
Introduction

In [4], Enright developed an infinitesimal approach to study the fundamental
series. This was based on his earlier work with Varadarajan ([6]) and Wallach ([5]).
The present paper is an attempt to understand Enright’s construction in terms of
geometry of the flag variety.

Let G0 be a connected semisimple real Lie group with finite center, K0 a maximal
compact subgroup of G0 and ϑ the corresponding Cartan involution. Let g0 and k0
be the Lie algebras of G0 and K0 respectively, g and k their complexifications, and
K the complexification of K0. Denote by X the flag variety of Borel subalgebras in
g.

The action of K on X defines finitely many affinely imbedded orbits. In partic-
ular, we consider closed K-orbits. They correspond to ϑ-stable Borel subalgebras.
Thus we fix a ϑ-stable Borel subalgebra b. Then b contains a ϑ-stable fundamental
Cartan subalgebra h. Denote by x0 a point in X representing b and put Y = K ·x0.
Then Y can be identified with the flag variety of k, and therefore Y decomposes into
finitely many Bruhat cells Ck(w), where w runs over the Weyl group Wk of (k, k∩h).
Suppose that Int(g)-homogeneous line bundle L on X is defined by a linear form λ
on h. Using the Cousin complex methods developed by Grothendieck [11], we can
deduce the existence of the resolution

0 −→ Hc
Y (X,L) −→ · · · −→

⊕

ℓ(w)=p

Hc+p
Ck(w)(X,L) −→ · · · −→ Hn

{x0}
(X,L) −→ 0, (0.1)

here n = dimX , c = codim(Y,X) and w0 is the longest element inWk. By the above
remark, the terms in the resolution are (U(g), Bk)-modules (Bk is the stabilizer of
x0 in Int(k)).

On the other hand, starting from the pair (b, λ) and using Enright’s completion
functor (see 3.1.) we obtain a family of U(g)-modules {Cw(M(λ)) ; w ∈Wk}. Here

C1(M(λ)) = M(λ) = U(g) ⊗U(b) Cλ−ρ

(ρ is a half sum of positive roots); and if w ≥ v in the Bruhat order in Wk, we have
natural imbedding Cv(M(λ)) →֒ Cw(M(λ)). Therefore, we may put

E(M(λ)) = Cw0
(M(λ))

/(
∑

w<w0

Cw(M(λ))

)
.
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Then we have the homological resolution of E(M(λ)) generalizing the Bernstein-
Gelfand-Gelfand resolution of a finite dimensional module,

0 −→M(λ) −→ · · · −→
⊕

ℓ(w)=p

Cw(M(λ)) −→ · · · −→ Cw0
(M(λ)) −→ E(M(λ)) −→ 0.

(0.2)
In [15], Zuckerman posed a problem (which he attributed to Phillip Trauber) of
constructing a duality relating (0.1) and (0.2), and this served as the motivation for
the present work.

As an illustration, we discuss the example G0 = SU(2, 1). In this case X is a
three-dimensional projective variety and there are exactly three closed K-orbits,
each of them being isomorphic to a projective line. We have Wk = {1, sα}, where α
is a compact root and sα the corresponding reflection. Thus Y = {x0} ∪ A1 is the
Bruhat decomposition of Y (A1 denotes the affine line) and (0.2) specializes to

0 −→ H2
Y (X,L) −→ H2

A1(X,L) −→M(λ) −→ 0 . (0.3)

For two orbits α is a simple root of the pair (g, h) (observe that in all three cases
h is a compact Cartan subalgebra), and (0.3) can be described explicitly (compare
2.7.). This is closely related to the construction of holomorphic discrete series. In
the remaining case the situation is more complicated. Although we can determine
h-module structure of H2

A1(X,L), this doesn’t seem to be as useful as for the highest
weight modules, since h-weight spaces are infinite-dimensional. On the other hand,
the homological resolution in our example takes the form

0 −→M(λ) −→ Csα
(M(λ)) −→ E(M(λ)) −→ 0 . (0.4)

Again, in the cases when α is simple, the previous remark applies. In the third case,
for sufficiently negative λ, we construct Csα

(M(λ)) as follows. Notice first that for
ν = λ− ρ + α

2
we have the inclusion of k-Verma modules Mk(ν) →֒ Mk(sαν). This

induces further an inclusion

M(λ) →֒ V = U(g) ⊗U(k) Mk(sαν)/I,

where I is the kernel of the natural surjective map U(g)⊗U(k)Mk(ν) −→M(λ). One
can show that

J = {v ∈ V | y · v = 0 for some y ∈ U(k−α) − {0}}
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(here k−α is a root space in k) is U(g)-module. Finally, we put Csα
(M(λ) = V/J .

It turns out that it is quite difficult to compare directly modules H2
A1(X,L) and

Csα
(M(λ)).

To overcome these difficulties we have followed a suggestion of D. Miličić to
consider costandard modules associated with Bruhat cells Ck(w) (compare 1. for
a definition). In this way we obtain a geometric realization of modules Cw(M(λ))
(5.4.). We use this to give a geometric proof for the existence of (0.2) and to
construct a natural contravariant duality functor on certain full subcategory of a
category of U(g)-modules that maps (0.1) into (0.2) (see 2.6. and 5.5.).

This paper is a part of authors thesis completed at the University of Utah, Salt
Lake City. I want to express gratidude to my thesis adviser D. Miličić for the help
and encouragement. I am also indebted to H. Hecht for showing me his unpublished
manuscript [8] and many instructive conversations.
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1.Preliminaries

For a smooth complex algebraic variety X we denote by OX , by DX the sheaf
of local differential operators on X and by ωX the canonical sheaf on X (i. e. top
exterior power of the cotangent sheaf on X). If D is a twisted sheaf of differential
operators on X we denote by D◦ the sheaf of rings opposite to D, by Mod(D) a cat-
egory of left D-modules that are quasicoherent as OX -modules and by Modhol(D)
the full subcategory in Mod(D) consisting of holonomic D-modules. Let L be an
invertible sheaf on X . Then DL denotes a twist of D by L. Let f : Y −→ X be a
morphism of smooth algebraic varieties. Put

DY→X = f∗(D) = OY ⊗f−1OX
f−1D

and denote by Df a sheaf of differential endomorphisms of DY→X that commute
with right f−1D action. Then we view the inverse image and (0th−)direct image
as functors

f+ : Mod(D) −→ Mod(Df) resp. R0
+f : Mod(D) −→ Mod(Df ).

Further we define the duality functor DX : Modhol(D) −→ Modhol((D◦)ω
−1

X ) by the
formula

DX(M) = ExtdimX(M,D)⊗OX
ω−1.

Finally we define R0f! : Modhol(D
f ) −→ Modhol(D) by

R0f! = DX ◦R0f+ ◦ DY .

Next we want to summarize some well known results on the category of highest
weight modules.

Let G be a complex reductive and connected algebraic group. Denote by g a Lie
algebra of G and by X a flag variety of Borel subalgebras in g. Fix a point x0 ∈ X .
Let b be the corresponding Borel subalgebra in g and B its normalizer in G. Let
N be the unipotent radical of B and n its Lie algebra. Choose further a Cartan
subalgebra h ⊂ b and denote by Σ the root system of (g, h) and by Σ+ a positive
subsystem in Σ determined by b. We shall denote by Π the set of simple roots in
Σ+, by W the Weyl group of Σ and by ρ the half-sum of positive roots. We also fix
a W -invariant positive bilinear form (., .) on h∗ (and dually on h). Then sα denotes
a reflection with respect to α ∈ Σ. Further, ℓ(w) will denote the length of w ∈ W ,
and P (Σ) the group of integral weights in h∗.
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Let Z(g) be a center of U(g). Given λ ∈ h∗, χλ will denote the character of Z(g)
determined by λ + ρ. It is well known that χλ depends only on the Weyl group
orbit θ = W · λ. Therefore we put Uθ = U(g)/ kerχλ · U(g).Denote by M(Uθ) the
category of (left) Uθ-modules.

Any linear form λ ∈ h∗ defines a G-homogeneous twisted sheaf of differential
operators DX,λ+ρ on X [9]. We shall denote it by Dλ. Recall that Γ(X,Dλ) ∼= Uθ
[1] and therefore we may introduce the localization functor

∆λ : Mod(Uθ) −→ Mod(Dλ), ∆λ(M) = Dλ ⊗Uθ
M.

A finitely generated U(g)-module M is said to be a highest weight module (with
respect to b) if dimC U(b) · m < ∞ for any m ∈ M . Denote by Modfg(Uθ, N) a
category of finitely generated (Uθ, N)-modules. Then the highest weight modules
with infinitesimal character χλ are precisely the modules from Modfg(Uθ, N) [12].
Given highest weight module M we denote by Mˇ its contravariant dual. It is
known that ˇ preserves Modfg(Uθ, N).

The important example of highest weight module is furnished by the Verma
modules. Recall that Verma module with highest weight λ− ρ is defined by

M(λ) = U(g) ⊗U(b) Cλ−ρ .

Put I(λ) = M(λ)ˇ and denote by L(λ) the unique irreducible quotient ofM(λ). Ob-
serve that M(λ), I(λ) ∈ Modfg(Uθ, N). Let Modcoh(Dλ, N) be the category of co-
herent Dλ-modules with compatibleN -action [9]. Then we have ∆λ(M(λ)), ∆λ(I(λ)) ∈
Mcoh(Dλ, N). In fact, these modules can be identified with standard modules as-
sociated with Bruhat cells on X . To be more precise, recall that the action of N
on X induces Bruhat decomposition X =

⋃
w∈W C(w) of the flag variety X , here

C(w) = Nwx0
∼= Cl(w). Let iw : C(w) −→ X be the natural inclusion. Then the

only N -homogeneous irreducible Diw
λ -connection on C(w) is OC(w). Therefore the

only standard resp. costandard Dλ-module associated with C(w) is

I(w, λ) = R0iw,+(OC(w)) resp. M(w, λ) = R0iw,!(OC(w)).

Let L(w, λ) be the unique irreducible submodule (quotient) of I(w, λ) (M(w, λ)).
Recall that λ ∈ h∗ is said to be antidominant if αˇ /∈ N for any α ∈ Σ.

Proposition 1.1. Suppose λ ∈ h∗ is antidominant. Then
(i) Γ(X, I(w, λ)) = I(wλ)
(ii) Γ(X,M(w, λ)) = M(wλ)
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(iii) If in addition λ is regular, then Γ(X,L(w, λ)) = L(wλ).

The proof can be found in [12].
Notice that each µ ∈ P (Σ) defines an invertible sheaf OX(µ) on X equipped with

Dµ−ρ-action. In fact, denote by Z the center of G and put G1 = G/Z. Let G̃1 be

a universal cover of G1. Notice that G̃1 is an algebraic group. Then we construct

OX(µ) as G̃1-homogeneous invertible sheaf on X . The differential of G̃1-action
determines U(g1)-module structure on OX(µ) (g1 = [g, g]). Then we can extend
this to U(g)-module structure so that OX(µ) becomes Dµ−ρ-module.

Next we review some facts related to local cohomology groups. Given a closed
subset Z ⊆ X and a sheaf F of abelian groups on X denote by ΓZ(F) a subsheaf
of sections of F that are supported on Z. If Z2 ⊆ Z1 are closed, put

ΓZ1/Z2
(F) = ΓZ1

(F)/ΓZ2
(F).

The following lemma summarizes Cousin complex techniques [11] that we shall use.

Lemma 1.2.. Let X ⊇ Z0 ⊇ Z1 · · · ⊇ Zn+1 = ∅ be a finite filtration of X by closed
subsets. Then there is a spectral sequence with the first term

Epq1 = Hp+q
Zp/Zp+1

(F)

converging to H·
Z0

(F). The first differential is given by dpq1 : Epq1 −→ Ep+1,q
1 . Fur-

ther, for a fixed c ∈ Z+, the natural map Hc
Z0

(F) −→ Hc
Z0/Z1

(F) and differentials

dpc1 make a sequence

0 −→ Hc
Z0

(F) −→ Hc
Z0/Z1

(F) −→ . . . −→ Hc+i
Zi/Zi+1

(F) −→ . . . (1.2.1)

into a complex. If

Hc+i
Z0

(F) = 0 for i 6= 0 and Hc+i
Zp/Zp+1

(F) = 0 for i 6= p

then (1.2.1) becomes a resolution of Hc
Z0

(F).

Proof. Let F −→ C·(F) be a canonical resolution (see [7] for a definition). Then the
filtered complex

ΓZ0
(C·(F)) ⊇ ΓZ1

(C·(F)) ⊇ ΓZ1
(C·(F)) ⊇ . . .

defines the desired spectral sequence. The fact that (1.2.1) is a complex is now
evident. To prove the second statement observe that by assumption Epq1 = 0 if
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q 6= c and this implies Epc2 = Epc∞ and Hn
Z0

(F) = En−c,c2 . Since Hn
Z0

(F) = 0 for
n 6= c we obtain

Epc2 = 0 for p 6= 0 and E0c
2 = ker(E0c

1 −→ E1c
1 ) = Hc

Z0
(F)

proving the exactness of (1.2.1). ˜

Denote by Ȳ a closure of Y ⊆ X and write ∂Y = Y − Y . Fix a simple root
α ∈ Π and consider the flag variety Xα of parabolic subalgebras of type α and a
natural projection pα : X −→ Xα. Recall that pα is locally trivial fibration with
fibres isomorphic to a projective line P1. Pick v, w ∈ W such that w = sαv and
ℓ(w) = ℓ(v) + 1. Then C(v) ⊆ C(w) for the corresponding Bruhat cells. In that
case we usually write w ≥ v. Put Z = p−1

α pα(C(v)). Then Z = C(v) ∪ C(w)
and C(v) is closed (of codimension 1) and C(w) open subvariety of Z. Moreover,
local triviality of pα implies that Z is a smooth affinely imbedded subvariety of X .
Assume now that L = OX(λ + ρ) for some λ ∈ P (Σ). Then we have the exact
sequence of Dλ-modules

0 −→ ΓC(w)/∂C(w)(L) −→ ΓC(w)/∂Z(L) −→ Γ∂C(w)/∂Z(L) −→ 0.

Notice that ∂C(w)−∂Z = C(v) and C(w)−∂Z = C(w)∪C(v). Thus we obtain from

the corresponding long exact sequence ( using I(w, λ) ∼= jw,∗H
n−l(w)
c(w) (j∗wL), where

jw : X − C(w) −→ X , n = dimX [2]) a natural surjective map I(w, λ) −→ I(v, λ).
Dually, there is a natural injective map M(v, λ) −→ M(w, λ). We summarize this
discussion in the following lemma:

Lemma 1.3. Let v, w ∈ W be such that w = sαv (α ∈ Π) and ℓ(w) = ℓ(v) + 1.
Then for λ ∈ P (Σ) we have a natural surjective (injective) map

I(w, λ) −→ I(v, λ) (M(v, λ) −→ M(w, λ))

For p ∈ Z+ denote by Zp the union of Bruhat cells whose codimension in X is
≥ p. Then we have

Zp − Zp+1 =
⋃

ℓ(w)=ℓ(w0)−p

C(w)

where w0 denotes the longest element in W .
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Proposition 1.4. Let λ ∈ P (Σ) and L = OX(λ+ρ). Then the following sequences
are exact:

0 −→ L −→ I(w0, λ) −→ · · · −→
⊕

ℓ(w)=p

I(w, λ) −→ · · · −→ I(1, λ) −→ 0

0 −→ M(1, λ) −→ · · · −→
⊕

ℓ(w)=p

M(w, λ) −→ · · · −→ M(w0, λ) −→ L −→ 0.

In both cases the differentials are induced by the natural maps described in 1.3.

Proof. Notice that Hj
Zp/Zp+1

(L) = 0 if j 6= p and

Hp
Zp/Zp+1

(L) =
⊕

ℓ(w)=ℓ(w0)−p

I(w, λ).

Thus we may apply 1.2. to obtain the first sequence. Moreover, for w, v ∈ W such
that w ≥ v and ℓ(w) = ℓ(w0) − p, the map I(w, λ) −→ I(v, λ) induced by

Hp
Zp/Zp+1

(L) −→ Hp+1
Zp+1/Zp+2

(L)

coincides with the natural surjection I(w, λ) −→ I(v, λ) constructed in 1.3.
The second sequence is obtained from the first one by observing that DC(w)(OC(w)) ∼=

OC(w) as N -homogeneous Diw
−λ−2ρ-connections and by applying exact functor

DX : Modhol(D−λ−2ρ) −→ Modhol(Dλ) ˜

2. Two resolutions

Let G0 be a real semisimple connected Lie group with finite center and g a
complexified Lie algebra of G0. Denote by G a simply connected complex group
with Lie algebra g. The choice of a maximal compact subgroup in G0 determines
an involution ϑ : g −→ g. We denote by the same symbol the induced involution on
G. Let

g = k ⊕ p

be the corresponding decomposition into ±1-eigenspaces of ϑ. Denote by K the set
of fixed points of ϑ in G. Thus K is a connected reductive algebraic group. In the
following we use the notation established in 1.
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We want to recall how to describe closed K-orbits in X . First of all, observe
that we can always find a ϑ-stable Cartan subalgebra in b and any two Cartan
subalgebras with this property are conjugate by an element from K ∩ N ([10]).
Thus we may assume that the Cartan subalgebra h from 1. is ϑ-stable. We write

h = h1 ⊕ h2

where h1 = k ∩ h and h2 = p ∩ h. The involution ϑ induces an involution of the
root system Σ to be denoted also by ϑ. As usual we denote by ΣCI ,ΣR and ΣC the
sets of compact imaginary, real and complex roots respectively in Σ. The following
result is well known [10].

Lemma 2.1. Let x0 ∈ X be a point corresponding to b. Then the following state-
ments are equivalent:

(i) The orbit K · x0 is closed;

(ii) k ∩ b is a Borel subalgebra in k;

(iii) Σ+ is ϑ-stable.

If these conditions are satisfied, h is a fundamental Cartan subalgebra in g and
therefore ΣR = ∅.

In the sequel we assume that the conditions from 2.1. are fulfilled. Denote by Σk

the root system of (k, h1) and by Σ+
k a positive subsystem determined by b ∩ k. Let

Wk be a Weyl group of Σk and ρk a half sum of positive roots. Also Lk is defined
analogously as L. For λ ∈ h∗, we denote λ1 = λ|h1. We may assume that the
invariant form (·, ·) from 1. is ϑ-invariant.

Lemma 2.2. (i) If λ ∈ P (Σ), then λ1 ∈ P (Σk).

(ii) If λ ∈ P (Σ) is Σ+-antidominant, then λ1 is Σ+
k -antidominant.

Proof. We may identify h∗
1 with the subspace {λ ∈ h∗ : ϑλ = λ}. For α1 ∈ Σk we

have to find α1̌ ∈ (h∗
1)

∗ = h1 such that α1̌(α) = 2. Notice that α1̌ is unique modulo
center of k. We distinguish several cases.

(a) If α ∈ ΣCI , then αˇ∈ h∗
1 and α (̌α) = α (̌α1). Thus we may put α1̌ = α .̌

For the remaining cases observe that (α, ϑα) ≤ 0 if α ∈ ΣC (since α− ϑα is not
in Σ) and (α, α) = (ϑα, ϑα). We conclude that (α ,̌ ϑα) = 0,−1.

(b) If (α ,̌ ϑα) = 0 we may put α1̌ = αˇ+ (ϑα)̌ .

(c) If (α ,̌ ϑα) = −1 we may put α1ˇ = 2(αˇ + (ϑα)̌ ). Choose λ ∈ P (Σ).
Examining all three cases above we deduce that α1̌(λ1) ∈ Z for any α1 ∈ Σk, as
desired. ˜
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Put Y = K · x0 and let Y →֒ X be the imbedding. We view Y as a flag variety

of k and denote by D̃ν a K-homogeneous twisted sheaf of differential operators on
Y determined by a linear form ν + ρk on h1. Then we have

Di
λ = D̃ν where ν = λ1 + ρ1 − ρk.

We assume in the following that λ ∈ h∗ is such that λ1 ∈ P (Σk). Since τ = OY (ν+

ρk) is an irreducible D̃ν-connection by Kashiwara’s theorem I(Y, τ) = R◦i+(τ) is
irreducible Dλ-module.

The action of K ∩ N on Y induces the Bruhat decomposition on Y. Denote
by Ck(w) the Bruhat cell associated with w ∈ Wk and by iw : Ck(w) −→ Y the
corresponding imbedding. Let w0 be the longest element in Wk. For w ∈ Wk we
put

Ik(w, ν) = R0iw,+(OCk(w)), Mk(w, ν) = R0iw,!(OCk(w)),

T (w, λ) = R0(i ◦ iw)+(OCk(w)), Z(w, λ) = R0(i ◦ iw)!(OCk(w)),

L(Y, τ) = Γ(X, I(Y, τ)), T (w, λ) = Γ(X, T (w, λ)), Z(w, λ) = Γ(X,Z(w, λ)).

Here we view OCk(w) as Di◦iw
λ -module. Then we have

T (w, λ) = R0i+(Ik(w, ν)), Z(w, λ) = R0i!(Mk(w, ν)).

Notice that in the second equality we have used that i is a proper map. We conclude
from 1.3. that for w, v ∈ Wk such that w ≥ v there is a natural surjective (resp.
injective) map

T (w, λ) −→ T (v, λ) ( resp. Z(v, λ) −→ Z(w, λ)).

The following lemma is easily proved:

Lemma 2.3. For µ ∈ P (Σ) we have
(i) T (w, λ)(µ) = T (w, λ+ µ)
(ii) Z(w, λ)(µ) = Z(w, λ+ µ).

Proposition 2.4. Suppose λ ∈ h∗ is antidominant and such that λ1 ∈ P (Σk). Let
τ = OY (ν + ρk) (ν = λ1 + ρ1 − ρk). Then

0 −→ L(Y, τ) −→ T (w0, λ) −→ · · · −→
⊕

ℓ(w)=p

T (w, λ) −→ · · · −→ T (1, λ) −→ 0
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and

0 −→ Z(1, λ) −→ · · · −→
⊕

ℓ(w)=p

Z(w, λ) −→ · · · −→ Z(w0, λ) −→ L(Y, τ) −→ 0

are exact sequences of (Uθ, K ∩N)-modules of finite length.

Proof. First we apply 1.5. in the k-setting. Then we act on the obtained sequences

by the exact functor R0i+ : M(D̃ν) −→ M(Dλ). Finally, the result follows by taking
global sections, since the higher cohomologies of Dλ- modules for λ antidominant
vanish. ˜

Now we shall construct a duality operation on a certain full subcategory of M(Uθ)
that relates exact sequences from 2.4. Let λ be antidominant and ν and τ be as
before. Then a twist by τ−1 induces an equivalence of categories

Mhol(D̃ν , K ∩N) −→ Mhol(DY , K ∩N).

Using this, we transfer the duality functor

DY : Mhol(DY , K ∩N) −→ Mhol(DY , K ∩N)

from Mhol(DY , K ∩N) to Mhol(D̃ν , K ∩N). Denote by

ˇ : Mhol(D̃ν , K ∩N) −→ Mhol(D̃ν , K ∩N)

the duality functor obtained in this way. Let MY (Dλ, K∩N) be the full subcategory
of Mhol(Dλ, K∩N) consisting of modules supported in Y . By Kashiwara’s theorem
we extend ˇ to MY (Dλ, K ∩N). Thus we obtain a contravariant exact functor

ˇ : MY (Dλ, K ∩N) −→ MY (Dλ, K ∩N)

such that (M )̌̌ ∼= M for M ∈ MY (Dλ, K ∩N).
For M ∈ MY (Dλ, K ∩ N) denote by M0 the largest (Dλ, K ∩ N)-submodule

with trivial global sections. Put

MY (Uθ, K ∩N) = {M ∈ Mfg(Uθ, K ∩N) : ∆λ(M)/∆λ(M)0 ∈ MY (Dλ, K ∩N)}.

Notice that if α : M −→ N is a map of (Uθ, K∩N)-modules then ∆λ(α)(∆λ(M)0) ⊆
∆λ(N)0. It follows that MY (Uθ, K ∩N) is a full subcategory of Mfg(Uθ, K ∩N).
For M ∈ MY (Uθ, K ∩N) set

M˜ = Γ(X, (∆λ(M)/∆λ(M)0)̌ ).

We have to show that M˜∈ MY (Uθ, K ∩N).
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Lemma 2.5. Suppose M ∈ MY (Dλ, K ∩ N) is such that Γ(X,M) = 0. Then
Γ(X,M )̌ = 0 as well.

Proof. If N is a composition factor of M then Γ(X,N ) = 0. Further M and Mˇ
have isomorphic composition series and therefore the induction on the length of M
yields Γ(X,M )̌ = 0. ˜

Now we can show M˜ ∈ MY (Uθ, K ∩N). Put M = (∆λ(M)/∆λ(M)0)̌ . Then
there is a natural map ϕ : ∆λ(M )̃ −→ M. Let K = kerϕ, I = imϕ, C = cokerϕ.
Then K ⊂ ∆λ(M )̃0 and ∆λ(M )̃/K ∈ MY (Dλ, K∩N) implyM˜∈ MY (Uθ, K∩N).
Further we show that (M )̃̃ ∼= M . In fact, from the sequence

0 −→ I −→ M −→ C −→ 0

we obtain
0 −→ Cˇ−→ ∆λ(M)/∆λ(M)0 −→ Iˇ−→ 0.

Using 2.5. we deduce (∆λ(M )̃/K)̌ = ∆λ(M)/∆λ(M)0. On the other hand, dual-
izing

0 −→ ∆λ(M )̃0/K −→ ∆λ(M )̃/K −→ ∆λ(M )̃/∆λ(M )̃0 −→ 0

and applying 2.5. again we conclude

(M )̃̃ = Γ(X, (∆λ(M )̃/∆λ(M )̃0)̌ ) = Γ(X, (∆λ(M )̃/K)̌ )

= Γ(X,∆λ(M)/∆λ(M)0) = M.

Using similar arguments we show further that

T (w, λ)̃ = Z(w, λ), L(Y, τ )̃ = L(Y, τ).

Moreover, for w, v ∈ Wk such that w ≥ v a natural surjection T (w, λ) −→ T (v, λ)
is transferred under ˜ into a natural injection Z(v, λ) −→ Z(w, λ). We summarize
our discussion in the following proposition.

Proposition 2.6. Suppose λ ∈ h is antidominant. Then there exists a full sub-
category MY (Uθ, K ∩N) of Mfg(Uθ, K ∩N) containing modules T (w, λ), Z(w, λ),
L(Y, τ) and a contravariant involutive functor ˜ on MY (Uθ, K ∩N) transforming
the exact sequences from 2.4. into each other.

Example 2.7. Assume that rankG0 = rankK0 and that symmetric space G0/K0

has a Hermitian structure. Let h0 be the maximal abelian subspace in k0 and
h its comlexification. Then h is a common Cartan subalgebra of k and g. Put
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ΣNCI = {α ∈ Σ : gα ∩ k = ∅}. It is known ([13]) that the the choice of a positive
system Σ+ ⊂ Σ with the property

α, β ∈ Σ+ ∩ ΣNCI ⇒ α+ β /∈ Σ+

determines the invariant complex structure on G0/K0. In particular, in this case
Πk ⊂ Π and Ck(w) = C(w) for w ∈ Wk. Notice that the second statement follows
from the first by induction on ℓ(w). In the present case the discrete series (holomor-
phic discrete series) can be realiezed on the global sections of certain holomorphic
vector bundles on G0/K0. Their infinitesimal description is particulary simple and
we recall it bellow following [14]. Choose λ antidominant regular and such that
λ+ ρ ∈ Lk. Then M(vλ) →֒M(wλ) if w ≥ v, v, w ∈Wk and hence we may put

D(λ) = M(w0λ))

/(
∑

w<w0

M(wλ)

)
.

The module D(λ) is closely related to the holomorphic discrete series. More details
about the identification can be found in [14]. Observe that by our choices q = k+b∩p

is a parabolic subalgebra in g. Thus if we view Bernstein-Gelfand-Gelfand resolution

0 −→Mk(ν) −→ · · · −→
⊕

ℓ(w)=p

Mk(wν) −→ · · · −→Mk(w0ν) −→ Lk(w0ν) −→ 0 (ν = λ−ρ+ρk)

as the resolution of q-modules by letting b∩p act trivially, we obtain after tensoring
with U(g) ⊗U(q) − a resolution of D(λ) by g-modules

0 −→M(λ) −→ · · · −→
⊕

ℓ(w)=p

M(wλ) −→ · · · −→M(w0λ) −→ D(λ) −→ 0.

On the other hand since Ck(w) = C(w) we have Z(w, λ) = M(wλ) and T (w, λ) =
I(wλ). Moreover, the duality ˜ acts on (2.14) as contragredient duality (2.1) and
maps it into

0 −→ D(λ) −→ · · · −→
⊕

ℓ(w)=p

I(wλ) −→ · · · −→ I(w0λ) −→ I(λ) −→ 0.
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3. A resolution of DY→X

The aim of this section is to produce a K-equivariant resolution of DY→X in the
case when Y is a K-orbit on a flag variety X . I learned about this result from H.
Hecht. The approach taken up here is different then the original one in [8].

First of all we refer to [9] for a definition and construction of a homogeneous
twisted sheaf of differential operators.

Put Z = G/(K∩B), Y = K/(K∩B) and let j : Y −→ Z be the inclusion. Choose
(K ∩ B)-invariant form µ ∈ (k ∩ b)∗. Then µ determines a homogeneous twisted
sheaf of differential operators DZ,µ on Z. Suppose V is a G-equivariant locally free
sheaf on Z. Then we form DZ,µ ⊗OZ

V, where we use right OZ-module structure
on DZ,µ to form tensor product. Notice that DZ,µ ⊗OZ

V is a left DZ,µ-module for
the left multiplication on the first factor. Further, the differentiation of G-action
on V defines left U(g)-module structure on V. Now, if d ∈ DZ,µ, v ∈ V and ξ ∈ g,
we put

(d⊗ v) · ξ = dξ ⊗ v − d⊗ ξ · v.

It is easy to check that this determines the structure of a right U(g)-module on
DZ,µ ⊗OZ

V. The previous discussion shows that DZ,µ ⊗OZ
V is (DZ,µ,U(g))-

bimodule and this two module structures commute.
Let DY,µ be a K-homogeneous twisted sheaf of differential operators on Y deter-

mined by µ. In other words, DY,µ = Dj
Z,µ. We want to explain how (DZ,µ,U(g))-

bimodule structure on DZ,µ ⊗OZ
V induces (DY,µ,U(g))-bimodule structure on

j∗(DZ,µ ⊗OZ
V).

Notice that j−1(DZ,µ ⊗OZ
V) is a left j−1OZ -module and a right U(g)-module.

For f ∈ OY , d ∈ j−1(DZ,µ), v ∈ j−1(V), and ξ ∈ g, we have

f(g ◦ j) ⊗ (d⊗ v) · ξ = f ⊗ g ◦ j((d⊗ v) · ξ) = f ⊗ ((g ◦ j)d⊗ v) · ξ.

We conclude that
(f ⊗ (d⊗ v)) · ξ = f ⊗ (d⊗ v) · ξ

gives well defined U(g)-action on j∗(DZ,µ ⊗OZ
V).

To define DY,µ-action on j∗(DZ,µ ⊗OZ
V) notice first that we have a map

j−1(l) : j−1(g◦
Z) × j−1(DZ,µ ⊗OZ

V) −→ j−1(DZ,µ ⊗OZ
V)

(g◦
Z = OZ ⊗C g) induced by the left multiplication on DZ,µ. This induces the map

α : j∗(g◦
Z) × j−1(DZ,µ ⊗OZ

V) −→ j∗(DZ,µ ⊗OZ
V)
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defined by the formula

α(f ⊗ z, u) = f ⊗ j−1(l)(z, u), f ∈ OY , z ∈ j−1(g◦
Z), u ∈ j−1(DZ,µ ⊗OZ

V).

Using inclusion k◦Y −→ j∗(g◦
Z) (k◦Y = OY ⊗C k) we define the map

β : k◦Y ×OY × j−1(DZ,µ ⊗OZ
V) −→ j∗(DZ,µ ⊗OZ

V),

β(s, f, u) = τ1(s)f ⊗ u+ fα(s, u) s ∈ k◦Y , f ∈ OY , u ∈ j−1(DZ,µ ⊗OZ
V),

here τ1 : k◦Y −→ TY is a homomorphism into the Lie algebra of vector fields on Y . It
follows easily that β is j−1OZ-linear in the last two terms and therefore it induces
the action

γ : k◦Y × j∗(DZ,µ ⊗OZ
V) −→ j∗(DZ,µ ⊗OZ

V).

One checks easily that γ has the following properties:
(i) γ([s, t], ·) = [γ(s, ·), γ(t, ·)];
(ii) γ(fs, ·) = fγ(s, ·);
(iii) [γ(s, ·), f ] = τ1(s)f ;

here s, t ∈ k◦Y , f ∈ OY . Using (i)-(iii), the standard inductive argument shows that
γ extends to the action

γ : U◦
Y (k) × j∗(DZ,µ ⊗OZ

V) −→ j∗(DZ,µ ⊗OZ
V).

Let τ : g◦
Z −→ TZ be a natural morphism into the Lie algebra of vector fields on

Z. Denote by b◦
Z (resp. b◦

Y ) the kernel of τ (resp. τ1) and by σµ : b◦
Z −→ OZ

(resp. σ′
µ : b◦

Y −→ OY ) the G-equivariant (K-equivariant) morphism determined by
µ. Notice that j∗(b◦

Z) = b◦
Y , and that s ∈ b◦

Y can be written as s =
∑
fi ⊗ si,

fi ∈ OY , si ∈ j−1(b◦
Z). Thus we have

γ(s, f ⊗ u) = τ1(s)f ⊗ u+ fα(s, u) =
∑

ffiα(si, u)

=
∑

ffi(σµ ◦ j)(si) ⊗ u =
(∑

fiσ
′
µ(si)

)
(f ⊗ u) = σ′

µ(s)(f ⊗ u).

This implies finally that there is a map

δ : DY,µ × j∗(DZ,µ ⊗OZ
V) −→ j∗(DZ,µ ⊗OZ

V).

It remains to check that δ commutes with the right U(g)-action.
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Let ξ ∈ g, s ∈ k◦Y , d ∈ j−1(DZ,µ), v ∈ j−1V. We have

δ(s, (f⊗(d⊗v))·ξ) = τ1(s)f⊗(dξ⊗v)−τ1(s)f⊗(d⊗ξv)+fα(s, dξ⊗v)−fα(s, d⊗ξv)

= (τ1(s)f ⊗ (d⊗ v)) · ξ + (fα(s, (d⊗ v)) · ξ = (δ(s, (f ⊗ (d⊗ v))) · ξ,

as desired. For simplicity we write in the following δ(s,D) = s ·D, if s ∈ DY,µ and
D ∈ j∗(DZ,µ ⊗OZ

V).
Observe that locally free sheaf j∗(V) is K-equivariant and thus the differentiation

of K-action yields left U(k)-action on j∗(V). As before we define right U(k)-module
structure on DY,µ ⊗OY

j∗(V) by putting

(d⊗ u) · ξ = dξ ⊗ u− d⊗ ξ · u, d ∈ DY,µ, u ∈ j∗(V), ξ ∈ k.

Recall also that DY,µ ⊗OY
j∗(V) is left DY,µ-module for the left multiplication on

the first factor and this action carries over to (DY,µ⊗OY
j∗(V))⊗U(k)U(g). Our goal

is to show:

Lemma 3.1. As (DY,µ,U(g))-bimodule j∗(DZ,µ ⊗OZ
V) is isomorphic to

(DY,µ ⊗OY
j∗(V)) ⊗U(k) U(g).

To prove this we need a little preparation.

Lemma 3.2. Let x0 ∈ Y and let Tx0
(F) denotes a geometric fibre of OZ(OY )-

module F . Then
(i) Tx0

(DZ,µ ⊗OZ
V) = (C−µ ⊗C V ) ⊗U(b∩k) U(g) as a right U(g)-module.

(ii) Tx0
(DY,µ ⊗OY

j∗V) = (C−µ ⊗C V ) ⊗U(b∩k) U(k) as a right U(k)-module.

Proof. This is Lemma 3.6. from [9].

Now we return to the proof of 3.1. It is clear from the previous discussion that
we can define the map

κ : (DY,µ ⊗OY
j∗V) × U(g) −→ j∗(DZ,µ ⊗OZ

V)

by
κ(d⊗ (f ⊗ u), ξ) = (d · (f ⊗ (1 ⊗ u))) · ξ,

d ∈ DY,µ, f ∈ OY , u ∈ j−1V, ξ ∈ U(g) and 1 ∈ j−1(DZ,µ) is the identity. If η ∈ k,
we have

κ(((d⊗ (f ⊗ u)) · η, ξ) = κ(dη ⊗ (f ⊗ u) − d⊗ η · (f ⊗ u), ξ)

= (dη · (f ⊗ (1 ⊗ u))) − (dτ1(η)f ⊗ (1 ⊗ u))) · ξ − (d(f ⊗ 1 ⊗ η · u))) · ξ

= (d(τ1(η)f⊗(1⊗u)))·ξ+((d(f⊗(η⊗u)))·ξ−(d(τ1(η)f⊗(1⊗u)))·ξ−((d(f⊗(1⊗η·u)))·ξ

= (d(f ⊗ (1 ⊗ u))) · ηξ = κ(d⊗ (f ⊗ u), ηξ).
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We conclude that κ induces the map

ψ : (DY,µ ⊗OY
j∗V) ⊗U(k) U(g) −→ j∗(DZ,µ ⊗OZ

V)

by

ψ((d⊗ (f ⊗ u)) ⊗ ξ) = (d(f ⊗ (1 ⊗ u)) · ξ.

First we check that ψ is surjective. It suffices to show that f ⊗ ((1 ⊗ ξ) ⊗ u) is in
the image of ψ, here f ∈ OY , u ∈ j−1V and 1⊗ ξ, ξ ∈ g, is viewed as an element of
j−1(DZ,µ). In fact this follows from

f ⊗ ((1 ⊗ ξ) ⊗ u) = (f ⊗ (1 ⊗ 1) ⊗ u) · ξ + f ⊗ (1 ⊗ 1) ⊗ ξ · u

= ψ(1 ⊗ (f ⊗ u) ⊗ ξ) + ψ(1 ⊗ (f ⊗ ξ · u) ⊗ 1).

For r ∈ Z+ let U(p)r denotes the rth subspace in the standard filtration of U(p).
Notice that ψ induces the map

ψr : (DY,µ ⊗OY
j∗V) ⊗C U(p)r −→ j∗(DZ,µ ⊗OZ

V).

It will suffice to show that ψr is injective for any r ∈ Z+. Let F′ and F′′ denote the
filtrations on DY,µ and DZ,µ respectively determined by the degree of differential
operators. Put

Fn+r((DY,µ ⊗OY
j∗V) ⊗C U(p)r) = (F′

nDY,µ ⊗OY
j∗V) ⊗C U(p)r

Fn j
∗(DZ,µ ⊗OZ

V) = j∗(F′′
nDZ,µ ⊗OZ

V) n, r ∈ Z+.

Then ψr is compatible with filtrations, and it suffices to prove that

Grψr : Gr((DY,µ ⊗OY
j∗V) ⊗C U(p)r) −→ Gr j∗(DZ,µ ⊗OZ

V)

is injective. Clearly, this follows if we show that Grψr is injective on geometric
fibres. Finally, we are reduced to show that ψr is injective on geometric fibres. By
3.2. we have isomorphisms

φ1 : ((C−µ ⊗C V ) ⊗U(b∩t) U(k)) ⊗C U(p)r −→ Tx0
(DY,µ ⊗OY

j∗V) ⊗C U(p)r,

φ2 : (C−µ ⊗C V ) ⊗U(b∩k) U(g) −→ Tx0
(j∗(DZ,µ ⊗OZ

V)).
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From the construction of φ1 and φ2 (compare the proof of loc. cit.) we deduce
further that the following diagram commutes

Tx0
(DY,µ ⊗OY

j∗V) ⊗C U(p)r
ψr−−−−→ Tx0

(j∗(DZ,µ ⊗OZ
V))

xφ1

xφ2

((C−µ ⊗C V ) ⊗U(b∩t) U(k)) ⊗C U(p)r
φ

−−−−→ (C−µ ⊗C V ) ⊗U(b∩k) U(g)

;

here the bottom map is given by

φ((v ⊗ η)ξ) = v ⊗ ηξ, v ∈ V, η ∈ U(k), ξ ∈ U(p)r.

Since φ is injective, we conclude that ψr is also injective. This completes the proof
of 3.1.

Let X be a flag variety of g and Dλ = DX,λ+ρ a G-homogeneous twisted sheaf
of differential operators on X . Let Y = K · x0 be a K-orbit and i : Y −→ X the
inclusion. With the preliminaries we have developed we proceed to construct the
resolution of i∗(Dλ) by (Di

λ,U(g))-bimodules. Denote by p : Z −→ X the natural
projection. Then we have a commutative diagram

Y
j

−−−−→ Z
∥∥∥ p

y

Y
i

−−−−→ X

.

Let TZ|X be a locally free OZ-module consisting of vector fields on Z tangent to
the fibres of p. Notice that TZ|X is G-equivariant sheaf with the geometric fibre
isomorphic to b/(b ∩ k). Also TZ|X ⊂ Dp

λ. Recall that p defines a relative de Rham
complex

· · · −→ Dp
λ ⊗OZ

∧kTZ|X
d
−→ Dp

λ ⊗OZ
∧k−1TZ|X −→ · · · −→ Dp

λ −→ p∗(Dλ) −→ 0,

with the differential d given by the formula

d(D ⊗ v1 ∧ · · · ∧ vk) =
∑

(−1)iDvi ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · vk

+
∑

i<j

(−1)i+jD ⊗ [vi, vj] ∧ · · · v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk,
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D ∈ Dp
λ, vi ∈ TZ|X . It is well known that de Rham complex is a resolution of p∗(Dλ)

by locally free Dp
λ-modules. As explained above the terms in de Rham complex are

naturally right U(g)-modules. Moreover, it can be checked that the differential
dk : Dp

λ⊗OZ
∧kTZ|X −→ Dp

λ⊗OZ
∧k−1TZ|X is a morphism of right U(g)-modules. It

follows that

j∗(d) : j∗(Dp
λ ⊗OZ

∧kTZ|X) −→ j∗(Dp
λ ⊗OZ

∧k−1TZ|X)

is a morphism of (Di
λ,U(g))-bimodules. Since all terms in the de Rham complex

are locally free as OZ -modules the functor j∗ preserves exactness. Applying 3.1.,
we obtain a variant of H. Hecht’s result:

Proposition 3.3. The sequence

· · · −→ (Di
λ ⊗OY

j∗(∧kTZ|X)) ⊗U(t) U(g) −→ (Di
λ ⊗OY

j∗(∧k−1TZ|X)) ⊗U(t) U(g)

· · · −→ Di
λ ⊗U(t) U(g) −→ i∗(Dλ) −→ 0

is a resolution of i∗(Dλ) by (Di
λ,U(g))-modules.

Proposition 3.4. Let V be a right Di
λ-module. Then the sequence

· · · −→ i∗(V ⊗OY
j∗(∧kTZ|X)) ⊗U(t) U(g) −→ i∗(V ⊗OY

j∗(∧k−1TZ|X)) ⊗U(t) U(g) −→

· · · −→ i∗(V) ⊗U(t) U(g) −→ R0iR+(V ) −→ 0

represents a resolution of R0iR+(V) by right U(g)-modules. (The superscript R in-
dicates here that the direct image functor is defined in the category of right D-
modules.)

Proof. Since each module in 3.3. is a flat Di
λ-module, we deduce after tensoring

with V ⊗Di
λ
− that

· · · −→ (V ⊗OY
j∗(∧kTZ|X)) ⊗U(t) U(g) −→ (V ⊗OY

j∗(∧k−1TZ|X)) ⊗U(t) U(g) −→

· · · −→ V ⊗U(t) U(g) −→ V ⊗Di
λ
DY→X −→ 0,

is an exact sequence of right U(g)-modules. Finally, we obtain a desired resolution
after applying the functor i∗ on the last sequence. ˜

From now on assume that Y is a closed K-orbit and use the notation from 2. In
particular, x0 corresponds to a ϑ-stable Borel subalgebra b.
Definition 3.5. We say that λ ∈ h∗ is in a good position if (λ1 − ρ1 + ρk) + µ is
Σ+

k -antidominant whenever µ is a weight of ∧·(b/(b ∩ k)).
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Lemma 3.6. Suppose λ is in a good position. Let V be a left Di
λ-module. Then

Hi(Y,V ⊗OY
ωY |X ⊗OY

j∗(∧kTZ|X)) = 0

for any i > 0 and k ≥ 0.

Proof. First we choose b ∩ k-invariant filtration

0 = F0(∧
k(b/(b∩ k))) ⊂ F1(∧

k(b/(b∩ k))) ⊂ · · · ⊂ Fm(∧k(b/(b∩ k))) = ∧k(b/b∩ k)

such that
Fi(∧

k(b/(b ∩ k)))/Fi−1(∧
k(b/(b ∩ k))) = Cνi

for some h1 -weight νi of ∧k(b/(b ∩ k)). This will determine a filtration on W =
V ⊗OY

ωY |X ⊗OY
j∗(∧kTZ|X)),

0 = F0 W ⊂ F1 W ⊂ · · · ⊂ FmW = W

such that
FiW/Fi−1 W = V(2(ρk − ρ1) + νi).

The statement follows now easily using Beilinson-Bernstein vanishing theorem. ˜

Proposition 3.7. Suppose λ ∈ h is antidominant and in a good position. Let V
be a left Di

λ-module. Then as a left U(g)-module Γ(X,R0i+(V)) is generated by
Γ(Y,V ⊗OY

ωY |X).

Proof. We may view R0i+(V) as a right D−λ-module and V ⊗OY
ωY |X as a right

Di
−λ-module. Moreover, if R0iR+ : MR(Di

−λ) −→ MR(D−λ) is a direct image functor

for the right modules, then R0iR+(V ⊗OY
ωY |X) = R0i+(V). Therefore we have

to show that as a right U(g)-module Γ(X,R0iR+(V ⊗OY
ωY |X)) is generated by

Γ(Y,V ⊗OY
ωY |X). But this follows directly from 3.4. and 3.6. ˜

4. Enright’s construction

In this section we recall briefly the properties of Enright’s completion functor.
Let {X, Y,H} be a standard basis of a = sl(2,C). If M is an a-module we

denote by MX the space of X-invariants and by M [c] the c-eigenspace of H. Put
M [c]X = M [c] ∩MX . Assume in addition that M is a weight module for a. Then
M is complete if

Y n+1 : M [n]X −→M [−n− 2]X
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is isomorphism for any n ∈ Z+. An a-module M ′ is a completion of M if there is
a-module injection i : M →֒M ′ such that

(i) M ′/i(M) is a-finite,
(ii) M ′ is complete.

To establish the existence of completion one restricts to the category C(a) of a-
modules M with the following properties:

(a) M is a weight module for H;
(b) M has no Y -torsion;
(c) X acts locally nilpotently on M .
Suppose further that g is a complex Lie algebra and a ⊂ g. Then we consider the

category C(g, a) of g-modules M such that M ∈ C(a) for the underlying a-module
structure.

Proposition 4.1. Let M ∈ C(g, a).
(i) There is a g-module C(M) such that as a-module C(M) is a completion of M

and the inclusion i : M →֒ C(M) is a morphism of g-modules. The last condition
determines g-module structure on C(M) uniquely.

(ii) For any morphism ϕ : M1 −→ M2 in C(g, a) there is a unique g-module map
C(ϕ) : C(M1) −→ C(M2) extending ϕ.

(iii) If F is a finite dimensional g-module then M ⊗C F ∈ C(g, a) and C(M ⊗C

F ) = C(M) ⊗C F .
(iv) C(M[λ]) = C(M)[λ].

Proof. (i)-(iii) are proved in [4]. To prove (iv), choose v ∈ C(M[λ]). Since C(M[λ])/M[λ]

is a-finite there is n ∈ Z+ such that Y n · v ∈M[λ]. It follows that (z−χλ(z))m(Y n ·
v) = 0 for some m ∈ Z+. On the other hand, Y acts without torsion on C(M)
and hence (z − χλ(z))

m · v = 0. In other words, v ∈ C(M)[λ]. To conclude the
proof it suffices to show that C(M)[λ]/C(M[λ]) is a-finite (compare loc.cit., 3.9).
Let v ∈ C(M)[λ]. Then Y n · v ∈ M for some n ∈ Z+. In this case necessarily
Y n · v ∈M[λ], as desired. ˜

Suppose that a pair (g, k) is choosen as in 2. Put in addition

nk =
∑

α∈Σ+

k

kα, n̄k =
∑

α∈Σ+

k

k−α.

Definition 4.2. We consider the category C(g, k) of g-modules M with the follow-
ing properties:

(i) M is a weight module for h1 with integral weights;
(ii) M is U(nk)-torsion free;
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(iii) M is U(nk)-finite.

For each α ∈ Πk we choose x±α ∈ k±α and hα ∈ h1 such that [xα, x−α] = hα,
α(hα) = 2. Denote by aα a 3-dimensional subalgebra in k spanned by xα, x−α and
hα. Then we can consider a completion functor Cα defined with respect to aα. It
can be shown that completion functors Cα for α ∈ Πk preserve C(g, k). Let w ∈Wk

and let w = sα1
· · · sαm

, αi ∈ Πk, be a reduced expression. Then for M ∈ C(g, k) we
put

Cw(M) = Cα1
(· · · (Cαm

(M)) · · · ).

It is known that Cw(M) depends only on w and not on the particular reduced
expression [3].

The following proposition generalizes 4.1.

Proposition 4.3. Let M ∈ C(g, k).

(i) For any w ∈ Wk, there is a unique g-module structure on Cw(M) such that
M →֒ Cw(M) is a g-module map.

(ii) Suppose (Mw;w ∈ Wk) is a family of g-modules such that M1 = M , and
for w = sαv, w ≥ v, α ∈ Πk, Cα(Mv) = Mw. Then we have a unique family
of isomorphisms ϕw : Cw(M) −→ Mw, w ∈ Wk, making the following diagram
commutative

Cv(M) −−−−→ Cw(M)

ϕv

y ϕw

y

Mv −−−−→ Mw

.

(iii) If F is a finite dimensional g-module then M ⊗C F ∈ C(g, k) and Cw(M ⊗C

F ) = Cw(M) ⊗C F .

(iv) Cw(M[λ]) = Cw(M)[λ].

We know that the sequence

0 −→ Em −→ · · · −→ Ei −→ · · · −→ E0 −→M(λ) −→ 0,

where

Ei = U(g) ⊗U(b∩k) (∧i(b/(b ∩ k)) ⊗C Cλ1−ρ1)

and m = dim(b/(b ∩ k)), is a resolution of M(λ) by U(g)-modules [4]. It can be
shown (loc.cit., 5.), that under certain restrictions on the parameter λ this resolution
can be lifted to a resolution of Cw(M(λ)).
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Proposition 4.4. Suppose λ ∈ h∗ is antidominant and in a good position, λ1 ∈
P (Σk) and ν = λ1 − ρ1 + ρk. Then, for any w ∈ Wk, there is an exact sequence of
U(g)-modules

0 −→ Cw(Em) −→ · · · −→ Cw(Ei) −→ · · · −→ U(g)⊗U(k)Mk(w(ν+µ)) −→ Cw(M(λ)) −→ 0.

Examining the last map in the above sequence we conclude that the family of
modules Ew = Cw(M(λ)), w ∈ Wk, has the following four properties:

(i) Z1 = M(λ);
(ii) For any w ∈Wk there is an injective map εw : Mk(wν) →֒ Ew such that

Ew = U(g) · εw(Mk(wν));

(iii) For w, v ∈ Wk, w ≥ v, there is an injective map Zv →֒ Zw such that the
following diagram commutes

Mk(vν) −−−−→ Mk(wν)

εw

y εv

y

Ev −−−−→ Ew

;

(iv) For any w ∈Wk, the module Ew is U(n̄k)-torsion free.
On the other hand, these four properties characterize family (Ew;w ∈ Wk). In

fact, we have [6]:

Proposition 4.5. Let λ ∈ h∗ be such that ν = λ1 − ρ1 + ρk is regular and Σ+
k -

antidominant, and λ1 ∈ P (Σk). Then there is a unique family of modules (Ew;w ∈
Wk) with the properties (i)-(iv). More precisely, if (E′

w;w ∈Wk) is another family of
g-modules with the same properties, there is a family of isomorphisms ϕ : E′

w −→ Ew
such that for any w ≥ v the following diagram commutes

E′
v −−−−→ E′

w

ϕv

y ϕw

y

Ev −−−−→ Ew

.
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5. Main theorem

We show here that the modules Z(w, λ) coincide with the modules Cw(M(λ))
defined via Enright’s completion functor. This will be done in two steps. First we
identify the aforementioned modules when parameter λ is sufficiently negative. The
general case of the antidominant parameter is then reduced to the first one using
translation functors. We turn now to the details.

Lemma 5.1. Suppose λ ∈ h∗ is antidominant, in a good position and such that
λ1 ∈ P (Σk). Then a family of modules (Z(w, λ);w ∈Wk) has the properties (i)-(iv)
from 4.4.

Proof. (i) We have Z(1, λ) = M(λ) by 1.1.
For the rest of the proof put ν = λ1 − ρ1 + ρk and ν′ = λ1 + ρ1 − ρk. Recall that

Z(w, λ) = R0i+(Mk(w, ν
′))

can be filtered by normal degree as explained in [9]. Since we are considering left
D- modules our filtration differs from the one in loc. cit. in a twist by

ωY |X = ωY ⊗OY
i∗(ω−1

X ).

Moreover, the filtered submodules FpR
0i+(Mk(w, ν

′)), p ∈ Z+, carry the additional
structure of U(k)-modules. In fact, this holds since the differentiation with the
operators from U(k) preserves the ideal of regular functions vanishing on Y .

(ii) Notice that ωY |X = OY (2(ρk − ρ1)) and therefore

F0R
0i+(Mk(w, ν

′)) = i∗(Mk(w, ν
′) ⊗OY

ωY |X) = i∗(Mk(w, ν)).

Since ν is Σ+
k -antidominant, this implies

Mk(wν) = Γ(X,F0R
0i+(Mk(w, ν

′))) ⊂ Z(w, λ).

Moreover, applying 3.7. we conclude thatMk(wν) generates Z(w, λ) as U(g)-module.
(iii) Let w ≥ v. Then we have injective map Z(v, λ) →֒ Z(w, λ). Thus the

diagram
F0 Z(v, λ) −−−−→ F0 Z(w, λ)

y
y

Z(v, λ) −−−−→ Z(v, λ)
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is commutative. After taking global sections we obtain finally

Mk(vν) −−−−→ Mk(wν)y
y

Z(v, λ) −−−−→ Z(w, λ)

.

To prove the fourth property we need a little preparation.

Lemma 5.2. Let A be a ring and Z a topological space. Let F be a sheaf of
A-modules and

F0 ⊂ F1 ⊂ · · · ⊂ Fp ⊂ · · · ,
⋃

p∈Z+

Fp = F ,

an exhaustive filtration of F by subsheaves of A-modules. Then there is a spectral
sequence with the first term

Epq1 = Hp+q(X,Fp/Fp−1)

abutting to H ·(X,F). The rth-differentials

dr : Epqr −→ Ep−r,q+r+1
r

are morphisms of A-modules.

We will also need the following result from [12]:

Lemma 5.3. For µ ∈ P (Σ) put

n(µ) = min{ℓ(w) : w ∈W, wµ is antidominant}.

Let M be Dµ-module. If n(µ) > 0, there is a finite dimensional g-module F ,
µ′ ∈ P (Σ) such that n(µ+ µ′) < n(µ), and an injective map

M −→ M(µ′) ⊗OX
F (F = OX ⊗C F ).

We continue now with the proof of 5.1. Suppose M is Di
λ-module. Then the

filtration by normal degree of R0i+(M) yields

GrR0i+(M) = i∗(M⊗OY
S(NY |X) ⊗OY

ωY |X)
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as U(k)-modules, here NY |X is the normal sheaf of Y in X . Each K-homogeneous
sheaf Sp(NY |X), p ∈ Z+, can be filtered further by K-homogeneous subsheaves. In
fact, observe that NY |X is associated to the adjoint representation of K ∩ B on
p/(p ∩ b). Thus we can choose (K ∩B)-invariant filtration on V = Sp(p/(p ∩ b)):

0 = F0 V ⊂ F1 V ⊂ · · · ⊂ Fn V = V,

such that Fi V/Fi−1 V = Cµi
, i = 1, · · · , n, for some h1-weight µi of Sp(p/(p ∩ b)).

This will induce the filtration of V = Sp(NY |X),

0 = F0 V ⊂ F1 V ⊂ · · · ⊂ Fn V = V

such that Fi V/Fi−1 V = OY (µi), i = 1, · · · , n. Using these filtrations we can refine
the filtration (FpR

0i+(M); p ∈ Z+), to obtain a new increasing and exhaustive
filtration (F′

pR
0i+(M); p ∈ Z+) of R0i+(M) by U(k)-modules. Notice that

Gr′R0i+(M) =
⊕

p≥0

M(µp + 2(ρk − ρ1))

where µ0 = 0 and µp ∈ h∗
1, p ≥ 1, exhaust all h1-weights of S(p/(p ∩ b)) counted

with multiplicity. We are now prepared to apply 5.2. It follows that there is a
spectral sequence with the first term

Epq1 = Hp+q(Y,M(µp + 2(ρk − ρ1)))

abutting to H ·(X,R0i+(M)). Since λ is antidominant, Hn(X,R0i+(M)) = 0 for
n 6= 0. Further, the E∞-term of the spectral sequence corresponds to a filtration of
Γ(X,R0i+(M)) by U(k)-modules such that

Grp Γ(X,R0i+(M)) = Ep,−p∞ = Γ(Y,M(µp + 2(ρk − ρ1))).

In the special case when M = Mk(w, ν
′), our goal is to show that U(n̄k) acts without

torsion on Ep,−p∞ . We have

Ep,−pr+1 = ker(Ep,−pr → Ep−r,p+r+1
r )/ im(Ep+r,−p−r−1

r → Ep,−pr )

= ker(Ep,−pr → Ep−r,p+r+1
r ),

since Ep+r,−p−r−1
r = 0. Moreover, Eab1 = 0 for a < 0 implies that Ep−r,p+r+1

r for
r ≥ p+ 1. We conclude that

Ep,−p1 ⊇ Ep,−p2 ⊇ · · · ⊇ Ep,−pr+1 = Ep,−p∞ .
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Thus, it will suffice to show that U(n̄k) has no torsion on Ep,−p1 = Γ(Y,Mk(w, ν +
µp)). Arguing by induction on n(ν + µp), it follows from 5.3., that there is a finite

dimensional k-module F , µ ∈ P (Σk), such that ν + µp + µ is Σ+
k -antidominant, and

an injective map

Mk(w, ν + µp) −→ Mk(w, ν + µp + µ) ⊗OY
F .

After taking global sections we obtain injective map

Γ(Y,Mk(w, ν + µp)) −→ Γ(Y,Mk(w, ν + µp + µ)) ⊗C F.

On the other hand, we have

Γ(Y,Mk(w, ν + µp + µ)) = Mk(w(ν + µp + µ)).

Hence, we are reduced to show that U(n̄k) has no torsion on Mk(w(ν+µp+µ))⊗CF .
But this is satisfied, since Mk(w(ν + µp + µ)) ⊗C F has composition series with
subquotients of the form Mk(w(ν + µp + µ) + α), where α runs over the set of
weights of F . This concludes the proof of 5.1.

Now we can state the main result.

Theorem 5.4. Suppose λ ∈ h∗ is antidominant and such that λ1 = λ|h1 ∈ P (Σk).
Then there is a family of g-module isomorphisms

ϕw : Cw(M(λ)) −→ Z(w, λ), w ∈Wk;

such that, for any w ≥ v, the diagram

Cv(M(λ)) −−−−→ Cw(M(λ))

ϕv

y ϕw

y

Z(v, λ) −−−−→ Z(w, λ)

commutes.

Proof. Pick µ ∈ P (Σ) dominant and such that λ− µ is in a good position. This is
possible since µ1 = µ|h1 is Σ+

k -dominant and integral. By 5.1. we can construct a
family of isomorphisms

ϕ′
w : Cw(M(λ− µ)) −→ Z(w, λ− µ), w ∈Wk;
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satisfying the required compatibility conditions. Let F be a finite dimensional
irreducible g-module with the highest weight µ. Then

(M(λ− µ) ⊗C F )[λ] = M(λ),

and therefore by 2.3., we have

Cw(M(λ)) = Cw((M(λ− µ) ⊗C F )[λ]) = (Cw(M(λ− µ)) ⊗C F )[λ].

On the other hand, for antidominant λ, any Dλ-module M and F = OX ⊗C F we
have (see [12])

M = (M(−µ) ⊗OX
F)[λ].

This implies
Γ(X,M) = (Γ(X,M(−µ)) ⊗C F )[λ].

In particular, for M = Z(w, λ) this yields

Z(w, λ) = (Z(w, λ− µ) ⊗C F )[λ].

Thus we can extend isomorphisms ϕ′
w to the isomorphisms

ϕw : Cw(M(λ)) −→ Z(w, λ), w ∈Wk.

It follows from the construction that compatibility conditions are again satisfied. ˜

Using this theorem we obtain easily the main results of [4]. First of all, we put

E(M(λ)) = Cw0
(M(λ))

/(
∑

w<w0

Cw(M(λ))

)
.

Theorem 5.5. Suppose λ is antidominant and λ1 ∈ P (Σk).
(i) E(M(λ)) is either irreducible or zero.
(ii) There is a homological resolution of E(M(λ)) of the form

0 −→M(λ) −→ · · · −→
⊕

ℓ(w)=p

Cw(M(λ)) −→ · · · −→ Cw0
(M(λ)) −→ E(M(λ)) −→ 0 ,

where the differentials are induced by the natural injections Cv(M(λ)) −→ Cw(M(λ))
for w ≥ v, w, v ∈Wk. This resolution is dual to the geometric resolution

0 −→ L(Y, τ) −→ T (w0, λ) −→ · · · −→
⊕

ℓ(w)=p

T (w, λ) −→ · · · −→ T (1, λ) −→ 0
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via the duality operation described in 2.6.

Proof. The first statement is consequence of the fact that, for antidominant λ,
global sections of an irreducible Dλ-module are either zero or irreducible g-module
[12]. The second statement is clear. ˜

Finally we want to examine more closely the case E(M(λ)) = 0. We denote
by Isα

: M(Dλ) −→ M(Dsαλ) the intertwining functor attached to α ∈ Π and by
LiIsα

,i ∈ Z, the left derived functors of Isα
[12]. Recall that LiIsα

= 0 for i 6= 0,−1.
Next result is proved in [10].

Lemma 5.6. Suppose α ∈ Π ∩ ΣCI and iQ : Q →֒ X is a K-orbit. Let τ be

irreducible K-homogeneous D
iQ
λ -connection on X. Then:

(i) Isα
I(Q, τ) = 0;

(ii) L−1Isα
I(Q, τ) = I(Q, τ)(sαλ− λ).

We will also need a following lemma [11]:

Lemma 5.7. Let α ∈ Π and suppose α (̌λ) = −p ∈ Z. Let M ∈ M(Dλ) be such
that Isα

M = 0 and L−1Isα
(M) = M(pα). Then Γ(X,M(pα)) = 0.

Proposition 5.8. Suppose i : Y →֒ X is a closed K-orbit and τ an irreducible
K-homogeneous Di

λ-connection on X. When λ is antidominant we have:
(i) If α (̌λ) = 0 for some α ∈ Π ∩ ΣCI then L(Y, τ) = 0.
(ii) If Re(λ, α+ ϑα) ≤ 0 for any α ∈ Σ+

C
, and (λ, α) 6= 0 for any α ∈ Π ∩ ΣCI ,

then L(Y, τ) 6= 0.

Proof. (i) This follows directly from 5.6. and 5.7.
(ii) Notice first that

Γ(Y,OY (λ1 − ρ1 + 2ρk)) ⊂ L(Y, τ).

By Borel-Weil theorem it suffices to check that λ1−ρ1 +ρk is Σ+
k -antidominant and

regular. Pick α ∈ Πk. Then α = β|h1 for some β ∈ Σ+
CI ∪ Σ+

C
. At this point we

draw the attention to 2.2. If β ∈ Σ+
C

we have αˇ = c(βˇ+ (ϑβ)̌ ), c = 1, 2. Hence

α (̌λ1) = c(βˇ+ (ϑβ)̌ )(λ1) = cRe((βˇ+ (ϑβ)̌ )(λ1)) ≤ 0.

Observe that we have used α (̌λ1) ∈ Z. Further,

α (̌ρ1) = c(βˇ+ (ϑβ)̌ )(ρ) ≥ 2.
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Therefore, in this case α (̌λ1 − ρ1 + ρk) < 0. If β ∈ Σ+
CI we have two cases. In the

first, β ∈ Π and
α (̌λ1 − ρ1 + ρk) = β (̌λ) < 0

by the assumption. In the second β /∈ Π. Thus β (̌ρ) ≥ 2, and this implies again
that α (̌λ1 − ρ1 + ρk) < 0. ˜

Corollary 5.9. Suppose λ is as in 5.8.
(i) If α (̌λ) = 0 for some α ∈ Π ∩ ΣCI , then E(M(λ)) = 0.
(ii) If Re(λ, α+ ϑα) ≤ 0 for any α ∈ Σ+

C
, and (λ, α) 6= 0 for any α ∈ Π ∩ ΣCI ,

then E(M(λ)) 6= 0.
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