INTRODUCTION

In [4], Enright developed an infinitesimal approach to study the fundamental
series. This was based on his earlier work with Varadarajan ([6]) and Wallach ([5]).
The present paper is an attempt to understand Enright’s construction in terms of
geometry of the flag variety.

Let Gg be a connected semisimple real Lie group with finite center, Ky a maximal
compact subgroup of Gg and ¥ the corresponding Cartan involution. Let gg and €,
be the Lie algebras of Gg and K| respectively, g and £ their complexifications, and
K the complexification of K. Denote by X the flag variety of Borel subalgebras in
g.

The action of K on X defines finitely many affinely imbedded orbits. In partic-
ular, we consider closed K-orbits. They correspond to v¥-stable Borel subalgebras.
Thus we fix a 1-stable Borel subalgebra b. Then b contains a 1-stable fundamental
Cartan subalgebra h. Denote by zg a point in X representing b and put Y = K - .
Then Y can be identified with the flag variety of £, and therefore Y decomposes into
finitely many Bruhat cells C¢(w), where w runs over the Weyl group W; of (€, €Nh).
Suppose that Int(g)-homogeneous line bundle £ on X is defined by a linear form A
on h. Using the Cousin complex methods developed by Grothendieck [11], we can
deduce the existence of the resolution

0— HY(X,L) — - — @ HEP (X,L) — -+ — H, (X, £) =0, (0.1)
L(w)=p

here n = dim X, ¢ = codim(Y, X) and wy is the longest element in W. By the above
remark, the terms in the resolution are (U(g), Be)-modules (Bg is the stabilizer of
xo in Int(E)).

On the other hand, starting from the pair (b, \) and using Enright’s completion
functor (see 3.1.) we obtain a family of U(g)-modules {C,,(M(X)); w € We}. Here

CL(M(N)) = M(X) = U(g) Queo) Crp

(p is a half sum of positive roots); and if w > v in the Bruhat order in Wy, we have
natural imbedding C, (M (\)) < C\y (M (X)). Therefore, we may put

E(M(N) = Cuy (M(V)) / ( 3 0w<M<A>>> |

w<wo
1
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Then we have the homological resolution of F(M (X)) generalizing the Bernstein-
Gelfand-Gelfand resolution of a finite dimensional module,

0= MR == P CulMQ) = - = Cug (M) — E(M(X) — 0.
L(w)=p
(0.2)
In [15], Zuckerman posed a problem (which he attributed to Phillip Trauber) of
constructing a duality relating (0.1) and (0.2), and this served as the motivation for
the present work.

As an illustration, we discuss the example Gg = SU(2,1). In this case X is a
three-dimensional projective variety and there are exactly three closed K-orbits,
each of them being isomorphic to a projective line. We have W = {1, s}, where «
is a compact root and s, the corresponding reflection. Thus Y = {xo} U Al is the
Bruhat decomposition of Y (Al denotes the affine line) and (0.2) specializes to

0— H(X,L) — Hi (X, L) — M(\) — 0. (0.3)

For two orbits « is a simple root of the pair (g,h) (observe that in all three cases
h is a compact Cartan subalgebra), and (0.3) can be described explicitly (compare
2.7.). This is closely related to the construction of holomorphic discrete series. In
the remaining case the situation is more complicated. Although we can determine
h-module structure of H3, (X, £), this doesn’t seem to be as useful as for the highest
weight modules, since h-weight spaces are infinite-dimensional. On the other hand,
the homological resolution in our example takes the form

00— M\ —Cs,(M(N) — E(M(X\) —0. (0.4)
Again, in the cases when « is simple, the previous remark applies. In the third case,
for sufficiently negative A, we construct Cs_ (M (X)) as follows. Notice first that for

v = A—p+ 5 we have the inclusion of £&-Verma modules M (v) < M(sqv). This
induces further an inclusion

M(A) =V =U(g) @y e) Me(sar)/I,

where I is the kernel of the natural surjective map U (g) ®y¢) Me(v) — M(X). One
can show that

J={veV|y-v=0 for some y € U(t_,)—{0}}
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(here £_,, is a root space in £) is U(g)-module. Finally, we put Cs_(M((\) = V/J.
It turns out that it is quite difficult to compare directly modules Hﬁl (X, L) and
Cy (M(N)).

To overcome these difficulties we have followed a suggestion of D. Mili¢i¢ to
consider costandard modules associated with Bruhat cells C¢(w) (compare 1. for
a definition). In this way we obtain a geometric realization of modules Cy, (M ()))
(5.4.). We use this to give a geometric proof for the existence of (0.2) and to
construct a natural contravariant duality functor on certain full subcategory of a
category of U(g)-modules that maps (0.1) into (0.2) (see 2.6. and 5.5.).

This paper is a part of authors thesis completed at the University of Utah, Salt
Lake City. I want to express gratidude to my thesis adviser D. Milici¢ for the help
and encouragement. I am also indebted to H. Hecht for showing me his unpublished
manuscript [8] and many instructive conversations.



1.PRELIMINARIES

For a smooth complex algebraic variety X we denote by Ox, by Dx the sheaf
of local differential operators on X and by wx the canonical sheaf on X (i. e. top
exterior power of the cotangent sheaf on X). If D is a twisted sheaf of differential
operators on X we denote by D° the sheaf of rings opposite to D, by Mod(D) a cat-
egory of left D-modules that are quasicoherent as Ox-modules and by Mod},.; (D)
the full subcategory in Mod(D) consisting of holonomic D-modules. Let £ be an
invertible sheaf on X. Then D* denotes a twist of D by £. Let f: Y — X be a
morphism of smooth algebraic varieties. Put

Dy_x = [*(D) = Oy ®p-10, f7'D

and denote by Df a sheaf of differential endomorphisms of Dy _,x that commute
with right f~!D action. Then we view the inverse image and (0" —)direct image
as functors

ft: Mod(D) — Mod(D')  resp. RYf: Mod(D) — Mod(D?).

Further we define the duality functor Dx : Modp. (D) — ,/\/lodhol((Do)w;l) by the
formula _
Dx (M) = EqtimX (M, D) ®oy w

Finally we define R fi : Modyo (D7) — Mody, (D) by
R'fi =Dx o R°f, o Dy.

Next we want to summarize some well known results on the category of highest
weight modules.

Let G be a complex reductive and connected algebraic group. Denote by g a Lie
algebra of G and by X a flag variety of Borel subalgebras in g. Fix a point xy € X.
Let b be the corresponding Borel subalgebra in g and B its normalizer in G. Let
N be the unipotent radical of B and n its Lie algebra. Choose further a Cartan
subalgebra h C b and denote by ¥ the root system of (g,h) and by X a positive
subsystem in ¥ determined by b. We shall denote by II the set of simple roots in
YT, by W the Weyl group of ¥ and by p the half-sum of positive roots. We also fix
a W-invariant positive bilinear form (.,.) on h* (and dually on ). Then s, denotes
a reflection with respect to o € 3. Further, ¢(w) will denote the length of w € W,
and P(X) the group of integral weights in h*.
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Let Z(g) be a center of U(g). Given A € h*, x will denote the character of Z(g)
determined by A + p. It is well known that ) depends only on the Weyl group
orbit § = W - A. Therefore we put Uy = U(g)/ ker x» - U(g).Denote by M(Uy) the
category of (left) Up-modules.

Any linear form A € bh* defines a G-homogeneous twisted sheaf of differential
operators Dx x4+, on X [9]. We shall denote it by Dy. Recall that I'(X, D)) = Uy
[1] and therefore we may introduce the localization functor

Ay MOd(Z/lg) — MOd('D)\), A)\(M) =D, Quy M.

A finitely generated U(g)-module M is said to be a highest weight module (with
respect to b) if dimcU(b) - m < oo for any m € M. Denote by Mods,(Us, N) a
category of finitely generated (Up, N)-modules. Then the highest weight modules
with infinitesimal character x, are precisely the modules from Mod,(Uy, N) [12].
Given highest weight module M we denote by M~ its contravariant dual. It is
known that ~ preserves Mods,(Uy, N).

The important example of highest weight module is furnished by the Verma
modules. Recall that Verma module with highest weight A — p is defined by

M(X\) =U(g) Bup) Cr—p -

Put I(\) = M()\) and denote by L()) the unique irreducible quotient of M ()\). Ob-
serve that M(\), I(X) € Mody,(Ug, N). Let Modcon (D, N) be the category of co-
herent Dy-modules with compatible N-action [9]. Then we have Ay (M (X)), Ax(I(N)) €}
Meon(Dr, N). In fact, these modules can be identified with standard modules as-
sociated with Bruhat cells on X. To be more precise, recall that the action of N

on X induces Bruhat decomposition X = (J,cy C(w) of the flag variety X, here
C(w) = Nwzy = C™). Let i, : C(w) — X be the natural inclusion. Then the
only N-homogeneous irreducible Diw—connection on C(w) is O¢ (). Therefore the
only standard resp. costandard Dy-module associated with C(w) is

Z(w,\) = Roiw7+(OC(w)) resp. M(w,\) = Roiw,!(OC(w)).
Let L(w, A) be the unique irreducible submodule (quotient) of Z(w, A) (M (w, A)).

Recall that A € h* is said to be antidominant if o ¢ N for any a € X.

Proposition 1.1. Suppose X\ € b* is antidominant. Then
(i) T(X, Z(w, A)) = I(wA)
(i) T'(X, M(w, \)) = M(w)



(113) If in addition X is regular, then I'(X, L(w, X)) = L(w).
The proof can be found in [12].

Notice that each p € P(X) defines an invertible sheaf Ox (1) on X equipped with
D,,_,-action. In fact, denote by Z the center of G and put G; = G/Z. Let G1 be
a universal cover of G1. Notice that Gy is an algebraic group. Then we construct
Ox(p) as él—homogeneous invertible sheaf on X. The differential of él—action
determines U(gq)-module structure on Ox(u) (g1 = [g,9]). Then we can extend
this to U(g)-module structure so that Ox (u) becomes D,,_ ,-module.

Next we review some facts related to local cohomology groups. Given a closed
subset Z C X and a sheaf F of abelian groups on X denote by I'z(F) a subsheaf
of sections of F that are supported on Z. If Zy C Z; are closed, put

FZl/Zz(f) :FZ1(~T)/F22(~F)'

The following lemma summarizes Cousin complex techniques [11] that we shall use.

Lemma 1.2.. Let X D Zy D Zy--- 2 Zpr1 = 0 be a finite filtration of X by closed
subsets. Then there is a spectral sequence with the first term

J’_
Elloq - ng?Zerl (f)

converging to Hy (F). The first differential is given by di* : E{? — EPTLA - Py
ther, for a fized c € Z, the natural map HG (F) — H%, 2, (F) and differentials
di make a sequence

0— 'HCZO(]:) — HCZO/Zl (F)—...— HCZT}ZzH(]:) — . (1.2.1)

into a complex. If

HGH(F) =0 fori#0 and HE,  (F) =0 fori#p

then (1.2.1) becomes a resolution of HG (F).

Proof. Let F — C (F) be a canonical resolution (see [7] for a definition). Then the
filtered complex

I, (C(F)) 2 I, (C(F)) 2 Iz, (C(F)) 2 ...

defines the desired spectral sequence. The fact that (1.2.1) is a complex is now
evident. To prove the second statement observe that by assumption E7Y = 0 if
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q # c and this implies E3® = EX¢ and MYy (F) = E5 “°. Since H% (F) = 0 for
n # ¢ we obtain

EY° =0 for p # 0 and EY® = ker(E% — E) = H, (F)

proving the exactness of (1.2.1). O

Denote by Y a closure of Y C X and write 9Y = Y — Y. Fix a simple root
a € II and consider the flag variety X, of parabolic subalgebras of type a and a
natural projection p, : X — X,. Recall that p, is locally trivial fibration with
fibres isomorphic to a projective line P'. Pick v,w € W such that w = s,v and
l(w) = £(v) + 1. Then C(v) C C(w) for the corresponding Bruhat cells. In that
case we usually write w > v. Put Z = p;'po(C(v)). Then Z = C(v) U C(w)
and C'(v) is closed (of codimension 1) and C(w) open subvariety of Z. Moreover,
local triviality of p, implies that Z is a smooth affinely imbedded subvariety of X.
Assume now that £ = Ox (A + p) for some A € P(X). Then we have the exact
sequence of Dy-modules

0 =I5ty o0w) (L) = Tamyaz(L) = Tocw)/oz(L) — 0.
Notice that 9C(w)—0Z = C(v) and C(w)—dZ = C(w)UC(v). Thus we obtain from
the corresponding long exact sequence ( using Z(w, \) = jw,*H:(:Ul)(w)( jx L), where
Juw: X —C(w) — X, n=dim X [2]) a natural surjective map Z(w, \) — Z(v, ).
Dually, there is a natural injective map M(v,\) — M(w, ). We summarize this
discussion in the following lemma:

Lemma 1.3. Let v,w € W be such that w = sqv (o € 1I) and ((w) = {(v) + 1.
Then for A € P(X) we have a natural surjective (injective) map

T(w,\) — Z(v,))  (M(v, \) — M(w, \))

For p € Z, denote by Z, the union of Bruhat cells whose codimension in X is
> p. Then we have

Zp = Zpt1 = U C(w)
L(w)=~L(wo)—p

where wg denotes the longest element in W.
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Proposition 1.4. Let A € P(X) and L = Ox(A+p). Then the following sequences
are exact:

0— L — Z(wg,\) — -+ — @ Z(w, ) - —Z(1,\) —0
£(w)=p
0—>M(AN — - — @ M(w, ) — -+ — M(wg, A) — L — 0.
£(w)=p

In both cases the differentials are induced by the natural maps described in 1.3.

Proof. Notice that HZ 7o (L)=0if j # p and

HYy 17, (L) = B zwN.

L(w)=~L(wo)—p

Thus we may apply 1.2. to obtain the first sequence. Moreover, for w,v € W such
that w > v and ¢(w) = £(wg) — p, the map Z(w, A) — Z(v, A) induced by

+1
H%p/zwl (L) — H%pﬂ/zwfz (£)
coincides with the natural surjection Z(w, \) — Z(v, \) constructed in 1.3.
The second sequence is obtained from the first one by observing that De () (Oc(w)) =}

Oc(w) as N-homogeneous Dl ™\, -connections and by applying exact functor

]D)X ZMOdhOl('D_)\_Qp) — MOdhOZ(DA) O

2. TwO RESOLUTIONS

Let Gy be a real semisimple connected Lie group with finite center and g a
complexified Lie algebra of GGy. Denote by G a simply connected complex group
with Lie algebra g. The choice of a maximal compact subgroup in Gy determines
an involution ¥ : g — g. We denote by the same symbol the induced involution on
G. Let

g=top

be the corresponding decomposition into +1-eigenspaces of . Denote by K the set
of fixed points of ¥ in G. Thus K is a connected reductive algebraic group. In the
following we use the notation established in 1.
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We want to recall how to describe closed K-orbits in X. First of all, observe
that we can always find a 9¥-stable Cartan subalgebra in b and any two Cartan
subalgebras with this property are conjugate by an element from K N N ([10]).
Thus we may assume that the Cartan subalgebra h from 1. is ¥-stable. We write

h="bh1Dhe

where h; = €N h and hy = p N h. The involution ¥ induces an involution of the
root system X to be denoted also by 9. As usual we denote by X¢c,Xr and ¢ the
sets of compact imaginary, real and complex roots respectively in X. The following
result is well known [10].

Lemma 2.1. Let zg € X be a point corresponding to b. Then the following state-
ments are equivalent:

(i) The orbit K - zq is closed;

(ii) €N b is a Borel subalgebra in €;

(111) X1 is V-stable.
If these conditions are satisfied, b is a fundamental Cartan subalgebra in g and
therefore Yg = ().

In the sequel we assume that the conditions from 2.1. are fulfilled. Denote by 3
the root system of (¢, b1) and by E;’ a positive subsystem determined by b N €. Let
We be a Weyl group of ¥ and pe a half sum of positive roots. Also L, is defined
analogously as L. For A € h*, we denote A\; = A|h;. We may assume that the
invariant form (-, -) from 1. is J-invariant.

Lemma 2.2. (i) If A € P(Y), then A\ € P(Z).
(ii) If X € P(X) is X F-antidominant, then A1 is X -antidominant.

Proof. We may identify hi with the subspace {\ € h* : I\ = A}. For ay € ¥¢ we
have to find ag € (h7)* = b1 such that aj(a) = 2. Notice that af is unique modulo
center of . We distinguish several cases.

(a) If o € X1, then o™ € b} and a”(a) = a’(a1). Thus we may put aj = a’.

For the remaining cases observe that (o, va) < 0 if a € ¥¢ (since o — Ja is not
in ¥) and (o, a) = (Ya, Ya). We conclude that (a”, Ja) = 0, —1.

(b) If (o™, Ya) = 0 we may put af = a” + (Ja)".

(¢) If (a”,%a) = —1 we may put a3~ = 2(a” 4+ (Ya)”). Choose A € P(X).
Examining all three cases above we deduce that aj(A1) € Z for any a3 € X, as
desired. [J
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Put Y = K - zp and let Y — X be the imbedding. We view Y as a flag variety
of ¥ and denote by D, a K-homogeneous twisted sheaf of differential operators on
Y determined by a linear form v + p¢ on h;. Then we have

Dg\ zﬁy where v =X\ + p1 — ps.

We assume in the following that A € h* is such that A; € P(3). Since 7 = Oy (v +
pe) is an irreducible D,-connection by Kashiwara’s theorem Z(Y,7) = R, (1) is
irreducible Dy-module.

The action of K N N on Y induces the Bruhat decomposition on Y. Denote
by C¢(w) the Bruhat cell associated with w € Wy and by iy : Ce(w) — Y the
corresponding imbedding. Let wy be the longest element in We. For w € W, we
put

Te(w,v) = Roiw’+(ooe(w)), Me(w,v) = Roiw’!((’)o{,(w)),

T(wa )‘) = R0<i © iw)-l—(OC’e(w))v Z(w7 )‘) = R0<i °© Z'w)!( Ce(’w))7
LY, 7) = T(X,Z(Y,7)), T(w,\) =T(X,T(w,\), Z(w,\) =T(X,Z(w,\).

Here we view O¢, (v) as DiOiw—module. Then we have
T(w7 )‘) = Roi-l- (If(wa V))? Z<w7 >‘) = ROi!(-A/lE(w? V))

Notice that in the second equality we have used that ¢ is a proper map. We conclude
from 1.3. that for w,v € W, such that w > v there is a natural surjective (resp.
injective) map

T(w,A) — T(v,\) (resp. Z(v,\) — Z(w, \)).

The following lemma is easily proved:

Lemma 2.3. For u € P(X) we have

(i) T(w,A)(p) = T (w, A+ p)

(i) Z(w,\)(p) = Z(w, A+ p).
Proposition 2.4. Suppose A € h* is antidominant and such that \y € P(X¢). Let
T=0y((V+pe) (v=XA +p1—pe). Then

0— L(Y,7) — T(wp,\) — -+ — @ T(w,\) — -+ —=T(1,\) —0
£(w)=p
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and
0= Z(ALAN) == P Zw ) —- = Z(wo,N) — L(Y,7) = 0
{(w)=p
are ezxact sequences of (Up, K N N)-modules of finite length.

Proof. First we apply 1.5. in the ¢-setting. Then we act on the obtained sequences
by the exact functor R%, : MM(D,) — MM(Dy). Finally, the result follows by taking
global sections, since the higher cohomologies of Dy- modules for A antidominant
vanish. [

Now we shall construct a duality operation on a certain full subcategory of 9t(Upy)
that relates exact sequences from 2.4. Let A be antidominant and v and 7 be as
before. Then a twist by 7—! induces an equivalence of categories

Mot (Do, K N N) — Mpor(Dy, K N N).
Using this, we transfer the duality functor
Dy : Mpo(Dy, KN N) — My (Dy, KN N)
from M0 (Dy, K N N) to My0(D,, K N N). Denote by
“ Myt (Dy, KN N) — Myor(Dyy, K N N)

the duality functor obtained in this way. Let 9y (D), KNN) be the full subcategory
of Mpo1 (D, KNN) consisting of modules supported in Y. By Kashiwara’s theorem
we extend ~ to My (Dy, K N N). Thus we obtain a contravariant exact functor

“ My (Dy, KN N) — My (Da, K N N)

such that (M")" =2 M for M € My (D, K N N).
For M € My (Dy, K N N) denote by Mg the largest (Dy, K N N)-submodule
with trivial global sections. Put

my(UQ,KﬂN) = {M € Sﬁfg(ng,KﬂN) : A)\(M)/A)\(M)O € Dﬁy(D,\,KﬂN }

Notice that if o : M — N is a map of (Up, K N N)-modules then Ay (a)(Ax(M)g) C
AX(N)o. It follows that My (Up, K N N) is a full subcategory of M, (Up, K N N).
For M € 9y (Uy, K N N) set

M~ = T(X, (Ax(M)/Ax(M)o)").
We have to show that M~ € My (Up, K N N).
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Lemma 2.5. Suppose M € My (Dx, K N N) is such that I'(X, M) = 0. Then
(X, M) =0 as well.

Proof. If N is a composition factor of M then I'(X, N') = 0. Further M and M~
have isomorphic composition series and therefore the induction on the length of M
yields I'(X, M") =0. O

Now we can show M~ € My (Up, K N N). Put M = (Ax(M)/Ax(M)o)". Then
there is a natural map ¢ : Ax(M") — M. Let K = kerp, Z = im ¢, C = coker .
Then K C Ax(M"™)p and A\(M7)/K € My (Dy, KNN) imply M~ € My (U, KNN).
Further we show that (M™)” = M. In fact, from the sequence

0—-Z—-M-—=C—0
we obtain
0—=C — A\x(M)/Ax(M)y — I — 0.
Using 2.5. we deduce (Ax(M7)/K)" = Ax(M)/Ax(M)p. On the other hand, dual-
izing
0— Ax(M7)o/K — AX(M)/K — Ax(M")/AX(M™)g — 0

and applying 2.5. again we conclude

(M7)"=T(X, (Ax(M")/Ax(M")o)") = T'(X, (Ax(M")/K)")
=T(X, Ax(M)/Ax(M)o) = M.

Using similar arguments we show further that
T(w,\)" = Z(w,\), LY, 7)"=L(Y,7).

Moreover, for w,v € Wy such that w > v a natural surjection T'(w,\) — T'(v, \)
is transferred under ~ into a natural injection Z(v,\) — Z(w, ). We summarize
our discussion in the following proposition.

Proposition 2.6. Suppose A\ € b is antidominant. Then there exists a full sub-
category My (Up, K N N) of Myy,(Up, K N N) containing modules T'(w, X), Z(w, \),
L(Y,T) and a contravariant involutive functor ~ on My (Up, K N N) transforming
the exact sequences from 2.4. into each other.

EXAMPLE 2.7. Assume that rank Gy = rank K and that symmetric space Go/K)
has a Hermitian structure. Let hy be the maximal abelian subspace in £, and
b its comlexification. Then b is a common Cartan subalgebra of ¢ and g. Put
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Ynor ={a € X :goNt =0} It is known ([13]) that the the choice of a positive
system X1 C X with the property

o, BEXTNENer = a+p¢XSt

determines the invariant complex structure on Go/Ky. In particular, in this case
ITe C II and C¢(w) = C(w) for w € Wy. Notice that the second statement follows
from the first by induction on ¢(w). In the present case the discrete series (holomor-
phic discrete series) can be realiezed on the global sections of certain holomorphic
vector bundles on Go/Ky. Their infinitesimal description is particulary simple and
we recall it bellow following [14]. Choose A antidominant regular and such that
A+ p € Lg. Then M(vA) — M (wA) if w > v, v, w € W and hence we may put

D(\) = M(wo)\))/ ( > M(w)\)) .

w<wo

The module D()) is closely related to the holomorphic discrete series. More details
about the identification can be found in [14]. Observe that by our choices q = €+bNyp
is a parabolic subalgebra in g. Thus if we view Bernstein-Gelfand-Gelfand resolution

0— Me(v) — - — @ Me(wv) — -+ — Me(wov) — Le(worv) — 0 (v = /\—p-l—pg)l
£(w)=p

as the resolution of g-modules by letting bNp act trivially, we obtain after tensoring
with U(g) ®y(q) — a resolution of D(A) by g-modules

0—>MA) = — P Mw) — M(woA) — D(X\) — 0.
L(w)=p

On the other hand since C¢(w) = C(w) we have Z(w,\) = M(w) and T(w, \) =
I(wX). Moreover, the duality ~ acts on (2.14) as contragredient duality (2.1) and
maps it into

0—DA) —-— @ — - — I(wo) — I(A) — 0.
£(w)=p
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3. A RESOLUTION OF Dy _, x

The aim of this section is to produce a K-equivariant resolution of Dy _, x in the
case when Y is a K-orbit on a flag variety X. I learned about this result from H.
Hecht. The approach taken up here is different then the original one in [§].

First of all we refer to [9] for a definition and construction of a homogeneous
twisted sheaf of differential operators.

Put Z=G/(KNB),Y = K/(KNB) and let j : Y — Z be the inclusion. Choose
(K N B)-invariant form g € (€N b)*. Then p determines a homogeneous twisted
sheaf of differential operators Dz, on Z. Suppose V is a G-equivariant locally free
sheaf on Z. Then we form Dz, ®o, V, where we use right Oz-module structure
on Dz, to form tensor product. Notice that Dz, ®0, V is a left Dz ,-module for
the left multiplication on the first factor. Further, the differentiation of G-action
on V defines left ¢(g)-module structure on V. Now, if d € Dz ,, v €V and £ € g,
we put

(d®v)-E=dé@v—d®E-v.

It is easy to check that this determines the structure of a right U(g)-module on
Dz, ®o, V. The previous discussion shows that Dz, ®p, V is (Dz ., U(g))-
bimodule and this two module structures commute.

Let Dy, be a K-homogeneous twisted sheaf of differential operators on Y deter-
mined by p. In other words, Dy, = Djé#. We want to explain how (Dz ,,U(g))-
bimodule structure on Dz, ®p, V induces (Dy,,,U(g))-bimodule structure on
j*(,DZ# ®oy, V)

Notice that j~*(Dz,, ®o, V) is a left j7'Oz-module and a right ¢(g)-module.
For f € Oy,d € j7Y(Dz,), v € j~1(V), and £ € g, we have

flgej)@(d@v)-&=fogoj(dev) ) =fo((gej)dowv)-E.

We conclude that
(fedev) {=fe(dev)-§

gives well defined U(g)-action on j*(Dz , ®o, V).
To define Dy, ,-action on j*(Dyz,, ®o, V) notice first that we have a map

M) i HeY) X T (P2 ®0, V) — T (Dau ®0, V)
(g% = Oz @c g) induced by the left multiplication on Dz ;. This induces the map

a:j*(9%) x i Dz ®0, V) — i (Dz,u @0, V)
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defined by the formula
a(f@zu)=foi ' (D(zu), feOy, z€57(gy), ue i (Dzu®o, V).
Using inclusion &, — j*(g%) (8 = Oy ®c £) we define the map
B:8 x Oy X j 7 (Dzu®0, V) = 7 (Dzu ®o0, V),

Bls, fou) =71(s)f @ u+ fals,u) s€E, €Oy, u€j (Dzu®o, V),

here 7y : £, — 7y is a homomorphism into the Lie algebra of vector fields on Y. It
follows easily that 3 is j =1 z-linear in the last two terms and therefore it induces
the action

vl Eg/ X j*('Dz7“ ®OZ V) — j*('DZ# ®(’)Z V)

One checks easily that v has the following properties:

(1) 7[5, 1], -) = [y(s, 1)

(i) 7(fs,) = (s, )

(111) [7(87 ')7 f] - Tl(s)f;
here s,t € €5, f € Oy. Using (i)-(iii), the standard inductive argument shows that
v extends to the action

v Uy () X7 (Pzu @0, V) = 5 (Dzu @0, V).
Let 7 : g% — 77 be a natural morphism into the Lie algebra of vector fields on
Z. Denote by b% (resp. b$,) the kernel of 7 (resp. 71) and by o, : by — Oz
(resp. o}, : by, — Oy) the G-equivariant (K-equivariant) morphism determined by

p. Notice that j*(b%) = b5, and that s € b}, can be written as s = ) f; ® s;,
fi € Oy, s; € 771(b%). Thus we have

V(s f@u)=T1(s)f @u+ fals,u) =Y ffia(siu)
=Y fhleo s @u= (3 fioh(s) (f @ u) = o(s)(f @ w).
This implies finally that there is a map
§: Dy xj (Dzu®o0,V)—j (Dz,u®0, V).

It remains to check that § commutes with the right /(g)-action.
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Let E€g,s€,dej 1 (Dg,), v e j V. We have
6(s, (f@(d®v))-§) = T1(s) fO(dERV) —T1(5) fR(dRE) +fas, dE@v) — fa(s, d®EV)
= (n(s)f ® (d®@0)) - &+ (fals, (d@v)) - &= (0(s, (f ® (d®0))) - &,
as desired. For simplicity we write in the following (s, D) = s- D, if s € Dy, and
D e j*(DZ,u Koy, V)

Observe that locally free sheaf j*(V) is K-equivariant and thus the differentiation
of K-action yields left ¢/ (£)-action on j*(V). As before we define right ¢/(¢)-module
structure on Dy, ®o, j*(V) by putting

(dRu)-£=dé@u—d®&-u, d€ Dy, ucj*(V), €t

Recall also that Dy, ®o, j*(V) is left Dy, ,-module for the left multiplication on
the first factor and this action carries over to (Dy,, ®o, j*(V)) @y ) U(g). Our goal
is to show:

Lemma 3.1. As (Dy,,,U(g))-bimodule j*(Dz,, ®o, V) is isomorphic to
(Dy.p @0y 5°(V)) Que) U(9)-

To prove this we need a little preparation.

Lemma 3.2. Let xg € Y and let T,,(F) denotes a geometric fibre of Oz(Oy )-
module F. Then

(i) Too (Dz,u ®0, V) = (C_y @c V) @uene) U(g) as a right U(g)-module.

(ii) Tio (Dy,p @0y j*V) = (C_p @c V) Qu(one) U(E) as a right U(E)-module.

Proof. This is Lemma 3.6. from [9].

Now we return to the proof of 3.1. It is clear from the previous discussion that
we can define the map

K (DYM Koy ]*V) X u(Q) - j*(DZM X0y V)
by
KA (f@u),§) =(d-(f@®(1®u))) -,

d€Dy,, f€O0y,ueij 'V, £€lU(g) and 1 € j71(Dz,) is the identity. If n € ¢,
we have

r(((de (feu) 1,8 =rldn®(f@u) —den-(f®u),f)

= (dn- (f® (1 ®u)) - (dnn)fe(leu)) - [df@len-u)))-§
= (d(r1(n) fe(1eu)))-{+((d(f@(n®u)))-£—(d(r1(n) fe(1ow)))-{—((d(fo(1enu)))-¢l
= ([d(f® (1 ®u))) n&=r(de (f®u),nk).
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We conclude that x induces the map

Vi (Dy,u @oy J°V) @ueey U(g) — 5" (Pz,u ®o, V)

by
Yo (fou)®f)=>d(fe(lou)-<

First we check that ¢ is surjective. It suffices to show that f ® ((1 ® §) ® u) is in
the image of ¥, here f € Oy, u € j7'V and 1 ®¢, € € g, is viewed as an element of
7 Y (Dz,). In fact this follows from

fo(1eH)Heu)=(fe(1®1)u) £+ f(1®1)®&- u
=Y(1@ (fou)®)+y(1e (fef u)el).

For r € Z, let U(p), denotes the 7" subspace in the standard filtration of U(p).
Notice that 1 induces the map

Ur : (Dy,u ®oy J°V) @c U(p)r — §"(Dzu @0, V).
It will suffice to show that 1), is injective for any r € Z_. Let F’ and F” denote the

filtrations on Dy,, and Dz, respectively determined by the degree of differential
operators. Put

Frir((Dy,u ®0y 7°V) @c U(p)r) = (Fl, Dy, Qoy §°V) @c U (D),
F,i*(Dz,®0,V)=j"F.Dz,®0, V) n,re ;.

Then 1, is compatible with filtrations, and it suffices to prove that
Gr ¢r : Gr((DY,u ®Oy ]*V) Qc u(p)r) - Grj*(DZ,u ®Oz V)

is injective. Clearly, this follows if we show that Gr, is injective on geometric
fibres. Finally, we are reduced to show that 1, is injective on geometric fibres. By
3.2. we have isomorphisms

¢1: ((C—.®c V) Bu(one U(E)) @c U(P)r — Toy Dy, ®oy J°V) @c U(P)-r,

$2 1 (C_p®c V) @ugoney U(B) — Ty (57 (DPzu ®0, V))-
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From the construction of ¢; and ¢2 (compare the proof of loc. cit.) we deduce
further that the following diagram commutes

Ty Dy, Qoy V) @cU(p)r —2 T (5*(Dzp ®0, V)

TQ’H T@’)z 3
(C_p@c V) @upny UE)) @c U(p), ., (C_.®c V) @uone) Ul(g)

here the bottom map is given by

P((ven)é) =vens, veV, nel(t), {EcUp),.

Since ¢ is injective, we conclude that ), is also injective. This completes the proof
of 3.1.

Let X be a flag variety of g and Dy = Dx r4+, a G-homogeneous twisted sheaf
of differential operators on X. Let Y = K - xy be a K-orbit and 7 : Y — X the
inclusion. With the preliminaries we have developed we proceed to construct the
resolution of i*(D,) by (D4,U(g))-bimodules. Denote by p : Z — X the natural
projection. Then we have a commutative diagram

Y;Z

—_—

y —* . X
Let 7z x be a locally free Oz-module consisting of vector fields on Z tangent to
the fibres of p. Notice that 7 x is G-equivariant sheaf with the geometric fibre

isomorphic to b/(bN€). Also 7z x C DY. Recall that p defines a relative de Rham
complex

- — DR ®o, N"Tzx < D} ®o, N" 1Tz x — -+ — D} — p*(Dy) — 0,
with the differential d given by the formula

dD@vi A Avg) =Y (=1)'Do; @ vy A=+ A A=+

A~

+Y (1D @ v, 0] Ay A A A Ay,
1<J



19

DeDf v e Tz|x - It is well known that de Rham complex is a resolution of p*(D))
by locally free D}-modules. As explained above the terms in de Rham complex are
naturally right ¢(g)-modules. Moreover, it can be checked that the differential
di : DY ®0, N¥*Tzx — DL @0, AN*71T x is a morphism of right ¢(g)-modules. It
follows that

7*(d) : (D} @0, N¥Tz1x) — 5 (D} ®o, N* 1Tz x)

is a morphism of (D},U(g))-bimodules. Since all terms in the de Rham complex
are locally free as Oz-modules the functor j* preserves exactness. Applying 3.1.,
we obtain a variant of H. Hecht’s result:

Proposition 3.3. The sequence
- = (DY @0y 5 (A*Tz1x)) @uy U(8) — (D} @0y 5* (N1 Tzx)) Quey Ulg)
D} @y Ulg) — " (Dy) — 0

is a resolution of i*(Dy) by (DS, U(g))-modules.
Proposition 3.4. Let V be a right D -module. Then the sequence

- = i (V 0, §H (N T71x)) @uy U(g) — (Y ®oy 5 (N 71T7x)) @u Ulg) —

(V) Gy Ulg) — RUV) — 0

represents a resolution of RV % (V) by right U(g)-modules. (The superscript R in-
dicates here that the direct image functor is defined in the category of right D-
modules. )

Proof. Since each module in 3.3. is a flat D}-module, we deduce after tensoring
with V @p; — that

o= (V®oy 5 (N T71x)) Qu U(g) — (V ®oy 7 (N 12 %)) Quey Ulg) —
=) SN0 Z/{(g) a2 ®D§\ Dy_x — 0,

is an exact sequence of right U(g)-modules. Finally, we obtain a desired resolution
after applying the functor i, on the last sequence. [J

From now on assume that Y is a closed K-orbit and use the notation from 2. In
particular, g corresponds to a 1-stable Borel subalgebra b.
DEFINITION 3.5. We say that A € h* is in a good position if (A, — p1 + pe) + p is
¥, -antidominant whenever p is a weight of A"(b/(b N E)).
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Lemma 3.6. Suppose \ is in a good position. Let V be a left D -module. Then
H'(Y,V ®o, wy|x ®oy j*(N*Tzx)) =0

for any i >0 and k > 0.

Proof. First we choose b N ¢-invariant filtration
0=TFo(A*(b/(bNE)) C F1(AF(b/(bNE))) C--- C F(AF(b/(b6NE)) = A*(b/bNE)

such that
Fi(A"(b/(bN¥)))/Fir(A*(/(6NE))) = C,,

for some by -weight v; of AF(b/(b N ¢€)). This will determine a filtration on W =
V ®0, wy|x ®oy 5 (A*Tgx)),

O=FoWcCF WcC --- CF, W=W

such that
Fi W/ Fi—l W = V(Q(pg — p1) + l/i).

The statement follows now easily using Beilinson-Bernstein vanishing theorem. [l

Propositiqn 3.7. Suppose A\ € b is antidominant and in a good position. Let V
be a left Dy-module. Then as a left U(g)-module T'(X, R%(V)) is generated by
LY,V ®o, wy|x)-

Proof. We may view R%_ (V) as a right D_ -module and V ®o, wy|x as a right
D' ,-module. Moreover, if R%% : ME(D" ) — ME(D_,) is a direct image functor
for the right modules, then R%%(V ®o, wy|x) = R%(V). Therefore we have
to show that as a right ¢(g)-module T'(X, R%%(V ®0, wy|x)) is generated by
L'(Y,V ®o, wy|x). But this follows directly from 3.4. and 3.6. [

4. ENRIGHT’S CONSTRUCTION

In this section we recall briefly the properties of Enright’s completion functor.
Let {X,Y,H} be a standard basis of a = sl(2,C). If M is an a-module we
denote by MX the space of X-invariants and by M|c] the c-eigenspace of H. Put
M(c]X = M[c]n MX. Assume in addition that M is a weight module for a. Then
M is complete if
Y™t Mn)* — M[-n — 2%
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is isomorphism for any n € Z,. An a-module M’ is a completion of M if there is
a-module injection i : M — M’ such that

(i) M'/i(M) is a-finite,

(ii) M’ is complete.
To establish the existence of completion one restricts to the category C(a) of a-
modules M with the following properties:

(a) M is a weight module for H;

(b) M has no Y-torsion;

(¢) X acts locally nilpotently on M.

Suppose further that g is a complex Lie algebra and a C g. Then we consider the
category C(g, a) of g-modules M such that M € C(a) for the underlying a-module
structure.

Proposition 4.1. Let M € C(g, a).

(i) There is a g-module C (M) such that as a-module C(M) is a completion of M
and the inclusion i : M — C(M) is a morphism of g-modules. The last condition
determines g-module structure on C (M) uniquely.

(ii) For any morphism ¢ : My — Ms in C(g, a) there is a unique g-module map
C(p): C(My) — C(Ms) extending .

(iii) If F is a finite dimensional g-module then M @c¢ F € C(g,a) and C(M ®c¢
F)=C(M)®cF.

(iv) C(Mpy) = C(M)y).-

Proof. (i)-(iii) are proved in [4]. To prove (iv), choose v € C'(My)). Since C(My)) /M
is a-finite there is n € Z such that Y™ -v € M. It follows that (2 — xa(2))" (Y™ -

v) = 0 for some m € Z,. On the other hand, Y acts without torsion on C(M)
and hence (z — xA(2))™ - v = 0. In other words, v € C(M)[y. To conclude the
proof it suffices to show that C'(M)[y/C(My)) is a-finite (compare loc.cit., 3.9).
Let v € C(M)[y. Then Y™ -v € M for some n € Z,. In this case necessarily
Y™ v € My, as desired. [

Suppose that a pair (g, ) is choosen as in 2. Put in addition

ne = Z by, Ne= Z t o

aexy aesy

DEFINITION 4.2. We consider the category C(g, ) of g-modules M with the follow-
ing properties:

(i) M is a weight module for h; with integral weights;

(ii) M is U(me)-torsion free;
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(iii) M is U(ne)-finite.

For each a € II; we choose zy, € ti, and h, € h; such that [x,,2_4] = ha,
a(hy) = 2. Denote by a® a 3-dimensional subalgebra in ¢ spanned by z,, x_, and
ho. Then we can consider a completion functor C, defined with respect to a®. It
can be shown that completion functors C,, for a € Il preserve C(g, t). Let w € W,
and let w = sq4, - - - Sq,,, @; € Iy, be a reduced expression. Then for M € C(g, £) we
put

Cw(M) = Ca ((Cozm(M)>)

It is known that C\, (M) depends only on w and not on the particular reduced
expression [3].
The following proposition generalizes 4.1.

Proposition 4.3. Let M € C(g,¥t).

(i) For any w € Wy, there is a unique g-module structure on Cy, (M) such that
M — Cy(M) is a g-module map.

(11) Suppose (My;w € Wy) is a family of g-modules such that My = M, and
for w = sqv, w > v, a € I, Cp(M,) = My. Then we have a unique family
of isomorphisms ¢, @ Cyp(M) — My, w € Wy, making the following diagram

commutative

Wvl ‘Pwl
M, —— M,

(i11) If F is a finite dimensional g-module then M ®¢ F € C(g,€) and C,(M Q¢
F)=Cy(M)®c F.
(Z"U) Cw(M[)\]) = Cw(M)[)\].

We know that the sequence
0O0—F,— - —FE — -+ —FEy— M\ —0,
where

E; = U(g) Quoney (A'(b/(bNE)) @c Cx,—p,)

and m = dim(b/(b N ¢)), is a resolution of M(\) by U(g)-modules [4]. It can be
shown (loc.cit., 5.), that under certain restrictions on the parameter A this resolution
can be lifted to a resolution of C\, (M (N)).
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Proposition 4.4. Suppose A € b* is antidominant and in a good position, A\, €
P(%g) and v = A1 — p1 + pe. Then, for any w € Wy, there is an exact sequence of
U(g)-modules

0= Cu(Em) =+ — Cu(Ei) — - = U@y Me(w(vtp)) — Cu(M(X)) — 0.1

Examining the last map in the above sequence we conclude that the family of
modules E,, = C,(M()\)), w € We, has the following four properties:

(i) 7 = M(V);

(ii) For any w € W there is an injective map €, : Me(wv) — FE,, such that

By =U(g) - ew(Me(wr));

(iii) For w,v € Wg, w > v, there is an injective map Z, — Z,, such that the
following diagram commutes

Me(vv) —— Me(wvr)

Ev E— w

(iv) For any w € W, the module E,, is U(ng)-torsion free.

On the other hand, these four properties characterize family (E,;w € We). In
fact, we have [6]:

Proposition 4.5. Let A € h* be such that v = Ay — p1 + pe is reqular and Ej—
antidominant, and \y € P(3¢). Then there is a unique family of modules (E,; w €
W) with the properties (i)-(iv). More precisely, if (E.,; w € W) is another family of
g-modules with the same properties, there is a family of isomorphisms ¢ : E! — E,,
such that for any w > v the following diagram commutes

o ol -

E, —— LE,
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5. MAIN THEOREM

We show here that the modules Z(w, \) coincide with the modules Cy, (M ()\))
defined via Enright’s completion functor. This will be done in two steps. First we
identify the aforementioned modules when parameter A is sufficiently negative. The
general case of the antidominant parameter is then reduced to the first one using
translation functors. We turn now to the details.

Lemma 5.1. Suppose X € h* is antidominant, in a good position and such that
A1 € P(X¢). Then a family of modules (Z(w, \); w € We) has the properties (i)-(iv)
from 4.4.

Proof. (i) We have Z(1,\) = M(X) by 1.1.
For the rest of the proof put v = Ay — p1 + pe and v/ = A1 4+ p1 — pe. Recall that

Z(w,\) = R (Me(w, 1))

can be filtered by normal degree as explained in [9]. Since we are considering left
D- modules our filtration differs from the one in loc. cit. in a twist by

wy|x =Wy oy i*(Wy').

Moreover, the filtered submodules F,, R (Me(w, '), p € Z, carry the additional
structure of U (€)-modules. In fact, this holds since the differentiation with the
operators from U(€) preserves the ideal of regular functions vanishing on Y.

(i) Notice that wy|x = Oy (2(pe — p1)) and therefore

Fo Ry (Me(w,v)) = i,(Me(w, V) @0y wy|x) = ix(Me(w, v)).
Since v is Z?—antidominant, this implies
Mi(wr) = T(X,Fo R% { (Me(w, ")) C Z(w, \).
Moreover, applying 3.7. we conclude that Mg (wv) generates Z(w, A) as U (g)-module.|
(iii) Let w > v. Then we have injective map Z(v,\) — Z(w, ). Thus the

diagram
FoZ(v,\) —— Fo Z(w, \)

l l

Z(v,A) ——  Z(v,A)
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is commutative. After taking global sections we obtain finally

Me(vv) ——— Me(wv)

| !

Z(v,\) —— Z(w, \)

To prove the fourth property we need a little preparation.

Lemma 5.2. Let A be a ring and Z a topological space. Let F be a sheaf of
A-modules and
FoCF C-CFC -y, |J F=7F,

PEL4

an ezhaustive filtration of F by subsheaves of A-modules. Then there is a spectral
sequence with the first term

Efq = Hp+q(Xv fp/}—p—1>
abutting to H (X, F). The r"-differentials
d, : EP1 — prratrtl

are morphisms of A-modules.
We will also need the following result from [12]:

Lemma 5.3. For p € P(X) put
n(p) = min{l(w) : w € W, wu is antidominant}.

Let M be D,,-module. If n(p) > 0, there is a finite dimensional g-module F,
p' € P(X) such that n(p+ p') < n(p), and an injective map

M — M) @ox F (F =0x ®c F).

We continue now with the proof of 5.1. Suppose M is Di-module. Then the
filtration by normal degree of R%, (M) yields

Gr R (M) =i, (M ®0, S(NVy|x) ®oy wy|x)
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as U(t)-modules, here Ny| x is the normal sheaf of Y in X. Each K-homogeneous
sheaf S”(Ny|x), p € Z4, can be filtered further by K-homogeneous subsheaves. In
fact, observe that Ny| x is associated to the adjoint representation of K N B on
p/(pNb). Thus we can choose (K N B)-invariant filtration on V' = SP(p/(p N b)):

O=FyVCcFHVC--- CFnV:V,

such that F;, V/F,_ 1V =C,,,i=1,--- ,n, for some h;-weight p; of S?(p/(p N b)).
This will induce the filtration of V = SP(Ny|x),

O=FopVCchHVC---CcF, V=V

such that F; V/F;_1V = Oy (u;), i = 1,--- ,n. Using these filtrations we can refine
the filtration (F, R%(M); p € Z.), to obtain a new increasing and exhaustive
filtration (F), R%(M); p € Zy) of R% (M) by U(¢)-modules. Notice that

Gr' R0y (M) = @ M(pp + 2(pe — p1))

where po = 0 and p, € b7, p > 1, exhaust all h;-weights of S(p/(p N b)) counted
with multiplicity. We are now prepared to apply 5.2. It follows that there is a
spectral sequence with the first term

EY = HPTU(Y, M(pp, + 2(pe — p1)))

abutting to H (X, R%(M)). Since X is antidominant, H"(X, R%(M)) = 0 for
n # 0. Further, the E-term of the spectral sequence corresponds to a filtration of
['(X, R% . (M)) by U(t)-modules such that

Gr, (X, R (M) = B = D(Y, M, + 2(pe — p1))).

In the special case when M = M (w, V'), our goal is to show that U (ng) acts without
torsion on EP:P. We have

= ker(EP~P — EPTPETHL)

since EPT™7P="=1 = (. Moreover, E{* = 0 for a < 0 implies that EP~"PT"+1 for
r > p+ 1. We conclude that

p,—P p,—Pp p,—pP __ y
EPTP O EPT D D ERY = BT,
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Thus, it will suffice to show that U () has no torsion on EY"7 = T'(Y, M¢(w, v +
tp)). Arguing by induction on n(v + p,), it follows from 5.3., that there is a finite
dimensional ¢-module F, p € P(X¢), such that v+ p, + p is Ej—antidominant, and
an injective map

Me(w,v + 1) — Me(w,v + iy + 1) @0, F.
After taking global sections we obtain injective map
D(Y, Me(w, v+ p1,)) — TV, Me(w, v+ g, + 1)) S F.
On the other hand, we have
LY, Me(w, v+ pp + 1) = Me(w(v + pp + p1).

Hence, we are reduced to show that /(1) has no torsion on Me(w(v+p,+p)) ®c F.
But this is satisfied, since M¢(w(v + pp + 1)) ®c F has composition series with
subquotients of the form M(w(v + pp + p) + @), where o runs over the set of
weights of F. This concludes the proof of 5.1.

Now we can state the main result.

Theorem 5.4. Suppose A € h* is antidominant and such that Ay = A|h1 € P(Ze).
Then there is a family of g-module isomorphisms

Puw : Cw(M(X) = Z(w, A), w e Wy;
such that, for any w > v, the diagram
Co(M(A) —— Cu(M(N))
o o
Z(v,\) —— Z(w,\)

commutes.

Proof. Pick p € P(X) dominant and such that A — p is in a good position. This is
possible since p = plhy is E?—dominant and integral. By 5.1. we can construct a
family of isomorphisms

Pt Co(MA =) — Z(w, A — p), w e Wy;
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satisfying the required compatibility conditions. Let F be a finite dimensional
irreducible g-module with the highest weight p. Then

(M(A—p) ®&c F)ppy = M(N),
and therefore by 2.3., we have
Cuw(M(A)) = Cu(MA = 1) @c F)n) = (Co(M (A = p)) ®c F)py)-

On the other hand, for antidominant A\, any Dy-module M and F = Ox ®c¢ F we
have (see [12])
M = (M(—p) ®ox F)-

This implies

In particular, for M = Z(w, \) this yields
Z(w, ) = (Z(w, A = p) ®c F)y-
Thus we can extend isomorphisms ¢, to the isomorphisms
Ow : Cou(M(N) — Z(w, A), w e Ws.

It follows from the construction that compatibility conditions are again satisfied. [

Using this theorem we obtain easily the main results of [4]. First of all, we put

E(M(N) = Cuy (M(V)) / ( 3 0w<M<A>>> |

w<wo

Theorem 5.5. Suppose X is antidominant and Ay € P(3g).
(i) E(M (X)) is either irreducible or zero.
(i) There is a homological resolution of E(M (X)) of the form

0= MQN) = — P Cul — oo — Cyy (M(N) — E(M()\) — 0,
L(w)=p

where the differentials are induced by the natural injections Cy, (M (X)) — Cy(M (X))
forw > v, w,v € Wg. This resolution is dual to the geometric resolution

0— L(Y,7) — T(wp,\) — -+ — @ — - =T(1,\) —0
£(w)=p
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via the duality operation described in 2.6.

Proof. The first statement is consequence of the fact that, for antidominant A,
global sections of an irreducible Dy-module are either zero or irreducible g-module
[12]. The second statement is clear. [

Finally we want to examine more closely the case E(M(\)) = 0. We denote
by Is, : M(Dy) — M(Ds, ) the intertwining functor attached to o € II and by
LI, i € Z, the left derived functors of I [12]. Recall that LI, = 0 fori # 0, —1.

Next result is proved in [10].

Lemma 5.6. Suppose o € IINX¢cr and ig : @ — X is a K-orbit. Let 7 be
1rreducible K-homogeneous D;Q—connection on X. Then:

(i) Is,2(Q,7) = 0;
(ii) LI, T(Q,7) = T(Q, 7)(sah — \).

We will also need a following lemma [11]:

Lemma 5.7. Let a € II and suppose o (\) = —p € Z. Let M € IM(D)) be such
that I, M =0 and L~ I, (M) = M(pa). Then T'(X, M(pa)) = 0.

Proposition 5.8. Suppose i : Y — X is a closed K-orbit and T an irreducible
K -homogeneous DY -connection on X. When X is antidominant we have:

(1) If & () =0 for some o € I1N Xy then L(Y,T) = 0.

(ii) If Re(\, a + Ya) < 0 for any o € B, and (\, @) # 0 for any o € IIN X¢y,
then L(Y,T) # 0.

Proof. (i) This follows directly from 5.6. and 5.7.
(ii) Notice first that

(Y, Oy (A1 — p1 +2pe)) C L(Y, 7).
By Borel-Weil theorem it suffices to check that A\; — p1 + pg is 22’—antid0minant and

regular. Pick a € IIg. Then a = (|h; for some [ € Egl U Zg. At this point we
draw the attention to 2.2. If 8 € ¥ we have o™ = ¢(8"+ (93)7), ¢ = 1, 2. Hence

a’(A) = (674 (98)) (A1) = cRe((8”+ (96)) (M) < 0.
Observe that we have used a”(\;) € Z. Further,

a’(p1) = c(B"+ (98)")(p) = 2.
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Therefore, in this case a” (A1 — p1 + pe) < 0. If 3 € T, we have two cases. In the
first, g € II and

Oév()\l —p1+ p{z) = ﬁv()\> <0

by the assumption. In the second ( ¢ II. Thus 57(p) > 2, and this implies again
that a” (A1 —p1 +pe) < 0. O

Corollary 5.9. Suppose \ is as in 5.8.

(i) If & (A) = 0 for some a € IIN X, then E(M(X)) = 0.

(ii) If Re(\, a + da) < 0 for any o € Bf, and (M, @) # 0 for any a € IIN B¢y,
then E(M (X)) # 0.
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