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Abstract. We obtain a criterion for rational smoothness of an algebraic variety
with a torus action, with applications to orbit closures in flag varieties, and to
closures of double classes in regular group completions.

Introduction

For a complex algebraic group acting on a complex flag variety with
finitely many orbits, the geometry of orbit closures is of importance in rep-
resentation theory; the most interesting cases are Schubert varieties (in rela-
tion with category O), and orbit closures of symmetric subgroups (in relation
with Harish-Chandra modules), see e.g. [Ka].

In particular, it would be useful to characterize rationally smooth points
of an orbit closure, i.e., those points where the local cohomology with con-
stant coefficients is the same as for a point of a smooth variety.

Criteria for rational smoothness of Schubert varieties have been obtained
by Kazhdan-Lusztig [KL1], [KL2] and then by Carrell-Peterson [C], Kumar
[Ku] and Arabia [A]. The latter criteria hold, more generally, for varieties
where a torus acts with isolated fixed points, such that all weights of the
tangent space at such a fixed point are contained in an open half-space and
have multiplicity one.

But that condition can fail for orbit closures of symmetric subgroups in
flag varieties (e.g., for SO,, acting on the flag variety of SL,,). In the present
paper, we obtain a criterion for rational smoothness of varieties with a torus
action, which applies to these orbit closures as well. Our main result can be
stated as follows, in a somewhat weakened version.

Theorem (1.4). Let X be a complex algebraic variety with an action of a

torus T. Let x € X be an attractive fized point of T, that is, all weights
of T in the tangent space T, X are contained in an open half-space. For a
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subtorus T' C T, let XT' c X beits fized point set. Then we have
dim, (X) <> dim, (X7
Tl

(sum over all subtori of codimension one), and this sum is finite.

Furthermore, X is rationally smooth at x if and only if the following
conditions hold:

(i) A punctured neighborhood of x in X is rationally smooth.

(ii) For any subtorus T' C T of codimension one, the fized point subset
XT' s rationally smooth at x.

(iii) We have dimq(X) = >, dim,(XT") (sum over all subtori of codi-
mension one).

Assume moreover that all weights in the tangent space T,X have mul-
tiplicity one. Then the subsets X identify with coordinate lines in T,.X,
and the sum of their dimensions is the number n(X, z) of closed irreducible
T-stable curves through z. So we obtain dim,(X) < n(X, z) with equality
for rationally smooth z. This follows also from work of Carrell-Peterson
(see [C] Theorem D), and Arabia [A], and will be generalized below (1.4
Corollary 2).

Consider now a connected semisimple group G, its flag variety B(G),
and a symmetric subgroup H C G, that is, the fixed point subgroup of an
involution 8 of . Let Ty be a maximal torus of H, with centralizer T in
G. Then T is a maximal torus of G, stable by 6. The Ty-fixed points in
B(G) are the (finitely many) T-fixed points, and the fixed points of subtori
T' C Ty of codimension one can be described completely in terms of the
action of # on roots of (G, T) (2.5).

Then our main result leads to an inequality for the dimension of an H-
orbit closure X C B(G), with equality if X is rationally smooth at a Ty-
fixed point (2.5); this generalizes a result of Springer [S2] concerning inner
involutions. As an application, we characterize those SO ,-orbit closures of
codimension one in B(SL, ), which are rationally smooth (2.5).

Actually, much of our analysis extends to any reductive subgroup H C G
having only finitely many orbits in B(G) (2.2, 2.3). However, such orbits
need not admit an attractive “slice” (2.3), whereas orbits of a symmetric
subgroup do admit such a slice, see [MS] 6.4.

Another application of our criterion is given in Section 3; it concerns
double classes BgB where B is a Borel subgroup of a connected reductive
group G, and their closures BgB in a smooth (G'x )-equivariant completion
of GG which is regular in the sense of [BDP]. We show in 3.1 that these
closures admit attractive slices at all points, and that they are rationally
smooth in codimension two. This generalizes classical results for Schubert
varieties [KL1].

However, closures of double classes are not rationally smooth, apart from
very few cases (3.3). And almost all closures of double classes are singular
in codimension two (see [B1] Corollary 2.2).



RATIONAL SMOOTHNESS AND TORUS ACTIONS 3

Although our results are stated for complex algebraic varieties, our argu-
ments adapt to the case of an algebraically closed field of any characteristic,
with rational cohomology replaced by l-adic cohomology. This makes the
exposition rather heavy at several places. An appendix collects results on
rational smoothness and on torus actions, for which we did not find suitable
references.

This work was begun during a staying at the Ohio State University in
January 1998. I thank this university for its hospitality, and G. Barthel, W.
Fulton, S. Guillermou, R. Joshua, L. Kaup and T. Springer for discussions
and e-mail exchanges. 1 also thank both referees for their careful reading
and useful suggestions.

1. A criterion for rational smoothness

1.1. Necessary conditions.

In what follows, we consider complex algebraic varieties, that is, separated
reduced schemes of finite type over C. With this convention, varieties need
not be irreducible. For such a variety X, we denote by H*(X) cohomology
of X with rational coefficients. For a point z € X, we denote by

HX(X) = H*(X, X — {2})

xr

cohomology with support in {z}, and by dim,(X') the dimension of the local
ring of X at z.

Definition. X is rationally smooth at x if, for all y in a neighborhood
of z in the complex topology, H,(X) is zero for all m # 2dim,(X), and

H, dim,, (X) (X) is isomorphic to Q.

If X is rationally smooth at a point z, then it is irreducible at that
point (see Proposition Al). The set of rationally smooth points is open
for the complex topology, and contains all smooth points. More generally,
quotients of smooth varieties by finite groups are rationally smooth (see
e.g. Proposition Al). Other examples of rationally smooth varieties are
unibranched curves.

We shall obtain necessary conditions for rational smoothness of a variety
X at a fixed point of an algebraic action of a torus 7' (that is, 7" is an
algebraic group isomorphic to a product of copies of the multiplicative group
G,.). We shall always assume that X is covered by open affine T-stable
subsets. By [Su], this assumption holds for T-stable subvarieties of normal
T-varieties.

Theorem. LetT be a torus acting on a variety X with a fived point x. If
X is rationally smooth at x, then, for each subtorus T' C T, the fized point
set X1 is rationally smooth at x. Furthermore, we have

dim, (X) — dim, (X7) = ) " (dim, (X7) - dim, (X))
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(sum over all subtori T' CT" of codimension one).

Proof. We use equivariant cohomology (see e.g. [H]) which we briefly review.
Let 't — Br be a universal principal bundle for T'. Then T acts diagonally
on X x Ep with a quotient denoted by X Xp Ep. Let

H3(X) = H*(X x7 Fr)

be the T-equivariant cohomology ring of X with rational coeflicients. The
map
X xr Fr — FEr/T = Br

is a fibration with fiber X, and By is simply connected. Thus, there is a
spectral sequence

H?(Br) @ HY(X) = HZT(X)

and H}(X)is a module over H*(Br). The latter is the symmetric algebra of
the character group of T', where each character has degree 2. The inclusion
ir : XT — X induces a H*(Br)-linear map

i H3(X) = H3(XT) = H*(By) @ H(XT).

By the localization theorem (see [H] or Proposition A6), i becomes an
isomorphism after inverting all non trivial characters of 7.
Let y € XT. Denote by

H7,(X) = H"(X x7 Er, (X = {y}) x7 ET)
equivariant cohomology of X with support in {y}, and consider the map
iyt Hp (X)) = Hy (XT) = H*(Br) @ H(XT).

Applying the localization theorem to X and X — {y}, we see that 7, Is an
isomorphism after inverting all non trivial characters. On the other hand,
because X is rationally smooth at z, the spectral sequence

HP(Br) © HY(X) = HF /(X)

degenerates for all y in a neighborhood of  in XT. Thus, Hr (X)) is a free
H*(Br)-module generated by an element of degree 2 dim, (X) = 2dim,(X).
It follows that the space H (XT) is one dimensional, and hence that X7 is
rationally smooth at z, e.g. by Proposition Al (this can also be deduced
from Smith theory; see [Br] Chapter III, Corollary 10.11). Furthermore,
identifying the H*(Br)-modules Hy .(X) and Hj (XT) with H*(By), the
map i . becomes multiplication by a homogeneous element f € H*(Br) of
degree 2dim,(X) — 2dim,(X7T). By the localization theorem, f is a scalar
multiple of a product of characters.
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Let x be a primitive character dividing f, and let T’ be the kernel of
X, a subtorus of T of codimension one. Then i7 : X7 — X factors as
L XT & XT' followed by 2 : X7 5 X. By the localization theorem
again, the map

i;“’,ac : H’;,l’(X) — H;,w(XTl)
becomes an isomorphism after inverting all characters of T which restrict
non trivially to 77, i.e., which are not multiples of y. Furthermore, xT
is rationally smooth at z by the first step of the proof. Thus, we can
identify HZ% (X)) with H*(Br); then ipi, identifies with multiplication
by a produczc of characters which are not multiples of .

Choose a subtorus 7" C T of dimension one such that the product map
T'xT" — T is an isomorphism. Then the character group of T" is generated
by the restriction of y. Furthermore, we can take EFp = Epi X Eru, then
XTI X ET = BTI X (XTl X ETII) and XT X ET = BTI X (XT X ETII).
Thus, we have isomorphisms

H; (XT') = H*(Bp) @ Hyu o(X7), Hi ,(XT) 2 H(Br) @ Hi (X7

compatible with i, 7, . Applying the localization theorem to the T"-variety
XTl7 it follows that

i;“,T’,x : H%,x(XT ) — H%,GU(XT)

is an isomorphism after inverting x. In other words, i} 7. . identifies with
multiplication by a power x"x, and f is divisible by x"x but not by y™xt!.
Taking degrees, we obtain 2n, = 2dim,(X7) — 2dim,(X7). Now f is a
scalar multiple of Hx X" (product over all primitive characters) and our
relation on dimensions follows by taking degrees. [J

1.2. An inequality for dimensions of fixed points.

Let X be a variety with an action of a torus T and a fixed point z. In general,
there is no inequality between dim,(X) — dim,(X7) and the sum (over all
subtori of codimension one) Y, (dim, (X7") — dim, (X 7)), as shown by the
following

Example. Let X be the hypersurface in A* with equation
zy + 2zt = 0.
Let T = G,, X G,, act on A* by
(u,v) - (2,9, 2,t) = (uz,u 'y, vz, v ).

Then X is T-stable and the origin is the unique fixed point (and the unique
singular point as well). The non trivial subsets X7 are: zy=2z=1t=10
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for 7" = {1} x G,,,, and @ = y = zt = 0 for 7! = G,, x {1}. Thus,
S dim, (XT) = 2 whereas dim,(X) = 3.
On the other hand, consider the action of T = G,, X G,, on A* by

(u,v) - (2,9, 2,t) = (WP, vy, utvz, uw’t).

Then again X is T-stable and the origin is the unique fixed point; but now
the X7" are the four coordinate lines, whence Do dim, (XT") = 4.

However, we shall obtain an upper bound for dim,(X) — dim,(X7) in
terms of certain subsets of the X”'. Observe that T acts on X7’ through
its quotient T'/T" which we can identify with G,,. Denote by XII(JU) (resp.
XT'(2)) the set of all y € XT" such that z is the limit of ty as t — 0 (resp.
t=! — 0) where ¢t € G,,. Then both XIl(w) and X7 (z) are locally closed

T-stable subsets of XTl7 and z is their unique common point.

Theorem. Let X be a T-variety with a fized point x. Then, notation being
as above, there are only finitely many subtori T' C T of codimension one
such that XT # X1, and we have

dim, (X) — dim,(X*) < "(dim, X' (2) + dim, X*'(2))

(sum over all subtori of codimension one).
..
If moreover X*' is smooth at x, then

dim, XI'(2) + dim, XT'(z) = dim,(XT') - dim,(XT).
In particular, if each XT' is smooth at x, then

dim, (X) = dim,(X7) <> (dimy(X7") - dim, (X 7).

Proof. We may assume that X is affine; then X admits a closed equivariant
embedding into a T-module M, which maps z to 0. Because MIl(O) is a
linear subspace of M, it follows that XII(JU) =XnN le (0) is closed in X.
By definition, XIl(w) contains a unique closed orbit of T'/T" : the fixed

point x. Thus, there exists a T/T'-module V_l_Tl and an equivariant finite
surjective morphism
T | T T
Ty Xy (z) = V]

such that 7T_|T_l(x) = 0 (by a version of Noether normalization lemma, see
e.g. Proposition A3). Because XIl(w) is T-stable and closed in X, we can

! . . .
extend 7T_|T_ to an equivariant morphism

pzl X — V_|_Tl.
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Similarly, we have pzl X v

Observe that there are only finitely many subtori 77 C T of codimension
one, such that ViTl is non zero: indeed, such a subtorus is contained in the
kernel of a weight of T in the tangent space T, X. Let V denote the product
of all the V', and let

p: X =V
be the product morphism; then p(XT) = {0}, because p(z) = 0 and VT =
{0} by construction.

Shrinking X, we may assume that each irreducible component of X7*
contains x; in particular, X7 is connected. Then we claim that X7 is a
connected component of the fiber p~1(0). Otherwise, there exists an closed
irreducible T-stable curve C' C p~'(0) such that x is an isolated fixed point
of C' (see e.g. Proposition A4). Then T acts on C' through some non trivial
character x. Thus, C is contained in XT" where T' C T is the connected
kernel of y. Furthermore, because T acts non trivially on C', this curve
must be contained in XIl(w) U X™'(2). But then p(C)) has dimension one,
by construction of p.

From the claim, it follows that

dim,(X) < dim, p7'(0) + dim(V) = dim (X T) + dim (V)

= dim, (XT) + Y (dim(V{") + dim(v"))

= dim,(X7) + > (dim, X{ (2) + dim, X' (2)).
Tl
If moreover X T" is smooth at x, then there exists an equivariant morphism

FXT S TXTY), 20

which is étale at x. It follows that XIl(x), XT'(2) and X7 are smooth at
x, and that

dim,(XT") = dim T, (X"
=dim T,(XT)y +dim To(XT)_ + dim T, (X )7
= dim, XI' () + dim, X' (z) + dim, (X 7).

Here T,.(XT')+ denotes the sum of all T/T"-eigenspaces of T,(X7T") with
eigenvalues of the corresponding sign. O
1.3. Attractive fixed points.

We recall the notion of an attractive fixed point, and we obtain prelimi-
nary results for rational smoothness at such a point, using ideas from the
Appendix in [KL1].
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Definition. Let T be a torus acting on a variety X. A fixed point z is
called attractive if all weights of T in the tangent space T, X are contained
in an open half space.

By Proposition A2, the point z is attractive if and only if there exists
a one parameter subgroup A : G, — T such that lim,_o A(t)y = z for
all y in a neighborhood of z. Furthermore, the set of all y € X such that
lim;—0 A(t)y = 2 is an open affine T-stable neighborhood of z. Replacing
X by this neighborhood, we may assume that X is affine; then X admits a
closed T-equivariant embedding into T, X .

Set

X=X —{z}.

Choose an injective one-parameter subgroup A : G, — T as above. Then
all weights of the G,,-action on T, X via A are positive. Thus, the quotient

P(X):= X/G,

exists and is a projective variety: indeed, it is a closed subvariety of P(7,X),
a weighted projective space. We can view P(X) as an algebraic version of
the link of X at z.

Because the set of rationally smooth points is T-stable and open for the
complex topology, X is rationally smooth at z if and only if it is rationally
smooth everywhere. This condition can be read on P(X), as follows.

Lemma. Let X be an affine T-variety with an attractive fized point x such
that X is rationally smooth. Then P(X) is rationally smooth as well. Fur-
thermore, X is rationally smooth if and only if P(X) is a rational cohomol-
ogy complex projective space.

Proof. Observe that G, acts on X with finite isotropy groups. By Proposi-
tion A5, it follows that X is covered by G,,-stable open subsets U admitting
an equivariant morphism p : U — G,,, /I where I' C G, is a finite subgroup
(depending on U). Let Y be the fiber of p at the base point of G,,/I'.
Then Y C X is a locally closed I'-stable subvariety, and U is equivariantly
isomorphic to the quotient

(G x Y)/T

where I" acts diagonally on G, X Y. Thus, P(X) is covered by the quotients
Y/T'. Because X is rationally smooth and the map G,, xY — X : (t,y) —ty
is étale, G, x Y is rationally smooth, too (see e.g. Proposition Al). Thus,
Y is rationally smooth, and so is the quotient Y/I' by Proposition A1 again.
Therefore, P(X) is rationally smooth.

We claim that X is rationally smooth at z if and only if

Q ifm=0orm=2d-1
0 otherwise.

H™(X) = {
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where d = dim,(X). Indeed, the action of G,, on X extends to a map
Al'x X — X sending 0 x X to x, and restricting to the identity 1 x X — X.
Thus, H™(X) = 0 for all m > 0. Now our claim follows from the long exact
sequence

o H™(X) = H™(X) - H'"PY(X) - H™ (X)) — -

Denote by )
m: X = P(X)

the quotient map and let Qy be the constant sheaf on X associated with
Q. We compute the higher direct images RiT*QX. For this, consider the

commutative square
G, XY - Y

) !
(G, xY)/I' = Y/T

where Y and I' are as above, and the downwards maps p, g are quotients by
I'. Because p and ¢ are finite, we have

R'7.(pLQa, xv) = ¢ (R'pry.Qa,, xv)

where pl, ¢l denote invariant direct image. But both pry.Qg, xy and
Rlpry*QGm «y are isomorphic to Qy, and Ripry*QGm «y vanishes for ¢ >
2. Furthermore, gL Qy is isomorphic to Qyr via ¢", and a similar statement
holds for pL. It follows that 7.Q y and Rlﬂ'*QX are isomorphic to Qp(x),
and that Riﬂ'*QX = 0 for ¢ > 2. Thus, the Leray spectral sequence for «
reduces to a Gysin long exact sequence

— - H™(X) = H" Y(P(X)) = H™ (P(X)) - H™PH(X) — -+

Together with the claim, this concludes the proof. O

1.4. A characterization of rational smoothness at an atttractive
fixed point.

We obtain our main result stated in the introduction, and some useful vari-
ants as well.

Theorem. Let X be a T-variety with an attractive fixed point x. Then
we have dim,(X) < Y, dim, (XT") (sum over all subtori of codimension
one). Furthermore, X is rationally smooth at x if and only if the following
conditions hold:

(i) A punctured neighborhood of x in X is rationally smooth.

(ii) XT s rationally smooth at x for each subtorus T' C T of codimension
one.

(iif) dim,(X) = 3, dim(XT").

Proof. The first assertion follows from Theorem 1.2: because z is attractive,
each X7 is equal to XI or to X" in a neighborhood of z. If X is rationally
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smooth at x, then (i) certainly holds, and (ii), (iii) follow from Theorem 1.1.
Another proof of this result, and of the converse as well, is sketched in [B2].
We reproduce this proof with some changes, so that it adapts to arbitrary
characteristic.

We may assume that X is affine, and we use the notation and results of
1.3. Observe that the T-action on X induces an action on P(X), with fixed
point set the disjoint union of the P(X7"). Indeed, T-fixed points in P(X)
correspond to T-orbits of dimension one in X.

Assume that (i), (ii) and (iii) hold. Then we claim that the rational
cohomology of P(X) vanishes in odd degrees, and that the topological Euler
characteristic y(P(X)) is equal to dim,(X) := d. To check this, we use
equivariant cohomology again. Notation being as in the proof of Theorem
1.1, the map

P(X) X ET — ET/T = BT

is a fibration with fiber P(X'). Because the latter is projective and rationally
smooth, the associated spectral sequence degenerates (by the criterion of
Deligne, see e.g. [J] Proposition 13). Thus, the H*(Br)-module H}(P (X))
is free, and H*(P (X)) is the quotient of H} (P (X)) by the ideal generated
by all characters of T.

By the localization theorem in equivariant cohomology (see e.g. [H] Chap-
ter 111, or Proposition A6), the H*(Br)-module H}(P (X)) becomes isomor-
phic to

H;(P(X)") = H"(Br) @ H*(P(X)") = @ H"(Br) © H*(P(X"))

after inverting all non trivial characters of T'. Furthermore, by the preceding
discussion and rational smoothness of the X7, each H*(P(XT")) is a ratio-
nal cohomology projective space; in particular, its cohomology vanishes in
odd degrees. Because H*(Br) vanishes in odd degrees, too, it follows that
the same holds for H}(P (X)), and for H*(P(X)) as well. Furthermore, we
have for the Euler characteristic of P(X):

X(P(X)) = rankp- () H7 (P (X))
= rankg- (5 H3 (P(X)7) =Y x(P(XT) =) dim(x") =d

which proves our claim.

Because P (X)) is projective of dimension d — 1, it has non trivial rational
cohomology in degrees 0,2,...,2(d —1). Thus, the claim implies that P(X)
is a rational cohomology complex projective space of dimension d — 1, so
that X is rationally smooth at =z.

Conversely, assume that X is rationally smooth at x. Then, reversing
the previous arguments, we see that rational cohomology of each P(XTl)



RATIONAL SMOOTHNESS AND TORUS ACTIONS 11

vanishes in odd degree, and that

d=> " x(P(x")).

Because P(XT') is a projective algebraic variety of dimension dim, (X7 )—1,
it follows that , ,
Y(P(XT)) > dim(XT).

Thus, we have d > 3", dimx(XTl). But the reverse inequality holds, as a
consequence of Theorem 1.2: so we must have

d="dim,(XT), \(P(X"")) = dim, (X"")

for all T7. It follows that each P(XTl) is a rational cohomology projective
space, and that X s rationally smooth at z. O

The arguments above also lead to the following

Corollary 1. Let T be a torus acting on an irreducible variety X of dimen-
ston two; let x € X be an attractive fized point, contained in only finitely
many closed irreducible T-stable curves. Then X is rationally smooth at x.

Proof. We may assume that X is affine and that T acts faithfully. Then
dim (7)) = 2 (otherwise there are infinitely many closed irreducible T-stable
curves through 2, namely, the T-orbit closures). Thus, X contains a dense
T-orbit; in other words, the normalization of X is an affine toric surface. It
follows that X contains exactly four T-orbits: the fixed point z, two orbits
of dimension one, and the open orbit.

Thus, P(X) is a projective irreducible curve with a dense T-orbit, so
that P(X) is homeomorphic to projective line. Furthermore, X is covered
by two affine open subsets of the form G,, xp C' where I is a finite group,
and C'is an irreducible affine curve admitting a non trivial action of G,
(this follows e.g. from Proposition A5). Thus, C' is unibranched, and X is
rationally smoth. By Lemma 1.3, X is rationally smooth as well. O

As another consequence of (the proof of) Theorem 1.4, let us derive the
following refinement of a result due to Carrell and Peterson [C] Theorem D.

Corollary 2. Let T be a torus acting on a variety X with an isolated fized
point x, such that the number of closed irreducible T-stable curves through
x is finite; denote this number by n(X,x). Then

dim, (X) < n(X, ).
If moreover X is rationally smooth at x, then

dim,(X) = n(X, z)
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and each closed irreducible T-stable curve through x is exactly the fixed point
set of a subtorus of codimension one inT.

Conversely, if x is attractive and admits a rationally smooth punctured
neighborhood, and if dim,(X) = n(X,z), then X is rationally smooth at x.

Proof. We may assume that X is affine and that X7 = {z}. Observe
that each closed irreducible T-stable curve in X is fixed pointwise by a
unique subtorus 7' C T of codimension one. Furthermore, XT" contains
only finitely closed irreducible T-stable curves through z, and all such curves
must be contained in XII(JU) UXT'(2). Thus, the dimension of both XII(JU)
and X”'(z) is at most one, and dim XIl(w) + dim X7 (x) is at most the
number of closed irreducible T-stable curves through z in XT'. Now the
inequality dim,(X) < n(X,z) follows from Theorem 1.2.

If X is rationally smooth at x, then each X7 s rationally smooth at x
as well, by Theorem 1.1. Thus, XT"is irreducible at z. It follows that the
connected component of z in X7 is either {2} or a closed irreducible T-
stable curve through z. Now the equality dim,(X) = n(X,z) follows from
Theorem 1.1.

For the converse, we argue as in the proof of Theorem 1.4: the T-fixed
points in P(X) correspond to T-orbits of dimension one in X, that is, to
closed irreducible T-stable curves through z. Thus, the number of T-fixed
points in P(X) is dim,(X) = dim P(X) 4+ 1. It follows that P(X) is a
rational cohomology complex projective space. [J

Remark. The assumption that z admits a rationally smooth punctured
neighborhood cannot be omitted, as shown by the following example. Let
X be the hypersurface in A® with equation

x2—|—yz—|—xtw:0.

Then X is irreducible, with singular locus = y = z = tw = 0, a union of
two lines meeting at the origin. Let T = G,, X G,, act on A® by

(u,v) - (2,9, 2,t,w) = (W*v z, u vy, w2, u’t, v:w).

Then the origin of A® is an attractive fixed point, X is T-stable of dimension
four, and X contains four closed irreducible T-stable curves: the coordinate
lines, except for the z-axis. But X is not rationally smooth at the origin.
To see this, consider the action of G,, on A® by

u-(x,y, 2, tw) = (v, uy, w2, w).

Then X is G,-stable and X9~ is defined by y = 2z = 2% 4+ 2tw = 0. Thus,
X G is reducible at the origin. By Theorem 1.1, X is not rationally smooth.
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2. Rational smoothness of orbit closures in flag varieties

2.1. Attractive slices.

We shall apply our criterion of rational smoothness to certain orbit clo-
sures. For this, we need the following notion, a variant of [MS] 2.3.2.

Definition. Let X be a variety with an action of a linear algebraic group
H and let z € X. A slice to the orbit Hx at z is a locally closed affine
subvariety .S C X which satisfies the following conditions:
(a) z is an isolated point of SN Hz.
(b) S is stable under a maximal torus 7" of the isotropy group H,.
(c) The morphism

a: xS — X

(h,s) ~— hs

is smooth at (1, ).
The slice S is attractive if
(d) z is an attractive fixed point for the 7T-action on S.

It is easy to see that there always exists a slice S. If moreover § is
attractive, then SN Hz = {2} and the morphism « is smooth everywhere.

Proposition. Let X be a variety with an action of a linear algebraic group
H, let x € X and let S be a slice to Hx at x. If X is rationally smooth at
x (and hence at all points of Hx ) and if x is an isolated T'-fized point of 9,
then the T-variety S satisfies conditions (i), (ii) and (iii) of Theorem 1.4 at
x. The converse holds if the T-variety S is attractive.

Proof. The map « is H-equivariant; thus, it is smooth at all points (h, z)
where h € H, and the image of « is a neighborhood of Hz in X. Using
Proposition Al, we see that X is rationally smooth along Hz if and only if
S is rationally smooth at z. Now the first assertion follows from Theorem
1.1, and the second one from Theorem 1.4. O

As a first application, we give a direct proof of a criterion for rational
smoothness of Schubert varieties, obtained by Carrell and Peterson using
Kazhdan-Lusztig theory (see [C] Theorem E).

Let GG be a connected semisimple group, B C G a Borel subgroup, and
T C B a maximal torus with Weyl group W. The T-fixed points in the
flag variety GG/B are indexed by W. For w € W we still denote by w
the corresponding fixed point, and by X (w) = BwB/B the corresponding
Schubert variety; then the dimension of X (w) is the length of w, denoted
by {(w). Let € W, then 2 € X (w) if and only if < w for the Bruhat
ordering on W.

We now recall the construction of slices to Schubert varieties, and the
description of their T-stable curves. By the Bruhat decomposition, the map

UnaU~27 Y)Yy x (U naU~271) — B(G)
(9,h) = ghw
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is an open immersion, and its restriction

UnzU"2z"' — Bz
g = gz

is an isomorphism. Set
S:=X(w)n (U NnalU~z Yz,

then S is a T-stable attractive slice to Bz at 2 in X (w).

Let R C W be the set of reflections. For r € R, let T" be its fixed point
set in T, and let G, be the derived subgroup of the centralizer GT"; then
G, is a connected semisimple group of rank one. Set

C(z,r):=Gra.

Then the C'(z,r) (r € R) are the closed irreducible T-stable curves through
z in G/B. Furthermore, ra < w if and only if C'(z, r) is contained in X (w).
More precisely, we have 2 < rz < w (resp. ra < z) if and only if C'(z,r) C S
(resp. C'(z,r) C Bz); see [C] Theorem F.

Now, combining the proposition above with Corollary 1.4.2, we obtain
the following

Corollary. Let z, w in W such that < w, and let n(z,w) be the number
of r € R such that rz < w. Then l(w) < n(z,w). Furthermore, X (w) is
rationally smooth at x if and only if l(w) = n(y, w) for all y € W such that
T <y<w.

The first part of this result was conjectured by Deodhar and proved by
Carrell-Peterson (see [C] Theorem A), Dyer [D] and Polo [Po]; the second
part is due to Carrell-Peterson (see [C] Theorem E).

2.2. Orbits of spherical subgroups in flag varieties

We still consider a connected semisimple group GG and we denote by B(G)
its flag variety. Let H C (G be a spherical subgroup, that is, B(G) contains
only finitely many H-orbits. Let H° be the connected component of 1in H,
then H° is spherical in G, too.

Easy but useful properties of H-orbits in B(G) are given by the following

Proposition.

(i) Fach closed orbit is isomorphic to a finite union of copies of the flag
variety B(H?).

(ii) Let X C B(G) be an orbit closure and Xg C X1 C - C Xy =X a
mazimal chain of orbit closures. Then { = dim(X) — dim B(H?).

(iii) Let H > H be a subgroup of G which normalizes H and such that
H/H is connected. Then H and H have the same orbits in B(G).

Proof. (i) Let 2 € B(G) be such that Hz is closed. Then the variety Hz
is complete; thus, the same holds for its component H%z. Moroever, the
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isotropy group H, = H NG, is solvable. Thus, H? is a Borel subgroup of
H.

(ii) Choose a Borel subgroup B of (G, then the partially ordered sets of
H-orbit closures in B(G) and of B-orbit closures in G//H are isomorphic.
Let Yo CY) C -+ C Y, =Y beamaximal chain of B-orbit closures in G/H.
Then Y;_q is an irreducible component of the complement of the open B-
orbit in Y. Because that orbit is affine, we have dim(Y;_1) = dim(Yy) — 1.
It follows that dim(Yy) = dim(Y') — {. Back to H-orbits in B(G), we thus
have dim(Xy) = dim(X) — £. Furthermore, Xy is a closed orbit, whence
dim (Xo) = dim B(H?").

(iii) Let O C B(G) be an H-orbit and let ¢ be its codimension in B(G).
We show that ) is H-stable, by induction on c.

If ¢ = 0 then O is open in B(G). Choose # € O, then Hz is an open
subset of Hz, whence the product HH, is open in H. But HH, is a closed
subgroup of H containing H, because H normalizes H. Thus, HH, is a
union of components of H, and Hz is a union of components of Hz. But
H/H is connected, whence Hz = Hz.

For arbitrary ¢, observe that the closure O is a union of components of
the set of 2 € B(G) such that the codimension of Haz in B(G) is at least
¢. The latter set is closed and H-stable, because H normalizes . As [@]

H-stable and H/H is connected, it follows that O is H-stable. Now the
argument above shows that O is H-stable. O

Definition. The rank ¢(X) of an H-orbit closure X C B(() is the codi-

mension in X of any closed orbit, or equivalently, the common length of all
maximal chains Xo C X7 C --- C X; = X of orbit closures.

In the case where H = B as in 2.1, the closed orbits are fixed points, and
the rank of X = X (w) is the length of w.

For a reductive spherical subgroup H C G and an H-orbit closure X in
B(G), we shall show that £(X) satisfies an inequality similar to Corollary 2.1,
with equality if X is rationally smooth. For this, we shall analyze the fixed
points in X of a maximal torus of H, and of its codimension one subtori.

2.3. Fixed points in flag varieties.

Let H C G be a reductive spherical subgroup, and let Ty C H be a maximal
torus. For a subtorus 77 C Ty, we denote by GT’ (resp. HTl) its centralizer
in G (resp. H) and by B(G)T" its fixed point in B(G). It is well known that
GT' is connected and reductive and that B(&)T " contains only finitely many
orbits of GT' , each of them being isomorphic to the flag variety B(GTl). The
torus 7" is regular in G if B(G)Tl is finite, or equivalently, GT' is a maximal
torus of G.

Lemma. Notation and assumptions being as above, Tr is regular in G.
Furthermore, each H™' is a reductive spherical subgroup of GT .
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Proof. Because H? acts on B(() with only finitely many orbits, (HO)Tl acts
on B(G)Tl with only finitely many orbits, too; see [R]. It follows that (HO)Tl
is spherical in GT'. In particular, (H%)"# = T}y is spherical and central in
GTH. Thus, GT# is a torus, and T is regular in G. [

Now assume that the codimension of 77 in Ty is one, and that T7 is
singular in G. Then 7" ¢ HT" ¢ G™" and the quotient HTI/T' has rank at
most one. Let G’ be the quotient of G by its center, and let H' be the
image of HT" in G'. Then GT" and G’ have the same flag variety which we
denote by B'. Furthermore, H' is a reductive spherical subgroup, of rank at
most one, of the non trivial connected adjoint semisimple group G’. Thus,
H'" is either the multiplicative group or (P)SL,. Because H' has finitely
many orbits in B’, we have dim(B’) < 1 in the former case, and dim(B’) < 3
in the latter case. Thus, G' is isomorphic to (PSLy)™ with n < 3, or to
PSLs. A closer look leads to the following classification.

(1) H' = G’ = PSLy. Then B’ is projective line P! with transitive action of
H'.

(2) H" is a one dimensional torus of G' = PSLy. Then B’ = P!, and the
H'"-orbits in B’ are two fixed points and their complement. If H' is not
connected, then it is the normalizer of H'0, and it exchanges both H'°-fixed
points in B’.

(3) H'" = PSLy, the diagonal in G = PSLy x PSLy. Then B’ = P! x P!
with diagonal action of H'. The H'-orbits in B’ are the diagonal and its
complement.

(4) H" = PSLy; = SO3 embedded into PSLs = G'. We can consider B’ as
the variety of flags in projective plane P?, and H' as the stabilizer in PSLj
of a smooth conic Cy. Then the H'-orbits in B’ are given by the position of
a flag (p, d) (where p is a point of P? and d a line containing p) with respect
to Cp. So there is a unique closed orbit: the set of flags (p, d) such that d is
tangent to Cjy at p. This orbit is isomorphic to P'. And there are two orbit
closures of dimension two, defined by: pis in Cy, resp. d is tangent to Cj.
It is easy to see that the maps (p,d) — p, resp. (p,d) — d identify these
orbit closures to the rational ruled surface of index two, denoted by Fj.

(5) H" = SLy and G = PSL3 where H'® is embedded as the image of matri-
1 0 0
ces of the form | 0 a« ¢ | with ad—bc = 1. Denote by H' the normalizer
0 b d
t 0 0
of H® in G', then H' is the image of matrices of the form [ 0 a ¢
0 b d
with t(ad — be) = 1. Observe that I’ normalizes H', and that the quotient
H'/H' is the multiplicative group. Thus, H' and H' have the same orbits
in B', by Proposition 2.2. Furthermore, H' is the stabilizer in G’ of a point
po in P?, represented by the first basis vector of C*, and of a line [y in
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P2, represented by the first dual basis vector. Thus, H’ has three closed
orbits in B': the set of flags (p,d) such that p = po (resp. d = do; p € dy
and d € po). These orbits are isomorphic to P1. Furthermore, there are two
H'-orbit closures of dimension two, consisting of flags (p,d) such that py € d
(resp. p € dy). The maps (p,d) — p (resp. (p,d) — d) identify theses orbit
closures to the blow-up of P? at the point py (resp. the blow-up of the dual
projective plane at the point dg). Thus, both orbit closures are isomorphic
to the rational ruled surface F; of index 1.

(6) H' = PSLy, the small diagonal in G' = PSLy x PSLy x PSLy. Then
B' = P! x P! x P! with diagonal action of H'. The H'-orbit closures in B’
are the small diagonal P!, three partial diagonals isomorphic to P! x P!,

and B’.

Remarks. (i) For a symmetric subgroup H of (G, we shall see in 2.5 that
only types (1) to (4) can occur. It can be checked that the same holds if G
is simple and H° C (G is a maximal connected reductive spherical subgroup;
for this, one uses Krimer’s classification of reductive spherical subgroups of
simple groups [Kr]. But types (5) and (6) do occur in general, e.g. type (5)
for

H = San C SL2n+1 =@,

and type (6) for
H= SOQn_|_1 C SOQn_|_1 X SOQn_|_2 =G

where H is embedded in G by h — (h, (h,1)), or for H = Gy C SOg = G
embedded by its defining representation.

(ii) By [MS] 6.4, all orbits of symmetric subgroups in flag varieties admit
attractive slices. But this fails for arbitrary reductive subgroups: consider
for example G = PSL3 and H = SL; as in type (5). Then we can take for
Ty the image of diagonal matrices with eigenvalues (1,¢,¢t71) where t € G,.
Let x € B(G) be the standard flag in C?, then the weights of the Ty-action
on the normal space 1,B(G)/T,Hxz are 1 and -1. Thus, Hz admits no
attractive slice at . Furthermore, both H-orbits of dimension two have
unipotent isotropy groups, so that they admit no attractive slice either.

2.4. A criterion for rational smoothness.

Notation and assumptions being as in 2.3, we shall describe fixed point sub-
sets in an H-orbit closure X C B(G), and deduce a necessary condition for
rational smoothness of X at a Ty-fixed point. We begin with the following
result, which is easily checked by inspection using the discussion in 2.3.

Lemma. For any subtorus T' C Ty of codimension one, each irreducible

component of XT s smooth, and is either a point (this may occur in type
(1)), or P! (this may occur in all types), or P* x P! (in types (3) and (6)),
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or Fy (in case (5)), or Fy (in type (4)), or B(PSLs) (in types (4) and (5)),
or Pt x P x P! (in type (6)).

For a subtorus 7" C Ty of codimension one, let {7:(X, ) be the sum
of the ranks of the irreducible components of the HT' varieties X' which
contain z. Observe that {7/(X,z) is 0 in type (1), at most 1 in types (2)
and (3), at most 2 in types (4) and (5), and at most 3 in type (6).

Proposition. (i) For any * € X2 we have
UX) <Y (X, 2)
Tl

with equality if X is rationally smooth at x.
(ii) If moreover X is irreducible and ((X) < {(Hz) + 2, then X is ratio-
nally smooth at x.

Proof. (i) By Theorems 1.1, 1.2, we have: dim B(H®) = 3, dim B(H"' )
and
dim, (X) < (dim, X7 (2) + dim, X7 (2)).
Tl

Furthermore, we claim that
dim, XT'(2) + dim, X' (2) < dim B(H"'®) + (1:(X, 2).

Indeed, if XT" is irreducible at z, then it is smooth there by (i). Thus, we
have

dim, X1 (2) + dim, X' (2) = dim(X"") = dim B(H"" %) + ¢(x™")

where the first equality follows from Theorem 1.2, and the second one is the
definition of the rank. If X7 is reducible at z, then we are in case (4), (5)
or (6), and moreover H'z is closed in B'. In cases (4) and (6), = is attractive
in B’ and the claimed inequality is obvious; in case (5), it is checked by
inspection. It follows that ((X) <> 5 {7 (X, ).

If moreover X is rationally smooth at z, then each XT"is irreducible at
x, and hence smooth there. We conclude by Theorem 1.1.

(ii) Let X be a T’y-stable slice to Hxz at @ in B(G); then S := XN X is
a slice to Hz in X. If {(X) = {(Hz)+ 1, then S is an irreducible curve
with non trivial action of T (because T is regular in G). Thus, S is
unibranched at z, and hence rationally smooth. If {(X) = ((Hz) + 2 and
Ty acts on S with a dense orbit, then S is rationally smooth by Corollary
1.4.1. Finally, if {(X) = ((Hz)+2 but T has no dense orbit in S, then S is
fixed pointwise by a subtorus 7' C Ty of codimension one. Thus, S C v
and the latter is a slice to H” 2 in BT . Because dim(S) = 2, it follows from
the classification in 2.3 that S = ETl, whence S is smooth. O
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2.5. The symmetric case.

Consider now a connected semisimple group G' with an involutive automor-
phism 6. Then the fixed point set H = G? is called a symmetric subgroup:;
it is a reductive spherical subgroup of . We refer to [S1] for this and for
other results on symmetric spaces, to be used below.

We shall obtain a precise version of Proposition 2.4 (i), in terms of the
combinatorics of H-orbits in B(G). We begin by relating the approach of
2.3 to the structure of symmetric spaces.

Let Ty € H be a maximal torus, then its centralizer T is a @-stable
maximal torus of GG. Thus, # acts on the Weyl group W, on the subset R of
reflections, and on the set ® of roots of (G, T') as well. For o € &, let r, € R
be the corresponding reflection, and G, C G the corresponding semisimple
group of rank one. Then G contains a representative of r,. Finally, set
Tg = (Tg Nker())?, then the T§ are exactly the codimension one subtori
of T which are singular in . Define the type of a (or of the corresponding
reflection r,) as the type of T in the classification of 2.3.

Lemma. (i) There exists a 0-stable Borel subgroup B of G containing T';
then B%° is a Borel subgoup of H. Any two such Borel subgroups of G are
conjugated by W°.

(ii) Let v € ®; then
« has type (1) if and only if G, is contained in H (in particular, 8(a) = o).
« has type (2) if and only if: 6(a) = «, G, is not contained in H, and
a# [+ 0(5) for all g € .
a has type (3) if and only if: §(o) # a, and o + 0(a) ¢ ®.
« has type (4) if and only if: o+ 6(a) € ® (in particular, 8(a) # o).
There are no roots of type (5) or (6).

Proof. (i) There exists a pair (Bg, To) where By is a -stable Borel subgroup
of GG, and Tj is a f-stable maximal torus of By. Let Uy be the unipotent
radical of By, and let B, be the opposite Borel subgroup, with unipotent
radical B . Then the product map Uy xTy x Uy — G is an open immersion.
Thus, the same holds for the product map (U; )% x T x US° — H.
It follows that Bg’o and (By)?? are opposite Borel subgroups of H. In
particular, TOQ’0 is a maximal torus of H. Thus, we can write Ty = hTOQ’Oh_1
for some h € H. Taking centralizers in (, we obtain 7' = hTyh™!; then we
can take B = hByh~1. If B' is another Borel subgroup containing 7', there
exists a unique w € W such that B’ = wBw™!; now B’ is #-stable if and
only if §(w) = w.

(ii) Let T' = T3, then @ acts on the group G and on its quotient G’
by its center. Let H' be the image of H in G'; then H' is a subgroup of
finite index in G'. It follows that (G', H') is not of type (5) or (6), because
SLs is not a subgroup of finite index of a symmetric subgroup of PSL3 or
of SLy x SLy x SLy. The description of types (1) to (4) follows from the
discussion in [S1] §2. O
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For B as in the lemma above, the pair (T, B) is called standard. We then
identify B(G) with G'/B; the point @ € (G/B)T is identified with an element
of W, still denoted by z.

Recall that o € @ is called compact imaginary (resp. non-compact imag-
inary; real; complex) if G/, is contained in H (resp. #(a) = « but G, is
not contained in H; §(«) = —a; 8(a) # £a). In our case, there are no real
roots, because the set of roots of (B, T') is #-stable. Furthermore, reflections
of type (1) (resp. (2); (3) and (4)) correspond to compact imaginary roots
(resp. certain non-compact imaginary roots; complex roots).

We now recall the parametrization of H-orbits in G//Bj; our notation dif-
fers from that in [S1] by an inverse, because B-orbits in G/H are considered
there. Let NV be the normalizer of T in G, then N is f#-stable. Set

Vi={geG|g'0(g) € N}.

Then V is stable by the (H x T)-action: (h,t)g = hgt™", and each (H x B)-
orbit in G meets V in a unique (H x T')-orbit. As a consequence, H-orbits
in G/B are parametrized by the set of double classes

V.= H\V/T.

There is a base point vy € V, the image of 1 € N; the corresponding H-
orbit is closed, e.g. by the Lemma above. Observe that V is stable under
right multiplication by N; this defines an action of W on V. denoted by
(w,v) — w - .

For v € V, we denote by X (v) C G/B the corresponding H-orbit closure,
and by ((v) its rank. We write o' < v if X(v') C X (v). This defines a
partial order on V', which is studied in [RS].

Finally, we shall need the following result, see [S2] 2.5: For any r € R of
type (2), there exists ¢(r) € G, such that g(r)~'6(g(r)) is a representative
of rin N. In particular, g(r) € V. Let v(r) be the image of ¢(r) in V.

Theorem. Let v € V and let + € W such that x - vy < v. Let ny(v,z) be
the number of reflections r of type (2) such that x -v(r) <wv. Fort =3, 4,
let ny(v,z) be the number of reflections r of type (t) such that rx - vy < v.
Then we have:

Lv) < ng(v,z)+ %ng(v, z) + ny(v, )

with equality if X (v) is rationally smooth at x.

Proof. We wish to apply Proposition 2.4 (i) combined with the lemma above.
For this, given a subtorus 7’ C Ty of codimension one, we analyze the con-
tribution of 7" to the formula in that Proposition. We denote by {7/ (v, )
the sum of the ranks of the irreducible components of X(U)Tl which con-
tain x, and by X(v)gl the union of these components, i.e., the connected

component of z in X ()T,



RATIONAL SMOOTHNESS AND TORUS ACTIONS 21

If T! = T}, for r of type (2), the component of z in (G/B)T is the curve
C'(z,r) considered in 2.1. By [S2] 3.1, this curve is contained in X (v) if and
only if z-v(r) < v. In other words, we have {7/ (v,z) = 1if 2 -v(r) < v, and
Lri(v, ) = 0 otherwise.

If 7' = T} for r of type (3) or (4), observe that X (v)NGT 2 is connected,
by the explicit description in 2.3. Thus, we have X(v) N GT'z = X (v)L.
Now 7z - vy < v iff re € X(v) iff re € X (v)I" (because re € GT'z anyway).
For T’ of type (3), one checks that {7:(v,z) is the half of the number of
r € R such that Tj; = 7" and that rz € X (v)7.

If » has type (4), then one checks that {7/ (v, ) is at most the number of

7

» s irreducible.

r as above, with equality if X (v)

Examples. 1) In the case where T is a maximal torus of & (that is, 6
is inner), only types (1) and (2) occur, and we recover the following result
of Springer [S2]: the rank of X (v) is at most the number of non compact
imaginary reflections r such that z - v(r) < v, with equality if X (v) is
rationally smooth at x.
2) Consider GG = SL,, with the involution 6 such that 8(g) = ‘g~!, then
H = SO,. The flag variety B(SL,) contains n — 1 irreducible H-stable
divisors Dy, ..., D, _1, where each D,, consists of those complete flags (V1 C
-+ C V,—1) in C" such that the restriction of the standard quadratic form
to V,, is degenerate.

For n > 4, we claim that Dy and D, _; are smooth; Dy and D,_, are
rationally smooth, but singular; and no other D,, is rationally smooth (see
[Ku] for a similar result concerning Schubert divisors in arbitrary flag vari-

eties).
To check this, consider first the case where n = 2n’ is even. Choose
a basis of C™ with coordinates z1,...,z, such that the quadratic form is

T1Ton +X2T2n 14+ T @y y1. Let T (resp. B) be the group of diagonal
(resp. upper triangular) matrices in this basis. Then (7', B) is a standard
pair, and 6 acts on T by 8(t1,...,t,) = (t7%,...,t7"). The roots of (B, T)
are the a; ; (1 <17 < j < n) where «; ;(t1,...,t,) = titj_l. The roots of
type (3) are the «; ; where i4j # 2n' 41, and all other roots have type (2).
Let 2 be the standard flag in our basis. Using either [RS] 10.3 or geometric
arguments, one checks that

n—1 fm=lorm=2n"-1
D, = .
72(Drm, ) { n' otherwise,

2’ =1 =2 ifm=20orm=2n" -2
73 (D @) = { 2n'(n' = 1) otherwise.
On the other hand, ¢(D,,) = ((B(SL,)) — 1 = n'> — 1. By the Theorem
above, it follows that Ds, ..., Dy, _3 are not rationally smooth.

In the case where n = 2n/ + 1 is odd, we replace the quadratic form by
T1Zopip1 + o F T + $721;+1. Then the discussion is similar, but now
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the roots of type (3) are the o ; with 7 # n'41, j # n'4+1 and i+j # 2n'+2,
whereas all other roots have type (4). We have ((D,,) = n'* +n' — 1 for all
m, and one checks that

2’ =1) =2 ifm=20orm=2n" -1
n3 (D, @) = { 2n'(n' — 1) otherwise,

na(Dyyz) = {Qn’— 1 ifm=1orm=2n
2n' otherwise.
Again, it follows that Ds, ..., Dq,/_5 are not rationally smooth.

It remains to check our assertion for Dy and D, (because § acts on B(G)
and exchanges D, and D, _,,). For this, let 7, : B(SL,) — Gr,, ., be the
canonical map to the Grassmanian of m-dimensional subspaces. Then D,, is
the preimage of the divisor F,, of degenerate subspaces, under the fibration
. For m =1, because Gr, ; = P”~! and E; is a smooth quadric, Dy is
smooth. For m = 2, let GI’;SQ C Gry, 2 be the subvariety of totally isotropic
planes. Then F, contains Grfi2 as its closed SO,-orbit. Furthermore, one

checks that a slice to Grfi2 in Gry, o at the point span(e;,es) is
S = {span(e; + ae,_1 +be,, ea + ce,_y + ae,) | a,b,c € C}

where (e, ..., e,) is the basis introduced above. Thus, a slice to Grfﬁ2 in Fy
is S N F,, isomorphic to the quadratic cone (a? —bc = 0). We conclude that
Fs is rationally smooth but singular along Gr,’,. Thus, D; is rationally
smooth but singular as well.

This result, combined with Proposition 2.4 (ii), implies e.g. that all SO,,-
orbit closures in B(SL,,) are rationally smooth for n = 4. This is no longer
true for n = 5, an example being Dy N Ds.

Remark. Back to the case of an arbitrary symmetric subgroup, consider a
point € X not necessarily fixed by a maximal torus of H. Then the
orbit Hz admits an attractive slice at x, by [MS] 6.4. Thus, a criterion for
rational smoothness of X along Hz can be derived from Proposition 2.1.
This leads to the following question: For a subtorus T’ of codimension one
in a maximal torus of H,, when is X rationally smooth at x 7

3. Closures of double classes in regular group completions

3.1. Construction of slices.

Let GG be a connected reductive group. Then G x G acts on G by (¢1,¢92)7 =
91795 " This identifies G with the homogeneous space (G'x () /diag G where
diag G denotes the diagonal in G X G'. Let T C GG be a maximal torus, W its
Weyl group, and B, B~ two opposite Borel subgroups containing T'. Then
B x B~ acts on (G as above, the orbits being the double classes Bw B~ where
w € W. In particular, the open orbit is BB~.
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Let X be a (G x G)-equivariant completion of G which is regular in the
sense of [BDP]. Then B x B~ acts on X with finitely many orbits, whose
study was initiated in [B1]. We shall construct attractive slices to these
orbits. For this, we need more notation and results, adapted from [B1] 2.1.

Each (G'xG)-orbit O C X contains a unique point y such that: (BxB™)y
is open in O, and y is the limit of a one parameter subgroup of T'. We refer
to y as the base point of O.

Furthermore, O determines two opposite parabolic subgroups P D B and
Q) O B~, with unipotent radicals R, (P), R,(Q) and common Levi subgroup
L = PN Q, by requiring that the stabilizer (G' X &), is the semidirect
product of R, (Q) X R, (P) with (diag L)(T x 1),. In particular, (' xT), =
(diagT)(T x 1), is a maximal torus in (G x G),. In fact, (T'x 1), = (Zx 1),
where Z denotes the connected center of L.

Let @ be the root system of (G, T), then we have the subsets ®* (resp.
®;) of roots of (B, T) (resp. (L,T)). Let WL be the set of all w € W such
that w(®7) is contained in ®F. Then each (B x B~ )-orbit in O = (G x G)y
can be written uniquely as

(B x B™)(w, 1)y

for w € W and 7 € Wk,
Choose representatives @, 7 in the normalizer of 7', and set z := (w, 7)y.
Then
(T xT)y = (w,7)(T xT),(w,77h

is a maximal torus in (G' X G), and thus in (B X B7),. The codimension
of (BXx BT )zin (G X G)z is L(w)+ (7).
For simplicity, set
Zy = (Z X 1)y,

then Z, is the isotropy group of y for the left action of 7" on T. Set
S(y)={z€T|yeZz}

Because T is a smooth toric variety, X(y) is a Zy-stable slice to T'y at y in T.
Because X is regular, ¥(y) is a slice to O in X as well. Furthermore, ¥(y)
is isomorphic to affine space A? where d = codim%(Ty) = codim x(O), and
7, acts linearly on A¢ by d independent characters. Thus, ¥(y) contains
exactly d closed irreducible Z,-stable curves through y: the coordinate lines
Ci(y)s- -, Caly).

For any o € &, let U, C G be the corresponding unipotent subgroup. If
w™l(a) € T UP,, then U,-1(4) does not fix y, whence U, x 1 does not fix
x. Thus,

C(z,a) = (Uy x 1)z

is an irreducible locally closed curve through z, stable by (7' x T),. We
define similarly

Clz,0)” = (1 x U,z
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for @ € ® such that 771 (a) € @~ U Py Finally, we set
Ci(z) == (w0, 7)Ci(y)
for 1 < ¢ < d. Now we can state the following

Theorem. Notation being as above, the map
U~ nuwlw )y x (UntUT7HY xS(y) — X
(g7h72) — (gﬂ),h?’)z

is an embedding, and its image S is an attractive (T x T'),-stable slice to
(B x B7)z at @ in X. Furthermore, the closed irreducible (1 x T'),-stable
curves through x in S are the C'(z,a) (o € = N w(®T)), the C(z,a)”
(€ @t N7(P7)), and the Ci(z) (1 <i<d).

Proof. After multiplication by (w,7)~!, we reduce to the somewhat simpler

study of X along the orbit (w™!Bw, 7 !B~ 7)y. For this, set
S:=Unw U w) x (U Nr7Ur) x S(y), 7:= (1,1,y).

Consider the map

T S — X
(g:hy2) = (g,h)z.

The group (T x T), acts on S by

1

(u,0) - (g, h, 2) = (ugu™, vhv ™" uw™"2)

with fixed point ¢, and 7 is equivariant. Identifying S with affine space of
dimension ((w) + {(7) + d, the action of (1" x T, is linear, with weights:
(,0) (@ € T Nw ™ (®7)), (0,—a) (@ € @~ N771(®T)), and the weights
of C1(y),...,Ca(y). Furthermore, the multiplicity of each weight is one,
and (I'x T), = (diagT)Z, where Z, acts on Cy(y),...,Cy(y) through d
linearly independent weights. It follows that 4 is attractive, and that the
(T x T),~stable curves in S are the (U, x 1)y (o« € @t N w="(®7)), the
(1xUy)y (o € @~ N7 H(®T)), and Ci(y),...,Caly).

Furthermore, from the description of (G' X ), and the fact that X(y)
is transversal to (G x G)y at y, it follows that = is étale at y, and that
7~ 1(7(§)) = {§}. Because § is attractive, = is an isomorphism onto its
image, a locally closed subvariety of X.

Finally, we check that the action map

wl'Bw x 1T'BTr x w(S) = X
is smooth at (1,1, y): this follows from the decompositions of tangent spaces
T, X =T,(GxGydT,X(y) =T,(B x B )yd T,X(y)
=T, (w ' Buxr ' B r)yaT,(Unw U w)x (U NrtUr)y) & T,%(y)
=T,(w ' Bwx 7 'B )y T,S(y)
which follow in turn from the structure of (G' X &), described above. O

Applying Corollary 1.4.1, we obtain immediately the following
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Corollary. Any (B x B7)-orbit closure in a regular completion of G is
rationally smooth in codimension two.

In contrast, (B x B~)-orbit closures in regular completions are singular
in codimension two, apart from very few exceptions (see [B1] Corollary 2.2).

3.2. More on slices and closures of double classes.

We just saw that closures of double classes in regular group completions
admit attractive slices at all points; furthermore, these slices contain only
finitely many invariant curves. Therefore, we can obtain a criterion for
rational smoothness of these closures, similar to that for Schubert varieties
(Corollary 2.1). To make this explicit, we need to know more about invariant
curves, and to describe the inclusion relations between closures of double
classes as well.

Notation being as in 3.1, we begin by analyzing the closed irreducible
(T x T'),-stable curves through z in the slice S. Because X is regular, the
(G X G)-orbit O of codimension d is contained in the closure of d orbits
O1,...,0, of codimension d — 1. Furthermore, we can index these orbits so
that the base point y; of each O; belongs to the curve C;(y). Thus, we have
Cily) = Zyy: = Z,y;U{y}, and C;(x) — {2} is contained in (B x B~)(w, 7)y;.

The behaviour of the other curves is given by the following

Proposition. Notation being as above, the curve C(x,a)—{x} is contained
in (B x B™)(rqw,7)y for any o € ®~ Nw(®t). Similarly, C(z,a)” — {z}
is contained in (B X B™)(w,rgr)y for any o € T N 7(d7).

Proof. Set U, := U, — {1}, then C(z,a) — {2} = U,z and
Ua CU_r TU_, = U_aTrawU_w—1(a)w_1 C BrawU_w—l(a)w_l.

Set 3 := w™!(a), then 8 € ®*. If B ¢ ®] then U_; x 1 fixes y and the
assertion follows. Otherwise, (U_5 x 1)y = (1 x U_g)y because 3 € ®F.
Thus, we have

(Uy x D& C (BrowlU_g,7)y = (Brow, 7U_g)y C (B x B™)(rqw, )y

because TU_5 = U_; (g7 is contained in B~7. The proof of the second
assertion is similar. [J

We now describe the inclusion order between closures of (B x B~ )-orbits
in X. This is given by the lemma below, where wg ; denotes the longest
element in Wr. A closely related statement is obtained in [PPR] for reduc-
tive algebraic monoids; the latter can be considered as affine embeddings of
connected reductive groups.

Lemma. Notation being as above, the closure of (B x B™)(w,T)y in O =
(G x G)y is the union of the (B x B™)(w', ")y where w',7" € W satisfy
w' > w and T'wy 1, > Two 1.
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If moreover O' C O is a (G x G)-orbit with base point y' and associated
Levi subgroup L', then

(Bx B™)(w,T)yn O = U (B x B™)(wv, Tv)y’

(decomposition into irreducible components), where the union is over all

v € Wy, such that Tv € WL and Uw) = L(wv) + L(v).

Proof. Consider the (B~ X B)-orbits in . We claim that the orbit (B~ x
B)(1,wo,1)y is closed. Indeed, setting By, := BN L and B; := B~ N L, we
have B~ = B R,(Q) and B = B R, (P), whence

(B~ x B)(1,wo,1.)y = (By X Br)(1,wo,1)y
= (L, wo,.)(By x By )y = (Lwo,)(1 x By )y

and (1 x By )y identifies with the image of B} in L/Z,, which is closed in
there.
Now we have B~7 = B~ 7B} (because TB;7~! C B™), whence
(B x B™)(w,m)y = (B x B7)(w, wo,)(1, wo,L) By
Equivalently,

(Bx B7)(w,m)y= (B x B7)(w, Tw,r) (B~ X B)y.

So the canonical map from

(B x B7)(w,Two,1) (B~ x B) xg-xp (B~ x B)(L,wo,1)y

to (B x B7)(w, 7)yis dominant and proper, hence surjective. By the Bruhat
decomposition, the closure in G of (B X B™)(w,Twy,)(B~ x B) is the
union of the double classes (B x B~ )(w',7'wo 1)(B~ x B) with w' > w
and 7'wg ;, > Twe . This implies the first assertion, whereas the second
assertion follows from [B1] Theorem 2.1. O

3.3. Singularities of closures of double classes.

Using the combinatorics of 3.2, we show that the closure of a double class
BwB™ at a fixed point of B x B~ contains in general all closed irreducible
(T x T)-stable curves through that point (this improves on [B1] Theorem
2.2, with a more natural proof). Thus, this closure is not rationally smooth,
as a rule.

An exception to that rule is the case where G = PGL(2). Indeed, that
group has a unique regular completion X, the projectivization of the space
of 2 x 2 matrices. Furthermore, the closure in X of the standard Borel
subgroup B is isomorphic to P? and hence smooth; it contains only two
closed irreducible (17" x T')-stable curves through the (B x B)-fixed point.
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Similarly, the group SL; has a unique regular completion X, a quadric in
the projective completion of the space of 2 X 2 matrices. Furthermore, the
closure in X of the standard Borel subgroup B is a non-degenerate quadratic
cone of dimension two. Thus, B is singular, but rationally smooth; again,
it contains only two closed irreducible (T x T')-stable curves through the
(B x B)-fixed point.

We shall see that all exceptions arise from both examples above. To state
our result in a precise way, we need the following

Definition. A simple root « is called isolated if « is not connected to any
simple root in the Dynkin diagram of . In particular, G has no isolated
simple root if and only if the quotient of G by its center contains no direct
factor isomorphic to PGL(2).

Theorem. Let X be a reqular completion of G, let w € W and let x € X
be a fized point of B x B~. If G has no isolated simple root, then BwB~
contains all closed irreducible (T x T')-stable curves through x. In particular,

the tangent space to BwB~ at x is the whole tangent space to X at z, and
BwB~ is not rationally smooth there unless w = 1, that is, BuB™ = X.

Proof. Because BwB~ contains BwygB~, we may assume that w = wy.
Then the slice S at z is a (1" x T')-stable open neighborhood of z. Further-
more, the closed irreducible (1" x T')-stable curves through z in S are: the
Clz,a) = (Uy X 1) (a € @7), the C(z,a0)” = (1 x Uy)z (o € 1), and
Cy(z),...,Ci(z) where [ is the rank of G. Furthermore, C'(z, o) — {z} is
contained in (Bx B7)(rg, 1)z by Proposition 3.2, and similarly for C'(z, ).

Let z be the base point of the closed orbit Z := (G x G)z, then z =
(wo, wo)z where wg € W is the longest element. We have

(Bx B7)(rq,l)a = (B x B7)(rqwo,wy)z C BwyB~

where the inclusion follows from Lemma 3.2. Thus, C'(z, «) is contained in
BwyB~. The argument for C'(z, a)” is similar.

Consider now a curve C;(z) where 1 < i < [. By Proposition 3.2, there
exists a (G X G)-orbit O; with base point z; such that dim(0;) = dim(Z)+1
and that Cj(z) — {z} is contained in (1" x T')(wo, wo)z;. Let P, Q, L, Z be
associated to O; as in 3.1. Then dim(Z) > dim(Z,,) = dim(7) — 1. Thus,
either P = B, or P is a minimal parabolic subgroup containing B.

In the former case, (G X G),, is the kernel of a character of B~ x B.
Arguing as above, we obtain that C;(z) is contained in BwB~.

In the latter case, let a be the simple root corresponding to P, and set

W :={wecW|wl)ecR}.

Then we have by Lemma 3.2:

BwoB~NO; = U (B x B7)(wov, v)z;.
vEWe
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Choose a simple root 3 which is connected to « in the Dynkin diagram.
Then r,rg and wor,rar, are in W<, Thus,

BwoB~ D (B X B™)(roargra, Worarsra)z; O (B X B7)(wg,wo)z;

where the first inclusion follows from Lemma 3.2, and the second one from
that Lemma applied to w = rorgry, 7= worargra, w' = 7" = wp. Indeed,
w' > w is clear, and 7'r, = wor, > WoraTg = Try because ro < rarg.

So we conclude that C(z) is contained in BwyB~. The remaining asser-
tions follow now from Corollary 1.4.2. [J

Appendix

Proposition Al. Let X be an algebraic variety of dimension d and let
rzeX.

(i) The dimension of the space H2%(X) is the number of d-dimensional
irreducible components of X through x.

(ii) If X is rationally smooth at x, then it is irreducible at x.

(iii) Let 7 : X — Y be the quotient by the action of a finite group G. If
X is rationally smooth at x, then Y is rationally smooth at w(z).

(iv) Let m : X =Y be a smooth morphism. Then X is rationally smooth
at z if and only if Y is rationally smooth at w(z).

Proof. (i) Let Tx q be the dualizing complex of X for sheaves of Q-vector
spaces [V]. For each integer m, the homology sheaf #,,(7Tx q) is associated
with the presheaf U — H"(U)* (the dual of cohomology with compact
supports). This presheaf vanishes for m > 2d, and is a sheaf for m = 2d.
Furthermore, by [V] Corollaire 2.6.5, the stalk of 7Tx g at « is the dual of
RI';(Qx) where Qx denotes the constant sheaf on X associated with Q.
It follows that U — H2%(U) is a sheaf, and that its stalk at = is H2¢(X).
This implies our assertion.

(ii) It follows from (i) that X has a unique irreducible component Y of
dimension d which contains x. If X has another irreducible component Z
of dimension e < d which contains z, then we can choose a smooth point
z € Z — Y arbitrarily close to x. Now H2*(X) = H2%(Z) is non zero, a
contradiction.

(iii) Denote by Qx the constant sheaf on X associated with Q. Then ¢
acts on the direct image 7.Qx and the subsheaf of invariants 7¢Qx is
isomorphic to Qy via the map Qy — 7.Qx (indeed, this map induces an
isomorphism on stalks). Furthermore, R'7.Qx = 0 for ¢ > 1. It follows
that 7. : H*(X) — H*(Y) restricts to an isomorphism

H*(X)9 = H*(Y).

Considering the isomorphisms above for X and X — 7~ !7(z) = X — Gz, we
obtain an isomorphism
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Furthermore, the left hand side is isomorphic to

( P H (X)) = HI(X)%.
geG/G,

Because X is rationally smooth at z, the vector space H(X) is one dimen-
sional, concentrated in degree 2dim, (X ), and G, acts trivially there. Thus,
Y is rationally smooth at 7 (z).

(iv) Shrinking X and Y if necessary, we can factor 7 as an étale morphism
f: X =Y x A" followed by projection g : ¥ x A" — Y. By excision, we
have H(X) =2 H7, (Y X A™). Furthermore, by the Kiinneth isomorphism,

f(z)
we have Hib (Y x A") = H"=2"(Y). It follows that H*(X) is isomorphic
to HYZ2"(Y). O

Proposition A2. For a torus T acting on a variety X with a fized point
x, the following conditions are equivalent:

(i) The weights of T' in the tangent space T, X are contained in an open
half space.

(ii) There exists a one-parameter subgroup A : G, — T such that, for all
y in a neighborhood of x, we have lim;_o A(t)y = z.

If (ii) holds, then the set
Xy ={ye X | limA(t)y =z}
t—0

is an open affine T-stable neighborhood of x, which admits a closed T-
equivariant embedding into T, X .

Proof. For equivalence of (i) and (ii), we can replace X by any open affine
T-stable neighborhood of x, and thus suppose that X is affine. Let A be
the algebra of regular functions on X, and let m, be the maximal ideal of
A corresponding to z. Then T acts on A so that m, is T-stable, and T, X
is the dual space of m,/m?2.

If (i) holds, then we can find a one parameter subgroup A which is positive
on all weights of 7, X. Then X is negative on all weights of m/m? and thus,
of m"™/m"*! for all positive integers n. Because A 2 &, 5o m"/m"*! as
a T-module, the action of A on A has negative weights, and A" = C. It
follows that lim¢—o A(t)y = z for all y € X.

Conversely, if (ii) holds, then the algebra A is negatively graded via A.
Thus, T, X is positively graded via A.

For arbitrary z, observe that X, is contained in any open T-stable neigh-
borhood of z in X. Thus, to check that X, is open and affine, we may
assume that X is affine; now X, = X by the argument above. Let V be a
T-stable complement to m?2 in m,. Then V generates the algebra of regular
functions on X, (this follows from the graded version of Nakayama’s lemma;
see, e.g. [E] p. 135). Thus, the corresponding map X, — V* is a closed
equivariant embedding. Furthermore, V' is isomorphic to (7, X)*. O
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Proposition A3. Let X be an affine variety with a G, -action and an
attractive fized point x. Then there exists a G,,-module V and a finite
equivariant surjective morphism 7 : X — V such that #71(0) = {2} (as a
set).

Proof. Let A be the algebra of regular functions over X, then

A= é A,
n=0

is positively graded by the G,,-action. For any positive integer r, set

A — é A,
n=0

Then A is a finite module over A", and there exists r such that A is
generated by its elements of minimal degree. So we can assume that A is
generated by its elements of degree 1.

For any irreducible component Y of X, the set of f € A; such that
f(Y) = 0 is a proper linear subspace of A;. So there exists f € A; such
that f(Y) # 0 for all such Y. Let X' C X be the zero set of f, then z € X'
and dim(X') = d — 1 where d = dim(X). So we construct inductively
f=fi,fo,..., fa € Ay such that z is their unique common zero. Consider
the morphism

= (f1, fayoy fa) : X = A%

Then 7 is equivariant for the G,,-action on A¢ by multiplication, and
771(0) = {z}: the quotient of A by its ideal generated by fi,..., f is
finite dimensional. By the graded version of Nakayama’s lemma, it follows
that 7 is finite. Because dim(X) = d, the map 7 is dominant, and hence
surjective. [

Proposition A4. Let X be a connnected variety with a non trivial action
of a torus T and a fized point . Then there exists a closed irreducible
T-stable curve C' C X which contains x as an isolated fized point.

Proof. By induction on the dimension of X at z, the case of dimension
one being trivial. We may assume that X is affine and irreducible. Let
7w : X — X//T be the quotient in the sense of geometric invariant theory.
Then = is surjective, and its fibers are connected; because T acts non trivially
on X, these fibers are in fact infinite. In particular, the set

nlr(@)={ye X |z €Ty}

is infinite. Let y € 7 17 (2), y # a. If dim(Ty) = 1, we can take C' = Ty:
otherwise, we can choose z € Ty —Ty, z # . Then € Tz with dim(7'z) <
dim(Ty), and we conclude by induction. [
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Proposition A5. Let T be a torus acting on a variety X and let O C X
be an orbit. Then O admits an open affine T-stable neighborhood U in X,
with an equivariant retraction 7 : U — O.

Proof. We may assume that X is affine. Let f be a regular function on
X which vanishes identically on @ — O but not on O, and which is an
eigenvector of T. Then f has no zero in the orbit O, and therefore O is
closed in the open affine T-stable subset X N(f # 0). Thus, we may assume
that O is closed in X.

The orbit O is isomorphic to a torus. Choose such an isomorphism f :
O — G, then the coordinate functions fi,..., f, are eigenvectors of T.
Because O is closed in X, we can extend fi,..., f, to regular functions on
X, eigenvectors of T'. They define an equivariant morphism F : X — A"
which maps O isomorphically to G?,. Then we can take U = F~1(G?). 0O

Proposition A6. Let T be a torus acting on a variety X. Let T' C T be a
subtorus, and vy : XT' & X the inclusion of the fized point set. Then the
map

i H3(X) — HR(XT)

becomes an isomorphism after inverting finitely many characters of T which
restrict non trivially to T".

Proof. Observe that the kernel and cokernel of 7%, are both modules over
Hz(X — XT'). Thus, it is enough to prove that Hx(X — X7') is killed by a
product of characters which restrict non trivially to 7”. In other words, we
may assume that 7" fixes no point of X.

Let U C X and O be as in Proposition 4 above. Then H7(U) is a module
over H5(0) and the latter is killed by all characters which restrict trivially
to the isotropy group I' of @. Because 1" fixes no point of O, we can find a
character y which restricts trivially to I' but not to 7’. Now the kernel and
cokernel of the map H7(X) — H7(U) are modules over H7 (X — U), and
we conclude by Noetherian induction. [0
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