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A LIMIT FORMULA FOR ELLIPTIC
ORBITAL INTEGRALS

MLADEN BOZICEVIC

Abstract

Let O be a nilpotent orbit for a semisimple Lie group which appears as the leading
orbit in the wave-front set of an Aq(A)-module. We establish a limit formula for the
computation of the canonical measure on O through differentiation of the canonical
measures on elliptic orbits.

0. Introduction
Fourier inversion of the nilpotent orbital integrals is closely related to the computation
of the canonical measure on a nilpotent orbit through differentiation of the canonical
measures on the semisimple orbits. This leads naturally to the so-called limit formu-
las. The importance of Fourier inversion for the harmonic analysis on a semisimple
group is already apparent in the work of Harish-Chandra on the Plancherel formula.
Since then, the problem of computing the nilpotent measures has appeared in the work
of various authors. In [BV 1], [BV2], [HK], and [R2] the problem was solved for com-
plex semisimple groups and in [B] for the real semisimple groups of rank one. For a
general real semisimple group, the problem appears to be quite hard. However, in the
special case of U (p, q), the computation for all the orbits was carried out in [BV3],
using character theory and combinatorics. In [R1] a conjectural limit formula was
proposed, based on Rossmann’s theory of character contours and Weyl group repre-
sentations (see [R2], [R1], [R3]). The goal of this paper is to establish a limit formula
for the class of nilpotent orbits that arise as the leading orbits in the wave-front set
of Ag(A)-modules. The main technical tool in our approach is provided by the theory
developed by W. Schmid and K. Vilonen [SV 1], [SV2], [SV3] in the course of their
work on the Barbasch-Vogan conjecture.

To describe the main result of the paper, we have to introduce some notation.
Let GRr be a linear, connected, semisimple Lie group, let G be the complexification,
and let Kp be a maximal compact subgroup of Gr. Denote by ¢g C gr the Lie
algebras, and denote by £ C g the complexified Lie algebras of Kr C Gr. We choose
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a parabolic subalgebra p C g so that the complex conjugate p is opposite to p. Then
[ = p Npis aLevi factor of p. Denote by ¢ the center of [, and denote by (¢ N tr)*
the real linear dual of ¢ N €g. Let C* C i(c N ER)* be the positive chamber defined by
p/L.If ¥ C igy is a Gr-orbit, we denote by my the canonical measure on #, which
is up to a constant multiple the (dimg #'/2)-power of the Liouville form. If p is a
polynomial on ¢*, write d(p) for the corresponding differential operator on c. Finally,
let &' C igy be the nilpotent Gr-orbit associated via the Sekiguchi correspondence
with dense nilpotent K-orbit in K - (g/p + £)*. (Here (g/p + £)* stands for C-linear
dual.) Now we are ready to state the main result of the paper.

THEOREM 0.1
There exist a polynomial p on ¢* and a nonzero constant ¢ so that the following limit

Jormula holds:

lim d(p)mgp.a = cme.
A—0(CH)

To prove the limit formula, we study the asymptotic behavior at A = 0 of the holo-
morphic function

A éo}\”,

where <ZA> is the Fourier transform of a test function ¢ on gr, o, is the Liouville form
on GR - A, and 2m = dimp G - A. This is accomplished in several steps. First, we
transfer the problem to the cotangent bundle 7*Y of the generalized flag variety Y of
Ad(G)-conjugates of p. We use the twisted moment map u, : T*Y — G - XA to

by = f NTAC 0%
Gy uy ' (G

In [R3] W. Rossmann shows how to obtain the Taylor series expansion at A = 0

write

of distributions on the right-hand side of the formula in the case when p is a Borel
subalgebra. We present in Section 4 an analogue of Rossmann’s theory for a gener-
alizied flag variety. Next, we compute in Section 3 the characteristic cycle CC (%)
of a standard sheaf ¢ associated with open orbit Gr - p C Y. In fact, we show
that u/\_l(GR - A), with natural orientation, is homologous to CC(¥). This result is
a slight generalization of [SV2, §7]. Finally, to understand the leading term in the
Taylor series expansion of | cc@) 175 (gﬁai"), we apply the results from [SV3] on the
microlocalization of the Matsuki correspondence for sheaves. In Sections 1 and 2, we
give a summary of the results from [SV3] needed for our applications in the setting
of a generalized flag variety.

We hope the powerful theory developed in [SV 1], [SV2], and [SV3] will shed
more light on the problem of the Fourier inversion of the nilpotent orbits in the future.
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1. Preliminaries
Let Gr be a real semisimple Lie group. In addition, we assume that G is connected
and linear. We fix a maximal compact subgroup Kg of Gr and write K and G for the
respective complexifications. We denote further by gr and g Lie algebras of Gr and
G, respectively. Let 6 be the Cartan involution on gr determined by the choice of Kg.
We denote by the same letter the corresponding involution on g. We fix a compact real
form Ug of G such that Kr C Ug. Denote by up the Lie algebra of Ur.

Let P be a fixed parabolic subalgebra of G. Denote by p the Lie algebra of P. Let
Y = G/ P be the generalized flag variety. Alternatively, we may view Y as the variety
of parabolic subalgebras Ad(G)-conjugated to p. Let h C p be a Cartan subalgebra.
For an h-invariant subspace m C g, we write A(m) for the set of h-weights on m. We
use f to define Levi decompositions

p=I+n and p=I[4+m. (L.1)

Here A(l) = (—A()) N A(p), A(n) = A(p) \ A(), A(n) = —A(n). Recall that p
is called the opposite parabolic subalgebra of p. Denote by 2, the sum of the roots
from A(n). Write B for the Killing form on g. Since g is semisimple, we may use B
to identify g with complex linear dual g*.

Denote by A the group Gr or K, and write a for the Lie algebra of A. As a
subgroup of G, the group A acts naturally on Y. We use this action to define the
equivariant derived category D4 (Y). Recall that the objects of this category are rep-
resented by the complexes of A-equivariant sheaves on Y. By the result of T. Matsuki
[M], the group A acts on Y with finitely many orbits that determine a semialgebraic
Whitney stratification. The image of an object from D 4 (Y') under the forgetful functor
is constructible with respect to this stratification.

Next, we recall the construction of the equivalence of equivariant categories,

y : Dk (Y) —> Dgg(Y),
which was conjectured by M. Kashiwara and proved in [MUV]. Consider the maps
a q p
Y «— Gr XY — Gr/KrxY —Y

given by a(g,y) = g7 'y, q(g.y) = (gKr.y), p(gKr.y) = y. These maps are
(Gr x Kp)-equivariant with respect to the following actions: (g, k) -y = k -y,
(8. k) - (g1,y) = (gg1k™ ', g ¥), (8. k) - (g1KR, y) = (881Kr. 8- ¥). (8. k) -y =
g - y. By restricting from K to Kr, we may view .# € Dk (Y) as an object from
DGy x kg (Y). We have a'(F) € DGy xkr(Gr X Y), and since KR acts freely on
Gr x Y, there exists 4 € Dgy/kp(Gr X Y) such that a'(F) = q'(9). Now we
define y (%) = Rpi(¥). The functorial notation for an inverse and direct image is as
in [KS].
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We proceed to describe the action of ¢ on standard sheaves. Let S be an A-orbit
on Y. Denote by j : § C Y the inclusion. Let . be an A-equivariant local system on
S. The standard sheaves associated with (S, .Z) are defined by

INL) =Rj(L) and (L) =Rj(L).

There exists a natural bijection between K- and Gg-orbits on Y, called the Matsuki
correspondence. If the K-orbit Z and the G-orbit S are in Matsuki correspondence,
then Z N § is a Kr-orbit. Moreover, we also have a natural correspondence between
local systems {.Z} on Z and {-¢’} on S characterized by

Llzns = L'\ zns-

Denote by Cy the constant sheaf on Y with stalk isomorphic to C. The following
result generalizes [MUV, Th. 6.6]. The proof from [MUV] applies in our situation
without any changes.

THEOREM 1.2

The morphism y : Dk (Y) —> Dgy(Y) is an equivalence of categories. Suppose
that the pairs (Z, ) and (S, L") are in Matsuki correspondence. Then the action of
y on standard sheaves is given by

v (FE(D) = I, (£ ® j'(Cp)).

Use the complex structure to orient Y, and view Y as a real analytic manifold.
Write T*Y for the cotangent bundle of Y, and write 7Y for the union of conor-
mal bundles of the A-orbits on Y. For a locally compact space Z, we denote by
H.(Z,7) (H.(Z,C)) the Borel-Moore homology with integral (complex) coeffi-
cients. Set 2m = dimp Y. The characteristic cycle construction from [KS] yields a
homomorphism from the Grothendieck group of D4(Y) to the top homology group
of T}Y:
CC : #(Da(Y)) —> Hon(TY, 7).

Define the map u : T*Y —— g* as the composition of the natural embedding
T*Y — Y x g* and the second projection ¥ x g* — g*. We call x the moment
map of Y. Next, we introduce a homomorphism

O : Hyy(TEY, Z) —> HZm(T(”;]R Y,7Z),
which makes the following diagram commutative:
(D (Y)) —L—  #(Dgg(Y))
ccl ccl (1.3)

Hon(TEY, Z) —— Hyw(T§ Y, Z)
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First, we define a family of bianalytic maps Fy : T*Y — T*Y,s € R.g, by
setting Fy(§) = E(exp(—s‘1 Re ,LL(S)))*(S), & € T*Y. Here we write Re (&) for
the real part of (&) relative to the real form gr C g, and we write £(g)* for the
map induced by the left translation £(g) : ¥ — Y, g € G. One can check that for
C € Hy, (TEY, Z), we obtain a family of cycles (F;(C), s > 0) in the sense of [SV1].
We draw attention now to the notion of the limit of a family of cycles from [SV1].
The proof of the next theorem is completely analogous to [SV3, proof of Th. 3.7].

THEOREM 1.4
For C € Hyu(TZY, Z), the limit ®(C) = lim;_, o+ Fs(C) exists and is supported in
TC’;RY . The resulting homomorphism ® makes diagram (1.3) commutative.

2. Integrals associated with characteristic cycles

In this section we study the convergence properties of integrals of certain differential
forms over the cycles from Hoy, (Tg;}R Y, 7). We also establish results that are needed in
order to study the asymptotics of such integrals. This material is completely analogous
to [SV2, §3] and [SV3, §5].

Recall that Y = G/ P, where P is a fixed parabolic subgroup. Write yp € Y for
the point determined by P. Then Y is a homogeneous space for Ur and Ur N P is
the centralizer of a torus in Ug. Denote by cg the Lie algebra of this torus. Extend cr
to a Cartan subalgebra hr of ugr, and write ¢ C h for the complexifications. Use b to
define Levi decompositions (1.1). The choice of [ defines a splitting p = ¢ @ [p, p].
Consider the exact sequence

0 — (g/p)* — (g/lp,p)* — & — 0.

Using a direct sum decomposition g = ¢ & ([p, p] + [g, c]), we define a section of
(g/lp, p))* —> ¢*. Thus the above sequence splits; that is, (g/[p, p])* = ¢* D (g/p)*.
In particular, we view ¢* @ p C g*. We say that A € h*is P-regular if centg(L) =
centg(c).

Assume in the following definition that A is P-regular. As in [R2] and [R1], define
a twisted moment map u, : T*Y —> G - A by the formula

w(u-(yo,v)) =u-(+v), uecUp, ve Ty’ngpL.

Since A is P-regular, u1 - yo = uy - yo, U1, up € Ur,implies u; - A = up - A, and
hence u; is well defined.

PROPOSITION 2.1
If A € b* is P-regular, then u, : T*Y — G - A is a real algebraic isomorphism.
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Proof

Consider the decomposition g = [ 4+ n + n. Denote by 4, the image of A under the
isomorphism g = g* defined by the form B. The assumption that A is P-regular
implies that ad(h,) is invertible on n. Thus we have P - h, = h) + n. Applying the
isomorphism g = g* to this formula and using p~ = n, we obtain

P-A=Xr+pt.

We proceed to define the inverse €), : G - . —> T*Y of u, . Using the above formula
and G = Ugr - P, we write any § € G - A¢ in the form § = u - (A 4+ v), where
uec Upandv € pJ-. Now we set €, (§) = (u - yo, u - v). We have to show that ¢, is
well defined. Let £ = u; - (A + vy), where u; € Ur and vy € pL. Then we may find
p, p1 € Psuchthat A\+v = p - Aand A+v; = p;1-A.The condition up-A = ujp;-A
implies (ulpl)_lup € P.Thus ul_lu € Ur N P, and therefore u - yo = uy - yp and
u - A = uj - A. Finally, we conclude that (u - yp, u - v) = (u1 - Yo, u1 - v1); hence €
is well defined. It follows immediately from the definitions that €, is the inverse of
2% 0

Suppose that Z is a space with G-action (Ug-action), and suppose that§ € g (¢ € up).
We denote by /(£) the vector field on Z defined by the group action. Given a map f of
smooth manifolds, we write f for its differential. If u € g and & € g*, we write u - &
for the coadjoint action. After these notational preliminaries, we introduce differential
forms o and 1.

Recall that each orbit & C g* carries a canonical G-equivariant complex sym-
plectic formogy. If £ € O anduy - &,up - & € Ts*ﬁ, then o4 is defined by

oole(uy-§,up - &) = &([ur, uzl).

When & = G - A, we simply write o, for o,. Furthermore, we define a Ug-invariant
two-form 7, on Y by the formula

Taly (Lw), [(v)) = A([u, v]), u, v € up.

When A is P-regular, the differential forms 7, , 0, , and o4 are related as follows (see
[R2,Lem. 7.2], [R3,Lem. 1.3.1]).

PROPOSITION 2.2
Suppose that ). € h* is P-regular, and suppose that O C g* is a nilpotent orbit. Then

W00 = Wog + 1T,

at the smooth points of w=1(0).
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Proof
Since Y is Ur-homogeneous, it suffices to prove the formula at the smooth point
(vo, V) € w~1(0). The tangent space T(y, ,)T*Y is spanned by ker(my)(y,,v) N
T(yo,v) (uw~10) and I(uR). We have to show that
O3 (U1, HaxV2) = To (401, T402) + 0o (a1, aev2)  if 1, V2 € Ty (' O).
We consider three cases. First, suppose v; = [(u#;) € [(ur) C T(yo,,,)(u_lﬁ), i =
1, 2. Since the maps w, , 7, and u are Ur-equivariant, we have
o (sl 1), posl (u2)) = 05, (L), L(u2)) = (A 4+ v)([u1, ual)

= T (il (1), Tl u2)) + o (il (1), pad (u2))

= ¥ n (), [(u2)) + wros(l(ur), [(u2)),
as desired. Next, we suppose vy € kerm, N T(yoyv)(,u_lﬁ), vy = l(up) € l(uR).
In this case, we make the following identifications: ker 7w.(y,,v) = T(y5,0) (T3 Y) =
T;BY = pL. The restriction of 1) to T;;Y is affine; hence ) 4«v; = uxvq. It follows
that

PVl = up - (A4 v) =uj - v =g

for some u1, u| € g, and thus

o0 (a1, Paxv2) = oa (1 - (A 4+ ), [(u2)) = (A + v)([u1, uz]) = v({u}, u2).

On the other hand, 7, (7xv1, mxv2) = 0 and o5 (UxV1, UxV2) = v([u’l, us]), so the
desired equality holds again. Finally, we suppose vy, v2 € kermy N Ty, 1) (nw=to).
Let b C p be a Borel subalgebra of g. In view of our earlier identifications, we have

Mk*vl,u,\*vze)\—i—pLCG-k and UV, UxV) € ﬁ’ﬁpl conbt.

A direct computation shows that A 4+ p C G - A is isotropic. On the other hand,
0 N bt C O is Lagrangian by the result of A. Joseph [J], and therefore & N p is
isotropic. In other words,

O (V1 ax2) = 0 = T (T4V1, T4 V2) + 05 (s V1, UsV2).

This completes the proof. O

Let C be a semialgebraic chain in 7*Y . We say that C is R-bounded if Re u (supp(C))
is a bounded subset of g* (see [SV2, §3]). Recall that the Fourier transform of a test
function ¢ € C2°(gRr) is defined by

(&) = / EDp()dx, & e gt
gR

The proof of the next proposition comes down to the application of the fact that )
decays rapidly in the imaginary directions.
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PROPOSITION 2.3 ([R2, Vol. II, §1.2], [SV2, Lem. 3.16])
If C is a semialgebraic, R-bounded 2m-chain in T*Y , then the integral

'L@@ﬁ% b € CX(gp),

converges absolutely. The integral depends holomorphically on A. In particular, if
C e HZm(TgR Y, Z), the above integral converges.

In order to compare integrals over various cycles, we recall the notion of restricted
homology. Let C1, C, be semialgebraic, R-bounded 2m-cycles in T*Y. We say that
C1 and C, are R-homologous if there exists a semialgebraic, R-bounded (2m + 1)-
chain C in T*Y such that C; — C, = dC.

PROPOSITION 2.4 ([SV2, Lem. 3.19])
Suppose that Cy, Cy are semialgebraic, R-bounded 2m-cycles in T*Y . If C1 and C»
are R-homologous, then

| wiay = [ i@

G 105)

Denote by .4 the nilpotent cone in g*. Observe that a nilpotent orbit has an even
complex dimension. Write Jﬁ(, respectively, .4, for the union of nilpotent orbits &
such that dim¢ & < 2k, respectively, dim¢ & = 2k. Suppose that & C A4 is a
nilpotent orbit. Then ¢’ N a™ is a union of finitely many A-orbits of real dimension 2k
(see [KR]).

A simple computation gives 7Y = n~(at). Suppose A N w(TyY) # 0.
Then the restriction of the moment map w : w i MmNnal) — A Natisan
A-equivariant fibration whose typical fiber = (£) is a complex projective variety
of complex dimension less than or equal to m — k. It follows that the real dimen-
sion of ,u_l(f/ﬁC N al) is less than or equal to 2m. Observe that the homomor-
phism Ho,, (u=! (JI%{ Nal),Z) — Hay, (T}Y, Z),induced by the closed embedding
n! (Jﬁc Nat) C T3Y ,is injective. Hence, we view Ha,, (! (C/ﬁC Nal), Z) as a sub-
group of Hy, (T}Y, 7). Since w N (A Nat)isopenin p! (M Nat), the restriction
of homology classes induces the homomorphism

Hon (0™ (M N0D), Z) —> Hop (™ (M NaD),Z),  C > Clynat.

If A € ¢*, consider the form (1/(27i))t) € H?>(Y, C). Set

. |
T, /2mi -1
¢ t i ™ a2

@)+,
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and write 7w *e™/?7 for the pullback of e™/>*! under the projection 7 : T*Y — Y.
We use the form e™/?7! to descend the cycles in T3Y to the nilpotent cone 4. In
fact, suppose C € Hop (™ (A N at), Z). We take the cap product of C against the
component in 77*e™/?™ of degree 2m — 2k. This produces the class C N *e™/?7i ¢
Hor (= (A N at), €©). Finally, we define
/ 7*e™/?™ ¢ Hyp (M Nat, C)
c

as the pushforward of the cycle C N 7*e™/>™ via the map u : = ' (A N at) —
M N at. We remark that the cap product followed by the pushforward agrees with
geometric operation of integration over the fiber (see [SV3, §5]). This fact is used in
Section 4.

Now, if Hopm(u™ (M N at), Z) # 0, then dimg ™' (A% N at) = 2m. Hence,
dimp = 1(&) = 2m — 2k for & € A N at, so we obtain the homomorphism
Hop(n~ Y (M Nat), Z) — Hy (A N at, C) by assigning C — fc Tre™/2mE
Choose C # 0 from H,,, (T;Y, Z), and denote by k = k(C) the least integer such that
supp(C) C w! (Jﬁc Nat). Then dimg supp(C) = 2m implies dimp w! (t/ﬁc Nat) =
2m , and therefore Hy,, (,u_1 (M Nab), Z)) # 0. Finally, we define

(grpa)s : Hom(TAY, Z) — @D Hu (M Na*, ©)

by the formula (gr u4)(C) = fCO w*e™/? Here CO = Cl -1 #nat)-
The next goal is to define a homomorphism ¢ : @ Hy (A N &5, C) —
P Hor (M N gf{g, C), which makes the following diagram commutative:

How(TEY,2) —2—  Hyw(TE Y, Z)

(gru*)xl <gw*>xl (2.5)
D Hu (NN C) —2 @ Hu(M N g, C)

Similarly, as before, consider the family of bianalytic maps f; : 4 —> A", s € R.o,
defined by the formula f;(n) = Ad(exp(—s‘1 Re(n)))n, n € A . For notational
simplicity, we denote here the coadjoint action also by Ad.

THEOREM 2.6 ([SV3, Th. 5.10])

Let C be a 2k cycle in A N tL. Then the limit of cycles ¢(c) = limg_, o+ (f5)«(c)
exists as a cycle in Ny and is supported in N, N gflg. The induced homomorphism
¢ P Hoyp (M N . C) — P Hor (AN gIJRg, C) makes diagram (2.5) commutative.

The homomorphism ¢ has a particularly nice description of the invariant part of ho-
mology. First, we explain how to orient A-orbits. Given a G-orbit & C .44, denote
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by o the complex symplectic form on &. Any K-orbit Ox C ¢ N &+ is a complex
manifold of dimension k. We use the underlying complex structure to orient O . On
the other hand, any Gg-orbit G, C O N gg is a real manifold of dimension 2k.
Observe that o is purely imaginary on 0, and thus the restriction of (1/2wi)os to
0y, determines a symplectic form. We use it to orient g, . Hence, if ¥ C & N at
is an A-orbit, we have a well-defined cycle [#'] which determines a homology class
in Hy (M Nat, C).

There exists a natural bijection between the set of K -orbits in .#” N £+ and the set
of Gr-orbits in .4 N gf{g, called the Sekiguchi correspondence (see [S]). Recall that
the orbits associated by the Sekiguchi correspondence lie in the same G-orbit and, in
particular, have the same real dimension. The next result is [SV3, Th. 6.3].

THEOREM 2.7 ([SV3, Th. 6.3])
Let Ok be a K -orbitin A N ¥+, Then ¢ ([Ok]) =[Oy, where Oy, is the image of
O'x under the Sekiguchi correspondence.

3. The case of open orbits

The goal of this section is to compute the characteristic cycle of a standard sheaf
associated with an open Gg-orbit on Y. The results are analogous to those in [SV2,
§7]. We begin by fixing the notation. First, we draw attention to the notation already
introduced in Section 1. In addition, assume that Gg has a compact Cartan subgroup
Hp. Write hr = Lie(Hr) and h = (hr)c. The results of this section hold in the
more general setting when hr is fundamental, but the arguments (most notably the
orientation statement in Lem. 3.2) are simpler under the assumption in force. Let
yo € Y.Denote by P C G the parabolic subalgebra that stabilizes yy. Setp = Lie(P),
and assume that p N gr contains a compact Cartan subalgebra. Without any loss of
generality, we may assume hr C p N gr. Since the roots of h are real valued on ihp,
we have [ = p N p. This implies further that [ is the complexification of the real Lie
algebra

R =[Ngr =pNgR.
Observe that [R is the Lie algebra of the subgroup

Lr = {g € Gr : Ad(g)p = p}.

Set S = GR -0, and identify the tangent space of S, respectively, Y, at yo with gr/Ir,
respectively, g/p. A simple computation shows dimp gr/Ir = dimp g/p; hence, the
orbit S is open in Y. Conversely, if the orbit S is open, it is not difficult to show that
gr N p contains a fundamental (in particular, compact, under our assumptions) Cartan
subalgebra.
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Let cg be the center of [r. The choice of n determines the positive chamber in ¢*:

Ct={reicg:r(he) >0if a € A)}. (3.1)

Here cp, is the R-linear dual and &, € b is the element corresponding to @ € h* via the
isomorphism g = g*. Clearly, any A € C™ is P-regular, so the twisted moment map
Wy : T*Y — G - A is a real analytic isomorphism. Let j : S < Y be the inclusion.
The goal is to show that the cycles CC (R, Cg) and [M;l (Gr - A)] are R-homologous
for any A € C. First, we study the case 1 = 2py,.

Let V. = V,,, be the irreducible G-module with highest weight 2py,. Choose
a Ur-invariant positive definite hermitian form 4, on V. The space V has a natural
action of the involution 6. In fact, identify V with the space of regular (algebraic)
functions F : G — C satisfying the condition F(gp) = e >**(p)F(g), g € G,
p € P.Here P is the parabolic subgroup of G opposite to P. Then we define 6 F
by the formula 6 F(g) = F(0g). One checks immediately that 6 F € V. Another
hermitian form £, on V is defined by the formula

hy(v1, v2) = hy(v1,0v2), vi,v2 € V.

A short computation shows that 4, is Gr-invariant. Write p, = Ad(g)p and n, =
Ad(g)n, whenever y = g - yo. Observe that n,, does not depend on the choice of g.
The space of invariant vectors V™ is 1-dimensional, so the formula

hy (v, v)
(v, v)
defines a real algebraic function on Y. If necessary, we multiply 4, by a constant so

as to make f positive on S. In fact, by the Gr-invariance of /4, , it suffices to examine
the sign of 4, (v, v), v € V™. Since n is 6-stable, we have Ov € V". Hence, it suffices

ve VW,

to multiply 4, by —1 if Bv = —v. We denote the modified form also by £, .

Write Y® for the underlying real analytic structure on Y, and identify the real
cotangent bundle 7*Y® with the holomorphic cotangent bundle T*Y via the pairing
(vy, &y) = 2Re(éy,vy), vy € T\ Y, &, € Ty*Y. View the differential d log f as a
section of T*SX, and orient it via the isomorphism dlog f = S and the complex
structure on S. On the other hand, orient G - (2pp) so that the top exterior power of
—i072p, is positive. Set s = dimc n N £. The properties of the function f are given by
the following lemma.

LEMMA 3.2
The function f is positive on S and vanishes on the boundary of S. The twisted mo-
ment map (L2, restricted to dlog f defines a real algebraic isomorphism

K2p, = dlog f—> Gr - (2pp)
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which preserves (resp., reverses) orientation if s is even (resp., odd).

Proof

Our argument is completely analogous to [SV2, proof of Lem. 7.10]. Let y € CI(S) \
S. We show h, (v, v) = 0 forv € V" .The form A, is Gr-invariant, so conjugating by
an element from G, we may assume that p, contains a Cartan subalgebra b stable
for 6 and the conjugation with respect to gr. Then § is also stable for the conjugation
with respect to the compact real form ur. Let V(A1) and V (X7) be hi-weight spaces
for Ay # Ar. We claim A, (V (A1), V(X)) = 0. Let v € V(A1), v2 € V(X2), and
choose & € b1 N ug such that A;(h) # Ar(h). Since A3 is the sum of roots, we have
A2(h) € iR and, consequently,

A(h)hy (v, v2) = hy(h - vy, v2) = —h, (v, h - v2) = A (h)hy (v, v2).

Hence, h,(vi, v2) = 0, as desired. Observe that V" = V(2p,) and OV™ =
V(20py). Here 2p, is the sum of roots from n,. To prove h,(v,v) =0 forv € V",
it suffices to show p, # 6p,. Otherwise, py, = 6p, would imply p, € it;. Then
py N gr would contain a compact Cartan subalgebra. However, this is impossible
since GR - y is not open.

Next, we show that us,, induces a real algebraic isomorphism between d log f
and Gr - (2pp).Letv € pl, u € Ugr. Suppose H2p, (uyo, Ad(u)v) = Ad(g)(2pp) for
some g € Gg. The definition of ,, implies

Adu)v = Ad(g)(2pp) — Ad(u)(2pp).
Rewriting this condition and using the fact that 2p,, is P-regular, we obtain

Ad(u™"g)(2pp) = 2pp + v = Ad(p)(2pp)

for some p € P. Then Ad(g_lup),o;J = pp,and, consequently, gyo = uyo = y. Thus
we obtain

o, (Ad(9)(20p)) = (830, Ad(8)(2pp) — Ad()(20p)), ¢ € GR. g¥0 = uy0.

To establish the statement about the isomorphism, it suffices to prove

d1og flgy, = (gy0, Ad(g)(2pp) — Ad(u)(2pp)), & € Gr, gYo = uyo.

Regarding d log f as a section of T*Y®, we have for g € Gg and Z € g,

d

I log f(exptZ - gy0)li=0 = 2Re (u(d log flgy,). Z)-

On the other hand, a simple calculation yields
d log f(exp1Z ) h.(Zv,v) + h,(v, Zv) h,(Zv,v) + h, (v, Zv)
— 10 €X o —_0) = —
a1 g p 8Y0)[t=0 I (v, 0) RORD
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for any v € V™. Since the space V" is 1-dimensional, we may take v = gvg in
the first term and v = uvg in the second term on the right-hand side. Here g € Gr,
u € Up,vg € V", and gyp = uyp. Consider the decomposition g = ¢ + [p, p] + 7.
If T € [p,p] +n,then C- Tyyg N C - vg = {0}. Since the distinct weight spaces
are orthogonal with respect to &, , we obtain A, (T vg, v9) = 0. On the other hand,
if T € ¢, then Tvg = (2pp, T')vp. Using the above decomposition of g, we regard
2pp € g and apply the preceding discussion to 7' = Ad(g~1)Z. We deduce

hr-(Zgvo, gvo) + h,(gvo, Zgvo) _ hy (Ad(g= Zvo, vo) + hy (vo, Ad(g~1) Zvp)
h}" (gUO, gUO) hr (U(), UO)
= 2Re(2pp, Ad(g™")Z).

The analogous calculation for the second term finally yields

p(dlog flgy,) = Ad(g)(2pp) — Ad(u)(2pp),

as desired.

Now we turn to the orientation statement. It suffices to compare the orientations
of § and Ggr - (2pp) only at points yy and 2p;, . First, we describe the tangent spaces.
The holomorphic tangent space T2, G - (2py) is isomorphic to g/l 2~ B, c 4 a ) 8%
and the real tangent space T2, Gk - (2pp) is isomorphic to gr/Ir C C ®r gr/IR =~
g/[. On the other hand, the real tangent space Ty, SR is isomorphic to gr/Ir. The
map I : § — Gr - 2pp), 1(gyo) = Ad(g)(2pp), g € GRr, is a real algebraic
isomorphism, and we use it to compare the orientations. Via the above identifications
of the tangent spaces, the differential of / at yy becomes the identity on gr/[r. As
before, we regard pp € g*. Then the symplectic form oy, at 2pp is given by the
formula

020, (T1, T2) = (2pp, [T1, T21),  Ti, T» €n+T.

In particular, the root spaces g® and g# are orthogonal for 02p, Unless & + B = 0. For
a € A(n), consider the 3-dimensional subalgebra

g =9 +9 “+[g% 9 %]

Let G, respectively, G4 r, be the connected subgroup of G with Lie algebra g,
respectively, go N gr. Clearly, G4, g C G, is a real form. Denote by B, the Borel
subgroup of G, with Lie algebra g% + [g¥, g~ “]. Enumerate the elements of A(n)

as oy, ..., oy, and write y; for the point in the flag variety of g, defined by B,
i = 1,...,m.Observe that p, restricts to a regular weight on g, and consider the
maps

Gg, X -+ X Gg,, — Y, (81, -+ 8m) > 81 &m0
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Goy X - X Gg,, —> G- (2pp), (815 .-, &m) > Ad(g1 -+ gm)(2pp).
They induce further the maps

Gy, /By, X -+ %X Gqg, /By, — Y
and

Gay - (20p) X -+ X Gayy - 2pp) —> G - (20p).
For the real orbits, we obtain the maps

Gy R Y1 X XGg,R " Yn —>7Y

and

Ga R - (2pp) X -+ X Gg,, R - (2pp) —> GR - 2pp).

By considering the tangent maps, we deduce immediately that all these maps are
local isomorphisms, compatible with complex structures and symplectic forms. In this
way the problem is reduced to the special case of Gr = SU(1, 1) if o is noncompact
and Gg = SU(2) if « is compact. In these cases the orientation statement is easily
established by a direct computation. O

THEOREM 3.3
Set A = 2pyp, and consider M)Tl (Gr-A) asa2m-cycleon T*Y . Then, for ¢ € C°(gRr),
the following formula holds:

f pi(po") = (—1)° / Wi (@Gom).

CC(RjxC) w5 (Gr-))

Proof

Set Co = CC(Rj,Cy), C; = dlog(f|S). View Co and C as 2m-cycles on T*Y.
Consider the map [ : (0,1) x T*Y — T*Y defined by I(z, (v, &)) = (v, t&),
teR,yeY, &§eTjY. Let C be a (2m + 1)-chain on T*Y with support equal

to [((0, 1) x supp(C1)) and the orientation determined by the product orientation of
(0, 1) x supp(Cy). Applying [SV1, Prop. 3.25, Th. 4.2], we obtain

Co—C;=0dC.

Since Re p is bounded on supp(C), the statement of the theorem follows from Propo-
sition 2.4 and Lemma 3.2. |
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THEOREM 3.4
Suppose that . € h* lies in the positive chamber C™ . Then the formula from Theorem

3.3 holds.

Proof

Set A(1) = (1 —1)2pp) +1tA,t € [0, 1]. Clearly, A(z) € C™, and in particular, A(¢)
is P-regular. Observe that S = GpR - A and that the same orientation statement as in
Lemma 3.2 holds. Arguing similarly as in the proof of Theorem 3.3, we find

[0y (Gr - G OD)] = [, (Gr - 2(1)] = AC,

where C is a (2m + 1)-chain on 7*Y such that Re 1 is bounded on supp(é). We use
brackets to indicate that a given set is considered as a cycle. The claim now follows
from Theorem 3.3 and Proposition 2 .4. O

4. Elliptic orbital integrals

In this section we study the nilpotent orbital integrals which arise as leading terms in
the asymptotic expansion of Fourier transforms of elliptic orbital integrals. The ma-
terial is analogous to [R2, §§7, 8] and [R3, §1]. We begin with a simple observation.
We use the notation introduced in Sections 1 - 3.

LEMMA 4.1
Let A € ¢* and k € Z . Then

S
=) P,

i=1

where p1, ..., ps are homogeneous polynomials on ¢* of degree k and 71, . . ., 15 are
Ur-invariant 2k-forms on Y not depending on A. The polynomials p; are real valued
on (R.

Proof
Recall that hg C ugr N p is a Cartan subalgebra. For any « € A(g) we may find a
vector x,, in the a-weight space g so that

Xog — X—q, [(Xy +X—g) € UR and [Xq, X—¢] =

——hyg.
a(hy)

Setey = xq — X—y, fo = 1(xy + X_g), and define the spaces ] = ZaeA+([) (Rey +
Rfa),v2 =D 4en @) (Rey + R fy). We have the direct sum decompositions

UR = hr + 1 + 12, br = br N [[r, [R] + cR,
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and we use them to identify R-linear duals by, ¢, t7, t5 with subspaces of ug . Denote
by (ey, fy; @ € A(n)) the basis in t5 dual to (ey, fo; @ € A(n)). Let €4, respectively,
fa, be aunique Ugr-invariant form on Y whose value at yy is e, respectively, f . The
form 1, can then be written as

=Y Miha)ey A fa.
aEA(R)

All the claims of the lemma are immediate consequences of this formula. O

Recall that we have the decomposition T('“;RY = Ulzo w NN gfi), so that
dimp ' (A7 N gg) < 2m. Set

I1={leZ:dimgpu (A Ngg) =2m}.
Choose C € Hzm(T(";]R Y,Z), and let k = k(C) be the minimal £k € Z_, such that
C e HZm(M_I(% N gflg), 7). In Section 1, we remarked that k € I. Set TERYC =
Ureri<k v~ (M N g).

LEMMA 4.2

In the group of 2m-chains on TG*RY, we have C = Zlel,lgk Ci, where Cj is a GRr-

invariant 2m-chain on = (A7 N ngg).Ifl = k, Cy, is the restriction of C to =~ (AN
1

oR)-

Proof
The definition of 7¢;_Yc implies dimg ="' (% N gg) \ T¢_ Yc < 2m, so the exact
sequence

0 — How(T§ Yc. Z) —> Hom(u™" (M N gg). Z)
— Hon(uw (M) \ TG YO, Z) —> -+

determines the isomorphism HZm(TG*R Yo, Z) = Hyy(u™! (c/ﬁc N gfé), 7). Write
E)Tg;IR Yc = TG*R Y\ TG*R Yc, and consider the exact sequence

0— Hgm(aT&‘RYC, Z) — Hzm(T&‘RYC, Z) — Hzm(Té‘RYC, L)y — ---.

The homomorphism HZm(TG*R Yo,7) —> Hzm(TéR Yc,7Z) is injective since
dimp 8T§R Yc < 2m. Via this injection, we view C as an element from
HZ,,,(T(*}]R Yc,7Z).Forl € I,l <k = k(C),denote by U, the interior of M_l(wﬂgR)
in TER Yc . Applying repeatedly a Mayer-Vietoris sequence, we construct the injective
homomorphism

0 — Hu(Tg,Ye. Z) — @ Hoam(Ui Z).
lel,l<k
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If we identify C with its image in B;.; ;< H2m (Ui, Z), we obtain the required de-
composition C = ) ;. 1.1<k Ci- The cycle C is Gr-invariant, and all the constructions
involved are GR—invarian_t; so it follows that C; is also Ggr-invariant. Finally, we re-
mark that U, = n= (M ﬂngg); hence, Cy is the restriction of C to u = (M ﬂngg). O

Let © C .# N at be an A-orbit. The moment map restricts to a fibration u :
w0 — 0.Let 2dy = dimg O, and let 2¢p5 = dimppu™'v (v € O). We
orient ¢ as in Section 2. The orientation on u~'¢& is defined via the fibration
w:puto— o, using the orientation on & and the orientation on the fibers induced
by the underlying complex structure. Fix v € &', and denote by Z 4(v) the centralizer
of vin A. Then for p € Z, there exists a natural bijection between Z 4 (v)-invariant
(2e — p)-chains on w~'v and A-invariant 2m — p)-chains on w=10. On the level
of sets, this bijection is given by

Ch)—~C=A-C(), Cr—>Ch)=Cnu v (4.3)

We recall the Lebesgue-Fubini theorem in the form convenient for our applica-
tions. Let V and W be C°°-manifolds of dimensions » and s, respectively. Let o and
B be top-dimensional differential forms on V and W. Suppose that g is nonzero at
any pointof W.Let f : V — W be a submersion. Then there exists an (r — s)-form
yon V sothata = y A f*B. Here we denote by f*8 the pullback of 8 to V along
f. Write o, and y,, for the restriction of « and y to the fiber f~!w, and write B (w)
for the value of B at w € W. Then y,, is uniquely determined by «,, and S(w), so
we write Y, = oy /B(w). Suppose that V and W are oriented. Then we orient the
fibers f~'w compatibly with f. Further, we assume that 8 is the orientation form
on W and denote by mg the corresponding measure. If the form « is integrable, then
for almost all w € W with respect to mg, the form y,, is integrable on f ~lw and
(almost everywhere) defined form w — ( f =" Yw)B(w) is integrable on W. For the
corresponding integrals, the following formula holds:

/Va B /weW (/flw )/w),B(w). (4.4)

Next, we describe how (4.4) is applied. Let & C A4 N gfi be a Gr-orbit, and
let U C '@ be an open Gr-invariant set. Let C € Hy,, (U, Z). Choose v € O,
and denote by v, c u~!v the set of regular points. The set U N G - !
open dense in U and dimgr(U \ U N GR - ,u_l V) < 2m. It follows that the restriction
homomorphism Hy,, (U, Z) — Hy, (UNGR - u!

v, 18

Vv, Z) 1s injective. Any 2m-cycle
on U NGR - w~ v, is a Z-linear combination of connected components. If we choose
such a component V,then  : V — O is a submersion, and we may apply (4.4) to
the forms o = Mi(c{)cmai")lV and 8 = cdﬁagﬁ. Here ¢ € C°(gr), and we set for
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simplicity ¢ = 1/(2mi). Adding up terms corresponding to the various components
of the chain C, we obtain

Since C is Ggr-invariant, the inner integral converges for any v € &'. We can describe
(4.5) more explicitly. Taking into account Proposition 2.3, we have on u~' &,

m

m
Wi = (T, + prog)" =y (l )ﬂ T Aol
i=0
Hence, we obtain for the quotient form
*(oM " im\ A e

1) Z() L Nop “46)

wr(og?) s N wr(og?)
For (y, v) € T*Y,set (y,v) = u(y) - (yo, vo), where u(y) € Ur, v € T)\Y = pt.

Since ¢ is holomorphic, we have

o0

A A A 1 A
Wid (. v) = duG) - A+u@) w)=¢v+u@®) 1))=Y FD;(y)_Acp(v). (4.7)

Here D¢ denotes the derivative in the direction of £ € g*. We set further for v € 0,

m—i
r)L A proy

(o 50)

k dglceo

(Po ik (C, M) (v) = ; ] /C( @ oA D))

(4.8)
Denote by C[c¢*]® the set of homogeneous polynomials on ¢* of degree k. Combining
(4.6),(4.7), and (4.8), we obtain the following result.

LEMMA 4.9

Let U C p=Y(0) be a Ggr-invariant open set, let C € Hy,, (U, Z), and let ¢ €
C2°(gr). Then for any v € O, we have Py i (C, -)¢A>(v) e C[c*]®, and

/Mx( ¢—c"oy) Z/ Po k(C, )»)fb cl0ag’

is a Taylor series expansion at .. = 0 of the holomorphic function ) +>
fC 7 (¢3(1 /m)c™ o). The leading term in this expansion is equal to

~ 1
pﬁ’(k)f ¢—— d%éﬁ, where pg (M) =/ ¥ e/,
o do! cw)
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Now we turn to the problem of comparing the leading term defined via the map
(gr i4), and the leading term of the Taylor series expansion for an arbitrary cycle.
Let C € Hzm(T;'{Y, Z),and let k = k(C). Write C = Zl<k’l€1 C; as in Lemma 4.2.
In the notation from Section 2, we have Cy = C°. Any A-orbit & C A Nat is open;
hence, there exists a unique Cy o € Hoy (uw='o,7Z), so that Cy, = ZﬁC%maL Cr.o-
Choose vy € @. Observe that ps (L) = fck,@(\;@») *e™/27 does not depend on the
choice of vs. Now we use the fact that the cup product followed by the pushforward
agrees with integration over the fiber. The base component of the cycle Cy 4 is [0],
and the fiber component over vy € 0 is Cy ¢ (vg), so we deduce

(gr ns)a(C) = Z pPeM[O]. (4.10)
OCcHMNat
On the other hand, if A = G, we consider the Taylor series expansion of the

h010m01:phic function (¢ /m!) fC T (d;J)’L") at A = 0. By Lemma 4.9 the terms
sz w;(¢poy") for I < k cannot contribute to the leading term. It follows that the
leading term is equal to

Y pﬁ(x)/ﬁé%a; (4.11)

Next, our goal is to specialize the above considerations to the case of the charac-
teristic cycle computed in Section 3. As in Section 3, we fix a f-stable parabolic sub-
algebra p and denote by yg the corresponding pointin Y.Set Z = K - yo, S = GRr - )0,
and denote byi : Z — Y, j : S — Y the inclusions. The orbit Z is closed, and
the orbit S is openin Y. Let Y = Ri,(Cz) and .#¥ = Rji(Cy) be standard sheaves.
Then for the Matsuki correspondence for the sheaves y, we have y(¥¢) = .%. Recall
that the characteristic cycle CC(Z) of a sheaf .Z is supported on the microsupport
SS(ZL). In our case, SS(¥4) = T;Y, and, consequently, ;£(SS(¥)) is an irreducible
K -invariant complex variety in .4 N £ It follows that u(SS(¥)) = ¥ for a single
K-orbit ¥ C .4 N e+, Set 2k = dimg #. An application of Theorem 2.6 shows
that £ is the minimal integer such that SS(%) C ,u_l(% N gﬁ), and furthermore
w(SS(F)) N A = O for a unique Gr-orbit & C A N gIJRg. Finally, we observe
that CC(%#) = —CC(Rj:(Cg)) by [SV1, Th. 4.2]. The preceding discussion and
Theorems 2.6, 2.7, and 3.4 imply immediately the following result analogous to [R3,
Th. 1.6.1]. For the convenience of the reader, we give a detailed explanation of the
notation.

THEOREM 4.12
Let Gr be a connected, linear, semisimple group. Assume that Gr has a compact
Cartan subgroup. Let p be a 0-stable parabolic subalgebra in g, and let p be the
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complex conjugate. Then | = p N'p is a Levi factor of p. Denote by c¢ the center
of |, and denote by C the positive chamber in icy defined by the roots from p/l.
Let ¥ C AN NEL be the K-orbit such that K - (p~ N &) = 7. Set 2k = dimp ¥,
and denote by 0 C AN N ngg the Gr-orbit associated with 'V via the Sekiguchi
correspondence. Let Z be the K -orbit of the point yy corresponding to p in the gen-
eralized flag variety Y. Denote by C € Hy,, (T{Y, Z) the fundamental cycle of the
conormal bundle T¢Y , denote by C O the restriction of C to w='¥, and denote by
CO(v) the restriction ofCO topn '), ve¥y (cf. (4.3)). Let s = dimcn N s. Then
p(L) = (=1t fCO(v) w*e™/7 is a homogeneous polynomial of degree m — k, and
for » € CT, ¢ € CX(gR), the leading term in the Taylor series expansion at . = 0
of the holomorphic function ) — (1 /(m!2mi )m)) f Gr-i qgakm is equal to

A —
P /ﬁ‘z’k!(zm’)k
In the next proposition we show that the polynomial p is nonzero.

PROPOSITION 4.13
Suppose that —). € C™ is integral. Then p(\) # 0.

Proof
Let ¥ be a K-orbit from Theorem 4.12. We show that there exists an irreducible
component D of ,u_lv, v € ¥, such that K - D is open dense in T;Y. Let Dy, ..., D;

1

be the irreducible components of 1~ v so that

w'v=K-DU---UK - D,

and K - D; are pairwise distinct. Clearly, K - D;,i = 1,...,t, are the irreducible
components of =1 . Since T;Y N =17 is a nonempty open set in 75Y and T} Y
1s irreducible, we have

T;Y =T;YNu~'YCK-DiU---UK - D;.

Again for the reasons of irreducibility, 7Y C K - D; for some i. Set D; = D.
Since dim¢ 7Y = dimc K - D, we deduce 7Y = K - D. Observe that K - D
is closed in ,u_l”//; so K-D N ,ufl"f/ = K - D. Hence, the restriction of [T}Y]
to w7 is equal to [K - D]. The bracket here denotes the fundamental cycle. Let
71, ..., Zr be a full set of representatives for the component group Zx (v)/Zk (v)°.
Then the fiber of [K - D] over v € ¥ can be written as [K - D](v) = [z1D] +
--- =+ [z, D]; hence, we obtain p(A) =r fD e/ If ) e Ctis integral, let V) be
the finite-dimensional representation of G with P-lowest weight A. If necessary, we
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replace G here by an appropriate covering. Denote by i) the imbedding of Y into the
projective space P(V)) as the orbit of a lowest weight vector. A simple computation
shows i} (w) = (13)/(27i), where w is the standard Kahler form on P(V}). Finally,

we obtain
r
A) = ——— (=) 0,
p(A) e wa >

as desired. O

Given a polynomial p € C[c*], denote by p(d) a constant coefficient differential
operator on ¢ determined uniquely by the property

p(d)e* = pe*, A et

Consider the Taylor series expansion of the holomorphic function A
(1 /(m!2mi )m)) f Grh qASU)’L" at A = 0. Differentiating this expansion by p(d) and then
letting . — 0, we deduce the following formula:

pom = PP /ﬁawg. (4.14)

lim = - _
k!(2Qmi)k

H—
/\—>O(C+)p( )m!(Zm')’" fGR.A
Define the measures m; and m 4 on the orbits G - A and &' by the formulas

1 1

m _
and meg = k!(2ni)kaﬁ'

my=-———-——-0
m!Qmi)yn *

Observe that Lemma 4.1 implies p(d)p # 0; hence, taking the Fourier transform in
(4.14), we obtain the following theorem.

THEOREM 4.15
With the same assumptions as in Proposition 4.13, the following limit formula for the
orbital measures holds:

lim p@)my = cmg.
A—=0(CT)

Here c is a nonzero constant. In fact, we may take c = p(d)p.

Finally, we relate p(A) to the harmonic polynomials. As in Lemma 4.1 we choose a
Cartan subalgebra h C gsothat hrg C [ N ur. Write h = b +c, where ) C [[,[Jisa
Cartan subalgebra. Taking C-linear duals, we have h* = b} + ¢*. Using this splitting,
we write for A € h*, A = Ay + A2, where A1 € b7 and A, € ¢*. Denote by 77 (h*) the
space of harmonic polynomials on h*. Let X be the flag variety of Borel subalgebras
of g. Denote by ¢ : X —> Y the natural fibration, and write I = dimc ¢~ !yp. Let
no : T*X —> g* be the moment map defined analogously to . Let ¥ be the K-
orbit defined in Proposition 4.13. Choose v € ¥/, and view Mo 1) as a subset of X ,
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1 1

and 1~ v as a subset of Y. Observe that dimc u~'v = m — dim¢c & = e implies
dimc w, 'y = e + I. Hence, the fibration q determines the pullback homomorphism
g* : Hype(u™v,C) — Hoe41) (Mglv, C). Denote by Cg(v) the component group
of the centralizer of v in G. Let W be the Weyl group of g. By the Springer theory, the
spaces Hy ey (1o 'y, C) and Her1y (g 1y, ©)Cc® carry a natural structure of W-
module. Furthermore, the character of W on Hy(e) (1 Iy, C)C6 ™ is the Springer
representation yx, corresponding to the orbit G - v and the trivial character of C(v).
Homology classes and harmonic polynomials are related via the Borel map

Hae11y (g 'v, ©)CY) —s (5%, n > /rf“.
n

We remark that the Borel map intertwines W-actions. In the notation from Proposi-
tion 4.13, set C = [T;Y]°(v), v € ¥. Via the homomorphism Hyo(u™,2) —
Hro (™', C), we view C € Hp(u~ v, C). Define P(1) € 4 (h*) by the formula

P(L) = / ot
q*C

Our goal is to relate polynomials P(A) and p(A). We remark that the proof of
Lemma 4.1 implies 7, = 7;, + 7),, SO we may write

e+l
gt =) pGu. (4.16)
=0

Here p;(A1) is a homogeneous polynomial in A; of degree i, and 7; is a 2(e + [)-
form not depending on A;. If i = e, then p;(A )T = (e;rl)ril A rfz. Set wr. (M) =
]_[aeA+([) A (ihy). Since v € K - (pJ- Neh), we may assume without any loss of

1

generality yo € ™ ' v. Hence, from (4.4) we deduce

/ T)lhl ATy, = (/ Til) . (/ sz) = crop(A)p(X2),
q*C g9~y c

where c1 is a nonzero constant. After differentiating the integral of (4.16) by wr (9)
and letting A1 — 0, we deduce the following proposition.

PROPOSITION 4.17

Let V be the open K-orbit in K - (p~ N €Y), and let v € V. Write A = Ay +
Ay according to the splitting h* = b} + ¢*. Denote by C the fiber of [T;Y] at v.
Then P(L) = fq*C rf” is a harmonic polynomial on §* which transforms under
the W-action according to the Springer character x,. The polynomial p(Ay) can be
computed from P()\) by the formula

p(2) =c lim wp(3)P(A),
A1—0

where c is a nonzero constant.
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