
Proje
tive representations of symmetri
 groupsvia Sergeev dualityJonathan Brundan and Alexander Klesh
hev �1 Introdu
tionIn this arti
le, we determine the irredu
ible proje
tive representations of the symmetri
group Sd and the alternating group Ad over an algebrai
ally 
losed �eld of 
hara
teristi
p 6= 2. These matters are well understood in the 
ase p = 0, thanks to the fundamental workof S
hur [19℄ in 1911, as well as the mu
h more re
ent work of Nazarov [16, 17℄ and others.So the fo
us here is primarily on the 
ase of positive 
hara
teristi
, where surprisingly littleis known as yet. In parti
ular, we obtain a natural 
ombinatorial labelling of the irredu
iblesin terms of a 
ertain set RPp(d) of restri
ted p-stri
t partitions of d. Su
h partitions arosere
ently in work of Kashiwara et. al. [9℄ and Le
ler
 and Thibon [12℄ on the q-deformed Fo
kspa
e of the Ka
-Moody algebra of type A(2)p�1. In parti
ular, Le
ler
 and Thibon proposedthat RPp(d) should label the irredu
ible proje
tive representations in some natural way,and we show here how this 
an be done. Note that for p = 3; 5, the labelling problem wassolved in [1, 2℄, and if p = 2 the irredu
ible proje
tive representations are just ordinary,non-proje
tive representations so do not need to be 
onsidered further here.To be more pre
ise, re
all that � is a partition of d if � = (�1; �2; : : : ) is a non-in
reasingsequen
e of non-negative integers summing to d. Call � a p-stri
t partition if0 < �i � �i+1 + Æi for i = 1; 2; : : : , where Æi = � 1 if p j �i,0 otherwise.(To in
lude p = 0, our 
onvention is that 0 only divides 0.) Call � a restri
ted p-stri
tpartition if either p = 0, or p > 0 and0 < �i � �i+1 + Æi � p for i = 1; 2; : : : , where Æi = � 1 if p j �i,0 otherwise.Let Pp(d) denote the set of all p-stri
t partitions of d, and RPp(d) � Pp(d) denote therestri
ted p-stri
t partitions of d. Also, de�ne hp0(�) to be the number of parts of � notdivisible by p. Then, our 
onstru
tion leads to a labelling of the irredu
ible proje
tiverepresentations of Sd over an algebrai
ally 
losed �eld of 
hara
teristi
 p 6= 2 by pairs (�; ")where � 2 RPp(d) and " = 0 if d � hp0(�) is even or �1 if d � hp0(�) is odd. For Ad, thelabelling is by pairs (�; ") where � 2 RPp(d) and " = �1 if d�hp0(�) even or 0 if d�hp0(�)is odd. 1



The 
onstru
tion is based 
losely on ideas of Sergeev and Nazarov in the 
hara
teris-ti
 0 theory. In parti
ular, the key step in our approa
h is to determine the irredu
ible\polynomial" representations of the strange Lie supergroup Q(n) in 
hara
teristi
 p. Theseturn out to be labelled naturally a

ording to high-weight theory by all p-stri
t partitionswith at most n non-zero parts. >From this, we use Sergeev's superalgebra analogue [20℄of S
hur-Weyl duality to determine the irredu
ible spin representations of a 
ertain double
over of the hypero
tahedral group, then pass from there to the symmetri
 group using aCli�ord theory argument due to Nazarov [17℄.2 Asso
iative superalgebrasIn this se
tion, we re
ord a number of standard, generally well-known results about therepresentation theory of �nite dimensional asso
iative superalgebras. As useful generalreferen
es, but sometimes with di�erent 
onventions to us, we 
ite [6, 15℄ and [14, 
h.3℄.Let |be an algebrai
ally 
losed �eld of 
hara
teristi
 p 6= 2. By a superspa
e we mean aZ2-graded |-ve
tor spa
e V = V�0 � V�1. Given a homogeneous ve
tor 0 6= v 2 V , we denoteits degree by �(v) 2 Z2. A superspa
e map f : V ! W between two superspa
es means alinear map with f(Vi) �Wi for ea
h i 2 Z2; note as a general rule, we are writing s
alars onthe right and maps on the left, unless we expli
itly say otherwise. A subsuperspa
e U � Vmeans a subspa
e U of V su
h that U = (U \ V�0) � (U \ V�1). De�ne the superspa
e mapÆV : V ! V on homogeneous ve
tors by ÆV (v) = (�1)�(v)v. Then obviously, a subspa
eU � V is a subsuperspa
e if and only if U is stable under ÆV .Let V and W be superspa
es. We view the dire
t sum V �W as a superspa
e with(V �W )i = Vi �Wi, and the tensor produ
t V 
W as a superspa
e with (V 
W )�0 =V�0
W�0� V�1
W�1 and (V 
W )�1 = V�0
W�1�V�1
W�0. Also, we make Hom|(V;W ) into asuperspa
e with Hom|(V;W )i 
onsisting of the homogeneous maps of degree i, that is, themaps � : V ! W with �(Vj) � Wi+j for j 2 Z2. Given in addition superspa
es V 0;W 0 andhomogeneous maps f 2 Hom|(V;W ) and f 0 2 Hom|(V 0;W 0), we write f 
 f 0 for the mapV 
 V 0 ! W 
W 0 with (f 
 f 0)(v 
 v0) = (�1)�(f 0)�(v)f(v) 
 f 0(v0) for all homogeneousv 2 V; v0 2 V 0; this gives us a natural superspa
e map Hom|(V;W ) 
 Hom|(V 0;W 0) !Hom|(V 
 V 0;W 
W 0). The dual superspa
e V � means the superspa
e Hom|(V;|), wherewe view | as a superspa
e 
on
entrated in degree �0. So as a spe
ial 
ase of the pre
eedingde�nition, we obtain a natural inje
tive superspa
e map (V �) 
 (W �) ,! (V 
W )�, whi
his an isomorphism if V and W are both �nite dimensional.An asso
iative superalgebra is a superspa
e A with the additional stru
ture of an asso
ia-tive, unital |-algebra su
h that AiAj � Ai+j for i; j 2 Z2. A superalgebra homomorphism(resp. antihomomorphism) � : A! B is a superspa
e map that is an algebra homomorphism(resp. antihomomorphism) in the usual sense, and its kernel is a superideal, i.e. an ordinarytwo-sided ideal that is also a subsuperspa
e. Most importantly, given two superalgebrasA and B, we view the tensor produ
t A 
 B as a superalgebra with the indu
ed gradingand multipli
ation de�ned by (a 
 b)(a0 
 b0) = (�1)�(b)�(a0)(aa0) 
 (bb0) for homogeneouselements a; a0 2 A; b; b0 2 B. We note that A 
 B �= B 
 A, the isomorphism being givenby the supertwist map TA;B : A 
 B ! B 
 A; a 
 b 7! (�1)�(a)�(b)b 
 a for homogeneousa 2 A; b 2 B. 2



2.1. Example. Let V = V�0�V�1 be a superspa
e of dimensionm+n. The tensor superalgebrais the tensor algebra T (V ) regarded as a superalgebra with the indu
ed grading. As aquotient of T (V ), we have the symmetri
 superalgebra, namely,S(V ) = T (V )=hv 
 w � (�1)�(v)�(w)w 
 v j for all homogeneous ve
tors v; w 2 V i:If we have in mind �xed bases v1; : : : ; vm for V�0 and vm+1; : : : ; vn for V�1, we denote the super-algebras T (V ) and S(V ) instead by T (m;n) and S(m;n), respe
tively the free superalgebraand the free 
ommutative superalgebra on m+n generators. Set S(m) := S(m; 0), just theusual polynomial algebra on m generators 
on
entrated in degree �0, and V(n) := S(0; n),just the usual exterior algebra but with generators assigned the degree �1. The superalgebraV(n) is 
alled the Grassmann superalgebra. We have thatS(m) �= S(1)
 � � � 
 S(1) (m times);^(n) �=^(1)
 � � � 
^(1) (n times);S(m;n) �= S(m)
^(n):2.2. Example. Another basi
 example that we will meet is the Cli�ord superalgebra, namely,the asso
iative superalgebra C(n) on generators 
1; : : : ; 
n all of degree �1, subje
t to the re-lations 
2i = 1 for i = 1; : : : ; n and 
i
j = �
j
i for all i 6= j. If, slightly more generally, onehas in mind non-zero s
alars �1; : : : ; �n 2 |�, the superalgebra with generators b1; : : : ; bnsubje
t to the relations b2i = �i; bibj = �bjbi is isomorphi
 to C(n), the obvious isomorphismsending bi 7! p�i
i. The 
ru
ial point is that C(n1 + n2) �= C(n1) 
 C(n2): Indeed, thegenerators 
1
 1; : : : ; 
n1 
 1; 1
 
1; : : : ; 1
 
n2 of C(n1)
C(n2) satisfy the same relationsas the generators 
1; : : : ; 
n1 ; 
n1+1; : : : ; 
n1+n2 of the left hand algebra. It follows at on
ethat C(n) �= C(1)
 � � � 
 C(1) (n times):Let A be an asso
iative superalgebra. A left A-supermodule is a superspa
eM whi
h is aleft A-module in the usual sense, su
h that AiMj �Mi+j for i; j 2 Z2 (there is of 
ourse ananalogous notion of right supermodule, whi
h we omit). Saying thatM is an A-supermoduleis equivalent to saying that the asso
iated representation � : A! End|(M) is a homomor-phism of asso
iative superalgebras. A homomorphism between two A-supermodules meansthe same as an ordinary A-module homomorphism; it is important now however to writehomomorphisms between left A-supermodules on the right (and vi
e versa). So, if M andN are left A-supermodules, an A-supermodule homomorphism f : M ! N means a linearmap su
h that a(mf) = (am)f for all a 2 A;m 2 M . Writing f = f�0 + f�1 for uniquehomogeneous maps fi of degree i, both of f�0 and f�1 are A-supermodule homomorphisms.So, the spa
e HomA(M;N) of all A-supermodule homomorphisms from M to N de
om-poses as HomA(M;N)�0�HomA(M;N)�1, where HomA(M;N)i is the set of all homogeneousA-supermodule homomorphisms of degree i from M to N . De�ne the 
ategory mod(A)to be the 
ategory of all left A-supermodules, morphisms being the A-supermodule homo-morphisms as just de�ned. It is a superadditive 
ategory in the sense of [14, x3.7℄, i.e. anadditive 
ategory su
h that ea
h HomA(M;N) is Z2-graded in a way that is 
ompatible with
omposition of morphisms. When talking about fun
tors between superadditive 
ategories,we always mean fun
tors whi
h preserve the grading of morphisms.3



A subsupermodule of an A-supermodule means an A-submodule in the usual sensethat is a subsuperspa
e. An A-supermodule M is 
alled irredu
ible if it has no properA-subsupermodules, and absolutely irredu
ible if it is irredu
ible when viewed just as anordinary A-module. Let M be a �nite dimensional A-supermodule that is irredu
ible butnot absolutely irredu
ible. Then, we 
an �nd an irredu
ible A-submodule N of M thatis not a subsupermodule, i.e. is not ÆM -stable. It is elementary to 
he
k that ÆM (N)is also an irredu
ible A-submodule of M . Hen
e, N � ÆM (N) is an A-submodule of M ,even a subsupermodule sin
e it is now ÆM -stable. Sin
e M was an irredu
ible supermod-ule, we dedu
e that in fa
t M = N � ÆM (N). Let u1; : : : ; un be a basis for N . Then,ÆM (u1); : : : ; ÆM (un) is a basis for ÆM (N) so u1 + ÆM (u1); : : : ; un + ÆM (un) is a basis for M�0and u1�ÆM (u1); : : : ; un�ÆM (un) is a basis forM�1. The following lemma now follows easily:2.3. Lemma. If M is a �nite dimensional irredu
ible but not absolutely irredu
ible A-supermodule, then there exist bases v1; : : : ; vn for M�0 and v�1; : : : ; v�n for M�1 su
h thatM �= spanfv1 + v�1; : : : ; vn + v�ng � spanfv1 � v�1; : : : ; vn � v�ngas a dire
t sum of two non-isomorphi
 irredu
ible A-submodules. Moreover, the endomor-phism JM :M !M;vi 7! v�i 
ommutes with the a
tion of A on M .If M is an A-supermodule, EndA(M) denotes the superalgebra of all A-supermoduleendomorphisms of M . We stress again that we write the a
tion of elements of EndA(M)on M on the opposite side to the a
tion of A. We have the following analogue of S
hur'slemma, whi
h is easily proved (given Lemma 2.3) in the same way as the 
lassi
al version:2.4. Lemma (S
hur's lemma). Let M be a �nite dimensional irredu
ible A-supermodule.Then, EndA(M) = � spanfidMg if M is absolutely irredu
ible,spanfidM ; JMg otherwise,where JM is as in Lemma 2.3.We say that an A-supermodule M is 
ompletely redu
ible if it 
an be de
omposed intoa dire
t sum of irredu
ible A-supermodules. Call A a simple superalgebra if A has no non-trivial superideals, and a semisimple superalgebra if A is 
ompletely redu
ible viewed as aleft A-supermodule. Equivalently, A is semisimple if every left A-supermodule is 
ompletelyredu
ible. We have:2.5. Lemma (Wedderburn's theorem). Let A be a �nite dimensional asso
iative super-algebra. The following are equivalent:(i) A is simple;(ii) A is semisimple with only one irredu
ible supermodule up to isomorphism;(iii) there is a �nite dimensional superspa
e V su
h that either A �= End|(V ) or A �=f� 2 End|(V ) j � Æ J = J Æ �g for some involution J 2 End|(V )�1.Moreover, if A is semisimple then it is isomorphi
 to a dire
t sum of simple superalgebras.4



Noti
e in view of Lemma 2.3 that ifA is a semisimple superalgebra, then it is a semisimplealgebra. The 
onverse is also true, and is proved e.g. in [15, (1.4
)℄; it 
an also be dedu
edfrom Wedderburn's theorem by 
onsidering the e�e
t of the map ÆA on the simple ideals ofA. Somewhat more generally, we have:2.6. Lemma. Let A be a �nite dimensional asso
iative superalgebra. Then, the Ja
obsonradi
al of A (viewed just as an ordinary algebra) 
an be 
hara
terized as the smallest su-perideal K of A su
h that A=K is a semisimple superalgebra.Proof. Let J be the Ja
obson radi
al of A viewed as an ordinary algebra, and K be theunique smallest superideal of A su
h that A=K is a semisimple superalgebra. We know thatA=K is semisimple as an ordinary algebra by Lemma 2.3, so J � K. Conversely, we observethat J is a superideal sin
e J is invariant under the algebra automorphism ÆA of A. So, A=Jis a superalgebra that is semisimple as an algebra. Hen
e, by [15, (1.4
)℄, it is a semisimplesuperalgebra, and K � J .We point out another immediate 
onsequen
e of Wedderburn's theorem and Lemma 2.6:2.7. Corollary. Let A be a �nite dimensional asso
iative superalgebra, and fV1; : : : ; Vng bea 
omplete set of irredu
ible A-supermodules su
h that V1; : : : ; Vm are absolutely irredu
ibleand Vm+1; : : : ; Vn are not. For i = m + 1; : : : ; n, de
ompose Vi as V +i � V �i as a dire
tsum of two non-isomorphi
 irredu
ible A-modules. Then, fV1; : : : ; Vm; V �m+1; : : : ; V �n g is a
omplete set of irredu
ible A-modules.Given left supermodules M and N over arbitrary asso
iative superalgebras A and Brespe
tively, the (outer) tensor produ
tM
N is an A
B-supermodule with a
tion de�nedby (a
 b)(m
 n) = (�1)�(b)�(m)am
 bn for all homogeneous a 2 A; b 2 B;m 2M;n 2 N .(Analogously, if M and N are right supermodules, the a
tion of A
B on M 
N is de�nedinstead by (m
n)(a
b) = (�1)�(a)�(n)ma
nb for all homogeneous a 2 A; b 2 B;m 2M;n 2N .) If f :M !M 0 (resp. g : N ! N 0) is a homomorphism between two left A- (resp. B-)supermodules, then f 
 g : M 
 N ! M 0 
N 0 is an A 
 B-supermodule homomorphism;this works pre
isely be
ause of our 
onvention to write the homomorphisms f; g and f 
 gon the right, i.e. f 
 g means the map with (m 
 n)(f 
 g) = (�1)�(n)�(f)mf 
 ng. Thefollowing lemma gives the other basi
 fa
ts about outer tensor produ
ts that we need:2.8. Lemma. Suppose that A and B are �nite dimensional asso
iative superalgebras, andthat M , N are irredu
ible supermodules over A, B respe
tively.(i) If both M and N are absolutely irredu
ible, then M 
N is an absolutely irredu
ibleA
B-supermodule.(ii) If exa
tly one of the modules M or N is absolutely irredu
ible, then M 
 N is anirredu
ible but not absolutely irredu
ible A
B-supermodule.(iii) If neither M or N are absolutely irredu
ible, then M 
 N de
omposes as a dire
tsum of two isomorphi
, absolutely irredu
ible A
B-supermodules.Moreover, all irredu
ible A
B-supermodules arise as 
onstituents of M
N for some 
hoi
eof M;N . 5



Combining Lemma 2.8 with Wedderburn's theorem, it follows in parti
ular that if Aand B are �nite dimensional semisimple asso
iative superalgebras then A 
 B is also asemisimple superalgebra.2.9. Example. The Grassmann algebra V(1) has just one irredu
ible supermodule up toisomorphism, namely, | itself with elements of V(1)�1 a
ting as zero. This is absolutely irre-du
ible, so it follows by indu
tion on n using Lemma 2.8 thatV(n) = V(n�1)
V(1) has justone irredu
ible supermodule, namely, | itself with elements of V(n)�1 a
ting as zero. Notehowever that V(n) is not a semisimple superalgebra, indeed even V(1) is not semisimple,being isomorphi
 as an algebra to the algebra |[x℄=(x2) of trun
ated polynomials.2.10. Example. Consider the Cli�ord algebra C(n) again. First, observe that C(1) is justthe simple superalgebra of 2� 2 matri
es of the form �� a bb a � ���� a; b 2 |�, the generator
1 of C(1) 
orresponding to the matrix � 0 11 0 �. So C(1) has pre
isely one irredu
iblesupermodule U(1) whi
h is irredu
ible but not absolutely irredu
ible, of dimension 2, as inthe se
ond 
ase of Lemma 2.5(iii). Hen
e, applying Lemma 2.8, C(2) = C(1)
C(1) has oneirredu
ible supermodule U(2), namely the unique irredu
ible appearing with multipli
itytwo in the C(2)-supermodule U(1) 
 U(1), and U(2) is absolutely irredu
ible of dimension2. Expli
itly, U(2) 
an be des
ribed as the module on basis u+; u� with a
tion de�ned by
1u+ = u�; 
1u� = u+; 
2u+ = p�1u�; 
2u� = �p�1u+. Finally, for n > 2, C(n) =C(n� 2)
C(2), so by Lemma 2.5(i) and (ii), it has just one irredu
ible supermodule U(n),de�ned indu
tively by U(n) = U(n� 2)
U(2). This is absolutely irredu
ible if and only ifU(n�2) is absolutely irredu
ible, whi
h is if and only if n is even. Observe that we have justshown that C(n) is a semisimple superalgebra with a unique irredu
ible supermodule. Soby Lemma 2.5, C(n) is in fa
t a simple superalgebra, indeed, up to isomorphism, it must bethe unique simple superalgebra of dimension 2n. Its unique irredu
ible supermodule U(n)has dimension 2b(n+1)=2
.Following [20, x1.4℄, a Z2-graded group is a pair (G; �) where G is a �nite group and� : G! Z2 is a group homorphism. If (G; �) is a Z2-graded group, we 
an regard the groupalgebra |G as a superalgebra, the degree of g 2 G being �(g). We are interested next in
ounting the number of irredu
ible |G-supermodules in terms of 
onjuga
y 
lasses. De�nenp0(G; �0) to be the number of G-
onjuga
y 
lasses of p0-elements of degree �0 and np0(G; �1)to be the number of G-
onjuga
y 
lasses of p0-elements of degree �1.2.11. Lemma. Let (G; �) be a Z2-graded group. Then, there are np0(G; �0) pairwise non-isomorphi
 irredu
ible |G-supermodules. Of these, np0(G; �0) � np0(G; �1) of them are abso-lutely irredu
ible, and the remaining np0(G; �1) are irredu
ible but not absolutely irredu
ible.Proof. We follow the proof of the analogous 
lassi
al result for ordinary group algebras,see [10, x13℄. For an arbitrary superalgebra A, write Z(A) = fa 2 A j ab = ba for all b 2 Agfor its 
entre and S(A) = spanfab�ba ja; b 2 Ag. These are both subsuperspa
es of A. Nowlet J denote the Ja
obson radi
al of the group algebra |G. By Lemma 2.6, J is a superideal6



and A := |G=J is the largest semisimple superalgebra quotient of |G. So |G and A havethe same number of irredu
ible supermodules. Combining Lemma 2.4 and Lemma 2.5,we dedu
e that the number of irredu
ible |G-supermodules is equal to dimZ(A)�0 and thenumber of irredu
ible but not absolutely irredu
ible|G-supermodules is equal to dimZ(A)�1.By [10, 13.3℄, A = Z(A) � S(A), so dim[Z(A)℄i = dim[A=S(A)℄i for i = �0; �1. Finally, to
ount this dimension in either 
ase, use formula (14) in the proof of [10, 13.8℄; this tells usat on
e that dim[A=S(A)℄i = np0(G; i):Now suppose that (G; �) is a Z2-graded group and that � : bG� G is a double 
over, sothat ker� = f1; �g for some 1 6= � 2 Z( bG). Lift � to bG to make bG into a Z2-graded groupwith degree fun
tion satisfying �(�) = �0. The elements �+ = (1��)=p2 and �� = (1+�)=p2are orthogonal 
entral idempotents of the group superalgebra |bG summing to the identity,so |bG= �+(|bG)� ��(|bG) (2.12)as a dire
t sum of two-sided superideals. Obviously, �+(|bG) �= (|bG)=h� � 1i �= |G; thealgebra ��(|bG) �= (|bG)=h�+1i is a twisted group algebra. Sin
e the number of irredu
ible|bG-supermodules is equal to the number of irredu
ible �+(|bG)-supermodules plus the numberof irredu
ible ��(|bG)-supermodules, we have:2.13. Lemma. The number of irredu
ible ��(|bG)-supermodules is np0( bG; �0)� np0(G; �0).To 
on
lude this preliminary se
tion on asso
iative superalgebras, we give a brief reviewof \S
hur fun
tors" arising from idempotents in this setting. Suppose that A is an arbitrary�nite dimensional superalgebra. and that e 2 A is a homogeneous idempotent, ne
essarilyof degree �0. Then, the ring eAe is a superalgebra in its own right, its identity element beingthe idempotent e. We have the (exa
t) S
hur fun
torRe :mod(A)!mod(eAe)given on obje
ts by left multipli
ation by the idempotent e and by restri
tion on morphisms.Given an A-supermodule M , let Oe(M) (resp. Oe(M)) denote the largest (resp. smallest)subsupermoduleN ofM su
h that N (resp. M=N) is annihilated by e. Finally, letmode(A)denote the full sub
ategory ofmod(A) 
onsisting of all A-supermodulesM with Oe(M) = 0and Oe(M) = 0. The following basi
 result is proved as in the 
lassi
al 
ase, see [8, x2℄:2.14. Lemma. The restri
tion of the fun
tor Re to mode(A) gives an equivalen
e of 
ate-gories between mode(A) and mod(eAe).Suppose that fL(�) j � 2 �g be a 
omplete set of pairwise non-isomorphi
 irredu
ibleA-supermodules, and set �1 = f� 2 � j ReL(�) 6= 0g. Then, as an immediate 
onsequen
eof Lemma 2.14, we have:2.15. Corollary. The eAe-supermodules fReL(�) j � 2 �1g give a 
omplete set of pairwisenon-isomorphi
 irredu
ible eAe-supermodules. Moreover, for � 2 �1, ReL(�) is absolutelyirredu
ible if and only if L(�) is absolutely irredu
ible.7



3 Double 
oversOur primary interest is in proje
tive representations of the symmetri
 group Sd. However,most of the remainder of the arti
le will be taken up with studying the representation theoryof a 
ertain �nite dimension superalgebra 
alled the Sergeev algebra, originally introdu
edin [20℄. In this se
tion, we de�ne this superalgebra, and establish a fun
torial 
onne
tionbetween it and the proje
tive representations of the symmetri
 group.Start with the symmetri
 group Sd a
ting naturally on the left on the set f1; : : : ; dg.For i = 1; : : : ; d� 1, let si 2 Sd denote the basi
 transposition (i i+ 1), and re
all that thes1; : : : ; sd�1 generate Sd subje
t to the well-known Coxeter relations. De�ne the group bSdto be the group with generators �; ŝ1; : : : ; ŝd�1 subje
t to the relations�2 = ŝ2i = 1; �ŝi = ŝi�;ŝiŝi+1ŝi = ŝi+1ŝiŝi+1; ŝiŝj = �ŝj ŝifor all 1 � i � d� 1 and all 1 � j � d� 1 with ji� jj > 1. The map sending � 7! 1, ŝi 7! sigives a surje
tive homomorphism bSd ! Sd, and bSd is a double 
over of Sd (see [21, p.100℄).Make Sd into a Z2-graded group with degree fun
tion � : Sd ! Z2 being the usualsignature of a permutation. So, ker � = Ad, the alternating group. Lifting, bSd is also a Z2-graded group and we again denote the degree fun
tion by � : bSd ! Z2; its kernel is denotedbAd, a double 
over of the alternating group. As in (2.12), the superalgebra |bSd is isomorphi
to |Sd � S(d), where S(d) is the superalgebra ��(|bSd) = |bSd=h1 + �i. We are primarilyinterested here in studying the representation theory of this superalgebra S(d). Re
all thede�nition of the set RPp(d) of restri
ted p-stri
t partitions of d from the introdu
tion.3.1. Lemma. The number of irredu
ible S(d)-supermodules is equal to jRPp(d)j.Proof. Using Lemma 2.13 and the known labelling of the 
onjuga
y 
lasses of Sd and bSd,see e.g. [21, Theorem 2.1℄ or [19, p.172℄, one easily shows that the number of irredu
ibleS(d)-supermodules is equal to the number of partitions � of d with all non-zero parts of �being odd and not divisible by p. Now we appeal to the following partition identity obtainedby Le
ler
 and Thibon [12, (40)℄:Xd�0 jRPp(d)jtd = Yi odd;p-i 11� ti ; (3.2)whi
h shows that the number of partitions � of d with all non-zero parts of � being odd andnot divisible by p is equal to jRPp(d)j.We turn our attention next to the hypero
tahedral group and its double 
over. Denot-ing elements of the Abelian group Zd2 as d-tuples " = ("1; : : : ; "d) with ea
h "i 2 Z2, thesymmetri
 group a
ts on the right on Zd2 by " � w = ("w1; "w2; : : : ; "wd) for w 2 Sd; " 2 Zd2.The hypero
tahedral group Wd is then the semidire
t produ
t Sd n Zd2. So, Wd is the setof all pairs (w; ") with w 2 Sd; " 2 Zd2, and the produ
t of two su
h elements is de�ned by(x; ")(y; Æ) = (xy; " � y + Æ): Hen
eforth, we will identify w 2 Sd (resp. " 2 Zd2) with the8



element (w; 1) 2 Wd (resp. (1; ") 2 Wd). Extend the a
tion of Sd on Zd2 to an a
tion of allof Wd on Zd2, so that " � (w; Æ) = " � w + Æ for " 2 Zd2; (w; Æ) 2Wd.The Cli�ord group Cd is the group with generators f�; z1; : : : ; zdg subje
t to the relations�2 = 1; �zi = zi�;z2i = 1; zizj = �zjzifor all 1 � i 6= j � d. The group Cd 
onsists of the distin
t elements fz"; �z" j " 2 Zd2g,where for " = ("1; : : : ; "d) 2 Zd2, z" denotes z"11 z"22 : : : z"dd . We view the group algebra |Cdas a superalgebra, grading the group elements so that �(�) = �0 and �(zi) = �1 for ea
hi = 1; : : : ; d. Observe then that the Cli�ord superalgebra C(d) on generators 
1; : : : ; 
d fromExample 2.2 is a superalgebra quotient of |Cd, the quotient map sending zi 7! 
i; � 7! �1.We write 
" = 
"11 
"22 : : : 
"dd , the image of the element z" under the quotient map, so that thef
" j" 2 Zd2g give a basis for C(d). The produ
t of two su
h basis elements is given expli
itlyby the rule 
"
Æ = �("; Æ)
"+Æ where �("; Æ) = Y1�s<t�d(�1)Æs"tfor "; Æ 2 Zd2. It is worth remarking for later 
al
ulations that �(" + "0; Æ) = �("; Æ)�("0 ; Æ)and �("; Æ + Æ0) = �("; Æ)�("; Æ0).Now, there is a unique right a
tion of Sd on Cd by automorphisms so that � � w =�; zi � w = zw�1i for all i = 1; : : : ; d and w 2 Sd. De�ne 
Wd to be the resulting semidire
tprodu
t Sd n Cd, that is, the set f(w; z) j w 2 Sd; z 2 Cdg with multipli
ation given by therule (w; z)(w0 ; z0) = (ww0; (z �w0)z0): The element � lies in the 
entre of 
Wd, and it is easy tosee that there is a well-de�ned surje
tive group homomorphism 
Wd ! Wd with � 7! 1 and(w; z") 7! (w; ") for all w 2 Sd; " 2 Zd2. Thus, 
Wd is a double 
over of the hypero
tahedralgroup Wd. Make 
Wd into a Z2-graded group with degree � : 
Wd ! Z2 de�ned by �(w) = �0for all w 2 Sd, �(�) = �0 and �(zi) = �1 for i = 1; : : : ; d. As in (2.12), we obtain the Sergeevsuperalgebra W (d) := ��(|Wd) = |Wd=h� + 1i:In parti
ular, as W (d) is a quotient of the group algebra |Wd, we dedu
e by Mas
hke'stheorem that:3.3. Lemma. If p = 0 or p > d, then W (d) is a semisimple (super)algebra.The Sergeev superalgebra W (d) 
an be 
onstru
ted more dire
tly as a twisted tensorprodu
t. Start from the right a
tion of Sd on C(d) by superalgebra automorphisms su
hthat 
i � w = 
w�1i for ea
h i = 1; : : : ; d and w 2 Sd. So for w 2 Sd and " 2 Zd2,
" � w = �(";w)
"w where �(";w) = Y1�s<t�dw�1s>w�1t(�1)"s"t:Then, W (d) is the superspa
e |Sd
 C(d), where |Sd is 
on
entrated in degree �0, with theprodu
t of two basis elements given by the formula(x
 
")(y 
 
Æ) = �(x; "; y; Æ)xy 
 
"�y+Æ where �(x; "; y; Æ) = �("; y)�(" � y; Æ):9



Note the resulting fun
tion � :Wd�Wd ! f�1g; ((x; "); (y; Æ)) 7! �(x; "; y; Æ) is a 2-
o
y
le,i.e. satis�es �(g; 1) = �(1; g) = 1 and �(g; hk)�(h; k) = �(g; h)�(gh; k) for all g; h; k 2 Wd.We re
ord a te
hni
al property about this 
o
y
le for later use.3.4. Lemma. For all "; Æ 2 Zd2 and g = (w; 
) 2Wd,�(" + Æ;w) = �("; g)�(Æ; g)�(" + Æ; Æ)�(" � g + Æ � g; Æ � g):Proof. Expand the equation (
"+Æ
Æ) � w = (
"+Æ � w)(
Æ � w) in two di�erent ways to showthat �("+ Æ;w) = �(";w)�(Æ;w)�(" + Æ; Æ)�(" �w+ Æ �w; Æ �w): Now expand the de�nitionof �("; g)�(Æ; g)�(" � g + Æ � g; Æ � g) to see that it equals�(";w)�(" � w; 
)�(Æ;w)�(Æ � w; 
)�(" � w + Æ � w; Æ � w + 
)= �(";w)�(Æ;w)�(" � w + Æ � w; Æ � w)�(" � w; 
)�(Æ � w; 
)�(" � w + Æ � w; 
)= �(";w)�(Æ;w)�(" � w + Æ � w; Æ � w);
ompleting the proof.We 
an 
ount the number of irredu
ible W (d)-supermodules using Lemma 2.13:3.5. Lemma. The number of irredu
ible W (d)-supermodules is equal to jRPp(d)j.Proof. By Lemma 2.13 and the information on 
onjuga
y 
lasses in [20, Lemma 5℄, thenumber of irredu
ibleW (d)-supermodules is equal to the number of partitions � of d with allnon-zero parts of � being odd and not divisible by p. Now use the Le
ler
-Thibon partitionidentity (3.2) as in the proof of Lemma 3.1.Combining Lemma 3.1 and Lemma 3.5, we have seen that:3.6. Corollary. The superalgebras S(d) and W (d) have the same number of irredu
iblesupermodules.Underlying Corollary 3.6 is a more pre
ise fun
torial 
onne
tion between S(d)- andW (d)-supermodules, whi
h we now 
onstru
t. De�ne ti to be the image of the generator ŝiin the superalgebra S(d). Then, S(d) 
an be de�ned dire
tly as the superalgebra on degree�1 generators t1; : : : ; td�1 subje
t to the relationst2i = 1; titi+1ti = ti+1titi+1; titj = �tjtifor all 1 � i � d� 1 and all 1 � j � d� 1 with ji� jj > 1. For ea
h w 2 Sd, �x a 
hoi
e of apreimage ŵ 2 bSd and let tw denote the image of ŵ in S(d). Then, the elements ftw jw 2 Sdggive a basis for S(d). Multipli
ation is given by txty = �(x; y)txy where � : Sd�Sd ! f�1gis a 2-
o
y
le, uniquely determined given the 
hoi
e of the preimages ŵ. We will need thefollowing variation on [17, Proposition 1.2℄:3.7. Lemma. There is a unique superspa
e map � : |Sd!W (d) su
h that(1) �(si) =q��12�(
i � 
i+1) for i = 1; : : : ; d� 1;(2) �(xy) = (�1)�(x)�(y)�(x; y)�(x)�(y) for all x; y 2 Sd.Moreover, w
w�1 = (�1)�(w)�(
)�(w)
�(w)�1 for all w 2 Sd; 
 2 C(d).10



Proof. The map �0 : Sd � Sd ! f�1g; (x; y) 7! (�1)�(x)�(y)�(x; y) is a 2-
o
y
le on Sd, asfollows from the fa
t that � is a 2-
o
y
le. There is a 
orresponding twisted group algebraS(d)0, namely, the superalgebra with basis ft0w j w 2 Sdg with multipli
ation satisfyingt0xt0y = �0(x; y)t0xy. This twisted group algebra is generated by the elements t01; : : : ; t0d�1subje
t to the relations(t0i)2 = �1; t0it0i+1t0i = t0i+1t0it0i+1; t0it0j = �t0jt0ifor all 1 � i � d�1 and all 1 � j � d�1 with ji�jj > 1. So to prove the existen
e of the map�, it just suÆ
es to 
he
k that the elements �(si) 2 C(d) satisfy these same relations, whi
his routine. For the se
ond part, we 
an write an arbitrary �(w) as a produ
t "�(si1) : : : �(sir)for 1 � i1; : : : ; ir < d and some a sign ". Then, �(w)�1 = "�(sir )�1 : : : �(si1)�1: So it suÆ
esto 
he
k that si
js�1i = ��(si)
j�(si)�1 for generators si 2 Sd and 
j 2 C(d), whi
h is ashort 
al
ulation.Let U(d) be the C(d)-supermodule de�ned in Example 2.10. Now de�ne an exa
t fun
torY :mod(S(d))!mod(W (d))as follows. On an obje
t N 2 mod(S(d)), de�ne Y (N) to be the superspa
e U(d) 
|N ,regarded as a left W (d)-supermodule so that 
 2 C(d) a
ts as 
 
 idN , and w 2 Sd a
ts as�(w) 
 tw. To 
he
k that this does make U(d) 
N into a well-de�ned W (d)-supermodule,we use Lemma 3.7:(�(x) 
 tx)(�(y)
 ty) = (�1)�(x)�(y)�(x)�(y) 
 txty= �(x; y)�(xy) 
 �(x; y)txy = �(xy)
 t(xy);(�(w) 
 tw)(
 
 idN ) = (�1)�(w)�(
)(�(w)
 
 tw)= (�1)�(w)�(
)(�(w)
�(w)�1�(w) 
 tw)= (w
w�1�(w)) 
 tw = (w
w�1 
 1)(�(w) 
 tw)for w; x; y 2 Sd; 
 2 C(d). On a homomorphism f : N ! N 0 of left S(d)-supermodules, wede�ne Y (f) : Y (N)! Y (N 0) to be the linear map idU 
f (re
all we are writing homomor-phisms on the right, so (u
 n)Y (f) = u
 nf for all u 2 U(d); n 2 N).We will show that if d is even, then Y is an equivalen
e of 
ategories; if d is odd, Y issomething very 
lose to an equivalen
e. The proof follows the standard argument of Cli�ordtheory, see [5, x51℄. Given a C(d)-(super)moduleM and w 2 Sd, write wM for the new C(d)-(super)module equal to M as a ve
tor spa
e, but with a
tion de�ned by 
 �m = (w
w�1)mfor all 
 2 C(d);m 2M .3.8. Lemma. Let w 2 Sd. The map �w : U(d) !wU(d); u 7! (�1)�(w)�(u)�(w)u is a C(d)-supermodule isomorphism, homogeneous of degree �(w).Proof. We need to 
he
k that 
 � (u�w) = (
u)�w for all homogeneous 
 2 C(d); u 2 U(d).We have that(
u)�w = (�1)(�(u)+�(
))�(w)�(w)
u = (�1)�(u)�(w)+�(
)�(w)�(w)
�(w)�1�(w)u= (�1)�(u)�(w)w
w�1�(w)u = w
w�1(u�w) = 
 � (u�w);11



applying Lemma 3.7.3.9. Lemma. Suppose that w 2 Sd. Let N and N 0 be superspa
es and regard U(d)
N andwU(d)
N 0 as left C(d)-supermodules, 
 2 C(d) a
ting as 

 idN . Letf : U(d)
N !wU(d)
N 0be a C(d)-supermodule homomorphism. Then,(i) if d is even, there exists a unique linear map �f : N ! N 0 su
h that f = �w 
 �f ;(ii) if d is odd, there exist unique linear maps �f ; �0f : N ! N 0 su
h that f = �w 
 �f +JU Æ �w 
 �0f , where JU is the unique element of EndC(d)(U(d))�1 with J2U = id.Proof. Write f =Pj2J �j
�j+Pk2K �0k
�0k for homogeneous maps �j : U(d)! U(d) ofdegree �(w), �0k : U(d)! U(d) of degree �(w) + �1, and maps �j ; �0k : N ! N 0 su
h that the�j (resp. the �0k) are linearly independent. For all homogeneous 
 2 C(d); n 2 N;u 2 U(d),we have that(
u
 n)f =Xj2J(�1)�(�j )�(n)(
u)�j 
 n�j +Xk2K(�1)�(�0k)�(n)(
u)�0k 
 n�0k;
 � [(u
 n)f ℄ =Xj2J(�1)�(�j )�(n)
 � (u�j)
 n�j +Xk2K(�1)�(�0k)�(n)
 � (u�0k)
 n�0k:Sin
e this is true for all n 2 N , we dedu
e that
 � (u�j) = (
u)�j and 
 � (u�0k) = (
u)�0kfor ea
h j 2 J; k 2 K. We dedu
e at on
e by S
hur's lemma and Lemma 3.8 that �j is as
alar multiple of �w, so we may res
ale to assume that ea
h �j = �w. Similarly, if d is even,ea
h �0k must be zero, while if d is odd, ea
h �0k must equal JU Æ �w after res
aling.3.10. Lemma. The fun
tor Y is faithful. Moreover, given N;N 0 2mod(S(d)),dimHomW (d)(Y (N); Y (N 0)) = � dimHomS(d)(N;N 0) if d is even,2 dimHomS(d)(N;N 0) if d is odd.Proof. Obviously Y is faithful, by the de�nition of Y on morphisms. Now we prove thestatement about homomorphisms in the 
ase d is odd, the 
ase d even being similar. TakeN;N 0 2mod(S(d)). Let �; �0 : N ! N 0 be linear maps. A short 
al
ulation reveals that:3.11. The map id
�+ JU 
 �0 : Y (N)! Y (N 0) is a W (d)-supermodule homomorphism ifand only if both � and �0 are S(d)-supermodule homomorphisms.Hen
e, in parti
ular, if � : N ! N 0 is an S(d)-supermodule homomorphism, both id
�and JU 
 � are W (d)-supermodule homomorphisms. So to 
omplete the proof, we need toshow that every W (d)-supermodule homomorphism f : Y (N) ! Y (N 0) 
an be written asid
� + JU 
 �0 : Y (N) ! Y (N 0) for S(d)-homomorphisms �; �0 : N ! N 0. A

ording toLemma 3.9(ii), f = id
�f + JU 
 �0f for unique linear maps �f ; �0f . By (3.11) these areS(d)-supermodule homomorphisms. 12



3.12. Theorem. Suppose that d is even. Then, the fun
tor Y :mod(S(d))!mod(W (d))is an equivalen
e of 
ategories.Proof. In view of Lemma 3.10, Y is full and faithful, so it just remains to show that Yis dense (see e.g. [4, 1.3.1℄). Take an arbitrary W (d)-supermodule M . Sin
e C(d) has aunique irredu
ible supermodule U(d) up to isomorphism, we 
an �nd a superspa
e N su
hthat M #C(d)�= U(d)
Nas a C(d)-supermodule, where 
 2 C(d) a
ts on U(d)
N as 

idN . Using this isomorphism,transfer the a
tion ofW (d) onM to U(d)
N , so thatM �= U(d)
N as aW (d)-supermoduleby 
onstru
tion.Now take w 2 Sd. Let fw : U(d)
N !wU(d)
N be the C(d)-supermodule homomor-phism determined by left multipli
ation by w. Note fw is of degree �0 as w has degree �0 asan element of W (d). By Lemma 3.9, there exists a unique map �fw : N ! N 0, ne
essarilyof degree �(w), su
h that fw = �w 
 �fw : Now we make N into an S(d)-supermodule byde�ning the a
tion of tw 2 S(d) on homogeneous n 2 N bytwn = (�1)�(w)�(n)n�fw :To 
he
k that this is well-de�ned, we have for x; y 2 Sd that(u
 n)(�y 
 �fy)(�x 
 �fx) = (�1)�(u)�(y)(�(y)u 
 tyn)(�x 
 �fx)= (�1)�(u)�(y)+�(u)�(x)+�(x)�(y) (�(x)�(y)u) 
 (txtyn)= (�1)�(u)�(y)+�(u)�(x)�(x; y)(�(xy)u) 
 (txtyn):On the other hand, fyfx = fxy (writing maps on the right!), so this is equal to(u
 n)(�xy 
 �fxy) = (�1)�(u)�(x)+�(u)�(y)�(xy)u
 txyn:So we dedu
e that txy = �(x; y)txty as required. Finally, we 
he
k that Y (N) �= M asW (d)-supermodules. For w 2 Sd, we have thatw(u 
 n) = (u
 n)fw = (u
 n)(�w 
 �fw )= (�1)�(u)�(w)(�(w)u) 
 (twn) = (�(w) 
 tw)(u
 n):This shows that the two a
tions of w on Y (N) = U(d) 
 N agree, and evidently, the twoa
tions of 
 2 C(d) do, so Y (N) �= U(d) 
N �=M .3.13. Corollary. For even d, the fun
tor Y gives a 1{1 
orresponden
e between the irre-du
ible (resp. absolutely irredu
ible) supermodules of S(d) and W (d).To understand the 
ase d odd, we argue a little further. Certainly, we have the following:3.14. Lemma. Suppose that d is odd and let D be an irredu
ible S(d)-supermodule. Then,(i) if D is absolutely irredu
ible, then Y (D) is irredu
ible but not absolutely irredu
ible;(ii) if D is not absolutely irredu
ible, then Y (D) de
omposes as a dire
t sum of twoisomorphi
, absolutely irredu
ible W (d)-supermodules.13



Proof. Let A � End|(U(d)) denote the image of the Cli�ord algebra C(d) in its represen-tation on U(d), and B � End|(D) denote the image of S(d) in its representation on D.Evidently, B is spanned by invertible elements, namely the images of the group elementstw 2 S(d). Sin
e �(w) 2 C(d) is invertible, we 
an �nd an element 
w 2 C(d) su
h that,(
w 
 1)(�(w) 
 tw) = 1 
 tw as elements of the superalgebra A 
 B. It follows that theimage of W (d) in its representation on Y (D) is equal to A
 B � End|(U(d)) 
 End|(D).Now the lemma follows from Lemma 2.8.In view of Lemma 3.10, we dedu
e from Corollary 3.6 and Lemma 3.14 that:3.15. Corollary. For odd d, the fun
tor Y gives a 1{1 
orresponden
e between the ir-redu
ible supermodules of S(d) and W (d), absolutely irredu
ibles 
orresponding to non-absolutely irredu
ibles and non-absolutely irredu
ibles 
orresponding to absolutely irredu
ibles.4 The strange S
hur superalgebraWe introdu
e some further notation. Suppose that 0 6= i; j 2 Z. De�ne �i = �0 if i > 0 or�1 if i < 0; de�ne �i;j = �i + �j 2 Z2. More generally, given d-tuples i = (i1; : : : ; id) andj = (j1; : : : ; jd) of non-zero integers, let�i = �i1 + � � �+ �id 2 Z2; �i;j = �i + �j 2 Z2;"i = (�i1 ; �i2 ; : : : ; �id) 2 Zd2; "i;j = "i + "j 2 Zd2:Let Zd2 a
t on the left on f�1; : : : ;�dg so that for " = ("1; : : : ; "d) 2 Zd2 and s = 1; : : : ; d,"(�s) = (�1)"s(�s). Extend the natural a
tion of Sd on f1; : : : ; dg to an a
tion onf�1; : : : ;�dg so that w(�s) = �(ws) for s = 1; : : : ; d. These two a
tions 
ombine to give awell-de�ned left a
tion of the hypero
tahedral groupWd on the left on the set f�1; : : : ;�dg.Now let I(n; d) denote the set of all fun
tions i : f�1; : : : ;�dg ! f�1; : : : ;�ng su
h thati(�s) = �i(s) for s = 1; : : : ; d. We often denote the value i(s) of the fun
tion i 2 I(n; d)at s 2 f�1; : : : ;�dg by is. Then, the element i 2 I(n; d) 
an be thought of simply as thed-tuple (i1; : : : ; id): the original fun
tion i 
an be re
overed uniquely from knowledge of thisd-tuple sin
e i(�s) = �i(s). The group Wd a
ts on the right on I(n; d) by 
omposition offun
tions, so (i � g)(s) = i(gs) for i 2 I(n; d); g 2 Wd and s 2 f�1; : : : ;�dg. Write i � j ifi; j 2 I(n; d) lie in the same Wd-orbit. Also let Wd a
t diagonally on the right on the setI(n; d) � I(n; d) of double indexes, and write (i; j) � (k; l) if the double indexes (i; j) and(k; l) lie in the same orbit.Let V denote the superspa
e with basis v�1; : : : ; v�n, where �(vi) = �i. Then, thetensor produ
t V 
d is also a superspa
e with the indu
ed grading. A basis is given by themonomials vi = vi1 
 � � � 
 vid for all i 2 I(n; d), and �(vi) = �i. We make V 
d into a rightW (d)-supermodule by setting vi(w 
 
Æ) = �("i;w; Æ)vi�(w;Æ)for all i 2 I(n; d); (w; Æ) 2 Wd. The fa
t that this is well-de�ned follows from the fa
tthat � is a 2-
o
y
le. To be more expli
it, the a
tion of the generator si of Sd � W (d) is14



as the linear map id
 � � � 
 id
TV;V 
 id
 � � � 
 id where the supertwist map TV;V is inthe ith position, and the generator 
j of C(d) � W (d) a
ts on the right as the linear mapid
 � � � 
 id
JV 
 id
 � � � 
 id where the map JV : vi 7! v�i is in the jth tensor.Now de�ne the (strange) S
hur superalgebra_Q(n; d) := EndW (d)(V 
d):So, _Q(n; d) a
ts on V 
d on the left. We observe right away by Lemma 3.3 that:4.1. Lemma. If p = 0 or p > d, then _Q(n; d) is a semisimple (super)algebra.The initial goal is to des
ribe an expli
it basis for _Q(n; d).4.2. Lemma. For (i; j) 2 I(n; d)� I(n; d), the following properties are equivalent:(i) �is;js�it;jt = �0 whenever jisj = jitj and jjsj = jjtj for some 1 � s < t � d;(ii) �("i;j;w) = 1 for all (w; Æ) 2 StabWd(i; j).Proof. Using the fa
t that StabSd(i; j) is generated by transpositions and that � is a 2-
o
y
le, property (ii) is easily seen to be equivalent to the weaker 
ondition that �("i;j;w) =1 for all (w; Æ) 2 StabWd(i; j) with w a transposition. This weaker statement is pre
isely the
ondition (i), by the de�nition of �.Call the double index (i; j) 2 I(n; d) � I(n; d) stri
t if it satis�es the properties inthe lemma, and let I2(n; d) denote the set of all stri
t double indexes. Observe usingLemma 4.2(i) that I2(n; d) is Wd-stable. Given (i; j) � (k; l) 2 I2(n; d), 
hoose (w; Æ) 2Wdsu
h that (i; j) � (w; Æ) = (k; l) and de�ne the sign �(i; j; k; l) to be �("i;j ;w). In view ofLemma 4.2(ii), this de�nition of �(i; j; k; l) is independent of the 
hoi
e of (w; Æ).Given i; j 2 f�1; : : : ;�dg, let _ei;j 2 End|(V ) denote the linear map with _ei;jvk = Æj;kvifor all k. Given i; j 2 I(n; d), let_ei;j = _ei1;j1 
 _ei2;j2 
 � � � 
 _eid;jd 2 End|(V )
d:Re
all that the superalgebras End|(V )
d and End|(V 
d) are naturally isomorphi
. Underthe isomorphism, our element _ei;j 
orresponds to the linear map with_ei;jvk = Æj;k�("i;j; "k)vi: (4.3)We will hen
eforth identify End|(V )
d and End|(V 
d) in this way. Given stri
t (i; j) 2I2(n; d), de�ne the linear map _�i;j 2 End|(V 
d) by_�i;j = X(k;l)�(i;j) �(i; j; k; l) _ek;l: (4.4)Obviously, if (i; j) � (k; l) 2 I2(n; d), then _�i;j = �(i; j; k; l) _�k;l. Now 
hoose some set 
(n; d)of orbit representatives for the a
tion of Wd on I2(n; d). Then:15



4.5. Theorem. The elements f _�i;j j (i; j) 2 
(n; d)g give a basis for _Q(n; d). Moreover,given (i; j); (k; l) 2 I2(n; d), _�i;j _�k;l = X(s;t)2
(n;d) ai;j;k;l;s;t _�s;twhere ai;j;k;l;s;t = Xh2I(n;d) with(s;h)�(i;j);(h;t)�(k;l) �(i; j; s; h)�(k; l;h; t)�("s;h; "h;t):Proof. Obviously, the given elements are linearly independent. To show that they spanEndW (d)(V 
d), let � = Xi;j2I(n;d) ai;j _ei;jbe an arbitrary element of End|(V 
d). Take w 2 Sd; Æ 2 Zd2 and set g = (w; Æ) 2 Wd. Forj 2 I(n; d), we have that (�vj)(w 
 
Æ) = �(vj(w 
 
Æ)) if and only ifXi2I(n;d) ai;j�("i;j; "j)�("i; g)vi�g = Xi2I(n;d) ai�g;j�g�("i�g;j�g; "j�g)�("j ; g)vi�gSimplifying using Lemma 3.4, we see that � 2 EndW (d)(V 
d) if and only ifai�g;j�g = �("i;j;w)ai;jfor all i; j 2 I(n; d) and g = (w; Æ) 2 Wd. So by Lemma 4.2(ii), we must have that ai;j = 0unless (i; j) is stri
t, and for stri
t (h; k) � (i; j), we have that ah;k = �(i; j;h; k)ai;j: Thisshows that � 2 _Q(n; d) if and only if � = P(i;j)2
(n;d) ai;j _�i;j; 
ompleting the proof of the�rst part of the theorem.Now we show how to dedu
e the produ
t rule. To 
al
ulate ai;j;k;l;s;t in the produ
texpansion, we need by (4.4) to determine the 
oeÆ
ient of _es;t in_�i;j _�k;l = X(i0;j0)�(i;j) X(k0;l0)�(k;l) �(i; j; i0; j 0)�(k; l; k0; l0) _ei0;j0 _ek0;l0 :We have that _ei0;j0 _ek0;l0 = Æj0;k0�("i0;j0 ; "k0;l0) _ei0;l0 : Using this the _es;t-
oeÆ
ient of _�i;j _�k;l istherefore pre
isely as in the theorem (with h = j 0 = k0).5 The 
oordinate ringNow we pro
eed to give an entirely di�erent 
onstru
tion of the S
hur superalgebra in thespirit of Green's monograph [7℄. We begin by reviewing some basi
 fa
ts about 
osuperal-gebras and bisuperalgebras.A 
osuperalgebra is a superspa
e A with the additional stru
ture of a |-
oalgebra, su
hthat the 
omultipli
ation � : A ! A 
 A and the 
ounit � : A ! | are superspa
e16



maps. Given two 
osuperalgebras A and B, A
B is a 
osuperalgebra with 
omultipli
ationidA
TA;B
 idB Æ(�A
�B). A 
osuperalgebra homomorphism (resp. antihomomorphism)� : A ! B means a superspa
e map that is a 
oalgebra homomorphism (resp. antihomo-morphism) in the usual sense. Cosuperideals and sub
osuperalgebras are also the obviousgraded version of the usual notions.Given a 
osuperalgebra A, a right A-
osupermodule is a superspa
e M together witha superspa
e map � : M ! M 
 A, 
alled the stru
ture map of M , whi
h makes M intoa right A-
omodule in the usual sense. A homomorphism between two A-
osupermodulesmeans an A-
omodule homomorphism in the usual sense; note we write homomorphismsbetween right A-
osupermodules on the left (and vi
e versa). We let 
omod(A) denote the(superadditive) 
ategory of all right A-
osupermodules.A bisuperalgebra is a superspa
e A that is both an asso
iative superalgebra and a 
osu-peralgebra, su
h that the 
omultipli
ation � : A! A
A (re
all how A
A is viewed as asuperalgebra!) and 
ounit � : A! | are superalgebra homomorphisms. If A is a bisuperal-gebra, we have a natural notion of (inner) tensor produ
t of two left A-supermodulesM;N ,namely, the supermodule M 
 N with multipli
ation de�ned by a(m 
 n) = �(a)(m 
 n)(re
all how we view M 
N as an A
A-supermodule!). The fa
t that the 
omultipli
ationis 
oasso
iative implies that, given A-supermodules M;N;P , the 
anoni
al isomorphism(M 
 N) 
 P �= M 
 (N 
 P ) is an isomorphism of supermodules. Similarly, we viewthe tensor produ
t M 
 N of two right A-
osupermodules as a right A-
osupermodule,with stru
ture map de�ned by the 
omposition M 
 N �M
�N�! M 
 A 
N 
 A id
TA;N
id�!M 
N 
 A 
 A ��! M 
 N 
 A; where �M : M ! M 
 A and �N : N ! N 
 A are thestru
ture maps of M , N respe
tively and � : A
A! A denotes the multipli
ation in A.Let A be a �nite dimensional 
osuperalgebra. Then, the dual A� is naturally a superal-gebra, with the produ
t f1f2 of f1; f2 2 A� being de�ned as the unique element f of A� su
hthat f(a) = (f1
f2)(�(a)) for all a 2 A (take 
are interpreting the right hand side!). Givena �nite dimensional right A-
osupermoduleM with stru
ture map � :M !M 
A, we 
anview M as a left A�-supermodule, with a
tion fm = (idM
f)(�(m)) for f 2 A�;m 2 M(
are!). Now suppose that � : M ! N is a morphism of right A-
osupermodules. Let~� : M ! N be the map m 7! (�1)�(�)�(m)�(m). Then, viewing M and N as left A�-supermodules as just explained, the map ~� (now written on the right) is a morphism ofleft A�-supermodules. We have now de�ned a fun
tor whi
h gives an isomorphism between
omod(A) and mod(A�).Finally in this review of de�nitions, we mention a standard general result about dire
tsums of 
osuperalgebras. Suppose A is a (possibly in�nite dimensional) 
osuperalgebra andthat A =Li2I Ai as a dire
t sum of sub
osuperalgebras. Then, as in [7, p.20℄ we have:5.1. Lemma. With the pre
eeding notation, letM be a right A-
osupermodule with stru
turemap � : M ! M 
 A. Then, M = Li2IMi where Mi is the unique maximal sub
osuper-module of V with �(Mi) �Mi 
Ai.As a 
orollary, one 
an show that the 
ategory of right A-
osupermodules is equivalentto the dire
t produ
t of the 
ategories of right Ai-
osupermodules for all i 2 I .Now we begin the alternative 
onstru
tion of the S
hur superalgebra. Start with thefree asso
iative superalgebra F (n) on non-
ommuting generators ffi;j j i; j = �1; : : : ;�ng,17



where �(fi;j) = �i;j. Then, F (n) is naturally Z-graded by degree asF (n) =Md�0 F (n; d):Given a double index (i; j) 2 I(n; d) � I(n; d), de�ne fi;j = fi1;j1fi2;j2 : : : fid;jd. The ele-ments ffi;j j (i; j) 2 I(n; d) � I(n; d)g form a basis for F (n; d). One 
he
ks that the uniquesuperalgebra maps � : F (n)! | and � : F (n)! F (n)
 F (n) de�ned on generators by�(fi;j) = Æi;j ;�(fi;j) = Xk2f�1;:::;�ng(�1)�i;k�k;jfi;k 
 fk;jmake F (n) into a bisuperalgebra. We point out that for (i; j) 2 I(n; d) � I(n; d),�(fi;j) = Xk2I(n;d)(�1)�i;k�k;j�("k;j; "i;k)fi;k 
 fk;j :Hen
e, ea
h F (n; d) is a �nite dimensional sub
osuperalgebra of F (n). Make V into a rightF (n)-
osupermodule with stru
ture map V ! V 
 F (n) de�ned byvj 7! Xi2f�1;:::;�ng(�1)�i�i;jvi 
 fi;j:Then, for ea
h d � 1, V 
d is also automati
ally a right F (n)-
osupermodule with stru
turemap V 
d ! V 
d 
 F (n) given expli
itly by the formulavj 7! Xi2I(n;d)(�1)�i�i;j�("i;j; "i)vi 
 fi;j:In parti
ular, V 
d 
an be viewed as a right F (n; d)-
osupermodule.Let E(n; d) = F (n; d)� be the dual superalgebra. Let ei;j denote the element of E(n; d)with ei;j(fi;j) = �("i;j; "i;j); ei;j(fk;l) = 0 for (k; l) 6= (i; j).Then, the fei;j j i; j 2 I(n; d)g give a basis for E(n; d). The right F (n; d)-
osupermoduleV 
d is a left E(n; d)-supermodule in a natural way. Let �d : E(n; d) ! End|(V 
d) be theresulting representation.5.2. Lemma. The representation �d is an isomorphism between E(n; d) and End|(V 
d).Moreover, �d(ei;j) = _ei;j for all i; j 2 I(n; d).Proof. It suÆ
es to 
he
k that ei;jvk = _ei;jvk for all i; j; k 2 I(n; d). By the de�nition ofthe a
tion of E(n; d), we have thatei;jvk = (id
ei;j)0� Xh2I(n;d)(�1)�h�h;k�("h;k; "h)vh 
 fh;k1A= Æj;k�("i;j; "i)�("i;j; "i;j)vi = Æj;k�("i;j; "j)vi = _ei;jvk:18



This 
ompletes the proof.Now 
onsider the superideal I(n) of F (n) generated by the elementsffi;j � f�i;�j; fi;jfk;l � (�1)�i;j�k;lfk;lfi;j j i; j; k; l = �1; : : : ;�ng:A short 
al
ulation reveals that this is a
tually a bisuperideal, so the quotientB(n) := F (n)=I(n)is a bisuperalgebra quotient of F (n). Let bi;j = fi;j + I(n). Then, B(n) is just the free
ommutative superalgebra on the degree �0 generators bi;j = b�i;�j and degree �1 generatorsbi;�j = b�i;j, for all 1 � i; j � n. The superideal I(n) is homogeneous, so graded as I(n) =Ld�0 I(n; d). So B(n) is also Z-graded by degree as B(n) =Ld�0B(n; d), with B(n; d) �=F (n; d)=I(n; d). Moreover, B(n; d) is spanned by all monomials bi;j = bi1;j1 : : : bid;jd fori; j 2 I(n; d). The monomial bi;j is non-zero if and only if (i; j) is stri
t, and for stri
t(i; j) � (k; l), we have that bi;j = �(i; j; k; l)bk;l:It follows that B(n; d) has basis fbi;j j(i; j) 2 
(n; d)g, where 
(n; d) is the 
hoi
e ofWd-orbitrepresentatives in I2(n; d) made earlier.Now, let Q(n; d) denote the dual superalgebra B(n; d)�. Sin
e B(n; d) = F (n; d)=I(n; d),Q(n; d) is naturally identi�ed with the annihilator I(n; d)Æ � E(n; d). For (i; j) 2 I2(n; d),let �i;j 2 Q(n; d) � E(n; d) denote the unique fun
tion with�i;j(bi;j) = �("i;j ; "i;j); and �i;j(bk;l) = 0 for (k; l) 6� (i; j).So, the f�i;j j (i; j) 2 
(n; d)g give a basis for Q(n; d).We 
an regard the F (n; d)-
osupermodule V 
d instead as a B(n; d)-
osupermodule byrestri
tion. Dualizing, we obtain a natural representation Q(n; d)!End|(V 
d), whi
h isnothing more than the restri
tion of the representation �d : E(n; d) ��! End|(V 
d) de�nedearlier to the subsuperalgebra Q(n; d) � E(n; d). Then:5.3. Theorem. The representation �d gives an isomorphism between Q(n; d) and the S
hursuperalgebra _Q(n; d). Moreover, �d(�i;j) = _�i;j for all (i; j) 2 I2(n; d).Proof. Pi
k (i; j) 2 I2(n; d). Sin
e Q(n; d) � E(n; d), we 
an write�i;j = Xk;l2I(n;d) ak;lek;lfor 
oeÆ
ients ak;l 2 |. To 
al
ulate the 
oeÆ
ient ak;l, evaluate both sides at the elementfk;l 2 F (n; d) to see that ak;l�("k;l; "k;l) = �i;j(fk;l) = �i;j(bk;l): So by the de�nition of �i;j, ak;lis zero unless (k; l) � (i; j), in whi
h 
ase, ak;l = �("k;l; "k;l)�(i; j; k; l)�i;j(bi;j) = �(i; j; k; l):This shows that �i;j = X(k;l)�(i;j) �(i; j; k; l)ek;l:19



Now the theorem follows at on
e from Lemma 5.2, Theorem 4.5 and (4.4).We will hen
eforth identify Q(n; d), whi
h we de�ned as the dual of the 
osuperalgebraB(n; d), with _Q(n; d), whi
h we de�ned as the 
ommutant of W (d) on tensor spa
e V 
d.So the dual basis element �i;j 2 Q(n; d) is identi�ed with the linear transformation _�i;j 2_Q(n; d).6 Weights and idempotentsLet �(n; d) denote the set of all tuples � = (�1; : : : ; �n) of non-negative integers with �1 +� � �+�n = d. We partially order �(n; d) by the usual dominan
e order, so � � � if and onlyifPts=1 �s �Pts=1 �s for ea
h t = 1; : : : ; n. For i 2 I(n; d), de�ne its weight wt(i) to be the
omposition � = (�1; : : : ; �n) 2 �(n; d) where �s = jft j 1 � t � d; jitj = sgj. Conversely,given � 2 �(n; d), let i� denote the element (1; : : : ; 1; 2; : : : ; 2; 3; : : : ) 2 I(n; d) where thereare �1 ones, �2 twos, et
..., so that wt(i�) = �. De�ne�� := �i�;i� 2 Q(n; d):We 
all the elements f�� j � 2 �(n; d)g weight idempotents, motivated by the followinglemma:6.1. Lemma. For (i; j) 2 I2(n; d),���i;j = � �i;j if wt(i) = �,0 otherwise. �i;j�� = � �i;j if wt(j) = �,0 otherwise.In parti
ular, f�� j � 2 �(n; d)g is a set of mutually orthogonal idempotents whose sum isthe identity element of Q(n; d).Proof. It is elementary to 
he
k that the matrix units feh;h j h 2 I(n; d)g in E(n; d) area set of mutually orthogonal idempotents whose sum is the identity, with eh;hei;j = Æh;iei;jand ei;jeh;h = Æh;jei;j for all h; i; j 2 I(n; d). Now a

ording to (4.4), �� =Ph eh;h summingover all h 2 I(n; d) with wt(h) = �, as an element of E(n; d). The lemma follows easilyfrom these remarks.Let ! denote the weight (1d), whi
h is an element of �(n; d) providing n � d. Assumingthis, the weight idempotent �! is a well-de�ned element of Q(n; d), and �!Q(n; d)�! isnaturally a superalgebra in its own right, its identity element being the idempotent �!. Wehave the following double 
entralizer property:6.2. Theorem. Assume that n � d.(i) The map � : Q(n; d)�! ! V 
d, �i;i! 7! vi for i 2 I(n; d) is an isomorphism ofQ(n; d)-supermodules. In parti
ular, V 
d is a proje
tive Q(n; d)-supermodule.(ii) The map  : W (d) ! �!Q(n; d)�!, x 
 
Æ 7! �i!�(x;Æ);i! for all (x; Æ) 2 Wd, is asuperalgebra isomorphism.(iii) EndQ(n;d)(V 
d) �=W (d). 20



Proof. For (i), we �rst 
laim that �i;i!vi! = vi. Well, �i;i! =P(k;l)�(i;i!) ek;l, and ek;lvi! =Æl;i!vk. Now observe that (k; i!) � (i; i!) if and only if k = i, sin
e StabWd(i!) = 1. Itnow follows easily that �i;i!vi! = vi as 
laimed. So in parti
ular, �!vi! = vi! , so there is awell-de�ned Q(n; d)-module homomorphism Q(n; d)�! ! V 
d su
h that �! 7! vi! . By the
laim, this is pre
isely the map �. Finally, observe that Q(n; d)�! has as basis the elementsf�i;i! j i 2 I(n; d)g, so that � is a superspa
e isomorphism.For (ii) and (iii), �! is an idempotent, so the superalgebras EndQ(n;d)(Q(n; d)�!) and�!Q(n; d)�! are naturally isomorphi
. Also, there is a natural mapW (d)! EndQ(n;d)(V 
d)given by the representation of W (d) on V 
d. Combining this with (i), we obtain a naturalsuperalgebra homomorphism  : W (d) ! �!Q(n; d)�!. By de�nition, it maps the elementx

Æ 2W (d) to the unique element � of �!Q(n; d)�! with �� = vi!(x

Æ). But vi!(x

Æ) =vi! �(x;Æ), so  (x
 
Æ) = �i!�(x;Æ);i! as in the lemma. It remains to observe that the elementsf�i! �(x;Æ);i! j (x; Æ) 2Wdg give a basis for �!Q(n; d)�!, so that  is an isomorphism.Using Theorem 6.2(ii), Corollary 2.15 and Lemma 3.5, we dedu
e:6.3. Lemma. For n � d, the number of irredu
ible Q(n; d)-supermodules not annihilatedby �! is equal to jRPp(d)j.There is one other situation where S
hur fun
tors arising from weight idempotents willbe useful. Suppose now that m � n. We embed �(n; d) into �(m; d) as the set of all weightsof the form (�1; : : : ; �n; 0; : : : ; 0), and I(n; d) into I(m; d) as the set of all i 2 I(m; d) withis 2 f�1; : : : ;�ng for ea
h s = 1; : : : ; d. To avoid 
onfusion with the 
orresponding elementsof Q(n; d), we denote the elements ��; �i;j 2 Q(m; d) for � 2 �(m; d); (i; j) 2 I2(m; d) insteadby b��; b�i;j respe
tively. Let e 2 Q(m; d) denote the idempotente = X�2�(n;d)��(m;d) b��: (6.4)If i; j 2 I(n; d) � I(m; d), the element b�i;j 2 Q(m; d) lies in eQ(m; d)e.6.5. Lemma. The map � : Q(n; d) ! eQ(m; d)e, �i;j 7! b�i;j for all (i; j) 2 I2(n; d), is asuperalgebra isomorphism.Proof. Consider the Z-graded superideal J(m) =Ld�0 J(m; d) of B(m) generated by theelements fbi;j j i or j equals � (n+ 1);�(n+ 2); : : : ;�mg:One 
he
ks easily that �(J(m)) � J(m) 
 B(m) + B(m) 
 J(m), so that the 
omultipli-
ation � on B(m) indu
es a well-de�ned 
omultipli
ation on B(m)=J(m) (though J(m) isnot a 
osuperideal). Evidently, B(m)=J(m) �= B(n) as superalgebras, the indu
ed 
omul-tipli
ation on B(m)=J(m) 
orresponding to the usual 
omultipli
ation on B(n) under theisomorphism. Dualizing, we obtain a multipli
ative superspa
e isomorphism between Q(n; d)and J(m)Æ � eQ(m; d)e, being pre
isely the map �. Finally, observe that eQ(m; d)e = J(m)Æto 
omplete the proof. 21



Next, we introdu
e a natural subalgebra of Q(n; d) whi
h plays the role of Cartan sub-algebra. Let J0(n) = Ld�0 J0(n; d) denote the Z-graded superideal of B(n) generated bythe elements fbi;i j i; j = �1; : : : ;�n; jij 6= jjjg:It is elementary to 
he
k that J0(n) is a bisuperideal of B(n), so we 
an form the bisu-peralgebra quotient B0(n) := B(n)=J0(n). For i = 1; : : : ; n, let xi denote the image ofbi;i = b�i;�i in B0(n), and x0i denote the image of bi;�i = b�i;i. Then B0(n) is pre
isely thefree 
ommutative superalgebra on the generators x1; : : : ; xn; x01; : : : ; x0n. Comultipli
ation� : B0(n)! B0(n)
B0(n) is given expli
itly on these generators by�(xi) = xi 
 xi � x0i 
 x0i; �(x0i) = xi 
 x0i + x0i 
 xi:As usual, B0(n) is Z-graded by degree as Ld�0B0(n; d), with B0(n; d) �= B(n; d)=J0(n; d)being a subsuper
oalgebra of B0(n) for ea
h d � 0. The dual superalgebra Q0(n; d) =B0(n; d)� 
an be identi�ed with the annihilator J0(n; d)Æ � Q(n; d), giving us a naturalsubsuperalgebra of Q(n; d).Consider the spe
ial 
ase Q0(1; d) for d � 1 in more detail (obviously, Q0(1; 0) = |).Writing x = x1; x0 = x01, the elements fxd; xd�1x0g give a basis for B0(1; d), with 
omulti-pli
ation � : B0(n; d)! B0(n; d)
B0(n; d) is given expli
itly by�(xd) = xd 
 xd � dxd�1x0 
 xd�1x0; �(xd�1x0) = xd�1x0 
 xd + xd 
 xd�1x0:As a basis for Q0(1; d), take the dual basis fyd; y0dg to the basis fxd; xd�1x0g of B0(1; d).The algebra multipli
ation, dual to the 
omultipli
ation in B0(1; d), is then given by ydyd =yd; ydy0d = y0d = y0dyd; y0dy0d = dyd. Hen
e, for d � 1,Q0(1; d) �= � C(1) if p - d,V(1) if pjd,re
alling Example 2.2.Now in general, the subsuperalgebraQ0(n; d) � Q(n; d) 
ontains ea
h weight idempotent�� for � 2 �(n; d) in its 
enter. So,Q0(n; d) �= M�2�(n;d) ��Q0(n; d): (6.6)Moreover, one 
an see that��Q0(n; d) �= Q0(1; �1)
 � � � 
Q0(1; �n) �= C(hp0(�)) 
^(hp(�)) (6.7)where hp(�) denotes the number of non-zero parts of � that are divisible by p, and hp0(�)denotes the number of parts of � that are 
oprime to p. We dedu
e immediately usingLemma 2.8, Example 2.9 and Example 2.10 that ��Q0(n; d) has a unique irredu
ible super-module whi
h we denote by U(�), of dimension 2b(hp0 (�)+1)=2
. Moreover, the supermoduleU(�) is absolutely irredu
ible if and only if hp0(�) is even. Finally, regarding U(�) as anQ0(n; d)-supermodule by in
ation, we have shown:22



6.8. Lemma. The modules fU(�) j � 2 �(n; d)g give a 
omplete set of pairwise non-isomorphi
 irredu
ible Q0(n; d)-supermodules. The dimension of U(�) is 2b(hp0 (�)+1)=2
, andU(�) is absolutely irredu
ible if and only if hp0(�) is even.Re
alling Lemma 5.1, we have thus determined the irredu
ible B0(n)-
osupermodules,namely, the B0(n)-
osupermodules fU(�) j � 2 �(n)g, where �(n) := Sd�0 �(n; d). Nowlet M be an arbitrary B(n)-
osupermodule with stru
ture map � : M ! M 
 B(n). ByLemma 5.1, M de
omposes as M = Ld�0Md where Md is the largest sub
osupermodulewith �(Md) � Md 
 B(n; d). Ea
h Md is naturally a B(n; d)-
osupermodule, hen
e aQ(n; d)-supermodule. Then, for � 2 �(n; d), we de�ne the �-weight spa
e of M to be thespa
e M� := ��Md: Re
alling (6.6), M� is a Q0(n; d)-subsupermodule of Md. Equivalently,M� is a B0(n)-sub
osupermodule ofM , viewingM as a B0(n)-
osupermodule by restri
tion,and M = M�2�(n)M�:Let X(n) denote the free polynomial algebra Z[x1; : : : ; xn℄ and for � 2 �(n), set x� =x�11 x�22 : : : x�nn . De�ne the formal 
hara
ter
hM = X�2�(n) dimM�x� 2 X(n):Note that for B(n)-
osupermodules M;N , we have that 
h(M � N) = 
hM + 
hN and
h(M 
 N) = 
hM: 
hN . In other words, the map 
h : Grot(B(n)) ! X(n) is a ringhomomorphism from the Grothendie
k ring of the 
ategory of �nite dimensional right B(n)-
osupermodules to X(n).7 The \big 
ell"Let J[(n) = Ld�0 J[(n; d) and J℄(n) = Ld�0 J℄(n; d) denote the Z-graded superideals ofB(n) generated by the elementsfbi;j j i; j = �1; : : : ;�n; jij < jjjg; fbi;j j i; j = �1; : : : ;�n; jij > jjjgrespe
tively. One easily 
he
ks that these are 
osuperideals. Hen
e, we 
an form the bisu-peralgebras quotientsB[(n) := B(n)=J[(n); B℄(n) := B(n)=J℄(n):Both B[(n) and B℄(n) are Z-graded with degree d 
omponent, denoted B[(n; d) and B℄(n; d)respe
tively, being 
osuperalgebra quotients of B(n; d). The 
orresponding dual superalge-bras to these, namely Q[(n; d) = J[(n; d)Æ and Q℄(n; d) = J℄(n; d)Æ, are therefore subsuperal-gebras of Q(n; d), 
alled the negative Borel and positive Borel subsuperalgebras respe
tively.They are spanned by the elementsf�i;j j (i; j) 2 I2(n; d); jij � jjjg and f�i;j j (i; j) 2 I2(n; d); jij � jjjg23



respe
tively, where jij � jjj means that jikj � jjkj for ea
h k = 1; : : : ; d. Let �[ : B(n) !B[(n) and �℄ : B(n) ! B℄(n) denote the natural quotient maps and set b[i;j = �[(bi;j),b℄i;j = �℄(bi;j) for i; j 2 I(n; d). In parti
ular, b[i;j = 0 unless jij � jjj. Similarly, b℄i;j = 0unless jij � jjj. Let � : B(n)! B[(n)
B℄(n)be the map (�[ 
 �℄) Æ�. The next goal is to prove an analogue of the existen
e of the big
ell 
ru
ial for high-weight theory:7.1. Theorem. � is inje
tive.Proof. We pro
eed in a number of steps. Observe right away that it is enough to provethat � is inje
tive on ea
h B(n; d) separately. So, �x d � 1 and 
onsider the restri
tion� : B(n; d)! B[(n; d)
B℄(n; d). LetY = f(i; k; l; j) 2 I(n; d) � I(n; d) � I(n; d)� I(n; d) j jij � jkj; jlj � jjjg:Write (i; k; l; j) � (i0; k0; l0; j 0) if both (i; k) � (i0; k0) and (l; j) � (l0; j 0). Also 
all (i; k; l; j)stri
t if both (i; k) and (l; j) are stri
t in the sense of Lemma 4.2. Then:7.2. If Z is a 
hoi
e of representatives for the �-equivalen
e 
lasses of stri
t (i; k; l; j) 2 Y ,then fb[i;k 
 b℄l;j j (i; k; l; j) 2 Zg is a basis for B[(n; d)
B℄(n; d).Now de�ne m(i; j), for any i; j 2 I(n; d), to be the unique element m 2 I(n; d) withms = � is if jisj < jjsjjs if jisj � jjsjfor all s = 1; : : : ; d. Observe that m(i � g; j � g) = m(i; j) � g for all g 2Wd. We 
laim:7.3. Suppose i; j 2 I(n; d) and g 2 Wd are su
h that m(i; j) = m(i; j � g) = m(i � g; j � g):Then, (i; j) � (i; j � g).We prove (7.3) by indu
tion on d. Let m = m(i; j). If d = 1, then the assumption thatm � g = m for
es g = 1, and the lemma follows trivially. Now suppose that d > 1 and thatwe have proved (7.3) for all smaller d. Write f�1; : : : ;�dg = I t J whereI = f�s j 1 � s � d; jisj � jjsjg;J = f�s j 1 � s � d; jisj < jjsjg:Suppose �rst that g stabilizes I. Then, we 
an write g = xy where x �xes J pointwise and y�xes I pointwise. The assumption that m = m �g implies that bothm = m �x andm = m �y.For s 2 J , ms = is and mys = iys, so sin
e ms = mys, we see that is = iys. Hen
e i � y = i,and a similar argument gives that j � x = j. So, (i; j � g) = (i � y; j � y) � (i; j) as required.Now suppose that g does not stabilize I. Then, we 
an pi
k s 2 I su
h that gs 2 J .Let t = gs 2 J and de�ne x to be the unique element of Wd with xs = t; xt = s and �xingall other elements of f�1; : : : ;�dg n f�s;�tg. Set g0 = xg; j 0 = j � x, so j 0 � g0 = jg. Using24



that m � g = m, we have that js = ms = mt = it. So, jjtj > jitj = jmtj = jmsj. Usingm = m(i; j � g), we must therefore have that ms = is = it = mt. This shows that i � x = iand m � x = m. Now, m(i; j) = m(i � x; j � x) = m(i; j 0);m(i; j � g) = m(i; j 0 � g0);m(i � g; j � g) = m(i � g0; j 0 � g0):So by our assumption, m(i; j 0) = m(i; j 0 � g0) = m(i � g0; j 0 � g0). Now, g0s = s, so we dedu
eby indu
tion that (i; j 0) � (i; j 0 � g0). Hen
e, (i; j) � (i �x; j �x) = (i; j 0) � (i; j 0 � g0) = (i; j � g)as required to 
omplete the proof of (7.3).Now we apply (7.3) to show:7.4. Let i; j; i0; j 0 2 I(n; d) and m = m(i; j), m0 = m(i0; j 0). If (i;m;m; j) � (i0;m0;m0; j 0)then (i; j) � (i0; j 0).Indeed, take g; h 2Wd su
h that (i;m) = (i0 � g;m0 � g) and (m; j) = (m0 � gh; j 0 � gh). Setk = j 0 � g. Now, m = m(i; j) = m(i; j 0 � gh) = m(i; k � h);m0 � g = m(i0 � g; j 0 � g) = m(i; k);m0 � gh = m(i0 � gh; j 0 � gh) = m(i � h; k � h):So, observing that m = m0 � g = m0 � gh, we have that m(i; k) = m(i; k � h) = m(i � h; k � h):Hen
e by (7.3), (i; k) � (i; k � h). So (i0; j 0) � (i0 � g; j 0 � g) = (i; k) � (i; k � h) = (i; j).Next we 
laim:7.5. Let i; j 2 I(n; d) and m =m(i; j). If (i; j) is stri
t, then (i;m;m; j) is stri
t.To prove this, take (i; j) stri
t and suppose that (i;m) is not stri
t. Then, there exist1 � s < t � d with jisj = jitj; jmsj = jmtj and �is;ms�it;mt = �1. So, is 6= ms; it 6= mt, hen
eby the de�nition of m, ms = js;mt = jt. But this 
ontradi
ts the fa
t that (i; j) is stri
t.Hen
e, (i;m) is stri
t, and a similar argument shows that (m; j) is stri
t.Re
all that 
(n; d) is some set of representatives of the �-equivalen
e 
lasses of stri
t(i; j) 2 I(n; d) � I(n; d). In view of (7.4) and (7.5), all f(i;m;m; j) j (i; j) 2 
(n; d);m =m(i; j)g are stri
t and lie in di�erent �-equivalen
e 
lasses. So they are linearly independentby (7.2), and we have now proved:7.6. The elements fb[i;m 
 b℄m;j j (i; j) 2 
(n; d);m = m(i; j)g are linearly independent.Now we 
an prove the theorem. Call (i; k; l; j) 2 Y spe
ial if there exists g 2 Wd su
hthat igs = kgs = ls whenever jlsj < jjsj,ls = js = kgs whenever jlsj = jjsj25



for all s = 1; : : : ; d. We point out that if m = m(i; j), then (i;m;m; j) is spe
ial. Now,if (i; k; l; j) � (i0; k0; l0; j 0) and (i; k; l; j) is spe
ial, then (i0; k0; l0; j 0) is too. So the prop-erty of being spe
ial is a property of �-equivalen
e 
lasses. Choose a total order � onthe set of all spe
ial �-equivalen
e 
lasses su
h that the following hold for all spe
ial(i; k; l; j); (i0; k0; l0; j 0) 2 Y :(1) if wt(k0) > wt(k) (in the dominan
e order) then (i0; k0; l0; j 0) � (i; k; l; j);(2) if wt(k) = wt(k0) and jfs j 1 � s � d; is = ksgj > jfs j 1 � s � d; i0s = k0sgj then(i0; k0; l0; j 0) � (i; k; l; j).We need one more 
laim:7.7. Let i; j 2 I(n; d) and m = m(i; j). Then,�(bi;j) = �b[i;m 
 b℄m;j +A+Bwhere A is a linear 
ombination of terms of the form b[i;k 
 b℄k;j with (i; k; k; j) spe
ial and(i; k; k; j) � (i;m;m; j), and B is a linear 
ombination of terms of the form b[i;k 
 b℄k;j with(i; k; k; j) not spe
ial.To prove (7.7), we have from the de�nition of � that�(bi;j) = �b[i;m 
 b℄m;j � b[i;�m 
 b℄�m;j + (a linear 
ombination of b[i;k 
 b℄k;j with jkj < jmj)where m = min(jij; jjj). So, writing m = m(i; j),�(bi;j) = XÆ2Zd2�b[i;m�Æ 
 b℄m�Æ;j + (a linear 
ombination of b[i;k 
 b℄k;j with wt(k) > wt(m).)Therefore, we just need to show that for all (�0; �0; : : : ; �0) 6= Æ 2 Zd2 su
h that (i;m � Æ;m � Æ; j)is spe
ial, we have that jfs j 1 � s � d; is = msgj > jfs j 1 � s � d; is = mÆsgj. TakeÆ 2 Zd2 su
h that (i;m � Æ;m � Æ; j) is spe
ial. Then 
ertainly we have that mÆs = js wheneverjmsj = jjsj, when ms = js by de�nition of m. So for s with jmsj = jjsj, we have thatmÆs = ms, when
e Æs = �0. Instead, take t with jmtj < jjtj. Then, mt = it so mt = iÆt if andonly if Æt = �0. These observations establish thatjfs j 1 � s � d; is = msgj � jfs j 1 � s � d; is = mÆsgjwith equality if and only if Æ = (�0; �0; : : : ; �0). This 
ompletes the proof of (7.7).Now the theorem follows easily from (7.6), (7.7) and a unitriangular argument involvingthe order �.7.8. Corollary. The natural multipli
ation map � : Q[(n; d) 
 Q℄(n; d) ! Q(n; d) is sur-je
tive.
26



8 High-weight theoryNow we 
an 
lassify the irredu
ible Q(n; d)-supermodules using high-weight theory. Re
allthat Q℄(n; d) denotes the positive Borel subsuperalgebra of Q(n; d). We begin by determin-ing the irredu
ible Q℄(n; d)-supermodules.The ideal J℄(n) from x7 is 
ontained in the ideal J0(n) from x6. It follows that Q0(n; d) �Q℄(n; d). On the other hand, let Q+(n; d) denote the subsuperspa
e of Q℄(n; d) spanned bythe elements f�i;j j (i; j) 2 I2(n; d); jij � jjj; jisj < jjsj for some sg:It follows from Lemma 6.1 that Q+(n; d) is a superideal of Q℄(n; d). Moreover, Q℄(n; d) =Q0(n; d) � Q+(n; d) as a superspa
e, and Q℄(n; d)=Q+(n; d) �= Q0(n; d). Analogously,Q�(n; d) denotes the superideal spanned by the elements f�i;j j(i; j) 2 I2(n; d); jij � jjj; jisj >jjsj for some sg; and Q[(n; d) = Q0(n; d) �Q�(n:d).IfM is any Q0(n; d)-supermodule, we 
an view it as a Q℄(n; d)-supermodule by in
ationalong the quotient map Q℄(n; d) � Q0(n; d). In parti
ular, we obtain irredu
ible Q℄(n; d)-modules denoted fU(�) j � 2 �(n; d)g, namely, the in
ations of the irredu
ible Q0(n; d)-supermodules 
onstru
ted in Lemma 6.8.Now suppose that M is a Q℄(n; d)-supermodule and � 2 �(n; d). By Lemma 6.1,for � 2 Q+(n; d), �M� � L�>�M�. It follows at on
e that for any weight � maxi-mal in the dominan
e order su
h that M� 6= 0 (su
h a weight 
ertainly exists as thereare �nitely many weights!), the weight spa
e M� is annihilated by Q+(n; d). So M� is aQ℄(n; d)-subsupermodule ofM and the a
tion of Q℄(n; d) onM� fa
tors through the quotientQ0(n; d). In parti
ular, if M is an irredu
ible Q℄(n; d)-supermodule, M �= U(�).Given an arbitrary weight �, we 
all a Q(n; d)-supermodule M a high-weight module ofhigh-weight � if the following 
onditions hold:(1) M� is a Q℄(n; d)-subsupermodule of M isomorphi
 to U(�);(2) M is generated as an Q(n; d)-supermodule by M�.For � 2 �(n; d), de�ne the standard module�(�) := Q(n; d)
Q℄(n;d) U(�): (8.1)Call the weight � an admissible weight if �(�) 6= 0.8.2. Lemma. For admissible �, �(�) is a high-weight module of high-weight �. Moreover,�(�)� = 0 unless � � �.Proof. Re
alling Corollary 7.8, we 
ertainly have that�(�) = Q[(n; d)
 U(�) = Q�(n; d) 
 U(�)�Q0(n; d)
 U(�):All weights of Q�(n; d) 
 U(�) are stri
tly lower than � in the dominan
e order. So the�-weight spa
e of �(�) is equal to 1
U(�), a homomorphi
 image of U(�). The assumptionthat � is admissible is equivalent to 1
U(�) being non-zero, in whi
h 
ase it is isomorphi
to U(�) as U(�) is irredu
ible.The admissible �(�) have the usual universal property:27



8.3. Lemma. Suppose that M is a high-weight module of high-weight �. Then, � is admis-sible and M is a homomorphi
 image of �(�). In parti
ular, M� = 0 unless � � �.Proof. There is a natural isomorphismHomQ℄(n;d)(U(�);M #) ��! HomQ(n;d)(�(�);M):Choose an isomorphism � : U(�)!M� �M of Q℄(n; d)-supermodules and let � ": �(�)!M be the 
orresponding Q(n; d)-supermodule homomorphism. This is non-zero, hen
e � isadmissible, and is surje
tive as M is generated by M�. This shows that M is a quotient of�(�), and the �nal statement about weights follows from Lemma 8.2.For admissible �, de�ne L(�) to be the head of �(�), i.e. L(�) is the largest 
ompletelyredu
ible quotient supermodule of �(�). We remark that if p = 0 or p > d, then Q(n; d) issemisimple by Lemma 4.1, so that L(�) = �(�) in these 
ases.8.4. Lemma. The set fL(�) j for all admissible � 2 �(n; d)g is a 
omplete set of pairwisenon-isomorphi
 irredu
ible Q(n; d)-supermodules. Moreover, the module L(�) is absolutelyirredu
ible if and only if hp0(�) is even.Proof. Let � be admissible. We �rst 
laim that �(�) has a unique maximal subsupermod-ule, so that L(�) is irredu
ible. For let M;N be two maximal subsupermodules of �(�).Sin
e �(�)� is irredu
ible over Q0(n; d) and generates �(�) over Q(n; d), we must have thatM� = N� = 0, so (M + N)� = 0. This shows that M + N is a proper subsupermodule of�(�). Hen
e, M =M +N = N by maximality, as required.Evidently, for admissible � 6= �, L(�) and L(�) are not isomorphi
, as they have di�erenthigh-weights. Now suppose that L is an arbitrary irredu
ible Q(n; d)-supermodule. Choose� maximal in the dominan
e order su
h that L� 6= 0. Then, by irredu
ibility, L must be ahigh-weight module of high-weight �, so a quotient of �(�) by Lemma 8.3. Hen
e, L �= L(�).It remains to prove the statement about absolute irredu
ibility. First observe by ad-jointness that HomQ(n;d)(�(�); L(�)) �= HomQ℄(n;d)(U(�); L(�) #) �= EndQ0(n;d)(U(�)): Nowthere is a natural embedding HomQ(n;d)(L(�); L(�)) ,! HomQ(n;d)(�(�); L(�)). To seethat it is an isomorphism, observe that any Q(n; d)-homomorphism �(�) ! L(�) annihi-lates the unique maximal submodule of �(�), hen
e indu
es a well-de�ned homomorphismL(�)! L(�). We have shown that EndQ(n;d)(L(�)) �= EndQ0(n;d)(U(�)): Now the �nal partof the lemma follows from Lemma 6.8.9 Classi�
ation of admissible weightsWe now pro
eed to give a 
ombinatorial des
ription of the admissible weights, to 
ompletethe 
lassi�
ation of the irredu
ible Q(n; d)-supermodules. We make some de�nitions. Let�+(n; d) denote the set of all � 2 �(n; d) su
h that �1 � �2 � � � � � �n, i.e. � is a partitionof d with at most n non-zero parts. Let �+p (n; d) denote the set of all � 2 �(n; d) su
h that0 < �i � �i+1 + Æi for i = 1; : : : ; n, where Æi = � 1 if p j �i,0 otherwise,28



so that � is a p-stri
t partition as in the introdu
tion. Call � 2 �+p (n; d) restri
ted if eitherp = 0 or p > 0 and �i � �i+1 + Æi � p for i = 1; : : : ; n. Let �+p (n; d)res denote the set of allrestri
ted � 2 �+p (n; d). We will show that � is admissible if and only if � 2 �+p (n; d).We 
onstru
t another natural subsuperalgebra of Q(n; d). Let K(n) = Ld�0 K(n; d)denote the Z-graded superideal of B(n) generated by the elementsfbi;j j i = 1; : : : ; n; j = �1; : : : ;�ng:It is a bisuperideal, so we 
an form the bisuperalgebra quotientA(n) = B(n)=K(n);this being Z-graded as A(n) = Ld�0A(n; d) where A(n; d) �= B(n; d)=K(n; d). For i; j =1; : : : ; n, set 
i;j = bi;j + K(n). Observing that ea
h 
i;j has degree �0, A(n) = A(n)�0 ispre
isely the free polynomial algebra on the generators f
i;j j 1 � i; j � ng. So the dualsuperalgebra S(n; d) = A(n; d)� is just the usual 
lassi
al S
hur algebra as in [7℄. We 
anidentify S(n; d) with the subsuperalgebra K(n; d)Æ � Q(n; d)�0 � Q(n; d).Now we treat the 
ase n = 2, 
opying an argument due to Penkov [18, x7℄ in our setting.9.1. Lemma. Suppose that n = 2 and that � 2 �(2; d) is an admissible weight. Then,either �1 > �2, or �1 = �2 = 
 for some 
 � 0 with p j 
.Proof. The restri
tion of L(�) to the ordinary S
hur algebra S(2; d) � Q(2; d) gives us anS(2; d)-module with maximal weight �. We dedu
e from the 
lassi
al theory that �1 � �2.To 
omplete the proof, suppose for a 
ontradi
tion that �1 = �2 = 
 but that p - 
.So d = 2
. Now, there are no � 2 �+(2; 2
) with � < �. Sin
e we also know thatdimL(�)� = dimU(�) = 2, we dedu
e by the 
lassi
al representation theory of S(2; 2
)that L(�) # S(2; 2
) splits as a dire
t sum of two irredu
ible S(2; 2
)-modules both of high-weight �. But su
h S(2; 2
)-modules are one dimensional (being just a tensor power of thedeterminant module). This shows that L(�) = L(�)�, of dimension exa
tly two. Hen
e,L(�)� = 0 for all � 6= �.De�ne the following elements of I(2; 2
):i = (1; : : : ; 1;�2; 2; : : : ; 2; 2); j = (1; : : : ; 1; 2; 2; : : : ; 2; 2);k = (1; : : : ; 1; 1; 2; : : : ; 2;�1); l = (1; : : : ; 1; 1; 2; : : : ; 2; 1);s = (1; : : : ; 1;�1; 2; : : : ; 2; 2); t = (1; : : : ; 1; 1; 2; : : : ; 2;�2);u = (1; : : : ; 1;�2; 2; : : : ; 2; 1); i� = (1; : : : ; 1; 1; 2; : : : ; 2; 2)where the symbol ; is between the 
th and (
 + 1)th entries. Now an expli
it 
al
ulationusing the produ
t rule Theorem 4.5 shows that�i�;j�i;i� = �s;i� + �u;i� and �i�;k�l;i� = �t;i� + �u;i� :Hen
e, �i�;j�i;i� � �i�;k�l;i� = �s;i� � �t;i� :29



Using the previous paragraph and a weight argument, both terms on the left hand side ofthis equation a
t as zero on L(�)�. Hen
e, the term �s;i� � �t;i� 2 ��Q0(n; d) on the righthand side a
ts as zero on L(�)� �= U(�). But ��Q0(n; d) �= C(2) a

ording to (6.7), so asU(2) is a faithful C(2)-supermodule, the non-zero element �s;i� � �t;i� of ��Q0(n; d) 
annota
t as zero on U(�), a 
ontradi
tion.Now observe that for � 2 �(n; d), � lies in �+p (n; d) if and only if for ea
h i = 1; : : : ; n�1(�i; �i+1) lies in �+p (2; �i+�i+1). So by an argument involving restri
tion to various quotientsof B(n) isomorphi
 to B(2), we have the following 
orollary of Lemma 9.1:9.2. Corollary. If � 2 �(n; d) is admissible, then � 2 �+p (n; d).It remains to prove that every � 2 �+p (n; d) is admissible, i.e. that there does existsome high-weight module of high-weight � for ea
h � 2 �+p (n; d). To do this, we �rstgive a 
onstru
tion of some high-weight modules in the 
ase p > 0 using a Frobenius twistargument. Re
all from earlier in the se
tion that A(n) denotes the free polynomial algebraon generators f
i;j j 1 � i; j � ng, viewed as a bialgebra as in the 
lassi
al polynomialrepresentation theory of GL(n) [7℄. In parti
ular, we 
an view A(n) is a bisuperalgebra
on
entrated in degree �0.9.3. Lemma. If p > 0, the unique algebra map � : A(n) ! B(n), su
h that 
i;j 7! bpi;j forall 1 � i; j � n, is a bisuperalgebra embedding.Proof. This is a routine 
he
k of relations.In view of the lemma, there is a natural restri
tion fun
torFr :mod(A(n))!mod(B(n)):On obje
ts, Fr is de�ned by sending an A(n)-
osupermodule M with stru
ture map � :M !M
A(n) to the B(n)-
osupermodule equal toM as a superspa
e with stru
ture map(id
�) Æ �; we 
all FrM the Frobenius twist of M . On morphisms, Fr sends a morphism tothe same linear map but regarded instead as a B(n)-
osupermodule map. We note that ifM is a polynomial A(n)-
osupermodule of degree d, then FrM is a B(n; pd)-
osupermodule.Also, let Fr : X(n)! X(n) be the linear map determined by Fr(x�) = xp� for ea
h � 2 �(n),where p� denotes (p�1; : : : ; p�n). Then, the formula
h(FrM) = Fr(
hM)des
ribes the e�e
t of the fun
tor Fr at the level of 
hara
ters.9.4. Lemma. Suppose that � 2 �(n; d1) is an admissible weight, and that � 2 �+(n; d2) isarbitrary. Then, � + p� 2 �(n; d1 + pd2) is an admissible weight. Moreover, all non-zeroweights of L(�+ p�) are of the form �0 + p�0 for �0 � � and �0 � �.Proof. If p = 0, there is nothing to prove. Otherwise, by the 
lassi
al theory, there existsan irredu
ible A(n)-
omodule L0(�) of high-weight �. Regard L0(�) instead as an A(n)-
osupermodule 
on
entrated in degree �0 (say) and 
onsider the B(n)-
osupermoduleM = L(�)
 FrL0(�):30



It is a B(n; d1 + pd2)-
osupermodule, hen
e a Q(n; d1 + pd2)-supermodule. Its non-zeroweights are of the form �0 + p�0 for � � � and �0 � �, and the weight � + p� de�nitelyappears as a weight of M . Hen
e, there exists a high-weight module of high-weight �+ p�,so �+ p� is admissible. The statement about weights follows be
ause L(�+ p�) must thenbe a subquotient of M .Now we are in a position to 
omplete the 
lassi�
ation of admissible weights by a 
ountingargument. Re
all the de�nition of the idempotent �! from x6.9.5. Theorem. (i) � 2 �(n; d) is admissible if and only if � 2 �+p (n; d).(ii) Assuming that n � d and � 2 �+p (n; d), we have that �!L(�) 6= 0 if and only if� 2 �+p (n; d)res.Proof. Re
alling Corollary 9.2, we just need to show for (i) that if � 2 �+p (n; d), then � isadmissible. We 
onsider �rst the 
ase n � d, and pro
eed by indu
tion on d = 0; 1; : : : ; n.The result is trivially true in 
ase d = 0. For n � d > 0, take � 2 �+p (n; d). Suppose�rst that � =2 �+p (n; d)res. Then, we 
an write � = �1 + p�2 where �1 2 �+p (n; d1) and�2 2 �+(n; d2) for some d1; d2 with d = d1+pd2 and d2 6= 0. By indu
tion, �1 is admissible,so we dedu
e from Lemma 9.4 that � is admissible, and moreover that �!L(�) = 0. But byLemma 6.3, there are exa
tly j�+p (n; d)resj non-isomorphi
 irredu
ible Q(n; d)-supermodulesnot annihilated by �!. In view of Corollary 9.2, this means that all � 2 �+p (n; d)res mustboth be admissible and satisfy �!L(�) 6= 0, else we end up with too few su
h modules.Now suppose that n < d and 
hoose m � d. Let e 2 Q(m; d) be the idempotent de�nedin (6.4), and also re
all the embedding �(n; d) ,! �(m; d) there. Take � 2 �+p (n; d). Then,viewing � as an element of �+p (m; d), we have already shown in the previous paragraph that� is admissible for Q(m; d), so that there exists an irredu
ible Q(m; d)-supermodule L(�) ofhigh-weight �. In view of Lemma 6.5, we have that eL(�)� 6= 0 as � 2 �(n; d), so eL(�) isan irredu
ible Q(n; d)-supermodule of high-weight �, as required.10 Consequen
esIn Theorem 9.5(i) and Lemma 8.4, we have 
lassi�ed the irredu
ible Q(n; d)-supermodules;they are pre
isely the supermodules fL(�) j � 2 �+p (n; d)g: Applying Lemma 5.1, we haveequivalently determined the irredu
ible B(n)-
osupermodules. Let �+p (n) = Sd�0 �+p (n; d)denote the set of all p-stri
t partitions with at most n non-zero parts. Then, we have shown:10.1. Theorem. The B(n)-
osupermodules fL(�) j � 2 �+p (n)g give a 
omplete set of pair-wise non-isomorphi
 irredu
ible B(n)-
osupermodules. Moreover, L(�) is absolutely irre-du
ible if and only if hp0(�) is even.It is immediate from high-weight theory that the 
hara
ter map 
h : Grot(B(n))! X(n)des
ribed at the end of x6 is an embedding of the Grothendie
k ring of the 
ategory of B(n)-
osupermodules into X(n). We have two natural bases for the image: f
hL(�) j� 2 �+p (n)gand f
h�(�) j � 2 �+p (n)g: Moreover, for � 2 �+p (n),
h�(�) = 
hL(�) +X�<� f�;� 
hL(�)31



for unique non-negative integers f�;�. This gives us a well-de�ned p-de
omposition matrixF = (f�;�)�;�2�+p (n). It is a unitriangular matrix if rows and 
olumns are ordered in someway re�ning dominan
e.If � is restri
ted, one 
an hope that the p-de
omposition number f�;� equals the spe
ial-ization d�;�(1) of the polynomials de�ned by Le
ler
 and Thibon in [12, Theorem 4.1℄ (withh = p) for suÆ
iently large p. It would be interesting to extend the 
onstru
tion of [12℄ toarbitrary (i.e. not ne
essarily restri
ted) weights �, as was done in [11℄ for the Fo
k spa
e ofA(1)p�1. Another basi
 problem here is the expli
it 
omputation of the 
hara
ter 
h�(�) forall � 2 �+p (n). For p = 0, this problem was solved by Sergeev [20, Theorem 4℄, who showedthat 
h�(�) = 2�bh(�)=2
P�2�(n;d)K 0�;�x� , where K 0�;� is as in [13, III(8.16)0℄.We point out at least for arbitrary p that the 
hara
ter of �(�) is stable as n!1, sothat 
h�(�) 
an be regarded as a symmetri
 fun
tion. To be more pre
ise, suppose thatm � n and let e denote the idempotent from (6.4), embedding �(n; d) into �(m; d) as there.For � 2 �+p (n; d), denote the standard Q(n; d)-supermodule (resp. the standard Q(m; d)-supermodule) of high-weight � by �n(�) (resp. �m(�)) to avoid ambiguity, and similarlylet Ln(�) (resp. Lm(�)) denote the irredu
ible supermodule of high-weight �. Then, asQ(n; d)-supermodules, Ln(�) �= eLm(�) and �n(�) �= e�m(�); the �rst of these formulaefollows immediately from Corollary 2.15 and weight 
onsiderations, while the se
ond 
anbe proved dire
tly from the de�nition of �(�) as an indu
ed module. Stability of weightmultipli
ities, i.e. that dimLm(�)� = dimLn(�)� and dim�m(�)� = dim�n(�)� for all� 2 �(n; d), follows immediately.Next we turn our attention to 
onstru
ting the irredu
ible representations of the Sergeevsuperalgebra W (d). Let n � d, and identify �+p (n; d) with the set Pp(d) of all p-stri
tpartitions of d. Then, �+p (n; d)res is identi�ed with RPp(d) � Pp(d). Also let �! 2 Q(n; d)be the idempotent from x6. For � 2 RPp(d), de�ne the W (d)-supermoduleV (�) := �!L(�):We should note that this de�nition is independent of the parti
ular 
hoi
e of n � d up tonatural isomorphism (this is proved in a standard way, see e.g. [3, x3.5℄). The followingresult is immediate from Theorem 9.5(ii) and Corollary 2.15:10.2. Theorem. The modules fV (�) j � 2 RPp(d)g give a 
omplete set of pairwise non-isomorphi
 irredu
ible W (d)-supermodules. Moreover, V (�) is absolutely irredu
ible if andonly if hp0(�) is even.In order to obtain a labelling for all irredu
ible W (d)-modules, not just supermod-ules, we know by Lemma 2.3 that if V (�) is not absolutely irredu
ible, it de
omposes asV (�;+) � V (�;�) for two non-isomorphi
 irredu
ible W (d)-modules V (�;+); V (�;�). ByCorollary 2.7, the modulesfV (�) j � 2 RPp(d); hp0(�) eveng [ fV (�;+); V (�;�) j � 2 RPp(d); hp0(�) oddgthen give a 
omplete set of pairwise non-isomorphi
 irredu
ible W (d)-modules.To pass to the proje
tive representations of the symmetri
 group, we use Corollary 3.13and Corollary 3.15. Suppose �rst that d is even. Then, for ea
h � 2 RPp(d), there is a32



unique irredu
ible S(d)-supermodule D(�) su
h that V (�) �= Y D(�). Moreover, D(�) isabsolutely irredu
ible if and only if V (�) is absolutely irredu
ible, whi
h is if and only ifhp0(�) is even. In the 
ase that d is odd, take � 2 RPp(d). If hp0(�) is odd, then there isa unique absolutely irredu
ible S(d)-supermodule D(�) su
h that V (�) �= Y D(�). If hp0(�)is even, then there is a unique non-absolutely irredu
ible S(d)-supermodule D(�) su
h thatY D(�) �= V (�)� V (�). Then:10.3. Theorem. The modules fD(�) j � 2 RPp(d)g give a 
omplete set of pairwise non-isomorphi
 irredu
ible S(d)-supermodules. Moreover, D(�) is absolutely irredu
ible if andonly if d� hp0(�) is even.If � 2 RPp(d) and d � hp0(�) is odd, we 
an de
ompose D(�) �= D(�;+) � D(�;�)as a dire
t sum of two non-isomorphi
 irredu
ible S(d)-modules, and by Corollary 2.7 themodulesfD(�) j � 2 RPp(d); d � hp0(�) eveng [ fD(�;+);D(�;�) j � 2 RPp(d); d� hp0(�) oddgthen give a 
omplete set of pairwise non-isomorphi
 irredu
ible S(d)-modules. We have thusdetermined the irredu
ible proje
tive representations of Sd.The next theorem explains how to obtain the irredu
ible proje
tive representations ofAd from these. Let A(d) = S(d)�0 denote the twisted group algebra of the alternating group.The following theorem follows easily by Cli�ord theory for groups with normal subgroupsof index two.10.4. Theorem. Let � 2 RPp(d). If d � hp0(�) is even, D(�) #A(d)�= E(�;+) � E(�;�)for two non-isomorphi
 irredu
ible A(d)-modules E(�;+); E(�;�). If d � hp0(�) is odd,D(�) #A(d)�= E(�) �E(�) for a single irredu
ible A(d)-module E(�). The modulesfE(�) j � 2 RPp(d); d � hp0(�) oddg [ fE(�;+); E(�;�) j � 2 RPp(d); d � hp0(�) evengthen give a 
omplete set of pairwise non-isomorphi
 irredu
ible A(d)-modules.We end with some 
omments about de
omposition numbers. So suppose now that(|; R;K) is a p-modular system with K suÆ
iently large (spe
i�
ally, 
ontaining squareroots of �1; : : : ;�d). So, R is a 
omplete DVR, K is its �eld of fra
tions of 
hara
teristi
0 and our �xed algebrai
ally 
losed �eld | of 
hara
terisit
 p is its residue �eld.The bisuperalgebra B(n) 
an be de�ned in exa
tly the same as in x5 but over theground ring R, giving us an R-free R-bisuperalgebra B(n)R su
h that B(n) �= B(n)R 
R|. Set Q(n; d)R = HomR(B(n; d)R; R) to obtain an R-form of the S
hur superalgebraQ(n; d). So, Q(n; d)R is R-free as an R-module and Q(n; d) �= |
R Q(n; d)R; we willfrom now on identify the two. Also, set Q(n; d)K = Q(n; d)R 
R K, the analogous S
hursuperalgebra over the ground �eld K. Similarly, we 
an de�ne an R-form Q0(n; d)R ofQ0(n; d), and set Q0(n; d)K = Q0(n; d)R
RK. We will always view Q(n; d)R and Q0(n; d)Ras R-subsuperalgebras of Q(n; d)K .For � 2 �+0 (n; d), let �(�)K denote the standard Q(n; d)K -supermodule of high-weight�, 
onstru
ted as in (8.1). Denote the high-weight spa
e of �(�)K by U(�)K ; this is pre
isely33



the Q0(n; d)K -supermodule de�ned as in x6. Now, the 
onstru
tion of U(�)K 
an be 
arriedout over R instead, be
ause R 
ontains square roots of ea
h ��i, giving us a �nitely gen-erated R-free Q0(n; d)R-subsupermodule U(�)R of U(�)K su
h that U(�)K �= U(�)R 
RK.Let �(�)R denote the Q(n; d)R-subsupermodule of �(�)K generated by U(�)R. Then,�(�)R is a �nitely generated R-free R-module su
h that �(�)K �= �(�)R 
R K. Now set��(�) := |
R �(�)R: This gives us a Q(n; d)-supermodule su
h that
h ��(�) = 
h�(�)C :So there are unique integer matri
es D = (d�;�) and E = (e�;�) for � 2 �+0 (n; d); � 2�+p (n; d) su
h that
h ��(�) = X�2�+p (n;d) e�;� 
h�(�); 
h ��(�) = X�2�+p (n;d) d�;� 
hL(�)for all � 2 �+0 (n; d). The matrix D is the de
omposition matrix for the redu
tion of ir-redu
ible Q(n; d)K-modules from 
hara
teristi
 0 to 
hara
teristi
 p. Evidently, D = EFgives a fa
torization of the de
omposition matrix into a produ
t of the matrix E and the(square) p-de
omposition matrix F . The following at least follows from high-weight theoryand Lemma 6.8:10.5. Lemma. For � 2 �+0 (n; d), d�;� = e�;� = 2b(h(�)+1)=2
�b(hp0 (�)+1)=2
 where h(�) is thenumber of non-zero parts of �. Given in addition � 2 �+p (n; d) with � 6� �, d�;� = e�;� = 0.Now we relate these de
omposition matri
es of Q(n; d) to those ofW (d) and S(d). Usingthe subs
riptK to indi
ate that we are working over the ground �eld K instead of our usual|, we have irredu
ible W (d)K - (resp. S(d)K -) supermodules labelled by stri
t partitions� 2 P0(d), whi
h we denote by V (�)K and D(�)K respe
tively. By a minor variation onBrauer's theory, we 
an redu
e these modulo p to obtain W (d)- (resp. S(d)-) supermodules�V (�) and �D(�). These are not uniquely determined up to isomorphism, but at least themultipli
ities of 
omposition fa
tors are unique. So we obtain the de
omposition matri
esDS = (dS�;�) and DW = (dW�;�) of S(d) and W (d) respe
tively, for � 2 P0(d); � 2 RPp(d),determined by the equations[ �V (�)℄ = X�2RPp(d) dW�;�[V (�)℄; [ �D(�)℄ = X�2RPp(d) dS�;�[D(�)℄written in the Grothendie
k groups of mod(W (d)) and mod(S(d)) respe
tively. The �naltheorem relates these de
omposition numbers to those of the S
hur superalgebra:10.6. Theorem. Let � 2 P0(d) and � 2 RPp(d). Then, dW�;� = d�;�. Similarly, if d iseven, dS�;� = d�;�, while if d is odd,dS�;� = 8<: d�;� if h(�)� hp0(�) is even,2d�;� if h(�) is even and hp0(�) is odd,12d�;� if h(�) is odd and hp0(�) is even,where h(�) denotes the number of non-zero parts of �.34



Proof. The S
hur fun
tor 
oming from the idempotent �! 
an be de�ned over the groundring R, using an R-integral version of Theorem 6.2. Using that S
hur fun
tors 
ommutewith base 
hange, one sees that [�! ��(�)℄ = [ �V (�)℄ (equality written in the Grothendie
kgroup). In parti
ular, it follows from this by exa
tness of S
hur fun
tors that dW�;� = d�;�.Similarly, the fun
tor Y from x3 
an be de�ned over the ground ring R, and Y 
ommuteswith base 
hange evidently. One sees in the 
ase that d is even that [Y �D(�)℄ = [ �V (�)℄ andY D(�) = V (�) by Theorem 3.12 over K or | respe
tively, so that dS�;� = dW�;�. Finally,suppose that d is odd. Applying Lemma 3.14 over K or |, we have that[Y �D(�)℄ = � [ �V (�)℄ if h(�) is odd,2[ �V (�)℄ if h(�) is even.We also know that [Y D(�)℄ = � [V (�)℄ if hp0(�) is odd,2[V (�)℄ if hp0(�) is even.The theorem follows from these equations together with exa
tness of Y .Thus our results redu
e the problem of determining the de
omposition matri
es of thetwisted group algebras S(d) and W (d) to the problem of determining the de
ompositionmatri
es of the S
hur superalgebras Q(n; d).A
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