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Birkh�auser Boston (??)RATIONAL SMOOTHNESS AND FIXED POINTSOF TORUS ACTIONSM. BRIONInstitut Fourier, B. P. 74F-38402 Saint-Martin d'H�eresMichel.Brion@ujf{grenoble.frAbstract. We obtain a criterion for rational smoothness of an algebraic varietywith a torus action, with applications to orbit closures in 
ag varieties, and toclosures of double classes in regular group completions.IntroductionFor a complex algebraic group acting on a complex 
ag variety with�nitely many orbits, the geometry of orbit closures is of importance in rep-resentation theory; the most interesting cases are Schubert varieties (in rela-tion with category O), and orbit closures of symmetric subgroups (in relationwith Harish-Chandra modules), see e.g. [Ka].In particular, it would be useful to characterize rationally smooth pointsof an orbit closure, i.e., those points where the local cohomology with con-stant coe�cients is the same as for a point of a smooth variety.Criteria for rational smoothness of Schubert varieties have been obtainedby Kazhdan-Lusztig [KL1], [KL2] and then by Carrell-Peterson [C], Kumar[Ku] and Arabia [A]. The latter criteria hold, more generally, for varietieswhere a torus acts with isolated �xed points, such that all weights of thetangent space at such a �xed point are contained in an open half-space andhave multiplicity one.But that condition can fail for orbit closures of symmetric subgroups in
ag varieties (e.g., for SOn acting on the 
ag variety of SLn). In the presentpaper, we obtain a criterion for rational smoothness of varieties with a torusaction, which applies to these orbit closures as well. Our main result can bestated as follows, in a somewhat weakened version.Theorem (1.4). Let X be a complex algebraic variety with an action of atorus T . Let x 2 X be an attractive �xed point of T , that is, all weightsof T in the tangent space TxX are contained in an open half-space. For aReceived March 25, 1998. Accepted August 28, 1998.



2 M. BRIONsubtorus T 0 � T , let XT 0 � X be its �xed point set. Then we havedimx(X) �XT 0 dimx(XT 0)(sum over all subtori of codimension one), and this sum is �nite.Furthermore, X is rationally smooth at x if and only if the followingconditions hold:(i) A punctured neighborhood of x in X is rationally smooth.(ii) For any subtorus T 0 � T of codimension one, the �xed point subsetXT 0 is rationally smooth at x.(iii) We have dimx(X) = PT 0 dimx(XT 0) (sum over all subtori of codi-mension one).Assume moreover that all weights in the tangent space TxX have mul-tiplicity one. Then the subsets XT 0 identify with coordinate lines in TxX ,and the sum of their dimensions is the number n(X; x) of closed irreducibleT -stable curves through x. So we obtain dimx(X) � n(X; x) with equalityfor rationally smooth x. This follows also from work of Carrell-Peterson(see [C] Theorem D), and Arabia [A], and will be generalized below (1.4Corollary 2).Consider now a connected semisimple group G, its 
ag variety B(G),and a symmetric subgroup H � G, that is, the �xed point subgroup of aninvolution � of G. Let TH be a maximal torus of H , with centralizer T inG. Then T is a maximal torus of G, stable by �. The TH-�xed points inB(G) are the (�nitely many) T -�xed points, and the �xed points of subtoriT 0 � TH of codimension one can be described completely in terms of theaction of � on roots of (G; T ) (2.5).Then our main result leads to an inequality for the dimension of an H-orbit closure X � B(G), with equality if X is rationally smooth at a TH -�xed point (2.5); this generalizes a result of Springer [S2] concerning innerinvolutions. As an application, we characterize those SOn-orbit closures ofcodimension one in B(SLn), which are rationally smooth (2.5).Actually, much of our analysis extends to any reductive subgroup H � Ghaving only �nitely many orbits in B(G) (2.2, 2.3). However, such orbitsneed not admit an attractive \slice" (2.3), whereas orbits of a symmetricsubgroup do admit such a slice, see [MS] 6.4.Another application of our criterion is given in Section 3; it concernsdouble classes BgB where B is a Borel subgroup of a connected reductivegroup G, and their closures BgB in a smooth (G�G)-equivariant completionof G which is regular in the sense of [BDP]. We show in 3.1 that theseclosures admit attractive slices at all points, and that they are rationallysmooth in codimension two. This generalizes classical results for Schubertvarieties [KL1].However, closures of double classes are not rationally smooth, apart fromvery few cases (3.3). And almost all closures of double classes are singularin codimension two (see [B1] Corollary 2.2).



RATIONAL SMOOTHNESS AND TORUS ACTIONS 3Although our results are stated for complex algebraic varieties, our argu-ments adapt to the case of an algebraically closed �eld of any characteristic,with rational cohomology replaced by l-adic cohomology. This makes theexposition rather heavy at several places. An appendix collects results onrational smoothness and on torus actions, for which we did not �nd suitablereferences.This work was begun during a staying at the Ohio State University inJanuary 1998. I thank this university for its hospitality, and G. Barthel, W.Fulton, S. Guillermou, R. Joshua, L. Kaup and T. Springer for discussionsand e-mail exchanges. I also thank both referees for their careful readingand useful suggestions.1. A criterion for rational smoothness1.1. Necessary conditions.In what follows, we consider complex algebraic varieties, that is, separatedreduced schemes of �nite type over C. With this convention, varieties neednot be irreducible. For such a variety X , we denote by H�(X) cohomologyof X with rational coe�cients. For a point x 2 X , we denote byH�x(X) := H�(X;X � fxg)cohomology with support in fxg, and by dimx(X) the dimension of the localring of X at x.De�nition. X is rationally smooth at x if, for all y in a neighborhoodof x in the complex topology, Hmy (X) is zero for all m 6= 2dimx(X), andH2 dimx(X)y (X) is isomorphic to Q.If X is rationally smooth at a point x, then it is irreducible at thatpoint (see Proposition A1). The set of rationally smooth points is openfor the complex topology, and contains all smooth points. More generally,quotients of smooth varieties by �nite groups are rationally smooth (seee.g. Proposition A1). Other examples of rationally smooth varieties areunibranched curves.We shall obtain necessary conditions for rational smoothness of a varietyX at a �xed point of an algebraic action of a torus T (that is, T is analgebraic group isomorphic to a product of copies of the multiplicative groupGm). We shall always assume that X is covered by open a�ne T -stablesubsets. By [Su], this assumption holds for T -stable subvarieties of normalT -varieties.Theorem. Let T be a torus acting on a variety X with a �xed point x. IfX is rationally smooth at x, then, for each subtorus T 0 � T , the �xed pointset XT 0 is rationally smooth at x. Furthermore, we havedimx(X)� dimx(XT ) =XT 0 (dimx(XT 0)� dimx(XT ))



4 M. BRION(sum over all subtori T 0 � T of codimension one).Proof. We use equivariant cohomology (see e.g. [H]) which we brie
y review.Let ET ! BT be a universal principal bundle for T . Then T acts diagonallyon X �ET with a quotient denoted by X �T ET . LetH�T (X) := H�(X �T ET )be the T -equivariant cohomology ring of X with rational coe�cients. Themap X �T ET ! ET =T = BTis a �bration with �ber X , and BT is simply connected. Thus, there is aspectral sequence Hp(BT )
Hq(X)) Hp+qT (X)and H�T (X) is a module overH�(BT ). The latter is the symmetric algebra ofthe character group of T , where each character has degree 2. The inclusioniT : XT ! X induces a H�(BT )-linear mapi�T : H�T (X)! H�T (XT ) �= H�(BT )
H�(XT ):By the localization theorem (see [H] or Proposition A6), i�T becomes anisomorphism after inverting all non trivial characters of T .Let y 2 XT . Denote byH�T;y(X) := H�(X �T ET ; (X � fyg)�T ET )equivariant cohomology of X with support in fyg, and consider the mapi�T;y : H�T;y(X)! H�T;y(XT ) = H�(BT )
H�y (XT ):Applying the localization theorem to X and X � fyg, we see that i�T;y is anisomorphism after inverting all non trivial characters. On the other hand,because X is rationally smooth at x, the spectral sequenceHp(BT )
Hqy (X)) Hp+qT;y (X)degenerates for all y in a neighborhood of x in XT . Thus, H�T;y(X) is a freeH�(BT )-module generated by an element of degree 2 dimy(X) = 2 dimx(X).It follows that the space H�y (XT ) is one dimensional, and hence that XT isrationally smooth at x, e.g. by Proposition A1 (this can also be deducedfrom Smith theory; see [Br] Chapter III, Corollary 10.11). Furthermore,identifying the H�(BT )-modules H�T;x(X) and H�T;x(XT ) with H�(BT ), themap i�T;x becomes multiplication by a homogeneous element f 2 H�(BT ) ofdegree 2 dimx(X)� 2 dimx(XT ). By the localization theorem, f is a scalarmultiple of a product of characters.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 5Let � be a primitive character dividing f , and let T 0 be the kernel of�, a subtorus of T of codimension one. Then iT : XT ! X factors asiT;T 0 : XT ! XT 0 followed by iT 0 : XT 0 ! X . By the localization theoremagain, the map i�T 0;x : H�T;x(X)! H�T;x(XT 0)becomes an isomorphism after inverting all characters of T which restrictnon trivially to T 0, i.e., which are not multiples of �. Furthermore, XT 0is rationally smooth at x by the �rst step of the proof. Thus, we canidentify H�T;x(XT 0) with H�(BT ); then iT 0;x identi�es with multiplicationby a product of characters which are not multiples of �.Choose a subtorus T 00 � T of dimension one such that the product mapT 0�T 00 ! T is an isomorphism. Then the character group of T 00 is generatedby the restriction of �. Furthermore, we can take ET = ET 0 � ET 00 , thenXT 0�T ET �= BT 0� (XT 0�T 00ET 00) and XT �T ET �= BT 0� (XT �T 00ET 00).Thus, we have isomorphismsH�T;x(XT 0) �= H�(BT 0)
H�T 00;x(XT 0); H�T;x(XT ) �= H�(BT 0)
H�T 00;x(XT )compatible with i�T;T 0;x. Applying the localization theorem to the T 00-varietyXT 0, it follows that i�T;T 0;x : H�T;x(XT 0)! H�T;x(XT )is an isomorphism after inverting �. In other words, i�T;T 0;x identi�es withmultiplication by a power �n� , and f is divisible by �n� but not by �n�+1.Taking degrees, we obtain 2n� = 2dimx(XT 0) � 2 dimx(XT ). Now f is ascalar multiple of Q� �n� (product over all primitive characters) and ourrelation on dimensions follows by taking degrees.1.2. An inequality for dimensions of �xed points.LetX be a variety with an action of a torus T and a �xed point x. In general,there is no inequality between dimx(X)� dimx(XT ) and the sum (over allsubtori of codimension one)PT 0(dimx(XT 0)�dimx(XT )), as shown by thefollowingExample. Let X be the hypersurface in A4 with equationxy + zt = 0:Let T = Gm �Gm act on A4 by(u; v) � (x; y; z; t) = (ux; u�1y; vz; v�1t):Then X is T -stable and the origin is the unique �xed point (and the uniquesingular point as well). The non trivial subsets XT 0 are: xy = z = t = 0



6 M. BRIONfor T 0 = f1g � Gm, and x = y = zt = 0 for T 0 = Gm � f1g. Thus,PT 0 dimx(XT 0) = 2 whereas dimx(X) = 3.On the other hand, consider the action of T = Gm �Gm on A4 by(u; v) � (x; y; z; t) = (u3x; v3y; u2vz; uv2t):Then again X is T -stable and the origin is the unique �xed point; but nowthe XT 0 are the four coordinate lines, whence PT 0 dimx(XT 0) = 4.However, we shall obtain an upper bound for dimx(X) � dimx(XT ) interms of certain subsets of the XT 0. Observe that T acts on XT 0 throughits quotient T=T 0 which we can identify with Gm. Denote by XT 0+ (x) (resp.XT 0� (x)) the set of all y 2 XT 0 such that x is the limit of ty as t! 0 (resp.t�1 ! 0) where t 2 Gm. Then both XT 0+ (x) and XT 0� (x) are locally closedT -stable subsets of XT 0 , and x is their unique common point.Theorem. Let X be a T -variety with a �xed point x. Then, notation beingas above, there are only �nitely many subtori T 0 � T of codimension onesuch that XT 0 6= XT , and we havedimx(X)� dimx(XT ) �XT 0 (dimxXT 0+ (x) + dimxXT 0� (x))(sum over all subtori of codimension one).If moreover XT 0 is smooth at x, thendimxXT 0+ (x) + dimxXT 0� (x) = dimx(XT 0)� dimx(XT ):In particular, if each XT 0 is smooth at x, thendimx(X)� dimx(XT ) �XT 0 (dimx(XT 0)� dimx(XT )):Proof. We may assume that X is a�ne; then X admits a closed equivariantembedding into a T -module M , which maps x to 0. Because MT 0+ (0) is alinear subspace of M , it follows that XT 0+ (x) = X \MT 0+ (0) is closed in X .By de�nition, XT 0+ (x) contains a unique closed orbit of T=T 0 : the �xedpoint x. Thus, there exists a T=T 0-module V T 0+ and an equivariant �nitesurjective morphism �T 0+ : XT 0+ (x)! V T 0+such that �T 0+ (x) = 0 (by a version of Noether normalization lemma, seee.g. Proposition A3). Because XT 0+ (x) is T -stable and closed in X , we canextend �T 0+ to an equivariant morphismpT 0+ : X ! V T 0+ :



RATIONAL SMOOTHNESS AND TORUS ACTIONS 7Similarly, we have pT 0� : X ! V T 0� .Observe that there are only �nitely many subtori T 0 � T of codimensionone, such that V T 0� is non zero: indeed, such a subtorus is contained in thekernel of a weight of T in the tangent space TxX . Let V denote the productof all the V T 0� , and let p : X ! Vbe the product morphism; then p(XT ) = f0g, because p(x) = 0 and V T =f0g by construction.Shrinking X , we may assume that each irreducible component of XTcontains x; in particular, XT is connected. Then we claim that XT is aconnected component of the �ber p�1(0). Otherwise, there exists an closedirreducible T -stable curve C � p�1(0) such that x is an isolated �xed pointof C (see e.g. Proposition A4). Then T acts on C through some non trivialcharacter �. Thus, C is contained in XT 0 where T 0 � T is the connectedkernel of �. Furthermore, because T acts non trivially on C, this curvemust be contained in XT 0+ (x) [XT 0� (x). But then p(C) has dimension one,by construction of p.From the claim, it follows thatdimx(X) � dimx p�1(0) + dim(V ) = dimx(XT ) + dim(V )= dimx(XT) +XT 0 (dim(V T 0+ ) + dim(V T 0� ))= dimx(XT ) +XT 0 (dimxXT 0+ (x) + dimxXT 0� (x)):If moreoverXT 0 is smooth at x, then there exists an equivariant morphismf : XT 0 ! Tx(XT 0); x 7! 0which is �etale at x. It follows that XT 0+ (x), XT 0� (x) and XT are smooth atx, and thatdimx(XT 0) = dim Tx(XT 0)= dim Tx(XT 0)+ + dimTx(XT 0)� + dimTx(XT 0)T= dimxXT 0+ (x) + dimxXT 0� (x) + dimx(XT ):Here Tx(XT 0)� denotes the sum of all T=T 0-eigenspaces of Tx(XT 0) witheigenvalues of the corresponding sign.1.3. Attractive �xed points.We recall the notion of an attractive �xed point, and we obtain prelimi-nary results for rational smoothness at such a point, using ideas from theAppendix in [KL1].



8 M. BRIONDe�nition. Let T be a torus acting on a variety X . A �xed point x iscalled attractive if all weights of T in the tangent space TxX are containedin an open half space.By Proposition A2, the point x is attractive if and only if there existsa one parameter subgroup � : Gm ! T such that limt!0 �(t)y = x forall y in a neighborhood of x. Furthermore, the set of all y 2 X such thatlimt!0 �(t)y = x is an open a�ne T -stable neighborhood of x. ReplacingX by this neighborhood, we may assume that X is a�ne; then X admits aclosed T -equivariant embedding into TxX .Set _X := X � fxg:Choose an injective one-parameter subgroup � : Gm ! T as above. Thenall weights of the Gm-action on TxX via � are positive. Thus, the quotientP(X) := _X=Gmexists and is a projective variety: indeed, it is a closed subvariety of P(TxX),a weighted projective space. We can view P(X) as an algebraic version ofthe link of X at x.Because the set of rationally smooth points is T -stable and open for thecomplex topology, X is rationally smooth at x if and only if it is rationallysmooth everywhere. This condition can be read on P(X), as follows.Lemma. Let X be an a�ne T -variety with an attractive �xed point x suchthat _X is rationally smooth. Then P(X) is rationally smooth as well. Fur-thermore, X is rationally smooth if and only if P(X) is a rational cohomol-ogy complex projective space.Proof. Observe thatGm acts on _X with �nite isotropy groups. By Proposi-tion A5, it follows that _X is covered byGm-stable open subsets U admittingan equivariant morphism p : U !Gm=� where � � Gm is a �nite subgroup(depending on U). Let Y be the �ber of p at the base point of Gm=�.Then Y � X is a locally closed �-stable subvariety, and U is equivariantlyisomorphic to the quotient (Gm � Y )=�where � acts diagonally on Gm�Y . Thus, P(X) is covered by the quotientsY=�. Because _X is rationally smooth and the mapGm�Y ! X : (t; y) 7! tyis �etale, Gm � Y is rationally smooth, too (see e.g. Proposition A1). Thus,Y is rationally smooth, and so is the quotient Y=� by Proposition A1 again.Therefore, P(X) is rationally smooth.We claim that X is rationally smooth at x if and only ifHm( _X) = nQ if m = 0 or m = 2d� 10 otherwise.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 9where d = dimx(X). Indeed, the action of Gm on X extends to a mapA1�X ! X sending 0�X to x, and restricting to the identity 1�X ! X .Thus, Hm(X) = 0 for all m > 0. Now our claim follows from the long exactsequence� � � ! Hm(X)! Hm( _X)! Hm+1x (X)! Hm+1(X)! � � �Denote by � : _X ! P(X)the quotient map and let Q _X be the constant sheaf on _X associated withQ. We compute the higher direct images Ri��Q _X . For this, consider thecommutative square Gm � Y ! Y# #(Gm � Y )=� ! Y=�where Y and � are as above, and the downwards maps p, q are quotients by�. Because p and q are �nite, we haveRi��(p��QGm�Y ) = q�� (RiprY �QGm�Y )where p�� , q�� denote invariant direct image. But both prY �QGm�Y andR1prY �QGm�Y are isomorphic to QY , and RiprY �QGm�Y vanishes for i �2. Furthermore, q��QY is isomorphic toQY=� via q�, and a similar statementholds for p�� . It follows that ��Q _X and R1��Q _X are isomorphic to QP(X) ,and that Ri��Q _X = 0 for i � 2. Thus, the Leray spectral sequence for �reduces to a Gysin long exact sequence! � � �Hm( _X)! Hm�1(P(X))! Hm+1(P(X))! Hm+1( _X)! � � �Together with the claim, this concludes the proof.1.4. A characterization of rational smoothness at an atttractive�xed point.We obtain our main result stated in the introduction, and some useful vari-ants as well.Theorem. Let X be a T -variety with an attractive �xed point x. Thenwe have dimx(X) � PT 0 dimx(XT 0) (sum over all subtori of codimensionone). Furthermore, X is rationally smooth at x if and only if the followingconditions hold:(i) A punctured neighborhood of x in X is rationally smooth.(ii) XT 0 is rationally smooth at x for each subtorus T 0 � T of codimensionone.(iii) dimx(X) =PT 0 dimx(XT 0).Proof. The �rst assertion follows from Theorem 1.2: because x is attractive,each XT 0 is equal toXT 0+ or toXT 0� in a neighborhood of x. If X is rationally



10 M. BRIONsmooth at x, then (i) certainly holds, and (ii), (iii) follow from Theorem 1.1.Another proof of this result, and of the converse as well, is sketched in [B2].We reproduce this proof with some changes, so that it adapts to arbitrarycharacteristic.We may assume that X is a�ne, and we use the notation and results of1.3. Observe that the T -action on X induces an action on P(X), with �xedpoint set the disjoint union of the P(XT 0). Indeed, T -�xed points in P(X)correspond to T -orbits of dimension one in _X .Assume that (i), (ii) and (iii) hold. Then we claim that the rationalcohomology of P(X) vanishes in odd degrees, and that the topological Eulercharacteristic �(P(X)) is equal to dimx(X) := d. To check this, we useequivariant cohomology again. Notation being as in the proof of Theorem1.1, the map P(X)�T ET ! ET=T = BTis a �bration with �ber P(X). Because the latter is projective and rationallysmooth, the associated spectral sequence degenerates (by the criterion ofDeligne, see e.g. [J] Proposition 13). Thus, the H�(BT )-module H�T (P(X))is free, and H�(P(X)) is the quotient of H�T (P(X)) by the ideal generatedby all characters of T .By the localization theorem in equivariant cohomology (see e.g. [H] Chap-ter III, or Proposition A6), the H�(BT )-module H�T (P(X)) becomes isomor-phic toH�T (P(X)T) = H�(BT )
H�(P(X)T) =MT 0 H�(BT )
H�(P(XT 0))after inverting all non trivial characters of T . Furthermore, by the precedingdiscussion and rational smoothness of the XT 0 , each H�(P(XT 0)) is a ratio-nal cohomology projective space; in particular, its cohomology vanishes inodd degrees. Because H�(BT ) vanishes in odd degrees, too, it follows thatthe same holds for H�T (P(X)), and for H�(P(X)) as well. Furthermore, wehave for the Euler characteristic of P(X):�(P(X)) = rankH�(BT )H�T (P(X))= rankH�(BT )H�T (P(X)T) =XT 0 �(P(XT 0)) =XT 0 dim(XT 0) = dwhich proves our claim.Because P(X) is projective of dimension d� 1, it has non trivial rationalcohomology in degrees 0; 2; : : : ; 2(d� 1). Thus, the claim implies that P(X)is a rational cohomology complex projective space of dimension d � 1, sothat X is rationally smooth at x.Conversely, assume that X is rationally smooth at x. Then, reversingthe previous arguments, we see that rational cohomology of each P(XT 0)



RATIONAL SMOOTHNESS AND TORUS ACTIONS 11vanishes in odd degree, and thatd =XT 0 �(P(XT 0)):Because P(XT 0) is a projective algebraic variety of dimension dimx(XT 0)�1,it follows that �(P(XT 0)) � dimx(XT 0):Thus, we have d � PT 0 dimx(XT 0). But the reverse inequality holds, as aconsequence of Theorem 1.2: so we must haved =XT 0 dimx(XT 0); �(P(XT 0)) = dimx(XT 0)for all T 0. It follows that each P(XT 0) is a rational cohomology projectivespace, and that XT 0 is rationally smooth at x.The arguments above also lead to the followingCorollary 1. Let T be a torus acting on an irreducible variety X of dimen-sion two; let x 2 X be an attractive �xed point, contained in only �nitelymany closed irreducible T -stable curves. Then X is rationally smooth at x.Proof. We may assume that X is a�ne and that T acts faithfully. Thendim(T ) = 2 (otherwise there are in�nitely many closed irreducible T -stablecurves through x, namely, the T -orbit closures). Thus, X contains a denseT -orbit; in other words, the normalization of X is an a�ne toric surface. Itfollows that X contains exactly four T -orbits: the �xed point x, two orbitsof dimension one, and the open orbit.Thus, P(X) is a projective irreducible curve with a dense T -orbit, sothat P(X) is homeomorphic to projective line. Furthermore, _X is coveredby two a�ne open subsets of the form Gm �� C where � is a �nite group,and C is an irreducible a�ne curve admitting a non trivial action of Gm(this follows e.g. from Proposition A5). Thus, C is unibranched, and _X isrationally smoth. By Lemma 1.3, X is rationally smooth as well.As another consequence of (the proof of) Theorem 1.4, let us derive thefollowing re�nement of a result due to Carrell and Peterson [C] Theorem D.Corollary 2. Let T be a torus acting on a variety X with an isolated �xedpoint x, such that the number of closed irreducible T -stable curves throughx is �nite; denote this number by n(X; x). Thendimx(X) � n(X; x):If moreover X is rationally smooth at x, thendimx(X) = n(X; x)



12 M. BRIONand each closed irreducible T -stable curve through x is exactly the �xed pointset of a subtorus of codimension one in T .Conversely, if x is attractive and admits a rationally smooth puncturedneighborhood, and if dimx(X) = n(X; x), then X is rationally smooth at x.Proof. We may assume that X is a�ne and that XT = fxg. Observethat each closed irreducible T -stable curve in X is �xed pointwise by aunique subtorus T 0 � T of codimension one. Furthermore, XT 0 containsonly �nitely closed irreducible T -stable curves through x, and all such curvesmust be contained in XT 0+ (x)[XT 0� (x). Thus, the dimension of both XT 0+ (x)and XT 0� (x) is at most one, and dimXT 0+ (x) + dimXT 0� (x) is at most thenumber of closed irreducible T -stable curves through x in XT 0 . Now theinequality dimx(X) � n(X; x) follows from Theorem 1.2.If X is rationally smooth at x, then each XT 0 is rationally smooth at xas well, by Theorem 1.1. Thus, XT 0 is irreducible at x. It follows that theconnected component of x in XT 0 is either fxg or a closed irreducible T -stable curve through x. Now the equality dimx(X) = n(X; x) follows fromTheorem 1.1.For the converse, we argue as in the proof of Theorem 1.4: the T -�xedpoints in P(X) correspond to T -orbits of dimension one in X , that is, toclosed irreducible T -stable curves through x. Thus, the number of T -�xedpoints in P(X) is dimx(X) = dimP(X) + 1. It follows that P(X) is arational cohomology complex projective space.Remark. The assumption that x admits a rationally smooth puncturedneighborhood cannot be omitted, as shown by the following example. LetX be the hypersurface in A5 with equationx2 + yz + xtw = 0:Then X is irreducible, with singular locus x = y = z = tw = 0, a union oftwo lines meeting at the origin. Let T = Gm �Gm act on A5 by(u; v) � (x; y; z; t; w) = (u2v2x; u3vy; uv3z; u2t; v2w):Then the origin of A5 is an attractive �xed point, X is T -stable of dimensionfour, and X contains four closed irreducible T -stable curves: the coordinatelines, except for the x-axis. But X is not rationally smooth at the origin.To see this, consider the action of Gm on A5 byu � (x; y; z; t; w) = (x; uy; u�1z; t; w):Then X is Gm-stable and XGm is de�ned by y = z = x2 + xtw = 0. Thus,XGm is reducible at the origin. By Theorem 1.1,X is not rationally smooth.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 132. Rational smoothness of orbit closures in 
ag varieties2.1. Attractive slices.We shall apply our criterion of rational smoothness to certain orbit clo-sures. For this, we need the following notion, a variant of [MS] 2.3.2.De�nition. Let X be a variety with an action of a linear algebraic groupH and let x 2 X . A slice to the orbit Hx at x is a locally closed a�nesubvariety S � X which satis�es the following conditions:(a) x is an isolated point of S \Hx.(b) S is stable under a maximal torus T of the isotropy group Hx.(c) The morphism � : H � S ! X(h; s) 7! hsis smooth at (1; x).The slice S is attractive if(d) x is an attractive �xed point for the T -action on S.It is easy to see that there always exists a slice S. If moreover S isattractive, then S \Hx = fxg and the morphism � is smooth everywhere.Proposition. Let X be a variety with an action of a linear algebraic groupH, let x 2 X and let S be a slice to Hx at x. If X is rationally smooth atx (and hence at all points of Hx) and if x is an isolated T -�xed point of S,then the T -variety S satis�es conditions (i), (ii) and (iii) of Theorem 1.4 atx. The converse holds if the T -variety S is attractive.Proof. The map � is H-equivariant; thus, it is smooth at all points (h; x)where h 2 H , and the image of � is a neighborhood of Hx in X . UsingProposition A1, we see that X is rationally smooth along Hx if and only ifS is rationally smooth at x. Now the �rst assertion follows from Theorem1.1, and the second one from Theorem 1.4.As a �rst application, we give a direct proof of a criterion for rationalsmoothness of Schubert varieties, obtained by Carrell and Peterson usingKazhdan-Lusztig theory (see [C] Theorem E).Let G be a connected semisimple group, B � G a Borel subgroup, andT � B a maximal torus with Weyl group W . The T -�xed points in the
ag variety G=B are indexed by W . For w 2 W we still denote by wthe corresponding �xed point, and by X(w) = BwB=B the correspondingSchubert variety; then the dimension of X(w) is the length of w, denotedby `(w). Let x 2 W , then x 2 X(w) if and only if x � w for the Bruhatordering on W .We now recall the construction of slices to Schubert varieties, and thedescription of their T -stable curves. By the Bruhat decomposition, the map(U \ xU�x�1)� (U� \ xU�x�1) ! B(G)(g; h) 7! ghx



14 M. BRIONis an open immersion, and its restrictionU \ xU�x�1 ! Bxg 7! gxis an isomorphism. SetS := X(w) \ (U� \ xU�x�1)x;then S is a T -stable attractive slice to Bx at x in X(w).Let R � W be the set of re
ections. For r 2 R, let T r be its �xed pointset in T , and let Gr be the derived subgroup of the centralizer GT r ; thenGr is a connected semisimple group of rank one. SetC(x; r) := Grx:Then the C(x; r) (r 2 R) are the closed irreducible T -stable curves throughx in G=B. Furthermore, rx � w if and only if C(x; r) is contained in X(w).More precisely, we have x < rx � w (resp. rx < x) if and only if C(x; r) � S(resp. C(x; r) � Bx); see [C] Theorem F.Now, combining the proposition above with Corollary 1.4.2, we obtainthe followingCorollary. Let x, w in W such that x � w, and let n(x; w) be the numberof r 2 R such that rx � w. Then l(w) � n(x; w). Furthermore, X(w) isrationally smooth at x if and only if l(w) = n(y; w) for all y 2 W such thatx � y < w.The �rst part of this result was conjectured by Deodhar and proved byCarrell-Peterson (see [C] Theorem A), Dyer [D] and Polo [Po]; the secondpart is due to Carrell-Peterson (see [C] Theorem E).2.2. Orbits of spherical subgroups in 
ag varietiesWe still consider a connected semisimple group G and we denote by B(G)its 
ag variety. Let H � G be a spherical subgroup, that is, B(G) containsonly �nitely many H-orbits. Let H0 be the connected component of 1 in H ,then H0 is spherical in G, too.Easy but useful properties of H-orbits in B(G) are given by the followingProposition.(i) Each closed orbit is isomorphic to a �nite union of copies of the 
agvariety B(H0).(ii) Let X � B(G) be an orbit closure and X0 � X1 � � � � � X` = X amaximal chain of orbit closures. Then ` = dim(X)� dim B(H0).(iii) Let ~H � H be a subgroup of G which normalizes H and such that~H=H is connected. Then H and ~H have the same orbits in B(G).Proof. (i) Let x 2 B(G) be such that Hx is closed. Then the variety Hxis complete; thus, the same holds for its component H0x. Moroever, the



RATIONAL SMOOTHNESS AND TORUS ACTIONS 15isotropy group Hx = H \ Gx is solvable. Thus, H0x is a Borel subgroup ofH .(ii) Choose a Borel subgroup B of G, then the partially ordered sets ofH-orbit closures in B(G) and of B-orbit closures in G=H are isomorphic.Let Y0 � Y1 � � � � � Y` = Y be a maximal chain of B-orbit closures in G=H .Then Y`�1 is an irreducible component of the complement of the open B-orbit in Y`. Because that orbit is a�ne, we have dim(Y`�1) = dim(Y`)� 1.It follows that dim(Y0) = dim(Y ) � `. Back to H-orbits in B(G), we thushave dim(X0) = dim(X) � `. Furthermore, X0 is a closed orbit, whencedim(X0) = dimB(H0).(iii) Let O � B(G) be an H-orbit and let c be its codimension in B(G).We show that O is ~H-stable, by induction on c.If c = 0 then O is open in B(G). Choose x 2 O, then Hx is an opensubset of ~Hx, whence the product H ~Hx is open in ~H. But H ~Hx is a closedsubgroup of ~H containing H , because ~H normalizes H . Thus, H ~Hx is aunion of components of ~H , and Hx is a union of components of ~Hx. But~H=H is connected, whence Hx = ~Hx.For arbitrary c, observe that the closure O is a union of components ofthe set of x 2 B(G) such that the codimension of Hx in B(G) is at leastc. The latter set is closed and ~H-stable, because ~H normalizes H . As Ois H-stable and ~H=H is connected, it follows that O is ~H-stable. Now theargument above shows that O is ~H-stable.De�nition. The rank `(X) of an H-orbit closure X � B(G) is the codi-mension in X of any closed orbit, or equivalently, the common length of allmaximal chains X0 � X1 � � � � � X` = X of orbit closures.In the case where H = B as in 2.1, the closed orbits are �xed points, andthe rank of X = X(w) is the length of w.For a reductive spherical subgroup H � G and an H-orbit closure X inB(G), we shall show that `(X) satis�es an inequality similar to Corollary 2.1,with equality if X is rationally smooth. For this, we shall analyze the �xedpoints in X of a maximal torus of H , and of its codimension one subtori.2.3. Fixed points in 
ag varieties.Let H � G be a reductive spherical subgroup, and let TH � H be a maximaltorus. For a subtorus T 0 � TH , we denote by GT 0 (resp. HT 0) its centralizerin G (resp. H) and by B(G)T 0 its �xed point in B(G). It is well known thatGT 0 is connected and reductive and that B(G)T 0 contains only �nitely manyorbits of GT 0 , each of them being isomorphic to the 
ag variety B(GT 0). Thetorus T 0 is regular in G if B(G)T 0 is �nite, or equivalently, GT 0 is a maximaltorus of G.Lemma. Notation and assumptions being as above, TH is regular in G.Furthermore, each HT 0 is a reductive spherical subgroup of GT 0.



16 M. BRIONProof. Because H0 acts on B(G) with only �nitely many orbits, (H0)T 0 actson B(G)T 0 with only �nitely many orbits, too; see [R]. It follows that (H0)T 0is spherical in GT 0 . In particular, (H0)TH = TH is spherical and central inGTH . Thus, GTH is a torus, and TH is regular in G.Now assume that the codimension of T 0 in TH is one, and that T 0 issingular in G. Then T 0 � HT 0 � GT 0 and the quotient HT 0=T 0 has rank atmost one. Let G0 be the quotient of GT 0 by its center, and let H 0 be theimage of HT 0 in G0. Then GT 0 and G0 have the same 
ag variety which wedenote by B0 . Furthermore, H 0 is a reductive spherical subgroup, of rank atmost one, of the non trivial connected adjoint semisimple group G0. Thus,H 00 is either the multiplicative group or (P)SL2. Because H 0 has �nitelymany orbits in B0 , we have dim(B0) � 1 in the former case, and dim(B0) � 3in the latter case. Thus, G0 is isomorphic to (PSL2)n with n � 3, or toPSL3. A closer look leads to the following classi�cation.(1) H 0 = G0 = PSL2. Then B0 is projective line P1 with transitive action ofH 0.(2) H 00 is a one dimensional torus of G0 = PSL2. Then B0 = P1, and theH 00-orbits in B0 are two �xed points and their complement. If H 0 is notconnected, then it is the normalizer of H 00, and it exchanges both H 00-�xedpoints in B0.(3) H 0 = PSL2, the diagonal in G0 = PSL2 � PSL2. Then B0 = P1 � P1with diagonal action of H 0. The H 0-orbits in B0 are the diagonal and itscomplement.(4) H 0 = PSL2 = SO3 embedded into PSL3 = G0. We can consider B0 asthe variety of 
ags in projective plane P2, and H 0 as the stabilizer in PSL3of a smooth conic C0. Then the H 0-orbits in B0 are given by the position ofa 
ag (p; d) (where p is a point of P2 and d a line containing p) with respectto C0. So there is a unique closed orbit: the set of 
ags (p; d) such that d istangent to C0 at p. This orbit is isomorphic to P1. And there are two orbitclosures of dimension two, de�ned by: p is in C0, resp. d is tangent to C0.It is easy to see that the maps (p; d) 7! p, resp. (p; d) 7! d identify theseorbit closures to the rational ruled surface of index two, denoted by F2.(5)H 00 = SL2 and G0 = PSL3 where H 00 is embedded as the image of matri-ces of the form 0@ 1 0 00 a c0 b d1A with ad�bc = 1. Denote by ~H 0 the normalizerof H 00 in G0, then ~H 0 is the image of matrices of the form 0@ t 0 00 a c0 b d1Awith t(ad� bc) = 1. Observe that ~H 0 normalizes H 0, and that the quotient~H 0=H 0 is the multiplicative group. Thus, H 0 and ~H 0 have the same orbitsin B0, by Proposition 2.2. Furthermore, ~H 0 is the stabilizer in G0 of a pointp0 in P2, represented by the �rst basis vector of C3, and of a line l0 in



RATIONAL SMOOTHNESS AND TORUS ACTIONS 17P2, represented by the �rst dual basis vector. Thus, ~H 0 has three closedorbits in B0: the set of 
ags (p; d) such that p = p0 (resp. d = d0; p 2 d0and d 2 p0). These orbits are isomorphic to P1. Furthermore, there are two~H 0-orbit closures of dimension two, consisting of 
ags (p; d) such that p0 2 d(resp. p 2 d0). The maps (p; d) 7! p (resp. (p; d) 7! d) identify theses orbitclosures to the blow-up of P2 at the point p0 (resp. the blow-up of the dualprojective plane at the point d0). Thus, both orbit closures are isomorphicto the rational ruled surface F1 of index 1.(6) H 0 = PSL2, the small diagonal in G0 = PSL2 � PSL2 � PSL2. ThenB0 = P1 �P1 �P1 with diagonal action of H 0. The H 0-orbit closures in B0are the small diagonal P1, three partial diagonals isomorphic to P1 � P1,and B0.Remarks. (i) For a symmetric subgroup H of G, we shall see in 2.5 thatonly types (1) to (4) can occur. It can be checked that the same holds if Gis simple and H0 � G is a maximal connected reductive spherical subgroup;for this, one uses Kr�amer's classi�cation of reductive spherical subgroups ofsimple groups [Kr]. But types (5) and (6) do occur in general, e.g. type (5)for H = Sp2n � SL2n+1 = G;and type (6) for H = SO2n+1 � SO2n+1 � SO2n+2 = Gwhere H is embedded in G by h 7! (h; (h; 1)), or for H = G2 � SO8 = Gembedded by its de�ning representation.(ii) By [MS] 6.4, all orbits of symmetric subgroups in 
ag varieties admitattractive slices. But this fails for arbitrary reductive subgroups: considerfor example G = PSL3 and H = SL2 as in type (5). Then we can take forTH the image of diagonal matrices with eigenvalues (1; t; t�1) where t 2 Gm.Let x 2 B(G) be the standard 
ag in C3, then the weights of the TH -actionon the normal space TxB(G)=TxHx are 1 and -1. Thus, Hx admits noattractive slice at x. Furthermore, both H-orbits of dimension two haveunipotent isotropy groups, so that they admit no attractive slice either.2.4. A criterion for rational smoothness.Notation and assumptions being as in 2.3, we shall describe �xed point sub-sets in an H-orbit closure X � B(G), and deduce a necessary condition forrational smoothness of X at a TH-�xed point. We begin with the followingresult, which is easily checked by inspection using the discussion in 2.3.Lemma. For any subtorus T 0 � TH of codimension one, each irreduciblecomponent of XT 0 is smooth, and is either a point (this may occur in type(1)), or P1 (this may occur in all types), or P1�P1 (in types (3) and (6)),



18 M. BRIONor F1 (in case (5)), or F2 (in type (4)), or B(PSL3) (in types (4) and (5)),or P1 � P1 � P1 (in type (6)).For a subtorus T 0 � TH of codimension one, let `T 0(X; x) be the sumof the ranks of the irreducible components of the HT 0-varieties XT 0 whichcontain x. Observe that `T 0(X; x) is 0 in type (1), at most 1 in types (2)and (3), at most 2 in types (4) and (5), and at most 3 in type (6).Proposition. (i) For any x 2 XTH , we have`(X) �XT 0 `T 0(X; x)with equality if X is rationally smooth at x.(ii) If moreover X is irreducible and `(X) � `(Hx) + 2, then X is ratio-nally smooth at x.Proof. (i) By Theorems 1.1, 1.2, we have: dimB(H0) = PT 0 dim B(HT 0;0)and dimx(X) �XT 0 (dimxXT 0+ (x) + dimxXT 0� (x)):Furthermore, we claim thatdimxXT 0+ (x) + dimxXT 0� (x) � dim B(HT 0;0) + `T 0(X; x):Indeed, if XT 0 is irreducible at x, then it is smooth there by (i). Thus, wehavedimxXT 0+ (x) + dimxXT 0� (x) = dimx(XT 0) = dim B(HT 0;0) + `(XT 0)where the �rst equality follows from Theorem 1.2, and the second one is thede�nition of the rank. If XT 0 is reducible at x, then we are in case (4), (5)or (6), and moreover H 0x is closed in B0. In cases (4) and (6), x is attractivein B0 and the claimed inequality is obvious; in case (5), it is checked byinspection. It follows that `(X) �PT 0 `T 0(X; x).If moreover X is rationally smooth at x, then each XT 0 is irreducible atx, and hence smooth there. We conclude by Theorem 1.1.(ii) Let � be a TH-stable slice to Hx at x in B(G); then S := � \ X isa slice to Hx in X . If `(X) = `(Hx) + 1, then S is an irreducible curvewith non trivial action of TH (because TH is regular in G). Thus, S isunibranched at x, and hence rationally smooth. If `(X) = `(Hx) + 2 andTH acts on S with a dense orbit, then S is rationally smooth by Corollary1.4.1. Finally, if `(X) = `(Hx)+2 but TH has no dense orbit in S, then S is�xed pointwise by a subtorus T 0 � TH of codimension one. Thus, S � �T 0and the latter is a slice to HT 0x in BT 0 . Because dim(S) = 2, it follows fromthe classi�cation in 2.3 that S = �T 0 , whence S is smooth.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 192.5. The symmetric case.Consider now a connected semisimple group G with an involutive automor-phism �. Then the �xed point set H = G� is called a symmetric subgroup;it is a reductive spherical subgroup of G. We refer to [S1] for this and forother results on symmetric spaces, to be used below.We shall obtain a precise version of Proposition 2.4 (i), in terms of thecombinatorics of H-orbits in B(G). We begin by relating the approach of2.3 to the structure of symmetric spaces.Let TH � H be a maximal torus, then its centralizer T is a �-stablemaximal torus of G. Thus, � acts on the Weyl group W , on the subset R ofre
ections, and on the set � of roots of (G; T ) as well. For � 2 �, let r� 2 Rbe the corresponding re
ection, and G� � G the corresponding semisimplegroup of rank one. Then G� contains a representative of r�. Finally, setT�H = (TH \ ker(�))0, then the T�H are exactly the codimension one subtoriof TH which are singular in G. De�ne the type of � (or of the correspondingre
ection r�) as the type of T�H in the classi�cation of 2.3.Lemma. (i) There exists a �-stable Borel subgroup B of G containing T ;then B�;0 is a Borel subgoup of H. Any two such Borel subgroups of G areconjugated by W �.(ii) Let � 2 �; then� has type (1) if and only if G� is contained in H (in particular, �(�) = �).� has type (2) if and only if: �(�) = �, G� is not contained in H, and� 6= � + �(�) for all � 2 �.� has type (3) if and only if: �(�) 6= �, and � + �(�) =2 �.� has type (4) if and only if: � + �(�) 2 � (in particular, �(�) 6= �).There are no roots of type (5) or (6).Proof. (i) There exists a pair (B0; T0) where B0 is a �-stable Borel subgroupof G, and T0 is a �-stable maximal torus of B0. Let U0 be the unipotentradical of B0, and let B�0 be the opposite Borel subgroup, with unipotentradical B�0 . Then the product map U�0 �T0�U0 ! G is an open immersion.Thus, the same holds for the product map (U�0 )�;0 � T �;00 � U�;00 ! H .It follows that B�;00 and (B�0 )�;0 are opposite Borel subgroups of H . Inparticular, T �;00 is a maximal torus of H . Thus, we can write TH = hT �;00 h�1for some h 2 H . Taking centralizers in G, we obtain T = hT0h�1; then wecan take B = hB0h�1 . If B0 is another Borel subgroup containing T , thereexists a unique w 2 W such that B0 = wBw�1; now B0 is �-stable if andonly if �(w) = w.(ii) Let T 0 = T�H , then � acts on the group GT 0 and on its quotient G0by its center. Let H 0 be the image of H in G0; then H 0 is a subgroup of�nite index in G0. It follows that (G0; H 0) is not of type (5) or (6), becauseSL2 is not a subgroup of �nite index of a symmetric subgroup of PSL3 orof SL2 � SL2 � SL2. The description of types (1) to (4) follows from thediscussion in [S1] x2.



20 M. BRIONFor B as in the lemma above, the pair (T;B) is called standard. We thenidentify B(G) with G=B; the point x 2 (G=B)T is identi�ed with an elementof W , still denoted by x.Recall that � 2 � is called compact imaginary (resp. non-compact imag-inary; real; complex) if G� is contained in H (resp. �(�) = � but G� isnot contained in H ; �(�) = ��; �(�) 6= ��). In our case, there are no realroots, because the set of roots of (B; T ) is �-stable. Furthermore, re
ectionsof type (1) (resp. (2); (3) and (4)) correspond to compact imaginary roots(resp. certain non-compact imaginary roots; complex roots).We now recall the parametrization of H-orbits in G=B; our notation dif-fers from that in [S1] by an inverse, because B-orbits in G=H are consideredthere. Let N be the normalizer of T in G, then N is �-stable. SetV := fg 2 G j g�1�(g) 2 Ng:Then V is stable by the (H �T )-action: (h; t)g = hgt�1, and each (H �B)-orbit in G meets V in a unique (H � T )-orbit. As a consequence, H-orbitsin G=B are parametrized by the set of double classesV := HnV=T:There is a base point v0 2 V , the image of 1 2 N ; the corresponding H-orbit is closed, e.g. by the Lemma above. Observe that V is stable underright multiplication by N ; this de�nes an action of W on V , denoted by(w; v) 7! w � v.For v 2 V , we denote by X(v) � G=B the corresponding H-orbit closure,and by `(v) its rank. We write v0 � v if X(v0) � X(v). This de�nes apartial order on V , which is studied in [RS].Finally, we shall need the following result, see [S2] 2.5: For any r 2 R oftype (2), there exists g(r) 2 Gr such that g(r)�1�(g(r)) is a representativeof r in N . In particular, g(r) 2 V . Let v(r) be the image of g(r) in V .Theorem. Let v 2 V and let x 2 W such that x � v0 � v. Let n2(v; x) bethe number of re
ections r of type (2) such that x � v(r) � v. For t = 3; 4,let nt(v; x) be the number of re
ections r of type (t) such that rx � v0 � v.Then we have: `(v) � n2(v; x) + 12n3(v; x) + n4(v; x)with equality if X(v) is rationally smooth at x.Proof. We wish to apply Proposition 2.4 (i) combined with the lemma above.For this, given a subtorus T 0 � TH of codimension one, we analyze the con-tribution of T 0 to the formula in that Proposition. We denote by `T 0(v; x)the sum of the ranks of the irreducible components of X(v)T 0 which con-tain x, and by X(v)T 0x the union of these components, i.e., the connectedcomponent of x in X(v)T 0.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 21If T 0 = T rH for r of type (2), the component of x in (G=B)T 0 is the curveC(x; r) considered in 2.1. By [S2] 3.1, this curve is contained in X(v) if andonly if x � v(r) � v. In other words, we have `T 0(v; x) = 1 if x � v(r) � v, and`T 0(v; x) = 0 otherwise.If T 0 = T rH for r of type (3) or (4), observe that X(v)\GT 0x is connected,by the explicit description in 2.3. Thus, we have X(v) \ GT 0x = X(v)T 0x .Now rx � v0 � v i� rx 2 X(v) i� rx 2 X(v)T 0x (because rx 2 GT 0x anyway).For T 0 of type (3), one checks that `T 0(v; x) is the half of the number ofr 2 R such that T rH = T 0 and that rx 2 X(v)T 0x .If r has type (4), then one checks that `T 0(v; x) is at most the number ofr as above, with equality if X(v)T 0x is irreducible.Examples. 1) In the case where TH is a maximal torus of G (that is, �is inner), only types (1) and (2) occur, and we recover the following resultof Springer [S2]: the rank of X(v) is at most the number of non compactimaginary re
ections r such that x � v(r) � v, with equality if X(v) isrationally smooth at x.2) Consider G = SLn with the involution � such that �(g) = tg�1, thenH = SOn. The 
ag variety B(SLn) contains n � 1 irreducible H-stabledivisors D1; : : : ; Dn�1, where each Dm consists of those complete 
ags (V1 �� � � � Vn�1) in Cn such that the restriction of the standard quadratic formto Vm is degenerate.For n � 4, we claim that D1 and Dn�1 are smooth; D2 and Dn�2 arerationally smooth, but singular; and no other Dm is rationally smooth (see[Ku] for a similar result concerning Schubert divisors in arbitrary 
ag vari-eties).To check this, consider �rst the case where n = 2n0 is even. Choosea basis of Cn with coordinates x1; : : : ; xn such that the quadratic form isx1x2n0+x2x2n0�1+ � � �+xn0xn0+1. Let T (resp. B) be the group of diagonal(resp. upper triangular) matrices in this basis. Then (T;B) is a standardpair, and � acts on T by �(t1; : : : ; tn) = (t�1n ; : : : ; t�11 ). The roots of (B; T )are the �i;j (1 � i < j � n) where �i;j(t1; : : : ; tn) = tit�1j . The roots oftype (3) are the �i;j where i+ j 6= 2n0+1, and all other roots have type (2).Let x be the standard 
ag in our basis. Using either [RS] 10.3 or geometricarguments, one checks thatn2(Dm; x) = �n0 � 1 if m = 1 or m = 2n0 � 1n0 otherwise,n3(Dm; x) = � 2n0(n0 � 1)� 2 if m = 2 or m = 2n0 � 22n0(n0 � 1) otherwise.On the other hand, `(Dm) = `(B(SLn)) � 1 = n02 � 1. By the Theoremabove, it follows that D3; : : : ; D2n0�3 are not rationally smooth.In the case where n = 2n0 + 1 is odd, we replace the quadratic form byx1x2n0+1 + � � �+ xn0xn0+2 + x2n0+1. Then the discussion is similar, but now



22 M. BRIONthe roots of type (3) are the �i;j with i 6= n0+1, j 6= n0+1 and i+j 6= 2n0+2,whereas all other roots have type (4). We have `(Dm) = n02 + n0 � 1 for allm, and one checks thatn3(Dm; x) = � 2n0(n0 � 1)� 2 if m = 2 or m = 2n0 � 12n0(n0 � 1) otherwise,n4(Dm; x) = n 2n0 � 1 if m = 1 or m = 2n02n0 otherwise.Again, it follows that D3; : : : ; D2n0�2 are not rationally smooth.It remains to check our assertion for D1 and D2 (because � acts on B(G)and exchanges Dm and Dn�m). For this, let �m : B(SLn) ! Grn;m be thecanonical map to the Grassmanian ofm-dimensional subspaces. Then Dm isthe preimage of the divisor Em of degenerate subspaces, under the �bration�m. For m = 1, because Grn;1 = Pn�1 and E1 is a smooth quadric, D1 issmooth. For m = 2, let Grisn;2 � Grn;2 be the subvariety of totally isotropicplanes. Then E2 contains Grisn;2 as its closed SOn-orbit. Furthermore, onechecks that a slice to Grisn;2 in Grn;2 at the point span(e1 ; e2) isS := fspan(e1 + aen�1 + ben; e2 + cen�1 + aen) j a; b; c 2 Cgwhere (e1; : : : ; en) is the basis introduced above. Thus, a slice to Grisn;2 in E2is S \E2, isomorphic to the quadratic cone (a2� bc = 0). We conclude thatE2 is rationally smooth but singular along Grisn;2. Thus, D2 is rationallysmooth but singular as well.This result, combined with Proposition 2.4 (ii), implies e.g. that all SOn-orbit closures in B(SLn) are rationally smooth for n = 4. This is no longertrue for n = 5, an example being D2 \D3.Remark. Back to the case of an arbitrary symmetric subgroup, consider apoint x 2 X not necessarily �xed by a maximal torus of H . Then theorbit Hx admits an attractive slice at x, by [MS] 6.4. Thus, a criterion forrational smoothness of X along Hx can be derived from Proposition 2.1.This leads to the following question: For a subtorus T 0 of codimension onein a maximal torus of Hx, when is XT 0 rationally smooth at x ?3. Closures of double classes in regular group completions3.1. Construction of slices.Let G be a connected reductive group. Then G�G acts on G by (g1; g2)
 =g1
g�12 . This identi�es G with the homogeneous space (G�G)=diag G wherediagG denotes the diagonal in G�G. Let T � G be a maximal torus,W itsWeyl group, and B, B� two opposite Borel subgroups containing T . ThenB�B� acts on G as above, the orbits being the double classes BwB� wherew 2 W . In particular, the open orbit is BB�.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 23Let X be a (G� G)-equivariant completion of G which is regular in thesense of [BDP]. Then B � B� acts on X with �nitely many orbits, whosestudy was initiated in [B1]. We shall construct attractive slices to theseorbits. For this, we need more notation and results, adapted from [B1] 2.1.Each (G�G)-orbit O � X contains a unique point y such that: (B�B�)yis open in O, and y is the limit of a one parameter subgroup of T . We referto y as the base point of O.Furthermore, O determines two opposite parabolic subgroups P � B andQ � B�, with unipotent radicals Ru(P ), Ru(Q) and common Levi subgroupL = P \ Q, by requiring that the stabilizer (G � G)y is the semidirectproduct of Ru(Q)�Ru(P ) with (diag L)(T � 1)y . In particular, (T �T )y =(diag T )(T�1)y is a maximal torus in (G�G)y. In fact, (T �1)y = (Z�1)ywhere Z denotes the connected center of L.Let � be the root system of (G; T ), then we have the subsets �+ (resp.�L) of roots of (B; T ) (resp. (L; T )). Let WL be the set of all w 2 W suchthat w(�+L) is contained in �+. Then each (B�B�)-orbit in O = (G�G)ycan be written uniquely as (B � B�)(w; �)yfor w 2 W and � 2 WL.Choose representatives ~w, ~� in the normalizer of T , and set x := ( ~w; ~�)y.Then (T � T )x = (w; �)(T � T )y(w�1; ��1)is a maximal torus in (G � G)x and thus in (B � B�)x. The codimensionof (B �B�)x in (G� G)x is `(w) + `(�).For simplicity, set Zy := (Z � 1)y;then Zy is the isotropy group of y for the left action of T on T . Set�(y) := fz 2 T j y 2 Zyzg:Because T is a smooth toric variety, �(y) is a Zy-stable slice to Ty at y in T .Because X is regular, �(y) is a slice to O in X as well. Furthermore, �(y)is isomorphic to a�ne space Ad where d = codimT (Ty) = codimX(O), andZy acts linearly on Ad by d independent characters. Thus, �(y) containsexactly d closed irreducible Zy-stable curves through y: the coordinate linesC1(y); : : : ; Cd(y).For any � 2 �, let U� � G be the corresponding unipotent subgroup. Ifw�1(�) 2 �+ [�L, then Uw�1(�) does not �x y, whence U�� 1 does not �xx. Thus, C(x; �) := (U� � 1)xis an irreducible locally closed curve through x, stable by (T � T )x. Wede�ne similarly C(x; �)� := (1� U�)x



24 M. BRIONfor � 2 � such that ��1(�) 2 �� [ �L. Finally, we setCi(x) := ( ~w; ~�)Ci(y)for 1 � i � d. Now we can state the followingTheorem. Notation being as above, the map(U� \ wUw�1)� (U \ �U���1)� �(y) ! X(g; h; z) 7! (g ~w; h~�)zis an embedding, and its image S is an attractive (T � T )x-stable slice to(B � B�)x at x in X. Furthermore, the closed irreducible (T � T )x-stablecurves through x in S are the C(x; �) (� 2 �� \ w(�+)), the C(x; �)�(� 2 �+ \ �(��)), and the Ci(x) (1 � i � d).Proof. After multiplication by ( ~w; ~�)�1, we reduce to the somewhat simplerstudy of X along the orbit (w�1Bw; ��1B��)y. For this, set~S := (U \ w�1U�w)� (U� \ ��1U�)� �(y); ~y := (1; 1; y):Consider the map � : ~S ! X(g; h; z) 7! (g; h)z:The group (T � T )y acts on ~S by(u; v) � (g; h; z) = (ugu�1; vhv�1; uv�1z)with �xed point ~y, and � is equivariant. Identifying ~S with a�ne space ofdimension `(w) + `(�) + d, the action of (T � T )y is linear, with weights:(�; 0) (� 2 �+ \ w�1(��)), (0;��) (� 2 �� \ ��1(�+)), and the weightsof C1(y); : : : ; Cd(y). Furthermore, the multiplicity of each weight is one,and (T � T )y = (diag T )Zy where Zy acts on C1(y); : : : ; Cd(y) through dlinearly independent weights. It follows that ~y is attractive, and that the(T � T )y-stable curves in ~S are the (U� � 1)y (� 2 �+ \ w�1(��)), the(1� U�)y (� 2 �� \ ��1(�+)), and C1(y); : : : ; Cd(y).Furthermore, from the description of (G � G)y and the fact that �(y)is transversal to (G � G)y at y, it follows that � is �etale at ~y, and that��1(�(~y)) = f~yg. Because ~y is attractive, � is an isomorphism onto itsimage, a locally closed subvariety of X .Finally, we check that the action mapw�1Bw � ��1B�� � �( ~S)! Xis smooth at (1; 1; y): this follows from the decompositions of tangent spacesTyX = Ty(G� G)y � Ty�(y) = Ty(B �B�)y � Ty�(y)= Ty(w�1Bw���1B��)y�Ty((U \w�1U�w)� (U� \��1U�)y)�Ty�(y)= Ty(w�1Bw � ��1B��)y � TyS(y)which follow in turn from the structure of (G� G)y described above.Applying Corollary 1.4.1, we obtain immediately the following



RATIONAL SMOOTHNESS AND TORUS ACTIONS 25Corollary. Any (B � B�)-orbit closure in a regular completion of G isrationally smooth in codimension two.In contrast, (B � B�)-orbit closures in regular completions are singularin codimension two, apart from very few exceptions (see [B1] Corollary 2.2).3.2. More on slices and closures of double classes.We just saw that closures of double classes in regular group completionsadmit attractive slices at all points; furthermore, these slices contain only�nitely many invariant curves. Therefore, we can obtain a criterion forrational smoothness of these closures, similar to that for Schubert varieties(Corollary 2.1). To make this explicit, we need to know more about invariantcurves, and to describe the inclusion relations between closures of doubleclasses as well.Notation being as in 3.1, we begin by analyzing the closed irreducible(T � T )x-stable curves through x in the slice S. Because X is regular, the(G � G)-orbit O of codimension d is contained in the closure of d orbitsO1; : : : ;Od of codimension d� 1. Furthermore, we can index these orbits sothat the base point yi of each Oi belongs to the curve Ci(y). Thus, we haveCi(y) = Zyyi = Zyyi[fyg, and Ci(x)�fxg is contained in (B�B�)(w; �)yi.The behaviour of the other curves is given by the followingProposition. Notation being as above, the curve C(x; �)�fxg is containedin (B � B�)(r�w; �)y for any � 2 �� \ w(�+). Similarly, C(x; �)� � fxgis contained in (B � B�)(w; r��)y for any � 2 �+ \ �(��).Proof. Set _U� := U� � f1g, then C(x; �)� fxg = _U�x and_U� � U��r�TU�� = U��Tr�wU�w�1(�)w�1 � Br�wU�w�1(�)w�1:Set � := w�1(�), then � 2 �+. If � =2 �+L then U�� � 1 �xes y and theassertion follows. Otherwise, (U�� � 1)y = (1 � U��)y because � 2 �+L .Thus, we have( _U� � 1)x � (Br�wU�� ; �)y = (Br�w; �U��)y � (B �B�)(r�w; �)ybecause �U�� = U��(�)� is contained in B�� . The proof of the secondassertion is similar.We now describe the inclusion order between closures of (B�B�)-orbitsin X . This is given by the lemma below, where w0;L denotes the longestelement in WL. A closely related statement is obtained in [PPR] for reduc-tive algebraic monoids; the latter can be considered as a�ne embeddings ofconnected reductive groups.Lemma. Notation being as above, the closure of (B � B�)(w; �)y in O =(G � G)y is the union of the (B � B�)(w0; � 0)y where w0; � 0 2 W satisfyw0 � w and � 0w0;L � �w0;L.



26 M. BRIONIf moreover O0 � O is a (G� G)-orbit with base point y0 and associatedLevi subgroup L0, then(B � B�)(w; �)y \ O0 =[ (B �B�)(wv; �v)y0(decomposition into irreducible components), where the union is over allv 2 WL such that �v 2 WL0 and `(w) = `(wv) + `(v).Proof. Consider the (B� �B)-orbits in O. We claim that the orbit (B� �B)(1; w0;L)y is closed. Indeed, setting BL := B \ L and B�L := B� \ L, wehave B� = B�LRu(Q) and B = BLRu(P ), whence(B� � B)(1; w0;L)y = (B�L � BL)(1; w0;L)y= (1; w0;L)(B�L � B�L )y = (1; w0;L)(1�B�L )yand (1� B�L )y identi�es with the image of B�L in L=Zy , which is closed inthere.Now we have B�� = B��B�L (because �B�L ��1 � B�), whence(B �B�)(w; �)y = (B � B�)(w; �w0;L)(1; w0;L)B�L y:Equivalently,(B � B�)(w; �)y = (B � B�)(w; �w0;L)(B� � B)y:So the canonical map from(B �B�)(w; �w0;L)(B� �B)�B��B (B� � B)(1; w0;L)yto (B �B�)(w; �)y is dominant and proper, hence surjective. By the Bruhatdecomposition, the closure in G of (B � B�)(w; �w0;L)(B� � B) is theunion of the double classes (B � B�)(w0; � 0w0;L)(B� � B) with w0 � wand � 0w0;L � �w0;L. This implies the �rst assertion, whereas the secondassertion follows from [B1] Theorem 2.1.3.3. Singularities of closures of double classes.Using the combinatorics of 3.2, we show that the closure of a double classBwB� at a �xed point of B �B� contains in general all closed irreducible(T � T )-stable curves through that point (this improves on [B1] Theorem2.2, with a more natural proof). Thus, this closure is not rationally smooth,as a rule.An exception to that rule is the case where G = PGL(2). Indeed, thatgroup has a unique regular completion X , the projectivization of the spaceof 2 � 2 matrices. Furthermore, the closure in X of the standard Borelsubgroup B is isomorphic to P2 and hence smooth; it contains only twoclosed irreducible (T � T )-stable curves through the (B � B)-�xed point.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 27Similarly, the group SL2 has a unique regular completion X , a quadric inthe projective completion of the space of 2 � 2 matrices. Furthermore, theclosure in X of the standard Borel subgroup B is a non-degenerate quadraticcone of dimension two. Thus, B is singular, but rationally smooth; again,it contains only two closed irreducible (T � T )-stable curves through the(B �B)-�xed point.We shall see that all exceptions arise from both examples above. To stateour result in a precise way, we need the followingDe�nition. A simple root � is called isolated if � is not connected to anysimple root in the Dynkin diagram of G. In particular, G has no isolatedsimple root if and only if the quotient of G by its center contains no directfactor isomorphic to PGL(2).Theorem. Let X be a regular completion of G, let w 2 W and let x 2 Xbe a �xed point of B � B�. If G has no isolated simple root, then BwB�contains all closed irreducible (T�T )-stable curves through x. In particular,the tangent space to BwB� at x is the whole tangent space to X at x, andBwB� is not rationally smooth there unless w = 1, that is, BwB� = X.Proof. Because BwB� contains Bw0B�, we may assume that w = w0.Then the slice S at x is a (T � T )-stable open neighborhood of x. Further-more, the closed irreducible (T � T )-stable curves through x in S are: theC(x; �) = (U� � 1)x (� 2 ��), the C(x; �)� = (1 � U�)x (� 2 �+), andC1(x); : : : ; Cl(x) where l is the rank of G. Furthermore, C(x; �) � fxg iscontained in (B�B�)(r�; 1)x by Proposition 3.2, and similarly for C(x; �)�.Let z be the base point of the closed orbit Z := (G � G)x, then x =(w0; w0)z where w0 2 W is the longest element. We have(B � B�)(r�; 1)x = (B � B�)(r�w0; w0)z � Bw0B�where the inclusion follows from Lemma 3.2. Thus, C(x; �) is contained inBw0B�. The argument for C(x; �)� is similar.Consider now a curve Ci(x) where 1 � i � l. By Proposition 3.2, thereexists a (G�G)-orbit Oi with base point zi such that dim(Oi) = dim(Z)+1and that Ci(x)� fxg is contained in (T � T )(w0; w0)zi. Let P , Q, L, Z beassociated to Oi as in 3.1. Then dim(Z) � dim(Zyi) = dim(T ) � 1. Thus,either P = B, or P is a minimal parabolic subgroup containing B.In the former case, (G � G)yi is the kernel of a character of B� � B.Arguing as above, we obtain that Ci(x) is contained in BwB�.In the latter case, let � be the simple root corresponding to P , and setW� := fw 2 W j w(�) 2 R+g:Then we have by Lemma 3.2:Bw0B� \ Oi = [v2W� (B � B�)(w0v; v)zi:



28 M. BRIONChoose a simple root � which is connected to � in the Dynkin diagram.Then r�r� and w0r�r�r� are in W�. Thus,Bw0B� � (B � B�)(r�r�r�; w0r�r�r�)zi � (B � B�)(w0; w0)ziwhere the �rst inclusion follows from Lemma 3.2, and the second one fromthat Lemma applied to w = r�r�r�, � = w0r�r�r�, w0 = � 0 = w0. Indeed,w0 � w is clear, and � 0r� = w0r� � w0r�r� = �r� because r� � r�r�.So we conclude that Ci(x) is contained in Bw0B�. The remaining asser-tions follow now from Corollary 1.4.2.AppendixProposition A1. Let X be an algebraic variety of dimension d and letx 2 X.(i) The dimension of the space H2dx (X) is the number of d-dimensionalirreducible components of X through x.(ii) If X is rationally smooth at x, then it is irreducible at x.(iii) Let � : X ! Y be the quotient by the action of a �nite group G. IfX is rationally smooth at x, then Y is rationally smooth at �(x).(iv) Let � : X ! Y be a smooth morphism. Then X is rationally smoothat x if and only if Y is rationally smooth at �(x).Proof. (i) Let TX;Q be the dualizing complex of X for sheaves of Q-vectorspaces [V]. For each integer m, the homology sheaf Hm(TX;Q) is associatedwith the presheaf U 7! Hmc (U)� (the dual of cohomology with compactsupports). This presheaf vanishes for m > 2d, and is a sheaf for m = 2d.Furthermore, by [V] Corollaire 2.6.5, the stalk of TX;Q at x is the dual ofR�x(QX) where QX denotes the constant sheaf on X associated with Q.It follows that U 7! H2dc (U) is a sheaf, and that its stalk at x is H2dx (X).This implies our assertion.(ii) It follows from (i) that X has a unique irreducible component Y ofdimension d which contains x. If X has another irreducible component Zof dimension e < d which contains x, then we can choose a smooth pointz 2 Z � Y arbitrarily close to x. Now H2ez (X) = H2ez (Z) is non zero, acontradiction.(iii) Denote by QX the constant sheaf on X associated with Q. Then Gacts on the direct image ��QX and the subsheaf of invariants �G� QX isisomorphic to QY via the map QY ! ��QX (indeed, this map induces anisomorphism on stalks). Furthermore, Ri��QX = 0 for i � 1. It followsthat �� : H�(X)! H�(Y ) restricts to an isomorphismH�(X)G �= H�(Y ):Considering the isomorphisms above for X and X ���1�(x) = X�Gx, weobtain an isomorphism H�Gx(X)G �= H��(x)(Y ):



RATIONAL SMOOTHNESS AND TORUS ACTIONS 29Furthermore, the left hand side is isomorphic to( Mg2G=GxH�gx(X))G �= H�x(X)Gx :Because X is rationally smooth at x, the vector space H�x(X) is one dimen-sional, concentrated in degree 2 dimx(X), and Gx acts trivially there. Thus,Y is rationally smooth at �(x).(iv) Shrinking X and Y if necessary, we can factor � as an �etale morphismf : X ! Y �An followed by projection g : Y � An ! Y . By excision, wehave Hmx (X) �= Hmf(x)(Y �An). Furthermore, by the K�unneth isomorphism,we have Hm(y;z)(Y �An) �= Hm�2ny (Y ). It follows that Hmx (X) is isomorphicto Hm�2n�(x) (Y ).Proposition A2. For a torus T acting on a variety X with a �xed pointx, the following conditions are equivalent:(i) The weights of T in the tangent space TxX are contained in an openhalf space.(ii) There exists a one-parameter subgroup � :Gm ! T such that, for ally in a neighborhood of x, we have limt!0 �(t)y = x.If (ii) holds, then the setXx := fy 2 X j limt!0�(t)y = xgis an open a�ne T -stable neighborhood of x, which admits a closed T -equivariant embedding into TxX.Proof. For equivalence of (i) and (ii), we can replace X by any open a�neT -stable neighborhood of x, and thus suppose that X is a�ne. Let A bethe algebra of regular functions on X , and let mx be the maximal ideal ofA corresponding to x. Then T acts on A so that mx is T -stable, and TxXis the dual space of mx=m2x.If (i) holds, then we can �nd a one parameter subgroup � which is positiveon all weights of TxX . Then � is negative on all weights of m=m2 and thus,of mn=mn+1 for all positive integers n. Because A �= �n�0mn=mn+1 asa T -module, the action of � on A has negative weights, and A� = C. Itfollows that limt!0 �(t)y = x for all y 2 X .Conversely, if (ii) holds, then the algebra A is negatively graded via �.Thus, TxX is positively graded via �.For arbitrary x, observe that Xx is contained in any open T -stable neigh-borhood of x in X . Thus, to check that Xx is open and a�ne, we mayassume that X is a�ne; now Xx = X by the argument above. Let V be aT -stable complement to m2x in mx. Then V generates the algebra of regularfunctions on Xx (this follows from the graded version of Nakayama's lemma;see, e.g. [E] p. 135). Thus, the corresponding map Xx ! V � is a closedequivariant embedding. Furthermore, V is isomorphic to (TxX)�.



30 M. BRIONProposition A3. Let X be an a�ne variety with a Gm-action and anattractive �xed point x. Then there exists a Gm-module V and a �niteequivariant surjective morphism � : X ! V such that ��1(0) = fxg (as aset).Proof. Let A be the algebra of regular functions over X , thenA = 1Mn=0 Anis positively graded by the Gm-action. For any positive integer r, setA(r) := 1Mn=0 Anr:Then A is a �nite module over A(r), and there exists r such that A(r) isgenerated by its elements of minimal degree. So we can assume that A isgenerated by its elements of degree 1.For any irreducible component Y of X , the set of f 2 A1 such thatf(Y ) = 0 is a proper linear subspace of A1. So there exists f 2 A1 suchthat f(Y ) 6= 0 for all such Y . Let X 0 � X be the zero set of f , then x 2 X 0and dim(X 0) = d � 1 where d = dim(X). So we construct inductivelyf = f1; f2; : : : ; fd 2 A1 such that x is their unique common zero. Considerthe morphism � = (f1; f2; : : : ; fd) : X ! Ad:Then � is equivariant for the Gm-action on Ad by multiplication, and��1(0) = fxg: the quotient of A by its ideal generated by f1; : : : ; fd is�nite dimensional. By the graded version of Nakayama's lemma, it followsthat � is �nite. Because dim(X) = d, the map � is dominant, and hencesurjective.Proposition A4. Let X be a connnected variety with a non trivial actionof a torus T and a �xed point x. Then there exists a closed irreducibleT -stable curve C � X which contains x as an isolated �xed point.Proof. By induction on the dimension of X at x, the case of dimensionone being trivial. We may assume that X is a�ne and irreducible. Let� : X ! X==T be the quotient in the sense of geometric invariant theory.Then � is surjective, and its �bers are connected; because T acts non triviallyon X , these �bers are in fact in�nite. In particular, the set��1�(x) = fy 2 X j x 2 Tygis in�nite. Let y 2 ��1�(x), y 6= x. If dim(Ty) = 1, we can take C = Ty;otherwise, we can choose z 2 Ty�Ty, z 6= x. Then x 2 Tz with dim(Tz) <dim(Ty), and we conclude by induction.



RATIONAL SMOOTHNESS AND TORUS ACTIONS 31Proposition A5. Let T be a torus acting on a variety X and let O � Xbe an orbit. Then O admits an open a�ne T -stable neighborhood U in X,with an equivariant retraction � : U !O.Proof. We may assume that X is a�ne. Let f be a regular function onX which vanishes identically on O � O but not on O, and which is aneigenvector of T . Then f has no zero in the orbit O, and therefore O isclosed in the open a�ne T -stable subset X \ (f 6= 0). Thus, we may assumethat O is closed in X .The orbit O is isomorphic to a torus. Choose such an isomorphism f :O ! Gnm, then the coordinate functions f1; : : : ; fn are eigenvectors of T .Because O is closed in X , we can extend f1; : : : ; fn to regular functions onX , eigenvectors of T . They de�ne an equivariant morphism F : X ! Anwhich maps O isomorphically toGnm. Then we can take U = F�1(Gnm).Proposition A6. Let T be a torus acting on a variety X. Let T 0 � T be asubtorus, and iT 0 : XT 0 ! X the inclusion of the �xed point set. Then themap i�T 0 : H�T (X)! H�T (XT 0)becomes an isomorphism after inverting �nitely many characters of T whichrestrict non trivially to T 0.Proof. Observe that the kernel and cokernel of i�T 0 are both modules overH�T (X�XT 0). Thus, it is enough to prove that H�T (X �XT 0) is killed by aproduct of characters which restrict non trivially to T 0. In other words, wemay assume that T 0 �xes no point of X .Let U � X and O be as in Proposition 4 above. Then H�T (U) is a moduleover H�T (O) and the latter is killed by all characters which restrict triviallyto the isotropy group � of O. Because T 0 �xes no point of O, we can �nd acharacter � which restricts trivially to � but not to T 0. Now the kernel andcokernel of the map H�T (X) ! H�T (U) are modules over H�T (X � U), andwe conclude by Noetherian induction.References[A] A. Arabia, Classes d'Euler �equivariantes et points rationnellementlisses, Annales de l'Institut Fourier, to appear..[BDP] E. Bifet, C. De Concini, and C. Procesi, Cohomology of regular em-beddings, Adv. Math. 82 (1990), 1{34.[Br] G. E. Bredon, Introduction to Compact Transformation Groups, Aca-demic Press, New York, 1972.[B1] M. Brion, The behaviour at in�nity of the Bruhat decomposition,Comment. Math. Helv. 73 (1998), 137{174.[B2] M. Brion, Equivariant cohomology and equivariant intersection the-ory, in: Representation Theories and Algebraic Geometry (A. Broerand A. Daigneault, ed.); Kluwer, 1998, pp. 1{37.
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