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INTRODUCTION
springer [53] uses the variety @B of flags in @@ to define a resolu-

rion of singularities o s+ fOr the variety ¥ of nilpotent matTices in

CL{a,C) - We define "sarcial resojutions” & :uap o ¥ af A bY replacing k)
by a yariety # of partial flags. We use them to extend our analysis [BM] of

the topology of the singularities of o by means of intersection homology and
by Springer‘s theory of Weyl-group repzesentatioms. Both Springer's analysis
and ours ’hold for a general reductive group. in chapter O, for rhe convenience
of the reader not familier with the theory of Lie groups. we ipterpret the

spaces and constructions involved fot the special case ¢L(n,t) , the grovp of

complex jpvertible m ¥ © matrices.
In chapter 1 we develop the general theory of a composition of maps of al-

gebraic varieties

w

Nm
‘/f’—-'n——);/l”‘: s N

E

possessing the key property for our work: all three maps are semismall, 1.€-

the dimension of the inverse image of & point in 2 stratum is at most half the

codimension of that stratum. We relate the ropology of the maps to the inter—
section homology of the closures of the strata, using & decomposition theorem of

EEilinsoanernstaiR and Deligne-sabbez (1.7).

In chapter #2 we set up in more detail the conerete group theoretical
situation studied in this paper. We recall’ Springer‘s rheory of Weyl group

*paerially supported BY the National Science Foundation.
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representations on the homology of the fibers of 7 , and exteqd it in an ap-
propriate way to the fibers of 1n apg £ . We glve some new applications.
For instance, we prove that the variety 4 of nilpotent elements is a rational

homology manifold (2.3).

In chapter 3 we apply the analysis of the first two chapters to a new, uni-
fied study of certain fixed point suybvarieties in generalized flag varieties,
studied first by Steinberg (case 3;,[St2]),resp. by Spaltenstein (case

5::={5P} )}, resp. by Springer (case 5zf,§52} J, and since.then in many other pap;
ers, e.g. [BS], [HSh]. We show how to deduce geometrical data about these
varieties from Springer's Weyl group representations in terms of induction and
restriction. Ip particular, we compute the homcioéy of Steiﬁberg's varieties
(2.8, 3.7), which extends the results of Hotta~Shimomura [8Sh] on GLn y and al-
so of Spaltenstein's varieties (3.7), and we count componeants in Springer's va-
rieties 5’; {3.1). Our setténg gives also some geometrical understanding of

the "induction" of nilpotent orbits in the sense of Lusztipg-Spaltenstein (3.9).

Acknowledgements: We wish to express our gratitude to A. Lascoux, G. Lusztig, T. A.

Springer, and P. Sledowy for helpful discussions. Our special thanks are also
due to the Institut des Hautes Etudes Scientifiques at Bures-sur~Yvette, as
well as to the Sonderforschungsbereich Théoratisehe Mathematik ané_the Max—

Planck-Institut fur Mathematik at Bona for Rind.sﬁppoft and hospitality.
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In this paper, we sh:
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§0 THE CASBE OF GL(n, L)

‘tn this paper, we shall deal with a reductive complex Lie-group G , and
with the variety  of conjugates of a parabolic subgroup F with a Levi-

subgroup L - However, let us consider for vhe purpose of this chapter only

¢ = GL(n, %) the group of invertible complex m X % matrices., Then L and

\ . - a .
P are determined by the choice of a decomposition of into a direct sum of

,E_, of dimension IR Bl s say: L resp. P is the

sybspaces Ei’ ‘s -

subgroup stabilizing each subspace Ei resp. each subspace

e ’Fr) is called &

Fi = E1+EZ 4+ oo F Ei for i=l, ..s 2% - Then F (Fi'

partial flag of type P = (pl, . ,pr) , and & is (isomorphic to) the variety
of ail partial flags of type p . Ome of our goals is to study the gubvarie-
ties 5& of all such partial £lags fixed by a given nilpotent matrix x (mean-

ing that xFicFi for all i ), which were introducaed by Steinberg isr2}.

The partial Weyl~group WP is the finite group of permutations of the

spages El, I ,Er preserving éimensions.- We shall define a linear WP-action

on the cohomology BTCUPS Hl{g;,Q) , called partial Springer representations.

in our analysis, the Steinberg varieties .9}'{ shall be just the fibres of a cer-

tain map & AT ¥, called partial (Springer) resoiutien, which 1s the main

subject of this paper- It is defined as follows! A is the variety of all nil-

potent complex T %« n matrices, AP is the variety of pairs (x,F) consisting

of a milpotent matrix % and a fiag F of type P fixed by x , and £ is

the map which forgets F .

consider the special case P = {1, .-~ ,1) , that is to say F is a tom-

plege flag, or equivalently, P is a Borel subgroup- Notationally, we write &

instead of @ in this case, and we omlt the superscripts p ©7T rhe word "'per—

-
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tial” everywhere: The situation described above reduces to the {ordinary)
Springer representations of the (ordinary) Weyl group W on the cohoanlogy
Hiﬁﬁ%,@) of the fibres of Springerts resolution, which 1s denoted o : oF .4

The map 7 is actually a resolution of the singularities of [ g

We shall study the partial Tresolutions as defined above by means of a
factorization ¥ = &n :.F 4P Ed” of Springer's resolution: the map n for-
gets the complete flag pattially, while rhe map & forgets the partial fiag
completely. We can stratify thesge maps £ resp. n by strata g; Cug’resp. 6}
e AP as follows: The strata 6; are just the conjugacy classes (G-erbits) of
nilpotent matrices. A strarum t; consists of all pairs (x,F) of a nilpotent
matrix x and a partial flag ¥ ¢ P such that x ‘fixes F , and induces on
all subquotients Fi/Fi-l £ Ei an endomorphism t; of a given Jordan-type (de-
pending on i ), For these stratifications of § resp. n . 1t turns out thag
the fibre always has dimension less than or equal to half the codimension of the
corresponding stratum. A proper algebraic map with this property is called
semismall. For the singularities of such maps, a particularly elegant descrip-

>
tion in terms of intersection homology sheaves, is available, see 1.5. We apply

it te w,7,& to derive our resultrs.

Let us consider the singularity structpre of the varieties _é; , the clo-

sures of the strata Qg of AT There is a unique closed stratum, say 620 R
consisting of those pairs (£, ¥} such thar the nilpotent matrix__x acts

-trivially on all subquéfieﬁts.of fhe flég. F. if.ié easy to see that ﬁ;o
identifies with the cotangent bundle T+ of # (by the map forgesting x ).

There is a teopological (not algebraic) fibration of AP onto TP which makes

€ ' into a fibre-bundle with base T#%#, and fibre &t » the predescribed (L-)
¥ .

28
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conjucacy class of nilpoter

31 v ’Er + Sipce T*P
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conjucacy class of nilpotent endomorphisms (tl’ ’tr} =t , say, of

’Er . gince T*F is smooth, the varieties 5}, have the same singu-

larity type as the varieties ‘Et . This explains how the intersection homology

sheaves of Ey relate to those of 51: R

Tn each Steinberg variety % of flags F fixed by = , we may consider

.?it) of flags such that the endomorphisms induced by = on

the subvariety

' £
the subguotients belong to ﬁt . The closures .?X of these varieties general-

ize the Stelnberg varieties {case t 'in genperal position"}, as well as the

varieties studied by Spaltenstein in [Sp] {case t = 0 )}, and ian

{EM], §7. Tn our setting, we can study them in a unified manner,

since they all occur as fibres of cur partial resolution restricted tc Ey N

the closure of the apprepriate stratum. Extending results of Springer [S52], and

Hotta~Shimomura [ESh], we will show how to deduce geometrical information on

the varieties 5"; from representation theery of Weyl groups, For the case G};;n

considered here numerical data such as the Betti numbers have elegant explicit com-

binarorial descriptions in terms of Kostka pumbers, semi-standard tableaux etc.

However, we will forego the combinatorial aspects here, and refer instead o

[BSh], and te (Md] for this ropic.
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51 SEMISMALL MAPS, INTERSECTION HOMOLOGY, AND THE DECOMPOSITION THEOREM

1 Semismall maps and relevans strata

Let 7 : Z+ X be a proper algebraic map of one (nonempty) irreducible
complex algebraic variety ontg ancther, Let X = §{¢§ be a disjoint decompo-
sition of X into a finite number of irreducible smooth subvarieties, called
strata. Here =z denotes a distinguished base peint in the stratum e; . He

assume that this stratification makes = a weakly strarified mapping, f.e. that

it satisfies the following condition: For each stratrum t; » the restriction of
. -1 . . . . . 5
T to its preimage 7 6; 18 2 topolegical fibration with base 6; and fibre

lex . (Stratifications satisfying this condition always exist, see [Hd] and

iTi, p. 276.)

We denote by dx the dimension of the fibre ﬁ‘ix and by c, the codi-
mension of the stratum gi i.e. e = dim¥ - dimdi - If not otherwise stated,

"dimension” always means complex dimension,

Definition: The map ¥ is semismall, if 2dx < e, for all =x . A stratum J;
is relevant for W , if equality halds, de e, - Amap is small, if it is

semismall, and the only relevant stratum is the dense one.

Remark: The properties of 7 ‘being semismall or small do not depend on the

choice of a stratification. That = is semismall can be rephrased in a strati-

fication free way as follows:

for all i, dimlp ¢ X|dim n'lp 2 i} = dimx - 24

PARTIAL

1f % 1is semismall and is
one to one correspondence |
ficatiocns. Corresponding

intersection is open (and ¢

1.2 Monodromy-representati

The fundamental group
group of the corresponding
Since 2d_ < ¢ , V  has a

X % X
ible components of ﬂ_lx ., E
representation of Wi(gl) ¢
sentation of the loeal Syste
striction to 6; + Here ¢

Z . Let us write

M He T gm(x,¢

for the decomposition of vy
irreducible representations
Hi i —
omﬁl(é;)(v¢,vx) iz a Q-vect
multipiicity of ¢ in ux .
a §vecter-space V  determi

resentation p (i.e. a local

e; + With this notation, we

(2)
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1f ¥ 1is semismall and ig stratified in two different maps, there will be a
one to one correspondence between the sets of relevant strata for the two strati-
fications. Corresponding strata are characterized by the property that their

intersection is open (and dense) in esach of them.

2 Moncdromy-representations of local systems

1

The fundamental group of a2 stratum ei acts on the highest cchomology
24
i

group of the corresponding fibre ﬁ—lx , denoted Vx =8 *(1 "x,0),by monodromy.

Since de < ey s VX has a basis '.:orrespoa:tding to the éx éia—tensional irreduc-
ibie components of n_}g , and ﬁiﬁéa) acts by permuting these. This linear

representation of ﬁl(gg) on Vx is denoted H_o. It is the m;godromy repre-
sentation of the local system on E; obtaired from the sheaf R XH*S{Z) by re=-

striction to @; . Here @Q(Z) denotes the constant sheaf with stalk €§ on

Z . Let us write

(n Hew ém(x,¢)¢ or alse V_ = %gvé [ ?(x,¢)

for the decomposition of u (within the Grothendieck group) into inequivalent

irreducible representations ¢ : ﬁl(ﬁl} - Endv¢ . Here V{X,¢) =
Homﬁl(gi)(v¢,vx) is a f§-vector-space of dimension m(x,¢) = mtp(¢,gx) , the

multiplicity of ¢ in My * Now any linear representation p of “1(6;) on
a @—vector-space V determines a umique local system Lp with monodromy rep-

resentation p (i.e; a locally constant sheaf with stalk Vp over x ) on

d; . With this notation, we may write

LI-IX =@L¢ g V(x,d!)
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for the decomposition of R xW*Q(Z)lﬁinto indecomposable local systems derived
Ty

from {1}.

Definition: Assume 7 semismall. A pair (x,¢) as above is relevant for =«

if the stratum é; is relevant (1.1}, and if the irreducible representation ]

cf its fundamental groups cccurs in ux , f.e. 1f ¢ satisfies

Lemms:

2} The muitiplicity of the trivial representation ¢ = ]

Yy 70

oM M T

dimVv s coincides with the number of = (€ )-orbits in the set of g —dimen-
(x,1) 1Yy %

sional components of ﬂmlx .

b} The following are equivalent:

(i) For at least ome ¢ , (x,9) is relevant for =# .

(i1} (=,1) 4is relevant for 7 .
(iii) t; is relevant for 7 .
Procf: It is implied by the definitions, that V<
2a
of Wlfﬂx}—invariants in V‘x =u *r lX,Q} . The

interpretation of UX a8 a permutation representa

i:4 Intersection hemelogy

1) identifies with the space

lenma is now clear from the

tion. Q.E.D,

Given a local system L¢ on a stratum g; as above, let ICt(L¢) dencte

the intersection homology sheaf with coefficients in L¢ + This is a certain

compiex of sheaves of Q-modules on 2; defined as

dle perversity) up to a dimension-shift of —Zdimei

32

in ([GM2], §2.1 or 3.1, mid~

+ such that g“{;g‘{L¢)) e~

PARTIA
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stric A 6

sheaf of a complex, and

local intersection homolc

1.4 Rational homology ma

Recall that a compl
(of dimension n ), or is

we have

Ei(X:

Here Bi denctes ordinary

n has pure dimension =

Rational homology ma
They may be thought of as
example, Poincaré and Lefs
amples of rational homolog
ties, the modull space for

are rational homology mani
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1
gericted o t; is L¢ . Here and below E {...) denotes the i-th cohomology—
gheaf of 2 complex, and (...)u wiil denote the stalk at u of 2 sheaf. .The

local intersection homology groups of £ at apolnt uc &, are defined by

]

i,= i .
Iﬁu€$;,L¢} B(Ig @), -

.4 Rational homology manifolds

Y

Recall that a complex variety X is called a rational homology manifold

of dimension =n y, or is said to be rationally smooth, if for all points u € X

{

we have

@ fer i = 2n

H, (X, X ~ {u}; @) =
0 otherwise

Here Hi denotes ordinary homology. A rational homology manifold of dimension

n has pure dimensions n as & complex variety.

Rational homolegy manifoids are ciassical objects of topelogical study.

They may be thought of as "nonsingular for pﬁrposes of rational homology™. For
2 duality hold for them in rational homology. BEx-

example, Poincaré and Lefschet
amples of ratiomal homology manifolds inclunde surfaces with Kleinian singulari-

genug. More generally, v-manifolds

ties, the modull space for curves of a given

are rational homology manifolds.
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PROPOSITION. The foilowing are equivalent:

(i) X is a rational homology manifold .

(ii) For all u e X,

Q for i=0
i
IHu{X,Q) =
0 for i4# 0

. (%) for i =0
(iii) ey =
I for 1 #90

Proof: To prove that (1) implies (iii), consider the dualizing complex 2;{-2n]
of X with rational coefficients {see [GM2], §1.8) where {-2n] denotes a dimen-

sion shift by -2n . The dualizing complex satisfies
H (Dp[-20]) = H, (X, % - u Q)
=X u 2p-i *0e ’

s0 by {i} the map 8{X}) ~ Q;I—En} iduced by capping with the fundamental class
of X wust be an isomorphism., Further the Verdier dual of gé[—Zn] is @(X) .

Therefore 0(X) satisfies the axionms AX3 of [GM2} characterizing ég'(q} .

Statement (iii) clearly implies statement {ii), so the Interesting part is to

show that (ii) implies (i).

To do this, we proceed by induction on the codimension ¢ of the stratim

of a Whitney stratification of X containing u . For ¢ =0 » X is smooth at

u so (1) is clear. Suppose we have established (i) for all strata of codimen—

PARTIAL

sion less tham ¢ . By st

TH (R, X - ug

where £ is the link of t
&£ is a rational hemology 1
duality over @ . Therefor

dimensions; that is it is e

H, (&

However, for ¢ <i < 2¢ 2 1

80 we are done.

Remark: It is not true that
w.e X impiies the vational
ample consider the ccne over

complex projective plane and



PARTIAL RESOLUTIONS OF NILPOTENT VARIEIIES

jon less than ¢ .- BY standard Kunneth and coneing arguments,

4 for i s 2n-ic

H (X, X - ©5 )=

H 1@,@) for 1 > Z2n-2c

i~2n+2c—

here ¥ 18 the link of the stratum containing u© . By the induction hypotheses

% is a ratiomal homology manifold of dimension 2¢ = 1 so it satisfies Poincaré

juality over @ . Therefore it is emough to calculate its homology im half the

limensions; that is it is encugh to show
@ for i = 2e-1

BB =
¢ for ¢ =i < Ze-1

jowever, for ¢ £1 < 2c , we have

IH2(:—1»1 (% 0)

i

1, (BQ

ESZc-}.—i 0
13

n

s0 we are done.

Remark: It is not true that condition (ii) of the propesition for a single point

ue X implies the rational homology manifold condition at that point. TFor ex—

ample consider the cone over a surface obtained by identifying twe peints of the

complex projective plane and suitably embedding it in projective n-gpace.
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of the strata
We now come to the central topic of this chapter. From now on, our map
T 24> X will always be projective apd semismall, 2 will be rationzlly smooth,

and X will have the same dipension as 2 .

Theorem: Assume that our map W : 4+ X 1is projective and semismall, that 2z

is rationslly smooth and that dimx = dimZ . Then for any u e £, we have

i-2d
(g%%) W, @, L. Ver.o) °

i

(%) Bz, )

where the summation is over all pairs (x,¢) relevant for 7 (but the contribu-

tion is zerc unless u e 6; ).

In other words, the echomology groups of a fibre H—zu can be computed
from the intersection homelogy of the closures of strata 5; containing u , yge
ing only rhe highest cohomology groups of the corresponding fibres m”ix . This
theorem will be an immediatre consequence of the decomposition theorem §1.7,
established by Deligne, Gabber, Beilinson, and Bernstein on the more abstract
level of derived categories. Formula (#*) will follow from the decomposition

formula §1.7 (#%) by applying the functor §i(...}u .

In the next section, we develop preliminaries hecessary for the decomposi-

tion theorem.

36
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Beilinson-Bernstein, This
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dim{su

whera 2 is the Verdier du

of dimension n , o) =
We shall need the fol:

L. (IGM2]), §6.1) for a st1

only if £ = —2dx .

2. (Beilinson, Bernstein, D
whose ohjects are perver
exactly those of the for

X and some simple repre
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1.6 FPerverse sheaves
:ﬁ_——»——'—"‘-‘—"—""‘"—-

The idea of a perverse obiect in Db(x) was introduced by Deligne and

Beilinson—Be:nstein. This is a purely topalogical concept. A complex g' on a

purely n-dimensional variety is perverse if ir satisfies the support condition

dim{support §l§ ) € n-1

and the dual support condition

dim{supportl gigg-[~2n]} < p-i

where ¥ 1is the Verdier duality map {normalized so that on a smooth variety M
of dimension n , E(QM} = gMiZH])~

We shall need the follewing properties of perverse objects:

is a perverse cbject if and

1. ([@21), §6.1) for a stratum & ., It 18]
only if & = —de .

2. {Beilinson, Bernstein, Deligne, Gabber {p3]) The full subcategory of DE(X)

whose objects are perverse forms an Abelian category whose simple objects are

exactly those of the form ji;g'{L¢)[—2dx] for some stratification {éi} of

¥ and some simple representation ¢ of nl{g;) .
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4:7 The decomposition theovem of Beilinson, Bernstein, Deligne, and Gabber

Suppose now that ¥ : 2 + ¥ .18 a proper semismall map of a rational how
mology manifold Z of dimension n to a purely n-dimensional variety X . Then
é.m RT 0(Z) is perverse. The support condition follows directly from the fact
th;t T 1is semismall and proper. Since Z is a rational ﬁomulogy‘éanifold of

dimensien n , we have Y 9@ = Q(2)[2n] . Therefore

-

= LR, 002) = Rr, ¥ 0(2)

s
lip=

= RM Q) [2m]) = (Rm, 8(2))[20] = 4" [20)

8o the dual support condition holds zlso.

Decomposition theorem: Assume that our map ¥ : Z * X is projective and Semi-

small, that Z is ratiomally smooth and that dimX = dinZ . Then in the cate~

gory of perverse sheaves on X .

a) Rji;g.(L¢)f~2dx} is a simple object for each (x,¢) ,
- - K
b) A = Rm,0(2) = (59@ B3 IC (L¢)[—2éx] B Vieoy 2 (%)

where the sdm extends cver all pairs (x,$) relevant for 7= .

Proof: Part a) follows from property 2) of §1.6. To obtain part b), we first
Jwrite the more general decomposition theorem of Bellinson, Bernstein, Deligne,
and Gabber {D3], [BeBel, [GM3} which asserts that for any projeefive map

i Z+X,

PARTIAL RES

RC(Q) =
(z

for some subvarieties 6% , &

ome vector s es g
and som clor spac (x.4
formula is just R, 9(2) = 4

remains to check that the dat

claimed in the theorem.

Since T : Z + X is we
sheave §i A are locally con
to be a subset of the 6; -
—-2dx + To determine the rema:

6;. + Only the terms of the 1

the support condition for ;g'

L¢ must be Lé and V(x.¢,i]

1.2 Example: small WMAPS

Assume that the only st
T is an isomorphism above thi
small resolution. In this cas
%and. More generally, if #

of Goresky and MacPherson [GMZ
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N - JEa" T -
R, 1C(Q) B (x%ﬂﬂié—ﬁ LI 8 Ve o

Kiwie

me subvarieties &, on &, some integers &% ,

for SO some local system$ FI:@
snd some vector spaces V(X 6.2 In our case, the lefr hand side of this
formula is just BT, 8(Z) < " since Z is » racional bomology manifold. It

% that the data &‘st¢-R’s V(X.@,i)

regains to chec on the right hand side are as

claimed in the theoTem.

gince ¥ 3 Z * X ig weakly stratified by the ﬁx , it follows that the
sheave }__ii é are locally coustant on the ﬁx , therefore the 5}( may be raken
to be a subsetl of the (); ., Since én is perverse, th;dintegers g must be
24 . To Jetermine the remaining data, we consider H x! 3=\' restricted to
lﬁx, . Only the terms of the right hand side with x = x' coatvibute Lo this by

the support comdition for }__E. (see axioms AXL of [GMZ]). Fer these we see

myst be V(x.da} for equality to held.

L 7
L@ must be Lﬁb a;zd TR

1.8 Example: small maps

Assume that the only stratum relevant for % is the dense one, and that

1 is an isomorphism above this stratum. Or in other words, assume 7 is a

‘small resolution. In this case, the sum in (%%} reduces Lo a single simple sum-

mand, More generally, {f 7 is swall, then (**) reduces essentizally to a result

of Coresky and MacPherson [cM2], §6.2.
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1.9 Reformulation as an Artin-Wedderburn decompesition

The decemposition theorem 1.8 says that é' = RW*Q(Z) is semisimple as
an object in the category of perverse sheaves (51.8), so ir has a semisimple.

endomorphism-ring, which admits an Artin-Wedderburn decomposition into a dirsct

product of matrix rings over skew fields. We may express it in terms of the

decomposition formula 1.7 (%*) as follows:

, where K is the skew-

& EndQV (%,8)

Corollaxy: End g. = I K
s (x,%) {(x,8} (x,¢)

field of endomorphisms of o

1.10 Product of two semismall maps

Assume that 7 = £n is a product of two proper algebraic maps

n £

Z——>Y —=X , that =n,,n are semiswall, that Z 4s an n~dimensiomal rational

homelegy manifold, and that ¥ and X are purely mn dimensional. We choose
stratifications {t@} of ¥ and {6;} of X so that m and n are weakly

stratified. Maintaining all notatioms previously introduced for 7 , we have a
decomposition formula
- &
= R w @ i - v
{1; 4 7, 0{Z) Ri, IcC (L¢)[ de] 2] (. 8)
(x4}
for the map 7 , and using the strata 62 €Y for T we have with completely

analogous nctation another decomposition formula

o N I Iy [
) 5 = ’n,g(2) (@ R e

PARTI
*

for the map ©n . They

(3)

Our purpose is to

cerning the fibres of

Let us consider f

of & to éﬁy .

Lemma: For each pair ¢
2d_ .

- 1

ROMED,L IC 1) (-2 )

2d -2

with stalk ® * (&

¥

Here H(...) den

obtained by restricting

Proof: This is locally

de

R 3
(Ey . v

T is weakly stratified,

16° (L) [-2d,)

Te identify the st
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;¢ the map n . They are related by the fact that

» A = RELE
gur purpese is to analyze this relation, and to draw some conclusions comn-
erning the fibres of £ .
1et us consider fer each g; relevant for T the restriction Ey = gjy
to 5 .
£ E y

Lemma: For each pair (v,y) relevant For n and for each % , the sheaf

Fa
R X(Sy)* ic (L¢)[»Zd ] will be a locally free sheaf when restricted to 6;
= y
74 -2d

yith szalk H° Y{E;lx, < L,

Here H(...) denotes hypercohomology of the complex of sheaves on E;lx

cbtained by restricting g' (LIJJ)

by the decomposition formula for 1,

Proof: This is locally free because,
24
LR ¢3 s ;g'(Lw)[—de} wili be a direct summand sf R XH*Q(Z} which, since

T is weakly stratified, is logally free on 6; .

To identify the stalk, ferm the diagram
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-1 b —
iy x T3 6}
a l Ey
fx}—e s ¥
o
2d_ .
Then R (Ey)* Ic (Lw)[~2dy]x
2d,-2d, .
=H ° c*R(Ey}* I (Lw)
2d_-2d .
=m * Trap” 1o (L)
24_~-2d
- x Y1 ;
2! €Ey x, IC (Lw))

Remark: In the event that é; is rationally smooth at all points in E; x

and LW extends to a local system 1.. over E_l

v

% , then

i,.-1 - .
B, 16 @) = B (€], T)

so the stalk of the local system is an ordinary howmology group which twisted co-

efficients, If ﬁ& is rationalily smooth at all points of E;Ix and Y =1 ,

then

RGN | AP S
H (sy x, 1 (L$)) =HE s, Q).

PAR.

We write the dec

system in to isotypice

2¢
(&) biid

where V¢ is a simgie
.0 . .. (v, 0}
B,) T PV (ko 0)

decompositions of the

2¢

() ¢

by whick we introduced

Propesition: For all p

(6) RERIL IE (1,
Procf: The perverée shu

=

RERi) IC-(L$){—2dy] i

semisimple in the categ

must be a direct suam of
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e write the cecomposition of the monodromy representation for this local

stem in to isotypical componeats as follows!

2d_~2d
-1 ' (7.9
. 8 * 7 ic (L =@v BV
) & 1 G =% ° Tee)
ere V¢ is a simple ﬁl(él) representation occurring with multiplicity
Ei‘ﬁ) = dimvgi’ig . Here we chose the notation analogous to that used for the
X b

scompesitions of the monedromy representations for T resp. n (ef. 1.2),

2d
a (v x, © =@v B v resp.
S $ {x,0) _

) 2d 1
: BTy, © —-“$v 8 v ,
RSN

y which we introduced the yector-spaces V{x‘¢)resp. V{yﬁw)

regosition: for all pairs (vy,¥) relevant for 1N , we have

¥ oot _ ~ X et . (y,¥)
DR R O (@MRJ* a2 e v

reof: The perverse sheaf Rjz ;g.(L¢}[w2dy] i a direct summand -&f-Bo—y-80
£R1) 167 (L) [-24,) i a divect sumand of. REB =4 . Since s is

enisimple in the category of perverse sheaves oL ¥ , any direct summand of é'

wst be a dirvect sum of simple constituents of é' Thus one has some decompo—
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sition of RE*Rjz Ic (Lw)f—Zdy] into intersection homelogy sheaves of subvarie~ : i-24
- -1

H o Y,
¥

ties of X ag in the proof of theorem 1.7, The identificarion of the data for
these as the data given above procesds ¢xactly as in the proof of theorem 1.7,

Procf: 1In view of the rem;

ositign f 1 : i
;é A douhle decomp o formula 51(--»)u to formala 6 in ¢

1.

From (6), (2), and (2) above, we obtain tha following double decomposition

formula for A = Rw 0(Z) :

! i% 70t o1
7 A Riy 16 (L) [-2d ] 8 vT0) 4 4
(@p) ()@p) * 7% T V,e) @ iy

i
!

Comparing this with the decomposition (1), we obtain the

. = (¥, ¥}
(8) Corollary: V(x,¢) = 6}) V(x,¢) 4 ny,¢3

(r, i)

1.12 Srrata with rationally smooth closure

Theorem: Let u € X . Assume thac B; is rationally smeoth (1.3) at all points
which £ maps to u . Then the cohomology of the fibre g;lu is given by the
SELER 2dFs o e e, o OZUEY 01 the fibre ~Z exYEl by the

following formuia:

i-24 i-24
Yermk ~ Xz (37;_-1)
(9 it E,u @ = (@p)m" @ 1) 8 Vs

If Lw exteﬁds to a loczl system E¢ over E;lu s then
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i-24 i-2d
Yol Ty = Ko a8 (v.9)
H {E)’ b L“b) - (@@) IHU (ﬁx, Ld)) V(X,¢)

proof: In view of the remark in §1.10, this results from applying the functer

Hi(...}u to formula 6 in §1.10.
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(w1, #85, m. @

§2 GENERALIZATIONS OF SPRINGER'S RESOLUTTON
AND SPRINGER'S THEORY OF WEYL-GROUP REFRESENTATIONS

1 Stelpberg varieties as fibres of partial resolutions

Let & be a connected reductive complex algebraic group, W =.HG) the
variety of all nilpotent elements in irs Lie—algebra g » B =FB(C) the varie—
ty of all Borel subgroups of & , and 9 the variety of all parabolic sub-
groups conjugate to a fixed one, denoted P |, which is chosen Gnce'and for a11.
We are going to apply the general ideas of the preceding section to. analyze
Springer's resolution of singularities for tﬂe variety ¥ . TFor this applica-
tion, let us specify now rhe data considered in 51 as follows: First, X = .4,
and 2 :jcﬂxﬁﬁ‘ is the variety & of pairs f(x,B) with x ¢ Lie B . More-
over, 7 : Z + X is the wap which forgets B . This is the Springer resolu-
tion. Alternatively, .4 may be identified with the cotangent bundle T*4 ., and

thea # 1is the moment map of & . see [B3], 52. Second, Y is the variety

PPy =@ of pairs (x,P') with x ¢ Liep vand £ Y X forgets p!

This we call a "partial resolution™. Firally, n: 2 +Y sends (x.B) to

(x,P'} ., where P' is the unique parabolic subgroup of @ belonging to & ang
s .
containing B . Note that our factorization 7 = N meaus just this: Forget

B wnot at once, but "in two steps".

It remains to specify the stratifications X = gé;{ for w and ¢ resp.
Y=V€ for n (as in 1.10). The strata ﬁx are just the orbits of ailpotent
v -i . -
elements under the adjoint action of G din B - The fibres % 'y “identify
with the varieties% of all B e#B with x ¢ LieB . Their dimension dx is

kacwn  ({StZ], Thw. 4.6) to satisfy 24y =<y ¢, being the codimension of

46

€ in X (cf, 1.1).
%

with all 6;{ relevant,
small. Tts Ffipres £_l>
x € LieP' | yhich have b
of our goals is to refor

£ .

p.4

Since the spec ific:

Postpone it until secrior

Remark: 1In [BM] 87, we
(the moment map of 5.
stratum in a?fP {see §2.1

are denoted 5’2 in the p

Z:2 Recollections on Spri
= e ZohONS on Spr

Now the general theo
formula for the obiect g'
in 1.7. But in the specif
interesting additional str

by the main resyir of [BM]

from the Broup ring of @
definition of this aceton ¢

morphism of __A. can oniy a
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g in X (ef. L.31). In other words, the Springer resolution 1 is semismall
e semlsmall

with all é; rejevant. It follews that the partial resclution £ is also semi-

small. Its fibres Ehlx identify with the varieties d; of all P' e & with
x ¢ LieP' , which have been extensively studied, first by Steinberg [5t2}. One

of our goals is to reformulate and to extend the theory of Steinberg varieties

£ -

X

gince the specification of cur strata ﬁy is slightly move subtle, we

postpone it until section 2.7, where we shall see that n 1is also semismall.

Remark: In IBM] §7, weé comsidered the “generalized Springer resolution” :4%

{the moment map of & ), Ia the present terwminology, UJ; is the unique closed
stratum in ¢?§ (see §2.10). Moreover, the varieties denoted 8; in [8M], §7,

are dencted 3’2 in the present paper (see 3.2).

2.2 Recollections on Springer's correspondence

VNow the general theory of 8] applies, and we have e.g. 2 decomposition

formula for the object 4 = R, @(Z) in the derived category Db{X) , a8 stated

in 1.7. But in the specific situation considered here, A  carries also an
interesting additional structure: An action of the Weyl-group W of G which,

by the main resul:t of [BM], gives rise to an isomorphism

a i Q[W]—nEnd

el

from the group ring of W to the endomorphism ring of g‘. We shall recall the
definition of this action {due to Lusztilg [L]) below in §2.6. Simce any auto-

worphism of é' caz only act by "permuting isctypical simple direct susmands,
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the W-action on A is given by a collection of linear representations p(x )
E)

on rthe § vector spaces V(x &) oecurring in the decomposition formula 1.7 (%),
L

THEOREM (Springer correspondence) @ The pairs (x,4) relevant for the Springer

resolution ¥ are in bijective correspondence to the irreducible_characte;s,gg

the Weyl group W, by (x.¢)4—*§%x 6)

In fact, this is an immediate coroliary of the isomorphism o above, which
follows by comparing the Artin-Wedderbura decomposition for ©iW] on one hand,
with the decomposition for é‘ {in the form 81.10) on the ather hand. (It

turng out that all the K of 1.9 are § ).

(x,9)

Fipaily, we recall that the ¥ action on é. glves rise to a2 W action on
Hicgi, Q) = gi{éb)u by functoriality for each 1 and u € X . This turns out
to coincide, after a multipiication with the sign-character, with Springer’s rep-
resentation defined in [51), [S2], see Hotta {4], and [AL]. Mereover, it is
clear now that formula 1.5 (%) describes exactly the decomposition of Springer's
W representations onﬁiﬁﬁi Q) into irreducible constituents, as conjectured and

proved for G = SLn by Lusztig {L], and fipst proved in general in [BM].

The formula may be stated alternatively this way:

) 1-2d
i i~ K
(%) Hom (Vi gyr B B @) =3 @, 1) -

© It has recently been used to computs ekplicitly all p(x ¢j with ¢'= 1 [AL].®)

*)N. Spaltenstéin told us in December 1981 that he has completed the explicit com
putation of Springer's correspondence for all ¢ using this formula.

48

PARTIAL

2.2 The nilpotent cone is
Earal

We now give an applica

stated in 1930, but seems t
THEOREM: 4 is a rational |

For the definition in ¢

homelogy, recall 1.4, We he
i
IHUC/KQ) =

Let di be the dense stratu

is the trivial representatio
i -
I (4Q) 2

30 the theorem reduces to the

LEMMA (Lusztig): The trivial

tation Hléﬁi, Q) with mulri

2.4 Generalization of Grothe

The Springer resolution
which is well-known as the Gr
and which is defined just by
of T (cf. 2.1). Similarly,

resolution £ :05? = Y o X o=,
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;==3‘ The nilpotent cone' ig rationally smocth

Wwe now glve an application of ‘the above theory. The result could have been

rated in. 1930, but seems Lo be new:
HEOREM: ¥ 1is a rational hemology manifold.

For the definition in classical terms, as well as in terms of intersection

omology, recall 1.4. We have to prove for each u g ¥

IHiQA{Q) = g resp. 0 1if 1= 0 resp. » 0 .

et & be the dense srratud of ¥, & =.4. Then d&_= g9, and P =1
% -4 X (%,1)

s the trivial representation of W . Hence 2.2(%) says that

mioko = B, 7 (- i-inverians)

o the thecrem reduces to the foliowing lemma, which will be proved im §2.9.

The trivial representation 1 oceurs in the Springer Teprescn—
ine Lrivies in rhe Springer TERTEBBL

JEMMA (Lusztig):

-ation Hl(,?il, Q) with mulgiplicity 1 vesp. 0 if i=0 resp. > 0 .

5 simultaneous resolution

L4 Ceneralizationm of Crothendieck’

The Springer resolution W . A= 7 + X = A4 extends Lo a map w' ot _?E'* g

anich is well-known as the Grothendieck simultaneous resoiution (ef. [Stl], p.131),

and which is defined just b¥ omitting the restriction % € in the definition

of 1w (ef. 2.1). Similarly, and more generally, we may extend the partial

resolution £ :jP =y > X =.4 to a “partial simultaneous resolution”
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~ C WP
£ :§P+g . Here g is the variety of pairs (x,P") with x £g s P e #@

sych that =x ¢ LieP' , and &' forgets P* . Alternatively, the variety é@
may be described as an associated fibre-bundie € xP LieP . Here we use the
P

following notation: If P acts on 2 set M, them G X M= (G X M/~ is the set
of orbits under the free P-action {g,m) -+ (g p_l.p m) in the produst G X M .
(3f M is a variety with algebraic P-action, then ¢ P M is a varilety with al-

gebraic G-action.)

LEMMA: The map A P forgerting x is a vector bundle with fibre LieP ,

witich identifies with G xF Lie?P ~ G/P .

Remark: Zet us mention that the decomposition of g into finitely wmany "decom-
position classes" (Zerlegungs-klassen), as studied in [Bl], provides a very
ratural expliicit stratification for #' and £' . However, for the purposes of

the present paper, it suffices to make explicit the unigue dense stratum, which

is the set g . of regular semisimple elements.

2.5 Coverings of the regular semisimple elements

Let '5rs be the set of regular semisimple elements of g , and let

£ :‘éfs -+ j%s be the part of the partial simultaneous resolution lying over ir:

P P P
N S
g g J’E' g"
& .
W 4 i g :

B0

PARTIA

Let L be a Levi subgro:

(the “partial Weyl group'

LEMMA: The map &7 .’;-;SME

deck transformations.

In the special case
torus T and WP =W is
well known to be 2 primei
tions., In the general ca
P containing the unigue 1
these are parametrized by
Moreover, the canomical me
P containing it induces =
fibration, so that ESS i
acts by deck transformatic

N (M)W = W acts b

Remark: Tt can be shown t

s ~F
tiong of grs over Brs .

2.6 Generalization of Lus

Denote by i the in.
from . -the category of local
H ¥ H

ogal system on grs

sheaf on g with coefficic

Froposition: a) The objec
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P
Let L be a Levi subgroup of P ., and iet W denote the finite group NG(L)KL

(the "partial Weyl group™).

LiMMa:  The map £ i?_?_ covering projection gis B on which W? acts by

deck transformations.
dece irapss reR 2

In the special case when P 15 a Borel subgroup B , then L 18 a maximal
torus T and WP =y 1is the ordinary Wevl group {relative T Y, and £ is
well known to be a principal Wefibration, so W acts on it by deck transforma-
tions. In the genmeral case, a fibre (E”)_l(h) consists of those conjugates of
P containing the unigue maximal torus, T < L say, such that k¢ LieT , and
these are parametrized by the right cosets of W with respect to W{L) = NL(T}/T .
Moreover, the canonical map sending a Borel subgroup te the unique conjugate of
P containisg it induces a covering map §fs +E§s , which is z principal W{L)
fibration, so that Efs jidentifies with the orbit space W(L)\Ejs . Since W
acts by deck transformations on ézs , it is mow clear that the group

N (W(L))/W(L) = WF  acts by deck transformation on gfs .

Remark: It can be shown that WP is even the complete group of deck transforma-.

tions of Eﬁis over E:cs .

kY

2:6 Generalization of Luszrtig's Weyl group action oo 4

Denote by i the imclusion of 4 in g . Consider the functor i*(g.(.))
from-the category of local systems on Ea:s [d¢) Db{u'i’). This associates to a
local system & on ‘5\:3 the restrictioﬁ to 4 of the intersectiom homology

sheaf on g with coefficieats in Z .

. ~P
Proposition: a) The object 4 P RE*QG/V} is obtained by appliying the functor
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i*(;g'(.)) to ‘the local systenm ;g(gis) . b} The action of WP on e

by deck transformatioms (2.5} induces a WP action on object Q.P

Proof: 1In fact, since é? is smooth (lemmaz 2.4), and since the map &' : EP + g

is small, or more precisely is semismall with Ers as the only relevant stratum,

§6.2 of [GM2] applies to give

e @) =reLeH

This implies a) of the proposition, that is

14018 (230G ) = e, 8160 = 47T

because the left square in the diagram in 2.5 is a fibre square (or in other
words JFP ig the full preimage of 4 under &' )., Now b) is an immediate con=-

sequence of a),

Remark: For the case whem P is a Borel subgroup, this isg Lusztig’s comstruc~
tion of 4 W actiom on g‘ = Rw*gcyfﬁ, see [L}, [BM] (Note % = E then.).
In this case, one can prove that the endomorphism ring in Db{§) of RE;g(g)
{which is just that of RE;Q(EIS) ) is taken isomorphically onte the endormor-
phism ring in Db{JV) of é- by the function 1% . This behavior of an endo-
morphise ring in the deérived category to be preserved under the image of an in-

¢lusion is extremely unusual.

2.7 Invariants of g.

Let P = LU be the semidirect decomposition of cur parabolic subgroup P

into its unipotent r:

identifies with a sut

Propesition (notation

a)

b)

Here the supersc
automorphisms of objec
invariants, The objec

verse sheaves (see §1.

Proef: We have seen {

from the principal W
R S ~

tion: ﬁrs W(L)\grs

tained from the local
{1}

Applying the functor g
ing the argument which
Next bB) follows similar

2.6a) for both cases,
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into its unipotent radical U , and 2 Levi subgroup L . The Weylmgroup of T .

" jgentifies with a subgroup W{L) of W .

?rogosition {(notation 2.5):

a) reo(E) = kejg@) ™
») RE @A) = (REQHTD

Here the superscripts W(L) denote W(L) dinvariants. Note that for
automorphisms of ocbjects in an abelian category, it makes sense to spaak about

invariants., The cbjects considered here are in the abelian categories of per-

verse sheaves (see §1.6).

~p
proof: We have seen (cf. 2.5) that the covering g . Ers T Brg is obtained
from the principal W fibration o B - Ee by dividing by the W(L) ac~
N 2 - e ~P
tion: g~ W(L}\grs . Therefore, the local system E*g(ﬁrs) on g . is ob-

tained from the local system ?’32@15) by taking W(L) invariants:

88 near,) = (me »"

Appiying the functor E. , this equation yields part a) of the proposition, us-

ing the argument which was used already at the beginning of the proof of 2.6.
Next b) follows similarly by applying the functer i*(1E {.))y to {1}, using
2.62) for both cases, P a Berel subgroup, and P any parabolic subgroup.

Q.E.D.
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2.8 Computation of cohomology of Steinberg varieties

COROLLARY: For 21l u e ¥ and i ¢IN, we have

i U 3 W{L)

Proof: This follows from 2.7b), by applying the functor Ezii(...)u , Since

1

=@, while TluE@ .
1 o

Remayks: This result was proved by Hotta and Shimomura for the special case
G = GLn » using a spectral sequence argument [HSh]. We shall rechtain this

result {(even on the sheaf level of 2.7b)) alternatively in §3.

2.9 Completing the proof of theorem 2.3

We note that corollary 2.8 gives immediately Lusztig's lemma {2.3), and
henice completes the proof of theorem 2.3. In fact, if applied to the trivial
case where P = G , then all % =& reduce to a point, and 2.8 says that the

W invariants of the cohomology ring H*(Q;J, Q) reduce to § (in degree 0 ).

Remark: The reader only interested in 2.3, but not in the P-generalizations
above, might as well directly prove that the W dimvariants of A = Rﬁ*g(.ﬁf)

reduce to @Q(A4), using the arguments of 2.6, 2.7.

2,10 Stratification ofu e

Let us turn to the study of our map 10 , as specified im 2.1. Recall that
n maps Z =4 onto Y=-A7P - We now specify a stratification of Y by strata

ﬂy for 1n . Let us denote P & + n the decompesition of p = LieP into its

B4

PA

nilradieal Br-= Lit

ML) = V€ denore
£t

ments in £, inte

resolution #(L) ¢

Borel-subgroups of

ﬁé of (L) with

with -base point

(1) y=(t+
as follows: We use
(2}

where we use the not

In particular, for

is the unique closed
of & . In general,
tﬂt resp. n . To make
bkundles
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piilradical n-= Liel , and the Levi-subalgebra £ = Liel (cf. 2.7). let

ALY = \1{0; denote the decompositiom of (L) , the variety of nilpotent ele-
ments in L , inte its orbits &t . This is a stratification for the Springer-
resolution w(L} of A(L) , with fibres TF(L)—lt '~'—~'$(L)t , the variety of
Borel=-subgroups of L containing t din thelr Lie-algebra. To each stratum

ﬁt of o¥(1L) with base point t , we associate a unique stratum % of jP

with base point
y=(t+u, 2} , where ue R~ tiell is fixed arbitrarily,

as follows: We use the igentification ./??ii EP = G ng {2.4), and put

(2) %=pr(gt+g),

where we use the notation A+ B = {a + bla ¢ A, b e Bl todefine £ +n.

Tn particular, for t = 0, we write Yy = yo ; in this case

6 =cx TP
g ‘

is the unique closed stratum of jP , and is isomorphic to the cotangent bundle

of @ . In general, ﬁy is a double fibration with base &, and fibres

ﬁt resp. o . To make this more precise, let us introduce the associated fibre

bundles
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where % 1is the inclusior

P P 4
vt = x = W/
€ X A1) t G x 0;; ! L cof pairs (B', n} sach tt

parabolic in & containin

using the P action omn LEF E./E induced by the adjoiat action on p + A point Tenma

M S - :
in ¥° is given by a pair (P', n) , P', a parabolic in @ and a . a nil- a) H° is the total spac

potent element of LieP'/Liep'’ ., where Liep'? is the nilradical of LieP'

The Springer resolution <#(L) of ~#(L) and the Springer resolution ¥
where the fibre of r

of A fit into a diagram
% =~
is T ( )Cﬂ Zon.

b) The subvarieties ﬁy =

'/;;(L) o~ i;P‘ ¥ -1
with fibres n "y = &0
: ¢} Hach stratum ﬂy is a
(L) L n
’ L i J "q g where the fibre of qt
AAL) ke —— : AP - :
d} The codimension of ﬁy
e} The map 1N is semismal
¢ £} The decomposition of H
identifies with the dect
N
A ) cal components.

Proof: a) The set of nilpe

phic to the product of (L)

58
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is the inglusion of & fibre of ¥ :‘l/P +#® and 17? is the variety

where 1
B' ¢ @ and n € LieB’!LieP‘J' where P’

is the

of pairs (B', n) such that

parabolic in @ containing B' .

a) ./?P is the total space of a double fibyation

s

where the fibre of T is (L) , and the fibre of g over & point ve ‘VP

is ‘E‘z(v)(ﬂ’) g .

b) The subvarieties ﬁy = qml(G x5 ﬁt) weakly strapify the map n:./l’”-*-uT’P .

with fibres nly = @) . of dimension a, = c’aium_ly ., §&Y.

) _Each stratum é‘y i{s a double fibration

¢ p
6,7, P,

where the fibre of ¢ 1is 1z , vhile the fibre of SEECIRA

4) The codimensios of ﬁy in JFP equais that of ﬁt in (L}
relevant for 17 -

e) The map n is semismall, with all strata ﬁy

2d

f} The decemposition of H isotypical components

_y(n_ly, Q into 7 {€)
identifies with the gecompesition of H y@@(i}t, ¢) dinto ﬁi(ﬁt) isatypi-

cal components.

Proof: a) The set of nilpotent clements in p is A(L) + n , which is isomor-
phic to the product of ALY and n as an algebraie variety. Using the identi-.
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fication of‘ ;? with @ x5 P as in lemma 2.4, we 3‘.den|‘.':c‘.f}";/”!'7"P as

e x* (HL) +a) .

Then it becomes ob¥ious, how to define the two step fibration

as described in a).

b} By the map B'~»UR' » the Borel subgroups of I are in bijection

with the Borel subgroups of ¢ contained in P ., Using (1) above, we conclude

that

Ny 2B BB < P, thu e LieB} = {UB'[B'e (L), t ¢ LieB'}

Z{B'eB(L) |t ¢ Lien'} =$(L)t

Next we note that our choice of a basé point as in (1) iz no restriction, There-

fore, the fact that the é; weakly stratify 1 follows from the fact thar the
ti weakly stratify Springer's resolution of 4(L) .,
¢} is similar to a), statement d} is obvious from e}, and statement e} fol-

lows from b) and d), using the correspouding properties of the Springer resoply~

tion of #(L) .
£) The diagram of maps

b t
£ i ’17P 9 > &
t t v

where 1% ig the inclusion of a fibre of rt, induces a surjection s
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by the long exact sequencs i
24
But the local system & YC*
.,
whose fibre ic H 7(n ¥, Q)
24
is H YmL)t, Q) . Theref

2

.11 The topology of J&y

PROPOSITION: a) A" is home

B A isax

Proof: Part a) results from
T . This can be done since t
results from the fact that F

fibre are rationally smooth.

2:12 Identificarion of the 4

Now look at the decompo

1,10 (2):
@ B = Rn0(h) =

It is clear from our geometri
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S

P =
“Lwy)_'”z(’/t) <——-1T}_(ﬁy)

e in homotopy for the fibration rt {since ‘!Tiﬂ?) =0 ).
’ 2d

py the long exact sequenc

?.dy p P -

st the local system R “L.8(¥ ) on ¥, pulls back to R 1,004 on ﬁy ,
. )

d
and restricts to R yTr(L)*g{./If(L}} , whose fibre
2d

24,

hose fibre is H (1 7. Q) .
24

;s B V@), @ . Therefore the kernel of & acts trivially on H @, O

Q.E.D.
2.11 The topology of JFP

PROPOSITION: 2) JVP is homecmorphic to the fibre product ‘VP } TP .

b) A is & rationzl homology manifold.

Procf: Part a) results from trivializing the fibration q over the fibres of

¢ . This can be dome since the fibre of ¥ (i.e. «+F{(L)) is contractible. Part b)

. ~p .
results from the fact that N ig a fibre bumklle where both the base and the

fibre are rationally smaoth. ( ¥(L) is smooth by theorem 2.3.) Q.E.D.

Tdentificagion of the decomposition of E"

Now look at the decomposition formuia for the map T &as considered in

@:
* >, ~ J¥ * -
) B = R QL) = {@m RiL L6 (g 21 8 Yoy gy -

It is clear from our geometrical description of Y = JV~P in the preceding lemma,
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that this decomposition is essentially ddentical with the corresponding formuia

for the Springer resolution w(L)} : uikL) + (L) :

==

¢)[_2dt} av

. a _ i~ — b . —
A (L)Y = RW{L) Q(A(L)) = (@w)m* X @, L T

The relevant pairs (y,¥) for 1 are in bijection with the relevant pairs
i th - v . i i
{t,y} for ) , e vector-spaces o) resp V(t’w) in the decomposition

formulae are identical, etc.

Moye precisely, consider the perverse sheaf RZ.€ (17P) =¢" on 17P {see
nl -]

the diagram of 82.10), which is semisimple by theorem 1.7.

Proposition:

a) There are rational identifications

ltxs
i
=
+
o

[
~
3
~
112
i
*
&

b} The functor gq* (resp. i% ) takes the endomerphism ring of g‘ isomor-

phically onte that of §- {resp. g.(L) Y.

c) The resulting bijection of isotypical components of g. with those of A4 (L)
takes the (y,¥) component to the (t,y¥) component corresponding by lemma

2.10 ¢) and £).

Proof: Statement a) holds because the two squares of the diagram in 2,10 are

fibre squares and g{i7P) pulls back to @6JF) and restricts to @{.#(L))

60

PAR:

The map q {resi
(see [FM], [GM2] §5.
to sheaves ji ;g'(ii

statement that gq%(re

lows from lemma 2.10

2.13 Identification

The mep n' : g
semisimple part of g

.

W(L) actiom on 3

Proposition:
a} The Weyl group W

category Db(Y) .

b) The action.is giv

v of the fo
(v, 12

c) Here (y,W)+¥p

group L {cf. 2.

d) The zerion a) of

e} The W(L) action

RE, coincides wi

Proof: We extend the
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51: (resp. Ey) normally noasingularly to ‘Vi

The map q (resp. i) sends

(see i‘f‘ﬁ], [GM2] §5.4). Therefore g *{resp. i#*} takes sheaves J, E.(ﬁ, qu)

to sheaves jz _I_g'(—ﬁ‘y, Lw) {resp. ji ;I___(_l'(ﬁz, L‘JJ)) . So part b} reduces to the

gtatement that gq*{resp. i*)} preserves the irreducibitity of I‘({: . This fol-

1ows from lemma 2.10 £). Part ¢} is then clear.

.

Tdentification of the Weyl group action on B

The map T° ¢ g - gP is a principal W(L) fibration over the regular

semisimple part of g - Paralieling Lusztig's construction (52.6), we chtain 2

W(L) action on g. by restz"iction af Rn'*g(g) to fp .

Progosition:

a) The Weyl group W(L) acts on Q_. = mn, (%) by autororphisns in the derived

category ﬂb Y3

The actiom.is given by linear representations p(y ) of W(L) on the

v f the £ 1a 2.12 {1).
(v, 0) o e formula b]

Here (y.{}t+— Oy ) igentifies with the Springe:—correspondence for the
*

group L {cf. 2.2.).

The actiom a) of W(L)y gives an isomorphism TIW(LY] End B

-

The W(L) action on A = Ri*g. inherited from g' by functoriality of

RE, coincides with the restriction of the W-action on 4 .

Proof: We extend the diagram of §2.10 as follows:
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z % g
(L) C._ - 1.;,}:- d,;“
3 LISAN ! n'
4 n
7 (L) v ,
a | F
/ 74
%

A(L) > ¥ a;@
i 9
. _ £
£
7
where v and E are defined by dropping the restriction that n be niipotent

P ~ ~ ~
in the defipitions of ¥ and 1’P respectively in §2.10. Then v and £ are

W(L) principal fibrations over the generic part of v and %, so W(L) acts

on A (L} , Q. and B compatibly. Parts a)-d) follow from this. For part e},

note that the action of W(L) on the part of £ over the vegular semisimple

elements of g of this section agrees with that of §2.6, case P = B

.
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PARI

83

3.1 Decomposicion of t
T

Let us now evalue
situation introduced iz
spaces V resp. V

P (=) TEP T
are now--according to §
structure. Using this
formulated in sharper v
formslation, precisely
v

(x,$) decomposes 48 a
Theorem: (Springer) V(X

Proof: This follows fr¢

Alternatively, ths

G
L

or alse by the formula:

{v

where we dencte for any

representation 'p af 1
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{wl, #124, m. 3

53 GROUP THEORETIC APPLICATIONS OF THE
DOUBLE DECOMPOSITION FORMULA

3.1 Decomposition of the restriction of Springer's representation

fet u$ now evaluate what the general results of §] give for the specifie
situation introduced in §2. Note that the objects é'resp. 5. , and the vector~

‘spaces V(x,¢) Tesp. V(y,w) in terms of which the results of §1 were formulated,

are now—-aecording Lo §2-~ equipped with a W-resp. W(L)-action as an additional

structure. Using this_additional serructure, the results of §1 may now be re~

formulated im sharper versions. TFor example, corollary 1.11 gives, in this re-

formuiation, prgcisely the information of how Springer's irreducible Wemodule

decomposes as a W(L)-module, if restricted te W(L)

Vi, 9

(v, 1 8 v as W{L)-modules.

Theorem:(Springer} V(x,é) = (ggi)v(x,¢) (v, 1)

Proof: This follows from 1.11 using 2.13 e).

Alternatively, the theorem way be expressed by:

W - :
vy By O gy T

or alse by the formula:

oly, by _ ,(v,¥)
o) “Ven Ve

vhere we denote for any modute V of & finite group F , and for any irreducible

repregentation p of F ., by v?  the p-isotypical component of V .
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Remark: This theorem agrees essentially with that of Springer in {52],

Thm. 4.4, which was proved there by completely different methods.

, 0 . )
_3=_:=.“2 Spa%tey.:lsf:eln's varieties 9'x , and Sprimger's partition of Steinberp's
varieties % :

Let us make more explicit, how certain fixed point varieties inm genaralized
flag varieties studied first by Spaltenstein [Sp] resp. Steinberg {5t2} resp.
Springer [S2] occur in our present situation. We have already noted (2.1) that

the Steinberg-variety '?;c of all conjugates P' = gi’él of P by some g & G

with % ¢ LieP' ddentifies with the fibre Ehlx of our partial resolution map

£ . Now for any L-orbit ﬂ;. in L= p/n (notation of §2.6, §2.7), we may con-

sider the subvariety _9’::) of those P' = gpgl such that (ad g)—lx modulo n

belongs to é‘t . The variety yi ig ity closure. The wvariety ‘?(t) was intro-
x

duced by Springer in [82], 4.1; let us call it the Springer t-part of .?x . lLet

us list a few obvious facts:

a) Fach Steinberg wvariety 3; is a fipite disjoint union of its Springer parts

()
'?x
b) 9:; = 5:{ for t a regular nilpotent element of £ .
c) 5;2 = 5’;0) = {p' ¢ P|x ¢ (LieP)'} .

. i @0
Since these latter varieties 9}( have been studied by Spaltenstein in 1975
[8pl, we call them the Spaltenstein varieties. Note that these are the varieties

which were denoted 3:{ in  [BM]}, §7, in contrast to our present.notation .‘?2 .

Now recall that each nilpotent 1L orbit ﬁt in £ corresponds to a strat-

PARTIAL RE§<

um Jy for the map 1n : iy

tion £ = g1 g, + N for

& (see 1.10). With these :
¥

4) E}, :

Convention: Since the tﬁt's
Conventlon:

write .?i for 9’:{ to simplii

3.3 Cowputing the cohomology

Theorem: Assume that ﬁy is

E;}"xz.?i (or in other words:

i-24d
IR SR

{for all 1 } gives the a(y,l)

R i .
tiom om H (Qx, ®) restricte

Proof: This folleows from 1.1(

3.4 The cohomology of Spalter

This theorem applies in
or the biggest stratum, that i
y ie = 0 resp. is regular:

{2.10), and in the second case
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um &y for the map 71 ¢ 2 *ﬁP (2.10(2)), and that we introduced the nota-

tion EY = Ejy : Ey + 4 for the restrictios of our partial resolution £ to
£ (see 1.10}. With these notatioms, it is clear that we have:
. -1 = w1 t
=& 0 E
a EY x 4 Ex 2@

Convention: Since the ﬁt‘s are in bijection with the ﬂy’s , we shall also

write 5“); for 3"; to simplify notations.

3.3 Computing the cohomology of certaiﬂg’i

Theorgm: Assume that & is ratiomally smooth (1.4) at all points of
e ¥y

Eﬂlx:—;g’i {or in other words: which map onto X y. Then

i-2d 24 )
g @l oer T(@O, = i (#, Pt

(for all i ) gives the G(y l)—isotypical component of the Springer representar
3

tion on Hl(.%x, ¢) restricted to wi{L) -

proof: This follows from 1.10 and 3.1. Q.E.D.

altenstein's varieties in terms of anti-invariants

3.4 The cchomology of  Sp

This theorem applies in particular in the cases where ﬁy is the smallest

or the biggest stratum, that is whers the element L in (L) corresponding to

y is = 0 resp. 1is regular: In the first case, Et = TP 'ig even smooth

(2.19), and in the second case, Et = ,J:;'P is rationally smooth by 2.11. More~
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24
over,r in both cases, H y(.5?(L)y, {) reduces te @ , and ?(y, 12 is

resp. 1 So we obtain:

€w(L) W{L) ~

Corollary: For all nilpotent elements x e.# , and all 1 :

a) v, v=a@, o'W
1-24,

o @, o=@, o

In other words: The cohomology of the Steinberge~varieties is given by W(L)-

invariants of the Springer representations (using the sign convention as in [BM])

while the cohomoiogy of the Spaltenstein-varieties is given by the W(L)-anti-

invariants (and a dimension-shift).

Comments: a) was proved also in 2.8. In the special case G = GLn , a) was

proved by Hotta-Shimomura [HSh] in a completely different way.

3.5 Counting components of 3‘;{ and of .?2

If t is a regular nilpotent element of £ , then .?:: = 5:{ is the fuil

Steinberg variety, and = 1 is the trivial representation of W(L)
Pre,1) ™ tway

If we take t = 0 , then .?i is the Spaltenstein variety (3.2), and p(t 1) =

iz the sign representation of W(L) (In both cases, oniy ¢ = 1 oc-

fuL)

curs.} Applying 3.4 to these particular cases, we obtain:

Corollary:
a) A Steinberg-variety .% has dimension = dx , with equality if and only if
P ccours in 1W
{x,1) W(L)

of C{x)-orbits of dx—dimensianal components egquals this multiplicity. This

with positive multiplicity. Moreover, the number

is also the number of irreducible components of Eml(ﬁx) of dimension

d + dim& .
x %

66

. i T s ™
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b} A Spaltenstein-variety
din@B-—-dim P} , with equ
positive muitiplicity.

C{x)-orbits of (dx—d y-d

G

numher of irreducible co

Comments: a) is due to Sprb
the special case where & = 1
and B) is due to Spaltensteis

observation that the numbers

p. 59 which in turn equal ths
A, Lascoux fer help in verif:

determined recursively by the

3.6 Are "special" orbits rel
Yy

Note that Corellary 3.!

vant for £ resp. EO . More

PROPOSTTION: ﬂx is relevant
p?y,l) ’

Recall that iu is the
is the map Ta in the notati
all strata (of the image of
S;}altenstein [$p]1}. But in

that the statement on fibre d

L - ] 1
correctly < éx dy .} Coni
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o= d, {where d0 =

0 .
by A 5paltenst_ein-variety 9’}: has dimension = dx o

dinB—din F) , with equality if and only if P (x.1) occurs in EE(L) with
*

positive multiplicity. DMoreover, this multiplicity gives the number of

—do)-dimensional components of .?g . This is also the

c(x)-orbits of (d}c
number of irreducible components of 251(6;) of dimension dx—d0 + dimdi .

Comments: a) is due to Springer [82], Cor. 4.5, while b) seems to be new. in

¢he special case where G = GLn , a3} goes back to Steinberg [St2}, theorem 5.4,

and b) is due to Spaltenstein ([sp}, final corollary}, up to the combinatorial

chservation that the aumbers given there coincide with the Eostka numbers [Mdl,
p. 59 which in torn equal the multiplicities in our result b). {(We have to thank

4. Lascoux for help in vyerifying this coincidence.) These numbers can also be

determined recursively by the formulae given in [BM], §7.

’3&2 Ave "special' orbits relevant for the moment map of #7

Note that Corollary 3.3 gives a characterization of the strata 0}: rele-

vant for £ resp. EO . More generally, 3.4 gives:
PROPOSITION: ﬂx is relevant for _gy " 5}* - ¥ .1'.f and only if Prx,1) occurs in

W
F 1) e
Recall that F’O is the "moment map of P " in the terminology of [BB], and

is the map Ty in the notation of [sM], §7. For G = GI..n , it turns out that

all strata {of the image of Wy ) are relevant for T, . {This goes back to

Spaltenstein [Sp]}. But in general, this does not hoid. ({(Let us point cut here

that the statement on fibre dimensions in [BM], lime ~2 of p. 709 should read

correctly sdx-—dy ™y Conjecturally, the special nilpotent orbits in the sense
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of tusztig {LZ] are always relevant for T, .

In order to prove this conjecture
using the above result, ore has only to verify that p(x D) occurs in Eg(L}
. 1
whenever Q(x 1) is a special representation. This has been dome by Gisela
.

Kempken [Ke], proposition 6.7 for & classical, and it could presumably be

checked for € exceptional using the tables of Alvis and Lusatig [&), [AL].®
COROLLARY: Let G be classical. If an orbit ﬁx in the image of the moment

map T, of # is special, then ﬂx is relevant for Tip

3.7 Asgociated parabolics

fwo parabolic subgroups are called assockated, if they have conjugate Levi

subgroups.

Corollary: Let P and P' be associated parabeolic subgroups of G, and let

P vesp. P' be the variety of conjugates of F resp. ! Then we have

o rF,0=t@, 0, m » H@) 08 @), @ foral nilpe-

ent elements x g%, and all i .

in fact, this follews from 3.3, since the right hand sides in 3.3 a), b)

depend only on the Levi subgroups, and not on the parabelics.

Remark: We note that for 1 = ZdX , statement a) had been conjectured by Steimberg

[st2}, and proved by Sprimger {82}, Cor. 4.6 using different methods.

" %Apdded in preof: This has been done meanwhile by N. Spaltenstein (A property of

special representations of Weyl groups; preprint, Warwick, March 1982), so the
corollary holds for G exceptional as well.
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3.8 Induced orbits
o Phamiumiiwe e L

Given a nilpetent orbit
the sense of Lusztig-Spaltenste

£ in g defined by
X

Although this definition refer:
algebra, the result is actuall:

also [Bl}Y.

Proposition: An orbit ﬁt in
and induces an orbit 0;{ in e

With these notations:
a) E maps JY onto @, -
b) éimc_% ~ ding + 2dimg/p =

3 ﬁ;l(ﬂx) is a single G-orb

d) EY : ﬂy v, is generical

e) The multiplicisy of p(t,l

i= de , and is zero cthe

£}y The multiplicitry of p{t,l
. P

Preof: a) Since ﬂy =G X (f

P .
(evaluation) map of G * p 4
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v 3,5 Induced orbits
ﬁ

Given a nilpotent orbit ﬁt in % , the orbit induced from ﬁt in g {in

the sense of Lusztig—Spalteastein [L8]} is denoted Imif(ﬁt) . This is the orbit

g in B defined by
*

[ ———
6, = (Ad Gy{(g, + n) (notation 2.10).

Although this definition refers to & parabolic subalgebra with _55 as a Levi sub-

aigebra, the result is actually independent of this cholce, Bee {Lsl, [82], ot

also {Bll.
proposition:t An orbit ﬁt in o#(L) determines a stratum ﬁy in iyl {2.10)

and induces an orbit ﬁx in o¥ . Choose the base point x of €& in &+ -

With these notations:

a) £ maps ﬁy onto & -

b) dim(fzf = climef% + 2(:'111:13_;_;._W dimﬁx (or equivalently: d, = dy ).

e) g;l (ﬁx) is a single G-orbit, contained and dense in ﬁy .
d} Ey H 3}, -’*EX is generica&ly a covering of degree [Gx : ?x} = #.?i .

¢) “he multiplicity of Prri1) in Hl(-?ﬂx, Q) is [Gx : Px] = #5’1 for

i= de , and is zero stherwise.

is one.

£) The multiplicity of e, 1) in Py 1y
£l ¥

Proof: a) Since ﬁy .6 &+ n) by 2.10, and since £ 1is the canonical

(evaluation) map of € & r into g ., W& have 5(0‘y) = {44 C)(@_+ n) , whose
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closure is é‘fx by definition, Since £ is proper, E(Zy) is cloged, hence

mgx,

b) The dimension of ﬁy was given in 2,10, while the dimension of an induced or-

bit was computed in [L5] (or more easily in [B2]).

c) Since & is G-equivariant, each G-orbit & < ﬁy mapping to ﬂx has dimen-
sion = dimﬁx . Nov b) implies dimé= dimﬁz_ . Simce Ey is irreducible, we
conclude that & = Ey , and that E;l(ﬁx} = ¢ 1is a single G-orbit. Finally,
i ngy , Since otherwise, gy{éy\%) meets ﬁx , 80 contains ﬁx by G-equivar-

iance, and this is impossibie for dipension reasons,
dy is clear from ¢y (cf. [BRI, 7.8 (a)).

g) The fibre E;lx %‘.?i is contained in ﬁy . In particular, Ey is smooth

at all points which wap to x .
:E—Zd)I ¥ i v '
dimH (#F, 0= th(D(t,l),ﬂ_ (#_, Q). Bur F_ is a set of 6 : P ] points

Hence Theorem 3.6 applies to give

by d), and hence e) follows.

£f) This follows from the fact that the component group ¢(x) = GX/GE permutes

the [Gx : Px] points in 5"1 simply transitively, so that HO(L‘?’i, Q)C(X) is
one dimensional. Since the C(x) action on the cohomology of 3":: comes from
that on ﬁx , we conclude from e) that p(t 1) ogours with multiplicity 1 in

2d
- x ’ C{x)
V{X,l) =H (F_, . 0.E.D.

Remark: By Frobenius reciprocity, f) says that g(x 1) has multiplicity one in
the induced representation pigt 1) ° More precisely, it can be derived from £}
>

that g(x,l) *is obtained from p(t,l) by "truncated induction', that is to say

;
,g
|
,g
i

in the notation of Lusztig's

see [L8], theorem 3.3.

3.9 The degree of the moment
A—— P e T T——

Considering the special
identifies with the "moment r
space P (in the termidology
resolution” in [BM}. This m
gree degng = [e, * ?xl .
al different contexts, See &
4.8, Let us therefore peint

terms of $pringer representai

Corollary: degw =] mp(p

Proof: More generally, propt

degt,

2d
since we have H x(gx, Q)

)
write this using Frobenius r
* de
(* 8ty

The special case t =0 , wh
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- W ( )
fe,1) = W e,

in the notation of Lusztig's [Lz]. This is a result of Lusztig and Spaltenstein,

gee [LS]. rheorem 3.5

;;_9‘ The degree of the moment ‘map of &
Considering the special case £ =0 in 38, recall that then é;y H Ey - Ex

jgentifies with the "moment map” g * TE(SP) ~ 5}( ¢ g = g% of the homegeneous

gpace & {in the terminolegy of [EB]), which was called a "seneralized Springer

resolgtinn" in [BM]. This map is in general not pirational, but has a Fiaite de—

gree deg;;g, = [Gx : Px} This number Seems to play an important role in sever-
al different contexts, ges e.g. IBK1, theorem 7.2, and [BB}, theorems 5.5, 5.6,

5.8, Let us therefore point out here the following aexpression for this number in

terms of SpringeT represem_:ationsx

Corollary! degsr.? = }: mtp(p(x 8’ EI:;(L))degtfb .
¢ o

Proof: More generally, proposition 3.10e) gives for ﬁt arbitrary:

degty = émtpw(t,l>"’<x,¢)}d6g¢

2d

: x ‘ i 8 initi -
since we have. H ~ (& Q) is @ p(x,d)) ¢ by definition af 9(x,¢) . BRe

. N . X x -
write this uslng Frobenius reciprocity:

2 degly ~ %M*’(pcx,m’ Ole, 1808 -

The speclal case € 7 ¢ , where Q{t 1 = g ° gives the corollary. Q.E.D.
3 .
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INTRODUCTION

Soit ¥ un espac
de faisceaux sur ¥, & coh
de la catégorie dérivée a
d'intersection de ¥ (a co
an, en méme temps gue Bei
et moi avoms introdwit, p
lisse X, un 3X-—}iec‘éule hol
complexe de De Rham de £(]
Bés lors, on pouvait espé
la cohomologie dtintersec
étant A singularités rézu
grice & Kashiwara et Kawa
les groupes IHP(Y,E} et j
lier & une structure de H
¢t MacPherson avaient con
dans [C-G-M], ol ils indi
jecture ; depuis lorss le
Beilinson et Bernstein, s
ane variété sur un corps
profonds, qui se trapspos
pour la cchomologie d'int
1'intéret d'exhiber une s
Tort réduit, puisque Res

nus par d'autres méthodes




