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Abstract

In this article we calculate the signature characier of certain Hermitian representations of GLy (F) fora
p-adic field F. We further give a conjectural description for the signature character of unramified represen-
tations in terms of Kostka numbers.
© 2006 Elsevier Inc. All rights reserved.

Kevweords: p-Adic groups; Signature of Hermitian representations; Graded Hecke algebras

0. Introduction

Let F be a finite extension of the field Q, of p-adic rational numbers and let G be a con-
nected reductive group over F. Let I ¢ GY(F) be an Iwahori subgroup. We consider irreducible
admissible (complex) representations V of GY(F) such that the space of Iwahori fixed vectors
V! is non-zero. It is well known that those representations correspond to certain representations
of the Hecke algebra H associated to the extended Weyl group W of GY. Moreover, Barbasch
and Moy proved in [1] that V is Hermitian (respectively unitary) if and only if V! is Hermitian
(respectively unitary) with respect to a certain involution of H.

The Hecke algebra H contains a subalgebra that is isomorphic to the group algebra C{Wof
the Weyl group of G". In particular we can consider for every irreducible H-module V' and for
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every irreducible representation A of W the space V, = Homy (3, V). If V is Hermitian, V3 in-
herits a Hermitian form. In this article we study the signatures o3 (V) of this induced Hermitian
form for GY = G4y . We call the tuple {0;.{V)), the signature character of V.

To do this we reduce the problem to an analogous one for modules with real central character
of a certain graded Hecke algebra H defined by Lusztig [14]. Again we can consider C[W] as
a subalgebra of L. For these H-modules there is a classification analogous to the Langlands
classification which parametrizes frreducible representations in terms of subsets S of a chosen
basis of roots, a tempered representation U of the standard Levi subalgebra M corresponding to
§ and a dominant real character v of the center of M. These irreducible H-modules L(S,U, v)
are quotients of so-called standard modules X (S, U, v). A deformation argument (for the first
time used by Casselmann in [6]) allows to determine the W-module structure of X(S, U, v).

Our strategy to calculate the signature character is the following. We fix S and U as above.
The dominant real characters v form a cone. Those v such that X(5, U, v) is reducible define
affine hyperplanes in this cone. We call these hyperplanes “reducibility walls.” For v outside the
reducibility walls the signature character is locally constant in v. Moreover, “near zero” TadiC's
classification of unitary representations of GLy [20] implies that X(5,U.v) = L{5,U,v) is
unitary. As we know that W -module structure of the standard modules X (S, U, v), we know the
signature character of L{S, U, v) for small v.

On the other hand, a limit argument by Casselmann [6] (see also [3]) also gives an expression
of the Hermitian form for v “near infinity” which allows us to express the signature character
purely in terms of characters of the symmetric groups and certain Kostka numbers. For example,
our description of the signature at infinity implies that for § = @ we have o, = x;.(wo) at infinity
(where x denotes the character of W corresponding to A and wy is the longest element in W).
Hence to calculate the remaining signature characters we fix a vg lying on a single reducibility
wall and a one parameter family 7 = v(7) for small ¢ with v(0) = vy such that v(r) does not lie
on the reducibility wall for 1 # 0. We then would like to express the sum or the difference of the
signature characters of L(S, U, v(1)) for positive and negative ¢.

We cannot do this for all reducibility walls. Instead we concentrate on the walls that are needed
to calculate the signature character in the case of what we call unramified representation, that is,
representations with § = #. For these walls we give a precise conjecture for the difference and
the sum of signature characters of both sides. Moreaver, we prove this conjecture for unramified
representations. As a consequence we get an explicit expression of the signature character of
unramified representations L{#,1,v) with L{#.,1,v) = X (@, 1, v) in terms of Kostka numbers.
We also give a description of the signature characters on the reducibility walls for unramified
representations.

We will now give a short overview of the structure of our work. In Section 1 we describe
the equivalence between irreducible representations V of GV (F) with V! = (0) and irreducible
representations with real central character of the associated graded Hecke algebra H. Section 2
contains three classifications of irreducible H-modules. The first is in terms of conjugacy classes
of pairs (s,e) of a semisimple element s and a nilpotent element ¢ in the Lie algebra gly. The
second one is the Langlands classification already described above. The third classification is the
translation of the Bernstein—Zelevinsky classification of representations of GLy (F) in terms of
supercuspidal representations to the setting of graded Hecke algebras. We also explain how to
obtain each of the three classification from either of the other two.

In Section 3 we introduce the Zelevinsky involution which will allow us to calculate also
the signature character of irreducible representations L{S, U, v) which are a proper quotient of
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the standard module X (S, U, v). Section 4 gives a description of the W-module structure of the
standard modules.

Section 5 contains the classification of Hermitian and unitary H-modules and the formal
definition of the signature character of an irreducible H-module. In Section 6 we express the
Hermitian form on standard modules in terms of a certain intertwining operator. Here we follow
closely Barbasch and Moy [3]. Section 7 contains the description of the reducibility walls and
also the theorem that for unramified representations the isolated unitary representations are pre-
cisely those which lie on the intersection of [N /2] reducibility walls. In Section 8 we give an
explicit algorithm to compute the signature “near infinity.” We do this by making more precise a
description of Barbasch and Moy given in [3].

Section 9 now deals with the topic of crossing the reducibility walls. We define the “height”
of such a wall and study reducibility walls of height 1 and 2 in more detail as those are the walls
which occur in the unramified case. Then we prove our wall crossing theorems in the unramified
case. We further formulate a conjecture for the general case of crossing reducibility walls of
height one.

In Section 10 we give a conjecture for crossing certain walls of height bigger than one and
use these conjectures to give an explicit description of the signature character for unramified
representations in terms of Kostka numbers. Finally in the last section we calculate the signature
character for all Hermitian representation of GLy for N == 2,3 and 4.

Notation. We use the following notations. All algebraic varieties and all representations are
assumed to be over the complex numbers C.

If R is any ring, we denote by M,(R) the ring of (n x n)-matrices. If A € M,(R) and
B ¢ M,,(R) are two matrices we denote by A & B € M,,4.»(R) the block matrix (’é g), and
diag(ay, ..., an) € My(R) denotes the diagonal matrix with entries oy, ..., ¢y € R, Finally let
Iy € GLy{R) be the identity matrix.

If W is a finite group, we denote by W the set of isomorphism classes of irreducible represen-

tations of W.
1. Representations of p-adic groups and graded Hecke algebras

1.1. Let GV be a split (connected) reductive group over a p-adic field F and let G be the Lang-
Jands dual group over C. For every Borel pair (¥, B) (i.e. T is a maximal torus of G and B
is a Borel subgroup of G containing 7) we denote by R(T) be the sets of roots in X*(T), by
RY(T') C X,(T) the set of coroots, and by F1(T", B) C R(T) the set of B-simple roots. We call
Rer gy = (XHT), X, (T), R(T), RY(T), I1(T)) the associated based root datum. If (77, B’} is
another Borel pair, we can choose a g € G such that (gTg ‘. gBg™ ") = (T’, B'). This g is
unigue up to right multiplication with elements of 7' and left multiplication with elements of
T’. Hence conjugation with g induces an isomorphism of based root data R(r ) e Rior. sn
which is independent of the choice of g. We obtain an inductive system of based root data in-
dexed by the set of Borel pairs. Its inductive limit R = (X, ¥, R, RV, IT) is called the based root
darum of G. By construction it is equipped with an isomorphism R(7 p) > R for every Borel
pair (T, B).

Let s, € GL(X) denote the reflection associated to aroot a € R. Let W denote the Weyl group
of R, i.e. the group generated by the s, for & € R. The root base [T defines a partial order on R
by ) € @y if @y — @ is a linear combination with nonnegative integer coefficients of elements
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of {a¥ | o € IT1}. We denote by IT,, the set of all 8 € R such that 8 is a minimal element for
this partial order.

Elements in the semidirect product W = W x X are written in the form wa* for w € W and
x & X. Weset
S={salaell}U{sea® lae,}CW.

The root base I7 defines a system of positive roots R ¢ R and a length function

I: W — N,

Hwa')= > [ea’)+if+ D> e’
weRrt aeR*
wlwjeR™ wiwye Rt

which extends the usual length function on the Coxeter subgroup of W which is generated by S.
We further set

R'={eeR|ee2v].

For example, if (X, Y, R, RY, [T) is simple and simply connected (i.e. it is indecomposable and
RY generates Y), R” is nonempty if and only if the Dynkin type is B,.

1.2. We are interested in the following category of representations of GY(F). Let I C GY(F)
be an Iwahori subgroup. We call an admissible representation V on a complex vector space
I -spherical if it is generated by its /-fixed vectors. This implies that every subquotient of V' is
generated by its /-fixed vectors.

Denote by H(G"//I) the Hecke algebra of G¥(F) with respect to /. The underlying vec-
tor space consists of the C-valued functions of the (discrete) quotient /\GY (F)/I with finite
support, and the algebra structure is given by convelution. For every smooth representation V
of GY(F) the space of [-fixed vectors V! is naturally an H(G"//I)-module and the functor
V > V! induces an equivalence between the category of admissible /-spherical representations
of GY(F) and the category of left H{G" //I}-modules which are of finite length (or eqmvafemty
finite-dimensional as C-vector spaces) (see, e.g., [5, 2.2]).

1.3. The Hecke algebra H{(G" //I) can be described directly in terms of generators and relations
using the based root datum R. More precisely, it can be considered as a specialization of the
affine Hecke algebra H = Hy associated to R which is defined as follows.

Let B be the braid group of R, i.e. the group with generators 7, for w € W and relations
Tw T = Ty whenever [(w) + I{(w’) = l(ww’). Denote by z an indeterminate. Then 7 is the
C{z, 2~ ]-algebra which is the quotient of the group algebra (over Clz, z717) of the braid group
B by the two-sided ideal generated by the elements

(T + D1 — %)

for s € §. For w € W we denote the image of T, in H again by T,
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Let ¢ be the number of elements in the residue field (of the ring of integers) of F and denote
by &,:Clz,z~'] — C the C-algebra homomorphism which sends z to ¢'/2. Then a classical
result of Iwahori and Matsumoto [9] shows that H(G"//I) is isomorphic to H ®¢y, -1, &, C.

1.4. We collect some properties of H. Let

XdGm:{xéX!(x,av}20fora]IaEH}

be the set of dominant weights, We define for x € X an element Tc € B as follows. Write x =
x1 — x2 with x}, x2 € Xgom and set

T =TTy,
This is easily seen to be well defined. Tts image in M is again denoted by T, . Further set
0, =", e H,

where [ : B ~» Z is the unique extension of the length function / to B.

Let @ be the group algebra of X over the ring Clz, 27", Then the map x +> 8, defines an
embedding of Clz, 7' j-algebras O — H [14, 3.4]. In the sequel we consider O as a subring
of H. We further have the following proposition.

Propeosition. [14, 3.7 and 3.11] The Hecke algebra 'H is a free left O-module and a free right
O-module with basis {T,, | w € W} in each case. The center Z of the Hecke algebra 'H consists

of the W-invariants of O.

1.5. Every finite-dimensional left H-module V admits a (unique) primary decomposition with
respect to the center Z of H:

V=P v
X

where x runs through the set of characters of the center Z. Here by a character of Z we mean a
C-algebra homomorphism Z — C. As Z == OV =Clz, z7 [ X1V, the characters of Z are given
by pairs (Wt, zo) where Wt is a W-orbitof 7' =Y ®z C* and where zo € C*. This induces a
decomposition of the category of finite-dimensional left H-modules into the direct sum of the
categories 5y Mod,, of finite-dimensional left H-modules V such that { — x(£) is nilpotent on V
for all ¢ € Z.1f x corresponds to the pair (W1, zg), we also write yMody, ;.

1.6. The categories ;yModw, ., are equivalent to categories of finite-dimensional left JH-modules
where H is a graded version of H. Instead of explaining how to obtain H from H by grading with
respect to a certain ideal, we give the abstract definition of the graded Hecke algebra H = Hz
associated to a reduced root datum R = (X, Y. R, R, IT).

We set O = Clr] ®@¢ Sym(X ®z C). It carries an action by W induced by the trivial action on
C[r] and the canonical action on X. As a C-vector space we have

H=0@¢ C[W]
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with a structure of associative C-algebra with unit 1 ® e, defined by the rules:

(i) ©— H, 0~ 8 Qe, is an algebra homomorphism.

(iiy CIWi-> H, w1 ® w, is an algebra homomorphism.
i) FRe)(1@uw)=0xwfordcCandwe W.
(iv) Forall o € [T and ¥ € X we have

(1®s5:)0®e) ~ (P ®e)(l ®5,)=2r{”,0).

(v} r 1sin the center of H.

Usually we will omit the @ when denoting elements in JH and write 1, instead of 1 ® w. For
a € R we further set t, := 1, . For example, the relation (iv) becomes

fo -0 =6 -1y = 2r(e, 0).
Using s, (8) = B — (", By we see that this relation is equivalent to
9 N tg - IQ! - Sa@ =5 2?(6{\/, 9).

1.7. The center of H consists of the W-invariants of O. As above we get a decomposition of
the category of finite-dimensional left H-modules into categories gpModw, ,, where (Wu, ro)
runs through the set of pairs consisting of a W-orbit of an elements 4 € ¥ ®z C and a complex

number ry.
In the sequel we will consider a character of the center of H also as a pair ({s}, rg) where {s}

is a G-conjugacy class of a semisimple element of g and where rg is a complex number.

1.8. The relation between H-modules and H-modules is the following (see [14, Sections 8-10]
and [15, Section 4]). As we are mainly interested in the case G = GLy we make the following
additional assumptions to simplify notations.

o The derived group of G is simply connected (or equivalently the center of G* is connected).
e R' =1

Fix a central character of H corresponding to a pair (W1, zo). To simplify notations further
we assume that zg is a positive real number, different from 1. Further we choose an auxiliary
t in the Weyl orbit Wz. The following constructions will be independent of this choice (up to
isomorphism which is given by w € W if 7 is replaced by wt). We can decompose T =C™ ®z Y
into an elliptic and a hyperbolic part, namely T’ = Tey x Ty, where

Ta={zeC|lzl=1}®Y. Th=R, QY.

This is a decomposition of real Lie groups. We can therefore write uniquely 1 = f.1, where
te € Ty and 1y € 1.
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Let R(t) = (X, Y, R(t), RY (1), [1(1)) be the root datum with

Ry ={aeR|alt) =1},
RY(t)={a¥ e RV ja e R(1)}.

Then RT(r) = R(r) N R™ is a system of positive roots and the associated set of simple roots
is I7(t). We write W(¢) for the Wey! group of the root datum R.(7).
Denote by

IOgZé:Th“—“R>O®Z Y->R®z Y
the isomorphism induced by

R.q SR, x> tog(x)/2loglzo).

Note that the isomorphism class of R(#) does not depend on the choice of 7 in its Weyl orbit.
The relation between H-modules and H-modules is now given by the next proposition.

1.9. Propesition. The categories 3, Modw, ;, and 51y, Modwyi0g 50,172 are equivalent.
“

More precisely, denote by H (respectively @) the completion of Hrp (respectively Hp))

with respect to the maximal ideal of the center corresponding to (Wt,zp) (respectively

{W(f}logzg (). 1/2)) (hence 1, Modw, z,, respectively ER(I)MOdW{I)Eog; ().1/2 IS the cate-
G

gory of modules of finite length over H, respectively Ifii). Then H and H are Morita equivalent.

Proof. This follows from the main result of [14, Sections 8—10] and [ 15, Section 4] with simpler
notation due to our assumptions. We also replace the indeterminate r in loc. cit. by r/2log(zo).
Moreover, we can replace R by its derived root datum der(R) = (X der, Yder, Rder, Rc‘{e;, Haer), Le.
Yier = ¥ N {o | @ € R)g. Then Yge; is a direct summand of ¥ and if we set Tyer = Yaer @ C*, we
get a decomposition T = 7T’ x Tyer such that a(t) = 1 for all @ € R and hence a decomposition
£ =t"tger. Now R(t), RY(t) and W(r) depend only on the derived root datum and on #ge;.

Now our assumption in (1.8) implies that we are in the situation of [15, 4.4]. Then [15, 4.5]
shows that the group I defined in [14, 8.1] is trivial which implies the result as explained in

{15,49]. O

1.10. If R is the root datum of G == GLy or more generally of a reductive group G whose simple
components are of Dynkin type A,, then for any choice of ¢ the root datum R(z) is the root datum
of a Levi subgroup of G, namely of the centralizer of ¢, (after considering 7" as a maximal torus
of G which is well defined up to conjugacy). For other Dynkin types this is not true in general.

2. Classification of H-modules

2.1. From now on we make the simplifying assumption that G is isomorphic to a Levi subgroup of
GLy (hence isomorphic to a product of groups of the form GLy,). Let R =(X, Y, R, R¥, IT) be
the based root datum of G, W its Weyl group, and denote by H the associated Hecke algebra. We
fix rg € C \ {0}, and denote by Irr,, (H) the set of equivalence classes of irreducible H-modules,

where r € H acts by rg.
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2.2. We set £ = ¥ ® C and denote by t* = X ® C the dual. Define further

3 ={heti{o)=0foralla e R},

iP={ret (oY, x)=0foralla” € RV}

Then 3 is canonically isomorphic to the center of Lie(G) and the duality of t and t* induces a
perfect duality of 3 and 3*. The subspace 3* of X ® C has as a complement the space generated

byo e R.
Every element v € 3 defines a one-dimensional Sym(3*)-module C,, where £ € 3* acts by

v(§).

2.3. Let S ¢ /7 be a subset and denote by (X, Y, Rs, R, S) the corresponding subroot system
with Weyl group Wy and associated graded Hecke algebra Hy. For this root system we have
the subspaces 3s and 3% as in (2.2). Note that Hy is isomorphic to the graded Hecke algebra
associated to a Levi subgroup M of G and that M again satisfies the condition in (2.1).

We have a canonical embedding Hg < H which makes H into a free Hg-module of rank
#HW/Ws). If U is a Hg-module we also write Ind%s (U) instead of H ®y, U.

2.4. By [13] there exists a bijection between Irr,, () and the set of G-conjugacy classes of pairs
of the form (s, ¢) where s € g is semisimple, e € g is nilpotent such that

[5, el = 2rpe.

Denote by Lg (s, e, rg) = L(s, e) the irreducible H-module corresponding to the conjugacy class
{(s,e)} of (s, ). By [17, 1.15], L{s, &) is the unique irreducible quotient of a standard module
X (s, e, rg) = X (s, €) associated to {(s, e)}. See {13, Section 8] and [16, Section 10] for the de-
finition of X (s, e) (and see [16, 10.11] for the fact that the module constructed in {13, Section 8]
is isomorphic to the module constructed in [16, Section 10]).

2.5. By definition of the standard module X (s, e, ro) [13, Section 8], its central character exists
and is given by the pair ({5}, ro) (1.7). In particular this is also true for the irreducible quotient

L{s,e,rp).

2.6. From now on assume that g is a positive real number. Moreover, we will only consider
irreducible H-modules and standard modules associated to pairs (s, ¢) such that the conjugacy
class of s is in (¥ ®z R)/W. By this we mean the following. The set of conjugacy classes
of semisimple elements of g is in canonical bijection to (¥ ®z Cy/ W and we assume that the
conjugacy class of s lies in the subset (¥ ®z R)/W.

27. Next we will describe the Langlands classification. For this we first define what it means to

be tempered in terms of the classification (2.4).
Let s € g = gly be semisimple and e & gl nilpotent such that [s, ] = 2rge. Choose a homo-

morphism of Lie algebras

sl — gly
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such that e = 19(90) and such that [s, f]= —2rpf where [ = 1/1(6 O) This implies [s, 2] =
[s,]e. f11 = 0 by the Jacobi identity if # = ¥( (1) (}1) Such a homomorphism exists and is
uniquely determined up to conjugation with z € G such that Ad(z)e = ¢ and Ad(z)s = 5 by
a variant of the Jacobson—Morozov theorem (see [10, 2.4(g) and 2.4()}).

Define 1= s — roh. Then f is a semisimple element of g whose conjugacy class depends only
on the conjugacy class of (s, ¢). Note that ¢ commutes with s and with the image of y. We call
the conjugacy class of (s, e) (or the associated simple module L(s, e)) tempered if t = 0.

If {(s,e)} is tempered, we have L{s, ¢) = X (s, e) by [17, 1.21].

2.8. We state the following version of Langlands classification for H-modules which is a slight
reformulation of [8] (recall that we assume that rg € B>V and {s} e (Y @z R)/W).

Theorem. For every irreducible H-module V there exists a triple (S, U, v) where S is a subset
of I1, U is an irreducible tempered representation of Hg and where

yeggm{ﬁ.e;,mmpﬁl(A,a)>0forazzaen\5}

such that V is the unique irreducible quotient of Indm (U ®C\). Further S and v and the isomor-
phism class of U are uniquely determined by the zvomorphwm classof V. We set L(S, U, v) =
and X (S, U, v) =Indyj (U ®C,).

IFL(S, U’ v") is any other irreducible subquotient of ind}]I (U ® C,) coming from a triple
(S, U’ V"), we have v’ < v (with respect to the extended Bruhat order on w).

The triple (S, U, v) is called Langlands data associated to V.

2.9, We keep the notations of (2.7). In particular we have the G-conjugacy class {(s,e)} and
the associated irreducible H-module L(s, ¢). We are now going to explain how to obtain the
Langlands data (S, U, v) corresponding to L(s, ¢). We follow [17, 3.91f] choosing for 7 in loc. cit.
the homomorphism C — R which associates to each complex number its real part. We use a
somewhat more explicit but less canonical description. For this we fix a Borel subgroup B of &
and a maximal torus T of G contained in B which gives an identification of the abstract based
root datum R with the based root datum of (G, 8, T). In particular we have an identification
Lie(T) = t = ¥ ® C. The conjugacy class of s is then an element in (¥ & R}/ W (because we
assumed that s is real). After G-conjugation we can assume that s is a diagonal matrix and that
(s, €)= (s1,e)) B D (51, &) where ¢; € My, (C) is of the form

i 0
Let o; be the first entry in the diagonal matrix s;. We can assume that

i |
01+“2"m1 2-~>m+§ma-
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Now we can choose r as in (2.7) suchthat h € Y @ R C {, in particulart =3 —rgh e Y @ R. We
have (f,o) =z 0forall o € I7.
We set

S={aell|{t a)=0}

Then Hyg is isomorphic to the graded Hecke algebra associated to the Levi subalgebra m =
Centgy(r). Note that s and the image of ¥ are contained in m. Let M be the corresponding Levi
subgroup of G. As the derived group of G is simply connected, we have M = Zg(1). Further we
have [roh, e] = 2rpe. Hence the conjugacy class of (rgh, e) defines an irreducible representation

U iz Lpgirgh, e)

of Hg. By definition this is a tempered representation of Hs. Finally let v by the dominant repre-
sentative of the W-orbit of 7. By definition we have v € 3:;. We then have U @ Cy, == Ly (s, ¢) ==

X (s, ey and by [17, 3.38] we have Xg(s,e) = Iﬂdﬁz (U®C,).

2.10. For the rest of Section 2 let us assume that G = GLy. Hence the p-adic group GV is iso-
morphic to GLy and we have the classification of representations of the p-adic group GLy(F)
by Bernstein—Zelevinsky in terms of supercuspidal representations. By a theorem of Cassel-
mann (see, e.g., [4, 3.8]) an irreducible admissible representation of GLy (F) admits a nontrivial
fixed vector under an Iwahori subgroup if and only if its supercuspidal support consists of
unramified quasi-characters. Using (1.9) we obtain a classification of irreducible H-modules
where r € H acts by 1/2 (or equivalently a classification of irreducible modules of the algebra
H'? = (H &¢|r).r>172 C)) which we call the Bernstein—Zelevinsky classification. We further
can assume that the central character is real. It is described in the next sections.

2.11. For G = GLy, ]leg 2 is nothing but a polynomial algebra in one indeterminate and we con-

sider any complex number as a one-dimensional representation of Eéﬁ .
Let N = (Ny, ..., Np) denote a finite tuple of positive integers and set GLg = GLy X --- x
GLx,,. 1 V; is an Hyl/, -module i = 1,...,m), we set V; B - ® V,, for the module of
Ny

12 /2 2
Hepy =Hery, ® - ®Hg,

whose underlying vector space is V; & - - - @ V,,, and which is endowed with the componentwise
action. We further set

v, & 0V, mi‘ﬂé{fy @H(l;,? (V]@"‘gvm)s
N

where N = Ny + -+ Ny, .
If in particular (o7, ..., oy ) is a tuple of complex numbers, o) 1. .- Loy, isa Hgim -module.

2.12. Given m € N and ¢ a real number, define the segment

Momy=lo,o+1,...,0 +m— 1L
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The real number o -+ (m — 1)/2 is called the center of A(c, m), and the integer m 2 | is called

the length of Ao, m).
Consider Ay = Ao, m1) and Ay = A(on, my) two segments. We will say that Ay and A
are linked if Ay ¢ Ay and Ay € Ay and Ay U Az is of the form A(z, m’), for some 1 € {51, 03}

and some m’ € N,
Further, we say that Ay precedes Ay, if Ay and A; are linked and T = 07.

2.13. With these definitions we can state the following facts [10,11,22].

(1) Take A = A{o, m) as above. Then o [ (o + 1) -+ - [ (o + m — 1) is reducible for m > 1
and has a unique irreducible quotient L{A}).

(2) Let (A1, ..., 4A;) be a tuple of segments as above, and assume that 4; does not precede 4
fori < j,then L(A) D 5 L(A;) admits a unique irreducible quotient L{A1, ..., 4;).
(3) Every irreducible admissible representation of Hé/fN is isomorphic to some L{Ay, ..., 4)

where (A, ..., Ay) isatuple asin (2). If (A’}, ... 4, 1s any other tuple as in (2) such that
L{Ay, ..., ADZ LAY, ..., A)) then [ =k and A = Ay for some permutation 7 € §;.
(4) L{A) D ---G1L(4)) is irreducible if and only if no two segments A; and A; are linked.

We set
XAy . ... a0 =LApE- - TOLAY

such that L(A(, ..., A;) is the unique irreducible quotient of X{Ay, ..., 4;).
We call this classification of the irreducible admissible representation of Efrﬂgfv the Bernstein—
Zelevinsky classification.

2.14. Let us connect the Bernstein-Zelevinsky classification with the classification by conjugacy
classes of pairs (s, e) such that [s, €] == e (note that to simplify we are still in the case rp = 1 /2
which we can assume anyway because of (1.9)).

Let V = L(A(oy,m1), ..., A{o;,my)) be an irreducible representation of EH[L/EV with N =
n1y -+ - -+ my. Denote by y; = o; + %—(mi — 1) the center of A(o;, m;). We assume that y; 2
y2 2 --- 2y which in particular implies that A(o;, m;) does not precede Ao, m;) fori < j.
We set

I i
s=@diag(c&-,q+1,...,cr,-+m,'mi), e:@nmi,
f=xt

f=1
where ny is the nilpotent (d x d)-matrix
0
1 0
1

Ry ==

0
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Then we have [s, e] == ¢ and the irreducible Eéﬁ—moduie associated to the conjugacy class of
{5, €) i3 isomorphic to V.

Now we can use (2.9) to compute the corresponding Langlands triple (5. U, v). For this we
have to construct the element 1. We assume that the based root datum is given by the Borel pair
T < B of GLy where T is the diagonal torus and B the Borel subgroup of upper triangular

matrices. The simple roots in [7 are then given by the linear forms «; :diag(x;, ..., xn) — x; —
Xigpfori=1.....N -1

As homomorphism ¥ : 51 — gly we choose the unique ¢ such that g é) = ¢ and such that
%j/(é :?) = diag{#y, ..., A7), where h; = diag(-m; -+ 1, —m; + 3, ..., m; — 1). Hence we have

i
1 .
f=5— Eh = @dsag(_yg, s Vi
i=1 m; times
2.15. We give an example. Let V be the trreducible Egli-moduie given by the sequence of

segments
(12,31,10, 1,21, 1]).

Then we have V = L{s, ¢) where s = diag(2.3,0, 1,2, 1) and

0

Furtherr = diag(5/2,5/2, 1.1, 1, 1) and hence § = IT\ {a2}. The tempered representation I/ can

be considered as an (E*ngz ® Hgi)—moduke and it is the tensor product of the Hgfg -module U

and the Héﬁ—moduie U/ where U] is given (with respect to the Bernstein—Zelevinsky classifica-

tion) by [—1/2,1/2] and Usis given by (1,0, 1], [0]). We haveg}' = {{xy, Xy, X2, X2, %2, X2) €
RO |x; > x2)and v=1(5/2,5/2. 1,1, 1. 1).

2.16. We remark that we can also check the irreducibility of X (s, e) directly. The Levi subgroup
Z(s) acts on the vector space {n € gly | [s, n] = n} by conjugation and X (s, ¢) is irreducible if
and only if e lies in the unique open orbit of that action.

2.17. Let 97t be a multiset of segments and let X (I77) be the corresponding standard module. The
irreducible subguotients of X (9M) can be described as follows [22].

An elementary operation on a multiset 207 is by definition to take two segments A and 4;
which are linked from 90 and to replace them by Ay U Ay and A3 M Ay, For two multisets 901,
and 901> we say that 01 =< P, if 9 can be obtained from 9, by elementary operations.

With this definition we have that L({9) occurs as irreducible subquotient of X (91) if and

only if I =< M.
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Further, X (91) has a unique irreducible quotient and a unique irreducible submodule and the
isomorphism classes of both of them occur with multiplicity one in X (JR).

Zelevinsky [22] shows that if all real numbers which occur in all segments of 201 are pairwise
distinct, L (M) occurs in X (9M) with muldplicity one for all I < 9.

218. Let V = L(s,e) = L(Ay, ..., A;) be an irreducible ch/i,~moduie with associated Lang-
lands data (S, U, v). Then we call V wunramified if the following equivalent conditions are
satisfied.

(1) We have ¢ = 0 and s is a regular semisimpie element.
(2) The length of all segments 4; is equal to 1 and their centers are pairwise different.

(3) S =0

209, Let V = L{Aq, ..., A;) be an irreducible Hng -module with associated Langlands data

(S, U, v). Then the following assertions are equivalent.

{1} V is tempered.
(2) All centers of the segments A; are equal to zero.
(3 S=MHandv=10.

3. The Zelevinsky involution

3.1. Let G be a reductive group over C with based root datum (X, Y, R, RY,IT) and let Hg
be the associated graded Hecke algebra. We define an involution on Hg which we show to be
induced by the Zelevinsky involution on the affine Hecke algebra H¢ for G = GLy. By abuse
of notation we will call it also Zelevinsky involution and denote it by ¢. It is defined as

L =r
C(ty) = (= D'ty forwe W,

L(@y="6 forfeX,

where wy is the element of maximal length in the Wey! group W of G.
It is easy to check that ¢ preserves the relations in (1.6) defining the graded Hecke algebra.
For every Hg-module V (where the H¢-module structure is given by a C-algebra homomor-
phism p:Hg — End(V)) we write (V) for the Hg-module given by p o {. This defines an
involutive endofunctor of the category of Hg-modules g, Mod.

3.2. Note that from the definition we get the following observation

Remark. Let V be an Hg-module which admits a central character x. Then ¢(V) also admits a
central character x’, and we have x = x'.

3.3. We want to describe the effect of ¢ on irreducible Hgy, -modules given by the Bernstein—
Zelevinsky classification. For this we show that ¢ induces Zelevinsky’s involution. To prove this
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we make the following definition. Let Ry be the Grothendieck group of the category of finite-
dimensional Hé/ LZN -modules with real central character and set R = By o Ry where GLg is by
definition the trivial group (and hence Ry = Z). The map

Ry, X Ry = Ruyanss (il [V2]) > [V 3 V2]

makes R into a graded ring. For every segment A as in (2.12) we have the corresponding irre-
ducible representation [L(4)] € R and the same arguments given for the analogous statement
for representations of GLy(F) in {22, Section 7] show that this makes R into the polynomial
algebra over Z in indeterminates A where A runs through all segments.

3.4. The Zelevinsky involution defines an involutive automorphism of the graded ring R. We
define another involution which is by definition the unique involutive automorphism ¢’ of R

such that

@"(L({U,a o P o 7 1])) :L({U +m -1l 1o +m MZ},...,{G])
which is the analog of the automorphism constructed by Zelevinsky in [22, 9.12].
Proposition. The involutions { and {’ of R coincide.

Proof. This follows from results of Moeglin and Waldspurger [ 19, 1] for the affine Hecke algebra
using (1.9). We remark that the elements X; (respectively S;) of [19, I] are those which are called
0., (respectively 7y,) in (1.4) where ¢; € ZN = X is the ith standard base vector and s; is the
reflection correspending to the base root {xj,...,xx) +> x; — x 4. Further note that for the
image z;; of S; in the graded Hecke algebra we have 7, P =y ;- Finally note that ¢ in {19, I} is
equal to zZ in (1.3) and hence that under the transition to the graded Hecke algebra as described
in (1.9) the factor g becomes |. O

3.5. Now let V = L(A(oy,my),..., A(oy, m;)) be an irreducible Egﬁv*modaie. We want to
explain the effect of £ on V. For this we follow {19, H]. Set 4; = A(co;, m;) and let 30 be the
multiset (i.e. the set with multiplicities) of the segments A;. By [19, II], £(V) is the irreducible
representation associated to the multiset 9M* of segments where 901 is defined as follows.

For 1 € R/Z write 9, = {A; € M | o; = mod Z)}. Then 9N is the disjoint union of the 9N,

where ¢ runs through R/7Z and we set

mt = | o,

teR/7

Hence we will from now on assume that o) = -- - = oy mod Z. We introduce a total order on
the set of segments by saying A(op, m) = A{oa, ma) if

oy > G, OF

oy =02 and o) 4+m zoy+my.

Further, if A = A, m), we set



C. Bovallian, T. Wedharn / Journal of Functional Analysis 239 (2006} 375-413 389

A4 = Ao, m — 13,

Let § be the biggest real number appearing in one of the segments of 90 and let 4;, be a
segment containing 8 which is maximal with this property. Necessarily we have § = oj, +m, ~ 1.
Now define inductively integers iy, ..., i, as follows.

1. A, is a segment of 9 preceding A; _, such that ;, +m; — I =4 — s and such that 4; is

maximal with this property.
2. i, is the last integer which can be defined this way.

We set

T={(A4],.... 4),

where

v [ar. ifietio,.. i),
! A;, otherwise.

Note that A} can be empty. Now we define

W = {AG —r,r+ DU ()
and proceed inductively.

3.6. We give an example of the effect of ¢. For

m({3,4],[2,3,4} (1,23 [1/2], —E/Z},{WI,O,I})

we get

= ([41.[4], [31.11,2,31. [0, 1,21, [0, [—1/2, 1/2], [~ 1]).
3.7. There has also been given another combinatorial description of ¢ in [12].
4. W-structure of standard modules

4.1. We assume in this section that G = GLy hence we have W = Sy. As Hy; contains C[W]
as a subalgebra, every Hg-module V has also the structure of a representation of W. We are
interested in the C|W1-module structure of the standard modules X (s, ¢) and their irreducible

quotients L{s, e).

4.2. Let us briefly recall some parts of the representation theory of W = Sy. The set of isomor-
phism classes of irreducible representations of Sy is denoted by Sn. We have two distinguished
(irreducible) representations of Sy, namely the trivial representation 1 and the sign representa-
tion sgn. These are the only 1-dimensional representations of Sy.
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Denote by P(N) the set of partitions of N. Given a partitiond = [d; 2 --- 2 dy 2 0] € P(V),
define the transpose of d as d' = {d! = --- 2 d}, 2 0] with d] =#{j | d; > i}. Ford € P(N) we
set Sg = Sy, x -++ x Sy which we embed inte Sy in the usual way.

The set §N is in bijection to P (). The representation g corresponding to d € P(N) is the
unique irreducible representation of Sy such that:

(a) The restriction of 74 to the subgroup Sq of Sy contains a copy of the trivial representation.
(b) The restriction to Sg: contains a copy of the sign representation.

The tensor product with the sign representation defines an involution on S . More precisely,
we have g = mg ® sgn. The dimension of mq is the number of standard Young tableaus of
shape d.

On the other hand, there exists a bijective correspondence between the set of GLy-orbits of
nilpotent elements in gl and the set P(N) given by the block sizes of the Jordan normal form of
the nilpotent element. Combining these two facts we obtain a bijection between nilpotent orbits
in gly and Sy.

Via this bijection, the principal nilpotent orbit corresponds to the trivial representation, and
the zero orbit corresponds to the sign representation.

On the set of nilpotent G-orbits of g there is a partial order where we say that O < (¥ if and
only if O is contained in the closure of (. This corresponds to a partial order on P{N) which is
givenbyd < d ifandonly if d + -+ dy <dj +---+d forallk=1,..., N. Hence we get
also a partial order on SN such that 1 is the greatest element and sgn is the smallest element.

4.3. Let e € gl be a nilpotent element, and 53, be the variety of Borel subalgebras of giy that
contain e. The Springer correspondence tells us that H*(B,) = H*(B,, C) carries an action of
the Weyl group W such that H¥"(5)(,) is isomorphic to the irreducible W-representation
corresponding to the G-orbit of e.

We want to describe the W-action of the standard module Xgp, (5, e, rp). If we let rg vary,
these standard modules are by definition the fibres of a vector bundle with W-action over
the affine line. As representations of a finite group cannot be deformed, the W-structure of
XGiLy (s, e, ro) is independent of rp. Hence we can assume rp = 0 and we have an isomorphism
of W-modules [16, 10.13]

X{(s,e)= H"(B,) ®sgn.

On the other hand, if d is the partition corresponding to the GLy-orbit of ¢, there is an iso-
morphism of W-modules {e.g., [7]}

H*(Bo) = IndgY (1.

Finally the multiplicity of m¢ in Indgé" (1) is given by the Kostka number Ky ¢ (see, e.g.,
[18, I, 6] for a definition).
Altogether we obtain the following proposition.

Proposition. Fix an rg € C. Let s in gly be a semisimple element and e € gly be a nilpotent
element such that s, €] = 2roe. Let e be the partition corresponding to the GLy -orbit of e. Then
the W -structure of the standard module X (s, ) is given by
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[X(S, €): er] =Kg e deP(N).
In particular, X (s, 0) is isomorphic to CI{W] as a W-module.

4.4. We want to compare the underlying W-module structures of an Hey, -module V' and its
image under the Zelevinsky involution as defined in (3.1). The involution ¢ on Hgyg, restricts
to an involution on the subalgebra C[W1 which we denote again by ¢ and which induces an
involutive endofunctor ¢ of the category Rep(W) of representations of W. Its effect is described
by the following result:

Proposition. Ler V be a representation of W. Then we have

c{(Vy=V ®@sgn.

Proof. This follows directly from the definitions as the endofunctor on Rep(W) given by ( is
isomorphic to the one induced by the involution w > (~ ™y onCIW]L O

4.5. Let X (s, ¢) be a standard module. By (4.3) thg re W corresponding to the dual partition of
the Jordan type of e is the unique maximal A € W occurring in X (s, ¢) and we have [X (s, e) :
}\.} = 1.

Moreover, it follows from [ 1] that the sum X' of all Fl/ “.submaodules of X (s, €) which do not

contain A is a maximal Eﬁgz—submodule of X(s, ¢) and that we have X/ X' = L(s, ¢).
3. Hermitian and unitary H-modules

5.1. We return briefly to the general notations of Section 1. The C-vector space X @z C has
a conjugation coming from the complex conjugation C and this induces a complex anti-linear
algebra involution on Sym(X ®z C) which we denote by # > #. For w € W we denote by f,
the corresponding element in C{W] C Hg. Let wo € W be the longest element.

Define the =-operation on H¢ as follows:

th =t,-1; forweW,
0* = (—1)%8%%,, ("8)t,,. for € Sym(X ®zC),
Fo=F

It is easy to check that this defines a complex anti-linear involution on the algebra Hg. We call a
finite-dimensional H-module V Hermitian if there is a non-degenerate Hermitian form {,) on V

such that
(H-xy,x2) = (xe, H" - x2)
for H € H., and x;, x2 € V. By [2, Section 5] this notion of being Hermitian corresponds to the

obvious one if V comes from an admissible representation of GY (F) by the procedure described
in (1.2yand (1.9).
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. . . i2 .
3.2. Now let us again assume that G = GLy and fet V be an irreducible Hgiy—moduie with real
central character. We want to express the property that V' is Hermitian in terms of the Langlands

and the Bernstein—Zelevinsky classification.
First let (8, U, v) be the Langlands data associated to V. Then it follows from [3, 1.5] that V
is Hermitian if and only if there exists a w € W satisfying:

(1) w(v)=-—v;
(2) w(S)=35;
) wlhH=U.

Because of (1) and v € 3§” we have necessarily w € woWs where Wy is the subgroup of W
generated by sy for o € §. If we write [7 = {ay, ....ay,} as in (2.14), the identity (2) then
implies that ; € S ifandonlyifay_; e Sforalli=1,..., N~ L

Now assume that V = L(Ay, ..., A). By [20] its Hermitian dual is given by L(A%, ..., A})
where

fx, x4+ 1. x+m~— I}h———[m(x +m - l),...,wx].

In particular we see:

Proposition. Let V = L{Ay...., Ap) with A; = A(o;, m;) be given as above. Then V is Her-
mitian if and only if we can group together the segments to pairs A;, and A, (11 not necessarily
different from iy) such that

(1) The center of A;, is the negative of the center of 4y,.
(2) We have m;, =my,.

5.3. We now recall Tadi¢’s description of unitary representations [20] transferred to the setting of
graded Hecke algebras. We phrase this in terms of the Kazhdan-Lusztig classification. For any
mteger d > 1 we define the (d % d)-matrix

0
1 0
I 0
1 0
Let L(s, ) be an irreducible E*iing -module. Then L(s, ) is unitary if and only if (s, ¢) is conju-

gate to a direct sum €P(s;, e;) where (5;, ¢;) is of one of the following forms:

(D) s; =s{;,d;)and ¢; = nf,’i[" with

{
. f=l—d  ~l-d ~l+d
s(l,d)m@d}ag( 5 + 7, 5 —%—j—f—}.,...,T—;—jm}),
j=l
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(D) s = (. di) +olig) @ (s diy — alyg) and ¢; = n?zl‘ for some real number o; with

i
0<a <5.

8.4, It follows that an unramified irreducible Hng -module L(s,0) is unitary if and only if 5 is
conjugated to a direct sum of diagonal matrices s; which are of one of the following forms:

M s _diag(i“"f ) T = e
(ID) s; = chag(l o, wzm ok T "—g‘— — -t ""5 +az) for some real number 0 < o; < %

5.5. Let V be a finite-dimensional Hermitian Hg-module and let {,}:V x V — C be a non-
degenerate Hermitian form on V such that (hv, v/} = {v, k*V/) forall s e Hg and all v, 0" € V.
Decompose V = €D, Vi into an orthogonal sum of irreducible W-representations. The restric-

tion (,); of (,} to V; is either positive or negative definite. For each 4 € W we set
o (V. ) #{i € 1]V, =4, (,); is positive definite},

o (V.
(V. <>) o (V. () = o (Vo 4).

#{1 e IV, =X, {,); is negative deﬁnfte}

These numbers are independent of the choice of the orthogonal decomposition of V into irre-
ducible W -representations.
Assume that V is iireducible as an Hg-module. In this case (,} is unigquely determined up to

a non-zero real number. Hence the class of (x(V. (.))), . € ZY in ZW /{=1} is independent of
the choice of {,} (here {1} acts on ZY by & - (63) = (£07.)). We call this class I (V).

56.1f L e Zw/ +1)} is the signature character of some irreducible Hermitian representation
we define a lift ' e Z¥ as follows. For every irreducible H; Y2 module V there exists a unigue

maximal A € Wf such that [V : A] > 0, and, moreover, we have [V 1 A] =1 (4.5). We let X be the
unique lift of ¥ such that ¥ = 1. Using this normalization, we get a map

X : {irreducible Hermitian ng-modules} A
5.7. The bijection W — W which sends U to U ® sgn defines a Z-linear automorphism of AL
(by taking the corresponding permutation matrix) and this induces a bijection of order 2 on
ZW /{£1} which we denote again by [(0,)] + [{02)] ® sgn.
Proposition. For every irreducible IHE]G/ 2 module V we have
2V = (V) ® sgn.

Proof. It follows directly from the definitions that the involution * and the Zelevinsky involu-
tion ¢, see (3.1), commute with each other. Hence (4.4) implies the proposition. O
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6. Intertwining operators and the Hermitian from

6.1. In the sequel we will use the following notations. We set G = GLy and fix a standard
parabolic subgroup. It is given by a subset § of the set of the simple roots which corresponds to
an ordered partition (N, ..., N, ) of N. We denote by M the associated standard Levi subgroup.
Instead of Hs (2.3) we often write Hy,.

Let I/ be a fixed irreducible tempered representation of H}f Thus it will be of the form

U=0X-.-BLU,
for irreducible tempered representations U; of HgLQN We denote by {,)y, the unitary form
(unigue up to a positive scalar) on U; and by {,}y its tensor product on U.
We will consider (real) Hermitian representations with Langlands data (S, U, v) (2.8). Hence
we have for all i, N; = N,1;, and U; is isomorphic to U,41—;. In the sequel we choose an
identification of unitary HGL,vg -modules U; = U, ;;..;. Finally v will be given by an element in

g,g" which we can consider as an r-tuple of real numbers v € Cy, _ n,) where

Covyoyy = {01 v) €R 1y > e v, W g =0fori=1,...,r}

We denote by X (S, U, v) the associated standard module and by L(S, U, v) its unique irreducible
guotient, and we call v the Hermitian parameter.

Let Wy, be the Weyl group of M, and we set W = Wg. We identify Wy with Sy, x -+ x Sy,
embedded in W = Sy as usual. Let wy be the element of maximal length in W and let wy s be
the element of minimal length in the double coset WyywoW,s. Note that as wg normalizes Wy,
we have WywoWa = woWa = Wyrwo and wj ,, = 1. Our identification of U; with Uyt~
then gives an identification U = wo g (V).

We fix the following isomorphisim of H-modules preserving unitary forms:

TZU,E-—-BU}%U;E}---E}U,-WU,
U, Q- QU= w1 R - D,

Note that we can consider 7 as an isomorphism wyp s () — U.

6.2. We now introduce certain elements following [3, 1.6 and 1.7]. Fix w € W and let w =
st...s; be a reduced decomposition. Then define py, = p102... o where p; = fy0; — 2r if 5
corresponds to the simple root ;. Using a result of Lusztig {14, 5.2}, it is shown in [3, 1.6] that
oy does not depend on the choice of the reduced decomposition of w and that we have for all

0eO
,—1
Opw = Puw (u, 9) (6.2.1)

6.3. There is a unique O-linear map sy :Hg — Hy such that e(s,) = fy for w e Wy and
e(ty)=0forwe W\ Wy.

We now define an Hermitian form B, == 85 v on X (8, U, v) as follows. For w, w e W and
w,u e U ®C, we set
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Bs.vltw @ttty ® ') = {01,111 P, )T (), 1t}
This is well defined by {6.2.1).
6.4. The Hermitian form () on X (8. U, v) defined by
(ty @u, ty Qu')= (8(1,_‘,,;“;{“,)11, z,s’}U
is unitary as we have

(ty @u, bty @u)= {w, ).

Hence the signature character of 8, = Bs 1., can be computed as follows. Consider the Hg-
linear map

Ay 2 X (S, U, ) = Hg iy (U 2 Cy) — Hg ®u,, (URC) =X(S,U, —),
h &y hpwo‘M & T(“)'

By definition of C,, source and target of A, ,, are canonically isomorphic as C[W]-modules,
hence we can also consider A, as an endomorphism of a CIW]-module X, and for each
A € W we get an induced endomorphism A, ,,.» on Homw (A, X). We denote the number of
positive eigenvalues minus the number of negative eigenvalues of Ay, \, 2 by 03 (Ay, ,, ) and set
Z(Auwg ) = (03 (Aug 1)), - Then we have

Ay ) = Z(By).

Proposition. Assume that A, ,, is non-zero. Then its image is isomorphic to L(S, U, v) and p,
is up to a scalar the Hermitian form given by the involution * (5.1).

Proof. Let X' ¢ X(S,U,v) be the maximal submodule, Then we have X/ X' = L(S,U,v)
(2.17).Let A”: X’ — X (S, U, v)" be the restriction of A, ,, to X'. We have to show that 4’ =0,
As X (S, U, v) has a unique irreducible quotient (namely L(8, U, v)), X (S, U, V)" has a unique
irreducible submodule (namely L{§,U, v)”). But L.(§, U, v)h is isomorphic to L(S, U, v) as
L{S, U, v) is Hermitian. As X (8, U, )" is of finite length, the image of A’ would have to contain
this unique irreducible submodule if A" were non-zero. This would imply that X has a subquo-
tient which is isomorphic to L(S, U, v) but this is a contradiction to the fact that L(S, U, v)
occurs with multiplicity one in X (S, U, v). O

7. Reducibility walls

7.1. We keep the notations from (6.1).
For fixed § and U we call v € Cw,...n, irreducible if the Hé’f’N -module X (S, U, v) is irre-

Every irreducible Hermitian irreducible Héffw—module V defines a signature character

vy e ZY (5.6). We obtain a map



396 C. Bovallian, T. Wedhorn / Journal of Functional Analysis 239 (2006} 375-413

CiNyo Np) ™ ZW, v LS, U, v)),
1 )

7.2, Write L(S, U, v) = L(Ay, ..., A,) (2.13). Note that the number and the length of the seg-
ments do not depend on v. The standard module X (S, U, v} is irreducible if and only if no two of
the segments can be linked. Hence the reducibility locus, i.e. Cy, . w0\ C?NI ...n,y» 18 aunion
of hyperplanes of the form

Hy=1{veCun..n | ey +x) =1},

.....

where o € R runs through a certain set of positive roots (cf. (9.4)) and where x is the central
character of the tempered representation U.

7.3. We make this more concrete in the case of an unramified representations, i.e. for the case
S == # and hence U the trivial representation. In this case all segments have length 1 and v =

(vi, ..., vy) is irreducible if and only if (v, «) % 1 forall o € Rt ie. vy —vj# 1foralli < j.
For every root @ € R™ we define the corresponding reducibility wall

Hy={veCy|(av) =1}
Set M =[N/2]. Via (vy, ..., vn) > (v, ..., var) we can identify Cy with Dy where
DME{(XE,--.,):M}ERMixl >--->xM>O}.

Via this identification the reducibility walls can be described as follows. Assume first that NV
is even. Here we have that all nonempty reducibility walls are the following.

Him{(}f],...,k‘m}EDM]x;ixjmf}, forl<i<j<M

and

¢

1
H-’%:{()CL...,XM)GDM[)C,f'—'—-‘g}, for1 i< M.

For N odd, we have in addition to the walls above those of the form
H; = {(xl,...,xM) €Dyl x; ::t:I}, for1<j< M.
We will give a description of the reducibility walls in terms of the roots, namely, we will
determine a subset of the set of roots such that each reducibility plane is determined by one
element in this subset. The first easy remark is that

Hf=H,  Hy=H,

for any « in the root lattice. Denote by
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Kz{cgﬂ:._"elj:gj}l << M}U{a,'zej~—eN_;+1]imi,...,M}

Ulasy =6 —eysr (=1, M}

We have a one to one correspondence between the set of all vanishing walls and elements
in K, namely H, maps to ozij and also between each H; L0Q; =€ —eN-itl, if & is even,
Now if N 18 odd we also have that H il corresponds to o pr = €; — €41

We have the following trivial mtersect:on rules for the walls:

- - - — _ g+ + g +
(D) Hj NHy =Hy N Hy =Hi WHy =H, NH =
+
@) H O =0
(3) HINH; =0
{4) Hi,% N Hj,% =H; 1 NH;, = {.
+ - _
5 Hl.j {}ij =0.
(6) H.“fﬂHt. y N H; =0
(7y Hj N H, H.‘;{}Hj.% WH+nH, | _H NH;=0.

iy M

I
?i

b

Now let R’ C RT be a set of positive roots. We set

Hp = ﬂ H,.

aeR’

Proposition. Let R C R™ be such that Hy' consists of a single point v = (v(,...,vn). Then
L{v) is unitary.

Proof. Let J < R’ be a minimal subset such that H; = Hpg:. In particular we have #/ = M. We
say that two walls H and H’ in J are equivalent if there exist walls H = Hy, Hy, ..., H,—, H, =
H' in J such that the set of indices for the wall H; has nonempty intersection with the set of
indices of Hi41. Let J = J, be the decomposition into equivalence classes with respect to
this relation. J, has to be a set of walls of one of the following forms:

) Jo={H} ;) By Hy 0 )

(ii) th—{HrTm 1:1% ”’Hf;: foim” inz }
(i) Jo=1{H i JHE G Hy zm.l}-
(v) Jo ={H, iyin? Hc:z; ’Ht; Lyim” Hi:;-fmﬂ}'

As we have #J = Y_#J, = M == #{indices of walls occurring in J}, in J, have to be #J in-
dices, and this means that only the cases (i) and (iii) are possible. As the v; are pairwise different,
each of the cases (ii) and (i1i) can occur only once. Now it follows from Tadic’s description of
unitary representations (5.4) that L(#, 1, v) has to be unitary. I

8. Signature at infinity

8.1. Recall from (7.1) that the signature character is constant on the connected components of
C ?Na ., T is easy to see that there is a unique connected component Cog of C7 (Np o o) such
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that for all roots o € JT \ S the set of real numbers {v(w) | v € C} is not bounded. In this section
we want to describe the signature of X(5, U, v) = L{5, U, v) for v € Cx. For this we follow

Barbasch and Moy [3].
8.2. As a W-module we have X (5, U, v) = C[W] &gpw,,) U. Let e:C[W] — C[Wy] be the

C-linear map with e(t,) = t, for w € Wyy and e(2,) = 0 for w € W \ Wy and define a C[W]-
invariant Hermitian form on X (8, U, v) by

ﬁo@ (Iw @ i, Iw! @ M;) == (8 ({quMJ tU"!wD.M)f(H)’ u")U.

As in (5.5) this defines a signature character X, € Z¥ which depends only on § and U.
A limit argument using (7.1) (cf. [3, 2.3]) shows that for v € C, the signature character of
Bu_ and the signature character of S, coincide. Hence we get that for v € C the class of X', in

ZW/{il} is equal to the class of the signature of g, in %W/{ﬁl}
8.3. To calculate the signature character of By, we make the following general remark. Let

(V. {,}) be any finite-dimensional complex unitary space and f € End(V') be a self-adjoint en-
domorphism (in particular f is semisimple). We define a Hermitian form 8y on V by

Brlv,v) = (fuv,v).
This form is non-degenerate if and only if f is invertible and in this case its signature is equal to
#{positive eigenvalues of f} — #{negative eigenvalues of f},

where we count eigenvalues with multiplicity. Now assume further that f 2 = idy. Then f has
only eigenvalues +1 or —1, and the signature of S is nothing but Tr( f).

8.4. Let us apply this to the unitary form {f, @ u, tyy @ u'} = {e(t, 1ty u, u')y on X (5, U, v}
and to f = ry,,, given by

Fag,pe *Fus @ 11> Lyglig py & I(q).

Then it follows that e, = (5a0.2) € ZW with
Oog,a = dim(}\)_—g Tr(rw{)_.w EX;;,); (84})

where dim(i) denotes the complex dimension of the irreducible W -representation corresponding
to » € W and X, denotes the A-isotypical component of the left W-module X = X(S, U, v).

Now let x; be the character on W corresponding to the irreducible representation A. The
projection p; from X onto its isotypical component X, is given by

dtm(l)

Z X.(w)(wr @u).

weW

10U >

Hence if we define for w € W a C-linear endomorphism f* of X by
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@ u > whwg y & T,

we have

Too,a = dim(}\")ul TF(PA & f‘w{).M) e (#W)ml Z XJ\.(U)) Tf(fu").

wew

For z € W let £, : X — X be the left multiplication with z. Then we have

8» Ofw oﬁ;! — fzwz_l'

Tn particular we see that Tr( /') depends only on the conjugacy class of w. Identifying conjugacy
classes in W with irreducible representations of W, we get

T = EW) L Y Ny Tr(F70Y), (8.4.2)
;LeW

where N (1) is the number of elements of W in the conjugacy class 1 and where w (1) is some
element in L.

8.5. It remains to calculate the trace of f%. Let [W/ Wy be a system of representatives in W of
the quotient W/ W)ys. As a C-vector space, X is isomorphic to GBwe[W Wt} Ci,p ® /. Hence

Tr(f") = Z Tr(z“lwzwg'MrlU). (8.5.1)
zelW/ Warl,
z”iwzmo‘MeWM

It remains to determine for x = (x1,.... %) € War = Sy, % --+ x Sy, the trace of the en-
domorphism u ++ xt(u) of U. For this we set Ul=U;@Uy g~ fori=1,....[r/2] and also
U(Iwi)/z = Ur1yy2 if r is odd. Then we have

U=U1® & Ui

and the endomorphism x|/ is the tensor product of the endomorphisms x4 |U] where x| =
(x;i.Xre1-;) (and x{(f"l“i}/zl o x[f(wﬁ/Z% if r is odd) and 1; is the endomorphism of U] which
switches the two components (and is the identity on U(frm;wl} P if r is odd). Therefore we have

[r+13/24
Trixt|U) = H Tr(xiw |U)). (8.5.2)

i=1

8$.6. Hence we are reduced to the following situation. For an integer M = 1 let V be a finite-
dimensional Sy -module and set U = V @ V. For (x1, x2) € Sy X Sy we want to determine the

trace of £(x, 5,y © T With
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TV @z v2 @ vy,

£y 5 V1 B V2 X301 @ X200,
We claim that

Tr(lie o T) = Y [V :Alia(xixg).

3‘»65};,;

First note that if we have a decomposition of Sy-modules V = V' & V7, a concrete matrix
multiplication shows that

Tr((g(xjgxz) o T)‘(V & V)) = TI'((E(J(;.)Q) o r)f(V; ® V’)) + Tr((ff(x, x3) © «g),(vﬂ ® V”)).

Therefore we can assume that the Syr-module V is irreducible, say of isomorphism class A € S .
Of course, then we know that the trace of left multiplication with xixz on V is simply x; (x1x2).
Hence the claim follows if we prove the following lemma.

Lemma. Let k be a field, let V be a finite-dimensional k-vector space and let fi and f> be two
endomorphisms of V and let 1:V @V — V @ V the map that switches components. Then we

have

Tr((f1 ® f2) o) =Tr(f1 0 f2).

Proof. We can assume that % is algebraically closed. Using the fact that the set of semisimple
endomorphisms is dense within the space of all endomorphisms with respect to the Zariski topol-
ogy, we can also assume that fi is semisimple. Choose a basis (¢;) of V such that f; is given
by a diagonal matrix A, with respect to this basis. Denote by A3 the matrix of f». Then the
map (fi ® f2) ot sends ¢; ® ¢; to (A1) j;¢; ® (3_,;(A2)ier). Hence we see that the trace of
(fi ® f2) o T is nothing but 3, (A1);;(A2);; which is the same as the trace of fio fo. O

8.7. In (8.4) we described an algorithm which reduced the computation of the signature character
of X (8, U, v) for v &€ C to the computation of the isomorphism class of I/ as a C[Wy J-module
{which we know by (4.3)) and the computation of the characters of the symmetric group (which

is well known).
In the case of unramified representations (i.e. where S is empty and U is the trivial represen-

tation) we have:
Corollary. For unramified representations the signature character of Bog is equal to (s Miew €
7V with

Too,x = X1 (Wo).

Proof. This is a straightforward application of the algorithm above. Note that we not only have
equality in Z% /{t1} but even in ZW as yj(wg) = 1. 0O
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9. Wall crossing

9.1. We continue to use the notations of (6.1). Also denote by x the central character of U.
Let (s, ) be a pair as in (2.4) corresponding to L(S, U, v). We can conjugate (s.e) such that
s = ¥ + v € t. Note that the conjugacy class of ¢ depends only on § and U. Let Ry C R be the
root system of the Levi subgroup M. We further assume that we are not in the trivial case that
the cone Cyy, . n,) of Hermitian parameters is empty.

.....

The tempered representations U; are of the form LA, ..., Ai{,) where Aj. = A(m(m’}. —

1)/2,m%) is a segment with center 0. We order these segments such that j - m'; is non-
increasing.

Let A, ..., Ay be a tuple of segments such that L{Ay, ..., 4,) = L{S.U,v}. We call the
number of pairs (A;, A;) such that 4; precedes A the height of v. Hence v is irreducible if
and only if the height of v is zero. For every reducibility wall H the height of v € H is constant
equal to some positive integer height(H) outside those points that lic on an intersection of H
with some other reducibility wall. We call height(H) the height of the reducibility wall.

Our goal in this section is to cross these walls. More precisely let vy be a Hermitian parameter,
such that there exists a unique reducibility wall H with vy € H. Then we can find a small positive
real number ¢ and a nonconstant map

{(—g,8) = Ciny N L= 0(D)

which is the restriction of an affine map R — R" such that

(1) v(0) = vp;
(i1) v(z) is irreducible for all 7 £ 0.

Then for ¢ > 0 (respectively 1 < 0), the signature character of L{S, U, v(r}) is constant and
we call it £ (respectively X ™). The goal of this section is to find an expression for Tt X

and for ¥~ — T,

9.2. To do this we use a filtration which is called in [21, Section 3] the Jantzen filtration. Let H
be a C-algebra with a complex anti-linear involution * and let E be a left H-module which is
a finite-dimensional C-vector space. Let 8, be a real analytic family of Hermitian forms on £
defined for small real 7 such that B, (hx, y) = B, (x, h*y) forall h e H, x, y € E. Assume that £
is non-degenerate for ¢ # 0. Then there is a unique sequence of subspaces

E=E'HE'D .0 E"=(0)

such that the meromorphic family of Hermitian forms Bl = fl, B:(x, ¥)| g can be extended to an
analytic family of Hermitian forms on E' and such that the radical of 8] is equal to £°*'. In
particular B, induces a non-degenerate pairing B ongr'(Ey=E'JET.

Explicitly F* can be defined as

El e {x € E | Bi(x, y) vanishes at least to order i at ¢ =0, forany y € E]

Note that our definition of the E! varies a little bit from the definition given in [21, Sec-
tion 3], but it is easily seen that both definitions are equivalent. Moreover, it follows from the
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definition that the £ are also H-submodules of E and that g/ are Hermitian with respect to the

involution *.
Let o be the signature of 8, and denote by o™ (respectively o ™) the signature of g, for
small positive (respectively negative) 7. Then we have {21, Section 3]

ot -7 =2 Z !,
i1 odd
ot 4o =2 Z ot

iz={ even

9.3. Now let {,) be a fixed unitary form on £ and let f;: E — E be the analytic family of self-
adjoint endomorphisms such that 8,(x, y) = (fi(x). y). Then det(f;) is non-zero for ¢ # 0 and
the analytic map ¢ +> det{ f;) has a zero of order

> i(dim(E') —dim(E"")) = ) i dim{gr (E))

i=0 i=0
inr=10.

9.4. Let O, be the closure of the orbit of e in N'(s) = {n € g | [s,n] = n} under the action
of Zg;(s). For all v we define R, as the set of roots @ € RT such that g% C N(s) and such
that there exists a non-zero element ¢y € g* such that e + ¢, ¢ @,. These are those roots which
“link” segments of X (S, U.v). We have R, =¥ if and only if v is irreducible. If v lies on a
unique reducibility wall H, R, is independent of v, and we call it Ry.

Then for all @ € Ry, sgn{a(uv{r) -+ x) — 1) is independent of @ € Ry and we have
sgn(a(v(ty + x) — D = —sgn(a(v{—1) + x) — 1) for all € (—&, £}. After a possible substi-
tution of f > —¢ we can and will from now on assume that sgn{a{v{r) + x) — 1) = sgn{1).

9.5, Let H be areducibility wall of height one and fix ¢ +— v{(z) as above. We write L(5, U, v(0))
as L(9M) where 91 is a multiset of segments Aj, ..., A,. As H is of height one, there exists a
unique pair (A;, A;) of segments, such that 4; precedes 4 ;. We denote Y the multiset consist-
ing of the segments A; for { # i, j and the segments 4; N A; and 4; U A;. By (2.13) and (2.17)
we have an exact sequence

0— L) — XD — LI - 0 {9.5.1)
and L(9) is again Hermitian, and we have L{(S") = X (M), otherwise v(0) would not lieon a

unique reducibility wall.
We now apply (9.2) to E = X (v{r)) which as a C[W]-module does not depend on ¢ and its

Hermitian form 8,. It is of the form
X(U(I)) = EY 2 L) == Flom...o= F® 2 (0) = Fet]

for some ¢ > 1, and we have

g (E) = L(»(0)).
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As L{SV) is an irreducible module, its signature character has to be equal to the signature char-

acter of B, up to asign €.
If we set X = lim, g+ Z(L(S, U, v(1))) and T~ =lim,_.o- Z(L(S, U, v(1))) we will
therefore have

LY 2X(LLS, U, v, if wis odd,
T2 AS, U, v + 26 Z(L(IMY), if wis even,

Sy 2e D(LEOM, ?fa) :s odd,

0, if w is even.

Hence if w is even, the signature characters on both sides of the wall are equal. If w is odd, we
can calculate £ (respectively £7) if we know T (L(IM)) and X'~ (respectively X Y as this
allows us also to calculate &. Indeed, by (4.3) we know that the sign representation occurs with
multiplicity one in X (S, U, v(z)} for all 1 and LY. Hence the equality

(2+)sgg - (Zm)sign = ZSE(L(EUEI))S&’“

implies that we have

(5o = (5 )gg and &= S(LY)

sgn

sga(2+)sgn'

9.6. In fact we conjecture the following.

Conjecture for reducibility walls of height one. We always have that w is odd. Hence

T - X7 =2 (L)),
st 4 ¥ =28 (LOW)

with & = E(L(m’))sgn(z+)sgn - ”E(L(%,))sgn(zm)sgn-

9.7. Now let H be a reducibility wall of height two and again fix t = v(7) as above. We write
L(S, U, v(0)) as L(OM) where M is a multiset of segments Ay, ..., Ay Now there exist two
pairs (A;. A ) and (A;, Ap) of segments, such that 4;, precedes 4; for k = 1,2. We can
assume that A}, does not precede A;,. Note that it is possible that 4, precedes A;,. We de-
note S (respectively Mz, respectively 1) the multiset of segments which we get from 91 by
linking (4;,, 4;,) (respectively (4;,, A,), respectively both (A;, A;) and (A5, 44)).

By (2.17) we know that L(9) is the unique irreducible quotient of X (900), L(IN) is the
unique irreducible submodule of X (M) and that the other irreducible subquotients of X (971)
are isomorphic to L(I) and L(My). We assume that L(90%;) and L{9M,) both occur with
multiplicity one X (901). The standard modules satisfy the inclusions X (9R") C X (9N, C X (90D
for i = 1,2. L) = X (M) is the unique irreducible submodule of X (9M), we have exact
sequences

0> LY = X)) — L) — 0,

and L(IV) = X (IR) /(X (M) + X (M2)).
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Further L(90") is Hermitian and as v(0) lies only on a unique reducibility wall, we have
LMy = X (). L(OM,) is non-Hermitian, its Hermitian dual is L(9M).

Again we apply (9.2) to £ = X (90) with its family of Hermitian forms &;. As the Hermitian
forms induced on the graded pieces of the Jantzen filtration are non-degenerate, it follows that
the Jantzen filtration will be of the form

XEN) =E' 2 X))+ X)) =E' == E¥
22Xy = B9t == B2
2 (9) _— E(ug+.§

for integers w> 2 a > 0. Here o» = w; means that only L{I0} and X (O;) + X (9R3) occur as
graded pieces in the filtration.

If wy > wi, the signature character of the form F*? induced on the irreducible module
gr2(EY = LI} is equal to the signature character of L(90') up to a sign &.

Again we can use {9.2) to compute difference and sum of i, or Z(L(S, U, v{z})) and
im,_,g- Z(L(S. U, v(t))) in terms of X (L{OM)), (L)) and E(L(I;)} B L(IM)). Note
that the last signature is zero as L(90) and L(9) are dual to each other.

9.8. We now consider wall crossing in the unramified case. Hence from now on we assume that
S is empty. Hermitian representations are then given by elements v &€ Cq,_ 1 = {(v;) € RV |
v; 4 vyt = 0} For simplicity we write X (v) for the corresponding standard module and
L(v) for its unique irreducible quotient.

We now consider the Hg-linear homomorphism

Apg  h @1+ hpy, @1

defined in (6.4). As the leading term of pyy iS fuy [ | ep+ @ Aw, IS non-zero as we have
[Ty er+ (. v} # 0. Hence we can calculate the signature character of L(v) using the form 8,
defined in (6.3). If we write wq = sgsg—1...51 as a product of simple reflections, we get a de-
composition Ay, =T 0 Tp-y o+ o Ty where T; is an Hg-linear map

T He @mr G500 = He @rp Gy (0)-

Source and target of each 7; are canonically isomorphic as C{W]-modules and hence we can
consider 7; as an endomorphism of C[W |-modules.

For each simple root o € I7 we define the Levi subgroup G of G by Lie(GY) = t@ g &g™™.
If the simple reflection s; corresponds to the simple root «;, 7; can be written as idg,, ® 7, with

7}ﬁ‘i :E—ﬁ(}ﬂi ®H7‘ CS;_W;...S[(V) - ﬁ(if‘f ®HT Cs,-...s;(v)s
h@ b iy — 1)@ 1.

Similarly as above we can consider T;X" as an endomorphism of CfS;]-modules. Further by
(4.3) we know source and target are isomorphic to C[5;] = sign & 1. An easy calculation
shows that 7}“" acts on sign by the scalar I — {o;,5:—7...51(v)} and on 1 by the scalar
— 1 —{ay, §imt . 81(0)).
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9.9, Now fix a reducibility wall H and a map ¢ — v{r) as above using the normalization in (9.4).
We necessarily have Ry = {0, —wol(wp)] for some ag € R, in particular the height of H is at
most 2.

We apply the discussion in (9.8) to v = v(¢) and get A, (). For 1 =0 we see that Tf" fand
hence 7;) is invertible for all § except for

ieJy:=1{jlsis2...5;10; € Ry}.

Further, fori € Jy, T, acts on the 1-component by the scalar

“""(ij, Sieet ... 81 (U(I))) -1

which is equal to —2 at + = 0 and it acts on the sign-component by the scalar

lop, simy .08 {(v(n))—1
which is a linear function of ¢, in particular its vanishing order is 1.

9,10. We keep the notation of (9.8) and assume that we are in the situation of (9.5), in particular
H is a reducibility wall of height one and Jy consists of a single element j. By the arguments
above we have that

ord;=o det{ Ay, (1)) = dim L{M) = dim E .

Hence it follows from (9.3) that @ == 1. We will also show that in this case we always have
g = ~1. Let » € W be the maximal element occurring in L(90). As the multiplicity of A in
LN’y is |, the signature of the Hermitian form induced by B; on the one-dimensional space
V = Homy, (4, L(ON)) is equal to £1. We have to show that it is equal to —1.

By the definition we have to show that the derivative of the function

pit—=1 ——(aj,sj_l...s;(v(r}))

is negative in ¢ = 0. As this is a linear function it suffices to show that sgn(p (1)) = —sgn(r). By
definition of v(#) (9.4), we have sgn({w, v{1)) — 1) = sgn(z) for the unique o € Ry . By (9.9) we
have & =515y ...5;1c;. Hence we see that

sgn(p(n) = —sgn({oj, sj1 .51 (v()) = 1)
—— Sgn((ar, ()
= —sgn{1).

Hence we get:

9.11. Theorem. For unramified representations and for v(0) lying in a reducibility wall of height
one, we have
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lim Z(Buo) + lim 2 (Bun) =25 (L(1(0))),

lim Z(By) — Him 2 (Bu) =25 (L)),

9.12. Note that we also have
Z(L(v(0)) = Z (L)) @ sgn
as L(v(0)) is the Zelevinsky dual of L(9M'} (4.4).
9.13. We keep the notation of (9.9) and assume that we are in the situation of (9.7}, in particular

H is a reducibility wall of height two and Jz consists of two elements j; and /.
if we set m = #W, we have dim{X (JR)} == m and it follows from {9.9) that

ord o det( Ay, (1)) = m.
If we define w; and w2 as in (4.7}, we have by (9.3)
m = dAm(X (M) + X((M)2)) + (w2 — wp) dim{ X (9N)).
There exist two pairs (i3, j1) and {i2, j2) of indices such that v;, (0) — v; () = | for k == 1,2.
We can assume that {7 < ir. We distinguish the cases j; # iz and j1 = 1.

By (4.3) we have in the first case (respectively in the second case)

dim(X(OR)) =m/2,  dim(X@N))=m/4
(respectiveiy dim(X(im;)) =m/2, dim(X (E}ﬁ')) = m/6)

and it follows that

m =i m+ (w2 —wz)zm

(respectiveiy "= @y «gm + {awp — w;)ém).
As wn > w) are positive integers, this implies in both cases
w; =1, wy == 2.
Therefore (9.2) implies
T+ 2T =22 (L(v(0)) + 2Z (L)),
where

0% 10~
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Moreover, it also follows that £~ — X7 is nothing but two times the signature character of
Lt &6 L(91:) which is zero as those two modules are Hermitian duals of each other.
Similarly as in (9.5) this implies

£ == (zﬂsignx(i,(m’))sgﬁ - ():*"“)Ségﬁ».2;*(3.2(9:&’))S e

Hence we get:

9.14. Theorem. For unramified representations and for v(0) lying in a reducibility wall of height
two, we have

Tt X" =0,
ZT 4+ X7 =23(L{(w0)) + 25 (L))
= 2(Z(LEW)) @ sign+ e (L)),

where

£ = (z*’*)sigﬂz(um))sgn = (xm)signx(umt’))sgn.

9.15. Again we have
Z(L(v(0))) = Z(L(M)) @ sgn
as L(v(0Q)) is the Zelevinsky dual of L(9).
10. Signature character for unramified representations
16.1. We will now give a cenjectural inductive procedure the calculate the signatore character for

unramified representations.
For this we consider Bernstein-Zelevinsky parameter giving rise to standard an irreducible

representations of EEH&ZN of the following form. If N is even, we set for 0 << m <L N/2 and real
numbers vy > -+ > Uy > 00

N i 11 11
S:Rv],,..,um = Ve Vi, —5,5 | T s y =V, oo, —VE ]

N/2—m times

N isodd, wesetforO<m < (N —1)/2

11 i1
mg.....um RS (Vis coes Vs {m.z_, E}! LI l:‘"is E}a O: V..o —Ui).

(N=13/2—m times

We conjecture the following.
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.....

the cardinality of {v; | vi > %}_
It follows from (9.14) that the conjecture is true in the unramified case.

10.2. From now on we will assume that the conjectures (9.6) and (10.1) hold. In particular the
following is well defined. For integers N = 1, O<mEN/2and 0 < r <(NV —2m)/2 we set

>Nm, ry = E(X(m{;\i,...,vm))’

where vi > -+ - >V > é— > Upp] e 3 Uy

Let e be the partition (27, 17 —2my of N. Farther let S be the set of simple roots corresponding
to the ordered partition A := (1™, N — 2m, 1"). Finally let U be the tempered representation of
the standard Levi subgroup GLY x GLy_2, x GLY' corresponding to A which is given due to
the Bernstein—Zelevinsky classification by

I 1 11
OX-.-EO — =i e = R KO
M Y] ([ 7 2} [ 3 2D .- KO
m tmes w times
N/2—m times

if N is even and by

11 11
OR-.- KO —— b === [,0 HE---
{0 ) ([22] [22] ) OHE---KO
m Hmes m tmes

(N-—1)/2—m tmes
if N is odd.
Proposition. For r =0 and r = m we can calculate X N(m, r) as follows:

(1) Forde Sy we have
=V (m, 0)a=Ka e
(2) Let Too(S, U) the signature at infinity (8.2) corresponding to (8, U). Then we have
SN, m) = Zoc (8. U).
Proof. By (5.3) we know that X (Sﬁ{}i._‘_!um) is unitary if all v; < % Hence (1) follows from (4.3).
By (10.1) 3N {(m, m) is nothing but the signature at infinity with respect to ( S, U). Therefore

we know that the classes of £%(m, m) and Zo(S,U) in ZW /{£1} are equal. A calculation
using the algorithm in (8.4) then gives equality even in YA
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10.3. By (9.6) we have the equality
SNmor =1~ ZVNm,n=28Ym+t,r=1.

By induction this implies forO <k < r

k
N _ i K\ o T
xz (m,r)_Z( 2} (f)E (m+ir—k)

i=0

In particular:

Proposition. For N, m and r as above:
Ny =3 (=2) ('f)z:*”(m +i,0)
[4
i=0

which allows us to caleulate TV (m, r) as we know the right-hand side by (10.2).

10.4. As we know not only the signature character of unitary modules but also of representations
at infinity, our conjectures implies in particular the following equality. Let wg € Sy be the longest
element and let & be a partition of N. Set r = [N /2]. Then we have by (10.3) and (8.7

r e
fr . AF
Xty = 3 (=2 () VG0 = (=) (,)Kﬁt(z.»_m_g,-).
i=0 ! {=0 !
We do not know how to prove this equality directly using purely combinatorial methods.

11. Examples

11.1. We conclude with the calculation of signature characters of GLy for N = 2, 3, 4. Each time
we will classify irreducible Hgy, -representations by the Langlands data (S, U, v).

We will describe § by the corresponding ordered partition (o1, ..., 0,) of N. As we consider
only Hermitian modules, we always have that o; = ;1.

The tempered representation U of GLy, % --- x GL,, is a tensor product of irreducible tem-
pered representations U; of GL,, and each U; will be described by its Bernstein—Zelevinsky
datum. The condition of being Hermitian implies that U; = Uy 5.

Finally v will be considered as an r-tuple of real numbers (vy, ..., v;) with vy = - - > v, We
have v; + v,41—; = 0 because of the property of being Hermitian.

If (S, U, v) is a Langlands datum, we denote by 9U(S, U, v) the corresponding Bernstein—
Zelevinsky datum.

11.2. We now consider the case GLp.
Let § = (2), U = {[~4., 1]). In this case we necessarily have v = (0) and M(S, U, v) =

([-3- 1]) and X (S, U, v) is irreducible (2.13) and is unitary (5.3). Hence by (4.3)
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Z(L(S, U, v) = (1) = sgn.
Let S ={(2), U =(0,0). Again v is (), X (8, U, v} is irreducible and unitary, hence

Z(LS, U ) = (17) + () =sgn+ 1.

Let S = (1, 1). U is necessarily (0) & (0), and v is of the form (vy, —v;) with v > 0. We
have MM(S, U, v) = (v}, —v;) and X (S, U, v) is irreducible if and only if v; # % For vy < %
L(S, U, v) is unitary, for vy > % we are near infinity and can apply (8.7). Alternatively we can
use (9.11). Finally for vj = 1 we have L(3, ~1y = (L([-3, £1)) by (3.4). Hence we get

1) +@2), wv<ip,
Z(L{S, U, (v1.—v))) = { (). vy = 5,
~(1+Q2), v >4

11.3. We now consider the case N = 3.
Let § = (3). Again v = (0) and we have

(17, U=(1-1.0,1D),
(LS. U =1 (1H+ 2. 1), U=([-11].0),
(P + @2, D+@. U=(0,0,0).
Let S = (1,1, 1). We have U = (0) X (03 ® (0) and v = (v, 0, —vy). The standard module

X (S, U, v) is irreducible for vi # 1,1 and it is unitary for v; < 3. At vj = 5 we have a re-

ducibility wall of height one and at vy = 1 a reducibility wall of height two. Further we have
L(i,0,-1)y=¢(L([-3. 5] 0)) and L(1,0, —1) = £ (L([—1,0, 1])). Hence we get

(1 +22, ) +@3), v <

i
2=
(2, 1)+ (3), vy = L
Z(8U, 010, =) =1 —(1H+0Q2, D+ B), L<v—1<1,
3). vy =l
AH+02. H+@3), vl

11.4. Finally consider N =4,
Let S = (4). We have v == (() and

(a®, U=([~-3-3133))
(I + @19, U =([—1,0,1L0),

TS, Uwy=1 (1H+ @2, 1)+ 2%, U={[-L1].[-5. 4.
(9422, 1)+ @)+ 3. D, U={[-3.3].0.0),
(MY +32, 1) +220 +33. D+ @), U=(0,0,0,0)

Let §=(2,2), U= ([-% ) B([~3. 3]). We have v = (v1, —vy) and
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i 1 i 1
ﬂ:R(‘Ss U‘; U): ([mwﬁw*“vfa 5“‘*‘“”1}! [“"2_ _v1$§ - vl])'

Hence X (5, U, v) is reducible for vy = %— and v; = 1, and both are reducibility walls of height
one. For vy < % L(S, U7, v) is unitary and for vy = | we are near infinity. Hence we can calculate
both signature characters ((4.3) and (8.4)ff):

AN+ 1D+ @D, v <3,

SUL(S, U, »)) =
(L V) {(1.4)—(2,z2)+(22>, vy > 1,

For % < v; < 1 we can use the conjecture (9.6) to cross one of the reducibility walls. Hence the
conjecture implies in this case the following both equalities:

s(us.0m) (%) - 2.7+ ) -25(2([-3.-3.3.3]))
TLES. U, )= (1% + (2, 1) + (22) — 22 (L((-1,0, 11, 0)).

The right-hand sides coincide and we get conjecturally for v = (vy, —vy) and %— <y < |

S(LES. U ) = —(11) = (2.13) + (2?).
Finally we can now again use (9.6) to compute

2 [ (29), vy =1,
S(L(S, U, (vq, — = z
(£ 1, =) {—(2,12)+(22), vy = 1.

Let = (2,2), U =005 0, 0. We have IU(5, U, vy = {vq, v;, —vy, —v1) for v; > 0.
The only reducibility wall is at v; = 1 and it is of height 4. For v; < § we are in the
unitary case, for vy > % we are near infinity, and for vy = % we have L(%

(L[4, §].[~4- 4])). Hence

3o=30m3) =

(9432, 19 +20H) +3G. D+ @), v <3
D(L(S, U, w1, =)} = § @1+ B. D+ &), v =7,
(19~ @2, 1H+22H -3, D+ @,  v>1

Let S = (1,2, 1), U = (0) B[4, 1] ® (0). We have D(S, U, v) = (v;, [~ 1], —v1) for
vy > 0. The reducibility walls are at v = § (height one) and v; = 3 (height two). As above we
get
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=(1M+22, 1D+ @) +G.D, v <4,

221 +02H+ G, D, v =4,
LS, UM 2 -H+02, 1) - 2D+ 3, D, L<v <3,

20— 3.1), =32,

= (1402, 1)~ @)+ 3.1, v > 3.

Let S=(1,2, D, U = (0)X (0. 0) K (0). Here is T(S, U, v} = (v1. 0, 0, —vy) forvy = 0. The
reducibility walls are at v} = % (height one) and vy = 1 (height 4). We get

= (19 +32, 1) +22) +33, D+ @, <3

22,19 +2,2)+23. 1) + (), v =1,
SLEUMI2 2, )40 0+G.D+@). L<v<l,

=3, )+, vy =1,

= (1 =2 1) +02. )+ G D+ @, vi>L

Let S = (1,1, 1,1). Here we have I(S, U, v) = (v1, v2, —v2, —V1) with vy > va. There are
four reducibility walls, namely those given by the conditions v| = % (height one), vi + v =1

(height two), v = % (height one), and vi — v2 = 1 (height two). We know that the signature
character does not change if we cross walls of height two (9.14) and we can use (9.11) to calculate
T(L(S, U, v)) for those v such that X (S, U, v} is irreducible:

M +32 1) +20H+3G. D+ @), m<v <3,
DL, U )= (19~ 2, 1)+02H + B, D+ @), m<j<u.
(IH— (2,19 +20H-@B. H+@, L<wvw<y.

For representations lying on a single reducibility wall we can use (9.11) if this wall is of height
one:

@ +H+23. D+ @), m<n =3,
(LS. U ) =3 @) +03, 1)+ @,
(22 + 03, 1) + (4),

=vz<l)1<%,

B me b2 i

mv?_<%—<v;.

For representations lying on a single reducibility we use the Zelevinsky involution if this wall is
of height two:

=0+ G)+@, w=1-uv<i,

7

ZLE UM =-@H+ G D+@), n=n-1<3,
=@~ G, D+@), wm=v-l>3

Finally there is a unique representation which lies on two reducibility walls, namely

31t 3

LG 37373)
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Land

and this representation is unitary. It is the Zelevinsky dual of L([—%, ——%, % :

have in this case

]) and hence we

3]

Z(L(S5. U, v)) = (4).
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