is absolutely irre-
ducible, so it follows by induction on n using Lemma 2.8 that A(n) = A(n—1)®A(1) has just
one irreducible supermodule, namely, k itself with elements of A(n); acting as zero. Note
however that A(n) is not a semisimple superalgebra, indeed even A(1) is not semisimple,
being isomorphic as an algebra to the algebra k[z]/(z?) of truncated polynomials.

2.10. Example. Consider the Clifford algebra C'(n) again. First, observe that C(1) is just

the simple superalgebra of 2 x 2 matrices of the form { ( Z S )

a,be ]k}, the generator

c1 of C(1) corresponding to the matrix < (1) (1)

supermodule U(1) which is irreducible but not absolutely irreducible, of dimension 2, as in
the second case of Lemma 2.5(iii). Hence, applying Lemma 2.8, C'(2) = C(1) ® C(1) has one
irreducible supermodule U(2), namely the unique irreducible appearing with multiplicity
two in the C(2)-supermodule U(1) ® U(1), and U(2) is absolutely irreducible of dimension
2. Explicitly, U(2) can be described as the module on basis w4, u_ with action defined by
Cluy = Uu_,ciu_ = uy,couy = /—1lu_,cou_ = —/—1luy. Finally, for n > 2, C(n) =
C(n—2)®C(2), so by Lemma 2.5(i) and (ii), it has just one irreducible supermodule U (n),
defined inductively by U(n) = U(n —2) @ U(2). This is absolutely irreducible if and only if
U(n—2) is absolutely irreducible, which is if and only if n is even. Observe that we have just
shown that C(n) is a semisimple superalgebra with a unique irreducible supermodule. So
by Lemma 2.5, C(n) is in fact a simple superalgebra, indeed, up to isomorphism, it must be
the unique simple superalgebra of dimension 2". Its unique irreducible supermodule U (n)
has dimension 2L(*+1)/2]

). So C(1) has precisely one irreducible

Following [20, §1.4], a Zy-graded group is a pair (G,0) where G is a finite group and
0 : G — 74 is a group homorphism. If (G, 0) is a Zoy-graded group, we can regard the group
algebra kG as a superalgebra, the degree of g € G being 9(g). We are interested next in
counting the number of irreducible kG-supermodules in terms of conjugacy classes. Define
ny (G, 0) to be the number of G-conjugacy classes of p’-elements of degree 0 and n, (G, 1)
to be the number of G-conjugacy classes of p’-elements of degree 1.

2.11. Lemma. Let (G,0) be a Zo-graded group. Then, there are ny(G,0) pairwise non-
isomorphic irreducible kG-supermodules. Of these, ny(G,0) — ny (G, 1) of them are abso-
lutely irreducible, and the remaining n,y (G, 1) are irreducible but not absolutely irreducible.

Proof. We follow the proof of the analogous classical result for ordinary group algebras,
see [10, §13]. For an arbitrary superalgebra A, write Z(A) = {a € A|ab = ba for all b € A}
for its centre and S(A) = span{ab—ba|a,b € A}. These are both subsuperspaces of A. Now
let J denote the Jacobson radical of the group algebra kG. By Lemma 2.6, J is a superideal



and A := kG/J is the largest semisimple superalgebra quotient of kG. So kG and A have
the same number of irreducible supermodules. Combining Lemma 2.4 and Lemma 2.5,
we deduce that the number of irreducible kG-supermodules is equal to dim Z(A)y and the
number of irreducible but not absolutely irreducible k G-supermodules is equal to dim Z(A);.
By [10, 13.3], A = Z(A) @ S(A), so dim[Z(A)]; = dim[4/S(A)]; for i = 0,1. Finally, to
count this dimension in either case, use formula (14) in the proof of [10, 13.8]; this tells us

at once that dim{A/S(A)]; = ny(G,i). O

Now suppose that (G, ) is a Zs-graded group and that 7 : G — G is a double cover, so
that kerm = {1,(} for some 1 # ( € Z(@) Lift & to G to make G into a Zo-graded group
with degree function satisfying 9(¢) = 0. The elements ¢, = (1—¢)/v2and (. = (14+¢)/V2
are orthogonal central idempotents of the group superalgebra kG summing to the identity,
S0

kG = (4 (kG) @ (_(kG) (2.12)

as a direct sum of two-sided superideals. Obviously, §+([KCA¥) = (lk@)/(g‘ — 1) = kG; the
algebra ¢_(kG) = (kG)/(¢+1) is a twisted group algebra. Since the number of irreducible kG-
supermodules is equal to the number of irreducible §+(ka)—superm0dules plus the number
of irreducible {_ (kG)-supermodules, we have:

2.13. Lemma. The number of irreducible (_(kG)-supermodules is np/(@, 0) — ny(G,0).

To conclude this preliminary section on associative superalgebras, we give a brief review
of “Schur functors” arising from idempotents in this setting. Suppose that A is an arbitrary
finite dimensional superalgebra. and that e € A is a homogeneous idempotent, necessarily
of degree 0. Then, the ring eAe is a superalgebra in its own right, its identity element being
the idempotent e. We have the (exact) Schur functor

R, : mod(A) — mod(eAe)

given on objects by left multiplication by the idempotent e and by restriction on morphisms.
Given an A-supermodule M, let O.(M) (resp. O¢(M)) denote the largest (resp. smallest)
subsupermodule N of M such that N (resp. M/N) is annihilated by e. Finally, let mod.(A)
denote the full subcategory of mod(A) consisting of all A-supermodules M with O.(M) =0
and O°(M) = 0. The following basic result is proved as in the classical case, see [8, §2]:

2.14. Lemma. The restriction of the functor Re to mod.(A) gives an equivalence of cate-
gories between modg(A) and mod(eAe).

Suppose that {L(A) | A € A} be a complete set of pairwise non-isomorphic irreducible
A-supermodules, and set Ay = {\ € A | ReL(\) # 0}. Then, as an immediate consequence
of Lemma 2.14, we have:

2.15. Corollary. The eAe-supermodules {R.L(\) | A € A1} give a complete set of pairwise
non-isomorphic irreducible e Ae-supermodules. Moreover, for X € Ay, R.L(\) is absolutely
irreducible if and only if L(X\) is absolutely irreducible.



3 Double covers

Our primary interest is in projective representations of the symmetric group S;. However,
most of the remainder of the article will be taken up with studying the representation theory
of a certain finite dimension superalgebra called the Sergeev algebra, originally introduced
n [20]. In this section, we define this superalgebra, and establish a functorial connection
between it and the projective representations of the symmetric group.

Start with the symmetric group Sy acting naturally on the left on the set {1,...,d}.
For i =1,...,d — 1, let s; € Sy denote the basic transposition (i 7 + 1), and recall that the

S1,--.,84-1 generate Sy subject to the well-known Coxeter relations. Define the group Sy
to be the group with generators (, 31,...,54_1 subject to the relations
C=8=1 (8 = 8i(,
58i418; = 8i418i8i11, 8i8; = (858;

foralll1 <i<d-—1landalll<j<d-—1with|i—j| > 1. The map sending ¢ — 1, §; — s;
gives a surjective homomorphism §d — Sy, and §d is a double cover of Sy (see [21, p.100]).
Make S, into a Zg-graded group with degree function 0 : Sy — Zg2 being the usual
signature of a permutation. So, ker d = A, the alternating group. Lifting, Sy is also a Zo-
graded group and we again denote the degree function by 0 : Sd — Zy; its kernel is denoted
Ad, a double cover of the alternating group. As in (2. 12) the superalgebra ]de is isomorphic
to kSq @ S(d), where S(d) is the superalgebra ¢_(kSy) = kSq/(1 + ¢). We are primarily
interested here in studying the representation theory of this superalgebra S(d). Recall the
definition of the set P, (d) of restricted p-strict partitions of d from the introduction.

3.1. Lemma. The number of irreducible S(d)-supermodules is equal to | R, (d)|.

Proof. Using Lemma 2.13 and the known labelling of the conjugacy classes of S; and §d,
see e.g. [21, Theorem 2.1] or [19, p.172], one easily shows that the number of irreducible
S(d)-supermodules is equal to the number of partitions A of d with all non-zero parts of A
being odd and not divisible by p. Now we appeal to the following partition identity obtained
by Leclerc and Thibon [12, (40)]:

1
Z ‘m%p ‘td H Ttiv (32)

d>0 i odd,pti

which shows that the number of partitions A of d with all non-zero parts of A being odd and
not divisible by p is equal to | R, (d)]. O

We turn our attention next to the hyperoctahedral group and its double cover. Denot-
ing elements of the Abelian group Z¢ as d-tuples € = (e1,...,&4) with each g; € Zy, the
symmetric group acts on the right on Z4 by - w = (€41, Ew2, - - -, Ewd) for w € Sg,e € 7.
The hyperoctahedral group Wy is then the semidirect product Sy x Zg. So, Wy is the set
of all pairs (w,e) with w € Sy,e € Z4, and the product of two such elements is defined by
(z,€)(y,0) = (zy,e -y + J). Henceforth, we will identify w € Sy (resp. e € Z%) with the



element (w,1) € Wy (resp. (1,e) € Wy). Extend the action of Sy on Z4 to an action of all
of Wy on 74, so that e - (w,0) = ¢ -w + 6 for € € Z4, (w,5) € Wy.
The Clifford group Cy is the group with generators {(, 21, ..., z4} subject to the relations

¢?=1, (2 = 2,

2
zi =1, 2izj = (2j2;

forall 1 <4 # j < d. The group Cy consists of the distinct elements {2°,(2° | e € Z3},
where for € = (e1,...,e4) € Z4%, 2° denotes 271257 ...z, We view the group algebra kCy
as a superalgebra, grading the group elements so that d(¢) = 0 and d(z;) = 1 for each
i =1,...,d. Observe then that the Clifford superalgebra C(d) on generators cy,...,cq from
Example 2.2 is a superalgebra quotient of kCy, the quotient map sending z; — ¢;,( — —1.
We write ¢ = ¢]'¢5?. .(:Zd, the image of the element 2° under the quotient map, so that the
{cf| e € 74} give a basis for C(d). The product of two such basis elements is given explicitly
by the rule
= ale )t where a(e; ) = H (—1)%%t
1<s<t<d

for e,6 € Z4. Tt is worth remarking for later calculations that a(e + €';8) = a(e;6)a(e'; )
and a(e; 0 4+ 0') = a(e; d)a(e; d').

Now, there is a unique right action of S; on Cj by automorphisms so that (- w =
(2w = z,1; foralli =1,...,d and w € S;. Define Wd to be the resulting semidirect
product Sy x Cy, that is, the set {(w,z) | w € Sy, z € Cy} with multiplication given by the
rule (w, z)(w', 2’) = (ww', (z-w')z"). The element ¢ lies in the centre of W,, and it is easy to
see that there is a well-defined surjective group homomorphism Wd — Wy with ( — 1 and
(w, 2°) + (w,¢) for all w € Sy,e € Z4. Thus, W, is a double cover of the hyperoctahedral
group W,. Make Wd into a Zg-graded group with degree 0 : Wd — Zgy defined by d(w) =0
for all w € Sy, 9(¢) =0 and d(z;) =1 fori =1,...,d. As in (2.12), we obtain the Sergeev
superalgebra

W(d) == (- (kWy) = kWy/(C +1).
In particular, as W (d) is a quotient of the group algebra kW, we deduce by Maschke’s
theorem that:
3.3. Lemma. Ifp =0 orp>d, then W(d) is a semisimple (super)algebra.

The Sergeev superalgebra W (d) can be constructed more directly as a twisted tensor
product. Start from the right action of Sy on C(d) by superalgebra automorphisms such
that ¢; - w = ¢,,-1; for each i = 1,...,d and w € Sy. So for w € Sy and € € Z4,

& w— a(g;w)caw where a(a;w) — H (—1)as€t.

1<s<t<d
“ls>w—1t

Then, W (d) is the superspace kS; ® C(d), where kS, is concentrated in degree 0, with the
product of two basis elements given by the formula

(2@ )y @) = alx, ey, 0)zy @ YT where a(z,e5y,0) = ale;y)ale - y;0).



Note the resulting function « : Wy x Wy — {£1}, ((x,¢), (y,9)) — a(z,&;y,0) is a 2-cocycle,
i.e. satisfies a(g,1) = a(1,g9) = 1 and a(g, hk)a(h, k) = a(g, h)a(gh, k) for all g, h, k € W.
We record a technical property about this cocycle for later use.

3.4. Lemma. For all ¢,6 € 7% and g = (w,7y) € Wy,

ale + d;w) = ale; g)al(d; g)ale + 0;6)ale -g+0-g;0 - g).

Ca+5 )

Proof. Expand the equation (¢*19¢%) - w = ( ~w)(c® - w) in two different ways to show
that a(e + 0;w) = ale;w)a(d; w)a(e + 6;0)a(e -w + 0 - w; § - w). Now expand the definition

of a(e; g)a(d; g)ale - g+ -¢;0 - g) to see that it equals
ale;w)ale - w;y)a(d;w)a(d - w;y)ale - w—+ 6 - w;§ - w~+ )
= a(g;w)a(d;w)ale -w+ 6 w;d - w)a(e - w;y)a(d - w;y)ale -w+ 5 - w;y)
)

= a(g;w)a(d;w)ale -w+ 0 - w;d - w),
completing the proof. 0O

We can count the number of irreducible W (d)-supermodules using Lemma 2.13:
3.5. Lemma. The number of irreducible W (d)-supermodules is equal to | R, (d)|.

Proof. By Lemma 2.13 and the information on conjugacy classes in [20, Lemma 5], the
number of irreducible W (d)-supermodules is equal to the number of partitions A of d with all
non-zero parts of A being odd and not divisible by p. Now use the Leclerc-Thibon partition
identity (3.2) as in the proof of Lemma 3.1. O

Combining Lemma 3.1 and Lemma 3.5, we have seen that:

3.6. Corollary. The superalgebras S(d) and W (d) have the same number of irreducible
supermodules.

Underlying Corollary 3.6 is a more precise functorial connection between S(d)- and
W (d)-supermodules, which we now construct. Define ¢; to be the image of the generator §;
in the superalgebra S(d). Then, S(d) can be defined directly as the superalgebra on degree
1 generators t1,...,tq_1 subject to the relations

ti =1, titipati = tipatitipa, titj = —tjt;

foralll <i<d—-1landalll <j<d-1with|i—j| > 1. For each w € Sy, fix a choice of a
preimage 1 € Sy and let t,, denote the image of 4 in S(d). Then, the elements {f,, |w € Sy}
give a basis for S(d). Multiplication is given by t,t, = B(z,y)ts, where §: S; x Sq — {£1}
is a 2-cocycle, uniquely determined given the choice of the preimages w. We will need the
following variation on [17, Proposition 1.2]:

3.7. Lemma. There is a unique superspace map 1 : kSy — W(d) such that
(1) n(si) = \/(—=3)(ci — ciyr) fori=1,...,d—1;

(2) n(zy) = (=)D B(z, y)n(z)n(y) for all z,y € Sa.
Moreover, wew ™" = (—1)2@0)p(w)en(w) =" for all w € Sq,c € C(d).

10



Proof. The map f': Sq x Sy — {*1}, (z,y) — (—1)2@2W) 5(x, 1) is a 2-cocycle on Sy, as
follows from the fact that 3 is a 2-cocycle. There is a corresponding twisted group algebra
S(d)', namely, the superalgebra with basis {t!, | w € Sy} with multiplication satisfying
thty, = B'(z,y)t,,. This twisted group algebra is generated by the elements #},...,1)
subject to the relations

(th)? = —1, it ot =ttt tith = —tit;

foralll <i<d-landalll <j <d-—1with|i—j| > 1. So to prove the existence of the map
7, it just suffices to check that the elements 7(s;) € C(d) satisfy these same relations, which
is routine. For the second part, we can write an arbitrary n(w) as a product en(s;,) ... n(s;,)
for 1 <'iy,...,i, < d and some a sign €. Then, n(w) ' =en(s;,) *...n(s;) ' So it suffices
to check that s;c;s; ' = —n(s;)cjn(s;) ! for generators s; € Sy and ¢; € C(d), which is a
short calculation. O

Let U(d) be the C(d)-supermodule defined in Example 2.10. Now define an exact functor
Y : mod(S(d)) = mod (W (d))

as follows. On an object N € mod(S(d)), define Y(N) to be the superspace U(d) ®x N,
regarded as a left W (d)-supermodule so that ¢ € C(d) acts as ¢ ® idy, and w € S, acts as
n(w) & ty,. To check that this does make U(d) ® N into a well-defined W (d)-supermodule,
we use Lemma 3.7:

(n(@) ®12)(n(y) ® 1) = (- 1)* W n(2)n(y) ® t.t,

Bz, y)n(zy) @ Bz, y)tzy = n(zy) @ tzy);
—1)2) (n(w)e @ t,)

=) ((w)en(w) " n(w) © t)

wew 'n(w)) ® ty = (wew ™' @ 1)(n(w) @ ty,)

(77(“’) ®tw)((3®ldN) a(
o

(
(
(

for w,z,y € Sy,c € C(d). On a homomorphism f : N — N’ of left S(d)-supermodules, we
define Y(f) : Y(N) — Y(N') to be the linear map idy ® f (recall we are writing homomor-
phisms on the right, so (u®@n)Y(f) =u®nf for allu € U(d),n € N).

We will show that if d is even, then Y is an equivalence of categories; if d is odd, Y is
something very close to an equivalence. The proof follows the standard argument of Clifford
theory, see [5, §51]. Given a C(d)-(super)module M and w € Sg, write “M for the new C(d)-
(super)module equal to M as a vector space, but with action defined by ¢-m = (wcw ™ ')m
for all c € C(d),m € M.

3.8. Lemma. Let w € Sy. The map 0, : U(d) ="U(d),u — (—=1)2@2Wy(w)y is a C(d)-
supermodule isomorphism, homogeneous of degree O(w).

Proof. We need to check that ¢ - (uf,) = (cu)f,, for all homogeneous ¢ € C(d),u € U(d).
We have that

(), = (—1) OO 1)y = (1)) )y ()~ ()

= (—1)2®W) ey n(w)u = wew ™ (uby) = ¢ - (uby,),

11



applying Lemma 3.7. O

3.9. Lemma. Suppose that w € Sy. Let N and N' be superspaces and regard U(d) @ N and
“U(d) ® N' as left C(d)-supermodules, ¢ € C(d) acting as ¢ ® idy. Let

f:U(d)®N —="U(d)® N’

be a C(d)-supermodule homomorphism. Then,
i) if d is even, there exists a unique linear map : N — N' such that f =0, Q@ ¢y;
f f
ii) if d is odd, there exist unique linear maps ¢, ¢'s : N — N' such that f =0, @ ¢ +
R I
Ju o 0y ® ¢y, where Jy is the unique element of Endeq)(U(d)); with J? =id.

Proof. Write f > jes Ti® i+ ke T ® @), for homogeneous maps m; : U(d) — U(d) of
degree d(w), m}, : U(d ) — U(d) of degree d(w) + 1, and maps ¢;, ¢}, : N = N’ such that the
¢; (resp. the ¢).) are linearly independent. For all homogeneous ¢ € C(d),n € N,u € U(d),

we have that

(cu®@n)f = Z (‘u)7r] ® ne; + Z B0 )(cu)W;C ® ey,
jeJ keK
c-[(u®n)f]= Z(—l)am)a( e - (umj) @ ne; + Z WM e (urh) @ ng.
JjeJ keK

Since this is true for all n € N, we deduce that
¢ (umj) = (cu)m; and c- (umy,) = (cu)my,

for each j € J,k € K. We deduce at once by Schur’s lemma and Lemma 3.8 that 7; is a
scalar multiple of 6,,, so we may rescale to assume that each w; = 6,,. Similarly, if d is even,
each 7, must be zero, while if d is odd, each 7} must equal Ji; o 6,, after rescaling. O

3.10. Lemma. The functor Y is faithful. Moreover, given N, N' € mod(S(d)),

dim Homgq) (N, N')  if d is even,

. ’ e
d1mH0mW(d)(Y(N),Y(N ) = { 2dimH0m5(d)(N, N') if d is odd.

Proof. Obviously Y is faithful, by the definition of ¥ on morphisms. Now we prove the
statement about homomorphisms in the case d is odd, the case d even being similar. Take
N,N' € mod(S(d)). Let ¢,¢' : N — N’ be linear maps. A short calculation reveals that:

3.11. The map id®¢ + Jy @ ¢' : Y(N) = Y (N') is a W(d)-supermodule homomorphism if
and only if both ¢ and ¢' are S(d)-supermodule homomorphisms.

Hence, in particular, if ¢ : N — N’ is an S(d)-supermodule homomorphism, both id ®¢
and Jy ® ¢ are W (d)-supermodule homomorphisms. So to complete the proof, we need to
show that every W (d)-supermodule homomorphism f : Y(N) — Y (N') can be written as
ided + Jy @ ¢' : Y(N) — Y(N') for S(d)-homomorphisms ¢, ¢’ : N — N'. According to
Lemma 3.9(ii), f = id®¢; + Ju ® ¢ for unique linear maps ¢y, ¢. By (3.11) these are
S(d)-supermodule homomorphisms. O

12



3.12. Theorem. Suppose that d is even. Then, the functor Y : mod(S(d)) — mod(W (d))
s an equivalence of categories.

Proof. In view of Lemma 3.10, Y is full and faithful, so it just remains to show that Y
is dense (see e.g. [4, 1.3.1]). Take an arbitrary W (d)-supermodule M. Since C(d) has a
unique irreducible supermodule U (d) up to isomorphism, we can find a superspace N such
that
M low=U(d) @ N

as a C'(d)-supermodule, where ¢ € C(d) acts on U(d)® N as c®idy. Using this isomorphism,
transfer the action of W (d) on M to U(d)®N, so that M = U(d)®N as a W (d)-supermodule
by construction.

Now take w € Sy. Let f, : U(d) ® N -*U(d) ® N be the C(d)-supermodule homomor-
phism determined by left multiplication by w. Note f,, is of degree 0 as w has degree 0 as
an element of W (d). By Lemma 3.9, there exists a unique map ¢, : N — N’, necessarily
of degree d(w), such that f, = 6, ® ¢7,. Now we make N into an S(d)-supermodule by
defining the action of ¢,, € S(d) on homogeneous n € N by

by = (=1)202) g
To check that this is well-defined, we have for z,y € S; that

(w@n)(fy ® ¢1,) (0 @ br,) = (—1)*2W (5(y)u & t,n) (0, @ ¢r,)
(,1)B(u)a(y)+8(u)3(w)+3(w)8(y) (n(z)n(y)u) @ (tet,n)
(— 1)) B (3 y) (n(zy)u) @ (tstyn).

On the other hand, f,f, = fyy (writing maps on the right!), so this is equal to

[a—y

So we deduce that t;, = B(z,y)t.t, as required. Finally, we check that Y(N) = M as
W (d)-supermodules. For w € S, we have that

wu®n)=(u®n)fy=(uen)(ly,® ds,)
= (- 1)22W) (n(w)u) @ (tuyn) = (n(w) @ ty)(u @ n).
This shows that the two actions of w on Y(N) = U(d) ® N agree, and evidently, the two
actions of ¢ € C(d) do, so Y(N)=U(d)®@ N =M. O

3.13. Corollary. For even d, the functor Y gives a 1-1 correspondence between the irre-
ducible (resp. absolutely irreducible) supermodules of S(d) and W (d).

To understand the case d odd, we argue a little further. Certainly, we have the following;:

3.14. Lemma. Suppose that d is odd and let D be an irreducible S(d)-supermodule. Then,
(i) if D is absolutely irreducible, then Y (D) is irreducible but not absolutely irreducible;
(ii) if D is not absolutely irreducible, then Y (D) decomposes as a direct sum of two

isomorphic, absolutely irreducible W (d)-supermodules.
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Proof. Let A C Endg(U(d)) denote the image of the Clifford algebra C(d) in its represen-
tation on U(d), and B C Endg(D) denote the image of S(d) in its representation on D.
Evidently, B is spanned by invertible elements, namely the images of the group elements
ty € S(d). Since n(w) € C(d) is invertible, we can find an element ¢,, € C(d) such that,
(cw ® 1)(n(w) @ ty) = 1 @ty as elements of the superalgebra A @ B. It follows that the
image of W(d) in its representation on Y (D) is equal to A ® B C Endg(U(d)) ® Endg(D).
Now the lemma follows from Lemma 2.8. O

In view of Lemma 3.10, we deduce from Corollary 3.6 and Lemma 3.14 that:

3.15. Corollary. For odd d, the functor Y gives a 1 1 correspondence between the ir-
reducible supermodules of S(d) and W (d), absolutely irreducibles corresponding to mon-
absolutely irreducibles and non-absolutely irreducibles corresponding to absolutely irreducibles.

4 The strange Schur superalgebra

We introduce some further notation. Suppose that 0 # 4,5 € Z. Define 9; = 0 if i > 0 or
1if i < 0; define 9;; = 9; + 9; € Zy. More generally, given d-tuples i = (i1,...,i4) and
7= (41,---,Jq) of non-zero integers, let

0;=0; +-++0i, € Lo, 0ij = 0i + 0 € Ly,
€ = (81'1’82'27---782}1) € Zg’ €ij =€+ E € Zg

Let Z% act on the left on {£1,...,4d} so that for e = (1,...,64) € Z% and 5 = 1,...,d,
e(£s) = (—1)%(%s). Extend the natural action of S; on {1,...,d} to an action on
{#£1,...,+£d} so that w(—s) = —(ws) for s = 1,...,d. These two actions combine to give a
well-defined left action of the hyperoctahedral group W, on the left on the set {£1,..., £d}.

Now let I(n,d) denote the set of all functions i : {£1,...,+d} — {£1,...,£n} such that
i(—s) = —i(s) for s = 1,...,d. We often denote the value i(s) of the function i € I(n,d)
at s € {£1,...,£4} by is. Then, the element 7 € I(n,d) can be thought of simply as the
d-tuple (i1,...,44): the original function ¢ can be recovered uniquely from knowledge of this
d-tuple since i(—s) = —i(s). The group W, acts on the right on I(n,d) by composition of
functions, so (i - g)(s) = i(gs) for i € I(n,d),g € Wy and s € {£1,...,£d}. Write i ~ j if
i,7 € I(n,d) lie in the same Wy-orbit. Also let Wy act diagonally on the right on the set
I(n,d) x I(n,d) of double indezes, and write (i,j) ~ (k,l) if the double indexes (7, j) and
(k,1) lie in the same orbit.

Let V denote the superspace with basis viq,...,v4y,, where d(v;) = 0;. Then, the
tensor product V®? is also a superspace with the induced grading. A basis is given by the
monomials v; = v;, ® --- ®@v;, for alli € I(n,d), and d(v;) = 0;. We make V¥ into a right
W (d)-supermodule by setting

vi(w ® ) = e w, 6)v;. (g5

for all i € I(n,d),(w,0) € Wy. The fact that this is well-defined follows from the fact
that a is a 2-cocycle. To be more explicit, the action of the generator s; of Sy C W(d) is
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as the linear map id®--- ® id®Ty,y ® iId®--- ® id where the supertwist map Ty, is in
the ith position, and the generator ¢; of C(d) C W(d) acts on the right as the linear map
d®---®i1d®Jy ®i1d® - -+ ® id where the map Jy : v; — v_; is in the jth tensor.

Now define the (strange) Schur superalgebra

Q(n, d) := EndW(d)(V®d).
So, Q(n,d) acts on V®? on the left. We observe right away by Lemma 3.3 that:
4.1. Lemma. Ifp=0 orp > d, then Q(n,d) is a semisimple (super)algebra.
The initial goal is to describe an explicit basis for Q(n, d).

4.2. Lemma. For (i,7) € I(n,d) x I(n,d), the following properties are equivalent:
(1) 85, 5. 0i,.j: = 0 whenever |ig| = |iy| and |js] = || for some 1 < s <t < d;
(ii) a(e;j3w) =1 for all (w,§) € Stabyy, (4, 7).

Proof. Using the fact that Stabg,(4,j) is generated by transpositions and that « is a 2-
cocycle, property (ii) is easily seen to be equivalent to the weaker condition that a(e; j;w) =
1 for all (w, §) € Stabyy, (4, ) with w a transposition. This weaker statement is precisely the
condition (i), by the definition of . O

Call the double index (i,7) € I(n,d) x I(n,d) strict if it satisfies the properties in
the lemma, and let I%(n,d) denote the set of all strict double indexes. Observe using
Lemma 4.2(i) that I?(n,d) is Wy-stable. Given (i,4) ~ (k,1) € I*(n,d), choose (w,§) € Wy
such that (¢,7) - (w,d) = (k,l) and define the sign o(¢, j;k,1) to be a(e; j;w). In view of
Lemma 4.2(ii), this definition of o (i, j; k,1) is independent of the choice of (w, d).

Given i,j € {£1,...,%d}, let é;; € Endi (V') denote the linear map with é; jur = 0 ,v;
for all k. Given i,j € I(n,d), let
€ij = €ir g1 @ Cinjo @ ® €y j, € Endk(v)®d'

Recall that the superalgebras Endy(V)®? and Endy(V®9) are naturally isomorphic. Under
the isomorphism, our element ¢; ; corresponds to the linear map with

€i,jUk = 05 kC(Eq 55 €k)Vi- (4.3)

We will henceforth identify Endy(V)®¢ and Endy(V*®?) in this way. Given strict (i,j) €
12(n,d), define the linear map &; ; € Endy(V ®4) by

Gi= >, oli,gikDéxy. (4.4)

Obviously, if (i,7) ~ (k,1) € I%(n,d), then 511 =o(i, ]k, l)fk,l. Now choose some set (n, d)
of orbit representatives for the action of Wy on I?(n,d). Then:
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4.5. Theorem. The elements {éi,j | (i,§) € Qn,d)} give a basis for Q(n,d). Moreover,
given (i,7), (k1) € I*(n, d),

Gigbhi= Y Gijkisibs

(s,t)€Q(n,d)

where
i gk lys,t = o(i,g; s, h)o(k, l; h,t)a(es nien,t)-
hel(n,d) with
(8,R)~(4,1),(h,t)~(k,0)
Proof. Obviously, the given elements are linearly independent. To show that they span

EndW(d)(V®d), let
0= aiéi

i,j€I(n,d)

be an arbitrary element of Endy(V®?). Take w € Sy,6 € Z4 and set g = (w,§) € Wy. For
i € I(n,d), we have that (8v;)(w ® ¢®) = 8(v;(w & ¢?)) if and only if

> aijoleigie)alen 9 vig = Y g g0(Eigigicig)(E);9)Vig
i€l(n,d) i€I(n,d)

Simplifying using Lemma 3.4, we see that 6 € Endyy (4 (V®?) if and only if
Qiog,j.g = (Ei g W)ai

for all 4,5 € I(n,d) and g = (w,0) € Wy. So by Lemma 4.2(ii), we must have that a;; =0
unless (¢,7) is strict, and for strict (h,k) ~ (¢,7), we have that ap = o(i,4; h, k)a; ;. This
shows that 8 € Q(n,d) if and only if § = Z(i,j)eﬂ(n,d) ai,jé’i,j, completing the proof of the
first part of the theorem.

Now we show how to deduce the product rule. To calculate a; ;s in the product
expansion, we need by (4.4) to determine the coefficient of é,; in

Gigler= > oliygii ok GE U )ép pép .

(@"4")~(2:1) (K1)~ (k1)

We have that é; jép p = 00 pra(ey jis e p)éy p. Using this the és-coefficient of éi,jélg,l is
therefore precisely as in the theorem (with h = j' =£&'). O

5 The coordinate ring

Now we proceed to give an entirely different construction of the Schur superalgebra in the
spirit of Green’s monograph [7]. We begin by reviewing some basic facts about cosuperal-
gebras and bisuperalgebras.

A cosuperalgebra is a superspace A with the additional structure of a k-coalgebra, such
that the comultiplication A : A - A ® A and the counit € : A — k are superspace
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maps. Given two cosuperalgebras A and B, A® B is a cosuperalgebra with comultiplication
idg ®T4,p®idp o(Aa® Ap). A cosuperalgebra homomorphism (resp. antihomomorphism)
6 : A — B means a superspace map that is a coalgebra homomorphism (resp. antihomo-
morphism) in the usual sense. Cosuperideals and subcosuperalgebras are also the obvious
graded version of the usual notions.

Given a cosuperalgebra A, a right A-cosupermodule is a superspace M together with
a superspace map 7 : M — M ® A, called the structure map of M, which makes M into
a right A-comodule in the usual sense. A homomorphism between two A-cosupermodules
means an A-comodule homomorphism in the usual sense; note we write homomorphisms
between right A-cosupermodules on the left (and vice versa). We let comod(A) denote the
(superadditive) category of all right A-cosupermodules.

A bisuperalgebra is a superspace A that is both an associative superalgebra and a cosu-
peralgebra, such that the comultiplication A: A - A® A (recall how A® A is viewed as a
superalgebra!) and counit € : A — k are superalgebra homomorphisms. If A is a bisuperal-
gebra, we have a natural notion of (inner) tensor product of two left A-supermodules M, N,
namely, the supermodule M ® N with multiplication defined by a(m ® n) = A(a)(m & n)
(recall how we view M ® N as an A ® A-supermodule!). The fact that the comultiplication
is coassociative implies that, given A-supermodules M, N, P, the canonical isomorphism
(M®N)®P = M® (N ® P) is an isomorphism of supermodules. Similarly, we view
the tensor product M ® N of two right A-cosupermodules as a right A-cosupermodule,

with structure map defined by the composition M ® N WA M@ AQN® A . ®M®ld
MINQAQA LS MON®A, where gy : M > M@ Aand gy : N — N @ A are the
structure maps of M, N respectively and p: A ® A — A denotes the multiplication in A.

Let A be a finite dimensional cosuperalgebra. Then, the dual A* is naturally a superal-
gebra, with the product fife of f1, fo € A* being defined as the unique element f of A* such
that f(a) = (f1® f2)(A(a)) for all a € A (take care interpreting the right hand side!). Given
a finite dimensional right A-cosupermodule M with structure map n: M — M ® A, we can
view M as a left A*-supermodule, with action fm = (idy ®f)(n(m)) for f € A*,m € M
(care!). Now suppose that § : M — N is a morphism of right A-cosupermodules. Let
0 : M — N be the map m — (=1)@2™g(;m). Then, viewing M and N as left A*-
supermodules as just explained, the map 0 (now written on the right) is a morphism of
left A*-supermodules. We have now defined a functor which gives an isomorphism between
comod(A) and mod(A*).

Finally in this review of definitions, we mention a standard general result about direct
sums of cosuperalgebras. Suppose A is a (possibly infinite dimensional) cosuperalgebra and
that A = @,.; Ai as a direct sum of subcosuperalgebras. Then, as in [7, p.20] we have:
5.1. Lemma. With the preceeding notation, let M be a right A-cosupermodule with structure
map n: M — M ® A. Then, M = @,.; M; where M; is the unique mazimal subcosuper-
module of V' with n(M;) C M; ® A;.

As a corollary, one can show that the category of right A-cosupermodules is equivalent
to the direct product of the categories of right A;-cosupermodules for all 7 € T .

Now we begin the alternative construction of the Schur superalgebra. Start with the
free associative superalgebra F'(n) on non-commuting generators {f; ; | i,j = +1,...,+n},
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where 0(f; ;) = 0;j. Then, F(n) is naturally Z-graded by degree as

F(n) =@ F(n,d).

d>0

Given a double index (i,7) € I(n,d) x I(n,d), define f;; = fi, i fisjo--- fizj,- The ele-
ments {f; ;| (4,5) € I(n,d) x I(n,d)} form a basis for F'(n,d). One checks that the unique
superalgebra maps € : F(n) — k and A : F(n) — F(n) ® F(n) defined on generators by

€(fig) = dijs
A(fiy) = Z (— 1)k f; 1 @ fi j
ke{%1,....£n}
make F(n) into a bisuperalgebra. We point out that for (i,7) € I(n,d) x I(n,d),
Alfig) = Y. (1)%:%ia(eg iein) fik ® fuy-
kel(n,d)

Hence, each F'(n,d) is a finite dimensional subcosuperalgebra of F(n). Make V into a right
F(n)-cosupermodule with structure map V' — V ® F(n) defined by

v Y. (D)% @ fiy.

ie{£1,...,£n}

Then, for each d > 1, V% is also automatically a right F(n)-cosupermodule with structure
map V& - V@ @ F(n) given explicitly by the formula

v Z (—1)%%ia(e; je)vi ® fij.
ic(n,d)

In particular, V®? can be viewed as a right F(n, d)-cosupermodule.
Let F(n,d) = F(n,d)* be the dual superalgebra. Let ¢; ; denote the element of F(n,d)
with
¢ij(fij) = aleigieis),  eij(frg) =0 for (k1) # (i, 9).
Then, the {e;; | 4,7 € I(n,d)} give a basis for E(n,d). The right F'(n,d)-cosupermodule
V@ is a left E(n,d)-supermodule in a natural way. Let pq : E(n,d) — Endyg (V%) be the
resulting representation.

5.2. Lemma. The representation pg is an isomorphism between E(n,d) and Endy(V®9).
Moreover, pq(e; ;) = €;; for all i, € I(n,d).

Proof. 1t suffices to check that e; jup, = é; jui, for all ¢,7,k € I(n,d). By the definition of
the action of F(n,d), we have that

erur = ([d®ei;) [ D (=DM kalenk;en)on ® fan
hel(n,d)

= 0j k(e €i)alej;€i)vi = 0 pa(ei s €5)vi = €.
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This completes the proof. O
Now consider the superideal J(n) of F'(n) generated by the elements

{fii — foigs fijfrn — (—1)%i % fy f

i, g,k ==+1,...,£n}.
A short calculation reveals that this is actually a bisuperideal, so the quotient
B(n) := F(n)/3(n)

is a bisuperalgebra quotient of F'(n). Let b;; = f;; + J(n). Then, B(n) is just the free
commutative superalgebra on the degree 0 generators b; ; = b_; _; and degree 1 generators
bi—j="b_;;, for all 1 <4,j <n. The superideal J(n) is homogeneous, so graded as J(n)
D503 (n,d). So B(n) is also Z-graded by degree as B(n) = @ -, B(n,d), with B(n, d)
F(n,d)/3(n,d). Moreover, B(n,d) is spanned by all monomials b;; = b;, j, ...b;,;, for
i, € I(n.d). The monomial b;; is non-zero if and only if (4, j) is strict, and for strict
(i,7) ~ (k,1), we have that

1l

bij=o0(i,73;k,1)bg,.

It follows that B(n,d) has basis {b; ;| (i, j) € Q(n,d)}, where Q(n, d) is the choice of Wg-orbit
representatives in 1?(n, d) made earlier.

Now, let Q(n,d) denote the dual superalgebra B(n, d)*. Since B(n,d) = F(n,d)/3(n,d),
Q(n,d) is naturally identified with the annihilator J(n,d)° C E(n,d). For (i,4) € I*(n,d),
let &5 € Q(n,d) C E(n,d) denote the unique function with

§ij(bij) = aleijicig), and & j(bg,) = 0 for (k1) # (i, 7).

So, the {& ;| (i,7) € Q(n,d)} give a basis for Q(n, d).

We can regard the F(n,d)-cosupermodule V®? instead as a B(n,d)-cosupermodule by
restriction. Dualizing, we obtain a natural representation Q(n,d)— Endy(V®?), which is
nothing more than the restriction of the representation py : E(n,d) — Endy(V®%) defined
earlier to the subsuperalgebra Q(n,d) C E(n,d). Then:

5.3. Theorem. The representation pq gives an isomorphism between Q(n,d) and the Schur
superalgebra Q(n,d). Moreover, pa(&;.;) = & ; for all (i,7) € I%(n,d).

Proof. Pick (i, ) € I*(n,d). Since Q(n,d) C E(n,d), we can write

= D, anieny

klel(n,d)

for coefficients a;; € k. To calculate the coefficient ay,;, evaluate both sides at the element
flﬁ:l S F(n, d) to see that (l]ﬁyla((‘:]&l; 6&4) = Si’j(flﬁ:l) = fi,j(blg,é)- So by the definition Offi’j, a1
is zero unless (k,l) ~ (4, 7), in which case, ar; = a(ep;ex,0)0 (4, 15k, 1)& (b ;) = o(i, 1; k,1).
This shows that

Gi= Y, oli.jikDers

(k’l)N(’i!j)
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Now the theorem follows at once from Lemma 5.2, Theorem 4.5 and (4.4). O

We will henceforth identify Q(n,d), which we defined as the dual of the cosuperalgebra
B(n,d), with Q(n,d), which we defined as the commutant of W (d) on tensor space V®d.
So the dual basis element &; ; € Q(n,d) is identified with the linear transformation ¢ ; €

Q(n,d).

6 Weights and idempotents

Let A(n,d) denote the set of all tuples A = (Aq,..., ;) of non-negative integers with A; +
-+ X\, = d. We partially order A(n,d) by the usual dominance order, so A > pu if and only
if S A >3 ps foreach t = 1,...,n. Fori € I(n,d), define its weight wt(i) to be the
composition A = (A1,...,A,) € A(n,d) where \s = [{t |1 <t < d,|iy] = s}|. Conversely,
given A\ € A(n,d), let i) denote the element (1,...,1,2,...,2,3,...) € I(n,d) where there
are Aj ones, Ay twos, etc..., so that wt(iy) = A. Define

& =iy iy € Qn,d).

We call the elements {&x | A € A(n,d)} weight idempotents, motivated by the following
lemma:

6.1. Lemma. For (i,5) € I*(n,d),

&y if wt(i) = A, o &Gy ifwt(g) = A,
&g = { 0 otherwise. SESS 0 otherwise.

In particular, {&x | A € A(n,d)} is a set of mutually orthogonal idempotents whose sum is
the identity element of Q(n,d).

Proof. It is elementary to check that the matrix units {e,, | h € I(n,d)} in E(n,d) are
a set of mutually orthogonal idempotents whose sum is the identity, with ey pe; ; = 65 i¢;
and e; jep p, = 0p j€i; for all h,i,j € I(n,d). Now according to (4.4), &y = ), ep p summing
over all h € I(n,d) with wt(h) = X, as an element of E(n,d). The lemma follows easily
from these remarks. O

Let w denote the weight (1¢), which is an element of A(n, d) providing n > d. Assuming
this, the weight idempotent &, is a well-defined element of Q(n,d), and &,Q(n,d)¢, is
naturally a superalgebra in its own right, its identity element being the idempotent &,,. We
have the following double centralizer property:

6.2. Theorem. Assume that n > d.

(i) The map ¢ : Q(n,d)¢, — V&, i, — v for i € I(n,d) is an isomorphism of
Q(n, d)-supermodules. In particular, VZ? is a projective Q(n,d)-supermodule.

(i) The map ¢ : W(d) = £,Q(n,d)éy,, 2 ® ¢ — §i-(2,0),i, for all (z,0) € Wy, is a
superalgebra isomorphism.

(iii) Endgq) (V) = W(d).
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Proof. For (i), we first claim that & ; v; = wv;. Well, &; = Z(’LDN(M@) e, and ey v; =
d1,i,vk- Now observe that (k,i,) ~ (i,4,) if and only if k& = 4, since Staby, (i,,) = 1. It
now follows easily that §;; v; = v; as claimed. So in particular, {,v; = v; , so there is a
well-defined Q(n, d)-module homomorphism Q(n,d)¢, — V®? such that &, v;_. By the
claim, this is precisely the map ¢. Finally, observe that Q(n,d)¢, has as basis the elements
{&ii, |1 € I(n,d)}, so that ¢ is a superspace isomorphism.

For (ii) and (iii), £, is an idempotent, so the superalgebras Endg, 4)(Q(n, d)¢,) and
£,Q(n,d)&, are naturally isomorphic. Also, there is a natural map W (d) — EndQ(n’d)(V®d)
given by the representation of W (d) on V¢, Combining this with (i), we obtain a natural
superalgebra homomorphism 1 : W(d) — £,Q(n,d)¢,. By definition, it maps the element
z®c® € W(d) to the unique element ¢ of £,Q(n, d)&, with £¢ = v;_(z®c°). But v;_(z®c%) =
Vi, (2,5)5 50 P(T ® &) = &i(2,0),i, s in the lemma. It remains to observe that the elements
{820y, | (7,0) € Wq} give a basis for £,Q(n,d)&s, so that ¢ is an isomorphism. O

Using Theorem 6.2(ii), Corollary 2.15 and Lemma 3.5, we deduce:

6.3. Lemma. For n > d, the number of irreducible Q(n,d)-supermodules not annihilated
by &u is equal to |RP,(d)].

There is one other situation where Schur functors arising from weight idempotents will
be useful. Suppose now that m > n. We embed A(n,d) into A(m, d) as the set of all weights
of the form (A1,...,A,,0,...,0), and I(n,d) into I(m,d) as the set of all i € I(m,d) with
is € {£1,...,£n} for each s = 1,...,d. To avoid confusion with the corresponding elements
of Q(n, d), we denote the elements £, &, j € Q(m,d) for X € A(m,d), (4, 7) € I*(m,d) instead

by &y, &,; respectively. Let e € Q(m,d) denote the idempotent

e = > 3V (6.4)

AEA(n,d)CA(m,d)
Ifi,j5 € I(n,d) C I(m,d), the element é’\i,j € Q(m,d) lies in eQ(m,d)e.

6.5. Lemma. The map 1 : Q(n,d) — eQ(m,d)e, & ; — Ei,j for all (i,7) € I*(n,d), is a
superalgebra isomorphism.

Proof. Consider the Z-graded superideal J(m) = @ -, J(m,d) of B(m) generated by the
elements -
{bij|iorjequals + (n+1),£(n+2),...,Em}

One checks easily that A(J(m)) C J(m) ® B(m) + B(m) ® J(m), so that the comultipli-
cation A on B(m) induces a well-defined comultiplication on B(m)/J(m) (though J(m) is
not a cosuperideal). Evidently, B(m)/J(m) = B(n) as superalgebras, the induced comul-
tiplication on B(m)/J(m) corresponding to the usual comultiplication on B(n) under the
isomorphism. Dualizing, we obtain a multiplicative superspace isomorphism between Q(n, d)
and J(m)° C eQ(m, d)e, being precisely the map «. Finally, observe that eQ(m,d)e = J(m)°
to complete the proof. 0O
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Next, we introduce a natural subalgebra of Q(n,d) which plays the role of Cartan sub-
algebra. Let Jo(n) = @ > Jo(n,d) denote the Z-graded superideal of B(n) generated by
the elements B

It is elementary to check that Jo(n) is a bisuperideal of B(n), so we can form the bisu-
peralgebra quotient By(n) := B(n)/Jo(n). For i = 1,...,n, let x; denote the image of
bii = b_; ;i in By(n), and = denote the image of b; _; = b_; ;. Then By(n) is precisely the
free commutative superalgebra on the generators z1,...,2,,2},..., 2. Comultiplication
A : By(n) — Bg(n) ® By(n) is given explicitly on these generators by

Alz) =2, @1 — 7, ® ), A(z)) =z, ® T + 7} Q ;.

As usual, By(n) is Z-graded by degree as @ -, Bo(n,
being a subsupercoalgebra of By(n) for each d > 0.
By(n,d)* can be identified with the annihilator Jg(n
subsuperalgebra of Q(n, d).

Consider the special case Qg(1,d) for d > 1 in more detail (obviously, Qy(1,0) = k).
Writing = x1,2’ = x, the elements {29,272} give a basis for By(1,d), with comulti-
plication A : By(n,d) — By(n,d) ® By(n,d) is given explicitly by

d), with By(n,d) = B(n,d)/Jo(n,d)
The dual superalgebra Qo(n,d) =
,d)° C Q(n,d), giving us a natural

Az =2t @ 2% — dz? 12’ @ 2?14, Az ') =24 @2t + 2l @ 2% e

As a basis for Qy(1,d), take the dual basis {yq,y)} to the basis {z4, 27 12"} of By(1,d).
The algebra multiplication, dual to the comultiplication in By(1,d), is then given by yqyqs =

Yd, YdYy = Yy = YyYd: Yyyy = dya. Hence, for d > 1,

L[ ca) itptd,
Q““’d):{ A it pld

recalling Example 2.2.
Now in general, the subsuperalgebra Qg (n,d) C Q(n,d) contains each weight idempotent
&y for A € A(n,d) in its center. So,

P oQn,a). (6.6)
AeA(n,d)
Moreover, one can see that
&Qo(n,d) = Qo(1, M) ® - @ Qo(1,An) = Clhy (X)) @ \(hp(N)) (6.7)

where h, () denotes the number of non-zero parts of A that are divisible by p, and h, ()
denotes the number of parts of A that are coprime to p. We deduce immediately using
Lemma 2.8, Example 2.9 and Example 2.10 that £,Qq(n,d) has a unique irreducible super-
module which we denote by U()), of dimension oLlhy (N+1)/2] Moreover, the supermodule
U(A) is absolutely irreducible if and only if A, (A) is even. Finally, regarding U(\) as an
Qo(n, d)-supermodule by inflation, we have shown:
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6.8. Lemma. The modules {U(X) | A € A(n,d)} give a complete set of pairwise non-
isomorphic irreducible Qo (n, d)-supermodules. The dimension of U(X) is 21w M+D/21 g
U(X) is absolutely irreducible if and only if hy (X) is even.

Recalling Lemma 5.1, we have thus determined the irreducible By(n)-cosupermodules,
namely, the By(n)-cosupermodules {U (M) | A € A(n)}, where A(n) := Uysq A(n,d). Now
let M be an arbitrary B(n)-cosupermodule with structure map n : M — M ® B(n). By
Lemma 5.1, M decomposes as M = @ ,., My where M, is the largest subcosupermodule
with n(My) € My ® B(n,d). Each My is naturally a B(n,d)-cosupermodule, hence a
Q(n,d)-supermodule. Then, for A € A(n,d), we define the A-weight space of M to be the
space M)y := &\ My. Recalling (6.6), M) is a Qq(n, d)-subsupermodule of M. Equivalently,
M, is a By(n)-subcosupermodule of M, viewing M as a By(n)-cosupermodule by restriction,
and

M= M,.
AeA(n)

Let X(n) denote the free polynomial algebra Z[zy,...,z,] and for A € A(n), set 2 =
M x)? .. a)n. Define the formal character

chM = > dimMyz* € X(n).
AeA(n)

Note that for B(n)-cosupermodules M, N, we have that ch(M & N) = ch M + ch N and
ch(M ® N) = chM.ch N. In other words, the map ch : Grot(B(n)) — X(n) is a ring
homomorphism from the Grothendieck ring of the category of finite dimensional right B(n)-
cosupermodules to X (n).

7 The “big cell”

Let J,(n) = @ 50 dr(n,d) and Jy(n) = @ 5o Ji(n,d) denote the Z-graded superideals of
B(n) generated by the elements -

{bi’j ‘%7 = ila---ainam < ‘7|}7 {bi,j | 7‘77 = ila'-'ainam > ‘7|}

respectively. One easily checks that these are cosuperideals. Hence, we can form the bisu-
peralgebras quotients

By(n) := B(n)/3,(n),  By(n) := B(n)/Jy(n).

Both B, (n) and By(n) are Z-graded with degree d component, denoted B, (n, d) and By(n, d)
respectively, being cosuperalgebra quotients of B(n,d). The corresponding dual superalge-
bras to these, namely @, (n,d) = J,(n,d)° and Qy4(n,d) = Jy(n, d)°, are therefore subsuperal-
gebras of Q(n, d), called the negative Borel and positive Borel subsuperalgebras respectively.
They are spanned by the elements

{€i1G,9) € IP(n,d), |i| > 5]} and  {& ] (i,5) € I*(n,d),|i] < |j[}
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n) —
(bi5);
bE,j = my(b; ;) for 4,5 € I(n,d). In particular, bg,j = 0 unless |i| > [j|. Similarly, bE,j =0
unless |i| < |j]. Let

respectively, where |i| > |j| means that |ig| > |jx| for each k = 1,....d. Let m, : B(
By(n) and 7y : B(n) — By(n) denote the natural quotient maps and set b?yj =m

7 : B(n) = B,(n) ® By(n)

be the map (m, ® my) o A. The next goal is to prove an analogue of the existence of the big
cell crucial for high-weight theory:

7.1. Theorem. 7 is injective.

Proof. We proceed in a number of steps. Observe right away that it is enough to prove
that 7 is injective on each B(n,d) separately. So, fix d > 1 and consider the restriction
7 : B(n,d) = By(n,d) ® By(n,d). Let

Y = {(i.k,14) € I(n,d) x I(n,d) x I(n,d) x I(n,d) | |i] > k], |1] < |i]}-

(¢, k"1, §") if both (i, k) ~ (i',k) and (I,7) ~ (I', ') Also call (i, k.1, 5)

Write (i, k,1,7) ~
i,k) and ([, 7) are strict in the sense of Lemma 4.2. Then:

strict if both (

7.2. If Z is a choice of representatives for the ~-equivalence classes of strict (i,k,l,7) € Y,
then {b}, ® blﬂj (i,k,1,7) € Z} is a basis for B,(n,d) ® By(n,d).

Now define m(i, j), for any 4,5 € I(n,d), to be the unique element m € I(n,d) with

. :{ ia i Jis] < 4]
$T U de i 2 [

for all s =1,...,d. Observe that m(i-g,j-g) =m(i,j) - g for all g € W;. We claim:

73, Suppose i, € I(n,d) and g € Wy are such that m(i,5) = m(i,j -g) = m(i 9.5 -g).
Then, (i,7) ~ (i,7-9)-

We prove (7.3) by induction on d. Let m = m(i,j). If d = 1, then the assumption that
m - g = m forces g = 1, and the lemma follows trivially. Now suppose that d > 1 and that
we have proved (7.3) for all smaller d. Write {£1,...,+d} = I U J where

I= {:‘:3 | I1<s< da‘is‘ > ‘75””
J={ts|1<s<d iy <|js|}.

Suppose first that g stabilizes I. Then, we can write g = xy where x fixes J pointwise and y
fixes I pointwise. The assumption that m = m g implies that both m = m-z and m = m-y.
For s € J, my = iy and mys = 4y,, 50 since m, = m,,, we see that iy = i,,. Hence ¢ -y = 1,
and a similar argument gives that j-x = j. So, (i,7-9) = (- y,J - y) ~ (i,7) as required.
Now suppose that g does not stabilize I. Then, we can pick s € I such that gs € J.
Let t = gs € J and define z to be the unique element of W, with s = ¢, 2t = s and fixing
all other elements of {£1,...,+d} \ {£s,*t}. Set ¢ = 29,5’ =7 -z, 0 5 - ¢ = jg. Using
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that m

- g = m, we have that j, = ms = my = 4.

So, |j¢| > |it] = |my| = |mg|. Using

m = m(i,] - g), we must therefore have that my, = i, = iy = my;. This shows that i -z =i

and m - = m. Now,
m(i, 1)
So by our assumption, m(z, j ) m(i, 5

by induction that (i, ") ~

(4,5"-¢'). Hence, (i,])

= m(’; . fE,j . SC) — m(iai,)a
- m(Z7il : g’)7
=m(i-g,i" g

- g'). Now, ¢'s = s, so we deduce

9') =m(i-
~ (Z z 1 *T) - (Zail) ~ (iui"g,) = (Zvig)

as required to complete the proof of (7.3).
Now we apply (7.3) to show:

7'4' Let 2'7.1'714.17.1" E I(n7 d) and m (Z i) m = m(zl71’) If (Z’?@j m?l) ~ (i’7ml7m 7j’)

then (i,7) ~ (i, 4").
Indeed, take g,h € Wy such that (i,m) = (i'-g,m'-g) and (m, j) = (m'-gh, j'- gh). Set
k=7g. Now,
m m(l 7)_m(ia.jl'gh):m(iak'h)a
m'-g=m(i' g5 -g) =m(i,k),
' gh=m(i" - gh,j" - gh) = m(i-h,k-h).

So, observing that m = m' - g = m’ - gh, we have that m(i, k) = k- h) :
Hence by (7.3), (i,k) ~ (i,k - h). So (', 1) ~ (i' - g, 5" - g) = (i, k) ~ (i, k- h) = (2, 1)

Next we claim:

S

7.5. Leti,j € I(n,d) and m =m(i, 7). If (i,7) is strict, then (i,m,m,j) is strict.

To prove this, take (i,7) strict and suppose that (i,m) is not strict. Then, there exist
1 < s <t <dwith |is] = |it],|ms| = |m| and i, ;m, i, m, = 1. So, is # mg, iy # my, hence
by the definition of m, mg = js,my = j;. But this contradicts the fact that (s
Hence, (i,m) is strict, and a similar argument shows that (m, j) is strict.

Recall that Q(n,d) is some set of representatives of the ~-equivalence classes of strict
(2,7) € I(n,d) x I(n,d). In view of (7.4) and (7.5), all {(i,m,m,j) | (i,7) € Q(n,d),m =
m(i, 1)} are strict and lie in different ~-equivalence classes. So they are linearly independent
by (7.2), and we have now proved:

,7) is strict.

7.6. The elements {bg,m ® bfnj | (i,7) € Q(n,d),m =m(i,j)} are linearly independent.

Now we can prove the theorem. Call (i,k,l,j) € Y special if there exists g € Wy such
that

igs = kgs = ls whenever |l,| < |75,

ls =35 = kgs whenever |ls‘ = |7s‘
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for all s = 1,...,d. We point out that if m = m(i,7), then (i, m,m,j) is special. Now,
if (i,k,1,7) ~ (¢, K',l',4") and (i,k,1,4) is special, then (i',k',l',4') is too. So the prop-
erty of being special is a property of ~-equivalence classes. Choose a total order > on
the set of all special ~-equivalence classes such that the following hold for all special
(i,k,L,5), (', ', 1, ') € Y

(1) if wt(k") > wt(k) (in the dominance order) then (i',k",1',5") = (i, k,1, j);

(2) if wt(k) = wt(&k') and [{s|1 < s < d,is = ks}| > [{s |1 < s < d,i, = k.}| then
(' K1 5) = (i, k.1, ).

We need one more claim:

7.7. Let i,j € I(n,d) and m = m(i,j). Then,
m(bij) = £, @b, + A+ B

where A is a linear combination of terms of the form b?k ® bij with (i, k,k, j) special and

(i,k,k,7) = (i,m,m, ]), and B is a linear combination of terms of the form bz,ls ® beg,j with
(i,k,k,j) not special.

To prove (7.7), we have from the definition of 7 that
m(bij) =+, @bk, £b @b .+ (alinear combination of b, ® b} . with [k| < |m|)
where m = min(|i],|j|). So, writing m = m(i, j),

w(big) = Y %!, 5 ®bh s+ (a linear combination of b}, ® bf . with wt(k) > wt(m).)
dezd

Therefore, we just need to show that for all (0,0,...,0) # 0 € Z4 such that (i, m -6, m -0, )
is special, we have that |[{s |1 < s < d,is = ms}| > [{s|1 < s < d,is = mgss}|. Take
§ € Z% such that (i, -0, m -6, ) is special. Then certainly we have that mgs, = j, whenever
|ms| = |js|, when mg = js by definition of m. So for s with |mg| = |js/, we have that
mgs = s, whence J; = 0. Instead, take ¢ with [my| < |j;|. Then, m; = i; so m; = i if and
only if §; = 0. These observations establish that

{s1<s<djis=ms}| >[{s|1<s<dis =mgs}
with equality if and only if § = (0,0,...,0). This completes the proof of (7.7).

Now the theorem follows easily from (7.6), (7.7) and a unitriangular argument involving
the order ~. O

7.8. Corollary. The natural multiplication map p : Q,(n.d) ® Qy(n,d) — Q(n,d) is sur-
jective.
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8 High-weight theory

Now we can classify the irreducible Q(n, d)-supermodules using high-weight theory. Recall
that Qy(n,d) denotes the positive Borel subsuperalgebra of Q(n,d). We begin by determin-
ing the irreducible Qy4(n, d)-supermodules.

The ideal Jy(n) from §7 is contained in the ideal Jg(n) from §6. It follows that Qg (n,d) C
Qi(n,d). On the other hand, let Q4 (n,d) denote the subsuperspace of Q4(n,d) spanned by
the elements

{& ;1 (i,9) € I*(n,d), |i| < 4], lis| < |45 for some s}.

It follows from Lemma 6.1 that Q4 (n,d) is a superideal of Q4(n,d). Moreover, Q(n,d) =
Qo(n,d) ® Q4(n,d) as a superspace, and Qy(n,d)/Q4(n,d) = Qo(n,d). Analogously,
@ (n, d) denotes the superideal spanned by the elements {¢; ;|(i,7) € I?(n,d), |i| > |j], |is| >
|75| for some s}, and Q,(n,d) = Qo(n,d) ® Q—_(n.d).

If M is any Qo(n, d)-supermodule, we can view it as a QQ4(n, d)-supermodule by inflation
along the quotient map Qy(n,d) - Qo(n,d). In particular, we obtain irreducible Q4(n, d)-
modules denoted {U(\) | A € A(n,d)}, namely, the inflations of the irreducible Qy(n,d)-
supermodules constructed in Lemma 6.8.

Now suppose that M is a Qy(n,d)-supermodule and A € A(n,d). By Lemma 6.1,
for £ € Qy(n,d), €M, C ®u>z\ M,. It follows at once that for any weight A maxi-
mal in the dominance order such that M) # 0 (such a weight certainly exists as there
are finitely many weights!), the weight space M) is annihilated by Q1 (n,d). So M), is a
Q4(n, d)-subsupermodule of M and the action of Qy(n, d) on M) factors through the quotient
Qo(n,d). In particular, if M is an irreducible Qy(n, d)-supermodule, M = U(}).

Given an arbitrary weight A, we call a Q(n,d)-supermodule M a high-weight module of
high-weight X if the following conditions hold:

(1) My is a Qy(n, d)-subsupermodule of M isomorphic to U(A);

(2) M is generated as an Q(n,d)-supermodule by M.

For A € A(n,d), define the standard module

A()\) = Q(n,d) ®Qﬂ(n,d) U()\) (81)

Call the weight A\ an admissible weight if A(X) # 0.

8.2. Lemma. For admissible A\, A(X) is a high-weight module of high-weight \. Moreover,
A(N), =0 unless pn < .

Proof. Recalling Corollary 7.8, we certainly have that
AQA) = @y(n,d) @U(A) = Q- (n,d) @ U(X) & Qo(n,d) @ U(A).

All weights of QQ_(n,d) ® U(X) are strictly lower than A in the dominance order. So the
A-weight space of A(A) is equal to 1®U(\), a homomorphic image of U(A). The assumption

that A is admissible is equivalent to 1 ® U(A) being non-zero, in which case it is isomorphic
to U(X) as U(A) is irreducible. O

The admissible A(\) have the usual universal property:
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8.3. Lemma. Suppose that M is a high-weight module of high-weight X\. Then, X\ is admis-
sible and M is a homomorphic image of A(X). In particular, M, = 0 unless p < .

Proof. There is a natural isomorphism
Homg, (n,a)(U(A), M }) —— Homgp, ¢)(A(N), M).

Choose an isomorphism 0 : U(X) — My C M of Qy(n, d)-supermodules and let 6 1: A(X) —
M be the corresponding Q)(n, d)-supermodule homomorphism. This is non-zero, hence A is
admissible, and is surjective as M is generated by M. This shows that M is a quotient of
A(A), and the final statement about weights follows from Lemma 8.2. 0O

For admissible A, define L(\) to be the head of A()\), i.e. L()) is the largest completely
reducible quotient supermodule of A(X). We remark that if p =0 or p > d, then Q(n,d) is
semisimple by Lemma 4.1, so that L(A) = A()) in these cases.

8.4. Lemma. The set {L(\) | for all admissible A\ € A(n,d)} is a complete set of pairwise
non-isomorphic irreducible Q(n,d)-supermodules. Moreover, the module L()) is absolutely
irreducible if and only if hy () is even.

Proof. Let A be admissible. We first claim that A(\) has a unique maximal subsupermod-
ule, so that L(\) is irreducible. For let M, N be two maximal subsupermodules of A()).
Since A(A)y is irreducible over Qg (n, d) and generates A(A) over Q(n, d), we must have that
My = Ny =0,s0 (M + N)y = 0. This shows that M + N is a proper subsupermodule of
A()N). Hence, M = M + N = N by maximality, as required.

Evidently, for admissible A # u, L(A) and L(u) are not isomorphic, as they have different
high-weights. Now suppose that L is an arbitrary irreducible Q(n, d)-supermodule. Choose
A maximal in the dominance order such that Ly # 0. Then, by irreducibility, L must be a
high-weight module of high-weight A, so a quotient of A(A) by Lemma 8.3. Hence, L = L(\).

It remains to prove the statement about absolute irreducibility. First observe by ad-
jointness that Homg, 4)(A(A), L(A)) = Homg, (n,4)(U(X), L(A) }) = Endgy(n,q)(U(A)). Now
there is a natural embedding Homg,, 4)(L(A), L(A)) — Homg, ¢)(A(X), L(A)). To see
that it is an isomorphism, observe that any Q(n,d)-homomorphism A(A) — L(A) annihi-
lates the unique maximal submodule of A()), hence induces a well-defined homomorphism
L(A) — L(X). We have shown that Endg, 4)(L(A)) = Endg,(n,a)(U(A)). Now the final part
of the lemma follows from Lemma 6.8. O

9 Classification of admissible weights

We now proceed to give a combinatorial description of the admissible weights, to complete
the classification of the irreducible Q(n,d)-supermodules. We make some definitions. Let
A" (n,d) denote the set of all A\ € A(n,d) such that A\; > Xy > --- > ),, i.e. \is a partition
of d with at most n non-zero parts. Let A (n,d) denote the set of all A € A(n,d) such that

1 ifp| A,

0 <A — A1 +6; fori=1,....n, whered; = { 0 otherwise,
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so that A is a p-strict partition as in the introduction. Call X\ € A;(n, d) restricted if either
p=0orp>0and X\; — X\iy1 +0; <pfori=1,...,n Let Af(n,d)ws denote the set of all
restricted A € A (n,d). We will show that X is admissible if and only if A € A} (n,d).

We construct another natural subsuperalgebra of Q(n,d). Let R(n) = @, 5, R(n,d)
denote the Z-graded superideal of B(n) generated by the elements -

{bi’j|Z':1,...,n,j:*1,...,*n}.

It is a bisuperideal, so we can form the bisuperalgebra quotient

A(n) = B(n)/&(n),

this being Z-graded as A(n) = @, A(n,d) where A(n,d) = B(n,d)/f(n,d). For i,j =
1,...,n, set ¢;; = b;j + K(n). Observmg that each ¢;; has degree 0, A(n) = A(n)g is
precisely the free polynomial algebra on the generators {c; ; |1 < 4,57 < n}. So the dual
superalgebra S(n,d) = A(n,d)* is just the usual classical Schur algebra as in [7]. We can
identify S(n,d) with the subsuperalgebra f(n,d)° C Q(n,d)s C Q(n,d).

Now we treat the case n = 2, copying an argument due to Penkov [18, §7] in our setting.

9.1. Lemma. Suppose that n = 2 and that X € A(2,d) is an admissible weight. Then,
either \y > X9, or \y = A9 = ¢ for some ¢ > 0 with p | c.

Proof. The restriction of L(A) to the ordinary Schur algebra S(2,d) C Q(2,d) gives us an
S(2,d)-module with maximal weight A. We deduce from the classical theory that A; > Xo.
To complete the proof, suppose for a contradiction that Ay = A9 = ¢ but that p { c
So d = 2c. Now, there are no u € AT (2,2¢) with g < A. Since we also know that
dim L(A)y, = dimU(A\) = 2, we deduce by the classical representation theory of S(2,2c)
that L(A) | S(2,2c) splits as a direct sum of two irreducible S(2,2¢)-modules both of high-
weight A. But such S(2,2¢)-modules are one dimensional (being just a tensor power of the
determinant module). This shows that L()\) = L(\)y, of dimension exactly two. Hence,
L(X\), =0 for all v # A.
Define the following elements of (2, 2¢):

i=(1,...,1,-2:2,...,2,2), j=(1,...,1,2:2,...,2,2),
E=(1,...,1,1;2,...,2,=1), 1=(1,...,1,1;2,...,2,1),
s=(1,...,1,-1;2,...,2, ), t=(1,...,1,1:2,...,2,—-2),
uw=(1,.. Lo 21), in=(1,...,1,1;2,...,2,2)

where the symbol ; is between the cth and (¢ + 1)th entries. Now an explicit calculation
using the product rule Theorem 4.5 shows that

Ciygiiy = &siiy T+ Cuiiy, and iy kSliy, = &ty + Euniy -

Hence,

Eini€ivis — Sixk€liy = Esiiy — iy
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Using the previous paragraph and a weight argument, both terms on the left hand side of
this equation act as zero on L(X)y. Hence, the term & ; — &, € £&xQo(n,d) on the right
hand side acts as zero on L(A\)) = U(X). But £,Qo(n,d) = C(2) according to (6.7), so as
U(2) is a faithful C(2)-supermodule, the non-zero element & ;, — & ;, of £xQo(n,d) cannot
act as zero on U (), a contradiction. O

Now observe that for A € A(n,d), X lies in A} (n,d) if and only if for each i = 1,...,n—1
(Ais Aig1) liesin A;(Q, Ai+Ait1). So by an argument involving restriction to various quotients
of B(n) isomorphic to B(2), we have the following corollary of Lemma 9.1:

9.2. Corollary. If X\ € A(n,d) is admissible, then X\ € A (n,d).

It remains to prove that every A € A;“(n,d) is admissible, i.e. that there does exist
some high-weight module of high-weight A for each )\ € A;‘(n,d). To do this, we first
give a construction of some high-weight modules in the case p > 0 using a Frobenius twist
argument. Recall from earlier in the section that A(n) denotes the free polynomial algebra
on generators {c;; | 1 < i,j < n}, viewed as a bialgebra as in the classical polynomial
representation theory of GL(n) [7]. In particular, we can view A(n) is a bisuperalgebra
concentrated in degree 0.

9.3. Lemma. Ifp > 0, the unique algebra map o : A(n) — B(n), such that ¢; j — bﬁj for
all 1 < 4,5 < n, is a bisuperalgebra embedding.

Proof. This is a routine check of relations. 0O

In view of the lemma, there is a natural restriction functor
Fr: mod(A(n)) - mod(B(n)).

On objects, Fr is defined by sending an A(n)-cosupermodule M with structure map 7 :
M — M ® A(n) to the B(n)-cosupermodule equal to M as a superspace with structure map
(id®c) on; we call Fr M the Frobenius twist of M. On morphisms, Fr sends a morphism to
the same linear map but regarded instead as a B(n)-cosupermodule map. We note that if
M is a polynomial A(n)-cosupermodule of degree d, then Fr M is a B(n, pd)-cosupermodule.
Also, let Fr : X(n) — X (n) be the linear map determined by Fr(z*) = zP* for each A € A(n),
where pA denotes (pA1,...,pA\,). Then, the formula

ch(Fr M) = Fr(ch M)
describes the effect of the functor Fr at the level of characters.

9.4. Lemma. Suppose that X\ € A(n,dy) is an admissible weight, and that p € At (n,dy) is
arbitrary. Then, A + pu € A(n,dy + pdy) is an admissible weight. Moreover, all non-zero
weights of L(X\ + pu) are of the form X + pu' for X' < X and p' < p.

Proof. If p = 0, there is nothing to prove. Otherwise, by the classical theory, there exists
an irreducible A(n)-comodule L'(p) of high-weight u. Regard L'(p) instead as an A(n)-
cosupermodule concentrated in degree 0 (say) and consider the B(n)-cosupermodule

M = L(\) @ Fr L' ().
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It is a B(n,d; + pdy)-cosupermodule, hence a Q(n,d; + pds)-supermodule. Its non-zero
weights are of the form X + pu’ for A < X and p' < p, and the weight A + pu definitely
appears as a weight of M. Hence, there exists a high-weight module of high-weight A + pu,
so A + pp is admissible. The statement about weights follows because L(A + pu) must then
be a subquotient of M. 0O

Now we are in a position to complete the classification of admissible weights by a counting
argument. Recall the definition of the idempotent &, from §6.

9.5. Theorem. (i) A € A(n,d) is admissible if and only if X € Af (n,d).
(ii) Assuming that n > d and X\ € A;’(n,d), we have that {,L(A) # 0 if and only if
A€ AS(n,d)res.

Proof. Recalling Corollary 9.2, we just need to show for (i) that if A € A\ (n,d), then X is
admissible. We consider first the case n > d, and proceed by induction on d = 0,1,...,n.
The result is trivially true in case d = 0. For n > d > 0, take A € A;'(n,d). Suppose
first that A\ ¢ AJf(n,d)wes. Then, we can write A = A\; 4+ pAy where A\; € A} (n,d;) and
Xy € AT (n,ds) for some di, dy with d = di + pds and dy # 0. By induction, \; is admissible,
so we deduce from Lemma 9.4 that X is admissible, and moreover that ,L(A) = 0. But by
Lemma 6.3, there are exactly \A;(n, d)yes| non-isomorphic irreducible Q(n, d)-supermodules
not annihilated by &,. In view of Corollary 9.2, this means that all A\ € Af(n, d)yes must
both be admissible and satisfy &, L(\) # 0, else we end up with too few such modules.

Now suppose that n < d and choose m > d. Let e € QQ(m, d) be the idempotent defined
in (6.4), and also recall the embedding A(n,d) — A(m, d) there. Take A € A (n,d). Then,
viewing A as an element of A;‘ (m,d), we have already shown in the previous paragraph that
A is admissible for Q(m, d), so that there exists an irreducible Q(m, d)-supermodule L(\) of
high-weight A. In view of Lemma 6.5, we have that eL(A)) # 0 as A € A(n,d), so eL()) is
an irreducible Q(n, d)-supermodule of high-weight A, as required. O

10 Consequences

In Theorem 9.5(i) and Lemma 8.4, we have classified the irreducible Q(n, d)-supermodules;
they are precisely the supermodules {L(\) | A € A;(n, d)}. Applying Lemma 5.1, we have
equivalently determined the irreducible B(n)-cosupermodules. Let A (n) = Uyso Af (1, d)
denote the set of all p-strict partitions with at most n non-zero parts. Then, we have shown:

10.1. Theorem. The B(n)-cosupermodules {L(X) | X € A (n)} give a complete set of pair-
wise non-isomorphic irreducible B(n)-cosupermodules. Moreover, L(\) is absolutely irre-

ducible if and only if hy () is even.

It is immediate from high-weight theory that the character map ch : Grot(B(n)) — X (n)
described at the end of §6 is an embedding of the Grothendieck ring of the category of B(n)-
cosupermodules into X (n). We have two natural bases for the image: {ch L(A) | A € Af(n)}
and {ch A(X) | X € Af(n)}. Moreover, for A € Af(n),

ch A(X) = ch L(A) + > fr,uch L(p)
<A

31



for unique non-negative integers f ,. This gives us a well-defined p-decomposition matriz
F = (f)‘:l‘))\,uEA;(n)' It is a unitriangular matrix if rows and columns are ordered in some
way refining dominance.

If pu is restricted, one can hope that the p-decomposition number fy , equals the special-
ization d) ,,(1) of the polynomials defined by Leclerc and Thibon in [12, Theorem 4.1] (with
h = p) for sufficiently large p. It would be interesting to extend the construction of [12] to
arbitrary (i.e. not necessarily restricted) weights u, as was done in [11] for the Fock space of

A;lzl. Another basic problem here is the explicit computation of the character ch A(X) for
all A € A (n). For p =0, this problem was solved by Sergeev [20, Theorem 4], who showed
that ch A(X) =27 WNRESS (0 KY 2%, where K3, s as in [13, TT1(8.16)'].

We point out at least for arbi’trary ’p that the character of A()) is stable as n — oo, so
that ch A(\) can be regarded as a symmetric function. To be more precise, suppose that
m > n and let e denote the idempotent from (6.4), embedding A(n, d) into A(m,d) as there.
For A € Af(n,d), denote the standard Q(n,d)-supermodule (resp. the standard Q(m,d)-
supermodule) of high-weight A by A, (A) (resp. A,,())) to avoid ambiguity, and similarly
let L,(\) (resp. Lp(A)) denote the irreducible supermodule of high-weight A\. Then, as
Q(n,d)-supermodules, L, () = eL,,(A) and A, () = eA,,(N); the first of these formulae
follows immediately from Corollary 2.15 and weight considerations, while the second can
be proved directly from the definition of A(A) as an induced module. Stability of weight
multiplicities, i.e. that dim L,,()\), = dim L, ()), and dim A,,(\), = dimA,()), for all
p € A(n,d), follows immediately.

Next we turn our attention to constructing the irreducible representations of the Sergeev
superalgebra W (d). Let n > d, and identify Af(n,d) with the set 9, (d) of all p-strict
partitions of d. Then, Af(n,d)yes is identified with R, (d) C P,(d). Also let &, € Q(n, d)
be the idempotent from §6. For A € RP,,(d), define the W (d)-supermodule

V(A) i= &L L(N).

We should note that this definition is independent of the particular choice of n > d up to
natural isomorphism (this is proved in a standard way, see e.g. [3, §3.5]). The following
result is immediate from Theorem 9.5(ii) and Corollary 2.15:

10.2. Theorem. The modules {V(\) [ A € RP,(d)} give a complete set of pairwise non-
isomorphic irreducible W (d)-supermodules. Moreover, V(\) is absolutely irreducible if and
only if hy () is even.

In order to obtain a labelling for all irreducible W (d)-modules, not just supermod-
ules, we know by Lemma 2.3 that if V()\) is not absolutely irreducible, it decomposes as
V(A +) @ V(A —) for two non-isomorphic irreducible W (d)-modules V (X, +), V (A, —). By
Corollary 2.7, the modules

V) | A e RB,(d), hy (A) even} U{V (A, +), V(A =) | A € RB,(d), hy (A) odd}

then give a complete set of pairwise non-isomorphic irreducible W (d)-modules.
To pass to the projective representations of the symmetric group, we use Corollary 3.13
and Corollary 3.15. Suppose first that d is even. Then, for each A € RP,(d), there is a
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unique irreducible S(d)-supermodule D(X) such that V(A) =2 Y D(X). Moreover, D()\) is
absolutely irreducible if and only if V(\) is absolutely irreducible, which is if and only if
hy (A) is even. In the case that d is odd, take A € RP,(d). If hy(A) is odd, then there is
a unique absolutely irreducible S(d)-supermodule D(X) such that V(X) = Y D(X). If by (X)
is even, then there is a unique non-absolutely irreducible S(d)-supermodule D(\) such that
YD(X) = V(X) @ V(A). Then:

10.3. Theorem. The modules {D(X) | A € RP,(d)} give a complete set of pairwise non-
isomorphic irreducible S(d)-supermodules. Moreover, D(X) is absolutely irreducible if and
only if d — hy (X) is even.

If X € ®’P,(d) and d — hy()) is odd, we can decompose D()\) = D(A,+) @ D(A, —)
as a direct sum of two non-isomorphic irreducible S(d)-modules, and by Corollary 2.7 the
modules

(D) | A € RP,(d),d — hy(A) even} U {D(A,+), D(A, —) | A € RPB,(d),d — hy(A) 0dd}

then give a complete set of pairwise non-isomorphic irreducible S(d)-modules. We have thus
determined the irreducible projective representations of Sy.

The next theorem explains how to obtain the irreducible projective representations of
Ay from these. Let A(d) = S(d)y denote the twisted group algebra of the alternating group.
The following theorem follows easily by Clifford theory for groups with normal subgroups
of index two.

10.4. Theorem. Let A € RP,(d). If d — hy(N) is even, D(A) Lag)= E(X+) @ E(A, —)
for two non-isomorphic irreducible A(d)-modules E(X\,+),E(X, ). If d — hy(\) is odd,
D) da@y= E(A) © E(X) for a single irreducible A(d)-module E(X). The modules

{EN) [ A e RB,(d),d — hy () odd} U{E(N, +), E(A, ) | A € RB,(d),d — hy (\) even}
then give a complete set of pairwise non-isomorphic irreducible A(d)-modules.

We end with some comments about decomposition numbers. So suppose now that
(k, R, K) is a p-modular system with K sufficiently large (specifically, containing square
roots of +1,...,+d). So, R is a complete DVR, K is its field of fractions of characteristic
0 and our fixed algebraically closed field k of characterisitc p is its residue field.

The bisuperalgebra B(n) can be defined in exactly the same as in §5 but over the
ground ring R, giving us an R-free R-bisuperalgebra B(n)gr such that B(n) = B(n)g Qr
k. Set Q(n,d)r = Hompg(B(n,d)g,R) to obtain an R-form of the Schur superalgebra
Q(n,d). So, Q(n,d)g is R-free as an R-module and Q(n,d) = k ®r Q(n,d)r; we will
from now on identify the two. Also, set Q(n,d)x = Q(n,d)r ®r K, the analogous Schur
superalgebra over the ground field K. Similarly, we can define an R-form Qq(n,d)gr of
Qo(n,d), and set Qo(n,d)x = Qo(n,d)r @r K. We will always view Q(n,d) g and Qy(n,d)r
as R-subsuperalgebras of Q(n,d) .

For A € Af(n,d), let A(X\)k denote the standard Q(n,d) x-supermodule of high-weight
A, constructed as in (8.1). Denote the high-weight space of A(A) g by U(A) g; this is precisely
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the Qo (n, d) x-supermodule defined as in §6. Now, the construction of U (M) x can be carried
out over R instead, because R contains square roots of each £);, giving us a finitely gen-
erated R-free Qo(n,d)g-subsupermodule U(\) g of U(X) g such that UN) gk = U(N)r Qg K.
Let A(X)g denote the Q(n,d)g-subsupermodule of A(X)x generated by U(A)g. Then,
A(X)g is a finitely generated R-free R-module such that A(N)x =2 A(AN)gr ®r K. Now set
A(N) :==k®g A(A)g. This gives us a Q(n,d)-supermodule such that

ch A(\) = ch A())c.

So there are unique integer matrices D = (dy,) and E = (ey,) for X € Aj(n,d),u €
A (n,d) such that

chAN) = > exuchA(p), chAN) = Y dyuchL(p)
p,EA;L(Tl,d) NeA;(nad)

for all A\ € Af(n,d). The matrix D is the decomposition matriz for the reduction of ir-
reducible Q(n,d) x-modules from characteristic 0 to characteristic p. Evidently, D = EFF
gives a factorization of the decomposition matrix into a product of the matrix F and the
(square) p-decomposition matrix F. The following at least follows from high-weight theory
and Lemma 6.8:

10.5. Lemma. For A € AJ(n,d), dy\ = ey = LN A1)/2] =k NHD/2] yhere h(N) is the
number of non-zero parts of A. Given in addition u € A; (n,d) with p L X, dy, =ex, =0.

Now we relate these decomposition matrices of Q(n, d) to those of W (d) and S(d). Using
the subscript K to indicate that we are working over the ground field K instead of our usual
k, we have irreducible W (d) - (resp. S(d)x-) supermodules labelled by strict partitions
A € Po(d), which we denote by V(A)g and D(A) g respectively. By a minor variation on
Brauer’s theory, we can reduce these modulo p to obtain W (d)- (resp. S(d)-) supermodules
V()A) and D()). These are not uniquely determined up to isomorphism, but at least the
multiplicities of composition factors are unique. So we obtain the decomposition matrices
DY = (df,u) and DV = (dK[,/u) of S(d) and W(d) respectively, for A € Po(d), u € RP,(d),
determined by the equations

V= Y dlvw. DW= Y di, D)
HERP, (d) HERP, (d)

written in the Grothendieck groups of mod(W (d)) and mod(S(d)) respectively. The final
theorem relates these decomposition numbers to those of the Schur superalgebra:

10.6. Theorem. Let A € Po(d) and p € RP,(d). Then, dKVu = dyy. Similarly, if d is
even, d;\qﬂ =dy ,, while if d is odd,

day  if h(X) — hy (1) is even,
diu =< 2dy, if h(X) is even and hy (p) is odd,
Sdy . if h(N) is odd and hy (p) is even,

where h(\) denotes the number of non-zero parts of .

34



Proof. The Schur functor coming from the idempotent ¢, can be defined over the ground
ring R, using an R-integral version of Theorem 6.2. Using that Schur functors commute
with base change, one sees that [¢,A(N)] = [V())] (equality written in the Grothendieck
group). In particular, it follows from this by exactness of Schur functors that dK[’/u =dy -
Similarly, the functor Y from §3 can be defined over the ground ring R, and Y commutes
with base change evidently. One sees in the case that d is even that [Y D(\)] = [V/(A)] and
Y D(u) = V() by Theorem 3.12 over K or k respectively, so that d§,u = dK‘ju. Finally,
suppose that d is odd. Applying Lemma 3.14 over K or k, we have that

) V)] if h(\) s odd,
YD) = { V(N if h()) is even.

We also know that V()] if By (1) s odd
VD] = { AV (0] i b2 is even.

The theorem follows from these equations together with exactness of Y. O
Thus our results reduce the problem of determining the decomposition matrices of the

twisted group algebras S(d) and W (d) to the problem of determining the decomposition
matrices of the Schur superalgebras Q(n,d).
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