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Introduction to the First Edition

These Notes aim at providing an introduction to the theory of linear algebraic
groups over fields. Their main objectives are to give some basic material over
arbitrary fields (Chap. I, II), and to discuss the structure of solvable and of
reductive groups over algebraically closed fields (Chap. I1I, IV). To complete
the picture, they also include some rationality properties (§§15, 18) and some
results on groups over finite fields (§16) and over fields of characteristic
zero (§7).

Apart from some knowledge of Lie algebras, the main prerequisite for these
Notes is some familiarity with algebraic geometry. In fact, comparatively little
is actually needed. Most of the notions and results frequently used in the Notes
are summarized, a few with proofs, in a preliminary Chapter AG. As a basic
reference, we take Mumford’s Notes [14], and have tried to be to some extent
self-contained from there. A few further results from algebraic geometry
needed on some specific occasions will be recalled (with references) where used.
The point of view adopted here is essentially the set theoretic one: varieties are
identified with their set of points over an algebraic closure of the groundfield
(endowed with the Zariski-topology), however with some traces of the scheme
point of view here and there.

These Notes are based on a course given at Columbia University in Spring,
1968,* at the suggestion of Hyman Bass. Except for Chap. V, added later,
Notes were written up by H. Bass, with some help from Michael Stein, and are
reproduced here with few changes or additions. He did this with marvelous
efficiency, often expanding or improving the oral presentation. In particular,
the emphasis on dual numbers in §3 in his, and he wrote up Chapter AG, of
which only a very brief survey had been given in the course. It is a pleasure to
thank him most warmly for his contributions, without which these Notes
would hardly have come into being at this time. I would also like to thank Miss
P. Murray for her careful and fast typing of the manuscript, and J.E.
Humpbhreys, J.S. Joel for their help in checking and proofreading it.

A. Borel
Princeton, February, 1969

*Lectures from May 7th on qualified as liberated class, under the sponsorship of the Students
Strike Committee. Space was generously made available on one occasion by the Union
Theological Seminary.






Introduction to the Second Edition

This is a revised and enlarged edition of the set of Notes: “Linear algebraic
groups” published by Benjamin in 1969. The added material pertains mainly
to rationality questions over arbitrary fields with, as a main goal, properties of
the rational points of isotropic reductive groups. Besides, a number of
corrections, additions and changes to the original text have been made. In
particular:

§3 on Lie algebras has been revised.

§6 on quotient spaces contains a brief discussion of categorical quotients.
The existence of a quotient by finite groups has been added to §6, that of a
categorical quotient under the action of a torus to §8.

In §11, the original proof of Chevalley’s normalizer theorem has been
replaced by an argument I found in 1973, (and is used in the books of
Humphreys and Springer).

In §14, some material on parabolic subgroups has been added.

§15, on split solvable groups now contains a proof of the existence of a
rational point on any homogeneous space of a split solvable group, a theorem
of Rosenlicht’s proved in the first edition only for GL, and G,.

§§19 to 24 are new. The first one shows that in a connected solvable k-group,
all Cartan k-subgroups are conjugate under G(k), a result also due to M.
Rosenlicht. §§20, 21 are devoted to the so-called relative theory for isotropic
reductive groups over a field k: Conjugacy theorems for minimal parabolic k-
subgroups, maximal k-split tori, existence of a Tits system on G(k), rationality
of the quotient of G by a parabolic k-subgroup and description of the closure of
a Bruhat cell. As a necessary complement, §22 discusses central isogenies.

§23 is devoted to examples and describes the Tits systems of many classical
groups. Finally, §24 surveys without proofs some main results on classific-
ations and linear representations of semi-simple groups and, assuming Lie
theory, relates the Tits system on the real points of a reductive group to the
similar notions introduced much earlier by E. Cartan in a Lie theoretic
framework.

Many corrections have been made to the text of the first edition and
my thanks are due to J. Humphreys, F.D. Veldkamp, A.E. Zalesski and
V. Platonov who pointed out most of them.
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I am also grateful to Mutsumi Saito, T. Watanabe and especially G. Prasad,
who read a draft of the changes and additions and found an embarrassing
number of misprints and minor inaccuracies. I am also glad to acknowledge
help received in the proofreading from H.P. Kraft, who read parts of the proofs
with great care and came up with a depressing list of corrections, and from
D. Jabon.

The first edition has been out of print for many years and the question of a
reedition has been in the air for that much time. After Addison—-Wesley had
acquired the rights to the Benjamin publications they decided not to proceed
with one and released the publication rights to me. I am grateful to Springer-
Verlag to have offered over ten years ago to publish a reedition in which-
ever form I would want it and to several technical editors (starting with
W. Kaufmann-Biihler) and scientific editors for having periodically prodded
me into getting on with this project. I am solely to blame for the
procrastination.

In preparing the typescript for the second edition, use was made to the
extent possible of copies of the first one, whose typography was quite different
from the one present techniques allow one to produce. The insertions of
corrections, changes and additions, which came in successive ways, presented
serious problems in harmonization, pasting and cutting. I am grateful to Irene
Gaskill and Elly Gustafsson for having performed them with great skill.

I would also like to express my appreciation to Springer-Verlag for their
handling of the publication and their patience in taking care of my desiderata.

A. Borel
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Conventions and Notation

1. Throughout these Notes, k denotes a commutative field, K an
algebraically closed extension of k, k, (resp. k) the separable (resp. algebraic)
closure of k in K, and p is the characteristic of k. Sometimes, p also stands for
the chracteristic exponent of k, i.e. for one if char(k) =0, and p if char(k) =
p>0.

All rings are commutative, unless the contrary is specifically allowed, with
unit, and all ring homomorphisms and modules are unitary.

If A is a ring, A* is the group of invertible elements of A.

Z denotes the ring of integers, Q (resp. ]R resp. ) the field of rational (resp.
real, resp. complex) numbers.

2. References. A reference to section (x.y) of Chapter AG is denoted by
(AG.x.y). In the subsequent chapters (x.y) refers to section (x.y) in one of them.

There are two bibliographies, one for Chapter AG, on p. 83, one for
Chapters I to V, on p. 391.

References to original literature in Chapters 1 and V are usually collected in
bibliographical notes at the end of certain paragraphs. However, they do not
aim at completeness, and a result for which none is given need not be new.

3. Let G be a group. If (X;) (1 £i < m)aresetsand f;:X;— G maps, then the
map A
X, %x...xX,,—G defined by

(xl""’xu) _'fl(xl) """ fm(xm)’ (xiEXi; lélém),

is often called the product map of the f;’s.

Let N; (1 < i £ n)be normal subgroups of G. The group G is an almost direct
product of the N/s if the product map of the inclusions N;—G is a
homomorphism of the direct product N, x ... x N,, onto G, with finite kernel.

If M, N are subgroups of G, then (M,N) denotes the subgroup of G
generated by the commutators (x,y) = x.y.x "Ly~ ! (xeM, yeN).

4. If Visa k-variety, and k" an extension of k in K, then V(k') denotes the set
of points of V rational over k'. K'[V] is the k'-algebra of regular functions
defined over k' on V, and k'(V) the k’-algebra of rational functions defined over
kK on V. If W is a k-variety, and f:V— W a k-morphism, then the map
k[W1]— k[V] defined by ¢ — @°f is the comorphism associated to f and is
denoted f°.






Chapter AG

Background Material from
Algebraic Geometry

This chapter should be used only as a reference for the remaining ones. Its
purpose is to establish the language and conventions of algebraic geometry
used in these notes. The intention is to take, in so far as is practicable, the
point of view of Mumford’s chapter I. Thus our varieties are identified with
their points over a fixed algebraically closed field K (of any characteristic).
It is technically important for us, however, not to require (as does Mumford)
that varieties be irreducible.

For the most part deflinitions and thcorems are simply stated with
references and occasional indications of proofs. There are two notable
exceptions. We have given essentially complete treatments of the material
presented on rationality questions (i.e. field of definition), in sections 11-14,
and of the material on tangent spaces, in sections 15—16. This seemed desirable
because of the lack of convenient references for these results (in the form
used here), and because of the important technical role both of these topics
play in the notes.

§1. Some Topological Notions
(Cf. [Class., exp. 1, no. 1].)

1.1 Irreducible components. A topological space X is said to be irreducible
if it is not empty and is not the union of two proper closed subsets. The
latter condition is equivalent to the requirement that each non-empty open
set be dense in X, or that each one be connected.

If Yis a subspace of a topological space X then is irreducible if and only
if its closure Y is irreducible. By Zorn’s lemma every irreducible subspace
of X is contained in a maximal one, and the preceding remark shows that
the maximal irreducible subspaces are closed. They are called the irreducible
components of X. Since the closure of a point is irreducible it lies in an
irreducible component; hence X is the union of its irreducible components.

If a subspace Y of X has only finitely many irreducible components, say
Y,,..., Y, then ¥,,..., Y, are the irreducible components (without repetition)
of Y.
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1.2 Noetherian spaces. A topological space X is said to be quasi-compact
(“quasi-” because X is not assumed to be Hausdorfl) if every open cover
has a finite subcover. If every open set in X is quasi-compact, or,
equivalently, if the open sets satisfy the maximum condition, then X is said
to be noetherian. It is easily seen that every subspace of a noetherian space
is noetherian.

Proposition. Let X be a noetherian space.

(a) X has only finitely many irreducible components, say X ,...,X,.
(b) An open set U in X is dense if and only if UnX;#¢(1 Si<n).
(¢c) For each i, X;=X,— ) (X;nX) is open in X, and U, =) X} is an
j#i i
open dense set in X whose irreducible and connected components are
X\, X
Part (a) follows from a standard “noetherian induction” argument.

Since X is irreducible the set X=X — ( Ux j> is open in X and dense
Jj#i

in X;. Hence every open dense set U in X must meet X;. Conversely if U is

open and meets each X; then U X; is dense in X, so U contains each X;

and hence equals X. It follows, in particular, that U,=) X} is open,

dense. Since the X are open, irreducible, and pairwise disjoint, they are
the irreducible and connected components of U,.

1.3 Constructible sets. A subset Y of a topological space X is said to be
locally closed in X if Y is open in Y, or, equivalently, if Y is the intersection
of an open set with a closed set. The latter description makes it clear that the
intersection of two locally closed sets is locally closed. A constructible set is
a finite union of locally closed sets. The complement of a locally closed set
is the union of an open set with a closed set, hence a constructible set. It
follows that the complement of a constructible set is constructible. Thus, the
constructible sets are a Boolean algebra (i.e. they are stable under finite
unions and intersections and under complementation) In fact they are the
Boolean algebra generated by the open and (or) closed sets.

If f:X—>X' is a continuous map then f~! is a Boolean algebra
homomorphism carrying open and closed sets, respectively, in X' to those
in X. Hence f ~! carries locally closed and constructible sets, respectively in
X' to those in X.

Proposition. Let X be a noetherian space, and let Y be a constructible subset
of X. Then Y contains an open dense subset of Y.

Remark. Conversely, by a noetherian induction argument one can show that
if Y is a subset of X whose intersection with every irreducible closed subset
of X has the above property, then Y is constructible.
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Proof. Write Y = | J L; with each L, locally closed. Then Y =|J L;, so, if ¥

is irreducible, Y = L, for some i. Moreover L,( < Y) is open in L.
In the general case write Y ={]J Y; where the Y; are the irreducible

J
components of Y. The latter are closed in Y and hence constructible in X.
Moreover the first case shows that Y; contains a dense open set in ¥ ;. Since
the Y; are the irreducible components of Y (see (AG.1.1)) it follows from
(AG.1.2) that Y = U Y; contains a dense open set in Y.

1.4 (Combinatorial) dimension. For a topological space X it is the supremum
of the lengths, n, of chains F,c F, = --- = F, of distinct irreducible closed
sets in X it is denoted

dim X.
If xeX we write
dim, X

for the infimum of dim U where U varies over open neighborhoods of x.
It follows easily from the definitions and the properties of irreducible closed
sets that dim ¢ = — oo, that

dim X =supdim_ X,
xeX
and that x+—dim, X is an upper semi-continuous function. Moreover, if X
has a finite number of irreducible components (e.g. if X is noetherian), say
Xi5--s X then dim X is the maximum of dim X;(1 £i<m).

§2. Some Facts from Field Theory

2.1 Base change for fields (cf. [C.-C., exp. 13-147). We fix a field extension
F of k. If k' is any field extension of k we shall write

Fo=kKQ®F.
k

This is a k'-algebra, but it is no longer a field, or even an integral domain,
in general. However, each of its prime ideals is minimal (i.e. there are no
inclusion relations between them) and their intersection is the ideal of
nilpotent elements in F,. (see (AG.3.3) below). We say a ring is reduced if its
ideal of nilpotent elements is zero.

Here are the basic possibilities:

(a) k' is separable algebraic over k: Then F,. is reduced, but it may have
more than one prime ideal.

(b) k' is algebraic and purely inseparable over k: Then F,. has a unique
prime ideal (consisting of nilpotent elements) but F,. need not be reduced.
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(c) k' is a purely transcendental extension of k: Then F « is clearly an integral
domain.

2.2 Separable extensions. F is said to be separable over k if it satisfies the
following conditions, which are equivalent: We write p for the characteristic
exponent of k (=1 if char(k) = 0).

(1) FP? and k are linearly disjoint over k”.
(2) Fupy is reduced.
(3) F, is reduced for all field extensions k' of k.

Suppose, for some extension L of k, that F, is an integral domain, with
field of fractions (F). Then F is separable over k<>(F,) is separable over L.
The implication = follows essentially from the associativity of tensor
products, using criterion (3). To prove the converse we embed a given
extension k' of k in a bigger one, k", containing L also. Since F,. < F,~ it
suffices to show that F,. is reduced. But F,. -FL®k < (Fp )~ and the latter
is reduced, by hypothesis.

2.3 Differential criteria. (See [N.B., (a),§9], [Z.-S.,v.1,Ch.11,§17], or [C.-C.,
exp. 13].) A k-derivation D:F — F is a k-linear map such that

D(ab) = D(a)b + aD(b) for all a,beF.
The set of them,
Der,(F, F)
is a vector space over F.

«

Theorem. Suppose F is a finitely generated extension of k. Put

n = trdeg (F)
and
m = dimg Der,(F, F).

Then m = n, with equality if and only if F is separable over k.

Let D,,...,D,, be a basis of Der,(F,F) and let a,,...,a,,eF. Then F is
separable algebraic over k(a,,...,a,) if and only if det(D{a;)) #0.

If m=nthen aset {a,,...,a,} as above is called a separating transcendence
basis.

2.4 Proposition. Let G be a group of automorphisms of a field F. Then F is
a separable extension of k = FC, the fixed elements under G.

We shall prove that F and k!’ are linearly disjoint over k, ie. that if
a,...,a,ek'? are linearly independent over k then they are linearly
independent over F. The action of G extends uniquely to F!/” and G acts
trivially on k!”. Suppose a,,...,a, are linearly dependent over F, but not
over k; we can assume n is minimal. Let a, + bya, + - + b,a,=0 be a
dependence relation. If some b;, say b,, is not in k then it is moved by some
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geG. Subtracting a, + g(b,)a, + -+ + g(b,)a, from the relation above we
obtain a shorter relation; contradiction.

2.5 On occasions, we shall need a generalization of 2.4. Let 4 be a reduced
noetherian algebra over k, denote by k(A) its ring of fractions (cf. 3.1, Ex. 1)
and let G be a group of automorphisms of 4. The action then extends to k(A).
By Prop. 10 in [N.B.(b):1V, §2, no. 5], k(A) is uniquely a sum of fields K, then
necessarily permuted by G. Let e; be the corresponding idempotents. Thus
1 =Ye; and the e;s are permuted by G. If aeA® is non-divisor of zero in
A€, then it is one in A. In fact we can write 1 =Y f; where f; is the sum of
idempotents ¢; forming an orbit of G; then we have f;-a #0 and therefore
since g(e; o) = gle;) o, e;o # 0 for all i’s. Therefore k(4%) embeds in k(4)€.

Proposition. We keep the previous notation. Then e;k(A)¢ = K&, where G, is
the isotropy group of e;. If k(A)¢ = k(A), then K, is a separable extension of
ek(A%). '

1f aek(A) then e; « is fixed under G,. Conversely, if beK; is fixed under
G;, then the sum of the g(b), where g runs through a set of representatives
of G/G,, is an element of k(4)® whose image under ¢; is b. Then 2.4 shows
that K; is a separable extension of e;-k(4)¢. The second assertion is then
obvious.

§3. Some Commutative Algebra

3.1 Localization [N.B., (b)]. Let S be a multiplicative set in a ring 4, i.e. S
is not empty and s, teS=>steS. Then we have the “localization” A[S ']
consisting of fractions a/s (a€ 4, s€S), and the natural map A - A[S~'] which
is universal among homomorphisms from A rendering the elements of S
invertible.

If M is an A-module we further have the localized A[S ™ !]-module M[S ~ '],
consisting of fractions x/s(xeM, se§), which is naturally isomorphic to

A[S"](A@M.

If xeM and se§ then x/s=0in M[S™']if and only il tx =0 for some
teS. It follows directly from this that, if M is finitely generated M[S~'] =0
if and only if tM =0 for some teS, ie. if and only if Snann M # ¢, where
ann M is the annihilator of M in A.

The functor Mi—M[S™ '] from A-modules to A[S™']-modules is exact,
and it preserves tensors and Hom’s in the following sense: If M and N are

A-modules then the natural map (M@N)[S"]—»M[S“‘) X N[S™']
A

AlS— Y
is an isomorphism, and the natural map Hom,(M,N)[S™']— Hom ;-1
(M[S~'],N[S™']) is an isomorphism if M is finitely presented.
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Examples. (1) Let S be the set of all non-divisors of zero in A. Then
A— A[S™1] is injective, and the latter is called the full ring of fractions of
A. When A is an integral domain it is the field of fractions.

(2) If S={f"|n= 0} for some fe€A then we write A, or A[1/f], and M,
for the localizations.

(3) An ideal P in A is prime if Sp=A — P is a multiplicative set. The
corresponding localizations are denoted 4, and M,. In this case 4, has a
unique maximal ideal, PA,, i.e. Ap is a local ring.

3.2 Local rings. Let A be a local ring with maximal ideal m and residue
class field k = A/m. Let M be a finitcly generated A-module.

(@) If mM =M then M =0.

For let x,,...,x, be a minimal set of generators of M, and suppose n > 0.
Write x; =Y a;x(a;em). Then (1 —ay)x; = ), a;x;. But 1 —a, is invertible,

i>1
SO X,,..., X, already generate M; contradiction.

(b) If x,,...,x,eM then they generate M if and only if they do so modulo
mM. Hence the minimal number of generators of M is dim,(M/mM).

This follows by applying (a) to M/N, where N is the submodule generated
by X5,..., Xy

(c) If M is projective then M is free.

We can write 4"= M @ N, so that k" = (M/mM)@® (N/mN). Lift a basis of
k" to A" so that it lies in MU N. The result is, by (b), a set of n generators
of A". These must clearly be a basis of A", e.g. because the associated matrix
has an invertible determinant. Hence M, being spanned by part of a basis
of A", is free.

3.3 Nil radical; reduced rings. The set of nilpotent elements in a ring A is
an ideal denoted nil A. We call 4 reduced if nil A =(0).

If J is any ideal the ideal \/.7 is defined by \/j/J = nil(4/J). Thus nil
A = ./(0). Moreover, we have

\/:_I = the intersection of all primes containing J.

If S is a multiplicative set then ﬁ ‘A[S™ '] =./J-A[S']. In particular
this implies that A4 is reduced if and only if the full ring of fractions of A is
reduced.

3.4 spec(A) [M, Ch. 11, §1]. Welet X =spec(A) be the set of all prime ideals
in A, equipped with the Zariski topology, in which the closed sets are those
of the following form for some J = A4:

V(J)={PeX|J < P}.

If Y =X we put I(Y)=) P, and then V(I(Y)) is just the closure of Y.

PeY
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Moreover, if J is an ideal of A it follows from 3.3 that

1V = /7.
Thus closed sets correspond bijectively (with inclusions reversed) to ideals .J

for which J= \/.7 It follows that if 4 is noetherian then spec(4) is a
noetherian space.

The map P+ {P} is a bijection from X to the set of irreducible closed sets
in X. Thus the irreducible components of X correpond to the minimal primes
in A. Moreover the (combinatorial) dimension of X (measured by chains of
irreducible closed sets) is called the (Krull) dimension of A, and it is denoted

dim A. Thus
dim A = dim X.

If feA and PeX one sometimes writes f(P) for the image of f in the
residue class field of Ap (which is the field of fractions of A/P). With this
notation the complement of V(fA) is

X, ={PeX|f(P)#0}.

This is called a principal open set. For any J we have V(J)= () V(f) so the
principal open sets are a base for the topology. feJ

Suppose a,: A — B is a ring homomorphism. Then «, induces a continuous
mapoa:Y = spec(B)— X, a(P)=a, '(P). In fact « = (V(J)) = V(x,(J)).

Examples. (1) If J is an ideal then 4 —» A/J induces a homeomorphism of
spec(A4/J) onto V(J) < X.

(2) If S is a multiplicative set then spec(A[S '])— spec(A) induces a
homeomorphism onto the set of Pe X such that PN S = ¢.
(i) If feA then we obtain a homeomorphism spec(A )~ X ,.
(i) If PeX it follows that dimp X = dim spec(4,) = (Krull)dim A4,.

3.5 Support of a module. Let X = spec(A) where A4 is a noetherian ring, and
let M be a finitely generated A-module. Then it follows from 3.1 that

supp(M) = {P| M # 0}

is the closed set ¥(ann M). In particular M =0 if and only if supp(M) = ¢.

Let f:L— M be a homomorphism of A-modules. Since localization is exact
it follows that the set of P where f, is an epimorphism is the (open)
complement of supp(coker f). Applying this to Hom ,(M, L) —» Hom ,(M, M),
and using the fact that the Hom’s localize properly (see 3.1) we conclude
that the set U of PeX such that f, is a split epimorphism is open, and f is
a split epimorphism if and only if U = X.

Suppose f is surjective and L is free. Then we deduce from the last remark
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and 3.2(c) that:
U={PeX|M,is a free Ap-module}

is open, and M is a projective A-module if and only if U = X.

3.6 Integral extensions ([N.B, (b), Ch.5] or [Z.-S, v.I,Ch. V]). Let Ac B
be rings. A beB is said to be integral over A if A[b] is a finitely generated
A-module, or, equivalently if b is a root of a monic polynomial with
coefficients in A. The set B’ of all elements of B integral over A is a subring,
called the integral closure of A in B. We say B is integral over A if B' = B.
We say A is integrally closed in B if B = A. We call A normal if A is reduced
and integrally closed in its full ring of fractions.

Suppose A = B < C are rings. Then C is integral over A4 if and only if C
and B are integral over B and A, respectively.

Suppose B is integral over A. Then spec(B)— spec(A4) is surjective and
closed. If B is a finitely generated A-algebra then B is a finitely generated
A-module. If B is an integral domain then every non-zero ideal of B has
non-zero intersection with A.

To see the latter let b" + a,_,b" " + --- + a, = 0 be an integral equation of
minimal degree over A of some b #0in B. Thena, = — b(a,_,b" "2+ --- + a,)e
bBN A. Moreover a,# 0; otherwise we could reduce the degree of the
equation.

3.7 Noether normalization [M, Ch. 1, p. 4]. A k-algebra A is said to be affine
if it is finitely generated as a k-algebra, Such an A is a noetherian ring.

Theorem. Let R =k[y;,..., V] be an affine integral domain over k whose field
of fractions, k(yy,..., V), has transcendence degree n over k. Then there exist
elements x,,...,x,eR, which are algebraically independent over k, and such
that R is integral over the polynomial ring k[x,,...,x,]. If k(y1,--.,Vm) is
separable over k then x,...,x, can be chosen to be a separating transcendence
basis of k(yy,...,Vm) over k.

Except for the last assertion this theorem is essentially identical in statement
and notation with that in Mumford, page 4. With the following modification,
the proof in Mumford gives also the last assertion as well.

First, choose y,,...,y,, so that the last n of them are a separating
transcendence basis. Next, choose the integers r,,...,r, (as well as their
analogues at other stages of the induction) to be divisible by p, the
characteristic exponent of k. The proof in Mumford requires only that the
rs be large and increase rapidly, so our additional restriction is harmless.

This done, the x,,..., x, produced by the proof will be congruent, modulo
p™ powers, to the last n of the y/s. Thus each x; has the same image under
every k-derivation as the corresponding y (if p > 1; otherwise there is no
problem). It therefore follows that the x's, like the y’s, are a separating
transcendence basis (see (AG.2.3)).
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3.8 The Nullstellensatz [M, Ch.1]. Let A be an affine K-algebra, and let
X = max(A) be the subspace of maximal ideals in spec(A).

If e:A—K is a K-algebra homomorphism then ker(e)eX so we have a
natural map

@:Mory ,,(4,K)— X.

Theorem. (Nullstellensatz).

(1) o is bijective.

(2) X is dense in spec(A). Moreover F+—F nX is a bijection from the set of
closed sets in spec(A) to the set of closed sets in X. Therefore the analogous
statement is valid for open sets also.

If xeX we shall write e, for the homomorphism A—K such that
x =ker(e,). If feA we shall also use the functional notation

\ J(x)=ex(f).

Thus each f € A determines a function X — K. If f represents the zero function

then fel(X)= () x. It follows from part (2) that I(x) = I(spec(4)) = nil A.
xeX

Thus, in general, the function on X associated with f determines f modulo

nil A. If A is reduced we can therefore view A as a ring of K-valued function

on X.

We shall use for X the same notational conventions introduced for spec(A).
For example, if feA then X ;= {xeX|f(x) # 0}. These principal open sets
are a base for the topology on X.

If M is an A-module we also write suppy(M) = {xe X|M, # 0}, or simply
supp(M) when the meaning is clear. In view of part (2) of the Nullstellensatz
all the remarks of 3.5 remain valid with X in place of spec(A).

The correspondence in (2) also matches irreducible closed sets, clearly, and
hence irreducible components. If xe X, then dim, X = dim, spec(4) = dim A4,.
Moreover dim X = dim spec(A).

3.9 Regular local rings [Z.-S., v. 11, Ch. VIII, §11]. Let A be a noetherian
local ring with maximal ideal m and residue class field k = A/m. Then the
minimal number of generators of m is (see 3.2) the dimension over k of m/m?2.
It is a basic fact that

dim, (m/m?) = dim 4,

where dim 4 is defined as in 3.4. When this inequality is an equality the local
ring A is said to be regular.

Regularity has rather strong consequences for A4, for example the fact that
A is then a unique factorization domain.

We shall see in AG.17 that, when A is the local ring of a point x on a
variety V, then regularity of A means that x is a simple point; hence the
importance of the notion. A minimal set of generators of m then gives the
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right number of local parameters at x on ¥, and m/m? is the cotangent space
(see AG.16) of V at x.

§4. Sheaves
[M, Ch. 1, §4]

4.1 Presheaves. Let X be a topological space. The open sets in X are the
objects of a category, top(X), whose morphisms are inclusions. If C is a
category then a C-valued presheaf on X is a contravariant functor U~ F(U)
from top(X) to C. Thus, whenever ¥V < U are open sets in X we have a
C-morphism

resy: F(U)— F(V),

sometimes called “restriction.” A morphism ¢:F — F’ of presheaves is just a
morphism of functors. Thus it consists of morphisms ¢@y:F(U)— F'(U)
rendering the diagrams

F(U) —2— F'(U)

4k

F(V) —5— F(V)
commutative.
Suppose C is a category of “sets with structure,” like groups, rings,
modules,.... Then we say F is a presheaf of groups, rings, modules,...,
respectively, on X. If xe X then

F,=indlim, F(U) (U nbhd. of x)

is called the stalk of F over x.
If U is open in X then top(U) is a subcategory of top(X), to which we can
restrict a presheaf F on X. The resulting presheaf on U is denoted (U, F|U).

4.2 Sheaves. Let F be a C-valued presheaf, on X, where C is some category
of “sets with structure.” Then F is called a sheaf if it satisfies the following
“sheaf axiom”: Given an open cover (U,),.,; of an open set U in X, the sequence

FU) S [1FU) =[] FWUnU)
i ij

of sets is exact.

Explanation: “Exact” means that a induces a bijection from F(U) to the
set of elements on which f§ and y agree. Thus, if F is a presheaf of abelian
groups, for example, exactness means that « is the kernel of (f — ).

The map a is induced by the restrictions F(U)— F(U;)(iel). Similarly, the
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restrictions F(U;) » F(U;n U j)(jel)induce F(U)—-]] F(U;nU)). Taking the

J
product of these over iel we obtain . The mapy is obtained similarly,
starting from F(U;)— F(U;nUj) to obtain F(U;)—[] F(U;nUj).

Explicitly, the sheaf axiom says that, givcn‘ s;€F(U;) such that
s{UinU;=s;]U;nUjfor all i, jel (we write s|V for res}(s)) then there is a
unique se F(U) such that s|U; =s; for all iel.

Example. Let F(U) be the ring of continuous real valued functions on U.
Then, with respect to restriction of functions, F is clearly a sheaf (of
commutative rings).

4.3 Sheafification. Let F be a C-valued presheaf on X, where C is some
category of “sets with structure.” Then there is a sheaf, F’, called the
“sheafification” of F, or the sheaf associated with F, and a morphism f:F — F’
through which all morphisms from F into sheaves factor uniquely. In other
words the map

Mor(F', G)— Mor(F, G)

induced by f is bijective whenever G is a sheaf.

Roughly speaking, F’ can be constructed in two steps. First define F,(U)
to be F(U) modulo the equivalence relation which relates s and ¢ if their
restrictions agree on some open cover of U. Then form F' from F, by “adding”
to F,(U)all elements obtainable from compatible local data on some covering
of U. This process makes sense thanks to step 1.

If xeX the morphism of stalks F, — F’_ is bijective.

Presheaves of abelian groups or modules form an abelian category, with
the obvious notions of kernel, cokernel, exact sequence, etc. Thus, if f:F— G
is a morphism of presheaves then (ker f)(U)=ker(F(U)— G(U)), and
similarly for coker(f). If F and G are sheaves then ker(f) is also a sheaf. On
the othe hand coker(f) need not be a sheaf. The cokernel of f in the category
of sheaves is the sheafification of the presheaf cokernel.

One can show that the category of sheaves of abelian groups is abelian.
A sequence F — G — H of sheaves is exact if and only if F,— G, — H is exact
for all xeX.

§5. Affine K-Schemes; Prevarieties

5.1 A K-spaceis a topological space X together with a sheaf @, of K-algebras
on X whose stalks are local rings. If xeX we write Oy , for the stalk over
x, or simply O, if X is clear from the context. Its maximal ideal is denoted
m,, and its residue class field by K(x). One often writes X in place of (X, Oy)
if this leads to no confusion.
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A morphism (Y, 0y) — (X, Oy) of K-spaces consists of a continuous function
a:Y = X together with K-algebra homomorphisms

oy:0x(U) > Oy(V)

whenever U c X and V < Y are open sets such that a(V) = U. These maps
are required to be compatible with the respective restriction homomorphisms
in Oy and Oy. For yeY we can pass to the limit over neighborhoods V of
y and U of x = f(y) to deduce a homomorphism a,:@,— 0,. It is further
required of a morphism that this always be a “local homomorphism,” i..
that o (m,) cm,.

5.2 The affine K-scheme specy(A). An affine K-algebra A is one which if
finitely generated as an algebra. For such an algebra the subspace X = max(A)
of maximal ideals in spec(A4) will be denoted

speck(A).

Recall from the Nullstellensatz (AG. 3.8) that there is a canonical bijection
x+—ker(e,)

X = specg(A) onto Hom, (4, K).
Moreover we adopt the functional notation

fx)=elf) (xeX, feA).

The resulting function f: X — K (for f € 4) determines f modulo the nil radical
of A (see AG.3.8)) so, if A is reduced, we can thus identify A4 with a ring of
K-valued functions on X.

We now introduce the K-space (X, A), where A is the sheaf associated to
the presheaf U A[S(U)™!]. Here, for U open in X, S(U) is the set of feA
vanishing nowhere on U. It is easy to sec that the stalk of 4 at xeX is the
local ring A, so that (X, ) is a K-space. The symbol specy(A) will be used
both for X and for the K-space (X, A). A K-space isomorphic to one of this
type will be called an affine K-scheme.

In case A is an integral domain with field of fractions L then the A,’s are
subrings of L and we can describe 4 directly by: A(U) = ) 4,.

xeU
A homomorphism a:4— B of affine K-algebras induces a continuous
function a": Y —» X, where Y =specg(B). If Uc X and V < Y are open and
o' (V)c U then ofS(U))=S(V) so there is a natural homomorphism
A[S(U)™']1-B[S(V)"']. These induce a morphism on the associated
K-spaces (Y, B) — (X, A), thus making A specg(A4) a contravariant functor
from affine K-algebras to K-spaces.

5.3 K-schemes and prevarieties. By a K-scheme we shall understand a
K-space (X, Oy) such that X has a finite cover by open sets U such that
(U, Ox|U) is an affine K-scheme. Note that X is thus a noetherian space. If
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(X, 0y) is reduced, i.e. if, for each xeX, the local ring O , has no nilpotent
elements # 0, then we call (X, 0y) a prevariety. In case X = specg(A) is affine
then X is a prevariety if and only if 4 is reduced, in which case we call
speck(A) an affine variety.

Caution. (1) A K-scheme is not a scheme in the usual sense. This would be
the case if, in place of specy(A) = max(4) we had used all of spec(A) (in the
affine case). With this modification the definition of K-scheme above
corresponds to the notion of a “scheme of finite type over K” (or over spec(K)).

(2) Our notion of prevariety is essentially the same as that of Mumford
(Chapter I) except that we have not required X to be irreducible.

Consider the affine K-scheme specg(K), consisting of one point with
structure sheaf K. A morphism specg(K)— X just picks a point xe X together
with compatible K-algebra homomorphisms 0(U)— K for all neighbor-
hoods U of x. The latter correspond to a K-algebra homomorphism 0, — K,
and there is only one such: f+ f(x). Thus x determines the morphism, i.c.
we can identify Mor, , (specg(K), X) with X (as sets).

5.4 Theorem. Let X =speck(A) be an affine K-scheme and let Y be any
K-scheme. The natural map A— A(X) is an isomorphism, and the map

Mor, (Y, X) > Mor, .,(4, Oy(Y))

is bijective. In particular Arspecy(A) is a contravariant equivalence from the
category of affine K-algebras to the category of affine K-schemes.
For this equivalence, see [M, Ch. II, §§1-2].

5.5 Quasi-coherent modules [M, Ch. 111, § 1-2]. Let A be an affine K-algebra.
If M is an A-module then the sheaf M on speck(A) associated with the
presheafl u— A[S(U)~ 1]®M is a sheal of A-modules, or, simply, an

4 -module. Moreover M M is an exact functor from A-modules to
A-modules.

If Y is a K-scheme we say that an @Oy-module (or sheaf of @,-modules) F
is quasi-coherent if Y can be covered by affine K-schemes U = specg(A4) on
which F|U is isomorphic to some M as above. If the U’s can be chosen so
that each M is a finitely generated (resp., free) A-module then we say F is
coherent (resp., locally free).

If F is coherent then it follows easily from AG.3.5 that

supp(F)={yeY|F, #0}

is closed. Moreover AG.3.5 implies that, for F coherent, {yeY|F, is a free
0,-module} is open.

Theorem. Let X =specy(A) be an affine K-scheme, and let feA. For any
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A-module M the natural map M f—>1\71 (X ) is an isomorphism. In particular
(specx(4,), 4,) > (X 1, 41X )

is an isomorphism of K-schemes, Moreover Mi—M is an equivalence from the
category of A-modules to the category of quasi-coherent jf-modules. M is
coherent if and only if M is finitely generated. In this case M is locally free if
and only if M is a projective A-module.

5.6 Closed immersions [M, Ch.Il, §5]. A morphism a:Y — X of K-schemes
is called a closed immersion if o maps Y homeomorphically into a closed
subspace of X and if the local homomorphisms @ -0, , are surjective
for each yeY.

If # is a quasi-coherent sheaf of ideals in 0. and if Y = supp(0,/.#) then
Y is closed and @,/.# is the “extension by zero” of a sheaf @y on Y for which
there is a natural closed immersion (Y, 0y)— (X, 0y). We then call Y the
closed subscheme of X defined by .#.

In case X = specg(A) is affine every such .# is of the form I for some ideal
I'in A, and Y is just the affine subscheme

X,aly)

speck(A/I) =, specg(A).

Theorem. The map I+>specy(A/I) is a bijection from the ideals of A to the
set of closed subschemes of specy(A). In particular every closed subscheme is

affine.

An open immersion is a morphism isomorphic to one of the form
(U, 0x|U)—> (X, Oy) where X is a K-scheme and U is an open subset. We call
(U, 04|U) an open subscheme of (X, 0y). A closed subscheme of an open
subscheme is called a locally closed subscheme.

§6. Products; Varieties

6.1 Products exist [M, Ch.1, §6]. Let X and Y be K-schemes. The product
X x Y is characterized by the property that morphisms from a K-scheme Z
to X x Y are pairs of morphisms to the two factors. Applying this to
Z = specg(K) we find that the underlying set of X x Y is the usual cartesian
product. From AG.5.4 it follows immediately that the product of affine
K-schemes specg(A) and specg(B) exists and equals

spec ( A ®B)
K
This is because (X) is the coproduct in the category of affine K-algebras.
K
More generally:

Theorem. The product X x Y exists and the two projections are open maps.
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IfUcX and V < Y are open subschemes then U x V—X x Y is an open
immersion.

From this theorem and the description of the product in the affine case it
is easy to show that the local ring of X x Y at (x,y) is the localization of

0,Q0,at m,®0,+0,@m,.
K

6.2 Varieties. Let X be a K-scheme. The pair (1,,1y) defines a diagonal
morphism d:X —» X x X, and one says X is separated if d is a closed
immersion. A separated prevariety is called an (algebraic) variety.

For example:
(a) An affine variety is a variety.
(b) A locally closed subprevariety of a variety is a variety.
(c) A product of two varieties is a variety.

Let o, f:Y — X be two morphisms of K-schemes, and let

I, 5= {yeYla(y)=B(y)}.

The pair («, f) defines a morphism y:Y - X x X and I', ; =y~ ' (d(X)), clearly.
Hence, if X is separated then I', ; is closed. In particular, if « and § coincide
on a dense set then they coincide at all points.

Applying the above remarks to aepry, pry:Y x X —» X we see also that the
graph of a is closed if X is separated. -

6.3 Regular functions and subvarieties. Let (X, 0y) be an algebraic variety. If
U is open in X we shall write

K[U] in place of O0x(U).

The elements f of K[U] can be identified with K-valued functions on U,
sometimes called regular functions. Moreover resy:K[U]—K[V] then
corresponds to restriction of functions. For xeU the map fi—f(x) =e,(f) is
the composite of K[U]— 0, with the map of O, to its residue class field
K(x)=K.

If U is open in X then (U, 0| U) is a variety, called an open subvariety of
X. In case U is affine we have U = specg(K[U]).

If Y is a closed subspace of X then there is a unique reduced subscheme
(Y,0y) of X. Oy is the sheaf associated to the presheaf (U Y)—K[U]/I,(Y),
where I,(Y) is the ideal of all functions on U vanishing on Y U. (Thus, in
case U is affine, YN U is just specg(K[U)/I,(Y)).) In this way we can
canonically regard a closed subspace Y of X as a closed subvariety.

A locally closed subvariety is then just a closed subvariety of an open
subvariety.

Let a:Y — X be a morphism of varieties. Then o is a continuous function
and, whenever Uc X and V<Y are open and oV)< U, there is a
comorphism

ay:K[U]->K[V]
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such that

a(f)y) =f(y)), or
ap(f)=foa

for feK[U] and yeV. Since we are dealing here with rings of functions it
follows that o (as a map of spaces) determines the sheaf homomorphisms ay.
We shall denote the latter simply by o° (for all U and V) and call «° the
comorphism(s) of a.

Note that, for any set function a: ¥ — X, the comorphisms a° can be defined
as above on the rings of all K-valued functions. The condition that o be a
morphism of varieties then can be reformulated as follows: (i) a is continuous,
and (ii)if U < X and V < Y areopen and if (V) = U then«’K[U] <« K[V].

6.4 The local rings on a variety. Consider the local ring @, of a point x on
a variety V. It reflects the “local properties” of V near x. For example, by
passing to a neighborhood of x we may assume V =specg(A), an affine
variety. Then @, is the local ring of 4 at the maximal ideal m = ker(e,), and
it follows from properties of localization that the prime ideal of @, correspond
bijectively to those of 4 contained in m, i.e. to the irreducible subvarieties
of V passing through x. We see thus that dim_ ¥V (in the sense of AG.1.4) is
the Krull dimension of @,.

Note further that the irreducible components of V containing x correspond
to the minimal primes of @.. Thus x lies on a unique irreducible component
if and only if O, is an integral domain.

6.5 Let f:Y —» X be a morphism of varieties. It is said to be finite if X has
an open cover by affine subvarieties X; (iel) such that f~! X, is affine and
K[f~'X.]is a finitely generated K[X;]-module. In that case, this condition
is fulfilled by every open affine subset of X (cf [Ha: II, 3.2]). If f is finite, the
fibre over each point of X is finite [EGA: II, 6.1.7] and f is closed [EGA:
I1, 6.1.10].

The morphism f'is said to be gaffine if there exists an open affine finite cover
{X.} [iel) of X such that f !X, is affine for all iel. Then f~!(U) is affine
for every open affine subset U of X (see [Ha: II: 5.17] or EGA 11, §1.2).

In particular, a finite morphism is affine by definition.

6.6 Let X and Y be two varieties. The Zariski topology on X x Y is finer
than the product topology. We have already remarked that the two
projections are open. Moreover, if A< X and B< Y, then (4 x B)” = A4 x B:
By using the continuity of the projections, we see that the right-hand side
is closed and contains the left-hand side. On the other hand, for any beB,
the closure of A x bis A x b, hence A x B < (4 x B)~. Similarly, for any a4,
the product a x B is contained in (4 x B)~, whence our assertion. By
induction, it follows that if X, are varieties (i=1,...,n) and 4, c X,, then
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the closure of A=4; x - x4, in X, x - xX,=X is the product of
the A;'s.

As a consequence, if f:X—Z is a morphism of varieties, then
Ay x - x 4,) < f(A).

§7. Projective and Complete Varieties

7.1 The affine spaces V and K". Let V be a finite dimensional vector space
(over K). Then the symmetric algebra 4 =S (V*) on the dual of V is the
(graded) algebra of “polynomial functions” on V, generated by the linear
functions V* in degree one. The universal property of the symmetric algebra
implies that

Homy,;5(Sx(V*), K) = Homyoq (V*, K) = (V*)* = V.

In this way we can identify V with the points of the affine variety specg(A4).
In case V=K" we have 4=K[T,,...,T,], the polynomial ring in n
variables, where T|(t)=t, for t =(t,,...,t,)eK".

7.2 The projective spaces P(V) and P, [M, Ch. 1, §5]. The set of lines in V
can be given the structure of a variety, denoted P(V), and called the projective
space on V. We also write P, = P(K"*!),

It is convenient to describe the set P(V) as the set of equivalence classes,
[x], of non-zero vectors xeV, where [x] = [y] means y = tx for some te K*.
Let n:V — {0} - P(V) denote the projection, n(x) = [x]. We topologize P(V)
so that n is continuous and open, where V— {0} is viewed as an open
subvariety of V. Thus U < P(V) is open if and only if n~!(U) is open.

Let A =S, (V*) a above, and let S be the multiplicative set of all homo-
geneous elements # 0 in A. Then A[S™!] is still a graded ring whose degree
zero term is

L={f/g|fand g are homogeneous of the same degree in 4 and g # 0}.
If [x]eP(V) we shall write

O = {f/geng(x) # 0}-

First note that the condition g(x) # 0 depends only on [x], for if g is of degree
d we have g(tx) = t'g(x) for teK*. This shows further that f(x)/g(x) depends
only on [x] because f also has degree d. Thus a given f/geL can be viewed
as a function on the set of [x]eP(V) for which g(x) # 0. Moreover 0 is the
local ring of all such functions defined at [x].
If U is open in P(V) we put
(OP(V)(U) = m 0[:]
[x]eU

and define restriction maps to be inclusions whenever U’ = U. This is a sheaf
on P(V), and (P(V), Op,) is the algebraic variety promised above.
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Suppose V =K"*! so that A =K[T,, T},..., T,]. Here we have Ti(t)=t;
for t=(t,,...,t,)eK"* 1. Even though T; is not a function on P, =P(K"*?)
the set P, ={[t]eP,|T(t) #0} still makes sense. Moreover, there is a
bijection P, r,—» K" sending [t,,...,t,] to (t,/t;,..,5i/ti,. .. to/t) =(51,...,5,).
It is easily shown that this is an isomorphism from the open subvariety P,, r,
of P, to the affine space K". Since the P, 1, (0 £i < n) cover P, this shows
why P, is at least a prevariety.

Consider the open set U° in K"*! of all (t,,...,t,) such that t, 0. Then
we have an isomorphism of varieties

K*x K"-U
(So,Sl,. . -’sn)Hsa'(l’sli' ..,S,,)~

The composition of this with U—P, is just projection on the factor K"
followed by the inverse of the isomorphism P, r — K" constructed above.
In this way we see that V— {0} - P(V)looks, like a projection from a cartesian
product as above.

7.3 Projective varieties. A projective variety is one isomorphic to a closed
subvariety of a projective space. A quasi-projective variety is an open
subvariety of a projective variety. Since affine spaces are open subvarieties
of projective spaces it follows that all affine varieties are quasi-projective.

Products of projective varieties are projective. To see this it suffices to
show that each P, x P,, is projective. For this, in turn, one has the explicit
closed immersion

P,xP,—P P

m+)m+1)-1" Cam+n+m

defined by:
(BAR [_Vj] )"”([xi}’j] )

7.4 Complete varieties [M, Ch. I, §97. A variety V is complete if, for any
variety X, the projection pry:X x V— X is a closed map. (In the category
of Hausdorff topological spaces the analogous property characterizes
compact spaces. Thus “complete” for varieties is the analogue of “compact”
for topological spaces.)

It follows immediately from the definition that a closed subvariety of a
complete variety is complete, and that a product of complete varieties is
complete.

Let a: ¥ — X be a morphism of varieties with V complete. Then the graph
I', =V x X is closed, so its projection into X, which is a(V), is closed in X.
If « is surjective then it follows directly from the definition that X is also
complete. Applying this to «(V) we conclude that the image of a morphism
from a complete variety is closed and complete.

The affine line K is an open but not closed subset of the projective line
P,, so K is not complete. The only other closed subsets of K are the finite
ones, so a connected complete subvariety of K consists of a single point.
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If V is a connected complete variety then K[V]= K, ie. every regular
function f on V is constant. This follows from the last paragraph because
f(V) is a connected complete subvariety of K.

Combining the observation above we conclude easily that a morphism from
a connected complete variety into an affine variety must be constant. For the
image, being closed, is affine as well as complete. But an affine variety with
only constant regular functions is a point.

That complete varieties exist in abundance follows from the:

Theorem. Projective varieties are complete.

§8. Rational Functions; Dominant Morphisms

8.1 Rational functions. Let V be an algebraic variety. The open dense sets
U in V form an inverse system, under inclusion, so their rings of functions,
K[U], form an inductive system. The inductive limit

K(V)=ind.lim. K[U], (U open dense in V)

is called the ring of rational functions on V. The following properties are
easily established.

(a) If U is open dense in V then K[U]> K(V) is injective; we shall regard
it as an inclusion. Moreover K(U) = K(V).

(b) If feK(V) we say fis regular at x if fe K(U] for some neighborhood
U of x (which is open dense). The set of all such x is then a dense open set
U, called the domain of definition of f. U, is the largest dense open set for
which feK[U,].

(c) Suppose V is irreducible. Then each dense open U is irreducible also.
If feK[U] is not zero then U, ={xeU|f(x)# 0} is non-empty and open,
hence dense (by irreducibility), and 1/feK[U,]. It follows that K(V) is a
field, called the function field of V.

(d) In general, let V,,...,V, be the irreducible components of V. It follows
from (AG.1.2) that there is adense open U such thatthe U,=UnV;(1<i< n)
are open in V and pairwise disjoint. It follows, using (a) and (c) above, that

K(v)=KU)=[]KU)=[]K(V),
the product of the function fields of the irreducible components of V.

(e) If V =specg(A) is affine, where A = K[V], then K(V) is just the full
ring of fractions of A.

8.2 Dominant morphisms. The ring K(V) of rational functions on V is not
functorial. For if a: ¥ — W is a morphism of varieties, and if U is open dense
in W, then o~ *(U) need not be dense in V. But if this is always true, and if
JV)= W, we say o is dominant. Such an « induces an injective comorphism
a’: K(W)— K(V).
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If V, and therefore also W, are irreducible then this makes K(V) a field
extension of K(W). We then say that a is separable if this extension is
separable. Similarly we call a purely inseparable if K(V)is a purely inseparable
algebraic extension, and a is said to be birational if K(V)= a"K(W).

The local rings of ¥V and W can be viewed as subrings of K(V) and of
K(W), respectively, and a° induces an injection a%:0,—0,, for xeV.
Identifying K(W) with a®K(W) we see that the sheaf morphism corresponding
to a is just induced by the inclusions of local rings in K(V).

In general, if V is not irreducible but a(V) = W, then it is casy to sec that
o: ¥V — W is dominant if and only if, for each irreducible component V' of
V, (V)= W’ is an irreducible component of W. We then say that « is
separable (purely inseparable, birational,.. ) if, for each such V’, the induced
morphism V' — W’ (which is dominant) has the corresponding property.

If V' is an irreducible component of V then a(V’)= W' is an irreducible
subvariety of W, and it will be an irreducible component of W provided it
contains a non-empty open set in W. Since V' contains such an open set in
V' this remark shows that: If « is surjective and open then « is dominant.

As a converse, if W and V are irreducible (for convenience), given an
injective homomorphism f: K(W)— K(V), there is a dominant morphism a
of a Zariski open subset U of V into W, such that f=a’. We postpone
the discussion of this point to 13.4, where we can add some complement
pertaining to fields of definition.

§9. Dimension

[M, Ch. 1, §7]
9.1 The dimension of a variety V. We have the combinatorial dimension of V,
denoted by dim V, introduced in (AG.1.4). It is the supremum of the

dimensions of the irreducible components of V. In case V is irreducible we
have the function field K(V), and the basic fact is that, in this case,

dim V = tr.deg. (K(V).

9.2 Hypersurfaces. Let V be an irreducible variety and let feK[V] be a
non-constant function whose set Z(f) = {xe V| f(x) = 0} of zeros is not empty.
Then the dimension of each irreducible component of Z(f) is dimV — L.

9.3 Products. The dimension of V x W is dim V + dim W,
§10. Image and Fibres of a Morphism
[M, Ch. L, §8]

10.1 The hasic theorem. Let a: X — Y be a morphism of varieties. The fibre
of a over yeY is the subvariety « = '({y}) of X. To study the non-empty fibres
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there is no harm in shrinking Y to the closure of the image, a(X), i.e. we may
as well assume a(X) is dense in Y. If X (and Y) are irreducible this means
that o is dominant.

Theorem. Let a:X — Y be a dominant morphism of irreducible varieties, and
put r=dim X —dim Y. Let W be an irreducible closed subvariety of Y and
let Z be an irreducible component of a™ {(W).

(1) If Z dominates W then dimZ 2dim W +r. In particular, if W ={y},
then dim Z > r.

(2) There is an open dense U < Y (depending only on a) such that
(i) U ca(X), and
(i) If Zna~Y(U) # ¢ then

dimZ=dim W +r.
In particular, if W ={y} < U then dimZ =r.

10.2 Corollary (Chevalley). Let a:X — Y be any morphism of varieties. Then
the image of any constructible set is constructible. In particular a(X) contains
a dense open subset of «(X).

The last assertion follows from the first using AG.1.3. The proof of the
first assertion can be reduced easily to the case of a dominant morphism of
irreducible varieties. Then it is deduced, by induction on dim Y, from part
(2)(i) of the theorem.

10.3 Corollary. Let a:X — Y be a morphism of varieties. If xe X let e(x) be
the maximum dimension of an irreducible component, containing x, of the fibre
of « through x (i.e. of a™}(«(x))). Then x> e(x) is upper semi-continuous, i.e.
the sets {xeX|e(x) 2 n} are closed for each integer n.

§11. k-Structures on K-Schemes

This and the following two sections contain the basic notions required here
for the treatment of rationality questions. Recall that k denotes a subfield
of the algebraically closed field K.

11.1 k-structures on vector spaces. A k-structure on a (not necessarily finite

dimensional) vector space V (over K) is a k-module V, c V such that the

homomorphism K (X) ¥, — V, induced by the inclusion, is an isomorphism.
k

The surjectivity means that ¥ spans V (over K), and the injectivity means
that elements of V, linearly independent over k are also linearly independent
over K. The elements of V, are said to be rational over k.

If U is a subspace of V we put U, =UnV,, and we say U is defined (or
rational) over kif U, is a k-structurc on U. This is equivalent to U, spanning U.
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If W=V/U we write W, for the projection of V, into W, and we say W
is defined over k if this is a k-structure on W. This happens if and only if U
is defined over k, or if and only if elements of W, linearly independent over
k are linearly independent over K.

Let f:V — W be a K-linear map of vector spaces with k-structures. We
say that f is defined over k, or that fis a k-morphism if f(V,) = W,. The
k-morphisms from V to W form a k-submodule

Homg(V, W), « Homg(V, W),

and this is even a k-structure provided that W is finite dimensional. In
particular, when W = K, we have a k-structure on the dual V* of V.
Similarly ¥, (X)W, is a k-structure on VX)W, and there are natural
k K

k-structures on the exterior and symmetric algebras of V.

11.2 k-structures on K-algebras. A k-structure on a K-algebra A4 is a
k-structure A, which is a k-subalgebra.

If J is an ideal in A then J is defined over k if and only if J,(=JNA))
generates J as an ideal. This is easily seen.

If S is a multiplicative set in 4, then A,[S™ '] is easily seen to be a k-structure
on A[S™']

If B is another K-algebra with k-structure then we write

MorK-alg(A3 B)k

for the K-algebra homomorphisms defined over k. The map f+—1,® fis a
bijection from Mor,_,,(4,, B,) to this set.

11.3 k-structures on K-schemes. A k-structure on a K-scheme (X, @) con-
sist of

(1) a k-topology k-top(X) c top(X), and
(2) a k-structure on O(U) for each k-open U, such that the restriction
homomorphisms are defined over k.

(Condition (2) just says that the restriction of Oy to k-top(X) is a sheaf of
K-algebras-with-k-structures.) It is further required that, on k-open affine
subschemes, the induced k-structure be of the following type:

A k-structure on an affine K-scheme X =specg(A) is one defined by a
k-structure A, on A as follows: A set is k-closed if it is of the form supp(A4/J)
for some ideal J defined over k. For example, if f € 4, then X, is k-open, and
any k-open set is covered by a finite number of these. Moreover 4, = A(X )
has the k-structure (4,), (see 11.2).

If U is k-open we can cover U by X ’s for a family of f;€ 4,. Moreover
Xy N Xy =X, By the sheaf axiom we have an exact sequence

AU)-T]Ax,)=2 Q AX ).
i B b
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Therefore A(U) acquires a natural k-structure as the kernel of

a—p

H Af. '——*nAfifj’
1

which is a k-morphism of vector spaces with k-structures.

It is not difficult to check that this k-structure on A(U) is well defined,
and that the above construction satisfies the requirements of (1) and (2) above.

Note that we recover A, as the k-structure on A(X).

Let a: X — Y be a morphism of K-schemes with k-structures. We say « is
defined over k or that a is a k-morphism if (i) a is continuous relative to the
k-topologies, and (ii) if U = Y and V < X are k-open such that a(V) < U then
ab:0y(U)— Ox(V) is defined over k. The set of morphisms defined over k will
be denoted

Mor(X, Y),.

A homomorphism «°:B— A of K-algebras with k-structures induces a
morphism a:specy(A4)— specg(B) and it is clear that « is defined over k if
and only if o is defined over k. Thus the category of affine K-schemes with
k-structures, and k-morphisms, is contravariantly equivalent to the category
of affine K-algebras with k-structures, and k-morphisms, and the latter is
clearly equivalent to the category of affine k-algebras.

11.4 Subschemes defined over k. Let (X,0y) be a K-scheme with k-structure.
If U = X is k-open then (U, 0| U) has an induced k-structure.

Suppose (Z,0,) is a closed subscheme of X. We say it is defined over k if
(i) Z is k-closed, and (ii) the sheaf .# of ideals such that @,/ is the extension
by zeros of O is defined over k, i.e. F(U) < O(U) is defined over k for all
k-open U. Condition (ii) is equivalent to the condition that, for all k-open
affine U, the kernel J(U) of the epimorphism of alfine rings,
0,(U)->0,UNZ), is defined over k. Thus we see that (Z,,) acquires a
unique k-structure such that the closed immersion Z — X is defined over k.

It further follows easily that (Z,0,) is defined over k if and only if, for
some cover of X by k-open alfine U's (ZnU,©,]ZnU) is delined over
k in (U, 04|U) for each U.

§12. k-Structures on Varieties

12.1 Affine k-varieties. A variety V with a k-structure will be called a
k-variety. Let V = specg(A) be an affline k-variety with k-structure defined
by A, =k[V] in A=K[V].

Let Z = specg(A4/J) be a closed subvariety of V, where J is the ideal of all
functions vanishing on Z. Then we have an exact sequence

0-J,—k[V]-k[Z]-0,
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where J, =Jnk[V] and where k[Z] is the restriction to Z of k[V]. Thus

k[Z] is a reduced affine k-algebra, and we denote its full ring of fractions

by k(Z). We have KQk(Z)=K[V]/J,'K[V] so that the kernel of the
k

epimorphism K Qk[Z]—K[Z] is J/J,-K[V].
p

Now Z is k-closed when it is the set of zeros of some ideal defined over k.
It follows that

Z is k-closed<>J = . /J,-K[V].

In this case then the kernel above is the nil radical of K X)k[Z].
I3

We conclude therefore that the following conditions on a k-closed Z are
equivalent:

(a) Z is defined (as a subvariety) over k, ie. J =J - K[V].
(b) k[Z] and K are linearly disjoint over k in K[Z].
(©) K&Qk[Z] is reduced.

k

(d) K&k(Z) is reduced.
k

The equivalence of (c) and (d) follows from AG.3.3 because K(X)k(Z) is a
k

ring of fractions of K@)k[Z] with respect to a multiplicative set of
non-divisors of zero. k
We can look at these conditions also from the following point of view.
Suppose we are given a reduced affine k-algebra B,. Then B, is a k-structure
on B= K ® B, and hence defines one on the affine K-scheme Z = specg(B).
k

Z is a variety if and only if B is reduced. Thus we can think of k-closed
subsets of V' as the underlying spaces of closed subschemes of V which are
defined over k, but not necessarily as subvarieties defined over k.

Suppose char(k) = p > 0. Then the zeros of feA and of f? coincide. If
fek'"[V] then fPek[V]. Thus any k'/P-closed set is also k-closed. It follows
that the k-topology coincides with the k”” "-topology.

12.2 Subvarieties defined over k. Let V be any (not necessarily affine)
k-variety, and let Z be a k-closed subvariety. If U is k-open in V we write
k[Z ~ U] for the restriction to Z U of k[U]. Passing to the inductive limit
over k-open U for which ZnU is dense in Z we obtain the ring k(Z) of
“rational functions on Z defined over k.” In case V is affine this notation is
consistent with that introduced in 12.1 above (cf. (AG.8.1). It follows; from
AG.11.4and 12.1 that Z is defined over k ifand only if K (X)k(Z) is reduced.
k

Now k(Z) is the product of a finite number of finitely generated field
extensions of k. Using the results of AG.2.2 we therefore conclude that the
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following conditions are equivalent:

(a) Z is defined over k.
(b) KXk(Z) is reduced.
k

(©) k*”"Qk(Z) is reduced.
k
(d) Each factor of k(Z) is a separable field extension of k.

In particular we see that:

A k-closed subvariety is defined over kP ", and hence over k if k is perfect.

12.3 Irreducible components are defined over k,. Consider the irreducible
components of a k-variety V. To show that each one is defined over k, there
isno loss in assuming that k = k. It suffices further to check this on a cover
of V by k-open affine subvarieties, so we may assume V is affine. Then we
must show that, if P,,..}, P, are the minimal primes of k[V], each P;-K[V]
is still a prime ideal. Since k is separably closed it follows from AG.2.1 that
K[V]/(P;:K[V]), which equals K (X)(k[V]/P;), has a unique minimal prime,
k

s0 it remains to be shown that K X)(k[V]/P;) is reduced.
k

We have k[V] c ITI(k[V]/P;), because k[ V] is reduced, and both of these
rings have the same full ring of fractions, k(V). Since K Q)k(V)= K(V) is
k

reduced it follows, as claimed, that each K X)(k[V]/P;) is reduced.
X

124 Let X, Y be two k-varieties. Then
k[X x Y]=k[XT®Kk[Y].

More precisely, the obvious map of the right-hand side in the left-hand
side is injective. There remains to check the other inclusion. If X and Y are
affine, it holds by definition 6.1. Assume now X to be affine and let Y = U Y;

(iel) be a finite open affine cover of Y. Let f be a regular function on X x Y.
Its restriction to X x Y; belongs to k[ XT1® k[ Y;]. Since [ is finite, there exists
a finite dimensional subspace V < k[X] such that f|X x Y; belongs to
V ®k[Y;]foreachi. Let f;(jeJ)be a basis of V. Then we can write uniquely

f1X x Yi=2fj®gi,j: with gi,jek[Yi]'
j

By the uniqueness, g; ; and g, ; have the same restriction to Y;nY, (i,kel).
Therefore, for given jeJ, the g;; (iel) match to define an element of k[ Y],
hence fek[X]®k[Y]. If now X is not affine, argue similarly using a finite
open cover of X.

We shall use this when one factor is affine and the other quasi-affine, i.e.,
by definition, isomorphic to a k-open sub-set of an affine k-variety X. Note
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that if X is quasi-affine and irreducible, then k(X) is the quotient field of
k[X], (since k(X)= k(X)).

§13. Separable Points

13.1 The functor of points. Let V be a k-variety. For any affine K-algebra
B we shall write

V(B) = Mor, _, (speck(B), V).

If B has a k-structure B, we also write V(B,) = V(B), for the set of morphisms
as above which are defined over k.
If V = specy(A) is affine then

V(B) = Mor, ,, (4, B) = Mor, ,,,(4,, B),

and V(B,) = Mor, (4, B). From these descriptions it is clear that one can
extend the definitions to any K-algebra B, not necessarily affine. (For example
B might be a large field extension of K.) In this way we obtain a functor
B,—V(B,) from k-algebras to sets. It is called the functor of points of the
k-variety V.

V(B,) is also functorial in V. If a:¥V — W is a k-morphism of k-varieties
then o induces a map V(B,)— W(B,).

In the special case B = K we have V(K) = Mor,_, (speck(K), V), which we
can, and will canonically identify with the points of V. Moreover, for any
subfield k' of K containing k we have V(k') < V. These are the k'-rational
points of V. In particular we have V(k)c V(k,) = V(k) = V. The points of
V(k,) are called separable points.

If W is any locally closed subvariety of V, not necessarily defined over k,
we shall permit ourselves to write W(k') for the k’-rational points of V which
lie in W.

Examples. If V = K" =specg(K[t;,...,t,]) with the standard k-structure,
given by k[t,,...,t,], then V(k)=k".

If V is a vector space with k-structure V, then P(V) acquires a k-structure
so that P(V)(k) is the image of ¥V, — {0} under the canonical projection
V —{0} > P(V).

We remark, finally, that the definitions above apply without change to
any K-scheme V (resp. K-scheme with k-structure).

13.2 Theorem. Let a:V — W be a k-morphism of k-varieties which is dominant
and separable. Then there is an open dense set W, < W such that W, < a(V)
and such that, for each we W,(k,), the fibre « ™ '(w) has a dense set of separable
points.

We shall carry out the proof in several steps.

(a) There is clearly no loss in assuming that k =k,
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(b) This done, it follows from AG.12.3 that the irreducible components of
a k-variety are defined over k.

(c) There is no harm in replacing W by a dense k-open set W', and V by
o~ Y(W’). Thus we can easily reduce to the case when W is irreducible and
affine. Then cover V by irreducible k-open affines V. This is possible, using
(b). If W,, answers the requirements of the theorem for o;:V;— W then
W,=(\W,; will work for «. Hence we may assume that V and W are
irreducible and affine. furthermore, with the aid of AG.10.1 we can, after
shrinking W, assume that « is surjective and that all irreducible components
of all fibres have the same dimension.

(d) « is induced by the comorphism k[W]— k[V] which we can regard
as an inclusion. Since K (V) is separable over K(W), by hypothesis, and since
K is linearly disjoint, over k, from k(W) and from k(V), it follows that k(V) is
separable over k(W). Hence we can apply the (separable) normalization
lemma (AG.3.7) to the affine k(W)-algebra k(W) @ k[V1]. This permits us to

k(W]
consider the latter as a finite integral extension of some polynomial ring
k(W)([t,,...,t,] over whose field of fractions k(V) is (finite and) separable.
Since k[V] has a finite number of generators we can find a “common
denominator” f #0 in k[W] for each of the t; as well as for the coefficients
of the integral equations of the generators of k[ V] over the polynomial ring.
Then if, using (c), we replace k[W]" by k[W],=k[W,], and V by
V,=a"}(W;), we can already write k[ V'] as a finite integral extension of the
polynomial ring k[W1][t,,...,t,] =k[W x K"]. Thus we have reduced our
problem to the case where a admits a factorization

Vo wxk Sw

Here = is the coordinate projection, and f is a finite integral morphism such
that k(V) is separable over k(W x K").

() We claim that there is a dense open set U, W x K" such that
B,:V,=B~'(U,)— U, has the following property: Each fibre of 8, over a
separable point consists entirely of separable points.

Write A =k[W x K"] and say k[V] = A[b,,...,b,,]. Let Pi(b;) =0 be the
minimal polynomial equation of b; over the field of fractions, k(W x K"),
of A. Since P; is a separable polynomial its derivative, P}, does not vanish
at b;.

The P; all have coefficients in 4, for some g # 0in A. Putb = [1P:B)(# 0).

Since k[ V], is integral over A, it follows from AG.3.6 that there is a non-zero
multiple h of b in A,. Then k[V],, is integral over A, and each residue class
field of the former is generated by roots of polynomials which are separable
over the corresponding residue class field of A ;. Thus U, =(W x K"),, has
the property described above.

(f) We conclude the proof now by showing that W, = zn(U,) satisfies the
requirements of the theorem. Since 7 is an open map W, is open in W. We
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must show, for we W(k) (recall k = k), that &~ !(w) has a dense set of separable
points.

Since the irreducible components of a ~}(w) are equidimensional, and since
B is a closed surjective map, it follows that f:a~'(w)— (o™ '(w)) =~ '(w) is
dominant. Clearly n~!(w) is a subvariety defined over k and k-isomorphic
to K" Therefore § maps each irreducible component, X, of a™'(w) onto
n~!(w). Let X’ denote the closure of the set of separable points in X. It
follows from (d) that f(X") contains all separable points in U,n =~ !(w), which
form a dense set in (the irreducible variety) n~'(w). Since 8 is closed it
follows that f(X’) = n~ }(w). Therefore, since B is finite, dim X’ =dimn ™ !(w) =
dim X. But X is irreducible so X'=X. Q.E.D.

13.3 Corollary. Let V be a k-variety. Then V(k) is dense in V.
We just apply the theorem to the projection of V onto a point.

13.4 Dominant morphisms. Assume V and W are irreducible k-varieties. We
know (§3, 1.3) that if the k morphism a:¥V — W is dominant, then the
comorphism «’: K(W)— K(V) is an injective homomorphism defined over k.
Let now B:K(W)—K(V) be such a homomorphism. Let Y and Z be
non-empty Zariski k-open affine subvarieties of ¥ and W respectively. Then
k(V) and k(W) are the quotient fields of k[ Y] and k[ Z] respectively. Let {f;}
(iel) be a finite generating set for k[Z]. Then f(f;) = u,/v; with u,v,ek[Y].
Let U be the subset of Y on which all the v; are nowhere zero. It is a
non-empty Zariski k-open affine subset of V, with coordinate ring over k
equal to k[Y][S™ '], where S is the product of the v;'s (icl). We have an
injective homomorphism k[Z]— k[U], whence, canonically a surjective
k-morphism of U into Z with dense image, hence a dominant morphism,
whose associated comorphism is f. Thus, as a converse to 8.2, we see that
an injective k-homomorphism §: K(W)— K(V) is associated to a dominant
k-morphism of a non-empty Zariski k-open subvariety U of V into W.

13.5 Assume here that K is a “universal field” (over k), i.e. has infinite
transcendence degree over k (besides being algebraically closed, as usual).
Let V be an irreducible k-variety. A point xeV(K) is generic over k if
k(x) = k(V), i.e. if the evaluation at x yields an isomorphism of k(V) into K.
Generic points always exist: Let r=dim V. By 3.7, we may write the
coordinate ring k[U] of an affine k-open subset U of V in the form
k[xy,...,x,J/J where J is the ideal of U, t=>r and the x; (1Si<r) are
algebraically independent over k. Choose ¢&,,...,¢ in K algebraically
independent over k. Since k(V) is a finite algebraic extension of k(x,,...,x,),
the map x;—~¢&,(1 <i<r) extends to an isomorphism of k(V) into K. The
images of the x; (1 £i £t) are then the coordinates of a generic point over
k. In fact, this construction shows easily that the generic points form a Zariski
dense (but not open il r = 1) subset.
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Generic points were ubiquitous in earlier formulations of algebraic
geometry, consequently rather prominent in [2], but are less talked about
nowadays. In this book, we use them only in the following proposition. When
we draw some consequences of it later, it is tacitly understood that K is
universal.

13.6 Proposition. Let a:V — W be a k-morphism of (absolutely) irreducible
k-varieties. Assume that a(V(E)) = W(E) for every extension of E of k contained
in K. Then there exists a non-empty k-open subset U of W and a k-morphism
B:U—V such that a-f =1d.

By restricting ¥ and W if necessary, we may assume that V and W are
affine and « is surjective. Let now x be a generic point of W over k
(13.5). By assumption, there exists yea ™ !(x)n V(k(x)). Let f; (iel) be a finite
generating set for k[V] over k. We can write f;=u,/v, with u;, v,ek[W]
and vy(x) #0 (iel). Let U < W be the set of points on which all the v;’s are
non-zero. We have now a homomorphism y:k[V]— k[U] and obviously,
yoa’(f) = f if fek[U]. Therefore the unique k-morphism f:U — V such that
p° =y satisfies our condition.

13.7 Rational and unirational varieties. Let W be an irreducible k-variety.
It 1s said to be rational over k if k(W) is a purely transcendental extension
of k, unirational over k if there exists an injective homomorphism f:k(W)— L,
where L is a finitely gencrated purely transcendental cxtension of k. Let n
be the transcendence degree of L. Then L can be viewed as the field of rational
functions defined over k of the affine n-space A" over k.

Therefore, W is a rational k-variety if and only if it contains a Zariski
k-open subset which is k-isomorphic to a Zariski k-open subset of affine
space. By 8.3, 13.4, W is unirational over k if and only if there exists a
dominant k-morphism of a Zariski k-open subset of affine space into W.

Let k be infinite. Then A"(k) is obviously Zariski dense in A" Since the
image of a Zariski dense subset under a dominant morphism is Zariski dense,
we see that if W is unirational over k and k is infinite, then W(k) is Zariski
dense in W.

§14. Galois Criteria for Rationality
The Galois group Gal(k,/k) of k, over k will be denoted by I".

14.1 Galois actions on vector spaces. Let V be a vector space with k-structure
V.. Then I" operates on V,, = k,(X) V, through the first factor, and it is clear
k

that V, is the set V,{: of fixed points under I". If W is another vector space
with a k-structure, then I" operates on

Homg(V, W), = Hom, (V,, W, )
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by
) =0a(f(a™"v)).

Here oerl’, f:V - W is defined over k, and veV,_. It is easily seen that the
following conditions on such an f are equivalent:

(i) f is defined over k.
(i) f:V,,— W, is I"-equivariant.
(iii) feHom(V, W)/,

14.2 The k-structure defined by a Galois action. Consider a vector space V
with a kg-structure ¥, on which I” operates semi-linearly, i.e.

g(ax) = o(a)o(x) (ack,xeV,).

Suppose further that the stability group of each xeV,  is an open subgroup
(of finite index) in I". Then we claim that

Ve=VF

is a k-structure on V.
Certainly V, is a k-subspace, and the natural mapk,QV,—V,, is
k

I'-equivariant. Its kernel is therefore a I'-invariant k.-subspace having zero
intersection with 1 ® V,. Therefore the proposition below implies that the
map is a monomorphism.

It remains to show that V, spans V, . Let xeV, and I', be the stability
group of x. It contains a normal open subgroup I"* of I". The fixed point
set k' of I"' in k, is a Galois extension of finite degree of k. Let

I"=rI/I"={o,,...,0,} = Gal(k'/k)

and let ay,...,a, be a k-basis of k. The elements y;, = X ;0,(a;x) clearly belong
to V;. Since the elements of I"’ are linearly independent over k', the matrix
(0(ay)) is invertible, say with inverse (b,,). Then

Z buyi= Z by Z o(a)oj(x)= Z ( Z oi(a)by ) 0,(x)= Z 0;40;(x) = 0(x).
i i j i \i j
Some g, is the identity, so x is indeed a linear combination of fixed elements.

Proposition. Let W be a subspace of a vector space V with k-structure. Then
W is defined over k if and only if (i) W is defined over k., and (ii) W,_is I'-stable.

Proof. The “only if” is clear, and the “if” follows if we prove that the subspace
W' spanned by W, coincides with W. In any case we can pass to V/W’ and
the subspace W/W' and so reduce to the case W, = 0. We claim W = 0. Choose
a k-basis (¢;) for V and, if W #0, choose a w # 0 in W,_so that w is a linear
combination of the least possible number of e;'s. After renumbering the e;'s
and multiplying w by an element of k* we can write w=e, + a,e, + --- with
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each coefficient in k,, but a,¢k. Then there is a deI” such that a(a,) # a,, so
w—oweW,_ is non-zero and is a linear combination of fewer of the e/'s;
contradiction.

14.3 Galois actions on k-varieties. Let V be a k-variety. We know from
AG.13.3 that V(k,) is dense in V. We shall introduce now an action of I" on
V(k,). It will leave U(k,) stable for all k-open U, so it suffices to describe the
action when V is affine. Then we can match V(k,) with Mor,, _ . (k,[V], k)
so that xeV(k,) corresponds to the algebra homomorphism e,. If 6eI” then
o(x) is defined by
o =0°€,00 ..
Here the left hand o operates on k, and the right hand one on
k,[V]=k,XK[V]. If we denote the latter action by f+a, for fek,[V] then
k

the equation above reads
fle()=0("'f)(x), or (NX)=0a(f(e™"x))

Writing V(f) for the variety of zeros of f we see that ¢ maps the separable
points of V(f) to those of V(°f). The same applies to V(J) for any ideal J in
k,[V]. In this way we can define the conjugate variety °W of any closed
subvariety W of V defined over k,. Such a definition is allowable because of
the density of separable points. In the affine case °W is just the variety
obtained by applying ¢ to the coefficients of equations defining W over k.

Let a:V — W be a morphism of k-varieties, and assume «a is defined over
k. Then, for oeI’, we define a k,-morphism °a:V — W as follows:

“o(x) = oo™ 'x)) (xeV(k).

By density of separable points there is at most one k,-morphism with this
property. To see that there is one it suffices to exhibit, for k-open V' < V
and W' < W such that aV’ < W’, the comorphism (a)°:k,[W']—k[V']. It
is defined by the commutativity of

k[V'] —" kW]
k.v[V’] ‘_a,—— ks[wl]!

ie. (o)’ =0"'ea’sq. Thus, for fek[W'], Caf(f)=""(«(f)). Thus I
acts on Mor(V, W), .
The following conditions on « are easily seen to be equivalent

(i) « is defined over k;
(i) a:V(k,)— W(k,) is I"-equivariant;
(i) aeMor(V, W)/



32 Background Material from Algebraic Geometry AG

14.4 Theorem. Let V be a k-variety and let Z be a closed subvariety. The
following conditions are equivalent:

(1) Z is defined over k.
(2) Z is defined over kg, and Z (k) is I'-stable.
(3) There is a subset E = ZNV(k,) such that E is I'-stable and dense in Z.

Proof. (1)=(2) is clear, and (2)=>(3) follows from the density of Z(k,)
(AG. 13.3).

(3)=>(1): By covering V with k-open affine varieties, we can reduce to the
case when V is affine. Then J = () m, = I(E) =1(Z) is the ideal of functions

xeE
vanishing on Z. Since E < V(k,) it follows that J is defined (as a subspace of
K[V]) over k,. If geI', then

a — a . — -—
‘]ks - n My, = n Mok, = n My, = J’m
xeE xeE xeE

the latter because E is I"-stable. Hence, by (14.2), J is defined over k, as claimed.

14.5 Corollary. Let a:V — W be a k-morphism of k-varieties. Then a(V) is
defined over k.

Proof. Since V(k,) is dense in V (AG.13.3), «(V(k,)) is dense in «(V), so that
we may apply criterion (3) to it.

14.6 Corollary. Let (Z;) be a family of subvarieties of V defined over k, and
let Z be the closure of | | Z;. Then Z is defined over k.

Proof. Apply criterion (3) to E = ) Zi(k,).

14.7 Corollary. Let a:V — W be a k-morphism of k-varieties which is dominant
and separable. Then there is a dense open set W, in W such that every fibre
of a over a k-rational point of W, is defined over k.

Proof. Let W, be as in (AG.13.2). If we W,(k) then the set E of separable
points in a~!(w) is I"-stable. Moreover AG.13.2 implies that E is dense in
o~ !(w) so the corollary follows from 14.4, criterion (3).

§15. Derivations and Differentials
(Cf. [EGA, Ch. 0, §20].)

This section contains the algebra which is preliminary to the discussion of
tangent spaces, to follow in (AG.16).
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15.1 2 ,,. Weshall work with k-algebras, even though most of the discussion
applies when k is a commutative ring, not necessarily a field.

Since a k-algebra A4 is commutative we can regard an A-module M as a
bimodule, so that ax=xa for xeM and aeA. With this convention a
k-derivation from A to M is a k-linear map X:4 — M such that

X(ab)=(Xa)b + a(Xb) (a,beA).

Since X(ab) = aX(b) for aeck we can take b =1 to conclude that Xa =0 for
aek.
The set
Der, (4, M)

of all such k-derivations is an A-module which is functorial in M.
There is a universal k-derivation

d("': dyp): A Q=2 4p)

obtained by taking £ to be the 4-module defined by generators, da (ac 4),
and relations, d(ab) = (da)b + a(db) (a, be A) and dc = O(cek). Its universality
is expressed by the natural isomorphism

HomA-mod(Q’ M) - Derk(A9 M)

sending f to fod.
(There is a well known construction of £ which we shall not need: Let J be
the kernel of A @A — A, a®brsab. Then a®1 - 1 ®a-da induces an

isomorphism J/J? - £.)

If f:A— B is a k-algebra homomorphism, it induces a semi-linear map
df:0 ,— Qg sending d 4a to dg f(a). (We drop k from the notation when k is
fixed by the discussion.) This corresponds to the map

Der, (B, M) — Der, (4, M)

defined by:
X Xof,

for each B-module (and hence also 4-module) M. In this way 2, is functorial
in A.

15.2 Polynomial rings. If A=k[T,,...,T,] is a polynomial ring, then £2 is
a free A-module with basis dT),...,dT,. Moreover d: A — 2 is given by

i)
ar =3 Lar,

for feA. These assertions translate the fact that a derivation X:4—> M is
determined by the X T;, which can be arbitrarily prescribed.

15.3 Residue class rings. Let A'= A/J for some ideal J, and let M be an
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A’-module (or A-module annihilated by J). Then, since JM =0, we have
Der, (4, M) = Hom 4_,04($2 4, M) = Hom 4. _,,04(2 4/ 2 4, M)
We can identify Der,(A4’, M) with the k-derivations A — M which kill J, ie.
Der, (4, M) = Hom ,._,,4 (2 ,/A-d ,J, M).

Thus 2. is 2, modulo the 4-module generated by all df(feJ). It even
suffices to vary the f’s over a set of generators of J.

For example, suppose 4 =k[T,,...,T,] is a polynomial ring, so that
A =k[t,,...,t,] (t;=image of T). Then if f1,...,f,, generate J we conclude
from above that €2 . is defined by generators dt; (1 <i < n) and relations

£(L)oa-0 usizm

Here ¢(t) denotes the image in A’ of a polynomial ¢(T) =¢(T,...,T,) in A.

15.4 Proposition. Suppose above that A=k@®J, i.e. that k is mapped onto
A'=A/J. Then d, induces an isomorphism of A'-modules

2 >0,0-Q,.

Proof. It suffices to show that these modules have the same homomorphisms
into any A’-module M, i.e. that Der, (4, M) = Hom 4._,,.4(J/J>, M). It X:A> M
is a k-derivation then X(k) =0 so, since A =k@®J, X is determined by X|J.
Since JM =0 we must have X(J?)=0, so X is determined by a
homomorphism h:J/J> -+ M. Conversely, given such an h, it induces
J—J/J?—> M, and hence an X:4 — M so that X(k) = 0. A routine calculation
shows that X is a k-derivation.

15.5 Localization. Let S be a multiplicative set in A. Then 2 5\, =Q,[S~ 1,

and we have
d g = gg}i:_g.(éz (aEA,SE'S).
s §?

In particular, it follows that, if M is an A[S™'J-module, i.e. an A-module on
which the elements of S act invertibly, then

Der, (A, M) = Der,[A[S~ '], M).

For example, if M is a module over one of the local rings A, of 4 then
Der (A, M) = Der(Ap, M).

Here is another important consequence of the localizability of £2: Suppose
V is a K-scheme. Then there is a coherent sheaf £, x of 0),-modules such
that, on any affine open subscheme U = speck(A), the sheal 0y, = Q2,,x|U
is the sheaf £2x corresponding to £2,. If xeU then the stalk £, of 2,
is therefore just the localization of £, at the local ring ¢, of A, or,
alternatively, 24 .
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15.6 Separable field extensions (see AG.2.3). Suppose A is a finitely generated
field extension of k of transcendence degree n. Then

dim,Q2,=n

with equality if and only if A is separable over k. In this case a,,...,a,e4 are
a separating transcendence basis of A over k if and only if da,,...,da, are
an A-basis of 2, ([N.B] (a): V, §16, no. 6, Cor. 1).

If B is a finitely generated field extension of A which is separable over k
then it follows from the exact sequence ([N.B] (a): 111, §10, no. 7, Prop.7)

0 Der ,(B, B)-> Der, (B, B) - Der, (4, B),

by counting B-dimensions, that B is separable over A<>Der(B,B)—
Der, (A, B) is surjective <>B(X)2,— 25 is injective.
A

15.7 Tensor products. Suppose A= A,(X)A,, and write 2,=Q,,,. Then
k

Q2,= (Q, @AJ(—B(A, @.Qz).
k
Equivalently, if M is any A-module, we have
Der, (A4, M) = Der, (4, M)® Der,(4,, M).

The map from left to right is induced by the homomorphisms 4;— 4. For
the inverse we must produce a k-derivation X:4 — M from a given pair of
them X;:4;— M. The formula is:

X(a,®a;)=(X,a,®a;)+(a, ® X ,a,).

15.8 Base change. Forany base change k — k' we have a natural isomorphism

k’g()-QA/k—"Qk'@A/k"

15.9 The tangent bundle lemma. We consider k-algebras A and D where D
is of the form D=B@® M with B a subalgebra and M an ideal of square
zero. If f:A— B is an algebra homomorphism we write M , for the resulting
A-module M with 4 operating via f.

The projection D — B = D/M induces a map

Hom, (4, D) = Homy,,(4, B).
We assert that, for f as above, there is a canonical bijection
Der,(4, Mg—-p~ Y.

In fact, any element of p~!(f) can be written uniquely in the form f + X,
for some k-linear map X:A — M, with the understanding that (f + X)(a) =
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f(a) + X(a)eD = B@® M. The assertion above can then be translated: f + X
is multiplicative if and only if X is a derivation. To see this take a, be A. Then

(f(@) + X(@)(f(b) + X (b)) =/ (a)f (b) + X(a) S (b) +[(a)X(b) + X(a)X(b)
=/(ab) + (X(a)f (b) + /(@)X (b)),

because f is multiplicative and M2 =0.

§16. Tangent Spaces

16.1 The Zariski tangent space. Let x be a point on a variety (or even a
K-scheme) V. Recall that K(x) = 0,/m, denotes the residue field of the local
ring of x. It coincides with K, but the notation refers, more precisely, to its
@0 .-module structure.

The tangent space of V at x is

T(V), = Derg(0,, K(x)).
It follows from (AG. 15.4) that this is canonically isomorphic to
Homy_poq(M,/m2, K).

If f€0, write (df), for the image modulo m? of f — f(x). Then the “tangent
vector” XeT(V), corresponding to h:my/m2—K(x) is defined by
X/ = h((df),).

Suppose V has a k-structure and xe V(k). Then @, has a natural k-structure
0, x> whose residue class field k(x) is a k-structure on K(x). Thus we obtain
a k-structure Der, (0, ;, k(x)) on T(V),. As above this k-structure is isomorphic
to

Homk-mod(mx,k/tni_k: k)

Let a: V' — W be a morphism of varieties (or of K-schemes). Then we have
the comorphism
00, O,

-4

K(x), thus viewed as an @,,-module coincides with K(x(x)). Therefore we
have a natural map

Derg (0O, K(x)) = Derg(Or), K((x)))
which we denote by
(d0): T(V)e = T(W)yr-
Explicitly, if XeT(V), and if f €, then
(do) (X)) = X(@°()))

In case « is a k-morphism relative to k-structures on ¥ and W and if
xeV(k), then a(x)e W(k) and it is easy to see that (da), is defined over k,
relative to the k-structure described above on the tangent spaces.
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The differential, (da),, behaves functorially in the following sense:
(dly).= ]T(ij‘
If B:W —> Z then
d(foa), = (df)yx°(da), (chain rule).

Suppose V =V, x V, is a product and that x =(x,,x,). Define o;: ¥V, >V
(i=1,2) by a,(u) = (u, x,) and a,(y) = (x,,y). We claim that

(dal)xg + (dal)xz: T(Vl)xg @ T( V2)xz - T( V)x
is an isomorphism. Since this is a local matter we can assume the V; to
be affine, say V,=specg(4,). Then V =specy(4) where 4=A4,X)A4,. It
K

follows from (AG.15.5) that we can compute the tangent spaces as

T(V), = Derg(A, K(x))and T(V}),, = Derg(4;, K(x;)). As an A-module we have

K(x) = K(x;)X)K(x,), (both sides being isomorphic to K). Hence it follows
K

from AG. 15.7 that T(V), = T(V,),,® T(V,),,, and it is easily checked that
this identification admits the description given above.

16.2 The tangent bundle. At cach point of a K-scheme V we have a tangent
space. We shall now construct the tangent bundle, T(V), which fits all of these
vector spaces into a coherent family parametrized by V.

Write K[d] = K@ K for the dual numbers, the algebra with one generator,
4, and one relation, 62 = 0. We have the inclusion i and projection p,

K61 2K,

defined by p(d) = 0. As a set we define T(V) to be V(K[d]), the points of V
in K[d] (see AG.13.1). It therefore comes equipped with maps

T(V) = V(K[5])
Pyl |4,
v V(K)

induced by p and i above. Morcover T(V) is functorial: If :V =W is a
morphism of varieties we have a commutative square

T(V)—2— T(W)

Py P

Vv ———— W

It also commutes if we replace the p's by i's.
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Recall that
V(K[0]) = Mor. . (speck (K[3]), V).

It is clear that the scheme specy(K[d]) consists of a single point, with local
ring K[¢]. Hence a point of V(K[d]) corresponds to a point xeV and a
comorphism @,— K[§]. The latter can be written in the form e, + 6X for
some K-linear map X:0,— K. This sends fe0, to f(x)+dX(f) in K[d].
According to (AG.159) the X’'s so obtained vary precisely over
Derg(0,, K(x)) = T(V),. We shall denote the element e, + X also by

ebx
and view it both as a homomorphism @,— K[d] and as a point of T(V).

From the latter point of view we see that the projection p, is given by

pyie¥iox.

(Moreover iy, sends x to e, = e%.) Thus we can reformulate the conclusion
above as follows: There is a natural bijection

T(V). - py '(x)

given by

Xel¥

Suppose a:V —W is a morphism. Then T(x)(e2¥)=ef*o0°, where
@°:0,,,— 0, Expanding the right side we obtain (e, +dX)°a’ =¢e.,°a’ +
0Xva’=e,, + 6(da) X. Thus

AXY o)X
T(@)(eF") = eqisy

In other words, the map that T(x) induces on the fibre over x corresponds
to the differential (da),.

16.3 T(V) “is” a K-scheme. To give T(V) the structure of a K-scheme it
suffices to do so when V is affine and to verify that the construction in that
case is suitably functorial. Before doing this we recall some properties of
symmetric algebras.

Let M be a module over a (commutative) ring A. The symmetric algebra,
S (M), is the largest commutative quotient of the tensor algebra of M. Both
of these A-algebras are graded, with A in degree zero, and M in degree one.
The universal property of the symmetric algebra is expressed by the
identification

HomA~alg(SA(M)s B) = HomA-mod(Ma B)

for all (commutative) A-algebras B. In other words, a module homomorphism
M — B extends uniquely to an A-algebra homomorphism S ,(M)— B.
The following facts are easily verified:
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(@ If M is free with basis t,...,t,, then S, (M)=A[t,,...,t,], the
polynomial ring.
(b) SAM D N) =S 4,(M)Q)S 4N).
A

(c) If A— A’ is any base change then S ,. (A’®M) = A'R)S ,(M).
A A

Now let V =specy(A4) be an affine K-scheme, and put 2=, the
A-module of K-differentials (see AG.15.1). We propose to construct a
bijection

@:T(V)—speck(S 4(£2)),
which is functorial in A, and so that p, and i, on the left correspond, on
the right, to the inclusion A — S ,(€2) and the projection S 4(2)— A sending
£ to 0, respectively. Moreover, if V has a k-structure given by 4, = 4 then
@ will be compatible with the k-structure on the right given by S, (€2,), where
Q,=Q,,, (see AG.15.8 and (c) above).
We define the K-algebra homomorphism

P(e):S Q) — K
as follows: Viewing e,:4 — K(x) as a base change, it induces

ex:SA(Q) - SK(Q(X))’

where Q(x) = K(x)Q)£2. We define ¢(e?*) to be the composite of this with
some 4
h:S(2(x))—» K

to be explained now. We have
HomK~aIg(SK(Q(x))’ K) = Homg_,,4(£2(x), K).

If 2, is the localization of 2 at 0, then Q(x)=K(x)X)R2 = Kx)Q02, =
1 Ox
02,/m Q.. Moreover, with the aid of AG.15.5 and AG.15.3 we see that
Homyg.104(€2(x), K) = Derg (0, K(x)) = T(V),.

Combining these identifications, we can now choose heHomy_,,,(Sx(£2(x)), K)
to correspond to XeT(V),.
The properties of ¢ claimed above are all easily verified, in particular, the

fact that ¢ is bijective.
Suppose now that V is a variety. It does not then follow from the con-

struction above that T(V) is a variety, because S ,(£) may not be reduced.
However, if Q2 is free then (see (a) above) S ,(£2) is a polynomial ring over 4,
so T(V) is a variety of the form V x K" for some n. More generally, then,
we conclude that:

If V is a variety and if 2 is locally free then T(V) is a variety locally
isomorphic to the product of V with an affine space.
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§17. Simple Points

17.1 A point x on a variety V is said to be simple on V if @, is regular local
ring (see (AG.3.9)). If all points of V are simple we say that V is smooth.

In the next theorem, 2, denotes the module of differentials -Qa,/x
(cf. AG.15.5).

Theorem. The following conditions are equivalent:

(1) x is simple on V.
(2) dimyg T(V), =dim, V.
(3) xlies on a unique irreducible component of V,and §2 _is a free O ,-module.

Using (AG.15.4) we see that
T( V)x = Derx(wx’ K(X)) = HomK~mod(nx/mex9 K)

and
0,/m Q. ~m/ml

Moreover (see (AG.3.9)) we have
dimy(m,/m?) 2 dim 0, (= dim, V)

with equality if and only if @, is regular. These remarks already show the
equivalence of (1) and (2).

The point x lies on a unique irreducible component if and only if @, is an
integral domain. Since regular local rings are integral domains it suffices, for
the rest of the proof, to assume V is frreducible. If not, pass to an irreducible
open neighborhood of x.

Let S be a minimal set of generators of Q, as an @,-module. It follows
from AG.3.2 that card S =dimg(£2,/m€2,), and €2, is free if and only if S
is a basis. The latter is equivalent to 1 ® S being a basis over K(V), the field
of fractions of 0., of K(V)(X)£,. Since 1® S spans the latter we conclude

O
that Q. is 0,-free if and only if card S = dimK(y,(K(V)@().Qx).
Cx
From the fact that £2,/m 0, = m,/m? we see that
card S = dim T(V), =2 dim, V.

On the other hand it follows from AG.15.5 and AG.15.6, using the separability
of K(V) over K, that K(V)0®0,= Qgwyx> and
dimg) Qgwyx = tr-deg-xK(V) =dim, V.
Combining these remarks we have:
Q. is O0,-free<>card S = dim, V<dimg T(V), =dim V.
This proves (2)<>(3), thus concluding the proof of the theorem.
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17.2 Corollary. Let V be a variety. The set U of simple points on V is an
open dense subvariety whose irreducible and connected components coincide.

It follows from AG.1.2 that the set U, of points of V lying on a unique
irreducible component is open and dense, and the irreducible and connected
components of U, coincide. Since U « U, we can therefore reduce to the
case when V is irreducible. If £ is the coherent sheaf of differentials on V
(see AG.15.5) then it follows from criterion (3) above that U = {xeV|Q, is
a free O -module}. To show this is open dense we can assume V is affine,
say speck (A), and that 2 is the A-module 2 . In this case it follows from
(AG.3.5) that U’ = {xespec(4)| £, is a free A,-module} is open in spec(A).
Taking for x the zero prime ideal, in which case A, is a field, we see that U’
is not empty. Since spec (A) is irreducible, U’ is dense, and hence likewise for
U = U’ nspecg(A).

17.3 Theorem. The following conditions on a morphism o:V — W of varieties
are equivalent:

(1) a is (dominant and) separable.

(2) There is a dense open subvariety V, of V such that (do), is surjective for
all xeV,

(3) In each irreducible component of V there is a simple point x (of V) such
that a(x) is simple on W and such that (dw), is surjective.

Suppose V' = V and W’ < W are dense open subvarieties such that « induces
a morphism o’: V' — W'. Then clearly the theorem for « will follow once we
prove it for «, thanks to the density of simple points. In this way one can
easily reduce to the case where V and W are each irreducible, affine, and
smooth. The latter condition implies that the modules 2, =Q,,,, and
Qy = Qywyx are locally free. By shrinking V and W still further we can
assume they are (globally) free.

The comorphism oy:K[W]—K[V] induces Q4 — 2, and (da), then
corresponds to the induced homomorphism from

Homg, 04(02v-K(x))
to
Hom,,, ..«(K[V] X 2w K(x)).

K(W]

Write d:M — N for the homomorphism K[V] X) 24 — Q,. The modules M
K[W]
and N are free of ranks dim W and dim V, respectively, and d is represented
by a matrix (f;;) over K[V]. The description of (d«), above shows that it is
represented by the matrix (fj(x)) over K. Thus (da), is surjective if and only
if the rank of (f}{(x)) is dim W. The set of such x is therefore open, and it is
non-empty if and only if (f};) has rank dim W as a matrix over K(V). The
latter, in turn, is equivalent to the injectivity of £, — 2,,. This is equivalent



42 Background Material from Algebraic Geometry AG

to (i) the injectivity of «, (i.e. the dominance of ), and (ii) the surjectivity of
Derg(K(V), K(V))- Derg(K(W),K(V)). The last condition means that
K-derivations of K(W) into K(V) extend to K(V), and this condition (see
AG.15.6) characterizes separability of K(V) over K(W).

17.4 Corollary. If «;:V;— W; (i=1,2) are two separable morphisms then
oy X op:Vy x Vy—» W, x W, is separable.
This follows easily from criterion (2).

§18. Normal Varieties

This section contains the main results needed in Chapter II, §6 for the
construction of homogeneous spaces.

18.1 Definition. A point x on a variety V is said to be normal on V if the
local ring 0, is normal, ie. if @, is an integral domain integrally closed in
its field of fractions. In particular such an x lies on a unique irreducible
component of V, i.e. it has an irreducible open neighborhood. Consequently
most questions involving normality can be easily reduced to the case of
irreducible varieties.

If every point of V is normal on V then V is called a normal variety.

As an example, every simple point of V is normal on V (i.e. a regular local
ring is normal). It follows (see AG.17.2) that the set of normal points on V
contains a dense open set; in fact, it is itself open.

Moreover, a product of two normal varieties is normal [Fond., Ch. V, I
Prop. 3].

18.2 Normalization. Let V be an irreducible algebraic variety, and let L be
a finite (algebraic) extension of K(¥). Then there is a normal irreducible
variety V' and a surjective morphism a:V’'—V with finite fibres, and a
K(V)-algebra isomorphism K(V')— L. Moreover these data are essentially
unique. We usually identify K(V’) with L, and call «: V' — V the normalization
of V in L. It is determined by the following property: If U is open affine in
V, then U’ = a~}(U) is specy [K[UJ), where K[U'] is the integral closure of
K[U]in L, and « is induced by K[U] < K[U]' = K[U']. If L = K(V) we just
call a:V’'— V the normalization of V.

Note that a normalization of an affine variety is affine. Moreover, a normaliz-
ation of a projective (resp., complete) variety is projective (resp., complete). For
projectiveness see [M, Ch. III, §8, Thm. 4]. For completeness, we must show
that V' x X - X is closed for all X, knowing the analogous assertion for V.
It clearly suffices to verify that V' x X -V x X is closed. This is a local
property which need only be verified when V and X are affine, in which case
it follows from the fact (see AG.3.6) that specy(B)— specy(A) is surjective
and closed whenever A < B is a finite integral extension.
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The next theorem is taken from [Class., exp. 5, no. 2], on Zariski’s Main
Theorem.

Theorem. Let a:V — W be a dominant morphism of irreducible normal varieties.
Assume the fibres of o« have finite constant cardinality n. Then « is the
normalization of W in K(V), and n is the separable degree of K(V) over K(W).
In particular, if a is birational then a is an isomorphism, and if « is bijective
then K(V) is purely inseparable over K(W).

Using this theorem the following result can be deduced [Class., exp. 8,
Prop. 1].

Proposition. Let a:V — W be a dominant morphism of irreducible varieties,
and suppose that feK[V7] is constant along the fibres of . Then f is purely
inseparable over K(W).

18.3. Proposition. Let o:V — W be a bijective morphism of varieties. Assume
that V is irreducible and W normal:

(1) If W is complete, then V is complete.
(2) If V is affine, then W is affine.

It is clear that W is irreducible, too.

Suppose W'is openin W, and set V' = a = }(W'). We claim that the inclusion
o’K[W] < K[V']na’K(W), is an equality. Since o': V' — W’ inherits all of
our hypotheses it suffices to treat the case W’ = W. So suppose feK[V] and
that f = a°h for some he K(W). We must show that he K[W], i.e. that h is
everywhere defined on W. We use the following Lemma [Class., exp. 8,
Lemma 1]:

Lemma. Let x be a normal point on an irreducible variety W, and suppose
heK(W) is not defined at x. Then there is a ye W at which 1/h is defined and
vanishes.

Returning to the argument above, if h is not defined at xe W then choose
y as in the lemma. writing y = a(z) we see that 1/f = a’(1/h) is defined and
vanishes at zeV, contrary to the assumption that feK[V]. Thus we have
shown that

W K[W'] = K[V ]na"K(W),

for all open W’ in W, where V' = o~ '(W").

The Proposition of 18.2 implies that K(V) is purely inseparable over
o’K(W). This, together with the result just proved, implies that K[V'] is
integral over a’K[W']. Therefore, if : W — W is the normalization of W in
K(V), it follows that p factors as W - V = W, and y is surjective.

Now if W is complete then, by 18.2, W is complete, so it follows that V
is also complete.
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Next suppose V is affine. Since a’K[W] contains K[V]*" for some n
(p = char(K)) it follows easily that K[W] is an affine K-algebra. Therefore
we have a morphism d: W — specy (K[ W1]), and we claim § is an isomorphism.
Since W is normal so also is specg(K(W]). Hence, by 18.2, it suffices to see
that ¢ is birational. But this follows easily from the fact, proved above, that
a’K[W] contains K[V]na’K(W), and the fact that, since V is affine, K(V)
is the field of fractions of K[V].

18.4 Proposition [Fond., Ch. V, V, Prop. 3]. Let a:V — W be a dominant
morphism of irreducible varieties, and put r = dim V — dim W. Let x be a point
of V such that y = a(x) is normal on W. Suppose further that each irreducible
component passing through x of the fibre of o over y has dimension r. Then if
U is a neighborhood of x in V, a(U) is a neighborhood of y in W.

Corollary. Let o:V — W be a dominant morphism of varieties, where W is
normal. Assume the dimensions of the irreducible components of the fibres of
o are constant. Then o is an open map.

18.5 Algebraic curves (cf. [M, Ch. III, §8, Cor. to Prop. 1, and Thm. 5]). An
algebraic curve is an algebraic variety of dimension 1. In the discussion to
follow we shall assume that all algebraic varieties are irreducible.

(a) An algebraic curve is smooth if and only if it is normal.

(b) Let L be a finitely generated field extension of K of transcendence
degree 1. Then there is an essentially unique complete smooth curve C whose
Sunction field is isomorphic (as K-algebra) to L. Moreover C is a projective
variety.

(c) If V is any smooth algebraic curve then the dominant morphisms a.V — C
correspond bijectively to the K-algebra homomorphisms a,: K(C)— K(V). If a,
is an isomorphism then a is an open immersion.

If we apply (b) to K(¥) and (c) to the identity map of K(V) we obtain:

(d) A smooth curve V is an open subset of a unique complete smooth curve V.

Another corollary of (c) is:

(e) If C is a complete smooth curve then the anti-homomorphism

AUtaIg var(c) - AUtKvalg(K(C))
is bijective.
Finally, we record:

(f) Let o:V — W be a morphism from a smooth curve V into a complete
variety W. Then o extends to a morphism &:V - W.

To see this we can first replace W by a(V) and thus assume « is dominant.
Forgetting the trivial case when W is a point we may then assume W is a
(complete) curve. Let n: W — W be its normalization (in K(W)). Then (see
18.2, and (a) above) Wisa complete smooth curve. Since V is smooth (hence
normal), a factors through = via §:V — w. According to (c), the comorphism
B°:K(W)— K(V) = K(V) is induced by a morphism §:V — W. Now noff=a
is the desired extension of a.
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Chapter I

General Notions Associated With
Algebraic Groups

§1. The Notion of an Algebraic Group

1.1 Algebraic groups. An algebraic group is an algebraic variety G together
with:

(id): an element e€G;

(mult): a morphism u:G x G— G, denoted (x, y)—xy;

(inv): a morphism i:G — G, denoted x+—x"*,
with respect to which (the set) G is a group. We call G a k-group if G is a
k-variety and if 4 and i are defined over k (see AG.12). It follows then that
eeG(k), because {e} is the image of the k-morphism o4, where d(x) = (x, x)
and ofx, y)=xy~ ! (see AG.14.5). .

A morphism of algebraic groups is a morphism of varieties which is also
a homomorphism of groups. The expression “a:G — G’ is a k-morphism of
k-groups” means G and G’ are k-groups and a is a morphism defined over k.

1.2 The connected component of e in an algebraic group G will be denoted
G°.

Proposition. Let G be an algebraic group.

(a) G is smooth (as a variety).

(b) G° is a normal subgroup of finite index in G whose cosets are the connected,
as well as irreducible, components of G. If G is defined over k, so is G°.

(c) Every closed subgroup of finite index contains G°.

Proof. (a) G is “homogeneous,” i.e. it has (as a variety) a transitive group of
automorphisms. (Namely, the translations x+xy.) Since G has some simple
points (AG.17.2) it follows that all points are simple. Moreover it now follows
from AG.17.2 that the irreducible and connected components of G coincide.

(b) If xeG° then x~'G° is a connected component of G containing e, and
hence equal to G°. Thus x~'G® = G° for all xeG®. It follows that G° = (G°)~!
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and G°G°=G", so G° is a group. Its cosets (say left) are each connected
components of G, clearly, so they must be finite in number (the space G is
noetherian). Finally, if yeG then yG°y~! is a connected component of G
containing e, and hence equal to G°. Thus G° is normal in G. Let G be defined
over k. Then G° and its cosets are defined over k, (AG.12.3). They are
permuted by the Galois group I of k, over k, acting as in AG.14.3. Since
eeG(k) (1.1), it follows that G°(k,) is stable under I', hence G° is defined over
k (AG.14.4).

(c) If H is a closed subgroup of finite index in G, then the complement of
H, being a finite union of the non identity left cosets, is also closed. Thus H
is open and closed so it must contain G°.

The proposition implies that the notions “connected” and “irreducible”
coincide for algebraic groups. The term “connected” is preferred because the
word “irreducible” has a different use in the representation theory of G.

1.3 Proposition. Let G be a k-group and let H be a not necessarily closed

subgroup. Let U and V be dense open sets in G.

(@) U-V=aG.

(b) H is a subgroup of G. If H < G(k,) and if H is stable under Gal(k,/k), then
H is defined over k.

(c) If H is constructible, then H = H.

Proof. (a) Given xeG, the dense open sets U and xV ™! have a common
point, say u=xv~!, so x =uveU-V.

(b) Since x+»>x~! is a homeomorphism we have H ' =H '= H. If xeH
then xH = xH = H,so HH = H.1f yeH then Hy  H so Hy = Hy < H. Thus
HH = H, so H is a group.

The assertions concerning rationality over k follows from AG.14.4.

(c) If H is constructible then it follows from AG.10.2 that H contains a
dense open subset of H. By part (b) H is a closed subgroup, so part (a) implies
H=H-H=H.

1.4 Corollary. Let G' be a k-group and a:G — G’ a morphism.

(@) «(G)isa closed subgroup of G; and it is defined over k if a is defined over k.
(b) (G°)=(G)".
(c) dim G = dim ker (o) + dim o(G).

Proof. (a) According to AG.10.2 the subgroup a(G) is constructible, so 1.3(c)
implies that it is closed. Moreover AG.14.5 implies that it is defined over k
if a is so.

(b) By part (a), «(G) is closed. Since it is also connected and of finite index
in a(G) it follows from 1.2 (c) that a(G°) = «(G)".

(c) It follows from AG.10.1 that for all x in some dense open set in a(G),
dim G — dim «(G) = dim a ™ !(x). But dim a ™ !(x) = dim ker() for all x, clearly.
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1.5 Affine groups. Let G = specg(A) be an affine algebraic group, 4 = K[G].
We shall translate the elements of structure of G in terms of A.

eeG: e:A-K, e(f)=f(e).

(The latter homomorphism, evaluation at e, was formerly denoted “e,.”
wGx GG pg:A— AR A.
K

If p°f =%g;®h; then f(xy) = Xgix)h(y).
Next we have the inverse.

i:G-G "A-A
(@N)x) = f(x7).
In order to formulate the group axioms we introduce
p:G-G, pA-A
xise” (p°f)x) = fle).

Now the group axioms are expressed by the commutativity of the following
diagrams:

GxGxG—,GxG A®A®A<—'-‘:?|—A®A
(Ass) Ix :«J ln 194 o
GxG —F——G AQA A
I
G—"2 .GxG A2 404
1dy (l.p)l\l,, (1.p’)l \ lu
GxG——G ARA—i— 4
6 —*2 .GxG A" o4
(Inv) (“)1 \ l,. (l,f)l \ I”.
GxG—— G A®A - A

H

Note that p° is just the composite of the augmentation e:4 — K with the
inclusion K < A. Thus, in terms of 4, G is determined by the data (4, e, u°, i°)
subject to the above three axioms.

The data (A4,e,1°) subject to (Ass) and (Id) are sometimes called an
associative Hopf algebra with identity and u° is referred to as its diagonal map.
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If C is any K-algebra we can describe the group structure on
G(C)=Hom,_,,, (4,C)
as follows: If x, ye G(C) then the product in G(C) of x and y is the composite:

AL A4 CcoCc -,

where m is the multiplication in C (m(a®b) = ab). If C— C’ is an algebra
homomorphism then G(C)— G(C’) is a group homomorphism. Quite
generally, for any (not necessarily affine) algebraic group its functor of points,
C+—G(C), is a group valued functor.

1.6 Examples

(1) The additive group G,. Its affine ring is k[G,] = k[ T], a polynomial ring
in one variable;

M=TRN+(1®T), iT)=—T, «T)=0.
(2) The general linear group GL,. The affine ring is
k[GLn] = k[Tl 1 Tl 25000 T;lm D~ l]a

where D = det(T;;). Thus GL, is the principal open set (K™)p, in affine n?-space.
We have .

e(Tu) = 5ij
w(Ty)=Z,Tu®@Ty
and
io(Tij) =(- l)HjD—l det(’rrs)raéj,s#l"

(3) The multiplicative group GL, is sometimes denoted G, in the
literature. As a special case of the above formulas we have

k[GL,]=k[T, T~ 1]
eT)=1, w(T=TRT, i(T)=T""
(4) The special linear group, SL,, is the kernel of the morphism
det:GL, - GL;.

Thus k[SL,] =k[Ty,, Tya..., T,,)/(det(T;;) — 1). The maps p° and i’ are
induced, on passing to the quotient, by those of k[GL,]. The same remark
applies to any closed subgroup of GL,, such as the following examples.
(5) The group of upper triangular matrices
T, = {geGL,|g;;=0 for j < i}
and the upper triangular unipotent group

U, ={geT,lg;=1(1<i<n)}.
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T, is the semi-direct product of U, and of the diagonal group
D, ={geGL,lg;;=0 for i # j}.
(6) The symplectic group
Sp2n = {9€GL,,l'gJg = J}

where ‘g denotes the transpose of g and

J=( 0 ’n).
-1, 0

(7) If S is a non-singular symmetric n by n matrix then
0(S) = {geGL,|'gSg = S}

is called the orthogonal group of S.

(8) Let V be a finite dimensional vector space, and let Sg(V*) be the
symmetric algebra of its dual space. Then we can identify V with the
affine variety specg(Sx(V*)). Indeed, for any K-algebra B we have
HomK_alg(S x(V*), B)=Hom,__ (V* B)= B® V.In case B =K this gives the

K

bijection V — spec(Sx(V*)) making V a variety, and it shows that the points
of Vin B are just

V(B)=BXV,
K

the B-module obtained by base change K — B. We can make V an algebraic
group using the addition ¥V x V' — ¥, and this is compatible with the natural
addition in B)V.

K

If V has a k-structure V, as vector space, then it has a corresponding
k-structure as variety given by S, (V¥) in Sg(V*). In case B is a k-algebra we
then obtain, just as above, V(B) = B)V,.

k

The vector space E=End, (V) can also be made into a variety,
and we then have E(B)=BXE=B&End, . 4V)=End,  ,B®V)=
K K

Endg_..4(V(B)). In this way the natural action of E on V extends naturally
to the functor of points.

Relative to any basis for V, the determinant, det, is a polynomial with
integer coeflicients in the matrix coordinates of E. Thus if V has a k-structure
then E, = End,__ (V,) is a k-structure on E, and we see that deteSg(E*) is
defined over k. The principal k-open set E, , = {geE|det(g) # 0} is denoted

GL(V) or GL,.

It inherits a multiplication from E making it a group. Since the inverse of
matrix is a polynomial in the matrix coefficients and det ™' it follows that
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GL, is an algebraic group. Moreover, if B is any K-algebra we have
GL,(B) = {geE(B)|det(g) is invertible}

where we identify E(B) with B-module endomorphisms of the free B-module
V(B). Thus

GL,(B) = Adtn_mod<B® V).
K

A closed subgroup of GL,, is called a linear algebraic group. A morphism
o:G— GL, of algebraic group is called a rational (linear) representation of
G. If G is a k-group we say o is defined over k, or that « is k-rational, if it
is a k-morphism with respect to the k-structure on GL, induced as above
by one given on V. Relative to a k-rational basis of V, this just means that
the corresponding matnx coefficients a(g);; are k-rational functions G- K.
Since these functions are all of the form grsh(a(g)(v)) with veV, and heV ¥
it follows that a:G— GL, is a k-rational representation if and only if the
corresponding map G x V — V is a k-morphism of varieties.

A representation a:G—GL, will be called immersive if it induces an
isomorphism of G with the closed subgroup a(G) of GL,, in other words, if
it is a closed immersion.

(9) The multiplicative group of an algebra. Let A be a finite dimensional
associative (not necessarily commutative) K-algebra, and let N be the norm,
N, x:A—K (the determinant of the regular representation). Viewing A as
an affine space, we see that the group GL,(A) of invertible elements in A is
the principal open set defined by N. Hence GL(A) is an affine algebraic
group which is a “rational variety.” The latter means that GL,(A) is
irreducible and that its function field, K(GL,(A)), is a field of rational
functions (in dimg A variables).

If A has a k-structure given by a k-subalgebra A, then the norm N is
defined over k, and GL,(A) becomes a k-group (see AG.12.1). In this case
k(GL,(A)) is already a purely transcendental extension of k, i.e. GL,(A)
is “k-rational.” For any k-algebra k' the points, GL,(A)k’), form the
multiplicative group GL,(A(K") of A(k) = A, Q)K"

k

1.7 Actions of groups on varieties. An algebraic transformation space is a triple
(G, V,a) where G is an algebraic group, V is a variety, and a:G x V>V,
(9, x)>gx = a(g, x), is a morphism satisfying

ex=x and g(hx)=(gh)x

for all xeV and all g, heG. We sometimes refer to this situation by saying
that “G acts morphically on the variety V.” If G and V are given with
k-structures we say G acts “k-morphically” if « is defined over k. Because of
the notation gx or g-x or g(x), a symbol for a is superfluous, and is usually
omitted.
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For subsets M and N of V we have the transporter
Trang(M, N) = {geG|gM < N},
sometimes also denoted Trg(M, N). One calls
N (M) = Trang(M, M)
the normalizer of M in G. For example
G, =N e({x})
is the stability group or the isotropy group of xeV, and
G(x) = {gx|geG}

is called the orbit of x. The set of fixed points of G on V, ie. of points xeV
for which G, =G, is denoted VS If V =G, acted upon by inner auto-
morphisms, and M < G, then
G"= )G,
xeM

is called the centralizer of M in G and is denoted & 4(M) or Z(M). In that
case, the normalizer 4 4(M) or & (M) of M can also be defined as

N (M) ={geG|gM = Mg}
whereas
Z (M) ={geGlgm=m.g for all meM}.

Proposition. Let G be a k-group acting k-morphically on a k-variety V, and
let M and N be subsets of V.

(a) We have Trang(M, N) = Trang(M, N), with equality if N is closed.
(b) If N is k-closed and if M = V(k), then Trang(M, N) is k-closed.
(©) If M < V(k) then Z ;(M) and A" (M) are k-closed.

Proof. (a) If gM = N then gM =gM = N. If N =N then gM = N implies
gM < N.

(b) Define a,: G — V by a,(g) = gx for xe V. Then if xe V(k), o, is defined over
k, so a_ '(N)=Trang({x},N) is k-closed. Since M < V(k) it follows that
Trang(M, N)= () a; '(N) is k-closed.

xeM

(c) The fixed points in V of any geG are closed (because varieties are
separated) so it follows that Z'; (M) = & o(M). Part (b) implies G, is k-closed
for xeV(k), so Z¢(M)= () G, is k-closed.

xeM

Moreover A 4(M) = Trang(M, M) (part (a)), and the latter is k-closed by
part (b).

Remarks. (1) It is not true in part (b) that Trang(M, N) need be defined over
k even if N is defined over k and M < V(k).
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(2) The proposition applies notably to the action of G on itself by inner
automorphisms.

1.8 Closed orbit lemma. The following simple result is a basic technical tool
for the theory of algebraic groups.

Proposition. Let G be an algebraic group acting morphically on a non-empty
variety V. Then each orbit is a smooth variety which is open in its closure in
V. Its boundary is a union of orbits of strictly lower dimension. In particular,
the orbits of minimal dimension are closed.

Proof. Let M = G(x) be the orbit of xeV. Since M is the image of the
morphism gr-gx it follows from AG.10.2 that M contains a dense open set
in M. Now G operates transitively on M, and it evidently leaves M stable.
Since M contains an M-neighborhood of one of its points it follows from
homogeneity that M is open in M. Hence M — M is closed and of lower
dimension, as well as being G-stable. Finally, the smoothness of M follows
from homogeneity.

Corollary. Closed orbits exist.

A morphic action of G on V is said to be closed if all orbits are closed,
free if only the identity of G has fixed points (i.e. g.v. = v for some ve V implies
g =1). If it is free, then all orbits have the same dimension (that of G), hence
are closed by the Proposition.

The graph F of an action is the image of the morphism a:G x V-V x V
defined by (g, v)>(g-v,v). If the action is free, then a:G x V — F is bijective.
If it is an isomorphism of varieties, then the (free) action is called principal.
This amounts to require that for (z, y)eF, the unique g = ¢(x, y)€G such that
y=g.x is a morphic function on F. As an example, if V is itself a k-group,
containing G as a closed subgroup acting by left (resp. right) translations,
then the action is principal: Indeed it is obviously free and then the unique
g bringing x into a point y of the orbit of x is y.x ™' (resp. x ™' y).

1.9 Translations. Let G be an affine k-group acting k-morphically on an
affine k-variety V, via a:G x V — V. Thus « is defined by the comorphism

a*:k[V]—k[GIRkK[V]
k
of affine rings over k.

If geG we denote by 4, the comorphism of x+—¢~'x. Then

S=dof, G N)x)=f(g™'x),

is a linear automorphism of K[ V] which we call left translation of functions
by g. The reason for the inverse is to make g—4, a homomorphism:
Ay Ay = gy
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Proposition. Let F be any finite dimensional vector subspace of K[V]. Then
there is a finite dimensional subspace E which (i) contains F, (ii) is defined over
k, and (iii) is stable under left translation by G. Moreover a necessary and
sufficient condition that F be invariant under left translation is that

«’F c K[G]Q)F.
K

Proof. We begin with the first assertion. By enlarging F we may assume F
is defined over k. We may further assume that F is spanned by a single
function fek[ V], for the general case will then follow by taking the sum of
the E's obtained for each element of a k-basis of F.

Write o°f = Y. f;®h,ek[G] QK[ V], so that n is minimal. Then for geG
i=1 k

we have (4,/)(x)=f(g™'x) =) fdg ™ "Wh{x), so that A,f =Y f(g~")h, There
exists therclore a finite dimensional subspace of k[V], defined over k,
containing all 1,f(geG). The intersection of all such subspaces of K[V]
clearly satisfies the three required conditions.

To prove the last assertion, let F be a subspace of K[V] and let { f;} U {h;}
be a basis for K[V] such that {f;} spans F. If feF and geG we have
Af =Yg Nfi+ Y s;(g”Hhj, where a”f =Y r,® fi+ Y 5;®h;. Hence 1,f €
F<s{g~")=0 for all j. Varying geG and feF we see that 1,F = F for all
geG<a’F c K[G]XF. QE.D.

K

Consider the special case where V' =G and G acts on itself by both left
and right translations. More precisely we let (g,h)eG x G act on xeG by
x—gxh™!. In this way we obtain two actions of G on functions feK[G]:

left translation: (4,f)(x)= f(g~'x)
right translation: (p,f)(x) = f(xg).
They are both homomorphisms of G:
lgh = lglh’ pyh = pgph;

and they commute:
.01 = pyty for all g, heG.

Applying the proposition above we obtain the
Corollary. Every finite dimensional subspace F of K[ G] is contained in a finite

dimensional subspace E defined over k which is stable under both left and right
translation by G.

1.10 Proposition. Let G be an affine k-group. Then G is k-isomorphic to a
closed subgroup, defined over k, of some GL,.

Proof. Write k[G] =k[f,,...,f.]- Using 1.9 we can even do this so that
fis---» [, is @ basis for a subspace E of K[G] stable under right translation,
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i.e. so that u’E < E Q) K[G] (see 1.9). Thus, for each i, we have
K
whi= Z f; ®m ji

for some m;;ek[G]. If geG then (p,f)}x) = fixg) =Y. fi(x)m;{g), ie.
p,f; = Z mji(g)f]‘
J
It follows that
«:G—=GL,, alg) = (m;(g))

is a morphism of algebraic groups, and it is evidently defined over k, because
the mj; are. Indeed, the comorphism

a’:k[GL,J=k[Ty,..., T, D~ '] k[G]
is defined by a(T;)=my. Since f(x)=[{ex)=) fie)m;(x) we have
j
fi=Y fileym;eim(a’) for each i Hence o’ is surjective, so a is a closed
i

immersion. We know from 1.4 that G’ = a(G) is defined over k, so a induces
the desired k-isomorphism G —G'.

Remark. It follows easily from an argument like the one above that, if E is
any finite dimensional right invariant subspace of K[ G], the homomorphism
o:G - GL(E) induced by right translation is a rational representation of G.

1.11 Actions of groups on groups; semi-direct products. Let G and H be
k-groups, and let a:G x H— H be an action of G on H. (This means that
elements of G act as group automorphisms of H.) The basic example of this
occurs when G and H are subgroups of a larger group in which G normalizes
H, and the action is induced by conjugation: «(g, h) = ghg . In fact this is
essentially the most general case, as we see now by constructing the semi-direct

product
H-G,

as follows: as a variety it is H x G, and the multiplication is defined by

(h1,9:10h2, g5) = (hylgy, h2), 9192)-
It is easy to check that this makes H-G a group. For example

(hg)™ ' =(dg™ ", h)" 97"
Moreover we have the exact sequence of morphisms
I-H5HGAL G-,
and a section s:G — H-G of p, defined by
i(h)=(h,e), p(h,g)=g, sig)=(e,9)
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If a is defined over k then it is clear that H-G has a natural k-structure so
that i, p, and s are k-morphisms. The morphism i is an isomorphism of H
with a normal subgroup of H-G, and « is induced, via s, by conjugation of
iH by sG:

(e, g)h, e)e,9) ™" = (x(g, ), ).
Suppose G’ is an algebraic group and G and H are closed subgroups with

H normalized by G. Then we shall say G’ is the semi-direct product of the
subgroups G and H if the multiplication map

HxG-G', (hg)—hg

is an isomorphism of varieties. Then a(g, h) = ghg ™! defines an action of G
on H so that G’ is isomorphic to the group H-G constructed above.

1.12. Proposition. (Existence of equivariant embeddings). Let G be a k-group
operating k-morphically on a affine k-variety V. Then there exist a finite
dimensional vector space E defined over k, a closed k-embedding ¢:V — E and
a k-morphism p:G — GL(E) such that ¢(g-v) = p(g): ¢(v) for allge G and ve V.

Proof. We may write k[ V] =k[f,,..., f,], where the f; generate K[V] as a

K-algebra and span over K a G-invariant subspace F (1.9). Let a:G x V>V

be the map defining the action of G on V. By 1.9 we have a’°F < F®K[G],
K

and there exist uniquely defined m;;ek[ G] such thata’f; = y m,;® f7, whence

() flgv)=Y myg)fiv) (geG;veV).

Let E = K", with coordinates x;. Define ¢:V — K" by assigning to ve V' the
point with coordinates x; = f(v). It is a k-morphism. We have ¢°x; = f,
hence ¢° is surjective, and ¢ is a closed embedding. The relation (1) can be
written

@ d(g-v) = M(g) ¢(v), .

where M(g) = (m;;(g)). It follows immediately that M(gh) = M(g)-M(h)
(g, heG), hence p:gr—>M(g) is a k-morphism of G to GL,, which, in view of
(2) satisfies our condition.

§2. Group Closure; Solvable and Nilpotent Groups

2.1 Group closure. Let M be a subset of a k-group G. We write
(M)

for the intersection of all closed subgroups of G containing M; thus /(M) is
one of them, the smallest one. From 1.3(b) we have:
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(a) If M is a subgroup of G then o£(M)= M.
Put N=Mu{e}uM~" and let N,, denote the image of the product map
@p:N x --- x N> G. Then H=(JN,, is the subgroup generated by M, so

(a) implies that «/(M) = H.

If M is a subvariety defined over k then so also is N. Since each a,, is a
morphism defined over k it follows from AG.14.5 that each N,, is defined
over k. Now AG.14.6 further implies that /(M) = H, being the closure of
(J N, is also defined over k. Thus we have proved:

(b) If M is a subvariety defined over k then /(M) is defined over k.

Next we treat products:

(c) If M; is a subset of an algebraic group Gi=1,2) then
(M, x M,)=o(M,) x A(M,).

The right-hand side is a closed subgroup containing M, x M,, and hence
contains the left-hand side. On the other hand (M, x M,) contains
M, x {e} and hence also &/(M, x {e}), which is clearly equal to /(M) x {e}.
Similarly it contains {e} x &/(M,), and hence also the right-hand side.

(d) Let M and N be subsets of G such that N normalizes (resp. centralizes)
M. Then (N) normalizes (resp., centralizes) s/(M).

Let C(X) denote the normalizer (resp. centralizer) of a subset X of G. By
hypothesis N « C(M), and evidently C(M) = C(«#/(M)). It follows from (1.7)
that C(/(M)) is closed, and hence £/(N) < C(«/(M)).

(e) If M and N are subgroups of G then the commutator groups (M, N) and
(M, N) have the same closure.

Let ¢:G x G— G, ¢(x, y) = xyx~'y~L. Since M x N is dense in M x N the
same is true of (M x N)in ¢(M x N), so #(c(M x N)) = «(c(M x N)). But it
follows from part (a) that these groups are the closures of (M, N) and of
(M, N), respectively.

(F) If :G— G’ is a morphism of algebraic groups then

oA (M) = o («(M)).

a(s/(M)) contains a(M) and, according to 1.4, it is closed. Hence it contains
s/(o{M)). On the other hand o~ o#(a(M)) is closed ( is continuous) and contains
M, so it contains «/(M). Applying « we obtain .o (a(M)) > afa™ '/ (x(M))) o
a(/(M)), thus reversing the inclusion proved above.

2.2 Proposition. Let f;:V;— G(i€l) be a family of k-morphisms from irreducible
k-varieties V; into a k-group G, and assume ec€ f;V;= W, for each iel. Put
M =|)W(iel). Then /(M) is a connected subgroup of G defined over k.
Moreover, there is a finite sequence (x(l),...,x(n)) in I such that
AM) =W, W, where each ;= + 1.

Proof. By enlarging [ if necessary we can assume the morphisms x> fy(x) !
are also among the f;'s. If a=(a(l),...,o(n)) is a finite sequence in I put
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W, =Wy, - W, The set W, is the image of the k-morphism,

a(n)*

Sa(y* % Sam) mult

V Gx:-xG—C;

a1y %

-xV

a(n)

it follows therefore from the hypotheses that W, is constructible, and that
W, is an irreducible k-variety (see AG.10.2). As a consequence, for dimension
reasons, there is an a such that W, is maximal.

If B and y are two finite sequences, then

)] Wy Wy W

In fact, for xe W,, the map y— y-x sends W, into Ww » hence W,, into W“, ”»

whence W, W, c W s.yy As @ consequence, X W, < W‘i , for every xe W,

from which (1) follows Since W, is maximal, this ylelds in particular, for any f:
W, cW-Wch(am W

Thus, W, is stable under products, and, taking f such that W, = , we also

see that W, = W 1. Therefore, W, is a closed subgroup comalmng W, for all

p. Then, clearly, W 2/ (M). Since W, contains a dense open subset of W,, we

have o/ (M)= W, W,=W,_ , by 1.3.

Remark. The proof shows that the n in the statement of the proposition can

be taken to be £2-dimG.

2.3 Group closure of a commutator group.

Corollary. Let G’ be a k-group and let G and H be closed subgroups defined over
k, with G connected. Then the commutator group (G, H) is a closed connected
subgroup defined over k.

Proof. If heH, define f,:G—G’' by f,(g)=(g,h)=ghg 'h~!. These are
morphisms of the connected variety G into G’, which all map e onto e, so 2.2
implies that the group generated by all f,(G)(heH), which is just (G, H), is
closed.

It follows that (G, H) = /(M) where M is the image of the commutator map
G x H— G'. The latter is a k-morphism, so M is defined over k, and 2.1(b)
implies that .«/(M), which equals «/(M), is defined over k.

If neither G nor H is connected then (G, H) need not be closed. One need
only consider an infinite group generated by two finite subgroups G and H (for
example the modular group SL,(Z)/{+ 1} in PGL,). However this cannot
happen if G or H is normal.

Proposition. Let G be a k-group and let H and N be closed subgroups defined
over k such that N is normalized by H. Then (H, N) is a closed subgroup of G
defined over k and normal in HN.
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Corollary. The smallest normal subgroup of G containing H is a closed
subgroup defined over k.
For,since (H, G) is normal in G, that subgroup is H(H, G), which is closed.

Proof (of the Proposition). There is no loss in assuming that G = HN. Once
we show that (H, N) is closed the fact that it is defined over k follows just as
in the proof of the first corollary above. That corollary further implies that
(H°,N) and (H, N°) are closed and connected. Hence so also is the group L
generated by them together with all their conjugates in G.

We shall now invoke the theorem of Baer in the appendix at the end of §2.
We have first that (H, N) is normal, so that L, the least normal subgroup
containing (H’ N) and (H, N°), is contained in (H, N). Since L is closed it
suffices to show that L has finite index in (H, N); the latter will then be a
finite union of cosets of L.

Pass to the group G’ = G/L, and denote the image in G’ of a subgroup
Mc G by M'. Then H" and N’ are such that H” centralizes N’ and N”
centralizes H' (by definition of L). Hence the set of commutators of elements
of H' with elements of N’ is a quotient of the finite set (H'/H®) x (N'/N°’).
Now the desired finiteness of (H', N') follows from Baer’s theorem (appendix).

2.4 Solvable and nilpotent groups. Let G be an abstract group. The derived
series (2"G) (n 2 0}, and the descending central series (6"G) (n 2 0), are defined
inductively by:

2°G=G, 9"*'G=(2"G,2"G), (n20)
€°G=G, €'*'G=(G,%4"G), (n20).

We sometimes write 2°G=n2"G and €°G=n%"G. All these are
characteristic subgroups (1.€. stable under all automorphisms) of G, evidently.
One says that G is solvable (resp. nilpotent) if, for some n, we have 2"G = {e}
(resp., €"G = {e}).

The center of G is denoted ¢G.

Now suppose G is an algebraic group. Then it would be natural to introduce
notions of “algebraic solvability” and “nilpotence” for G, using the series
A (2"G) and A (€"G), respectively. However, it follows from the results of 2.3
that the groups 2"G and €"G are closed, so these notions coincide with the
abstract group notions of solvability and nilpotence.

Proposition. Let G be an algebraic group, and let M and N be not necessarily
closed subgroups such that M normalizes N. Then M normalizes N and

(M,N)= (M, N).

onof. It is clear that M normalizes N (cf. 1.7). Part (e) of 2.1 says (M, N) and
(M, N) have the same closure, and 2.3 says (M, N) is closed (because N is
normal in MN).



60 General Notions Associated With Algebraic Groups I
By a simple induction on n this implies:

Corollary 1. For all n =0 we have
2"(M) = 9"(M) and €"(M) = €"(M).

In particular, if M is closed, then so also are the groups in its derived and
descending central series.

Corollary 2. If N is a normal subgroup of M such that M/N is abelian (resp.,
nilpotent, resp. solvable) then the same is true of M/N.

Corollary 3. The following conditions on a k-group G are equivalent:

(1) G is solvable.
(2) Thereis a chain G=G,> G, = - 5 G, = {e} of closed subgroups defined
over k such that (G,G)<G,, ,(0<i<n).

Proof. (2)=>2'G < G, so G is solvable. Taking G; = 9'G we see that (1)=>(2)
by applying Corollary 1, plus (2.3) to get the G; defined over k.

Corollary 4. The following conditions on a k-group G are equivalent:

(1) G is nilpotent.
(2) Thereis a chain G=G,> G, > --- oG, = {e} of closed subgroups defined
over k such that (G,G) < G;, (0Zi<n).

Proof. (2)=%'G = G; so G is nilpotent. Conversely if G is nilpotent then
Corollary 1 and 2.3 imply that the 4'G satisfy the conditions in (2).

Appendix. We present here a proof, due to M. Rosenlicht, of the following
result of R. Baer. (See M. Rosenlicht, Proc. A.M.S. 13 (1962), 99-101.)

Proposition. Let H and N be subgroups of a group G such that H normalizes N.
Then the commutator group (H, N) is normal in HN. If the set of commutators

{hnh~'n"'|heH,neN}

is finite then (H, N) is finite.

We begin with a special case:

I 4(G) has finite index in G then (G, G) is finite.

It suffices to show that any product of commutators of elements of G can be
written as such a product with at most n® factors, n being the index of the
center of G. Noting that there are at most n? distinct commutators, and that
in any product of commutators any two factors may be brought together by
replacing the intermediate factors by conjugates, also commutators, it suffices
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to show that the (n+ 1)th power of a commutator is the product of n
commutators. But if a,beG, then (aba™'b~ )" is central, so

(aba™'b= 1yt = b~ Yaba~'b)baba b "),
which may be written
“Y(aba~ b~ ') Yab*a~ b~ )b,

a product of n commutators.

We proceed to prove the general result. It is worth remarking that if one is
only interested in the case where both H and N are normal, the trickiest points
below collapse to trivialities.

Assume, as we may, that G = HN, and consider the set S of all commutators
of conjugates of elements of H by elements of N. Any conjugate of an element
of H is of the form nhn ™!, with ne N, he H, so each element of S is of the form

(nhn™Yny(nhn=") "'yt = (hnh™'n ")~ Y(h(n,n)h~(n,n)~ 1),

with n;eN, which shows that S is a finite subset of (H,N). But S clearly
generates (H, N) and each inner automorphism of G permutes the elements
of S. We deduce that (H, N) is normal in G, and also that there exists a normal
subgroup G, of G of finite index that centralizes S, hence also (H, N). Now
GoN(H,N) is a central subgroup of (H, N) of finite index, so (H, N),(H, N))
is finite. Since the latter subgroup is normal in G, we may divide by it to
suppose that (H, N) is commutative.

We now claim that the subgroup (H,(H,N)) of (H,N) is normal in G.
Conjugation by elements of H clearly leaves it invariant, so we must show that
if neN, heH, me(H,N), then n(hmh™*m~Y)n"'e(H,(H,N)). But the latter
element can also be written

hn(n~*h~‘nhymh~'‘m~'n"!,
which, by the commutativity of (H, N), is equal to
hnm(n~'h~'nh)h~'m~'n~' = h(nmn~ Yo~ (nmn~ ')~ 'e(H,(H, N)).

Note also that any commutator of H and (H, N) is one of H and N, so there
are only a finite number of such and they all commute. Furthermore, if we
square any such commutator, say hmh~'m~', we get (hmh™'m~')* =
(hmh™Y)*m™~% = hm®h~ 'm~2, which is also a commutator. Thus (H, (H, N)) is
finite. Dividing G by thns subgroup, we see that we may suppose that H
centralizes (H, N).

To finish the proof, recall that (H, N) is commutative and generated by a
finite number of commutators hnh ™ 'n~!, and note that here too the square of
such a commutator is also a commutator:

(hnh~'n~ Y2 =(hnh™'n" Ynh~'n~'h)=hnh"2n " ‘h=h*nh~n"!
Thus (H, N) is finite.
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§3. The Lie Algebra of an Algebraic Group
In this section G is a k-group and A = K[G].

3.1 Restricted Lie Algebras. Let p denote the characteristic exponent of
k(p = char(k) if char(k) > 0, and p = 1 if char(k) = 0). A restricted Lie algebra
over kis a Lie algebra g together with a “p operation,” X+ X') such that:

If p=1 then X" = X and if p > 1 the p-operation satisfies

(i) ad(X'™")=ad(Xy (Xeg)
(i) (EX)P =X (tek, X eg)
(i) (X + Y)P = x4 YWl 4 Z i~ 's;(X, Y), where 5,(X, Y) s the coefficient

i=1

of t'in ad(tX + Y)*"}(X) (X, Yeq).
Here, as usual, we write
ad(X)(Y)=[X, Y]

We shall have no occasion to use formula (iii) except in the special case
(iii") If [X, Y] =0 then (X + Y)"1 = x1r1 ¢ ylr]
For a general discussion of restricted Lie algebras, and, in particular, of the
following examples, the reader can consult Jacobson, pp. 185 ff. in [10].

Examples. (1) An associative k-algebra A gives rise to a restricted Lie algebra
with underlying k-module A, where

[X,Y]=XY—YX, X"=xr

(2) In case A = End,(E), where E is a vector space over k, we write gl(E) for
the corresponding restricted Lie algebra. If E is identified to K", hence A4 to
M, (K), we write gl (K) for gI(E).

(3) Suppose E itself is a not necessarily associative k-algebra. Then

Der,(E, E)= {Xegl(E)| X(f-g) = (X f)-g + f+(Xg) for all f,geE}

is a restricted Lie subalgebra of gl(E).
Let F be a set of k-automorphisms of E. Then

={XeDen(E, E)| Xs =sX,(seF)}

is a restricted Lie subalgebra of Der,(E, E).
(4) Let g be a restricted Lie algebra, and let h and S be a subalgebra and
subset, respectively, of g. Then

b* = {Xeb|[X,Y]=0 for all YeS}

is a restricted Lie subalgebra of b, called the centralizer of S in b.

3.2 Derivatives of products. Let G be an algebraic group, let «;:¥V;— G be a
morphism of varieties, and let v;eV; be a point such that o,(v;) = e(1 <i < n).
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Put
V=_(01,...,0,)€EV =V, x - x V,
and define a:V — G to be the product map
Bx1,- oy Xg) = 0y (1) ).
Define ;:V;— V by
Bilx) = (Vgsenrs Vi 13Xy Vg yeres D)

Since a;(v;) = e, we have a; = aof}; (1 £i < n). By AG.16.1 there is a canonical
isomorphism

T(V)v = T(Vl)v; @ A @ T(Vn)n,p
so that

(da)v(Xh; (R Xn) = Z (daodﬁi)mxi = ;(dal)vixi'

Applying this to u:G x G— G we obtain

T(G x G),, ., = T(G). ® T(G).,
and
(@)X, Y) =X + Y.

(The «; (i=1,2) both correspond, in this case, to the identity morphism
G — G.) Next consider the composite

G- 6x6—L-G

sending x to xx~ ! =e. Its derivative is zero, clearly, so we have
0 = d(ue(id, 1))(X)
= (dp) old(id, . X)
= (dp) (X, (d), X)
=X +(di). X.
Thus
di),X = - X.

3.3 Left invariant derivations. From AG.15.5, 16.1 we have

(0] T(G), = Der(4, K(x))
and see that
(2 T(G), . = Der (A4, k(x))  (xeG)

is a k-form of T(G),. Recall also that e,:4 — K(x) is the evaluation map at
x, defined by e,(f)= f(x) (fe€A,xeG). Given DeDerg(A4, A), let D, =e o D.
In view of (1), it belongs to T(G),. Therefore D can be viewed as a “vector
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field”, assigning to each xeX an element of T(G),. Let

3) Lie(G) = {DeDerg(4, A)|A,oD = DeA,, for all xeG}

@) Lie(G), = Lie G Der,(Ay, 4,) = {DeLie(G)| D(4,) = A,}.

Let feA and yeG. It follows from the definitions that
(A°D)f(y) =Df(x~"y)=D,-1,f,

and from AG 16.1 that (D<4,)f(y) is the image of D, under the differential
at y of the translation gl—»x~!-g, to be denoted by x~!-D
Therefore, the condition on D in (3) can also be written

%) xD,=D,., (x,yeG)

ie., the vector field yr» D, is invariant under left translations.

ye

3.4 Theorem. The map v:D+>D, = e, °D is an isomorphism of vector space of
Lie(G) onto T(G),, which maps Lie(G), onto T(G),. In particular Lie(G), is a
k-form of Lie(G) and v is defined over k.

v is injective: Let DeLie(G) and assume that D, =0. Then 3.3(5) shows
that D, =0 for all x’s, hence D =0.
v is surjective. Let X e T(G),. We have to find DeLie(G) such that D, = X.

Since D is to be a left invariant vector field, we try to define Df (feA) by
(1) Df(x)=(xX)f=X(A.-.f)

We prove first that Df e A. There is a finite set I and elements u;, v;e 4 (iel)
such that

@ wf = Z u;u;
i
(where p° is the comorphism of the product in G, as usual), i.e. such that
() Sy =T u(p) o0, (xyeG)
We have then
Ayf = Z u(y” l)'l’i,
hence
Df(y)=X(4,- S)= Z u,(y) Xv;.

This shows that

)] Df=2“i‘X”i
i
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is indeed a regular function. There remains to see that DeLie(G). Let u,ve A.
It follows from the definitions that we have

D(u-v)(x) = x X (u-v) = x- X (1) v(x) + u(x) x* Xv(y)
= Du(x)-v(x) + u(x)- Dv(x),

hence D is a derivation. Fix zeG. With the notation of (3) we have

Lfxy) =" xy) =Y ulz" x) vy =L Au) o),

therefore

D(Lf)(x) = ¥, (Au)() Xv,

But the right-hand side is equal to AZ(Z u,.'Xv‘.)(x) hence to (A,° D) f(x), which

shows that Do 1, = 1,°D, hence that DeLie(G). Assume now feA,. Then we
can choose the u; and v; in (2) to be rational over k. If moreover X €A, then
Xv;ek (iel) hence Df, as defined by (4), is defined over k, and DeLie(G),.
Conversely, if we start from DeLie(G),, then it follows directly from the
definitions that e, e De T(G),. Therefore v is an isomorphism of Lie(G), onto
T(G). This completes the proof of 3.4.

3.5 The Lie algebra of G. We define the Lie algebra L(G) of G to be T(G),
endowed with restricted Lie algebra structure of Lie(G), carried over by
means of v. By 3.3(5), we may then also identify L{G) to the Lie algebra of
left invariant vector fields on G. If a:G — G’ is a morphism of affine algebraic
groups, then we write also L(a) instead of (da),. We shall see in 3.19 that it
is a morphism L(G)— L(G’) of restricted Lie algebras, which is defined over
k if o is so.

We shall then view G L(G) = T(G), as a functor from (affine) algebraic
groups to restricted Lie algebras. The Lie algebra of a k-group G,H, M,...
will also often we denoted by the corresponding German letter g, b, m,....
Note that the equality T(G), = T(G°), implies

3.6 Corollary. We have L(G) = L(G°) and dimgL(G) =dim G.

3.7 Definition of *X and X+. The inverse map to v associates to XeT(G),
the left invariant vector field on G which is equal to X at 1. We shall often
denote it by *X and write f+ f*X for its action on A. [This notation is
suggested by the convolution on a Lie group, see 3.19.] As above, given
f€A, let u;,v;e A be such that

) Sley)=Yu()v(y), (xyeG).
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We have then, by 3.3(5)

2 f+X(x)= Z u(x) X,

o) f+X =Y u: X,

Similarly, one can define the right invariant vector field X%, equal to X at
1, and its action on regular functions. It is a derivation which commutes
with right translations and is given on f by

“ X*f=ZXu‘-v..

3.8 Proposition. Let H be a closed subgroup of G and I = A be the ideal of
H. Then

(i) L(H) = {Xel(G)|XI =0}
(i) Lie H={XeLie(G)|I*X < I}.

Proof.
(i) Letj: H > G be the inclusion map. Then L(j): T(H), — T(G), is the map
Derg(A/I, K(1)) - Derg(A, K(1))

associated to 4 — A/I. Therefore X belongs to the image of L(j) if and only
if XI=0.

(i) Let XeLie(G) be such that I+Xc/l and let Pel. Then
XP=(PxX)(1)=0, therefore XI =0 and XeLie(H) by 3.4 and (i). Assume
now that XeLie(H). If Pel, and heH then ,Pel, obviously, therefore
(P*X)(h)=X(,-.P)(1)=0, hence PxXel.

Corollary. Let G = GL, be a closed subgroup, and let J be the ideal of all
polynomials in B=K[T,,,T,,,..., T,,] vanishing on G. Then

G ={geGL,|p,J =J}

and

g={Xegl,|J*xX cJ}.

Proof. Put A'=K[GL,]=B[D '], where D =det(T;), and let J' be the
ideal of functions in A’ vanishing on G. The proposition above asserts that
g ={Xegl,|J'*X < J'},and the fact that G = {geGL,|p,J' = J'} is obvious.

Now it is easy to see that J'= A'J and J'n B =J. Suppose feJ and f'eA4".
Then  p,(f)=p,(/)(f) and (F)xX =(f+X)f'+f(f'+X). Hence
pgd =J=pJ =J and Jr XcJ=J*xXcJ.
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For the converse it suffices to show that each p, and each +X leave Bc A’
stable. For then they leave J = J'n B stable as soon as they leave J’ stable.
Since *X = (I ® X)ou° (see 3.7(3)) we have

T*X = (I®X)(Z Ta® Thj) = Z Ty X (Ty)eB.
Similarly, if g, he GL, then
(pg 'Tu)(h) = Tu(hg) = z Tlm(h)Tm](g)’

so p,T;;= z TimT,;(9)€B. Thus BxX = B and p,B < B, as required.

Remark. This corollary is the basis of one of the classical approaches to the
Lie algebra of a matrix group, using only polynomial functions in the co-
ordinates of the matrices.

3.9 Examples

(a) Let G = G,, the additive group, so that G(K)=K and K[G] =K[T], a
polynomial ring. If DeLie(G) then D is determined completely by f(T) = DT.
Left invariance requires that, for all xe G we have A_ DT = f(T + x)equal to

D(A_(T))=D(T + x)= DT + Dx = f(T).

But f(T + x) = f(T) for all x means that f is constant, so Lie(G) consists of
all K-multiplies of D = d/dT. Since D')T" =n(n —1)---(n — (p — 1))T""? (or
zero if n < p) it follows that, if char (k) > 0, the p-operation is zero in Lie(G,)
(because the product of p consecutive integers is divisible by p).

(b) Consider G =GL,, so that G(K)=K* and K[G]=K[T,T™']. If
DelLie(G), then D is determined by the Laurent polynomial DT = f(T). This
time left invariance requires that, for all xeG we have f(xT)= xf(T). It is
easy to see that this implies f(T)=aT for some aeK. It follows that
D'P'T = aPT in this case. Thus Lie(G) is isomorphic to the one dimensional
Lie algebra K with p-operation a+—»af. If char(k)>0, therefore the
p-operations distinguish the Lie algebras of the additive and multiplicative
groups.

() G=GL,,SL,. We use the notation of 1.6(2). To X e T(G), we associate
the matrix (X;;), where X;; = X T;; (1 £i,j < n). This yields an injective linear
map of T(G), into M, (K). It is surjective since any derivation of the
polynomial algebra in the T}/s extends uniquely to one of 4 (AG.15.5) and
a derivation of a polynomial algebra is determined by its values on the
generators, which are arbitrary (AG.15.2). We claim that

(1 L(G) = gl(K),

(notation of 3.1, Examples). To see this, consider the matrix T =(T;;)eM,,(A4)
and let T+ X eM,(A) be the matrix with coeflicients (T * X);; = (T;;* X). Since
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W(T;) =) T;n® T,,; (see 1.6), we have
Tij*X = Z Tim'Xij = Z Tim‘ij
i t
hence

T+*X =T-X (matrix product).
As a consequence, T*X Y = T- X Y(X, YeL(G)) and therefore
2 T+[X,Y]=T[X,Y],T«X*---xX=T-X*

(p factors on the left hand side of the second equality). This proves (1).

The value at 1 of (Det T)*X is the sum of the determinants of the n
matrices obtained from the identity matrix by replacing the i-th column by
the entries X;; (1 £i,j < n). Therefore

) ((DetT)+X), =Tr X =3 X,

If X is in the Lie algebra of SL,, then the left hand side must be zero, hence
Tr X = 0. Since SL, has codimension one in GL,, this characterizes the Lie
algebra sl i.e.

) L(SL,)(k) = {X eM, (k)| TrX = 0}.

(d) Stated more intrinsically, the above shows that if ¥ is a finite
dimensional vector space over K with a k-structure, then

L(GL(V))(k) =gl(V)(k) LSL(V))(k)=sl(V),
where sl (V) denotes the Lic algebra of endomorphisms of V with trace zero.
The relation X;; = X T;; yields
®) (o, Xv) = X(g{a,g-v)) (veV,aeV* geGL(V))
3.10. Let n:G—GL(V) be a rational representation of V. We know that
dn(X) is an endomorphism of V (X eg). We claim that its effect on veV can

be described in the following way:
Let 0,:G — V be the orbit map g+ n(g)-v. It is a morphism of varieties. Then

(0 \_dn(X)(v) = (do,), (X),

where the right hand side is viewed as an element of V via the canonical
identification of T(V), with V. To show this, we have to prove that

v (o, dn(X) (v)) = o (do, ) (X)) (xeV*)
By 3.9(5) we have dn(X) v = dr(X)(h+> h-v),(he GL(V)), hence
3) {a,dn(X)(v)) = X(g—<a, m(glv)) (9€C).

But the right hand side of (3) is by definition equal to the right hand side of (2).
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3.11 Proposition. Let V < A be a finite dimensional vector space of A which
is invariant under right (resp. left) translations. Let p:G— GL(V) (resp.
A:G—GL(V)) be the rational representation g p |V (resp. g—A,|V). Then
for Xeg, and feV we have

(1) @p)(X)(f)=f=X, (resp.dAX)(f)= Xxf).
We give the proof for p. The other case is of course quite similar. By 3.10,

dp(X)-f = X(gr——»pyf ). In the notation of 3.7, we have p f = Zu vi(g), and
therefore, in view of 3.7(3)

X(ngJ):Zu,-‘Xvi:f*X.

3.12 Corollary

(i) Under right (resp. left) convolution, g leaves stable every subspace of A
which is right (resp. left) invariant under G.
(i) Let G=GL, and D be the determinant function on GL,. Then
DxX =D-Tr(X)(X €g).
The first assertion follows obviously from 3.11.
We have p,-D=D-1,.,=D-detg (geG), hence D spans a one-dimen-
sional subspace of A which is left and right invariant. We see also
that DxX = D-(D+X),, and we already have seen that (D*X), =TrX
(3.93)).

3.13 The adjoint representation. The group G operates on itsell by inner
automorphisms
n Intx:p—x-y-x~'="y (x,yeG).

The differential d(Int x) will be denoted Ad x. It is an automorphism of g.
We claim that Ad:G— GL(g) is a k-morphism. Since G may be identified
to a k-subgroup of some GL,, it suffices to show that when G = GL,.
In that case g may be identified with gl (K) (3.9(c)). We claim that

9] Adx(X)=xXx"! (xeG,Xeg),

where the product on the right is just matrix multiplication. We have
(Int x)(T;;)(y) = Tij(x'}"x—l) =(x"yx" l)ij = Z X Yim(X ™ l)mj'
l,m

But y,,, = T,,,(y) by definition, hence (Int x)°(T;;)(y) = (x T x~');(y), i.e.
(3) (AT =(x T-x7Y), (xeG,1Si,j<n).
We now have

(AdX)X)(T)=X(Intx)’T)=X(x-T-x ) =x-XT-x"!
=xXx"!' (xeG,Xeg).
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This shows that Ad is a morphism of G into GL(g). We can identify GL(g)
to an open subset of Endg=g® g*. The ring k[End g] is the polynomial
ring with coefficients in k over the T;;® T,,. In this presentation Adx is
given by x® ‘x™". Therefore Ad°(T;;® T,,) is the function x> x;;("x™ '),
It belongs to A,, hence Ad is defined over k.

3.14 The differential of the adjoint representation. The differential dAd, of Ad
at the identity is a k-morphism of restricted Lie algebras of g into gl(g). We
claim that

(1) (dAd)(X)=ad X (Xeg)

i.e. dAd(X) is the endomorphism Y [X, Y] of g. We may assume G = GL,.
By definition

dAd(X);; = (dAd(X))T;; (1=ij=n).

For Yeg, let uy:G — g be defined by g-+g- Y-g ™~ 1. It is a morphism of varieties.
Its differential duy ; at the identity maps g into the tangent space to g at the
origin, i.e. into g itself. By definition

@ (dAd(XYY)NT;) = (duy(X)NTy) = X (w3 T;5)

If geG, we have u}(T;)(g)=T,{g-Y'g ')=(9-Y'g™"); which can be
written

u;(Tij) =(T"Y T~ l)ij-

Here we have denoted by T~ ! the n x n matrix over A whose (i, j)-coefficient
is the function gr—(g~");. We have now

X(uy(T) = X(Z TuYim T;,-‘)‘
Im
X is a derivation and, at 1, T and T ™! are the identity matrix, therefore
(3) X(u;Tij)=ZXilYlj+z YimXTy;jl
1 m

We have T,.;‘ = i’(T);;, where i is, as usual, the inversion map x—x on G,
therefore

X(T;') = X(@(T);y) = di(X)(Tj) = — T,
whence
X(“; Tu) =X Y)ij - (Y'X)ij
which, in view of (2) proves (1).
315 Ker(Ad) can be larger than (G). Clearly one has %(G) < ker(Ad). This

is even an equality if char (k) = 0 or if G is semi-simple. The following example
of Chevalley shows that the inclusion can be proper in general.
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Assume char(k)=p >0 and let G = {g(a, b)|acK*,beK} where

a 0 O
gla,b)= {0 a* b
0 0 1

Then g(a,b)g(a’,b) = g(aa', a’b’ + b), so that G is a closed subgroup of GL;.
It is, as a group, the semi-direct product of the normal subgroup
H ={g(1,b)|beK} = G, with the group L = {yta,0)|ae K*} = GL,, the action
of L on H being given by the Frobenius homomorphism. In particular G is
not commutative; indeed %(G) = {e}. The Lie algebra } is spanned by g(0, 1).
We claim that [ is spanned by the diagonal matrix with diagonal entries
(1,0,0). In fact, if 6 is the isomorphism a+g(a,0) of GL, onto H, and X is
the standard generator of the Lie algebra of GL,;, then dO(X)(T,,)=
X(T%,) =0, while obviously d6(X)(T;,) = 1 and d6(X)T;; = 0 for other values
of i,j. From 3.13 we see immediately that Ad g(a,b) =1 if and only if a=1,
ie. ker Ad = H, which is not central.

We note also that [, [] = 0, therefore g is commutative, although G is not,
and in fact (G, G) = H. This cannot happen in characteristic zero (see 7.8).

3.16 Some applications. (a) If acG then grsag™'a™! is the composite of
Int(a) with i, so its differential is — Ad(a). Multiplying by the identity map
we obtain the commutator map c,:g+—(g,a) = gag ™ *a™ !, so dc, = Id — Ad(a).
Following c, by right multiplication by a, we get a formula for the differential
of grsgag~*, the map of G onto the conjugacy class of a. This differential
is Id — Ad(a), followed by the differential (dp,),:g — T(G), where p,(g) =ga
as usual. |

(b) Fix Xeg. Defineay:G — gby ay(x) = Ad(x)- X — X (x€G). Then we have

(l) (daX)l = "'ad X.

Proof. Let feK[g], and Yeg. Then, by definition
(doy), (Y)(f) = Y(ag f)-
ayf is the function x> f(Adx(X)— X). Assume first feg*. Then
a% f(x) = f(Ad x(X)) — f(X), hence, by 3.13, 3.14
Y(ayf) = Y(x f(Ad x(X))) = (dAd)(Y)(X)f = ad Y(X)(f) = [Y, X1/.

This proves that the two sides of (1) are equal on g*. Since K[g] is the
symmetric algebra on g* and both sides of (1) are derivations, (1) follows.

3.17 Proposition. Let M and N be closed subgroups of an affine algebraic
group G, and let H be the closure of the commutator group (M, N). Then |
contains all elements of the forms
[X,Y] (Xem,Yen),
Adm)(Y)—Y (meM), Ad(n)(X)—X (neN).
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Proof. For me M define «,,:N — H by «,,(n) =mnm™'n"'. Then by 3.16
(dat,,); =(Ad(m) — Id):n >},
This secures all elements of the second form, and those of the third form are
obtained similarly.
If Yen define ay: M — b by ay(m) = Ad(m)(Y) — Y. This lies in b thanks to
the conclusion established above. From (3.16)(b) we have (day), = — ad(Y),
thus securing all elements [X, Y](Xem, Yen) in b.

Remark. The elements in the proposition span | if char(k) =0, (see §7) but
not in general (see (3.15)).

3.18 Corollary

(i) If N = Norm M, then [L(N), L(M)] < L(M) i.e. L{N) < Norm(L(M)).
(i) If N = Z o(M), then [L(N), L(M)] = 0.
(i) If G is solvable, of length m, then L(G) is solvable, of length < m.
(iv) If G nilpotent with a central series of length m, then L(G) is nilpotent with
a central series of length <m, in particular L(G) is commutative if G
is so.

We have H < M in case (i) and H =(1) in case (ii), this implies the first
two assertions. Then (i) and (ii) imply (iii) and (iv) by a trivial induction.

Remark. In characteristic zero, there are converses to the assertions in 3.18
(see 7.8), but not in general in positive characteristic. We already saw in 3.15
a counterexample to the converse to the last assertion in (iv), hence to a
converse to (ii). It may also happen that L(G) is solvable, even nilpotent while
G is simple, in particular equal to its derived group. Examples are provided
by SL, and PSL, in characteristic two (see 17.5(2)).

3.19 Convolution. In a real or complex Lie group, it is often convenient to
view translations by elements as convolutions by point measures and the
action of a tangent vector as a convolution with a distribution whose support
is a point. In this way, operations by group elements and Lie algebra elements
are all special cases of convolutions by distributions, and one can avail oneself
of a rather efficient formalism. In this section, we outline an analogue in our
context of this point of view. We keep the notation a=G-—G’ and
o”:A"— A. If V is a vector space over K we shall write

A\t‘()\= HomK— mod(A’ V)’

If W is another vector space, we define a K-bilinear pairing
(X, V)—>X"Y,

A(V) x A(W)-»A(V@ W)
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where
X-Y=(X®Y)ul.

Example. If g, heG then
e,oe, = e, (in A(K)).
More generally, if B is any K-algebra, then G(B), the group of points of G

in B, corresponds (under the map gi—e,) to Hom, (4, B) = A(B), and the
above formula becomes

e =m (e, €e;)

where m:B® yB— B®zB = B is the canonical map. We shall freely identify
K&V and V(@K with V.
K K

Lemma 1. Let U,V, and W be vector spaces, and let Xe A(U), YeA(V), and

ZeA(W).

@ eX=X=X-e

b) (X Y)Z=X(Y-2).

(c) A(K) is an associative K-algebra with identity e, and A(V) is an A(K)-
bimodule. The map gr—e, is a monomorphism from G to the group of
invertible elements of A(K).

(d) We have

(X Y)oo’ = (X o) (Yeour),
where the product on the right is defined with respect to /*:4'> A' Q) A'.
In particular - a°:A(K)— A'(K) is an algebra homomorphism indtfcing
o:G — G’ via the embedding defined in (c).

(e) If U and V have k-structures such that X and Y are defined over k, then
XY is defined over k.

Proof. Let feA and write y°f =Y f,®h;. Then
i

f)=flex)= ;fi(e)hi(x) = f(xe) =} fi()hi(e).

Hence

f= Z fi(e)hi = z fihite).

(a) We have, since X is K-linear,
(e X)()=(®X)w’f =3 f(eX(h) = X (L fie)h) = X ().
Thus e'X = X, and similarly X-e=X.
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(b) With I: 4 — A standing for the identity map, the associativity of u is
expressed by

T®p)ow’ =W Np’
(or I-p° = u°-I in the present notation). Now
XRY®Z)(IRp)op =(XQ(Y®2Z)ou )y’ =X (Y Z)
and, similarly,
X®YR®Z) (W ®op' =(X"Y)Z.

Part (c) is an immediate consequence of parts (a) and (b), together with
the example above.

(d) The fact that ca® is a homomorphism is expressed by the equation

uocav _ (ao® aa)oum.

Now

(X Y)ea’=(X®@ Y)ep’oa’ = (X @ Y)o(a’ @a)ou” = (Xoa)(You’)

The remaining assertions of (d) are clear.

(e) follows from the formula X-Y =(X® Y)ou® and the fact that p° is
defined over k. This completes the proof of Lemma 1.

As above let 1€ A(A) denote the identity map. If X e A(K), we define right
convolution by X,

*X=I-X:A- A
and left convolution by X, -
X+*=X"11A- A.

If feA and p°f =) f;®h; then
[+X =Y fX(h), X+ f =Y. X(fh
We have
(f+X)(@) =X(4,-.f) and (X [)(g)=X(p,f).
The first equation follows because
(f *X)(g) = L. fi@) X (h) = X (T fi(g)h) = X (A,-.f),

and similarly for the second. These are the formulas of 3.7, but in a more
general situation.

We shall now establish several identities for these operation. Let geG, let
X, YeA(K), and let u°f be as above.
(1) xe,=p,, and ex=1,..

For fxe,=Y fihi(g)=p,/. and similarly for e *.
(2) Xo(*Y)=X-Y and Xo(Y¥)=Y-X.
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We have Xo(I®Y)ou’'=(XQ®Y)ou’, ef?{ similarly Xo(Y®I)opy’ =
(Y ® X)op°. Using part (a) of Lemma 1 we'thus obtain:

3 eo(xX) = X =eo(X#).
Combining (2) and (3) we find that
4 eo((*X)e(*Y))=X"Y.

A simple check shows that
I®X)op~(I®Y)=(I®X)n)®Y,

so that (*X)o(*Y)=(*X)-Y. The latter is (IX)'Y which, by part (b) of
Lemma 1, equals I-(X-Y). Thus,

) (*xX)o(xY) =*(X"Y).
Similar computations, starting from

I®X)op (YR =YR(U®X)n)
(Y@Dou(I®X)=((Y®Nu)®X

show that

*xX)o(Y*)=Y-(xX)=Y-(I' X), and (Y*)o(xX)=(Y-I) X,
whence
(6) (*X)o(Y*) = (Y*)o(+X)

Lemma 2. The composite X+—eo(I-X) = eo(*X) of the K-linear maps
A(K) —— A(4) == A(K)

is the identity. Moreover I- is a K-algebra monomorphism onto the K-algebra
of elements in A(A) commuting with all left translations A (geG). In particular
I- maps T(G), isomorphically onto Lie(G). Finally, both e° and I- preserve the
property that an element is defined over k.

Proof. The first assertion is just (3), and it implies that I- is an isomorphism
onto its image, whose inverse is induced by ec. From (4) we see moreover
that eo is an algebra homomorphism. Formula (6) says that left and right
convolutions commute. Hence all * X (i.. m(I-)) commute with all ., =e *
(see (1)). To show that I- maps A(K) onto the set of left invariant elements
of A(A) it suffices to show that eo is injective on left invariant elements.
So let DeA(A) be left invariant and suppose e°D =0. Then (Df)(g)=
(4,-1(Df))e)=(D(4,-1/))(€) = (e D)(4,-.f) = Oforallg,so Df = Oforall f.
We know that e carries derivations to derivations so it remains to check
that I-does so also. If X e A(K) is a derivation 4 — K(e) then I@ X: A X) A -
K

ARQ)K(e) is the derivation obtained by the base change K- A4, so
K

*X =(I ® X)ouis also a derivation because y° is an algebra homomorphism.
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Finally it is clear that ec preserves elements defined over k (because e is
defined over k). That I- does also follow from part (e) of Lemma 1.
This completes the proof of Lemma 2.

Lemma 3. L(G) is a restricted Lie subalgebra of A(K). That is, if X, Ye T(G),,
we have

[X,Y]=XY—Y-X,X"=X-X-...-X (p factors).

Since we have seen, in part (d) of Lemma 1, that a®: 4’ > A4 induces an
algebra homomorphism ca’:A(K)— A'(K), it follows that its restriction,
L(a): T(G); = T(G'), is a restricted Lie algebra homomorphism. This provides
another approach to 3.4.

3.20 The tangent bundle as a split extension of G by g. Recall from AG 16.2
that we have

T(G) = G](K (1)

G =G(K)

where K[8] is the algebra of dual numbers (62 = 0) and p and s are induced
respectively by the homomorphism K[6]— K sending é to 0 and by the
inclusion of K in K[&]. A typical element of T(G) is of the form

e 40X (GeGiXeT()

(AG.16.2). It is the algebra homomorphism K[G]— K[d] sending f to
f(g) + 6X(f). According to 3.4 the group multiplication in T(G) s given by

(e, +0X)(e,+0Y)=mo((e, + 0X)® (e, +0Y))op’

where m:K[6]® K[6]— K[4] is the multiplication in the k-algebra K[d].
Thus, with the notation X Y = (X ® Y)ou° introduced in 3.19, we have

(e, +0X)(e, +0Y)=m(e;7e,+(1®)e, Y + (0@ 1)X ¢, + (6 ® )X Y)
=e,+0(e,; Y+ X-ep),
or
(1) eaxe:y = e&;leg*Y+X<e;.).
9 g
The map p sends ¢’ to g and s sends g to e,(=e2°). Since the composite
pes is the identity on G it follows that the group T(G) is the semi-direct
product of sG with ker(p) = p~'(e). Writing e** in place of e?*, we see from
(AG.16.2) that X+ e’X is a bijection from T(G), = g to ker(p). Moreover (1)
and Lemma 1 of 3.19 imply that it is a homomorphism of groups:

X ghY — HX+T)



13 The Lie Algebra of an Algebraic Group 77
Thus we have a split group extension
S0
0—»g ——T(G) 2>G—1

with everything defined over k.
If Int:G x G— G is the action of G on G by inner automorphisms, then

the commutative diagram

GxG—" LG

T(G) x T(6) —=% 7(G)
shows that T(Int(g)) = Int(e,). The restriction of T(Int(g)): T(G)- T(G) to
g =ker(p) is (see AG.16.2) just d(Int(g)) = Ad(g). Explicitly, this says that
Ad(g) is defined by the formula

2 Int(e,)(e™) = 249X,

Viewing G and g as subgroups of T(G), both defined over k, we see that
Ad is just the action'T(Int):G x g —g.

3.21 Some differentiation formulas. As an application of this formalism, we
now derive a few more differentiation formulas.

(a) Let ¥ denote the category of finite dimensional K-modules, and let
F:¥" x ... x ¥ =¥ be a functor of n variables which is K-multilinear on
the Hom’s. Let a;:G — GL(V;) be rational representations of an algebraic
group G(1 £ i< n). Then a = F(a,...,a,):G— GL(V) is a rational representa-
tion on V = F(V,,...,V,). Moreover we have

(1) do(X) = '_21 F(l,,,....duX,...,1,), (Xeg).

This follows from a(e®?) = %™, and
a(e®®) = F(a,(€%%),...,a,(e*®)) = F(e!¥,. .., eX)

=F(1,, +dda,X,...,1, + dda,X)

=F(1yl,...,1yn)+5< F(ly,,...,doX, ..., 1yn)).
=1

(b) If a;: G —» GL(V))(i = 1,2) are rational representations and if f:V, -V,
is a homomorphism of G-representations, ie. if f is linear and
B(e,(g)v) = a,(g)B(v) for geG and veV, then B is also a homomorphism of
g-representations, i.e.

B(doy (X)v) = doy (X)B(v)

for Xeg and ve V. For the first formula, applied to the tangent bundles, gives

Blo1 (€%)0) = (€™ )B(v).
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The left side is B(e****(v)) = B(v) + 6(da, X (v)), while the right side is
B(v) + dda, X (B(v)), thus establishing the formula above.

(c) In the setting of (b) we can apply (1) toa =, ® &,:G - GL ( Vi @V,),
to obtain )
d(o; ® 2,)(X) = (doy X ® 1y,) + (1), ® doty X).
(d) Let a:G—GL(V) be a rational representation. Then we have
T"(«):G — GL(T"(V)), where T"(V)=V &)XV (n factors) and T"(a)=
a® - ®a. From (1) we have Lo

d(a@...@a)_—_ i 1V®.®da®®1y
i=1

Thus, on the tensor algebra | | T"(V), we see that the differential of the action

of G as algebra automorphisms (extending « in degree 1) is the action of g
as derivations (extending da in degree 1).

The passage from the tensor algebra to the symmetric algebra S(V) and
the exterior algebra A(V) can be viewed as epimorphisms of G-representations
in each degree. Thus it follows from (b) that the differentials of the actions
of G as algebra automorphisms of S(V) and of A(V) are again given by the
actions of g as derivations extending do in degree 1. Explicitly, if e,,...,e,eV
then

dS@(X)e, €)= ¥ e --daX(e)- e,
i=1
and
dA™a)(X)(e, A -+ A e,)= i ey A AdaX(e)A - Ae
i=1

(e) If dim V = n then A™(a) = detoa and it follows from the above remarks
that

d(deteq) = Troda,

which generalizes slightly 3.12(ii).

(f) Let a:G— GL(V) be a rational representation, and suppose V is a not
necessarily associative algebra. Then if G acts via « as algebra automorphisms
of V it follows that g acts, via da, as derivations. This follows by expandmg
the formula a(e®*)(uv) = a(e®®)(w)a(e**)(v) for Xeg and u, veV.

3.22. For the reader familiar with real or complex Lie groups, we relate the
algebraically defined operations *X and *e, with the usual convolution. If



14 Jordan Decomposition 79

XeT(G),, then as usual ti—e'™ denotes the one-parameter subgroup spanned
by X. For a smooth function f on G, we have then

Xf(x)=%(f(x‘e"‘))l,=o.

Given a distribution S on G, let us denote symbolically by [ f(x)dS, its value
S(f) on a test function feCX(G). If S and T are distributions, one with
compact support, then their convolution S* T is a distribution whose value
on a test function f is given by

(S*T)(f) = [[1(x-y)dSdT,.

We now identify elements of g (and more generally of the universal enveloping
algebra U(g) of g) to distributions supported by the identity. Then

d
(f*X)(x):af(x-e""‘)L:o (X*f)(x)=%f(e""‘-x)|,=o (xeG; feC=(G))

Moreover e, * and e, (cf. 3.19) are now defined as convolutions with the
Dirac measure at x.

§4. Jordan Decomposition

4.1 Nilpotent, unipotent and semi-simple endomorphisms. Let V be a finite
dimensional vector space over K with a k-rational structure V(k). Then
E =Endg(V) also has a k-structure given by E(k)= End,(V(k)). An a€E is
called nilpotent if a" =0 for some n >0, and unipotent if a— I is nilpotent,
where I denotes the identity on V. Thus a is nilpotent (resp., unipotent) if
and only if all eigenvalues of a are 0 (resp. 1).

(@) If char(k) = p > Othen aisunipotent if and only ifa” = I for somer = 0.

For if a = I + n, with n nilpotent, then a”” = I + n*" = I for sufficiently large
r. Conversely, a” =1 implies the minimal polynomial of a divides
TP — 1 =(T - 1)7, so all eigenvalues of a are 1.

(b) Let acE(k). We call a semi-simple if it satisfies the following conditions,
which are equivalent:

(i) V(k) is spanned by eigenvectors of a; i.e. a is diagonalizable over k.
(i) The algebra k[a] c E(k) is semi-simple, i.e. it is a product of copies
of k.

That (i)=(ii) is obvious once a is put in diagonal form. (Alternatively,

k[a] = k[T1/(P(T)), where P(T), the minimal polynomial of g, is a product

of distinct linear factors.) Conversely, if k[a] is a product of copies of k, then

any module over it, e.g. V(k), is a direct sum of one dimensional submodules.
(c) If aeE(k) is semi-simple, then the eigenvalues of a are separable over k.

Hence a is diagonalizable over k,.
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For k[a] = k[T1/(P(T)), P the minimal polynomial of a. Since aeE(k) we
have k[a] = k®k[a], and the absence of nilpotent elements in the latter
K

implies that P has no multiple roots, i.e. that P is a separable polynomial.
(d) Suppose a,be E commute. Then:

(i) a,b nilpotent=>a + b is nilpotent.
(ii) a,b unipotent=>ab is unipotent.
(iii) a,b semi-simple=>ab and a + b are semi-simple.

If " = b™ = 0 then (a + b)"*™ = 0, thus proving (i). Since ab— I =(a — I)b +
(b — 1), (ii) follows from (i). Part (iii) is left as an exercise (cf. 4.6).

Finally, we record the obvious remark:

(e) If a is both semi-simple and nilpotent (resp. unipotent) then a =0 (resp.
a=1I)

4.2 Proposition. We keep the previous notation. Let acE.

(1) There exist unique a, and a, in E such that ag is semi-simple, a,, is nilpotent,
a,a,=a,a,, and such that a=a;,+a, We call this the (additive)
Jordan decomposition of a.

(2) There are polynomials P(T) and Q(T) in K[T], with zero constant term,
such that a,= P(a) and a, = Q(a).

(3) The centralizer of a in E centralizes a, and a,. If A = B c V are subspaces
such that aB c A, then a,B< A and a,B c A.

(4) If A<V is a subspace invariant under a then the Jordan decomposition of
a induces those of a| A and of ay, 4, the endomorphism a induces on V/A.

(5) If acE(k) then a,,a,eE(k"” ™). Moreover, the polynomials P and Q in (2)
can be chosen in k*" " [T].

Proof. (1) Write det(T — a) = ](T — «;)™ where the «; are distinct, and put
V;=ker(a — o;J)™. Then it is easy to see that ¥ =L1V,. Suppose a=b+¢
with b semi-simple, ¢ nilpotent, and bc = cb. Then b commutes with a, hence
with (a — a;I)™, and so b leaves each V; invariant. Since a — b = ¢ is nilpotent,
a and b have the same eigenvalues on V;. Since a| V; has only one, «;, and since
b is semi-simple, it follows that b|V;=a,I|V,. Therefore b is uniquely
determined, and so also is c=a—b. On the other hand, if we define a
by a,|V;=o;1|V,, and a,=a—a, then these data clearly satisfy our
requirements.
(2) Choose P(T) to solve the congruences

P(T)=o;mod(T —a;)™ and P(T)=0mod(T).

These are consistent in case some a; =0, so there is a solution (“Chinese
Remainder Theorem”). We take Q(T)= T — P(T).

(3) is an immediate corollary of (2).

(4) Let a’ and a” denote the endomorphisms induced by a on 4 and V/A,
respectively. Part (3) implies that a, and a, leave A invariant, so we can similarly
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define a, a; and a,, a;. The fact that a’' = a} + a, and a” = a] + a are Jordan
decompositions is obvious.

(5) If aeE(k) then each of the a; above are in k, so the construction in (1)
shows that a,,a,eE(k). If seGal(k/k) then s operates on E(k), and we have
a = s(a) = s(a,) + s(a,). Since s acts as an algebra automorphism we see that
s(a,) is nilpotent and commutes with s(a,). Moreover, since k[a,] is a semi-
simple algebra (see 4.1) the same is true of s(k[a,]) = k[s(a,)], so a; is still
semi-simple. Therefore the uniqueness of the Jordan decomposition implies
s(a,) = a, and s(a,) = a,. But the elements of E(k) fixed by Gal(k/k) are just
E(k?™ ™). In particular a,,a,ek[a] nE(k?”*)=kP “[a], so the P and Q in (2)
can be chosen with coefficients in k7™~

Corollary 1. Let geGL(V), and put g,=1+g_ g,

(1) We have g =g.9,=g.9g, with g, semi-simple and g, unipotent, and this is
the unique factorization of g of this type. (It is called the multiplicative
Jordan decomposition of g.)

(2) If A<V is a subspace invariant under g, then it is invariant under g, and
g, and the Jordan decomposition of g induces those of the automorphisms
induced by g on A and on V/A.

(3) If g is rational over k, then g, and g, are rational over k™~

Proof. (1) Since g, and g, commute, g,=1+g 'g, is unipotent, and

g =99, = gdu.ds- Suppose g = bc = cb where b is semi-simple and n=c—1 is

nilpotent. Then bn is nilpotent and commutes with b, so g =b + bn is the

additive Jordan decomposition of g. Hence b =g, and bn=g,.
In view of the formula for g, parts (2) and (3) follow immediately from
parts (4) and (5), respectively, of the proposition.

Corollary 2. Ifa,be E commute then a + b = (a, + b,) + (a, + b,) is the additive
Jordan decomposition of a + b. If, moreover, they are invertible, then ab=
(a,b,)(a,b,) is the multiplicative Jordan decomposition. All elements appearing
above commute.

Proof. This follows from 4.1(d), 4.2(1) and Cor. 1.

Corollary 3. If geGL(V) and he GL(W) then g®@h=(g,® h,)(g,®h,) is the
Jordan decomposition of g® h.

Proof. Apply Corollary 2to g® 1 and 1, ®h.

Convention. Suppose that V is not necessarily finite dimensional. We shall
say that aeE is “locally finite” if V is spanned by finite dimensional subspaces
stable under a. In this case one says that a is locally nilpotent (resp., unipotent,
resp., semi-simple) if its restriction to each finite dimensional a-stable subspace
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has this property. The uniqueness of the above Jordan decompositions gives
us, for a locally finite endomorphism q, a Jordan decomposition a = a; + a,,
and, if a is invertible, a = a,a,, such that these induce the usual ones on finite
dimensional a-stable subspaces. Thus, for example, g, is locally semi-simple,
a, is locally nilpotent, and a,a, = a,a,. These properties characterize a; and
a,, and similarly for the multiplicative decomposition.

By abuse of language we shall often drop the word “locally” in the above
situation.

Let G be an affine algebraic group. If geG and Xeg then p, and *X are
locally finite endomorphisms of 4 = K[G] (see 1.9 and 3.11). Hence we have
Jordan decompositions

Py =(P)s(p,)u

and
#X = (+X), + (+X),.

The main result of this section asserts that these decompositions can be
realized already in G and in g, respectively.

4.3 We keep the notation and conventions of 4.2.

Proposition. Let geGL(V) and X egl(V), and let A= K[GL(V)].

(1) g is semi-simple (resp., unipotent) if and only p, is semi-simple (resp.,
unipotent).

(2) X is semi-simple (resp., nilpotent) if and only if *X is semi-simple (resp.,
nilpotent).

Proof. We have A = B[D '] where B = K[End(V)], and where D:End(V)—
K is the determinant. Since right translation by GL(V) is defined on End(V),
and since *X is its differential (see 3.11) it follows that p, and +X leave B
invariant, and their extensions to A4 are defined, for feB, by

Po(fD™") = p(f)pg(D)™" =D(9)"p,(f)D""

and
(fD™*X =(f*X)D™"—nfD™""(D*X)
=(f+*X)D™"—nTr(X)fD™"

Here we have used the fact that p (D) = D(g)D and (D * X) = (XD)D = Tr(X)D
(see 3.12). These formulas show that, if f is an eigenvector for p, (resp., *X)
then so also is fD ™" for each n > 0. This proves that p, (resp., * X) is semi-
simple if and only if its restriction to B is.

Suppose p, on B is unipotent. Then since p,D = D(g)D, we have D(g) = 1.
Hence (p, — )(fD™") = ((p, — I)(/1)D ™", and it follows that p, is unipotent
on A. The converse is obvious.
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Similarly, if *X on B is nilpotent then (D * X) = Tr(X)D implies Tr(X) =0,
and hence (fD™")*X = (f * X)D ~". This proves =X is nilpotent on A4, and the
converse is obvious.

These remarks show that it suffices to prove the analogue of the proposition
with B=K[End(V)] in place of A= K[GL(V)]. The algebra B is the
symmetric algebra, S(E*), on the dual E*=Homy(E,K) of E=EndV.
Moreover, p, and *X are just the automorphism and derivation, respectively,
of the algebra S(E*) induced by (the transposes of) right multiplication on
E by geGL(V) and by X egl(V) = E, respectively.

If we identify End V with V* ® V(f ® v:xt— f(x)v), then right multiplication
by aeE corresponds to a* ® I, where a* is the transpose of a. It suffices to
check this for a of the form g ®w, in which case

(f @v)(g ®w):xi— f(w)g(x)p = (f(W)g @ v)(x),

and (@*@I)(f ®v)=a*(f)®v=f(Wg®v. Since a is nilpotent (resp.,
unipotent, resp., semi-simple) if and only if a*® I is, the proof of the pro-
position is completed by the next lemma, in which we let E* play the role of V.

Lemma. Let geGL(V) and X egl(V).

(1) g is semi-simple (resp., unipotent) if and only if the automorphism S(g) of
S(V) induced by g is semi-simple (resp., unipotent).

(2) X is semi-simple (resp., nilpotent) if and only if the derivation s(X) of S(V)
induced by X is semi-simple (resp., nilpotent).

Proof. OnS'(V)= V therestrictions of S(g) and s(X) are g and X, respectively,
so the “if’s” are clear.

Since $%(g) is induced by T"(g) on T"(V)=V ®---® V by passing to the
quotient, the “only if” in part (1) follows from corollary 3 in 4.2.

Similarly, s(X) is induced, on passing to the quotient S"(V) of T"(V), by

Z[@...®X®...®[;

(where X is in the ith place in the ith summand). These summands commute,
and are semi-simple (resp., nilpotent) if X is, so the same is true of their
sum.

4.4 Jordan decomposition in affine groups. Let G be an affine k-group with
coordinate ring A = K[G]. If geG and Xeg then p, and +X on A have
Jordan decompositions in the sense of the convention of 4.2.

Theorem. Let geG and X eg.

(1) There is a unique factorization g = g.g, in G such that p,=p, p,. is the
(multiplicative) Jordan decomposition of p,. If ge G(k) then g, g, € G(kP ™).
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(2) There is a wunique decomposition X =X,+ X, in g such that
*X = (*X,) + (*X,) is the (additive) Jordan decomposition of *X. If X eg(k)
then X, X ,eg(k?” ).

(We refer to the above as the Jordan decompositions of g in G and of X
in g, respectively.)

(3) In case G=GL(V), and so g=gl(V), the Jordan decompositions above
coincide with those defined in 4.2.

(4) If «:G— G’ is a morphism of affine groups then a and do preserve Jordan
decompositions in the groups and Lie algebras, respectively.

Proof. Case 1. G=GL(V) and g=gl(V). Let g=g,9, and X =X, + X, be
the Jordan decompositions of 4.2. Then Proposition 4.3(1) implies p,, is semi-
simple and p,, is unipotent. Since g p,, is a group homomorphism, p,  and
p,, commute, so p, = p, p,. is the Jordan decomposition. Similarly, 4.3(2)
implies *X; is semi-simple and *X , is nilpotent. Since X *X is a Lie algebra
homomorphism, X and *X, commute, so *X = (*X,) + (*X,) is the Jordan
decomposition of *X. Both grsp, and X+s*X are compatible with
k-structures, so the rationality assertions follow from those of 4.2.

The uniqueness in this, as in the general, case follows from the faithfulness
of gr=p, (see 1.10) and of XX (see 3.4, 3.7).

General case. Chovss a k-rational embedding G = GL(V) for some V (see
1.10), so that g = gl(}’). Then p, and +X are induced, on passing to the
quotient 4 of B= K[GL(V)], by ihe corresponding actions on B. Hence we
have g =g,g,in GL(V) and X = X, + X, in gl(V), from case 1, and if we show
that ¢,,9.€G and X, X,eg, then they will give the required decompositions
of g and X. Moreover the uniqueness and rationality properties will follow
just as in case 1.

Let J be the ideal in B defining G. According to 3.8, Corollary

G ={geGL(V)|p,J = J}
and
g={Xegl(V)|J+X < J}.
But 4.2 implies that for geG and Xeg,J is invariant under (p,);, (p,)u, (*X);,

and (+X),, and case 1 implies these are p,,p,..*X,, and +X,, respectively.
This completes the proof of (1), (2), and (3).

Proof of (4). By factoring o through «(G) it suffices to treat the two cases

(i) o is the inclusion of a closed subgroup, and
(ii) o is surjective.

In case (i) we have G = G’ and the compatibility of Jordan decompositions
follows from (3) after embedding G’ in a linear group.

In case (ii) the comorphism a’: 4’ — A4 is injective, so we can view A’ as
a subring of A. Then, for geG and Xeg we have p,,=p,|4 and
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+da(X)=*X|A'. Hence, we have the corresponding relationships between
the Jordan decompositions according to 4.2.

Corollary

(1) If g,heG commute then gh =(gh,)(g,h,) is the Jordan decomposition of
gh, and all elements appearing commute.

() If X,Yeg commute (i.e. [X,Y]=0)then X + Y =(X,+ Y)+ (X, + Y,) is
the Jordan decomposition of X + Y, and all elements appearing commute.

Proof. After embedding G in a GL(V) this follows from 4.2, Corollary 2.

4.5 Semi-simple and unipotent elements in affine groups. For an affine k-group
G they are the elements of
G,={geGlg=g.}
and of
G,={9¢€Glg=g.},
respectively. We define the analogous sets,
g, ={Xeg|X=X} and g,={XeglX=X,}

of semi-simple and nilpotent elements, resﬁectively, in g.

It follows from part (4) of Theorem 4.4 that, if «:G — G’ is a morphism of
affine k-groups, then

2(G,) = G, a(G,) = G,
(do)(g5) = g5, (d)(gn) = g,

In fact we have a(G,) = a(G), and a(G,) = a(G),, and similarly for g. Moreover,
the corollary to Theorem 4.4 implies that a product of two commuting
elements in G, (resp., G,) is again in G, (resp., G,). Similarly for sums of
commuting elements in g, (resp., g,). In particular, if G is commutative then
G, and G, are subgroups of G, and g, and g, are subspaces of g. Moreover, in
general, it follows from 4.1(e) that

G,nG,={e} and g,ng,=0.

If we embed G in a GL(V), then the elements of G, (resp., g,) are defined
by the equation (g —¢)" =0 (resp., X" =0) in End(V) (for large enough n).
These equations, with respect to a k-rational basis for V, have coeflicients in
Z, so we conclude that:

G, is a k-closed subset of G

and
g, is a k-closed subset of g.

4.6 Trigonalization and diagonalization. Let M be a subset of gl,. We say
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that M is trigonalizable (over k) if there is a ge GL, (resp., ge GL,(k)) such
that gMg~?! is in upper triangular form (ie. lies in L(T,)). We say M is
diagonalizable (over k) if there is a geGL, (resp., ge GL,(k)) such that gMg ™!
is in diagonal form (i.e. lies in L(D,)).

More generally, if V is any finite dimensional vector space with a k-structure
V(k) then we can speak of trigonalizing or diagonalizing (over k) a family of
endomorphisms of V. This means they assume triangular or diagonal form,
respectively, with respect to a suitable (k-rational) basis of V.

Proposition. Let M < gl,(k) be a commuting family of endomorphisms, and let
L be the field extension of k generated by the eigenvalues of elements of M.

(a) M is trigonalizable over L.
(b) If M consists of semi-simple endomorphisms then Lck, and M is
diagonalizable over L.

Proof. The fact that L < k, in case (b) follows from 4.1(c). For the rest of the
proof therefore we can replace k by L and assume all eigenvalues of elements
of M are in k.

If XeM and if aek then W = ker(X — al) is visibly defined over k, and it
is stable under all Y commuting with X, in particular all Y in M.

If M does not consist of scalar matrices (otherwise there is nothing to
prove) then we can choose X and a so that 0 # W s V. Then, by induction
on dimension, we can find an e, e W(k) which spans an M-stable line. Applying
induction to V/Ke, we can complete ¢, to a k-rational basis e,,...,e, such
that M leaves Ke, + --- + Ke;invariantforeach i = 1,..., n. This proves (a).

To prove (b) we can again assume there is a non-scalar X in M. Write
V=V, ®---@®V, where V,=ker(X —aq;I) and ay,...,a, are the distinct
eigenvalues of X. Then each V; is defined over k and stable under M so, by
induction on dim ¥, we can diagonalize over k the action of M on each V.
This yields the desired diagonalization of M on V.

4.7 Theorem. Let G be a commutative k-group. Then G, and G, are closed
subgroups and the product morphism

.Gy x G,—»G

is an isomorphism of algebraic groups.

Proof. We have already seen in 4.5 that G, is a k-closed subgroup and that
G, is a subgroup meeting G, in e. Hence « is an isomorphism of abstract
groups.

Embed G in some GL,. Using 4.6(b) we can further arrange that
G,= GnND,. In particular it follows that G is a closed subgroup, and clearly
o is then a morphism of algebraic groups.

Write K"=V,@® --- @ V, where the V, are the distinct simultaneous eigen-
spaces for G,. Then G, leaves each V; stable so we can, by 4.6(a), trigonalize
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the action of G, in each V,. Thus we can assume G =T, and G, still equals
GnD,.

If geG then g,e G, < D, so it follows easily (for example, from the fact that
g is triangular and that g, is a polynomial in g) that g, is just the projection
of g onto its diagonal component, g diag(gy,...,d.,) This is clearly a
morphism.. Hence g—g, =g g is likewise a morphism, so g-(g,,g,) gives
the required inverse to a.

Remark. We have seen in 4.5 that G, is k-closed. It will further be shown
in §10 that G, is defined over k. If char(k) = O this follows from the obvious
invariance of G,(k) under Gal(k/k). If char(k)=p >0 then, if G = GL,, we
have g7 =e for all geG. Hence :G—G,fp(g) =g, is a k-morphism of
k-groups, clearly, with image in G,. In fact it will be seen in §8 that the pth
power map in G, is surjective. From this it follows that G, = B(G) is defined
over k.

4.8 Trigonalizing unipotent groups. Let A be the algebra of upper triangular
n x n matrices, and let N be the ideal in A of matrices with zero diagonal.
Then N"=0, so U,=I1+ N is a unipotent group, i.e. one consisting of
unipotent elements. It is easy to verify that the I + N'(1 £ i < n) are normal sub-
groups of U satisfying the commutator formula: (I + N, + N)c I + N'*/,
In particular, taking i = 1 and varying j, we see that U, is a nilpotent group.
Its Lie algebra u is the set of all upper triangular matrices with eigenvalues
zero, hence it consists of nilpotent matrices.

Theorem. Let G be a not necessarily closed unipotent subgroup of GL,(k).
Then G is conjugate over k to a subgroup of U. In particular, G is a nilpotent

group.

Proof. In view of the remarks made above, it suffices to prove the first
assertion. For this, it suffices to show that there is a line L in V fixed by G.
For then the set W of fixed points under G is a non zero subspace of V
defined over k, and we can finish by applying induction to the induced action
of G in V/W.

Henceforth, we may assume therefore that k is algebraically closed. Using
induction on dim V we may further assume that ¥ is an irreducible G-module.
Then the vector space 4 spanned by G is a k-algebra acting irreducibly on
V, so (by Wedderburn theory) it must be all of End(V).

Every g = I + xeG is unipotent, so Tr(g) = Tr(I)=dim V is independent
of g. If also g'e G then Tr(xg') = Tr((g — I)g’) = Tr(gg’) — Tr(g') = 0, therefore.
But we saw above that such ¢’ span End(V), and hence x =0, i.e. g =I. This
means G = {I} so dimV=1. QED.

Corollary. Let G be a unipotent algebraic group (i.e. G=G,). Then G is
isomorphic to a closed subgroup of U, = GL,, for some n. Hence L(G) consists
of nilpotent elements.
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Proof. We apply the theorem to an immersive representation n:G — GL, (see
1.10) to embed G in U,. Then L(G) is embedded in L(U,) which consists of
upper triangular matrices with zeroes on the diagonal.

4.9 Remark. It will be shown later that an element X eg is nilpotent (resp.
semi-simple) if and only if it is tangent to a closed unipotent subgroup (resp.
to a torus, cf. §8).

4.10 Proposition. Let G be a unipotent affine group and V a quasi-affine variety
on which G operates morphically. Then all orbits are closed.

Proof. Every orbit of G is a finite union of orbits of G°, hence we may assume
G to be connected. Let ve V. We have to prove that G-v = Gv. Let W=G-v
and assume F = W — G-v is not empty. By 1.8, F is closed. Let J be the ideal
of F in K[W]. We claim it is not the zero ideal: Consider the closure ¥ of
V in some affine embedding. Let F be the closure of F in V. Since FnV =F,
any veV — F does not belong to F, hence there exists a regular function on
V which vanishes on F and is equal to 1 at v. Its restriction to V is then a
non-zero element of J. The ideal J is stable under G and is the union of G-
invariant finite dimensional subspaces (1.9). By 4.8 any such space has non-
zero elements fixed under G. But the invariants of G in K[ W] are the constant
functions, contradiction. This proves the proposition.

Bibliographical Note

The Jordan decomposition in algebraic groups is discussed in [1]. However,
its existence is equivalent to the theorem 4.7 on commutative algebraic
groups, proved earlier by Kolchin [20]. The proof given here is different
from the one of [1], and follows a suggestion made by Springer for the Lie
algebra case. Jordan decomposition in the Lie algebra is introduced in [2].
However, the definition adopted there and in [3] is more stringent, and the
existence proof is less elementary. Here, it becomes the theorem mentioned
in 4.9 to be proved in 11.8 and 14.26. Proposition 4.10 is due to M. Rosenlicht

[27].



Chapter II

Homogeneous Spaces

§5. Semi-Invariants

In this section all algebkaic groups are affine. The results here prepare the
way for the construction of quotients in §6.

5.1 Theorem. Let G be a k-group and let H be a closed subgroup defined over
k. Then there is an immersive representation a:G — GL(E) defined over k, and
a line D c E defined over k, such that

H=/{geGla(g)D =D} and bh={Xeg|da(X)D cD}.

Proof. Let I denote the ideal in A = K[G] of functions vanishing on H; it
is generated by I, = Ink[G], and even by a finite subset of I,. Therefore,
using 1.9, we can find a finite dimensional right G-invariant subspace V of
A, defined over k, and such that, if W = V1 I, theideal I is generated by W,.

Both V and I are right H-invariant and defined over k, so the same is true
of W. We claim now that

H={geGlp,W=W} and bh={Xeg|W*XcW}.

We know from 3.8 that the analogous equations hold if we replace W by I.
We have already remarked that W is right H-invariant, so it is h-invariant
also because convolution is the differential of right translation (3.11).
Conversely, suppose geG and p,W = W. Since p, is an algebra auto-
morphism we have p,I = p,(WA)=p,(W)A =WA =1, s0 geH. Similarly, if
Xeg and WX c W, then

I+X =(WA)xX c (WxX)A+ W(AxX)c WA=1, so Xeb.

Now put E=A%V), where d=dim W, and let D=A'WcE. The
representation p:G— GL(V) induces a=A%:G—-GL(E), a k-rational
representation. In case a is not immersive replace E by E® F using any
k-rational immersive representation G — GL(F). Then all the conditions of
the theorem are achieved thanks to the following lemma from linear algebra.
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Lemma. Let W be a d-dimensional subspace of a vector space V, and let
D= AW cE=A%. Let geGL(V) and let Xegl(V). Then

0] (A%9)D =D<=gW =W,
(¥))] dAYX)Dc D<= XWc W.

Proof. In both cases the implication < is clear.

Let (¢;)(1 < i< m) be a basis for ¥ such that e,,...,e; span W. In case (1)
we can further arrange that, for some n21, e,,...,e,.4-; span gW. Then
(A%)(e; A -+ A e,) is a multiple of e, A -+ A €,,4-1, 50 (A%g)D = D implies
n=1,ie gW=W.

In case (2) we can replace X by X — Y for some Y leaving W stable, if
necessary, to achieve the condition Wn XW =0. Then we can choose the
basis above so that Xe; is a multiple of e, (1 <i <d). In this case

@A) (X)(ey-e)= Y e A Ae_ AXe A€, A Ae,
15isd
Since the vectors e, A - Ae;_; Aegy; Aeiyq Ao+ A ey are part of a basis of
A%V thatincludese; A -+ A e, it follows that the sum above can be a multiple
of e, A -+ A e, only if each Xe; =0, i.e. only if X =0.

5.2 Characters and semi-invariants. Let G and G’ be k-groups. We shall write
Mor(G, G') for the algebraic group morphisms from G to G', and Mor(G, G'),
for the set of those defined over k.

Recall from AG.14.3 that I = Gal(k,/k) operates on Mor(G, G'),,, and ‘u,
for seI” and aeMor(G, G') is characterized by:

(Ca)(g) =s(x(s"'g)) (geGl(k,)).
Moreover we have
Mor(G, G'), = Mor(G, G'),,

i.e. o is defined over k if and only if « is defined over k, and is a I"-equivariant
homomorphism of G(k,) into G'(k,).

Note that when G’ is commutative, Mor(G, G’) is an abelian group and
Mor(G, G'),, is a I-module, the product in Mor(G, G’) being defined by:
ad'(g) = a(g)-d'(g).

We shall write

X(G)=Mor(G, GL,)

and call its elements characters of G. Thus yeX(G) means yeK[G], and
x(9) #0 and x(g99’) = x(g)x(g’) for all g, g'eG. The condition yeX(G), just
means that moreover yek[G].

Let a:G— GL(V) be a k-rational representation. A semi-invariant of G in
V is a non-zero vector ve ¥ spanning a G-stable line in V. Thus we can write

a(g)v = x(g)
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for some function y:G — K*, and evidently y is a character, which is defined
over k if veV(k). This character is called the weight of the semi-invariant v.
We shall also use the term semi-invariant with respect to the action by
translation of functions induced by an action of G on a variety.
With V as above and ye X(G) write

V, = {veV|a(g)v = x(g)v for all geG}.

We can even restrict to ge G(k,) here, because G(k,) is dense in G (see AG.13.3).

If, further, x is defined over k,, then the equation a(g)v = x(g)v is a linear

equation in v defined over k, so we see that V, is defined over k; if y€ X (G),,.
Suppose xeX(G),, geG(k,), veV,(k,), and sel". Then

Cx((g)(sv) = (s(x(s ™ '9)))(sv) = s(x(s™ 'g)(v))
since I" acts semi-linearly
Cx)(g)(sv) = s(x(s~'g)(v)) = a(g)(sv) (veV,)

since « is defined over k. This shows that sV, (k,) = V,,,,(k,), and the reverse
inclusion follows by applying s~ ! to this. Thus we have

SVl(k,) = V(Jx)(ks)

for yeX(G),, and serl". In particular (see AG.14.1):
If x is defined over k, then V, is defined over k.
A weight of G in V is a ye X(G) such that ¥V, #0.

Lemma. The subspaces V, (x€X(G)) of V are linearly independent. In
particular G has only finitely many weights in V. .

Proof. If not, choose n minimal such that there exist distinct y; (1 <i<n)
and non-zero v;eV,, such that v, +--- +v,=0. Clearly n> 1, so there is a
g€G such that x,(g) # x2(g). Since ) x:(g)v; = 0 we can subtract y,(g)” " times
the last equation from the first to obtain a non trivial dependence relation
of length < n; contradiction.

5.3 Corollary. In the setting of 5.1, there exist yeX(H),, and functions
fis--., f1€k[G], which are semi-invariants of the same weight, x, for H under
right translations, such that

) H = {geGlp, fieKf, 1 Si<n},
2 b={X69ifi*XEKfi91§i§n}'

Proof. With E and D as in 5.1, let e,,...,e, be a k-rational basis of E such
that D = Ke,, and let T}; denote the (i, j) coordinate function on gl(E) = gl,,
the isomorphism being defined relative to the basis above.
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In this coordinate system we can paraphrase Theorem 5.1 as follows:

*) H ={geG|T; (a(g)) =0 for i>1}
(+%) h={Xeg|T;;((dx)X)=0 for i > 1}.

The first formula implies that y = Ty, ca is a character on H, evidently defined
over k. Put f;= T, ca(l <i<n). Then f,ek[G], and, for geG and heH, we
have
(pnf)g) = filgh) = Ty (gh)) = . Tj((g)) Ty (o))
i

= Tiy (dg)) Ty 1 (x(h)) = x(B)fig)-

Thus each f; is a semi-invariant of weight y for H. If geG and p,fie K f; then
p.fie) is a multiple of f{e)=T;,(x(e)) =0, for each i > I. Thus geH, thanks
to (*). This proves (1).

It remains to be shown that if Xegand if f;* XeK f;for alli> 1 then X€b.
The identification of the Lie algebra of GL,, with gl, assigns the tangent vector
Y to the matrix (Y(T;;)) (see 3.6). Viewing the T;; as coordinate functions on
the Lie algebra, we have T;;(Y)= Y(T;). Applying this to the X above, we
have T, ((do)(X)) = (da)(X)(T;y) = X (Ty o) = X f, =(f;*X)(e) = (a multiple of
fi(e)) = (a multiple of T;,(x(e))) =0 for all i > I. Hence (**) implies X €f.

5.4 Corollary. Let G = GL, be an algebraic matric group defined over k. Then
there exist yeX(G), and polynomials fi,..., f,.€k[T,,,..., T,,] which are
semi-invariants of weight y for G with respect to right translations, such that

G = {geGL,lp,fieKf, 1 Si<m},
g={Xegl,|fi*XeKf, 1 Si<m}.

Proof. k[GL,]=k[Ty, Ty,,..., T,,, D~'] where D =det(T;;). From 5.3 we
obtain functions f;ek[GL,](1 <i<m) which are semi-invariants of some
weight '€ X(G),, and which satisfy conditions of the above type. For r large
enough we can write f;=D""f; with f; a polynomial (I < i< m). Evidently
D is a semi-invariant of weight D for GL,. Consequently the f; are
semi-invariants for G of weight y =(D|G)y’. One sees immediately that y
and f,..., f,, satisfy the conditions above.

5.5 Invariants. It is not true in general that Theorem 5.1 and its corollaries
can be strengthened to give invariants (i.e. y = 1) instead of semi-invariants.
However, there are two important cases when this can be done. One, clearly,
is when X(H), = {1}. Another case is deduced as follows: Let a:G — GL(E)
be as in Theorem 5.1, and let y be the character by means of which H acts
on D. Suppose we can find a second representation o«':G— GL(E') and a
D’ < E’ with the analogous properties, but so that H acts on D’ via y~!. Then
a® o gives a representation of G on E(X)E’ so that H acts trivially on D(X)D'.
K K

Moreover, if D = Kv and D’ = Kv' then it is easy to see that H is exactly the
isotropy group of v® v’ and |} is the isotropy algebra of v®v'.
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How can we find such an E' and D'? We can try the contragredient
representation a*:G— GL(E*). Then the one dimensional H-invariant
subspace D of weight y leads to a one-dimensional quotient space D* of E*
on which H acts via y~!. To lift D* H-equivariantly back into E* it would
suffice to know that H acts completely reducibly on E. In characteristic zero
this happens if H is a reductive group.

5.6 Theorem. Let G be a k-group, and let N a normal k-subgroup. Then there
is a linear representation a:G — GL(V) defined over k such that N = ker () and
n = ker(da).

Proof. Theorem 5.1 gives us an a:G— GL(E) and a line D c E, all defined
over k, such that N is the stability subgroup of D in G and such that n is
the stability subalgebra of D in g.

The action of N on D is via some ye X(N),. Let F denote the sum of all
the subspaces E,,, ¢ ranging over X(N), . We saw above (5.2) that this sum is
direct. If xeE,,geG(k,), and neN, then

a(n)(g)x = a(g)alg ™ 'ng)x = p(g ™ 'ngla(g)x.
Thus, if we define (go)(n) = p(g ™~ 'ng), then gpe X(N),,, and

%(9)E, = E g4y, (9€Glk,), 0 X(N),,).

It follows that F is G-invariant. Moreover, F is defined over k, and
invariant under Gal(k,/k) (see 5.2) so F is defined over k. Finally, since D c F,
there is no loss in assuming that E = F; otherwise follow a by restriction
to F.

This done, let V —gl(E) be the set of endomorphisms of E=®E,
(peX(N),,) which leave each of the E, stable. Evidently V = @gl(E,). If
geG(k,) and if veV then, for each pe X (N)k,,

a(g)va(g)— le = a(g)vE(g' 19) < a(g)E(g - o) = E‘P'

Thus «(G) normalizes V, so we can define :G — GL(V) by B(g)(v) = a(g)va(g) ~ "
Since f is just the restriction to V of « followed by Ad on GL(E), it is a
morphism. To see that V, and hence also f, are defined over k, take
seGal(k,/k) and veV(k,). Then (v)E, (k)= (s.v.s™Y)E(k,) = svE,- (k) =
SE -1, (k) = E (k,). Thus V is a subspace defined over k,, and V(k,)is Gal(k,/k)
stable, so V is defined over k (see AG.14.1).

If neN then a(n) is a multiple of the identity on each E,, so a(n) centralizes
V, and hence fi(n) = e. Conversely, if fi(g) =e then a(g) must leave each E,
stable and induce a scalar multiplication in each one. (This is a simple
calculation in gl(E).) Since D < E_ it follows that a(g) leaves D stable, so geN.
This shows that N = ker(f3), and hence that n < ker(df).

Since f is the restriction to V of Adgy g, ca it follows that df is the restriction
to V of adodo. Therefore X eker(df)=>ad((da)}(X))V = 0=>(dx)(X) centralizes
V=(da)(X) leaves each E, stable and induces a scalar multiplication in
each one (same calculation as above) = (da)(X) leaves D c E, stable = Xen.
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§6. Homogeneous Spaces

Given an algebraic group G and a closed subgroup H we want to give the
coset space G/H the structure of a variety in a natural way, for example, so
that the projection n:G — G/H is a morphism satisfying a suitable universal
mapping property. We shall do this here for G affine. The method is to use
the results of §5 to realize G/H as the orbit of a point with isotropy group
H under a suitable action of G on a projective space. In order to verify that
this construction of G/H has the required properties we shall have to invoke
several results from algebraic geometry which are quoted in Chapter AG.

We hasten to point out that the use of the term “quotient” here is not the
categorical one, and hence it should be regarded as a provisional terminology
adjusted to our present needs.

6.1 Quotient morphisms. Let n:V —> W be a k-morphism of k-varieties. We
say = is a quotient morphism (over k) if

(1) = is surjective and open.
(2) If U <V is open, then n° induces an isomorphism from K[n(U)] onto
the set of feK[U] which are constant on the fibres of n|U.

Recall from AG.8.2 that (1) implies that = is dominant.

Universal Mapping Property: Let n:V — W be a quotient morphism over k.
If a:V > Z is any morphism constant on the fibres of = then there is a unique
morphism B: W — Z such that a = fon. If « is a k-morphism of k-varieties then
so also is p.

Proof. It is clear that f exists and is unique topologically because = is open.
It remains to show that if U is open‘in Z, then fi— fof carries K[U] into
K[B~Y(U)]. But =n° identifies K[f~*(U)] = K[n(x~U))] with the set of
heK[a~'(U)] which are constant on the fibres of nja™}(U). Since a, maps
K[U] into the ring of such functions in K[« !(U)] (because a is constant on
the fibres of =) it follows indeed that B°K[U] < K[~ *(U)]. Thus B is a
morphism of varieties.

In the above argument 8° was seen to be the unique map rendering the
diagram

K[a™'(U)]

no

K[U] K[p~'(U)]
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commutative. If U is k-open then so also are ™ }(U) and ™ }(U) = n(a~ }(U))
(see AG.11.3). Moreover «° and n° are defined over k, so it follows that f°
is also defined over k.

Corollary. A bijective quotient morphism is an isomorphism.
For if n is bijective we can apply the universal mapping property toa =1,
to obtain =1,

6.2 Lemma. Let n:V—>W be a surjective open separable morphism of
irreducible varieties, and assume W is normal. Then m is a quotient
morphism.

Proof. We must verify condition (2) of the definition of quotient morphism
for each open U in V. Since n|U:U - n(U) inherits all of the hypotheses
made on = it suffices to treat the case U = V. Then we must show that every
f€K[V] constant on the fibres of « lies in the subring n"° K[W]. According
to (AG.18.2, Prop.) f is purely inseparable over n°K(W), so the separability
of n implies that f =n°f” for some f’eK(W). It remains to be shown that
f' is everywhere defined. If f’ is not defined at n(x), then, because W is
normal, it follows from AG.18.3; Lem. that there is a point n(y) where 1/f’
is defined and vanishes. But then 1/f = n%(1/ f ) is defined and vanishes at y,
contrary to the fact that feK[V].

6.3 The quotient of V by G. For the next few sections (until 6.7) we fix a
k-group G acting k-morphically on a k-variety V. An orbit map is a surjective
morphism n:V — W of varieties such that the fibres of = are the orbits of G
in V. A quotient of V by G over k is an orbit map n: ¥V — W which is a quotient
morphism over k in the sense of 6.1. In particular such a = satisfies the
following:

Universal Mapping Property: If a:V —Z is any morphism constant on the
orbits of G there is a unique morphism B:W — Z such that a = flon. If o is a
k-morphism of k-varieties so also is .

It follows that the quotient, if it exists, is unique up to a unique k-isomorphism.
We are thus permitted to denote it by the symbol G\V. If the action is
defined so that G operates on the right on V, as with right translation in a
larger group containing G, then we shall use the symbol V/G.

In general quotients do not exist. For example, the next proposition shows
that the existence of a quotient implies that the dimensions of the orbits
cannot vary. Moreover: if an orbit mapn:V — W exists, then the orbits of G
in V are closed. This is because they are inverse images of points under a
morphism.

6.4 Proposition. Let n:V — W be a dominant orbit map and assume that W
is irreducible.
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(@) G acts transitively on the set of irreducible components of V. In particular,
if G is connected, then V is irreducible.
Assume now that the irreducible components of V are open.
(b) The orbits of G in V have constant dimension d =dim V — dim W.
(c) If W is normal then = is open.

Proof. (a) Let F and F’ be irreducible components of V. Since 7 is dominant
and W is irreducible it follows that nF and nF’ contain dense open sets in
W. Hence n~!(nF’) = G- F’ contains a non-empty, hence dense open set in
F. But G-F’ is the union of those irreducible components of V into which G
transforms F'. In particular it is closed, so it contains F, and hence F = gF’
for some geG because F is irreducible. The stability group H of F in G
is a closed subgroup of finite index, so H contains G° (see 1.2). This
proves (a).

To prove (b) and (c) we replace V by F and G by H, and thus reduce to
the case when V is irreducible. This reduction is justifiable in view of (a) and
of the disjointness of the irreducible components of V.

Now that V is irreducible part (c) is a consequence of (b), by virtue of
AG.18.4, so it remains to prove (b). For this we use the results of AG.10.1
on the dimension of the fibres of a morphism. The orbits are homogeneous
so all irreducible components of an orbit have the same dimension. Moreover,
dim G(x) 2 d, with equality whenever n(x)e U, where U is some dense open
set in W.

Next consider the graph of the action of G on V: I' = {(g, x,gx)eG x V x V}.
Let D be the diagonal in V x V, put Z = I'n(G x D), and let p:Z — D be the
projection. If xeV, then p~!(x,x) = {(g,x,x)|geG, gx =x} =G, x {(x,x)}.
Hence all irreducible components of the fibre of p over (x, x) have the same
dimension. Let Z, be an irreducible component of Z containing {e} x D, and
let p;:Zy— D be the restriction of p. Then p, is surjective, and p;*(x,x) is
a non-empty union of irreducible components of p~!(x, x). Thus by applying
the theorems on fibres of a morphism (AG.10.1) to p, we see that

dimG,2d =dimZ,—dimD

with equality whenever xeU’, where U’ is some open dense set in V.
Combining this and the above, we have, for all xeV,

d £dim G(x) =dim G —dim G, < dim G — d'.

Choosing xeU’nn~(U), which is possible because the latter set is open
dense, we see that the inequalities become equalities, so d = dim G — d'. Hence
dim G(x) =d for all x.

Remark. Given an orbit mapn:X — Y which is a candidate for a quotient
morphism, we shall have to check that it is open. If U is open in X, then so
is G(U), and n(U) = n(G(U)). From this it is elementary that the following
three conditions are equivalent: (i) 7 is open, (ii) the image of every G-stable



11.6 Homogeneous Spaces 97

open subset of X is open; (iii) the image of every G-stable closed subset of
X is closed.
In particular, if = is closed, then it is open.

6.5 The function field of a quotient. If U is a dense open set in V and if geG
then g 'U is also open dense, and we have the comorphism
A,:K[g~'U] - K[U] (where (4,f)(x) = f(g™'x)). As U varies we obtain an
automorphism of the direct system of K[U7J’s, and hence of their direct limit
K(V).If f eK(V) has domain of definition U, then 4, has domain of definition
gU. In this way G acts, by left translation, as a group of K-algebra
automorphisms of K(V), and we denote the fixed ring by K(V)°.

Proposition. Suppose a quotient n:V —-W of V by G exists. Then n is a
separable morphism and n° induces an isomorphism of K(W) onto K(V)®. If V
is irreducible then, for each xeV, n° maps Oy ., isomorphically onto
Oy . NK(V)C. ‘

Proof. Since  is dominant, n° induces a monomorphism of K(W) into K(V))
whose image clearly lies in K(V)¢. On the other hand, if feK(V)°, then the
domain of definition U of f is G-stable, and f is constant on the fibres of
n|U. Hence the definition of quotient implies that f lies in the image of
n*:K[n(U)]-K[U].

To show that = is separable, therefore, if suffices to prove that if F is a
finite product of fields, and if H is a group of automorphisms of F, then F
is separable over E = F2. To a decomposition of E as a product of fields
corresponds a decomposition of F which is clearly H-stable, so we can reduce
to the case when E is a field. Then H operates transitively on the factors of
F; otherwise we could separate the latter into H-orbits and this would yield
a product decomposition of FX,

If L is one of the fields into which F factors we must show that L is
separable over E. But the remarks above imply that E = [" where H' is the
stability group of L in H. Hence the desired separability follows from AG.2.4.

If V is irreducible, then the field K(V) contains all the local rings Oy, ,(xe V).
Identifying K(W) with K(V)° we have 0y ., <0y .nK(V)% and the
map 7,:Op y— Oy, is just the inclusion. It remains to show that every
f€0, . AK(V)¢ =0y ,nK(W) lies in O .. If U is an open neighborhood
of x on which f is defined, then the definition of a quotient implies that, as
an element of K[U], f lies in "°K[#(U)]. In particular, as a rational function
on W, f is defined at n(x), ie. f€0y ..

6.6 Proposition. Suppose n:V — W is a separable orbit map, and assume that
W is normal and that the irreducible components of V are open. Then (W, 7)

is the quotient of V by G.

Proof. We can easily reduce to the case when W is connected, and hence
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(being normal) irreducible. Then it follows from 6.4(c) that = is open, and
from 6.4(a), that G operates transitively on the components of V. Since these
components are disjoint we can replace ¥ by one of them and G by its
stability group, and retain all of our hypotheses. Thus we see that it suffices
to prove the proposition when V is also irreducible. But then the fact that
7 is a quotient morphism follows from Lemma 6.2.

Corollary. Let G,,G, be k-groups, and V,,V, k-varieties. Assume that G;
operates k-morphically on V; and that V;/G, exists and is normal (i=1,2). Then
(V1 x V)G, x G,)exists and is canonically isomorphic to (V,/G,) x (V,/G,).

The product V,/G, x V,/G,is normal (AG.18.1). The projections V;— V,/G;
are separable 6.5, hence their product is AG.17.3, Cor. The fibres of the latter
map are the orbits of G, x G,; we may then apply the proposition.

6.7 Proposition. Suppose xeV(k), and let n:G— G(x) be the k-morphism
g+>g-x. Then G(x) is a smooth variety defined over k and locally closed in V.
Moreover n is an orbit map for the action of G, on G by right translation. The
following conditions are equivalent:

(@) m is a quotient of G by G,.

(b) = is separable, i.e. (dn),:L(G)— T(G(x)), is surjective.

(c) The kernel of (dr), is contained in L{G,). When these conditions hold G,
is defined over k, and hence = is a quotient of G by G over k.

Proof. The first assertion follows from 1.8, and the second one is obvious.

In view of the homogeneity of G and of G(x) the interpretation of
separability given in (b) is justified by AG.17.3. We obtain (a)=-(b) from 6.5
and (b)=>(a) from 6.6. Since dim G = dim G, + dim G(x), and since the tangent
spaces to a smooth variety have the same dimension as the variety, the
equivalence of (b) and (c) follows from the obvious inclusion L(G,) < ker(dn),.

If = is separable, then it follows from (AG.13.2) that there is a dense open
set W < G(x) such that, if we W(k,), the fibre =~ *(w) has a dense set of separable
points. Since W contains a separable point (AG.13.3) w, we can translate w
to deduce the corresponding property for every separable point of G(x). Since
x is rational over k, it follows that G, = n~ !(x) has a dense and Galois stable
set of separable points, so (AG.14.4) G, is defined over k.

Remark. The above argument shows that the kernel of a separable
k-morphism of k-groups is defined over k.

6.8 Theorem. Let G be an affine k-group and let H be a closed subgroup
defined over k. Then the quotient n:G — G/H exists over k, and G/H is a smooth
quasi-projective variety. If H is a normal subgroup of G, then G/H is an affine
k-group and n is a k-morphism of k-groups.

Proof. Theorem 5.1 gives us a k-rational representation a:G — GL(E) and a
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line D in E defined over k such that
H={geGla(g)D =D}, b= {Xeg|d(X)D cD}.

Let g:E — {0} - P denote the projection onto the projective space P = P(E)
of lines in E, and let x = g(D — {0})e P(k). Via a, we have a k-morphic action
of G on P, and we propose to construct G/H from the orbit map n:G — G(x),
n(g) = gx. Since H is the isotropy group of x, clearly, it remains only to show,
thanks to 6.7, that ker(dn), =§.

Choose v # 0 in D and define $:G — E — {0} by B(g) = a(g)v. Then n=g-f
and (df).(X) = (du)(X)v, where, as usual, we identify T(E — {0}), = T(E), with
E. Therefore, since b = (df); *(D), the fact that ker(dr), = follows from the
fact that the kernel of (dg),: T(E — {0}), — T(P),, is just D.

Finally, if H is a normal subgroup of G, then Theorem 5.6 permits us to
choose a:G — GL(E) above so that H = ker(a) and fy = ker(da). It then follows
from 1.4 that G’ = a(G) is a closed subgroup of GL(E) defined over k. Letting
G act, via a, by left translation on GL(E), we can view n:G — G, n(g) = a(g)
(=a(g)e) as the orbit map onto the orbit of e. Since ker(dn), =1 and since
H is the stability group of e under the above action, it follows again from
6.7 that nis the quotient of G by H. This completes the proof of the theorem.

Caution. Even though G — G/H is a surjective k-morphism, it is not true in
general that G(k) - (G/H)(k) is surjective. This is true if k = k,, and a general
study of this problem leads to questions in Galois cohomology which will
not be discussed here, (see e.g. [30]).

6.9 Corollary. (a) Let a:G— G’ be a morphism of algebraic groups. If G is
affine, so is aG).

(b) Assume G to be unipotent. T hen every homogeneous space of G is an affine
variety.

Proof. (a) Let N =ker (). Then « induces a bijective morphism f:G/N — «(G)
and we know that G/N is affine. Then it follows from AG. 18.3 that «(G) is
affine.

(b) Let V be a homogeneous space of G and H an isotropy group. Again,
by AG.18.3, it suffices to show that G/H is affine. Let G—» GL(E), D c E be
as in 5.1. Since H is unipotent, too, every one-dimensional representatio'n of
H is trivial, hence D is pointwise fixed under D. If deD — {0}, then the orbit
map g+g-d yields an isomorphism of G/H onto G-d. But the latter is closed
by 4.10 applied to the action of G on E, hence is affine.

6.10 Corollary. Let G be an affine k-group acting k-morphically on a k-variety
V, and let N be a closed normal subgroup of G defined over k.

(1) If V/N exists over k and is a normal variety, then G/N acts k-morphically
on V/N (in the natural way). In particular, if N acts trivially on V, then
G/N acts k-morphically on V.
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(2) If, moreover, V/G exists and is a normal variety then the quotient of V/N
by G/N exists and is canonically isomorphic to V/G.

Proof. Let a:G x V— V be the action and let n: ¥V — V/N and p:G— G/N be
the quotient morphisms. Using the corollary to 6.6, we see that the vertical
arrows in the commutative diagram

GxV ——— ¥

G x (V/N) %~ VN
px l(y”() //

(G/N) x (V/NY~

are quotient morphisms.

Now we can fill the diagram with o’ and then § using the universal mapping
property 6.1 for quotients. The k-action of G/N on V/N is then given by .
In case N acts trivially on V we have V = V/N, so this proves (1).

For part (2) let ng:V —V/G be the quotient. The universal mapping
property for = gives us a n’ making the triangle

14

G
n

v

VIN ————7=--> V/G

commutative. Clearly n’ is an orbit map for the action of G/N on V/N. Since
ng =n'on is separable so also is n’. Hence 6.6 implies that n’ is a quotient,
because V/G is normal.

6.11 Corollary. Let G be an affine k-group and let N = M be closed subgroups
of G defined over k such that N is normal in M. Then M/N acts k-morphically
on G/N, the quotient exists and is isomorphic to G/M. For each point xeG/N
the orbit map o, is an isomorphism of M/N onto x-(M/N). If M and N are
normal subgroups of G, these varieties are isomorphic as k-groups.

Proof. To prove the first assertion we replace (V, G, N) in 6.10 by (G, M, N)
with M acting via right translations. Then N acts trivially on G/N and we
get by 6.10 a k-morphic action of M/N on G/N. Its fibres are the images of
the left cosets g-M in G/N, hence the fibres of G/N —» G/M and the first
assertion follows. Clearly this action is free (1.8). But, since m—g-m is
an isomorphism of M onto g-M in G, it follows that the differential of o, is
surjective hence o, is an isomorphism. The last assertion is clear.
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6.12 Proposition. Let G be an affine k-group, and let M and N be closed
subgroups defined over k. Let n:G—G/N be the quotient morphism.
Then L{M)n L(N) = L{M N N) if and only if n induces a separable morphism
n':M — n(M). In this case M AN is defined over k.

As an immediate consequence we have:

Corollary. If char(k) =0 then L{M)nL(N)= LM N N) and M NN is defined
over k.

Proof. 7’ is just the map of M onto the M-orbit of n(e)e G/N, and the stability
group of n(e) in M is M N N. Moreover, ker(dr'), = L(M)nker(dn), = L(M)n
L(N), so the proposition follows from 6.7.

6.13 Proposition. Let G, G’ be k-groups and f :G — G’ a surjective k-morphism.
Let H' be a k-subgroup of G’ such that ¢ =df(g)+ Y. Then H=f "' (H') is
defined over k and f induces a k-isomorphism of G/H onto G'/H'.

Let ':G' - G'/H' be the canonical projection. kerdn’ = Iy, therefore d(r'< f)
is surjective and n'of:G— G'/H’' ise separable. Then H=f"! (n'(H)) is
defined over k. The map f induces a bijective k-morphism f':G/H —» G'/H'.
The assumption implies that df” is surjective, hencef" is an k-isomorphism.

6.14 Remarks on Local Cross-Sections. Let G act k-morphically and freely
(see 1.8) on the k-variety V and assume there is an orbit map m:V > W
defined over k on a k-variety W. A (morphic) local cross-secton over k for
7 is a k-morphism ¢:U — V where U is k-open in W, such that neo =Id. In
that case, let t:G x U — V be the map (g, u)+—g- o(u). It is bijective k-morphism
of G x U onto n™!(U).

Lemma. Let U,o,t be as above.

(i) Theaction of G onn~Y(U)is principal if and only if  is an isomorphism.
(ii) If U and n~}(U) are normal, then t is an isomorphism.

Proof. (i) We have, in the notation of 1.8, 1™ !(x) = (g(c(n(x)), x), n(x)) hence
t~!is k-morphic if and only if g(x, y) is k-morphic on the graph of the action
of G on n™!(U), i.e. if and only if the action is principal.

(i) The simple points xen ~!(U) such that n(x) is simple form an non-empty
open set. If x is one, then the unique intersection point of ¢(U) and G-x is
also one. Assume then that yeU is simple on W and x = o(y) is simple on
V. The relation nog = Id. shows that do, is injective and dn, is surjective.
This will then also be true if we replace x by g-x for any geG. Since dn
annihilates the tangent space to G-x at g-x it follows that dt, , is an
isomorphism. That t is an isomorphism then follows from AG.17.3, 18.2.

If = is an isomorphism then the fibration = is said to be trivial over U. It
is locally trivial if W is covered by such U’s. In this case, the action of G is
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not only free, but also principal, by the lemma. The latter also shows that
if V and W are normal, and W is covered by the domains of local
cross-sections, then the action is principal.

It is clear that if W is covered by k-open subsets over each of which the
map = admits a k-morphic cross-section, then mn(k):V(k)— W(k) is
surjective. This is in particular so if the fibration = is locally trivial over k,
hence principal. Note however that a principal action is not always locally
trivial, even in the case of a closed subgroup acting by left or right translations
on a group.

As a simple example, let V=GL, W=GL, and n be defined by
n(v) = (det v)>. Let k =IR. Then n(V(k)) consists of strictly positive numbers,
hence n(k) is not surjective. A fortiori, the fibration is not locally trivial over
R In fact, it is neither over C, because G = ker n consists of two connected
components (elements of determinant + 1) and if there were a cross section
over an open set U = W, then n~}(U) would not be irreducible. This is to
be contrasted with the fact that the fibration of a real Lie group by a closed
subgroup is always locally trivial; but there, the neighborhoods are with
respect to the ordinary manifold topology, whereas we deal here with
Zariski-open subsets (and algebraic maps).

However, if G is a k-group and H a closed subgroup, then every yeG/H
has a neighborhood U admiting an étale covering over which the induced
fibration becomes trivial, a fact which has led Serre to introduce the notion
of locally isotrivial fibrations [32].

6.15 Proposition. Let G be a finite k-group and V an affine k-variety on which
G operates k-morphically. Then V /G exists over k.

Proof. Let peK[V]. Then ¢ annihilates the polynomial [[(T — g(¢)), the

g9
coefficients of which are in K[V]¢, therefore ¢ is integral over K[V]°. Since
K[ V] is finitely generated, so is K[V]¢ (cf. [11], 5, 1.9, Thm. 2). Let Y be the
affine variety with coordinate ring K[V]¢ and n the morphism associated
to the inclusion n°:K[V]¢ <, K[G]. It is surjective (AG.3.6) and constant
on the orbits of G. Let now x, yeV be on different orbits. There exists pe K[ V]
which is zero on x and 1 on G-y. Then []g(¢) is zero on G-x and one on

4 .
G-y. As consequence, K[V]¢ separates the orbits of G and the fibres of n
are the orbits of G, i.e. m is an orbit map. The map = is closed because K[ V]
is integral over K[ Y] (AG.3.6). It is therefore also open (6.4).

Let now feK(V)°. We want to show that f is in the quotient ring of
K[Y]=K[V]S. More precisely, we claim:

(*) Assume that f is defined at veV. Then there exist a,be K[V such that
b is a non-divisor of zero, b(v) #0 and f = a/b.

The function fis defined at all points of G-v. For every g, there exists a
non-divisor of zero b,eK[V] such that f-b,eK[V] and b,(gv) # 0. We can



I1.6 Homogeneous Spaces 103

then write G-v as a disjoint union of subsets A; (j=1,...,m) and find a
regular function b; which does not vanish on A;, but is zero on A, (k > j).
Then a suitable linear combination b, of the b; will be non-divisor of zero
and not vanish at any point of G-v. Consequently, the product b of the g(b,)
is non-divisor of zero, which does not vanish at any point of G-v and belongs
to K[V]°. This proves (*).

Therefore K(Y), which is by definition the full quotient ring of K[Y], is
equal to K(V)°. This implies that n is separable (AG.2.5). In order to prove that
n is a quotient morphism, there remains to check condition (2) of 6.1. Let
U < V be open (non-empty) and feK[U], which is constant on the inter-
sections of U with the orbits of G. We have to show that fen®(K[n(U)]).
The condition on f implies that the function g(f) defined on g(U) by
gf(x)=f(g~* x) coincides with f on UngU and it follows easily that we
may use the g(f) to extend f to a regular function on the union of the g(U).
We may assume therefore that U is G-stable. The function f belongs to K(U)°,
which is K(n(U)). It suffices to show that, viewed as an clement of the latter,
it is defined on n(U). But this follows from (x), applied to the restriction of
nto U.

The space K[V] is the union of G-invariant finite dimensional subspaces
defined over k (1.9). Let E be one. Then EC is defined over k., since all points
of G are rational over k,. The space E®(k,) is also invariant under Gal(k,/k),
therefore it is defined over k. It follows that K[ V] has a k-structure. Therefore
V /G and n are defined over k.

6.16 Categorical Quotients. Let V be a k-variety on which G acts
k-morphically. A categorical quotient (over k) of V by G is a pair (n, W)
consisting of a k-variety W and a surjective k-morphism n: ¥V — W, constant
on the orbits of G and having the following universal property:

(CQ) If 6:V > Z is a k-morphism constant on the orbits of G, then there
exists a k-morphism ©:W — Z such that ¢ = ton.

It is obvious that, if it exists, a categorical quotient is unique up to a
unique isomorphism, which is defined over k. In [22] a quotient in the sense
used so far here, is called geometric. We shall use this terminology in this
subsection, but then drop again the adjective geometric. It is clear that a
geometric quotient is categorical, but it may happen that a categorical
quotient exists when a geometric one does not, e.g. when orbits are not all
closed (an example will be given in 8.21).

There is an obvious transitivity for this notion, analogous to 6.10. Let N
be a closed normal k-subgroup of G. Assume that the categorical quotient
V' of V by N exists and is normal. Then the natural action of G/N on V' is
k-morphic (6.10). Assume that the categorical quotient V" of V' by G/N
exists. Then the categorical quotient of V by G exists and is equal to V".

This follows immediately from the definition. The assumption of normality
was only used to insure that G/N operate k-morphically on V’, but it can
be dispensed with (see the Bibliographical Note).
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Proposition. Let X be a k-variety on which G acts k-morphically and n: X - Y
a k-morphism of X into a k-variety Y, which is constant along the G-orbits.
Assume

(a) = is surjective.

(b) Given U open in Y, n°K[U] is the ring of G-invariant regular functions on
n U,

(¢) If F is closed G-invariant subspace of X, then n(F) is closed. If (F;) (i€l)
is a collection of closed G-invariant subspaces of X, then n(n F;) = nn(F)).

Then Y is a categorical quotient over k of X by G.

Proof. Note first that (b) implies that the G-invariant regular functions on
1~ !(U) are constant on the fibres of = and separate them.

Let 0:X — Z be a k-morphism of X into a k-variety Z, which is constant
on the G-orbits. Choose a [inite open alfine cover (V)) (iel) of Z. We prove
first that there is an open cover (U}) (iel) of Y such that n~Y(U;)c o™ '(V)
for all iel. Let F;= X —n~Y(V,). It is closed and G-invariant, hence, by (c),
n(F)) is closed and U;=Y — n(F;) is open. Obviously, n~(U) = a ™ }(V).
Moreover, {c~!(V;)} is a cover of X, therefore N F; = ¢. By (c), nn(F))= ¢,
and {U;} is indeed an open cover of Y. Fix i, for feK[V;], we have by (b)

1) o°f|n~'U;cn’K[U;]

therefore f is constant along the fibres of m|U;. Since the elements of K[V;]
separate the points of V; and i is arbitrary, we see that ¢ is constant along
the fibres of n. There exists therefore a map o":Y — Z such that ¢ =g'om.
Then, for f as before, (1) shows that

(" f)n" V=% (peK[U,]),

whence ¢ f |U; = ¢, which shows that ¢’ is a morphism. Similarly, if f ek[ V],
then o' f|U;ek[U,], hence o’ is defined over k, and the proposition is proved.

Remark. 1t follows from (@) and (c) that a subset V < Y is closed (resp. open)
if and only if =~ !(V) is closed (resp. open). In view of (a), it suffices to show
this for V closed. If V is closed, then n~ (V) is closed. Suppose the latter.
Since ™ !(V)is G-invariant, n(z ~ ! V)is closed by (c). But V = n(n ™' V) by (a).

Bibliographical Note

6.10 is valid without assuming V/N and V/G to be normal (see [27, Prop.
2]). Similarly, it follows from Lemma 3 and Prop. 2 of [27] that the Cor.
of 6.7 is true also if V,/G,; is not normal (i = 1,2). However, these facts will
not be needed in this book.

Theorem 6.8 is proved here for affine groups. It remains true however if
affine k-groups is replaced by algebraic k-groups: the existence of a quotient
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k-structure on G/H was proved by M. Rosenlicht [25] for k algebraically
closed and by Weil [34] in general; the fact that G/H is quasi-projective is
due to W.L. Chow (Algebraic Geometry and Topology, a Symposium in
honor of S. Lefschetz, Princeton Univ. Press 1957, 122-128).

6.15 is proved in [22:111, §12]. See also [32:1I1, §12]. In both references it
is pointed out that the proof extends to a general variety V provided that
every orbit of G is contained in an open affine subset, a condition which is
fulfilled if V is quasi-projective, but not always otherwise.

For a discussion of geometric and categorical quotients of schemes by
group schemes, see [22]. Proposition 6.16 is Remark (6), p. 8 there.

§7. Algebraic Groups In Characteristic Zero

In this section it is assumed that char(k)=0 and G is an affine k-group G.
Our aim is to obtain some basic results of Chevalley [12a] on the algebraic
Lie algebras by in g = L(G), i.e. on those of the form ) = L(H) for some closed
subgroup H of G.

7.1 The operators .o/ and a. Recall (6.12) that, if H and N are closed subgroups
of G then

1) L(HNN)=LH)nL(N).
It follows that if H is connected then
(2) H <= N<L(H) < L(N).

In analogy with the notion of group closure in §2, we associate to a subset
M of L(G) the intersection of all closed subgroups H of G such that M < L(H),
to be denoted &/(M). It is connected, and by 7.1, is the smallest closed
subgroup of G whose Lie algebra contains M; its Lie algebra,

a(M) = L(s/(M)),

is therefore the smallest algebraic Lie algebra in g containing M.

We can of course define /(M) in non-zero characteristic but then L{s/(M))
does not necessarily contain M, in fact may be zero even if M is not, and
this notion seems uninteresting in that case.

7.2 Proposition. Let n: G — G’ be a surjective morphism of algebraic groups, and
let M < L(G). Then

(A (M) = L(dn(M)) and dn(a(M)) = a(dn(M)).

Proof. If H is a closed subgroup of G, then, since we are in characteristic
zero, n: H — n(H) is separable, and therefore dn(L(H)) = L(n(H)).

It follows from 6.7 that, under dr, both the images and inverse images of
algebraic Lie algebras are algebraic. In particular dr(a(M)) is an algebraic
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Lie algebra containing dn(M), and hence a(dn(M)). The reverse inclusion
follows since dn ™ *(a(dn(M))) is an algebraic Lie algebra containing M, and
hence a(M).

Now n(/(M)) and o/ (dn(M)) are connected subgroups of G’ with the same
Lie algebra, and hence they are equal (see 7.1).

7.3 The structure of L(X) for Xegl(V).
(1) X is nilpotent, #0. Define a:G,— G = GL(V) by

at) = exp(tX) = Y, (n)(EX)"
n20
Since X is nilpotent, a is a polynomial map, and it is clearly a homomorphism.
The minimal polynomial of X is a monomial, so it follows that the non-zero
powers of X are linearly independent. Since X # 0 this implies a is injective.
Hence a induces an isomorphism G, = «(G,) = H of algebraic groups, because
we are in characteristic zero. Since da:L(G,)— gl(V) is the map t—t-X, we
conclude that H = &/(X), for dimension reasons. Therefore

#(X)=G,.

(2) X =diag(x,,...,x,)eL(D,).

This case is included for completeness, though it will not be needed
elsewhere.

We shall invoke here some elementary results on tori to be proved below in
§8. In particular we shall see in 8.2 that H = /(X)) is the intersection of ker g for
all characters ye X(D,) such that y(H) = 1, and the latter condition is equivalent
to: dy(L(H))=0. If x(diag(t,,...,t,))=t7"---y7™ then dy(diag(s;,...,s,) =
Y. m;s;, where we identify L(D,) with the diagonal matrices in gl,. Thus, if

L ={(m)eZ"|y, mx,=0}
then
oA(X) = {diag(ty,...,t,)|[ [t =1 for all (m)eL}
and !
ao(X) = {diag(s,,...,5,)| Y, m;s; =0 for all (m)eL}.

() If X =X, + X, is the Jordan decomposition of X, then
HA(X) = A(X,) L(X,) and a(X) = a(X,) + a(X,,).

This is clear, and, in fact, these products and sums are direct. In view of (1)
and (2), we now have the structure of &/(X) in general.

Remark. Asa group analogue of (1), we have: ifueGL(V) is unipotent and # 1,

then o/ (u) = G,. To see this, write x = I — u. This is a nilpotent transformation;

hence X =logu= Y i~!(—x)'is a polynomial in x, with 0 as constant term,
i>0

and is therefore nilpotent, too. By (1), #(X) is isomorphic to G, and contains

u=exp X, hence (u)c o/(X). But u has infinite order, and therefore

dim &/(u) = 1, whence &/(u) = o(X).
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7.4 Lemma. Let n:G — GL(E) be a rational representation, and let N = M be
vector subspaces of E. Put

H = {geG|n(g)N = N,n(g}M = M, n(g)p;n = €}.
Then
L(H) = tr(M, N) = {X eg|dn(X)M < N}.

In particular, tt(M, N) is an algebraic Lie algebra.

Proof. Clearly b =tr(M,N) is a Lie algebra containing L(H). Conversely,
supposing X eb, it suffices to show that &/(X) < H. Since n(#(X)) = (dn(X))
(by 7.2) we may replace G by n(G). Since X, and X, are polynomials in X
without constant term, it follows that X, X,eb along with X, so we are
reduced to the cases X = X, and X = X,

If X = X, then (see 7.3 (1)) #/(X) = {exp(tX)}, which clearly lies in H. If
X = X, we may assume X is diagonalized with respect to a basis e, e,,...
such that e,,...,e, span N, e,,...,e,, span M, and e,,,,...,€, span
M’ < ker(X). It is then clear that /(X) lies in the group of diagonal matrices
diag(d,,...,d,,...) for which d,,,=---=d,, = 1. Evidently these matrices
belong to H. Q.E.D.

7.5 Proposition. Let (H,),.; be afamily of closed smooth irreducible subvarieties
of G such that, for each iel, eeH;, and H;' = H; for some j. Let H be the
subgroup generated by the H/'s. Then H is closed and Yy = L(H) is spanned by
the vector spaces

Ad(WT(x"'H), (heH,xeH;iel).

Proof. According to 2.2, H is closed, and there is a finite sequence i,..., I, in
I'such that the product map p: W = H;, x --- x H; — H is surjective. We shall
change notation now and write H; in place of H; (1 <j < 5). Since p is separable
(char 0) it follows that, for some w=(w,,...,w)eW, (df),: T(W), - T(H),
is surjective, where v=p(w)=w,...w,. 4

We now introduce v; = w, ---w;, Hj=w; 'H;,and H} = v;Hp; ', (1 £ j<5s).
Define a: W' = H'| x --- x H,—» W by a(x,,...,x,) =(w;xy,..., wyx,), and put
B=Int(v,) x --- x Int(v,): W > W"=H| x--- x H;. We claim that the
rectangle

w—asw-—L>H

.J l"

w—s H

is commutative, where p” is the product map. In fact,

" _ -1 -1 -1 -1
PB(xy,. . X)) =03X0 7 0yX50 5 0w v,

-1
= WX WaXg WX b o,
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(because v; ! v;=w;(1 £ j <) and v, = v); hence
p”ﬁ(xl’ ey xs) = (pa(xla ey xs))v_ 1'

Writing e also for (e,...,e)e W', we have a(e)=w. Since a and p,-. are

isomorphisms of varieties, and since (dp),, is surjective, it follows that the

differential,

d(p"°p).: T(W'). - T(H), =D,

of p"of =p,-1opoa at e is also surjective. If X =(X,,...,X,)eT(W'),, then
d(p”° B)X) = Zd(Int(v)))(X ;) = TAd(v)(X ). Thus h =3 Ad(v;)T(H ), Since
v;eH and since H;=w; '-H;, with w;e H;, the proposition is proved.

7.6 Theorem. In 7.5, suppose that each H; is a closed subgroup of G, with Lie
algebra Y. Then Y is spanned, as a vector space, by the spaces
Ad(h)(h;)(heH;i€l), and it is generated, as a Lie algebra, by the b, (i€l).

Proof. If xeH; then, since H; is a group, x 'H;=H,;, so T(x 'H;),=b,
Hence the first assertion is just 7.5.

Let M be the Lie subalgebra generated by the b;(iel). We must show that
the inclusion M <} is an equality. Thanks to the conclusion above it will
suffice to show that M is stable under Ad(H), i.e. that H « A 4(M) =Tr(M, M).
Since the latter is a group, it suffices to show that it contains each H;. But
H; is connected, so the latter follows if we show that b, = L(Tr(M, M)).
According to 7.4 (applied to Ad, with M =N) we have L(Tr(M,M))=
tr(M, M). Since M is a Lie algebra containing b, we have [h, M] =M. Q.E.D.

7.7 Corollary. The following conditions on a Lie subalgebra Y of g are
equivalent:

(1) b is algebraic.

(2) If Xeb then a(X) <b.

(3) b is spanned by algebraic Lie algebras.

(4) b is generated as a Lie algebra by algebraic Lie algebras.

The implications (1)=>(2)=>(3)=>(4) are clear, and (4)=>(1) follows im-
mediately from 7.6.

7.8 Proposition. Let H = (M, N), where M and N are closed connected normal
subgroups of G. Thenty = [m, n], where ), m, nare the Lie algebras of H, M, N.

Proof. For x,yeG write

c(y) =c(x)=(x,y)=xyx "'y~
Then H is generated by the sets H,=c,(N) and H, =c/(N)=H_' where

a varies over M. These sets satisfy the hypotheses of 7.5 because N is a
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connected closed subgroup. Hence | is spanned by subspaces of the form
Ad(W)T(c,(b)"'H,), and Ad(W)T(c,(b)"'H).,
for heH, aeM, beN.
The inclusion [m,n] = b follows from 3.12, and the invariance of [m,n]

under Ad(G) follows from the normality of M and N. Thus, it remains to
show that, for aeM and beN, we have

T(ca(b)™"H,)., T(c (b)), = [m, n].

Consider f:N—G defined by f(x)=c,b) 'c,(bx) Then f(e)=e and
(@)(n) = T(c,(b) " 1c(N)),, clearly. Explicitly,

f(x)=bab™'a"'abxa”'(bx)~' = baxa™'b”'bx"'b"!
()= (ba) x-(ba)~*-bx~'b~".

Thus (df),= Ad(ba) — Ad(b) = Ad(b)(Ad(a) — 1). Since Ad(b) leaves [m,n]
stable it will suffice to show that

(Ad(a) — 1)(n) = [m, n] for aeM.

(The case of c.(b)~'c.(N) follows from similar arguments which we omit.)

Let n:g—g' =g/[m,n] be the natural projection. Fix Xen and define
o:M — g’ by a(a) = n((Ad(a) — 1)(X)). We must show that a =0.

Since [m, n] is stable under Ad G, the quotient ¢’ is also a G-module. For
a, aeM we have Ad(aa’)— 1 = Ad(a)(Ad(a’) — 1) + (Ad(a) — 1), from which
it follows that a(aa’) = Ad(a)x(a’) + a(a). This implies that P = {ae M|«(a) = 0}
is a closed subgroup of M, and that a(aP) = a(a) for all aeM. Hence a can
be factored through the quotient:

M—g
.
M/P

where f is the quotient morphism. Since y is injective, it is an isomorphism
of M/P onto its image (char 0). Since a(M) = M/P is connected we can show
it is a single point by proving that (da), = 0.

We have a = ned where d(a) = (Ad(a) — 1)(X) so (d&), = (d7)g°(dS), = no(d)),.
(Since = is linear (dn), = n.) Now using 3.9(2), we get (dd),(Y) = ad(Y)(X) =
[Y, X7, so (d6).(m)=[m, X] = [m,n]. Thus indeed no(dd),(m)=0. Q.E.D.

7.9 Corollary. Let ) be a Lie subalgebra of g. Then [b,h] = [a(b),a(h)], and
is an algebraic Lie algebra.

Proof. ) = tr(h,[H,h]), clearly, and the latter is algebraic, by (7.4). Therefore
a(h) = tr(b, [, b]), i.e. [a(h),h] = [, h]. Therefore b < tr(a(h), [h, h]), so again
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we see that a(h) <=tr(a(h),[b,b]), ie. [a(h),a®)] =[h,h]. The opposite

inclusion is obvious.
It follows from 7.8 that [a(h), a(f)] is the Lie algebra of ((h), (b)), and
this shows that [, h] is algebraic.

Bibliographical Note

Linear algebraic groups over € were studied around the end of the XIX-th
century by Maurer in a series of papers (see notably Sitz.-Ber. Bayer. Akad.
24 (1894)). One of his main results is the fact that such a group is a ra-
tional variety. Later, E. Cartan [C. R. Acad. Sci. Paris 120 (1895), 544-548]
announced some further results on algebraic groups, notably Cor. 7.9 above,
but never published the proofs. The topic then fell into oblivion. It was
revived by Chevalley-Tuan and then by Chevalley [12]. The main results of
this paragraph, in particular 7.6 to 7.9, are all proved in [12(a)]. The main tool
of Chevalley is a formal exponential, which allows him to set up an analogue
of the familiar correspondence between Lie algebras and Lie groups of Lie
group theory. Because of this, he had to restrict himself to groundfields of
characteristic zero. Here, we could dispense with this notion by using the
structure of variety of the quotient space G/H of an algebraic group by a
closed subgroup, and the separability of morphisms in characteristic zero.
The latter fact was of course also used in [12], so that the main point is
really the possibility of viewing G/H as an algebraic variety. To see this
illustrated concretely, the reader may compare the proof of 7.1(2) given here
with that of [12(a), p. 157].



Chapter 111
Solvable Groups

In this chapter, all algebraic groups are affine, unless the contrary isexplicitly
allowed. G is a k-group.

§8. Diagonalizable Groups and Tori

8.1 Lemma. Let H be an abstract group, and let X denote the set of homo-
morphisms H— K*. Then X is linearly independent as a set of functions from
H to K.

Proof. If not, let n> 0 be minimal such that there exist linearly dependent
X1s-+-» Xn€X; saY
f= (i;" aix,-> + %, =0.
Choose hyeH such that yx,(h,) # x,(ho) (clearly n> 1). Then, for all heH,
0 =f(hoh) — xalho)f (h) = ‘gn o(xi(ho) — Xnlho))xi(h).

This is a non-trivial dependence relation with strictly less than n terms,
contradicting the minimality of n.

8.2 Diagonalizable groups. Let A= K[G]. Then the character group X(G) is

a subset of 4. We call G diagonalizable if X(G) spans A (as K-module). If,

further, X(G); spans 4, then we shall say G is split over k. Since 4 = K(X) A,
k

the latter condition is equivalent to X(G), spanning 4, = k[G], as a k-module.

Proposition. Assume Y < X(G), spans A,. Then:

(a) Y = X(G). In particular all characters of G are rational over k.
(b) A, =k[X(G)], the group algebra of the finitely generated abelian group
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X(G). Moreover the Hopf algebra structure on A, is induced by the diagonal
map X(G)— X(G) x X(G) and the inverse map X(G)— X(G).

(c) IfH is a closed subgroup of G, then H is a diagonalizable group defined and
split over k, and H is defined by character equations (i.e. as the intersection
of kernels of characters) in G. Moreover, every character on H extends to a
character on G.

(d) If n:G—GL, is a k-rational representation, then n(G) is conjugate over
k to a subgroup of D,. In parttcular G is k-isomorphic to a closed subgroup
of D,.

Proof. (a) follows immediately from 8.1 applied to X(G) = A. Moreover 8.1
implies that X(G) is linearly independent over k so that A, is, indeed, the
group algebra of X(G). The description of the Hopf algebra structure follows
directly from the definitions. For example, the diagonal is the comorphism
of GxG—G, and the restriction of this comorphism to characters
X(G)- X(G x G) = X(G) x X(G), is easily seen to be the diagonal map of
X(G). Since A, is a finitely generated k-algebra it follows easily that X(G)
must be a finitely generated abelian group. This proves (b).

To prove (c) we first note that B= K[H] is a residue class ring of 4, and
hence B is spanned by the image of X(G). The latter elements are the
restrictions to H of characters on G so it follows that H is diagonalizable,
and therefore B = K[ X(H)]. Since p:4 — B is surjective and sends X(G) to
X(H) it follows that p is just the group algebra homomorphism induced by
a surjection X(G)— X(H). Since X(G) = X(G), it follows that H is defined by
character equations over k, and that X(H) = X(H),. This proves (c).

(d) A generating set of X(G) gives an injective morphism of G into (GL,)
for some d, so G is a commutative group of semi-simple elements. It follows
therefore, from 4.6, that for any rational linear representation n:G — GL(V),
n(G) is diagonalizable. The diagonal entries are then characters of G. Now
suppose 7 is defined over k. Then, since each yeX(G) is defined over k, the
eigenspace V, = {xeV|n(g)x = x(9)x, YgeG} is also defined over k (see 5.2).
Thus 7(G) is dlagonallzable in GL(V) over k. In case n is immersive this
yields a k-isomorphism of G with a closed subgroup of D,, and the existence
of a k-rational immersive = is confirmed by 1.10. Q.E.D.

Corollary. Let G be diagonalizable. Then G splits over k if and only if
X(G) = X(G). For any gegG,

#(g) = {heG|x(g) = 1= x(h) =1 for all yeX(G)}.
The Lie algebra of G consists of semi-simple elements.
Example. Assume k=@, and let m>2 be an integer. Let u, denote the

kernel of x+—»x™ in GL,. Thus p,(K)) is the group of m™ roots of unity in K’
for any k-algebra k'. The definition makes it clear that p,, is a diagonalizable



k-group split over k. Explicitly, k[u,]=k[t]=k[T]/(T™—1). Moreover
X ={1,t,...,t" "}

Let n:u,,—~ GL, be a faithful rational representation defined over k. Then
the Proposition above guarantees that n(y,,) is conjugate, over k, to a diagonal
group. At first sight this appears unreasonable, since k does not contain the
eigenvalues of a generator, x, of n(y,,). The point is that xeGL, will not be
in GL,(k), even though = is defined over k, but x can nevertheless be
diagonalized by conjugation by an element of GL,(k).

8.3 Corollary. The contravariant functor G+ X(G) is fully faithful (see proof
for definition) from the category of diagonalizable groups split over k and their
morphisms as algebraic groups to the category of finitely generated Z-modules.
In particular, all morphisms between such groups are defined over k.

Proof. Let G, G’ be two k-split diagonalizable groups, with affine rings A,
A’ respectively. Consider the commutative triangle

Mor,

alg-grp

(G,G')

Morﬂophu.(A’h Ak) "_p—— Morl-mod (X(Gl)a X(G))

The bijectivity of « is essentially by definition (cf. 1.5). The existence and
injectivity of B follows from part (b) of Proposition 8.2. It follows therefore
that all three arrows are bijective. The first assertion of the corollary is the
bijectivity of X. The last assertion follows because the target of X is
independent of k, and therefore so is its source.

Remark. If X is a finitely generated abelian group, then A = K[X7] is a Hopf
algebra, and therefore it defines a diagonalizable group with character group
X provided 4 has no nilpotent elements. 4 has nilpotent elements if and
only if char(k) =p >0 and X has elements of order p.

8.4 Proposition. The following conditions are equivalent:

(1) G is diagonalizable.

(2) G is isomorphic to a subgroup of D, for some n> 0.

(3) For any rational representation n:G — GL,,, n(G) is conjugate to a subgroup
of D,.

(4) G contains a dense commutative subgroup consisting of semi-simple elements.

The corresponding assertion in the split case is:

Proposition’. The following conditions are equivalent:
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(1) G is diagonalizable and split over k.

(2) G is k-isomorphic to a subgroup of D, for some n>0.

(3) If n:G—>GL, is a rational representation defined over k then n(G) is
conjugate over k to a subgroup of D,.

Proof. (1')=(2') follows from 8.2 (d), (2')=>(1’) from 8.2 (c), (1')=(3') from 8.2
(d), and (3')=(2') from the existence of an immersive k-rational representation
n:G— GL, (see 1.10).

Proof. The equivalence of (1), (2) and (3) follows by taking k=K above.
(2)=>(4) is obvious, and (4)=>(3) follows from 4.6.

Corollary. Suppose G is diagonalizable (and split over k). Then the same is
true of each subgroup of G, and of the image of G under any morphism (defined
over k).

Proof. For subgroups use condition 8.2 (c). If n: G — G’ is a morphism (defined
over k) then embed G’ in GL, (over k) and apply condition (3) (resp. (3)) to
get n(G) conjugate (over k) to a subgroup of D,. Then apply (2) (resp. (2').

8.5 Tori. The diagonal group D, is a closed subgroup of GL, which is
evidently isomorphic, over the prime field, to (GL;)". An algebraic group
isomorphic to D, is called an n-dimensional torus.

The terminology stems from the fact that these groups play here a role
analogous to that of topological tori (i.e. products of circle groups) in the
theory of compact Lie groups. Note however that, if K=C, the tori
considered here are not compact. If they are defined over R their groups of
real points may or may not be compact (see 8.16).

Proposition. The following conditions on an algebraic group T are equivalent:

(1) T is an n-dimensional torus.
(2) T is a connected diagonalizable group of dimension n.
(3) T is a diagonalizable group and X(T)=7Z".

Proof. (1)=(2) follows from 8.4(2). (2)=(3): Since GL, is connected and of
dimension 1, its only connected subgroups are {e} and GL,. Applying this
to images of characters we see that the character group of a connected group
T is torsion free. If further T is diagonalizable then K[T] = K[X(T)], and
clearly dim T (i.e. tr-deg-xK(T)) is the rank of the free abelian group X(T).
(3)=(1):Leta,...,a,be a basis for X(T). Then K[T] = K[ay,a;",..., 0, ']
and evidently a:tr—diag(e,(t),...,a,(t)) gives the required isomorphism
T—-D,. (For the comorphism a°:K[D,]— K[T] is visibly surjective, and
both groups are connected, of dimension n.)
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Carollary. A closed connected subgroup S of a torus T is a torus and a direct
factor.

By the proposition, S is a torus and X(S) is free. The restriction homo-
morphism X (T)— X(S) is surjective (8.2(c)) hence split, and § is a direct factor
by 8.3.

8.6 The multiplicative one-parameter subgroups in a k-group G are the
elements of
X ,.(G)=Mor(GL,,G).

Since X(G) = Mor(G, GL,) we can compose to obtain a map
X(G) x X (G)»Z = X(GL,).

given by
LAY=m il (xoA)(x)=x"

If G is commutative this is a bilinear map of abelian groups. It follows easily
from 8.3 and 8.4 (or even directly) that:

Proposition. If T is a torus then
X(T) x X (T)-Z

is a dual pairing over Z.

8.7 Proposition. Let G be diagonalizable and split over k. Then G is a direct
product G = G° x F, where F is a finite group, and G° is a torus defined and
split over k.

Proof. Thanks to 8.2(d) we may assume that G is a closed subgroup of some
D,. Moreover 8.4 and 8.2(c) imply that all closed subgroups of D, are defined
and split over k, and 8.5 implies that G° is a torus.

According to 8.2(c), the restriction homomorphism X(D,) =~ Z"— X(G°) is
surjective. Since G° is connected, 8.5 implies that X(G°) is free, so the
epimorphism splits. In other words we can find a basis y,,..., x, for X(D,)
so that y,,..., x; generate the group of characters which annihilate G°. Then
the k-automorphism x+—diag(x,(x),...,x.(x)) of D, maps G° onto
{diag(x,,....x,)Ix;=1, 1 Li<d}. Thus D, =D, x G°.

It follows that, as a group, G = F x G° where F =GnD,. Thén clearly
F = G/G°so F is a finite group, and the product map a:F x G°— G is a group
isomorphism. That it is also an isomorphism of varieties follows because it
is so on pairs of corresponding connected components.

8.8 Proposition. If k is not an algebraic extension of a finite field then
T =(GL,)" contains an element t, rational over k, that generates a dense
subgroup.
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Proof. If t =(t,,...,t,), then t generates a dense subgroup if and only if no
non-trivial character of T kills t. Since the characters are all of the form
t 7.t this requirement is just that ¢,,...,t, be multiplicatively
independent. Hence we want k* to contain free abelian groups of arbitrarily
large finite rank. If char(k) =0 this follows from the infinitude of primes in
Z. 1f char(k)=p >0, and if xek is transcendental over the prime field F,,
then this follows from the infinitude of primes in the polynomial ring F [ x].

Remark. The Proposition above is valid without assuming that T is split
over k, but the proof of the general case is somewhat more delicate. (See
Tits, Yale lectures, 1967).

8.9 Torsion in tori. Let p denote the characteristic exponent of k, and let T
be a d-dimensional torus defined over k. For meZ define

o T—T, (X)) = x™.

Proposition. Assume m > 0.

(@) a, is surjective.

(b) If m is a power of p, then a,, is bijective.

(c) If (m,p)=1 then a, is separable, ker(a,,)=(Z/mZ) (as a group) and
ker(a,,) < T(k,).

(d) If m is not a power of p then ithe union of the groups ker (a,,) (n>0) is a
dense subgroup of T.

Proof. K*is a divisible group in which the Frobenius map, x+— x, is bijective.
This implies (a) and (b).

(c). Since (da,,):X+—mX we see that a,, is separable because (m,p)=1. It
follows that ker(a,,) is defined over k (see 6.7, Remark), so its points rational
over k, are dense. Once we prove that ker(a,,) is finite, it will follow therefore
that all of its points are rational over k, Finally, the fact that
ker(x,,) = (Z/mZ)* follows from the fact that the m" roots of unity in K* are
a cyclic group of order m.

Part (d) follows from the case d=1. Then T =GL, is irreducible of

dimension one, so | ) ker(a,,) is dense as soon as it is infinite, and part (c)
n>0
implies that this is the case if m is not a power of p.

Corollary. Let G be diagonalizable. For each m> 0 the elements of order
dividing min G formafinite group. The torsion subgroup of G is dense in G.

This follows from 8.7 and the proposition above, for 8.7 says G is the
direct product of a torus with a finite group.

8.10 Rigidity of diagonalizable groups. This refers to the fact that they do
not admit a non trivial connected family of automorphisms. This property
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is shared by abelian varieties, and for that reason we do not require the
algebraic groups in the following proposition to be affine.

Proposition. Let a:V x H— H' be a morphism of varieties such that:

(i) H' is an algebraic group containing, for each m >0, only finitely many
elements of order m;
(i) H is an algebraic group in which the elements of finite order are dense;
and
(iii) ¥V is a connected variety and, for each xeV, o, h—a(x,h) is a
homomorphism.

Then the map x+— o, is constant.

Proof. For he H write B,(x) = afx, h). Then f,:V — H' is a morphism from a
connected variety. Its image, when h has finite order, is finite, by (i) and (iii).
Hence f, is constant when h has finite order. Therefore, if x,yeV, the
morphism y:H — H', y(h) = a,(h)a,(h)~*, sends every element of finite order
to e. Condition (ii) then implies that y(h) = e for all h.

Corollary 1. Let H < H' be closed subgroups of G, and let V be the connected
component of e in Tran(H, H') = {geG|gHg>' = H'}. Suppose H' and H satisfy
conditions (i) and (ii) above. Then V = Z ;(H)".
Proof. Apply the proposition to a(x,h)=xhx~!, to conclude that
afx, h) = afe, h) for all xe V. This shows that V < Z ;(H)’; the reverse inclusion
is obvious.

In case H = H’ is diagonalizable 8.9 permits us to conclude:

Corollary 2. Let H be a diagonalizable subgroup of an algebraic group G.
Then A (H)" = Z 5(H)".

8.11 Proposition. Let G be diagonalizable. Then G splits over a finite separable
extension of k.

Proof. Choose a k-embedding G = GL,. Then it suffices to diagonalize G(k,)
by conjugation by an element of GL,(k,), because G(k,) is dense in G. But
the possibility of doing this follows directly from 4.6.

Remark. One can also argue as above using the elements of finite order in
G. It follows from 8.9 that the latter are dense in G and lie in G(k,).
Corollary 1. Let T be a torus defined over k and let T = Gal(k,/k).

() X(T)=X(T),, and X (T) = X (T),.. Hence X(T), = X(T)" and X (T), =
X (1"
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(b) The natural pairing
X(T) x X (T)>Z
makes X(T) and X (T) a dual pair of I"-modules.

Proof. Since T is split over k, we have X(T) = X(T),,. This implies (see 8.3)
that Mor(G, T) = Mor(G, T),, for any diagonalizable group G split over k,.
With G = GL, this gives X (T) = X (T),, thus proving (a).

The pairing in (b) is a separating duality over Z (see 8.6) so we need only
to check its compatibility with the action of each seI". We must show that
Ca,*AY = {a, A) for aeX(T) and AeX (T). We have, for xek¥,

x<s..sa> = (Saos,l)(x) = (‘a)(sl(s- lx)) = Sd(S- lsl(s— lx» - S((Z°/1)(s‘ lx)
= s(s_ ‘x)<¢~)~> = x(a.l).

Corollary 2. With T as above, T is split over k ifand only if X ,(T) = X ,(T),.

Proof. I” operates trivially on the free abelian group X(T) if and only if it
operates trivially on its dual, X (7).

8.12 The category of diagonalizable k-groups. We have seen in 8.11 that such
a group, G, is split over k. Thus, if 4= K[G], it follows from 8.2 that
Ay, = k[ X(G)], the group algebra of X(G). If seI" = Gal(k,/k) then the action
of s on this group algebra is given by

(Za0) = T'aja.

This action determines A, = 4, and thus we see that G, as a k-group, is
completely determined by X(G) with its structure as a I'-module. For
knowledge of the latter permits us to construct 4, and the action of I" on
A,, and hence A,. As a I'-module, X(G) is finitely generated as a Z-module,
and the action of I is continuous, i.e. some open subgroup of finite index
in I acts trivially on X(G) (because G is split by a finite extension of k). If
p = char(k) > 0, moreover, X(G) has no p-torsion because K[ X(G)] is reduced.

Let a:G— G’ be a morphism of diagonalizable k-groups. It follows from
8.3 that a is defined over k,. Moreover the following conditions are equivalent:

(1) e is defined over k.
(2) a®: A4} — A, (where A'= K[G"]) is I'-equivariant.
(3) X(): X(G')— X(G) is I"-equivariant.

The equivalence of (1) and (2) follows from AG.14.3, and the equivalence of
(2) and (3) follows from the description above of the action of I” on the affine
algebras, via its action on the character groups.

Now we can consider X to be a (contravariant) functor,

X:A >R

where the two categories are defined as follows:
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obj & :diagonalizable k-groups.

mor & :k-morphisms.

obj #:finitely generated Z-modules, without p-torsion if char(k)=p>0, on
which I' acts continuously.

mor 4:I"-equivariant homomorphisms.

It follows from 8.3 and the remarks above that the functor X is fully faithful.
In fact:

Proposition. X:.o/ —» 4 is an equivalence of categories.

There remains only to be shown that every Meobj 4 is the character
module of some Geobj .. The group algebra 4 = K[M] is a Hopf algebra,
and a reduced affine K-algebra, because M is finitely generated and without
p-torsion. Hence G = speck(A) is an affine group. Moreover M is naturally
a group of characters on G, so G is diagonalizable, with character group M
(see 8.2). )

We must now give G a k-structure inducing the given action of I” on M.
First we give A the k,-structure k[M]. Let sel” operate on k[M] by
Yaa) = *a’a (aek,; ae M). This defines a continuous action of I” on k,[M], ie.
one for which each element of k,[M] has an open isotropy subgroup. It
follows therefore from AG.14.2 that 4, = k,[M]” is a k-structure on A. This
k-structure clearly meets our requirements.

8.13 Examples
(1) Suppose M =Z[I"/U] where U is an open subgroup of I'. Then, for any
I'-module N we have

Hom . ,(M,N)=Hom, _ (M,N)"=N"
Let k' be any k-algebra and let I” act on k; @k’ via its action on k,. Then
v k *U
clearly ( k, ®k’> = Lk, where L = k, and therefore also (k, ) k’) =
k k k

*
(L@k’) , the notation referring to the groups of invertible elements in
k

these algebras.

Now put A = K[M] with k-structure A, = k,[M]”. Then G = specg(A) is
a diagonalizable k-group with character module M. The functor of points
of G is described as follows, where k' is a variable k-algebra:

G(k') = Hom,_,, (S, k)

r
= Hom,"_,,g(A,", (ks ® k’))
k
r
_ Homl_mod( M, < K, @k’)*)
k

~(n@w)" - (L)'
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Thus we see that G is the multiplicative group GL,(L) of the k-algebra L
(see 1.6, Example (9)). It follows, in particular, that G is k-rational, i.e. that
the function field k(G) is purely transcendental (loc. cit.).

(2) Let T be a k-torus and put N = X(T). Some open normal subgroup U
of I'" operates trivially, so N is a Z-free representation of finite rank of the
finite group I" = I"/U. Hence there is a monomorphism a°:N - M where
M is a free Z[I"']-module. (For example one can take M = N”, where, for a
I'"-module H, we write H'=Homg,__ ,(H,Z[I"]).) The monomorphism o’
corresponds to an epimorphism «:S — T, where S is the torus with character
module M. Thus we have an embedding of function fields a’:k(T)— k(S). It
follows from example (1) above that k(S) is purely transcendental. This shows
that:

A k-torus T is unirational over k, ie. k(T) is contained in a purely
transcendental extension of k. In particular, if k is infinite, T(k) is dense in
T (AG. 13.7).

8.14 Anisotropic tori. Write %q for the category of finite dimensional
@-modules on which I” operates continuously, i.e. via finite quotient groups.
Then (cf. Curtis—Reiner, for example) #q is a semi-simple category, i.. all
short exact sequences split.
We have the exact functor # - %q (see 8.12 for notation) which sends M
to Mg=Q QM. If M is torsion free we can view M as embedded in Mg
Z

as a lattice. Thus:
MT=MnM,
MT=0=eM 6 =0,
and
MT =M<Mg=Mq ,
A k-torus T'is said to be anisotropic over k if X(T), = {1}, 1e.if X(T)" ={1}.

This is equivalent to the existence of no non-trivial I'-fixed points in
Q ) X(T), by the remarks above. The semi-simplicity of the category %q
7

implies that the functor “fixed points” is exact on %¢. Thus:

Corollary. Let e— T — T — T" — e be an exact sequence over k of k-tori. Then
T is split (resp., anisotropic) over k if and only if T' and T" are split (resp.,
anisotropic) over k.

8.15 T, and T, Let T be a torus defined over k. The subtori of T correspond,
in view of 8.5 and 8.12, to the I"-module quotients of X(T) which are torsion
free.

One such quotient clearly is

X(T) = X(T)/X(T) = X(T)/X(T)",
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where (see 8.2 (c))

(a) T,= () ker(.

aeX(T)
By construction it is clear that X(T,)" = {1}, i.e. that T, is anisotropic, and
that it is the largest anisotropic subtorus of T.

There is also a largest split subtorus, T, of T. To obtain T, as above we
would first take the largest quotient of X(T) on which I” acts trivially, and
then reduce this quotient modulo its torsion submodule. However, it is more
natural here to work in the dual module X (T) (see 8.11, Cor. 1). Then we
can describe T, as follows:

X (T)=XT)=X D)
d) T; is the subgroup generated by
{im(3)| e X(T),).

The last description shows that T is a k-split torus, and that it contains all
other such subtori of T.

A subtorus of T, T, must be both split and anisotropic (see 8.14) and
hence trivial. Thus (T, T,)° is trivial, and so T, T} is finite.

Let r = rank X(T)" and let r, =rank X (T)". Then dim T, =n —r (where
n=dim T) and dim T, =r,. These ranks can be computed as Q-dimensions
after tensoring the modules with Q. Moreover X(T)q and X (T)q remain a
dual pair of @-I"-modules. Since the trivial representations of I” are self dual
it follows that X (T)£ and X *(T){) have the same dimension (thanks to the
fact that these are semi-simple I -modules). Thus r=r, and so
dim T, + dim T, = dim T. This implies, in view of the last paragraph, that the
product morphism T, x T;— T is surjective.

We summarize:

Proposition. Let T be a torus defined over k, and let T, and T, be defined by
(a) and (d) above.

(1) (@) T, is the largest anisotropic subtorus of T defined over k. (b) T, is the
largest split subtorus of T defined over k.

(2 T,nT,is finite and T=T, T,.

(3 If xT—>T' is a k-morphism of k-tori then aT,c T, and aT,c T,. In
other words T— T, and T+ T, are functorial.

The last assertion is clear from the definitions, and all others were proved
above.

8.16 Examples over k =R. The group I = Gal(C/R) has order two.

(1) if dim T =1 there are two possibilities: (a) T is split. T(IR)=IR* and
X(T)=1Z with trivial I'-action. (b) T is anisotropic. X(T)=2Z with the
generator of I” acting by yr— —yx. The group T is SO(2), the special
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orthogonal group in two variables, and T(R) is the compact group of
orientation preserving rotations of the plane.

(2) In the general case T is anisotropic if and only if T(IR) is compact (in
the real topology). This can be deduced easily from example (1), with the aid
of 8.15, and using the fact that there are only two irreducible @-I"-modules.

8.17 Weights and roots of diagonalizable groups. Let T be a diagonalizable
group. We shall sometimes write the groups X(T) of characters, and X (T)
of one parameter subgroups, additivelyp. When doing this we shall employ
an exponential notation, as follows:

t*=at) (teT,acX(T))
x*=Ax) (xeGL,1eX (T))
(M =x*"  (see 8.5).
Let T — GL(V) be a rational representation of T. If ae X(T) we write
V,={veV|t-v=oft) for all teT}.

Since T is diagonalizable V is the direct sum of the V,’s. Those o for which
V, # 0 are called the weights of T'in V. They are evidently finite in number.

Suppose T acts on G. Then T acts on g = L(G), and the set @(T, G) of non

zero weights of T in g is called the set of roots of G relative to T. Thus
g=9"® [[ g.
ae ®(T,G)

In case T and G are given as subgroups of some larger group in which T
normalizes G then @(T,G) will always refer to the action of T on G by
conjugation. Of course, by taking the semi-direct product T-G, the general
case reduces to one of this type.

Suppose T acts on G as above and that H is a T-invariant closed subgroup
of G. Then h= L(H) is also T-invariant. For each ae®@(T, G) we can write
8. = b, D g, for some complement g of b, =hng, We shall write

O (T, G/H) = {0 (T, G)|g, #0}
= {ae ®(T, G)|b, # .}
Then we have

s=@"+ho I g

ae P(T,G/H)

In case H = GT we have h < g” and hence &(T,G/H)= &(T,G). We shall
sometimes refer to @ (T, G/H) as the set of “roots of G outside of H (relative
to T),” or of complementary roots of G, with respect to H.

8.18 Proposition. We keep the notation of 8.17. Assume T to be connected and
k infinite. Then there is te T(k) such that

Zy()=Zy(T), Zyt)=2ZyT).
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Proof. We can assume T < G = GL(V) for some vector space V defined over
k. Write V=V, @®--- @ V,, where the V, are the eigenspaces for the distinct
weights x,,...,x, of T on V. Since T is unirational over k (8.13 (2)) and k is
infinite, T(k) is dense in T, and we can choose teT(k) such that y,(t) # x;(t)
for i # j. An obvious computation shows then that

Z4()=24(T)=MnH,
Z(0) = 2y(T) = LM)b,

where M = GL(V,) x --- x GL(V,).

We end up §8 with some results on the existence of quotients. For the
main part of this book, they are needed when G° is a torus (8.21), but the
proof under somewhat more general assumptions is the same, and the result
is of independent interest. Therefore we adopt a more general framework in
8.19, 8.20.

8.19 Lemma. Let G opérate k-morphically on the affine k-variety V.

(i) I=K[V]C is defined over k.

Assume that the representation of G in K[ V] is completely reducible.

(i) There exists an I-linear projection operator 4:K[V]— I, defined over k,
which leaves every G-stable subspace invariant. The algebra I separates the
G-stable disjoint closed subsets of V and is finitely generated.

(iii) If the orbits are closed, K(V)® is the full ring of fractions of 1. More
precisely, given re K(V)¢ and veV at which r is defined, there exists a,
bel, where b is a non-zero-divisor in I, which does not vanish at v and
such that r = a/b.

[“completely reducible” means that every G-invariant finite dimensional
subspace of K[V] is a direct sum of G-invariant irreducible subspaces.]

Proof. (i) By 1.9, K[V] is the union of G-invariant finite dimensional
subspaces E defined over k. The group G(k,) is Zariski-dense in G (AG.13.3)
therefore E® is the solution space of a system of linear equations with
coefficients in k, and is defined over k.. On the other hand ES(k,) is invariant
under the Galois group I" of k, over k. Therefore it is defined over k (AG,
14.4). Thus, I is the union of finite dimensional subspaces defined over k,
hence has a k-structure.

(i) The previous space E is the direct sum of E® and of a unique G-invariant
complementary subspace E', namely the sum of the isotypic subspaces of E
corresponding to the non-trivial representations of G. It is defined over k
because, over k,, I" permutes the non-trivial irreducible representations of
G(k,). We let F be the inductive limit of these subspaces. It is the unique
subspace of K[V] stable under G and supplementary to I and it admits a
k-structure, too. We let then & be the projection of K[ V] onto I with kernel
F. 1t is defined over k since I and F are. If Q is any invariant subspace, then,
by looking at finite dimensional invariant subspaces, we see again that
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0=0nI@QNF. Therefore 1 leaves Q stable. If ael, then a-QnI <1 and
a-(Qn F) < F. Therefore for beQ, we have (a-b)* = a-b", which shows that &
is I-linear and leaves Q-stable.

Let A and B be G-stable disjoint closed subvarieties of V and C, D
their ideals in K[V]. Since AnB is empty, C+ D = K[V] by the Hilbert
Nullstellensatz (AG.3.8). Let ceC and deD be such that c+d=1. Then
c¢*+d"=1. Both C and D are stable under G, hence c'eC, d"eD by
(). It follows that c" is zero on A and equal to one on B. It separates A
and B.

To prove the last assertion of (ii) we may, by 1.12, assume V to be embedded
in a finite dimensional vector space X defined over k on which G acts linearly,
with action defined over k, leaving V invariant and inducing the given
operation on V. The injection ¥V — X induces a surjective comorphism
K[X]- K[V]. It is G-invariant and the uniqueness of the decomposition in
(i) implies that I is a quotient of K[X]%. We may therefore assume V = X.
Then K[X] is a polynomial algebra in d = dim X independent generators.
Let J be the ideal generated by the invariant polynomials without constant
term. By the Hilbert basis theorem, it has a finite generating set, say
{fis--->fm}, and we may assume the f;el to be homogeneous. We claim that
I is generated by the f,. Let ael be homogeneous of some degree m. There
exist b;e K[ X] such that

M a=by; fi+-+by fu

and we may assume the b; to be homogeneous, so that degb, + deg fi=m
for all i's. We get from (1)

2 a=a"= Y b} f.

The space of homogeneous polynomials of a given degree is G-stable (since
G acts linearly), hence degree b; = degb; is < m. The last assertion of (i) now
follows by induction on the degree.

(iii) We now assume that the orbits are closed. Recall first that K(V) is
the direct sum of the fields K(V;), where V; runs through the irreducible
components of V. We have to find

3) seK[V] such that t =f-seK[V],s"(v) #0
and s" is not a divisor of zero,

because we have then t* = f-s", with s" non-divisor of zero, which shows that
f is in the quotient ring of I.

For the proof, we assume first that G-v is closed. Choose a non-divisor of
zero qeK[V] such that r=f-qeK[V] and q(v) #0. Let E be the subspace
of K[V] generated by the g(g) (9€G). It is finite dimensional (1.9). Let J be
the ideal of K[V] generated by E and the functions f;—fi(v) (1 Li<m),
where the f’s are as in (ii). Since E and the f; are G-stable, so is J. We claim
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first that 1eJ. Assume this is not the case. Then the variety Y of zeroes of J
is not empty. Since J is invariant under G,so is Y. For any ye Y we have f;(y) =
fi{v)(1 £i < m), hence also s(y) = s(v) for any sel. Then (ii) implies that ve Y,
but this is absurd since q(v) # 0 by construction. Therefore 1eJ. There exists
then

¢;,d;eK[V] and g;eG (1 £i<m, 1 £j < n) such that

@ Zci(fi-fi(v))'*';dj'gj(q): 1

Let s=Y d;'g;(q). Then Y d;g;(r)=f-seK[Y]; applying & to both sides of

J

(4) and evaluating at v, we get 5"(v) = 1 # 0. We have now found s satisfying
(3) except maybe for the last condition. In order to take care of this last
point we proceed by induction on the number of irreducible components of
V in the support of s. Assume the latter consists of b irreducible components
of Vand is s V. Let Z be an irreducible component of ¥ not wholly contained
in it and z a point of Z at which f is defined. The previous argument shows
that we can find s,eK[V] such that f-s,eK[V] and s}(z) #0. There exists
deK* such that s} +d.s" is not zero at v and not identically zero on any
irreducible component of the support of s*. Also

si(z) + d.s"(z) = s (z) #0.

As a consequence, s, + d.s satisfies the first three conditions of (3) and the
support of (s, + ds)* contains at least b + 1 irreducible components of V. This
provides the induction step.

8.20 Proposition. Let G act k-morphically on an affine k-variety V. Assume
that the representation of G° in K[ V] is completely reducible. Then there exists
a categorical quotient (6.15) (n, Y) of V by G over k. It is affine, with coordinate
ring isomorphic to K[V]C. If all orbits of G are closed, then Y is the (geometric)
quotient of V by G.

Proof. We shall check that the three conditions of 6.16 are fulfilled. We first
assume that G is connected. Let again I=K[V]® By 8.19, I is finitely
generated and defined over k. Let Y be the affine k-variety with coordinate
ring [ and n the k-morphism associated to the inclusion I < K[V]. The
morphism 7 is constant along the orbits of G. Let us show that = is surjective.
Let yeY and A the ideal of elements in I which are zero on y. We claim
that B= A-K[V] is a proper ideal of K[V]. If not, there would exist a;e4,
c;€K[V] such that Y a;-c; =1, hence such that

Z(ai"?i)II = Zai‘c? =1
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(we have used 8.19(ii)), whence 1€ A, which is absurd. There exists then veV
which annihilates B, and therefore such that n(v) = y. This proves (a) of 6.16.

We now check (c). Let F < V be a G-invariant closed subset and J the ideal
of F in K[V]. It is G-stable. Of course, K[F] may be identified to K[V]/J.
By complete reducibility, K[F]€ is the image of I, i.e. K[F]% = I/(InJ). Let
Z be the subvariety of Y defined by J N1, hence with coordinate ring K[F]°.
Clearly n(F) = Z. But the first part of the proof, applied to F and G, shows
that n: F — Z is surjective. Hence n(F) is closed. This is the first condition in (c).

Let yeY. Its inverse image is G-stable, hence contains at least one closed
orbit by 1.8, but at most one since I separates the G-invariant closed disjoint
subsets of ¥ (8.19(ii)). Hence each fibre of n contains exactly one closed orbit.
Let F be a G-invariant closed subset of V whose image contains y. Then
Fnn~!(y) in non empty, G-invariant, closed, hence contains a closed orbit,
and therefore F contains the unique closed orbit belonging to =~ !(y). From
this the second part of (c) follows.

We still have to see that 6.16(b) holds. Let U < Y be open, U'=n~'U and
JeK[U']C. We have to show that fen’K[U]. It suffices to do this for a
basis for the open sets in Y. We may therefore assume that U is a principal
open set Y, (feK[Y], f #0)(AG.3.4). Viewing [ as an element of K[X], ie.
identifying it with n°f, we have clearly U’ = X ;, hence

K[UI=K[YI[f™'], K[U1=K[X1[/7'],

and the claim follows from the obvious relation (K[ X][f ~'1)¢=K[X1°[f ']

We have proved that (=, Y) is a categorical quotient. Assume now that all
orbits are closed. Then 8.19(ii) shows that = is an orbit map. 8.19(iii) implies
K(Y)=K(V)C, therefore n is separable (AG.2.5). The remark in 6.4 and the
validity of 6.16(b) imply that = is open. Then the conditions (1), (2) of 6.1 are
fulfilled and Y = V/G. This proves the proposition for G connected.

In the general case, the finite group G/G° acts k-morphically in the obvious
way on Y (6.10) and the quotient Y/(G/G®) exists over k by 6.14. It is the
affine k-variety Z with coordinate ring, the ring of invariants of G/G° in I,
i.e. of G in K[V]. Assume the orbits of G are closed. Then Y = V/G°, hence
Z =V/G by 6.10. Now drop that assumption. We can also view Z as the
categorical quotient of Y by G/G°. Then the obvious remark about the
transitivity of the notion of categorical quotient (6.15) shows that Z is a
categorical quotient.

8.21 Corollary. Let G act k-morphically on an affine k-variety. Assume that
G’ is a torus. Then the categorical quotient of V by G exists over k and is the
affine variety with coordinate ring I = K[V1S. If all orbits are closed, it is the
quotient of V by G.

Since all finite dimensional morphic representations of a torus are
completely reducible, this follows from 8.20.

Remarks. This shows in particular that if T — GL(E) is a finite dimensional
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rational representation of a torus T, then the categorical quotient of E by
T exists. On the other hand, if the representation is not trivial, the orbits
are not all of the same dimension and E/G does not exist.

Bibliographical Note

Tori are introduced in [1], the groups of their characters and of their one
parameter subgroups in [13, Exp. 4]. That a k-torus T splits over a finite
separable extension of k is pointed out while showing that T is unirational
over k in [26, Prop. 10]. Another proof, due to J. Tate, is given in [4,§1].
The equivalence of categories 8.12, at least for tori, is proved in [24]. In
fact, most of the results proved in this paragraph up to 8.18 may be found
in one of these references.

8.19 for a torus and 8.21 are due to M. Rosenlicht [27]. The complete
reducibility assumption holds for reductive groups (see §14) in characteristic
zero. Therefore 8.20 is true for such groups. See Chap. I in [22], the first
edition of which is in fact the original source for the theorem. The conclusion
of 8.20 is also valid in arbitrary characteristic if G° is reductive, but the proof
requires other tools (see the discussion in Appendix 1A of [22]).

§9. Conjugacy Classes and Centralizers
of Semi-Simple Elements

In this section it is shown that conjugacy classes of semi-simple elements are
closed (9.2), and that their global and infinitesimal centralizers correspond (9.1.)
The action of a semi-simple element s on a connected unipotent group U is
studied and it is shown (9.3) that 2 ,(s) is connected. Applications are then
made to group actions of diagonalizable groups 9.4.

9.1 The conjugacy class morphisms. In this section we fix a closed subgroup
H of G defined over k.

H acts on G by conjugation, and we write Cy(s) for the orbit of an element
seG; this is the H-conjugacy class of s.

a:H—Cyls) a(h)=hsh™1,

is then the orbit map, and the isotropy group of s is the centralizer & (s).
We can now apply 6.7 to this to determine when o is a quotient morphism.
In order to make the statement more explicit we shall first determine (da),.
Since a(h)s ! = (h, 5) is the commutator, it follows from 3.16(a) that the latter
has differential (Id — Ad(s))|h, which maps b to T(Cg(s)s~?!),. Thus its kernel
is hn3,(s), where 34(s) = ker(Id — Ad(s)). Since translation is an isomorphism,
we conclude also that (da),:h — T(Cyl(s)), has kernel hn3,(s). We shall denote
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the latter by 3y(s), so that
3(9) = {Xeb|Ad(9)X = X},

even though we have not assumed that Ad(s) leaves ) invariant. In any case
we certainly have
L(Z u(s)) < 3(9),

and we can now apply (6.7) to conclude:
(*) Assume seG(k). Then Cy(s) is a smooth variety defined over k, and o is
a k-morphism which induces a bijective k-morphism

o :H/Z g(s) — Cyls).
The following conditions are equivalent: (a) o' is an isomorphism; (b) a is
separable; (c) L(Zy(s)) = 34(s). When these conditions hold, Zy(s) is defined
over k.

Next we discuss the infinitesimal analogue of the above situation. Namely,
H acts on g via Adg, and we denote the H-orbit of an Xeg by cg4(X). Let

B:H —cy(X), P(h)=Ad(h)X,
be the orbit map. The stability group of X is denoted Z (X), and it is called
the centralizer of X in H. Before applying 6.7 we again compute first the

differential of f§. Following f§ by translation by — X, and using 3.16(b), we
see that the differential at e is — ad(X). Thus

ker(dB), = 3,(X) = {Yeb|[X, Y] =0},
and this clearly contains L{(Z i(X)). Now we apply 6.7 again to conclude:

(*x) Assume X eg(k). Then cy(X) is a smooth variety defined over k, and f§ is
a k-morphism which induces a bijective k-morphism

B :H/Z g(X) - cy(X).
The following conditions are equivalent: (a) f' is an isomorphism; (b) B is
separable; (c) L(Z 4(X)) = 34(X). When these conditions hold, Z y(X) is defined
over k. .

Note that, if char(k) = 0, conditions (b) of (*) and of (**) are automatic.
More generally, they hold if s and X are semi-simple and normalize H.

Proposition
(1) If, in (x), s is semi-simple and normalizes H, then conditions
(a), (b), and (c) hold.
(2) If, in (¥*) X is semi-simple and normalizes H then conditions (a), (b), and
(c) hold.
We say X normalizes H if Ad(h)X — X el for heH. This implies that X
normalizes b, i.e. that [X,h] <} (see 3.16(b)).

Proof. After choosing a k-rational immersive representation we can enlarge
G and assume G = GL(V) for some vector space V with k-structure.
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Casel. H=G.

() Write V=V, @ ---@V, where the V; are eigenspaces for the distinct
eigenvalues of s (which is semi-simple). Then a simple direct calculation shows
that ' ¢(s) = GL(V,) x -~ x GL(V,). If Yeg=gl(V) then Ad(s)Y =sYs~! so
we conclude similarly that 3.(s)=gl(V;)®---Dgl(V)). The latter is just
L(Z (s)), thus establishing condition (c).

(2) The proof is completely parallel, using a decomposition of V for the
semisimple endomorphism X egl(V).

General case. Write c:G — M, where M = C¢(s)-s ™! and c(g) = gsg ~*s !, and
write ¢': H - M’, where ¢’ = ¢c|H and M’ = Cy(s)s " !. Then ¢’ is just « followed
by right translation by s~!, so we have only to show that (dc’),:h - T(M’),
is surjective (condition (b) of (*)). We know from case 1 that (dc),:g — T(M),
is surjective. Since (dc), = Id — Ad(s) we see therefore that T(M), = m, where
8 = 34(s)@m and m is the sum of the eigenspaces of Ad(s) corresponding to
eigenvalues different from 1. Since s normalizes H, it follows that
b =3,(s)@m’, where m’ = mnb is similarly defined. Since (dc’), = (dc).|b it
follows that (dc')(h) =m’. Hence the proof of surjectivity of (dc’), will be
finished once we show that T(M'), c m'=mnl. Evidently T(M'),cm=
T(M),. On the other hand, since s normalizes H, we have M’ = Cy(s)s ! < H,
and so T(M'), <} also.

The proof of (2) is similar to the proof of (I) above. We introduce a:G — ¢,
where ¢ = ¢g(X) — X and a(g) = Ad(g)X — X, and the morphism a":H —»¢ =
¢y(X) — X where a' = a|H. We want to show that (da’), is surjective, and we
know from case 1 that (da), = — ad(X):g— T(c), is surjective. It follows that
g =34X)®m where m=T(c), is the sum of the eigenspaces of ad(X)
corresponding to eigenvalues different from 0. Since X normalizes ) we can
similarly write b=3,(X)@m’ where m'=mnb. Since (da’), =(da).[b it
follows that (da’) (b) = ad (X)(h) = m’. Hence the surjectivity of (da’), will follow
once we show that T(¢'), = m’ = mnh. Evidently T(¢'), € m = T(c)o. On the
other hand, since X normalizes H, we have ¢’ =c¢y(X)— X <, and so
T(c')y = also.

Remark. Let p:M’ x Z y(s)— H be the product morphism, with differential
(dp)ye.e) ' ® L{Z y(5) = b. The proof above shows that L(Z y(s)) = 3,(s), and
hence that (dp),, is an isomorphism. Moreover the differential of
cIM':M' - M’ at e is Id —Ad(s)jm’:m'—>m’, which is clearly also an
isomorphism.

9.2 Theorem. We keep the notation of 9.1.

() If seG is semi-simple and normalizes H, then Cy(s) is closed.
() If Xeg is semi-simple and normalizes H then cy(X) is closed.

Recall that X normalizes H if Ad(h)X — X €l for all heH.
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Proof. After choosing a faithful representation, we may assume G = GL(V).
If AeEnd(V) write C(A, T) for the characteristic polynomial of 4;and M(A4, T)
for the minimal polynomial of A. With this notation we define

W = {xeN o(H)IM(s,x) =0 and C(Adx|b, T) = C(Ads|b, T)}.

Clearly seW, and W is stable under H operating by conjugation. If xeW
then M(x, T) divides M(s, T), and the latter is a product of distinct linear
factors because s is semi-simple; hence x is likewise semi-simple. We can
therefore apply (9.1) to obtain

dim Cj(x) = dim H — dim % ,(x) = dim H — dim 3y(x) = dim H — m(x),

where m,(x) is the multiplicity of 1 as an eigenvalue of Adx|}. But the second
condition defining W implies that m,(x) = m,(s). Therefore, under the action
of H by conjugation on W, the orbits Cp(x) have constant dimension. It
therefore follows from the closed orbit lemma 1.8 that the orbits are closed
in W. But evidently W is closed in A G(H), and the latter is closed in G (see
1.7). This proves that C,(s) is closed.

The proof that Cp(X) is closed is similar. It uses

W = {Yen,(H)|M(X, Y)=0 and C(ad Y|b, T) = C(ad X|b, T)}.

Here ng(H) is the set of Y in g that “normalize H” in the sense of 9.1. This
set W is closed in g, it contains X, and it is stable (via Ad) under H. Using
9.1 one can argue as above to show that the H-orbits in W have constant
dimension, and hence are closed.

Corollary. Let L be a (not necessarily closed) subgroup of G, which is
commutative, consists of semi-simple elements, and normalizes H. Then

L(Z(L)nH) = L(Zy(L)) = 3y(L) = L(Z (L))~ L(H).
If either L = G(k), or L is closed, defined over k, then %y(L) is defined over k.

Proof. By definition, Z(L) = 24(L)n H, whence the first equality. The third
also follows by definition. We prove the second one. Clearly the right side
contains the left one, 50, in case H® = Z(L), the left side equals ) and equality
is forced. We complete the proof by induction on dim H. Choose seL so that
H' = Zy(s) does not contain H°, and hence dim H' < dim H. Part (1) of 9.1
Proposition tells us that §' = L(Z y(s)) = 3y(s), from which it follows that
35(L) = 3y(L). Moreover it is clear that 2 (L) = Z (L), and L < H' because
L is commutative. By induction we have L(Z (L)) = 34(L), so this proves
the first assertion. If L < H(k), the same induction, and 9.1, show that Z4(L)
is defined over k. Let now L be closed, defined over k. Then, by the above
Fy(L(k,)) is defined over k,. But L(k,) is Zariski dense in L (AG.13.3), hence
Zy(L(k,)) = Zy(L). On the other hand, Zy(L) is clearly k-closed. Therefore
it is defined over k.
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9.3 Proposition. Let G be a k-group and let U be a connected unipotent
subgroup defined over k. Let se G(k) be a semi-simple element that normalizes
U.Put M = Cy(s)s~ ! and write c{g) = gsg~'s ™! for geG, so that M = c,(U).

(1) Zy(s) and M are closed subvarieties of U defined over k.

(2) The product morphism a:M x % y(s)— U is an isomorphism of varieties.
Hence Z (s) is connected.

(3) ¢, induces an isomorphism of the variety M onto itself.

Proof. It follows from 9.1 (1) that 2 (s) and M are smooth varieties defined
over k, and clearly %' ,(s) is closed. The fact that M is closed is just 9.2 (1).
This proves (1).

It further follows from the Remark to the proof of 9.1 (1) that a and
¢;:M — M are separable, once we know they are dominant. Therefore it
suffices, to conclude the proof, to show that o and ¢;: M — M are bijective.
We shall do this in several steps. Write Z = Z /(s).

(@) c(u) = c(v)<>uZ =vZ for u, veU. This is because c, is conjugation of
s followed by right translation by s, and Z is the stability group of s under
conjugation.

() If u, veU then c(uv)=uc(v)u ‘cu). Hence, if ucb(U) we have
cuv) = c(v)e,(u) = c(vu), and cu™')=c,u)”!. For cyuv)=uvs(uv)” ‘s~ ! =
u(vsv™*s ™ Yu " Yusu~ s 1), If ue%(U) then uc,(v)u™* = c,(v) and uv = vu, so
the second assertion follows from the first. The third one clearly follows from
the second one.

(c) MNZ = {e}. Suppose z=c(u)eZ with ueU. Then zs=usu~' is the
Jordan decomposition of the semi-simple element usu™!, so the unipotent
part, z, equals e.

(d) a:M x Z - U is bijective if U is abelian. Part (b) implies that c:U —» U
is a homomorphism. It has kernel Z, by (a), and image M, so
dim U =dim M + dim Z. Moreover part (c) implies that « is injective. (Note
that « is a group morphism now by (b).) Since U is connected, the dimension
formula above implies that « is also surjective.

(e) a is bijective. Since U is nilpotent we can find a connected central
subgroup N 3 {e} of U normalized by s (e.g. the last non trivial term of the
descending central series of U). If N =U we can apply (d). If not, we can
assume, by induction on dimension, that the analogue of our assertion is
valid for the pairs (s, N) and (s, U’), where U’ = U/N and s is the image of
s in the quotient modulo N of the normalizer of N. Let = denote this quotient
morphism.

Put Z'=2y(s) and M’ = ¢, (U") = n(M). The induction hypothesis says
that the product morphism &': M’ x Z' - U’ is bijective. Similarly, c(N) x 2 p(s)—
N is bijective.

To show that « is injective suppose we have xa = yb with a,beZ and x,
yeM. Replacing a by ab™! we can assume b =e. Applying n we conclude
from the injectivity of o that n(a) = e, so that aeN. If x = c,(u) and y = c(v)
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we have usu™'s " 'a=uvsv™!s™! and a(sN N Z) centralizes U and s. Therefore
we have (usu~')a=(vsv™?!), which is the Jordan decomposition of the
semi-simple element vsv™?, so the unipotent part, a, equals e. This shows
that a is injective.

We next claim that the inclusion ¢(N) = M NN is an equality. For any
neN can be written as ma with mec(N) and ae Z \(s), by induction. If also
neM, the injectivity of a implies a=e.

Now we will show that n:Z — Z’ is surjective. Suppose xe U and n(x)eZ'.
Then ¢ (n(x)) = e so c(x)eker(n)n M = Nn M = c(N), by the last paragraph.
Say c(x)=c,n) with neN. Since N c¥(U) it follows from (b) that
c(n1x) = c(x)cn 1) = cy(x)cy(n) ! =e. Thusn~ 'xeZ and n(n~'x) = n(x), so
we have lifted n(x) to an element of Z, as required.

Now we can show that a is surjective:

U=M2ZN, (because U' = M'Z',tM = M’,
andnZ =Z'),
=MNZ, (N =%(U)),
= Mc(N)Z \(s)Z, (byinduction),
=MZ, (because Z \(s) = Z) and

Mc(%(U)) = M, by (b)).

(f) c;:M — M is bijective. Using part (a) and the surjectivity of « we have
M =C(U)=c(MZ)=c(M).Ifu,ve M and c(u) = c,(v) then (a) implies u = vz
for some zeZ. Thus a(u,e)=afv,z) so the injectivity of « implies that
z=e. Q.ED.

9.4 Group actions of diagonalizable groups. We fix a diagonalizable group
T, a morphic action of T on G, and a T-invariant closed subgroup H of G
containing GT = % 4(T). With respect to the action of T on the Lie algebras
g=L(G) and h = L(H) we have (see 8.17 for the notation)

3=0"® [] o
ae®P(T,G)
g=@"+h® ] a,

ae®(T,G/H)

where a, is a complement for §), in g,. Finally, we write T, = ker(a), (0e X(T).

Proposition

(1) We have L(G")=g", and hence gTch. If G is connected and
unipotent, then GT is connected.

(2) The following conditions on a subgroup S of T are equivalent: (a) (G°)° < H;
(b) ¢° = b; (c) S is contained in no T, for ae O(T, G/H).

(3) If G5 is connected, then G° = GT<>S is contained in no T, (ke ®(T, G)).

4) If G is connected and if G # G7, then G is generated by the subgroups
Ze(T,)’, (xe @(T, G)).
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Proof (1). The first assertion is a special case of the Corollary to 9.2 (applied
to the semi-direct product of T and G).

The second assertion of (1) is proved by induction on dim G: If G =G7,
then G” is connected, by hypothesis. Otherwise choose s such that G & Z (s).
By 9.3 (2), G° is connected. One argues then as in the proof of the Corollary
to 9.2.

(2): (@)= (b). I (G®) < H then L(G®) = b, and (1) implies that L(G®) = g°.
(b)=>(a). Since | c g we obtain §® = ¢%, clearly, and g% = ) implies b® = g°.
Thus the dimension equality implies (H%)° = (G%)° < H, using (1).
(b)=(c). Writing

g=b® [[a, (®=0(T,G/H)

ac P

we have

d=v'e|lg=0'e ||
ac P acP,a(S)={1}
Thus g° = h<>a(S) # {1} for all ae @, as claimed.

(3) Since GT = G® this follows by applying (1) and (2) ((a)<>(c)) with
H=GT.

(4) Let G' denote the subgroup generated by all G™(ae ®(T,G)). The
condition GT # G implies that @ (T, G) is not empty. Since L{H"*) equals g"* by
(1), and hence contains g7 + g,, it follows that L(G) contains g" + Y. g,=
g. Hence G'>G° =G. € 1(G)

This completes the proof.

9.5 Corollary. Keep the notation of 9.4.

(1) If 2eX (T) and if S =1im(2), then (G°Y < H if and only if {a,A) #0 for
all ae ®(T, G/H). In particular (G5Y = (GTY if and only if {a, 1) # 0 for all
ae®(T, G).

(2) Suppose T is a torus and G # GT. Then G° is generated by the (GT+)".
Moreover, if k is infinite there is a te T(k) such that t* # 1 for all ae @(T, G),
and for such a t we have Z 4(t)° = (GT)". '

Part (1) follows directly from 9.4 (2). Since the centralizer of T° contains
that of T, the first assertion of (2) is a consequence of 9.4 (4). The existence
of t follows from the fact that T(k) is dense in T (8.13 (2)). The last equality
of (2) then follows from 9.4 (2), applied to H=G" and to the subgroup S
generated by t.

9.6 Proposition. Let n:G— G’ be a surjective and T-equivariant morphism
of k-groups on which the diagonalizable group T acts. Then the induced
homomorphism (GT)° —(G'TY is surjective.
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Proof. Since N = ker(n) is T-invariant there is an action of T on G/N, and
= factors through a T-equivariant and bijective morphism G/N — G'. Hence
we may assume that G’ = G/N. In this case (dr),:g— ¢’ is surjective. Since T
is diagonalizable g7 g'7 is also surjective. According to 9.4 (1), however,
the latter is the differential of GT - G'", so the proposition follows.

Remark. The proof shows even that (GT)°—(G'T)° is a quotient morphism
if m is a quotient morphism.

Bibliographical Note

The Proposition in 9.1 and Theorem 9.2 are proved in [4,§10] for groups,
and in {2,3] for Lie algebras. Proposition 9.3 is proved in [1, lemme 9.6]
when U is commutative, and in [4,§11.1] in the general case. In [1], there
is a counterpart where s is unipotent, and U is a torus, but it will not be
needed in this book. 9.5 generalizes a result proved in [13, Exp. 9, No. 1]
for actions of tori on unipotent groups.

§10. Connected Solvable Groups

The analysis of a general affine group proceeds via a study of its connected
solvable subgroups. This is because the latter have a number of special
properties which make them easier to work with. The main ones are the
fixed point theorem 10.4 and the structure theorem 10.6.

10.1 Complete varieties. We shall collect here some properties of complete
varieties to be used below. Recall (AG.7.4) that V is complete if, for all
varieties X, the projection ¥V x X — X is a closed map. Properties (1), (2),
and (3) which follow are taken from (AG.7.4).

(1) A closed subvariety of a complete variety is complete. The image of a
complete variety under a morphism is closed and complete. Products of
complete varieties are complete.

(2) A morphism from a connected complete variety into an affine variety is
constant.

(3) Projective varieties are complete.

(4) Let o:V — W be a bijective morphism. If W is normal and complete then
V is also complete. (See (AG.18.3).)

Finally, from (AG.18.5(d)) we have:

(5) Let a:V — W be a morphism from an irreducible smooth curve V into a
complete variety W. Then « extends to a morphism a:V — W from the
complete smooth curve V containing V.
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10.2 A composition series for T,. Recall the following subgroups of GL,;:
T.={g9=1(9;)!g;;=0 for j <i}

x
= . |eGL,
0 =*

Un = {gETnIgii = 11 l _S. i é n}

()

D, ={geGL,|g;;=0 for i # j}
= {diag(t,...,t,)|;eK*}.
The following facts are readily checked:
U, =(T,),=(T, T,),
b,~(GL,)", T,=D, U,

T, is the group of invertible elements in the algebra A4 of all upper triangular
matrices. The set N of matrices in A with zeroes on the diagonal is an ideal
(in fact the radical) of A. The two sided ideal N* is spanned by the basic
matrices e;; for which j =i+ h. Moreover, the image of e,;,, in N*/N**!
spans a one dimensional two sided ideal in 4/N*"*! since it is killed by N
and is an eigenvector for the diagonal matrices. Thus the vector space Ay
spanned by {e;;|j > i+ h,or j=i+h<[}isatwosidedidealin Afor0<h<n
and 1 <I<n— h. If we order the pairs (h,]) lexicographically we obtain a
descending chain of two sided ideals, starting with 4 = A, ,, ending with
A,_,,=Ke,, and such that each has codimension one in the next larger
one. Writing Ty, = {geT,|g = I mod 4,;} we therefore obtain a descending
chain of normal subgroups of T, Note that N=A4,, _,, and hence
T, ,_; = U, Thus one sees that the first n quotients are isomorphic to GL,,
and the remaining ones are isomorphic to G,. In summary:

T, is filtered by a chain of normal subgroups with successive quotients isomorphic
to GL, or G,.

10.3 Grassmannians and flag varieties. Let V be an n-dimensional vector space.
We propose to put on the set G,(V) of d-dimensional subspaces of V the
structure of a projective variety. Define

[:G{V) > P(A'Y)

by sending W to the point in the projective space corresponding to the line
AW < A%V, Tt is easily checked (and well known) that f is injective (cf. 5.1
Lemma), so we need only show that its image is closed.

P(A%V) is covered by (affine) open sets U of the following type relative to
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a suitable basis e, ..., e, for V:U consists of all points whose homogeneous
coordinate in the basis of A?V defined by e, ..., e,, are such that the coefficient
ofe=e; A --- A e;is not zero. Thus U is the complement of a linear variety.
Write V=W,®W, where W, and W, are spanned by e,,...,e, and
€4, 15--+» €, respectively. Then, for WeGy(V), we have f(W)eU if and only
if the projection maps W is isomorphically onto W,. In this case W has a
unique basis of the form e, +xl(W), . eq+ xW) with x(W)eW.. Say
x{W)= Z a;jej. Then f(W) is the projection into P(AV) of the vector

+< Y ey A AX(W)A A e,,) + (), where (%) involves basis vectors
15isd
omitting two or more of e,,...,e,. Now

ey A AX(W)A - neg = Z ey N AEjA - Ay,
j>d

so we see that, in (e, +x;(W)) A --- Aes + x(W)), we recover q;; as the
coefficient of the basis vector e; A .- Ae;A - ney, (1Si<d; j>d, e; at
the ith place), and these coefficients, which determine W, may be prescribed
arbitrarily. The coefficients of the remaining vectors in A?V are polynomial
functions of the a;;. Thus, f(G,(V)) is essentially the graph of a morphism
from the space of (a;;)'s to another linear space. In particular, it is closed.

Suppose WeG4(V) and W'eG,(V), with d <d'. Then the condition that
W < W’ can be expressed by algebraic equations on the coordinates in
P(AYV) x P(A“V). Thus {(W,W)eG,V)x G,(V)IW =W’} is a closed
subvariety. The flag variety, #(V), is

((Viro.  VJEG,(V) X -+ X GV)|Vic V,, ,1 Si<n}.

The remarks above show that #(V) is a projective variety. Hence, by 10.1
(3), Z(V) is complete.

The following remarks on GL(V) illustrate certam theorems to be proved
below for arbitrary connected groups.

If e,...,e, is a basis for V we can define

@:GL(V) > Z(V)

by o(g9) = (Vy,..., V,), where V, is the space spanned by ge,,...,ge; (1 i< n).
It is clear that GL(V) operates transitively on the flags in V, the operation
being such that ¢ is equivariant. Therefore ¢ induces a bijective morphism
o:GL(V)/B— % (V), where B is the isotropy group of the flag ¢(e). Under the
isomorphism GL(V)— GL, defined by the basis above one sees that B
corresponds to T,. Write U~ for the unipotent subgroup corresponding to
lower triangular matrices. It is easy to check that U~ -B contains an open
set in GL(V). In fact, it corresponds to the set of g =(g;;); <; ;<, in GL, such
that, for each d < n, det(g;)), ¢; ;<4 # 0, and this is clearly open.

In terms of the projective coordinates introduced on each G,(V), we see
that the coordinates of ¢(g) are given by (ge,,ge, A ge,,...,ge; A -+ A ge,).
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If geU~ then ge;=e;+ ). a;;, SO

j>i
geg A Age=(gey A - Age_y A e,-)+< Y a;gey A Age_y A ej).
j>i
Thus we see, by induction on i, that the ge; can be determined algebraically
from the projective coordinates of ¢(g), for geU™. As a consequence, @
induces an isomorphism of U~ onto its image. Since, as we saw above, (U ™)
contains an open set in @(GL(V)), it follows that the differential of ¢ is
surjective, i.e. @ is separable. This proves:

@:GL(V)— F (V) induces an isomorphism of varieties a:GL(V)/B— Z (V). In
particular, GL(V)/B is a projective variety.

The above proof is a little sketchy, but an independent, and much more
general, one will be given in 11.1.

10.4 Theorem. Let G be a connected solvable group operating morphically on
a non-empty complete variety V. Then G has a fixed point in V.

Proof. We argue by induction on d = dim G. If d = 0 then G = {e}, so assume
d> 0. Then N = (G, G) is connected and of smaller dimension, so the set F of
fixed points of N in V is a non-empty, clpsed, and hence complete, variety.
Since N is normal in G, it follows that F is stable under G.

By the closed orbit lemma 1.8 there is an xeF such that G(x) is closed.
Since N = G,, it follows that G, is normal in G. Thus

G/G,— Glx)
is a bijective morphism from a connected affine variety to a complete onc.

Since G(x) is smooth, and hence normal, it follows from 10.1 (4) that G/G,
is complete. Now 10.1 (2) implies that G/G, is a point. Q.E.D.

10.5 Corollary (Lie-Kolchin Theorem). If n:G — GL(V) is a linear representa-
tion of a connected solvable group, then n(G) leaves a flag in V invariant. i.e.
n(G) can be put in triangular form.

Proof. G has a fixed point for the action induced by = on the variety Z (V)
because, by 10.3, #(V) is complete.
Here is a purely algebraic corollary:

Corollary. Let m be a solvable, not necessarily closed, subgroup of GL(V).
Then some subgroup of finite index in M can be put in triangular form.

Proof. Let H = o/(M). We know from 2.4 Cor. 2 that H is solvable. Now
apply the last corollary to H°. Then H°n M has finite index in M, and hence
solves our problem.

10.6 Theorem. Let G be connected, solvable.
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(1) G, is a connected normal k-closed subgroup of G containing 9G = (G, G).

(2) G/G, is a torus, and G, contains a chain of closed connected subgroups,
normal in G, such that the successive quotients have dimension one.

(3) G is nilpotent if and only if G, is a subgroup of G. In this case, G, is a
closed subgroup defined over k, and G is the direct product G, x G,.

(4) The maximal tori in G are conjugate by €*G. If T is a maximal torus,
then G = TG, (semi-direct product). L(G,) is the union of the nilpotent
elements of L(G).

(5) Let S be a not necessarily closed subgroup of G, consisting of semi-simple
elements. Then
(i) S is contained in a torus, and
(ii) G°= ZS) is connected and equal to N &S).

(6) Let T be a maximal torus of G. Then any semisimple element of G is
conjugate to a unique element of T.

Proof. (1) Using the Lie-Kolchin Theorem we can embed G in T,. Then
U,=(T,),=2T,is a closed normal subgroup of T,, so G, is a closed normal
subgroup of G containing 2G. It follows from 4.5 that G, is k-closed. Let
n:G— G’ = G/9G be the canonical projection. By 4.7, G' = G, x G/, hence
G, is connected. We claim that G, =n"(G.). If xeG,, then n(x)eG, by 4.4.
Let now xen™ (G)) and x = x,'x, its Jordan decomposition. Then, by 4.4,
X, x,en” Y(G.), and x,e2G. But 9G < G,, hence x,=e and xeG,, which
shows that G, =n"'(G.). Since 9G and G, are connected, it follows that G,
is connected.

(2) G/G, injects into T,/U, = D, so G/G, is a commutative connected group
consisting of semi-simple elements, and hence is a torus (see 8.4 and 8.5).
Starting with a chain of connected normal subgroups N; of T, contained in
U, and with successive quotients isomorphic to G, (see 10.2) we obtain from
the groups (N;~G)’ a chain of connected normal subgroups of G contained
in G, with successive quotients of dimension < 1. Once repetitions are
eliminated, the successive quotients will have dimension one.

(3) Suppose first that G, is a subgroup of G. It projects injectively into
G/G,, so G, is commutative. Hence we can use 4.6 to diagonalize G, under
some faithful rational representation of G in a GL(V). It is then clear that
the closure of G is a diagonalizable subgroup of G, necessarily equal to G,
clearly. By rigidity 8.10 we have Z4(G,)’ = .4 4(G,)°. But evidently G, is
normal in G, so, since G is connected, G, is central in G. The quotient G/G,
is unipotent, and hence nilpotent 4.8, so it follows that G is nilpotent, as
claimed.

Suppose, conversely, that G is nilpotent. We claim then that G; lies in the
center of G.

Let aeG, and put U =G, Write c,(x)=xax 'a”! for xeG and put
M = (U). According to 9.3 (3) ¢, induces a bijection M - M, so M =« €*G.
Since G is nilpotent we conclude that M = {e}, i.e. that a centralizes U. Hence
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G° contains 9G, so it is a normal subgroup. In order to prove that G =G,
it suffices then, in view of 4.4, 4.7, to show that G* > G,.

Suppose then that teG,. Then c,(t)eU, so a commutes with c,(t). Therefore
cla=tat"'a 'a=tat™! is the Jordan decomposition of the semi-simple
element tat ™, so the unipotent part, c,(t), is e.

Now that G, is central it follows as above that G, is a closed diagonalizable
subgroup of G. The Jordan decomposition in G and in L(G) shows that
G =G, x G, (group direct product) and that L(G,)n L(G,) =0. Thus G is the
direct product of G, and G, as an algebraic group, because G, x G,—G is
bijective and separable.

It remains to be shown that G, is defined over k.

(a) p=chark = 0. The Jordan factors of a geG(k)are in G,(k) x G,(k), and
the action of I' =Gal(k/k) evidently preserves Jordan decomposition.
Therefore G, and G, each have dense sets of k-points which are I'-stable, so
they are subgroups defined over k.

(b) p>0. There is a g = p'(r > 0) such that u? = ¢ for all ueG,. (If G = GL,
then r=n—1 works.) Then the Jordan decomposition shows that g+ g?
provides a morphism G — G, evidently defined over k. It follows from 8.9 (b)
that its restriction to G, is bijective. Thus G, being the image of a k-morphism,
is defined over k.

(4) We first claim, by induction on dim G, that there is a torus T in G that
projects onto G/G,,. It will then follow that G = TG, (semi-direct product of
algebraic groups) becausc the Jordan decompositions imply that TG, = {¢}
and L(T)n L(G,)=0.

If G is nilpotent we take T = G, as in (3). If not then there is an seG,
which is not central, so dim G° < dim G, where we write G* = Z 4(5). Moreover
it follows from (9.6) that (G°)° - (G/G,)° = G/G, is surjective. Hence we can
find the required T in (G®)°, by induction.

Next we claim:

(*) Suppose G = TG, as above. Then every se Gy is conjugate by an element
of €°G to an element of T.

We prove (*) by induction on dim G. In case G is nilpotent it follows from
part (3) above that G is the unique maximal torus, so we may assume G is
not nilpotent, i.e. that €°G # {e}. Let N be the identity component of the
center of °G. Then N # {e}, for #°G is connected and unipotent, and N
contains the last non-trivial term of the descending central series of €°G,
which is also connected (see 2.3).

Let n:G—»>G =G/N be the natural projection. Then G'=T"-G,
(semi-direct) where T' = n(T). By induction, there is a g'e¥®G’ such that
g'n(s)g' " 'eT'. Choosing ge¥™G such that n(g) = ¢', and replacing s by gsg ™ !,
therefore, we may assume se T-N. We want to conjugate s into T by an
element of N.

Write s = nt with neN and teT. We apply 9.3 to t and N in order to write
n=c,u)z where ueN, c(u)=utu"'t"!, and where zeZy(t). Thus s=
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utu™ 't 'zt = utu™'z. Since z is unipotent and commutes with ¢t and u, the
cquation s = (utu™ ')z is the Jordan decomposition of the semi-simple element
s, and hence z = e. Thus u™ 'su = teT, thus proving (*).

To conclude the proof of the first assertion in (4) suppose T’ is another
maximal torus in G. Choose se T’ so that s*# 1 for all ae @(T’, G). Then it
follows from 9.4 that s and T’ have centralizers in G with the same connected
component of e. Using (*) above we can conjugate s into T with an element
of #*G. Conjugating T’ likewise we are reduced to the case, therefore, where
T < (G*)° =(GT')°. From (*) we conclude that each element of T" is conjugate
in (GT') to an element of T. But T is central in (GT)°, so we have T' = T,
and hence T' = T, by maximality.

Let n:G— G/G, be the canonical projection. Its restriction to T is an
isomorphism of T onto G/G,. In particular L(G/G,) consists of semi-simple
elements, and 4.4 shows that if Xeg is nilpotent, then Xekerdn = L(G,).
Since L(G,) consists of nilpotent elements (4.8), this ends the proof of (4).

(5) Let S be a subgroup of G consisting of semi-simple elements, and let
n:G— G/G, be the canonical projection. Then the restriction of = to S is
injective, hence S is commutative since G/G, is. Moreover, if ne G normalizes
S, then 7(n) centralizes n(S), and therefore (since 7| is injective) n centralizes
S. This proves that Z(S)=.A4"4S). The group S=(S) is a closed
diagonalizable subgroup of G, and we have Z(S) = 2 4(S), which reduces
us to the case where S is closed for the proof of the remaining assertions.
Let T be a maximal torus of G.

Case 1. S is central. Then G° = G is connected. If seS, some conjugate of
s lies in T by (%) in (4), so seT. Thus Sc T.

Case 2. S is not central. Choose a non central seS. Replacing T by a
conjugate we can assume s€ T. Then T < G* = T-G:. By 9.3, G} is connected.
Therefore G* is connected, has smaller dimension than G, and contains S.
By induction S is conjugate in G* to a subgroup of T, and (G°)°=G? is
connected. This completes the proof of (5).

(6) By (5), any semisimple element s of G is conjugate to at least one
element teT. Let n:G— G’ = G/%,G be the canonical projection. It is an
isomorphism of T'onto G'. This implies that n(s) = n(t) and the uniqueness of .

10.7 Curves with a connected group of automorphisms. The structure theorem
10.6 has one glaring deficiency; it gives no accounting of groups of dimension
one. These appear as the “composition factors” of G, in part (2) of the
theorem.

In fact the only one dimensional connected groups are GL, and G,. This
will be shown in 10.9. We shall deduce this fact from the following proposition,
which, in turn, is a corollary of the classification of one-dimensional groups.

The proof we give of the proposition uses facts about Jacobians of curves,
which are in the spirit of, but outside the framework of, these notes.

Proposition. Let X be a complete, smooth, irreducible algebraic curve. Suppose
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that a connected group G of dimension = 1 operates non trivially on X with a
fixed point. Then X is isomorphic to the projective line, P,.

Proof. We must show that the genus, gen X of X, is zero. Let f:X —J be
the canonical morphism of X into its Jacobian J. (See Lang, Abelian varieties,
Ch. II, §2.) J is an abelian variety (= complete connected algebraic group)
whose dimension equals gen X, and f(X) generates J. Moreover (loc. cit.,
Theorem 9) any rational map h: X — A, where 4 is an abelian variety, induces
a unique homomorphism o:J — A such that h(x) = a(f(x)) + a for some acA
independent of xeX. (We are, of course, writing + for the group operation
in the abelian varieties here.) In fact this “universal mapping property” clearly
determines f up to translation by an element of J. We shall normalize f so
that f(p) = 0, where pe X is some fixed point of G (which is assumed to exist).

If geG the universal mapping property implies that feg:X —J is of the
forma,e f + a, for some group morphism a,:J — J and some a,€J. Evaluating
at p = g(p) shows that a, =0, so feg=a,° f. We are now tempted to assert
that we have an action G x J — J, giving a connected family of automorphisms
of J, and to invoke the rigidity of abelian varieties (cf. 8.10).

Rather than justify that assertion we argue directly: If aeJ define ,:G—>J
by B.(g) = a,(a). In case a= f(x) for some xeX this is the composite map

GLX -—f—»J, where f,(g) = g(x), and this is a morphism. In general we can
write a =X f(x;) for suitable x;e X so f,=ZXf, ., is again a morphism.

Let ,J = ker(a—ma) in J, where m is a positive integer. Then ,J is finite
(loc. cit.), and it is clearly stable under each «,. Hence f,(G) is finite for each
ae,J. Since G is connected and f,(¢) = a, it follows that 8,(G) = {a}.

Thus, for geG, a,:J — J fixes all elements of finite order. But the latter are
dense in J (loc. c1t) soa, =1,

We conclude that f: X —»J is a G-equivariant map w1th G operating trivially
on the right. Hence f collapses each G-orbit in X to a point. Since G acts
non trivially on the irreducible curve X some G-orbit must contain an open
dense set. The complement of the latter is finite, so X has only finitely many
G-orbits. It follows that J is generated by a finite set f(X). This is clearly
impossible unless J = {0}, i.e. unless dimJ(=gen X)=0. Q.E.D.

10.8 The automorphism group of P, is PGL,. We shall write
G=PGL, =GL,/S,

where
S =%(GL,)= {al|lacK*}.

is the group of scalar 2 x 2 matrices. The projection GL, — G will be denoted

(o
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In order to avoid confusion the projection

gl »g=pgl, =gl,/K I

(a0 el

Consider the torus T =D,/S in G. We have the isomorphism

will be denoted

1

Let ae X(T) be such that (a,1) = 1, i.e. such that (¢*)* = a for aeGL,. Next
define

ALGL,»T, a—a*= [g 0].

Upt_.G,—G

1 b 10
ua(b)=[0 1] and u_,(c)=|:c 1].

The images of u, and u_, will be denoted U, and U _,, respectively. A direct
calculation shows that

by

tu(b)t ~* = u,(t°b),
and
(1 tu_ () =u_(t™%)
for teT and b, ceG,. The resulting commutator formulas,
(t, uy(b) = u((t* — 1)b),
and
(t,u_ () =u_((t™" = D)e),

show that the derived group 9G contains U, and U_,. The subgroup
generated by U, and U _, clearly has dimension > 2. Since dim G =3 and

G is connected we conclude:
(2) G=9G, and G is generated by U, and U _,. The Lie algebras L(T),
L(U,), and L(U _,) are spanned by

3) H=,:l 0], X,,=[0 1], and X_,,=[0 0],
0 04, 0 0], 1 0],

respectively. Moreover it follows from (1) that X, and X _, are semi-invariants
of weights a and — a, respectively, for T under Adg. Therefore

g=LM®LU)YS®LWU_,)
=¢"®g.®g-,



I11.10 Connected Solvable Groups 143

is the root space decomposition of g relative to the torus T, and
O(T,G)={a, —at}.
Write the elements of K? as column vectors, and denote the projection

K*— {0} >P,

G-l

The action (by left multiplication) of GL, on K? induces an action of GL,
on P, so that the above projection is equivariant. Since S operates trivially
on P, we deduce an action of G on P, by

B W e

Embed K into P; by the identification
N
x|,
x

P, =Ku{cw}.

by

and write o0 = [?} so that

We next introduce the open set

V ={(x, y,2)e(P,)?|x, y, and z are distinct}
and define
¢:G—-V by olg)=(g(0), g(1), g(c0)).

Thus ¢ is just the G-orbit map for (0, 1, 0)eV.

Contention. ¢ is an isomorphism of varieties. In particular G operates simply
transitively on triples of distinct points in P,.

If
_[a b]
9= c d
then
alla+b b
wo=(2 [ 2])
Thus

g(0) = c0<=b =0,
@ g0)=0<>c=0, and
gl)=1<a+b=c+d.
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0 C
Therefore ¢(g) = (0, 1, 00) implies g = [; ] =e, SO ¢ is injective.
a

To see that ¢ is surjective suppose we are given (x, y,z)eV. Since GL, is
clearly doubly transitive on lines in K? we can first transform (x, y, z) into

an element of the form (0,[:],00). The fact that [2] is distinct from 0

and oo means that a # 0 # d. Therefore, we can transform { 0, ::I, oo) to

-1
(O,I,w)with[a OJ .
0 d

Finally we must show that (dg),:g = T(V) ., ., is Surjective. We have:
u_y(cX0,1,00) =(c, 1 +¢, o).

Since du_,(1)= X _, this yields (do)(X _,) = (1, 1,0). By symmetry, we have
(d)(X,) =(0,1,1). Next we have

al(oy 1, w) = (05 a— l, (X)).

Since dA(1) = H, it follows that (d¢).(H)= (0, — 1,0). Q.E.D.

Remark. If we worked with SL, in place of GL, it would still be true that
SL, - PGL, is surjective. However, it is not separable in characteristic two.
We would have to replace T by the image of the group T” of matrices of the
. . . 1 0 1 0
form diag(a,a™") in SL,. But L(T") is spanned by [0 1], and [0 ]]
- - L
vanishes in characteristic two.

Proposition. Let H be a k-group acting k-morphically on P,. Then this action
is induced by a unique k-morphism a:H - PGL,.

Proof. Define B:H -V by B(h) = (h(0), h(1), h(c0)), and let « = ¢~ !B, Then
a(h)(i) = h(i), i =0, 1, 0, and a is clearly a k-morphism. To show, finally, that
o(h) and h yield the same automorphism of P, it suffices to show that an
automorphism g of P, fixing 0,1, and oo is the identity.

But K(P,)= K(x) where x is the unique rational function on P, with a
zero of order one at 0, a pole of order one at oo, and no other singularities,
and x(1) = 1. Since x°g must have the same properties we see that g induces
the identity on K(P,); hence g is the identity.

10.9 Theorem. Let G be a connected affine group of dimension one. Then G
is isomorphic to either GL, or to G,.

Proof. G is a dense open set in a unique complete smooth curve G (see
AG.18.5(d)). It follows from (AG. 18.5(f)) that the action of G on itself by
translation extends uniquely to an action of G on G. Since G — G is a finite
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set stable under the connected group G it follows that G fixes the points of
G — G. Since G is affine the number, m, of such points is > 0. Hence it follows
from 10.7 that G = P,. Choose an identification of G with P, so that co¢G.
Then we obtain from 10.8 an embedding of G into PGL, so that G lies in

the isotropy group {[a 3]} of oo (see 10.8 (4)). It further follows from
c

10.8 that G fixes at most two points of Py, i.e. that m £ 2.
Case 1. m = 2. Choose projective coordinates so that the fixed point other

than co is 0. Then G lies in the torus T = GL, of elements {[a 0]} For
dimension reasons G =T. 0 4

Case 2. m=1. G acts on the affine line K =P, — {co} by transformations
of the form x+—ax + c. These form a solvable group, so G is solvable. Since
2G is connected and dim 92G <dim G =1 we conclude that G is abelian.
Write G =G, x G, (see 4.7). For dimension reasons again, we must have
G=G,or G=G, If G=G,, then (see 8.4 and 8.5) G is a one dimensional
torus, ie. G=GL,. Let now G=G,. If g(x)=a,x+c, then graq, is a
morphism G — GL,. It must be trivial because G is unipotent. Hence gr— ¢,
gives an embedding G — G,, and dimension count again shows that this must
be an isomorphism.

Remark. In case G = GL,, it follows ffom 8.11 that such an isomorphism
exists over k. Suppose, on the other hand, that G =~ G,. Let G be the complete
non-singular curve defined over k containing G. The argument above shows
that G — G consists of a single point, P, so P must be rational over L = k”

Itis known then (see Serre, Corps locaux, Ch. X, §6, Ex. 1) that G is isomorphic
over L to P, and we can choose this isomorphism to carry P to o in P;.
This done, the isomorphism of G with G, obtained above can be seen to be
rational over L.

10.10 Group actions on G,. The points of G, and of its Lie algebra g, both
coincide with K. An endomorphism of G, as a curve is given by an
endomorphism of its affine algebra, K[T], and the latter is defined by a
polynomial f(T). This will be a group morphism if and only if f is additive:
f(T + H)= f(T) + f(H). Let p =char(K).

(i) If p=0 then f(T)=cT for some cekK.
(i) If p> 0 then f(T) = Z;c,T"".

These follow by applying d/dT to the addition formula to conclude that
f'(T) is a constant. Subtracting the linear term from f(T) one obtains, in
case (ii), a polynomial g(T?) and g is additive of lower degree, so induction
applies to establish (ii).

In either case it is easily seen that an automorphism of G, corresponds
to a polynomial f(T) = cT (ceK*), and that we thus obtain an isomorphism
of GL, with the automorphism group of G,.
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If we view G, as P, — {0} and note that group automorphisms fix 0eG,,
then we can also obtain the automorphism group as the intersection in PGL,
of the isotropy groups of 0 and oo. This intersection is the torus

T= {[g (1)]} introduced in 10.8.

Let G be any group acting as automorphisms on G,. Then it follows from
the above remarks that there is a character a: G — GL, through which G acts:

g(x)=g"x (geG,xeG,).

For such an action the induced action on g, is clearly given by the same
character:

gX)=g%X, (geG,Xeg,).

Bibliographical Note

10.4 and 10.6 are proved in [1]. The original Lie theorem states that a
connected linear solvable Lie group over the complex numbers can be put
in triangular form. The generalization to algebraic groups in 10.5 is due to
Kolchin [19]. The proof given here is taken from [1].

It seems somewhat surprising that the proof G = GL,, G, if G is connected,
one-dimensional (10.9) is not more elementary, or at any rate more
self-contained. The result has been known for quite a while, of course.
However, the author would be hard put to refer to a complete proof
antedating the one given by Grothendieck in [13, Exp. 7]. The latter proof
is quite different from the one described above, and is much more algebraic.
It makes use of some results of §§10, 11, and will be sketched in 11.6. More
elementary proofs may be found in [32:2.6] or [17:20].



Chapter IV
Borel Subgroups; Reductive Groups

Throughout this chapter G denotes a connected affine group, and all algebraic
groups are understood to be affine.

§11. Borel Subgroups

11.1 A Borel subgroup of G is one which is maximal among the connected
solvable subgroups. They clearly exist, for dimension reasons.

Theorem. Let B be a Borel subgroup of G. Then all Borel subgroups are
conjugate to B, and G/B is a projective variety.

Proof. Let R be a Borel subgroup of maximal dimension. Choose a faithful
representation n:G — GL(V) with a line ¥, c V such that R is the stability
group of V, in G and L(R) is the stability Lie algebra of V, in L(G). (See
Theorem 5.1.) Applying 10.5 to the induced representation of R on V/V,, we
obtain a flag F =(V,,V,,...,V,) in V stabilized by R. Let #(V) denote the
flag variety of V, on which G operates via n. Then the canonical map from
G/R to the orbit, G(F), of F in #(V) is an isomorphism of varieties. This
follows because the map from G/R to the orbit of V; in the projective space
P(V) is already an isomorphism of varieties (See Theorem 6.8 and proof.)

Suppose F'e #(V) has stability group R’ in G. Since R’ leaves a flag
invariant, it is solvable. The maximality of dim R therefore implies
dim R’ £ dim R, and hence dim G/R £ dim G/R’. Thus G(F) is a G-orbit in
F(V) of minimal dimension, so the closed orbit lemma (1.8) implies that G(F)
is closed. This proves that G/R is a projective variety.

Letting B operate on G/R, in the natural way, we see, using 10.4, that B
has a fixed point, i.e. that BxRcxR for some xeG. But this means
x"'BxR c R, hence x " !Bx c R. Since B is maximal connected solvable, this
implies x"!Bx = R.

11.2 A parabolic subgroup P of G is a closed subgroup such that G/P is a
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complete variety. Since the homogeneous space G/P is always quasi-projective
(see 6.8), it is complete if and only if it is a projective variety.

Corollary. A closed subgroup P of G is parabolic if and only if it contains a
Borel subgroup.

Proof. If P contains a Borel subgroup B then G/B— G/P is a surjective
morphism from a complete variety, so G/P is complete. Conversely, by 10.4,
a Borel subgroup B has a fixed point in the complete variety G/P, so some
conjugate of B lies in P.

11.3 Corollary. (1) The maximal tori in G coincide with the maximal tori in
the various Borel subgroups of G, and they are all conjugate.

(2) The maximal connected unipotent subgroups of G are each the unipotent
part of a Borel subgroup, and they are all conjugate.

Proof. (1) A maximal torus T is connected and solvable so it lies in some
Borel subgroup B. Evidently it is a maximal torus in B, so 10.6(4) implies
that B = T-B, (semi-direct), and that all maximal tori of B are conjugate to
T. Since any two Borel subgroups are conjugate, part (1) follows.

(2) If U is connected and unipotent then U is nilpotent (see 4.8), so U lies
in a Borel subgroup B. According to 10.6(2), B, is a connected subgroup of
B, evidently containing U, and hence U = B, if U is maximal. The conjugacy
of the B,’s follows immediately from that of the B’s.

11.4 Corollary. Let B be a Borel subgroup of G. (1) If an automorphism a of
G fixes the elements of B, then a is the identity.
(2) If xeG centralizes B then xe%(G).

Proof. Part (2) follows from (1) with a =Int(x). To prove (1) consider the
morphism f:G— G, {{y) =a(g)g~*. Then f factors through G — G/B, so f(G)
is complete, and affine, hence a point (see 10.1).

11.5 Corollary. Let B be a Borel subgroup of G.

(1) If B=B,, then G is a torus.
(2) If B contains no torus # {e}, then G is unipotent. In either case G = B.
(3) The following conditions are equivalent:

(a) G has a unique maximal torus.

(b) Some maximal torus lies in €(G).

(c) G is nilpotent.

(d) B is nilpotent.

Proof. (1) Using 10.6(4), we can write B= T-B,, with T a maximal torus. If
B = B, then B =T is commutative, and hence, by 11.4, central in G. But then
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G/B is an affine connected group which is also a complete variety, hence =
{e}.

(2) On the other hand, if T={e}, so that B=B, is nilpotent, then
Z5(BY = H # {e}. By 11.4, H is central in G. Since B/H is a unipotent Borel
subgroup in G/H we conclude by induction on dim G that G/H = B/H, i..
that B=G.

(3) (a)=(b). If T is the unique maximal torus, then T is normal in G, and
the rigidity of tori (8.10) implies that T is central.

(b)=>(c). If T is a central maximal torus, then let T be the inverse image
in G of a torus in G/T. Since T and T'/T both consist of semi-simple elements,
so also does T'. Hence it follows from part (1) above that T" is a torus. (We
have used the fact that T' is connected, which follows because T and T'/T
are connected.) Now by maximality of T, we must have T" = T. In conclusion,
this argument shows that G/T contains no non-trivial tori. Hence part (2)
above implies that G/T is unipotent, and hence also nilpotent. Since T is
central in G, the group G is also nilpotent.

(c)=>(d) is obvious.

(d)=>(a). If B is nilpotent then 10.6(3) implies that B=T x B, with T = B,,
a maximal torus in G. Now T < €(B), and 4(B) = 4(G) by 11.4. Hence T
has a unique conjugate (itself), and (a) follows from 11.3(1).

Corollary. Suppose G contains a normal torus T such that G/T is also a torus.
Then G is a torus.

Proof. The hypotheses clearly imply that G = G, so part (1) above implies
G is a torus.

11.6 Corollary. If dim G <2, then G is solvable.

Proof. Write B=T"B, as above. If B# G then dim B< 1, so we must have
B=T or B=B,. But 11.5 then implics that G = B; contradiction.

Remark. We now sketch the proof of 10.9 given in [13, Exp. 7], alluded to
at the end of §10. Let G be one-dimensional. The Corollary above implies
that G is solvable. Then dim(G, G) < dim G, hence G is commutative. By 10.6(4),
we have G = T-G, where T is a maximal torus. Dimension considerations
then show that either G = T, in which case G = GL,, or G = G,. It follows
from the proof of 10.6(2) (using an embedding of G in the unipotent part of
some T,) that G admits a non-trivial morphism n:G— G,. Since G, is
connected of dimension one it follows that = is an isogeny, i.e. that @ is
surjective and that N = ker(=) is finite.

Let p be the characteristic exponent of K. Then every element of the
unipotent group G has order a power of p. It follows that # is an isomorphism
if p=1 (ie. if char(K)=0). If p> 1 then N is a finite group of order p” for
some n 2 0. One proves that G =~ G, by induction on n.
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Ifn =0, i.c. il n is bijective, then, by (AG.18.2), K(G) is a purely inseparable
extension of K(G,) = K(x). Taking a high pth power one concludes that K(G)
is isomorphic to a subfield of K(x), so Liiroth’s theorem (see e.g. van der
Waerden, Algebra, vol. 1) implies that K(G) is purely transcendental. Thus
G is, as a variety, isomorphic to an open subset of the projective line, and
one concludes the proof by embedding G into PGL, as in the proof of
Theorem 10.9.

If n > 0 we can factor out a subgroup of index p in N and apply induction
to reduce to the case n=1. We can further use the case n=0 to conclude
that G/N =~ G, and so arrange that = is separable. In this case K(G) is a
Galois extension of degree p of K(x), to which one can apply Artin-Schreier
theory. (See [13, Exp. 7], Lemma 3, for details.)

and C = N 4(CY.

The conjugacy theorem 11.3 shows that T is the unique maximal torus of
C, therefore by 11.5, C is nilpotent. Moreover, T is normal in A4 ¢4(C), and
consequently by 8.10, T is centralized by A4 ;(C)".

11.8 Proposition. Let X € L(G). Then X is semi-simple if and only if it is tangent
to a torus in G.

A torus is isomorphic to a diagonal group, hence its Lie algebra consists
of semi-simple elements, which proves the “if” part of the proposition.

Assume now X to be semi-simple. By 9.1, the Lie algebra § of H = Z'4(X)
is equal to 34(X); in particular, it contains X. Let T be a maximal torus of
H and C = Z 4(T)°. Then L(C) = 3(T) by (9.2, Cor.), hence XeL(C). By 11.7,
C is nilpotent, hence C=T x C,, in view of 10.6. Since L(C,) consists of
nilpotent elements, it follows that X eL(T).

11.9 Lemma. Let H be a closed subgroup of G, and put
X=CH={)gHg™ "

geG
(1) If G/H is complete, then X is closed.
(2) Assume there is an he H having only finitely many fixed points in G/H,
i.e. such that {xeG|hexHx ™'} constitutes a finite number of cosets of H. Then
X contains a dense open set in G.

Proof. Consider the morphisms
GxG—5GxG—L(G/H)xG

where a(x,y)=(x,xyx"!) and f=mnx lg, with n:G— G/H the quotient
morphism. Put M = f(«(G x H)) = {(n(x),z)|xeG,x " 'zxeH}.

(i) M is closed. If x " 'zxeH, then (xh)~*z(xh)e H for all he H, so it follows
that 87 !(M) = «(G x H). Since « is an isomorphism of varieties, and since
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B:G x G—(G x G)/(H x {e}) is a quotient morphism, and hence open, we
conclude that M is closed because f~ (M) is closed.

(i) X =prg(M), so X is closed if G/H is complete. For prg(M)=
{yIx~'yxeH for some xeG} = X.

(iii) dim M =dim G at each point of M.

The fibre over m(x) of the surjective morphism prgy:M—G/H is
isomorphic to xHx™!, so the dimension of each fibre is dim H. Hence
dim M =dim G/H + dim H = dim G at each point.

The fibre of prg:M — G over y is

{n(x)|x™'yxeH} = {n(x)|yexHx "'}
= {n(x)|y-n(x) = n(x)}.

(In the latter, the dot refers to the natural action of G on G/H.) In view of
this, the hypothesis of (2) says simply that the fibre of pr;:M — G over some
heH is finite (and # ¢). Therefore, if N is an irreducible component of M
such that heprg(N), the fibres of prg in N are “generically finite,” i.e. they

are each finite over some dense open set in prg(N) (see (AG.10.1)). Since
dim N =dim G and G is connected it follows that prs;:N— G is dominant.
Thus X, which contains prg(N), contains a dense open set in G.

11.10 Theorem. Let B be a Borel subgroup of G, T a maximal torus of G, and
C=2Z4(T)°. Then the union of the conjugates of B (resp. B,, resp. T, resp. C)
is G (resp. G,, resp. G, resp. contains a dense open set of G).

By 11.7, C is nilpotent. Since T is a maximal torus, it follows then from
10.6 that C=T x C,. By 8.18, there exists te T such that Z(t)° = Z(T)’ = C.
Let geG be such that gtg~'eC. Then gtg~'eT, and Z(gtg~") > Z(T). For
dimension reasons, we have then Z(gtg~!)°=C, hence ge#(C). Since
A(C)’ =C, by 11.7, it follows that the set of conjugates of t contained in C
is finite. This is condition (2) of 11.9, taking C to be the subgroup H, hence
SC contains a dense open subset of G. Since C is nilpotent, it is contained
in some Borel subgroup B’ of G. Then ®B’ contains a dense open set. But
G/B' is complete (11.1), hence (11.9) °B’ is closed. Consequently G = °B’. By
the conjugacy of Borel subgroups, we have also G = 9B. The remaining part
of the theorem then follows from 10.6.

1111 Corollary. 4(G) is the center of each Borel subgroup. €(G), is the inter-
section of all maximal tori in G.

Proof. Let ge%(G) and let B be a Borel subgroup. Some conjugate of g lies
in B, so geB, i.e. 4(G) = €(B). The reverse inclusion follows from 11.4.

If ge%(G), then ge B, as we saw above, and 10.6(5) implies that g belongs
to a maximal torus T in B. Now part (1) of 11.3 implies g belongs to every
maximal torus. Thus %(G), < H, the intersection of all maximal tori. Since
H is a closed subgroup of a torus it is a diagonalizable group, and it is clearly
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normal in G. Hence by rigidity (8.10), H is central in G. With the inclusion
proved above this shows that H = %(G),, as claimed.

11.12 Corollary. Let S be a subtorus of G and aeZ 4(S). Then {a,}US is
contained in a torus of G. The group % 4(S) is connected. For any geG, the
element g belongs to % ¢(g,)°.

Proof. We show first that {a} US is contained in a Borel subgroup of G. Let
B such a group and F, the fixed point set of a in G/B, under the natural
action. By 11.10, a is contained in a conjugate of B, hence F is not empty.
Since S centralizes a, it leaves F stable. By 10.4, S has a fixed point in F,
say x. The stability group B’ of x is then a Borel subgroup of G containing
ajus.

{ }Fhis reduces the proof of the first assertion to the case where G is solvable,
in which case it follows from 10.6(5). By 10.6(5), also, the group Zg.(S) is
connected, whence ae Z ;(S)’, and the second assertion. Let now geG. By
11.10, g belongs to a Borel subgroup B of G. Then ge % g(g,). But the latter
group is connected (10.6)(S), hence ge % ;(yg,)°.

11.13 Definition. A Cartan subgroup of G is the centralizer of a maximal torus.

The Cartan subgroups of G are connected by 11.12, nilpotent by 11.7, and
conjugate to each other by 11.3. In view of 10.6, the map T—Z;(T) is a
bijection of the set of maximal tori onto the set of Cartan subgroups, and
Zo(T)=T x Z4(T),. Finally, by 11.10, thc union ¢C of thc conjugates of a
Cartan subgroup contains a densc open set of G.

11.14 Proposition (1) Let a:G— G’ be a surjective morphism of algebraic
groups, and let B=T"B, be a Borel subgroup of G, with T a maximal torus.
Then a(B) = a(T)-a(B,) is a Borel subgroup of G', and every such subgroup
is obtained in this way. Moreover a(T) is a maximal torus in G' and a(B,) =
o(B),.

(2) Let H be a connected subgroup of G and let B, be a Borel subgroup of
H. Then B,=(HnNB)® for some Borel subgroup B of G. If H is normal, the
Borel subgroups of H are the groups (B H)®, where B ranges over all Borel
subgroups of G.

The analogous assertions hold for maximal tori and for maximal connected
unipotent subgroups

Proof. The composite G— G'— G'/a(B) induces a surjective morphism
G/B — G'/a(B), so the latter is complete, i.e. a(B) is parabolic. Therefore a(B)
contains a Borel subgroup (11.2). But «(B) is connected and solvable, so «(B)
is itself a Borel subgroup. The semi-direct product decomposition a(B)=
o(T)-a(B,) and the fact that a(B,) = a(B), follow from the conservation of
Jordan decomposition. In particular «(T) is a maximal torus in «(B), and
hence also in G". The conjugacy theorem in G’ implies that all Borel subgroups,
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all maximal tori, and all maximal connected unipotent subgroups of G’ are
obtained in this way.

(2) Extend the connected solvable group B, to a Borel subgroup B of G.
Then B, < (HnB)’, and the latter is a connected solvable subgroup of H.
Hence it coincides with B,. The argument for tori and connected unipotent
groups is similar.

Corollary 1. Let S be a torus and f:G— S a surjective morphism. Then any

maximal torus T of G contains a torus S’ such that :S' — S is an isogeny.
By the proposition, f:T—S is surjective. By 8.5, Cor., the identity

component of ker f|; is a direct factor in T, whence the corollary.

Corollary 2. Let G be connected, f:G — G’ a surjective morphism and S a torus
in G. Then f(Z6(S)) = Z ¢.(f(3)).

Let seS act on G by Int s and on G’ by Int f(s). Then [ is S-equivariant
and 9.6 shows that f(Z;(S)°) = Z4.(f(S))’. Since Z4(S) and Z;.(f(S)) are
connected by the theorem, the corollary follows.

11.15 Proposition. Suppose G acts transitively on a variety D so that the
isotropy groups of the points in D are Borel subgroups of G. Let T be a torus
in G. Then GT = Z 4(T) stabilizes and acts transitively on each irreducible
component of DT. If B is a Borel subgroup of G normalized by T, then BT is
a Borel subgroup of G* and every Borel subgroup of G” is of this form.

Proof. Clearly GT stabilizes D7, and hence also each irreducible component
of DT since G is connected (11.12). Let X be an irreducible component of
DT and let B,e 4% be the stability group of some x,& X. The orbit map n:G — D,
n{g) = gx,, induces a bijective morphism G/B,— D, so D is complete.

We must show that the inclusion G'x, < X is an equality. Since X is
connected and since = has connected fibres (= B,) it follows that Y =z~ !(X)
is connected If yeY then n(y)eDT so y"'Ty<B,. Let a:Y x T— B,/(B,),
be the composite of (y,t)—y 'ty with the projection B,— B,/(B,),. The
rigidity of tori (8.10) implies now that a(y, t) is independent of y. Since T < B,
we have eeY and hence for yeY we have y~!ty=t mod(B,), for all teT.
Thus y~ 'Tyc< T-(B,),. The latter is connected so the conjugacy of its
maximal tori implies that y~'Ty =g~ !Tg for some g = the T-(B,),, and we
can replace g by b. If se T then, modulo (B,),, we have y~'sy=s=b""sb.
But y~'Ty— B,/(B,), is injective, so the congruence implies y sy = b~ 'sb,
ie. yp~'eG". Thus n(y)=yx,~ yb~ 'x,eG"x, (because beB,~ G, ), and
G”x, contains n(Y) = X, as claimed. Since X is complete (being a closed sct
in D), it follows from (AG.18.3) that GT/BT is complete, for we have a bijective
morphism G”/BT — X. But BT is connected and solvable, so BT is a Borel
subgroup of GT. It follows then from 11.14 that every Borel subgroup of G
is so obtained.
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Corollary. If GT is solvable, then T normalizes only finitely many Borel sub-
groups of G, and each of those contains GT. This occurs, for instance, if T is
a maximal torus.

Proof. Let Y = G/B, for some Borel subgroup B of G. The orbits of GT on
the complete variety YT are the irreducible components of YT, by the
proposition. But GT is connected (11.12). If it is solvable, then the fixed point
theorem (10.14) implies that G” has a fixed point on each irreducible
component of Y7, so each of the latter reduces to a point, and Y7 is finite.
Now x+G, is a bijection of YT on the set of Borel subgroups normalized
by T, and each such G, contains G”. The last assertion follows from 11.7.

11.16. Theorem (C. Chevalley). Every parabolic subgroup P of G is equal to
its normalizer in G and is connected.

Proof. We first reduce the proof of the case of a Borel subgroup. Assume
then that every Borel subgroup is equal to its normalizer. Let ne A (P) and
B be a Borel subgroup of P. Then "B is also one, hence there exists by 11.1
an element p of P such that "B = B. But B is also a Borel subgroup of G,
since P is parabolic, hence, by our assumption pneB, and therefore neP.
The identity component P° of P is also a parabolic subgroup, and P belongs
to its normalizer, hence P° = P and P is connected.

There remains to show that every Borel subgroup B of G is equal to its
normalizer. Note that if dim £ 2, then G is solvable (11.6) and there is nothing
to prove. Arguing by induction on dim G we may therefore assume our
assertion to be true for connected groups of dimension < dim G.

Let N = 4(B). Let T be a maximal torus of B, hence of G. We claim
first that N <« B-(A#¢(T)n N). Let neN. Then "T is a maximal torus of B,
hence there exists be B such that bne A (T) and our assertion follows. It
suffices therefore to show that if ne N~ A 4(T), then neB. Let S be the fixed
point set of Intn in T. We distinguish three cases:

(i) S° < %(G) and is of dimension = 1. We note first that S°, being central,
belongs to B (11.11). Let G’ = G/S° and =:G — G’ be the natural projection.
Then n(n)e A ¢(n(B°)). Since n(B) is a Borel subgroup of G’ (11.14), we have
n(n)en(B) by the induction assumption, hence nen ™ (n(B)). But n~ }(n(B)) =
B since $° < B.

(i) S°is not central, of dimension = 1. Then Z(S°), is # G and is connected
by 11.12. By construction, ne %'(S°), hence n normalizes Z(5°) n B, which, by
11.15, is a Borel subgroup of Z(S). Our induction assumption then implies
that ne 2'(S°)n B, whence neB.

(iii) S is finite. This is the essential case. Let ¢ be the map t+sn-t-n~1-t7!,
It is @ morphism of T into itself, whose kernel is S. Since S is finite, ¢ is
surjective. Therefore every element of T is a commutator in N, and T belongs
to the derived group 9N of N. By 5.1, we can find a morphism ¢:G — GL(E)
such that E contains a line D whose full stability group in G is N. Then D
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is the space of a one dimensional representation of N, given by a rational
character y. The image of y is contained in GL,, which is commutative and
consists of semisimple elements. Therefore ker y contains B, and 2N, hence
also T. As a consequence, B c ker y. For deD, the orbit map gr>g-d defines a
morphism of the irreducible projective variety G/B into affine space, hence
the image is reduced to a point and G = B. A fortiori N = B.

11.17 Corollary. Let B be a Borel subgroup of G.

(i) Every parabolic subgroup is conjugate to one and only one parabolic sub-
group containing B.
(i) B is maximal among the solvable (not necessarily closed or connected)
subgroups of G.
(ili) Let P,Q,R be parabolic subgroups and assume that °Q = R for some
g€G. If QR contains P, then Q = R. If P> Q, R then geP.

Proof. (i) In view of the conjugacy of Borel subgroups 11.1 and of 11.2, every
parabolic subgroup is conjugate to at least one containing B. For the
uniqueness, we have to show that if P,Q > B and P =*Q for some geG, then
P =(Q. By 11.14, there exists peP, such that B = B, whence pgeB by the
theorem and geP, P = Q.

(i) Suppose B < H = G, with H a solvable subgroup. Then H is solvable
(2.4), so we can assume that H is closed. It then follows that B = H°, hence
Hc XV gB)=Band H=B.

(iii) P contains a Borel subgroup, hence the first assertion follows from
(1). Assume now that P> Q,R. Then 9P and P contain R, hence are equal,
and ge A P, hence geP by the theorem.

Caution. A maximal solvable subgroup need not be a Borel subgroup. For
instance, if G =SO0(n), (n = 3, p # 2), the group of diagonal matrices in G is
isomorphic to (Z/2Z)"~!, but not contained in any Borel subgroup.

11.18 The “variety” B = %(G) of all Borel subgroup of G. It is first of all a
set on which G operates by conjugation. The conjugacy Theorem 11.1 says
G acts transitively. The stability group of Be# is A (B) which, by the
normalizer Theorem 11.16, is just B.

If H is a subgroup of G then its fixed point set in & is

#" = {Be®B|H c B},

again because of the normalizer theorem.
Fix B,e# and let n:G — G/B, be the quotient morphism. If x = n(g) then
the stability group of x is

G,={h|hgB,~gB,} = {hlg”'hgeB,} =*B,cA.
Thus we can define

?:G/B,—~B,p(x) =G,
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Since ¢(n(g)) =?B, it follows from the conjugacy theorem that ¢ is surjective.
Moreover ¢(n(g)) = @(n(h))<>*B, ~"B,<>g " *he AV ;(B,) = B, (normalizer
theorem)<>n(g) = n(h). Thus ¢ is also injective. With the aid of the bijection
@ one can therefore give 4 the variety structure of G/B,. Moreover the
conjugacy theorem implies that this structure does not depend on the choice
of B,. This follows from the fact that ¢ is G-equivariant.

For if g,heG we have ¢(h-n(g)) = ¢(n(hg)) = "B, ~"(B,) = "¢(n(g)). A
further consequence of this is that: If H is a subgroup of G then ¢ induces a
bijection

(G/B,)" — 28",

Thus the fixed points of H in G/B, correspond bijectively to the set of Borel
subgroups containing H.

11.19 Simple transitivity of the Weyl group. If T is a torus in G then
W=W(T,G)=NgT)Z(T),

is called the Weyl group of G relative to T. The Weyl groups of maximal
tori are isomorphic, by virtue of the conjugacy of maximal tori, and they
are called, simply, “Weyl groups of G.”

We know from the rigidity of tori that Z';(T) = A 4(T), so W is a finite
group.

Proposition. Assume T is a maximal torus in G.

(@) A Borel subgroup containing T also contains Z ¢(T).

(b) Via conjugation by N G(T), the Weyl group W acts simply transitively
on the set BT of Borel subgroups containing T. In particular
card #T = [W:1], is finite.

(c) The group of inner automorphisms of G is transitive on the pairs (B, T)
consisting of a Borel subgroup and a maximal torus T of B.

Proof. (a) follows from (11.15) Corollary.

(b) A 4(T) operates by conjugation on %7, and part (a) implies that GT
operates trivially; therefore W operates. Suppose B, B'e#”. We can write
B =B for some geG. Then T and T are maximal tori in B, so T ="T for
some beB. Thus g = bn~ ! withn =g~ 'be N/ 4(T). Now B’ =¢"'B="""B="B.
This proves that 4 (T) (and hence W) acts transitively on %7,

Suppose now that ne A/';(T) and "B = B, i.e. ne A »(T). Simple transitivity
of W then requires that we y&hat neGT. Since neB this follows from
10.6(5).

(c) follows from (b) and the conjugacy of maximal tori.

Remark. We shall see in §13 that the Borel subgroups containing T gene-
rate G.
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11.20 Proposition. Let o:G — G’ be a surjective morphism of algebraic groups,
and let T be a maximal torus in G. Then T' = a(T) is a maximal torus in G',
and o induces surjective maps

1 BT>ABT, (B =B,
@ W(T, G)— W(T", G).
Ifthe kernel of a lies in every Borel subgroup of G, then (1) and (2) are bijective.

Proof. It follows from 11.14 that T’ is a maximal torus in G’, and that # — &’
is surjective. If B'e#'T" then every Borel subgroup of a~!(B’)° is a Borel
subgroup of G mapping onto B’, and one of them contains the maximal
torus T< o™ }(B’)’. This shows that (1) is surjective.

Choose Be#™ and put B' = a(B). Writing W and W’ for the two Weyl
groups we obtain a commutative square

w—2a Lw

]

T, ®T
* 0] -

where the verticals are the orbit maps w—"B and w'+" B, respectively.
According to 11.19 the latter are bijective, so the surjectivity of (2) follows
from that of (1).

Finally, if ker(a) is contained in every Borel subgroup then #— %’ is
injective, and hence (1) is injective. The argument above with diagram (3)
then shows that (2) is also injective.

11.21 The radicals; reductive and semi-simple groups. The group

ao=(f12)

is called the radical of G. It is evidently a connected solvable normal subgroup
of G, and it contains all other such subgroups. Its unipotent part

(#G), (sometimes denoted £#,G),

is called the unipotent radical of G. It is a connected unipotent normal
subgroup of G, and it contains all other such subgroups. This follows from
the analogous property of 2G.

If n:G—> G’ is a surjective morphism with solvable kernel, then it follows
immediately from the definition and 10.6 that =»(#G)=%G and
n~ Y RG) = RG. We shall see later (14.11) that the first equality is true
without assumption on ker n.



158 Borel Subgroups, Reductive Groups v

One says that G is semi-simple if #G = {e}, and reductive if #,G = {e}.
Evidently G/#G is semi-simple, and G/#,G is reductive, and these are the
largest quotient groups of G with these properties.

By considering the derived series in #G and the descending central series
in #,G we see that: G is semi-simple (resp., reductive) if and only if G has
no connected abelian (resp., unipotent abelian) normal subgroup # {e}.

Proposition. If G is reductive then #G = (€G)°, and this group is a torus.

Proof. Evidently #G > %G. Since G is reductive we have 2G = (ZG),, so
10.6 implies that #G is a torus. By rigidity of tori, a normal torus in a
connected group is central, and so G < (%G)°.

11.22 Decfinition. A Levi subgroup of G is a connected subgroup L such that
G is the semi-dircct product of L and #,G.

A Levi subgroup maps isomorphically onto G/%,G, hence is reductive. It
is maximal among reductive subgroups and provides a cross-section to the
projection mapn:G— G/#,G. In characteristic zero, by a result of G.D.
Mostow, Levi subgroups exist and are conjugate. In positive characteristic
however, they need not exist, nor be conjugate. But they do in parabolic
subgroups of reductive groups, as we shall see, and this is our chief reason
to introduce this terminology.

11.23 Proposition. (i) Let L be a Levi_ subgroup of G. Then the identity
component S of the center of L is a maximal torus of the radical ZG of G and
is equal to LN ZG.

(ii) Assume that any maximal torus of &G is a Cartan subgroup of ZG.
Then G has Levi subgroups. They are the centralizers of the maximal tori of
RG. Any two are conjugate under a unique element of #,G.

(i) Let again n:G— G/#,G be the canonical projection. By definition,
G=L-#,G. On the other hand, S is the radical of L and L= 2L-S (with
PLAS finite). Therefore G=9L-S #,G. Since S normalizes %,G, the
semi-direct product S-2,G is a connected solvable subgroup, invariant under
2L, hence normal in G and consequently contained in #G. Since #,G is
connected, solvable, #G = n~!(n(S)) = S-#%,G and S is a maximal torus of
RG. Let M = Ln4AG. Its identity component belongs to the radical of L,
hence to S, and therefore is equal to S. But in £G, the normalizer of a torus
is connected (10.6), hence M = §S.

(i) Let S be a maximal torus of #G. We have already pointed out that
n(S) is in the center of G/#,G. Therefore n is S-equivariant, S acting by inner
automorphisms on G and trivially on G/%,G. By 9.6, L = % ;(S) maps onto
G/#,G under n. Thus G = L-#,(G). Since Z;(S)NA,G = {1}, it follows also
(see 9.2) that L(Z;(S))n L(#,G) = {0} hence L(G) is direct sum of the Lie
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algebras of L and %, G. Therefore L is a Levi subgroup. The second assertion
follows from (i) and 10.6(4)(5).

Bibliographical Note

Up to 11.14, and except for 11.8, the results of this paragraph are proved in
[1]. The terminology, however, was introduced later in [13], and was kindly
used by the notetaker of the first edition. Most of the other results of this
paragraph are due to Chevalley [13]. The proof of the normalizer theorem
11.16, however, is quite different from that of Chevalley [13: Exp. 9] which
was reproduced in the first edition of this book. I gave it first in a course in
Buenos Aires, in 1973, and it was included in the books of Humphreys and
Springer.

The variety 4 of 11.18 can be introduced in an intrinsic way and be given
a structure of variety defined over k, even if G does not contain any Borel
subgroup defined over k (see [3: §7] or [15: Exp. 12]).

The terminology Levi subgroup was introduced in [4]. It was suggested
by a theorem of E.E. Levi on real Lie algebras, although it represents a minor
deviation from it (besides the fact that it deals with groups rather than Lie
algebras). More precisely, Levi showed that any real Lie algebra § is a semi-
direct sum of its radical and a semi-simple Lie subalgebra, and Malcev
proved that the latter is determined up to conjugacy (see e.g. [8]). Globally,
if the connected real Lie group H is simply connected, then it is the semi-direct
product of its radical ZH by a maximal semisimple closed subgroup S,
determined up to conjugacy. If H is not simply connected however, SNn#ZH
may be non-trivial. In the algebraic group case, it has been found more
convenient to look for complements to the unipotent radical rather than to
the full radical.

§12. Cartan Subgroups; Regular Elements

12.1 Properties of Cartan subgroups. Recall from 11.13 that a Cartan
subgroup of G is the centralizer of a maximal torus in G.

Theorem.

(@) The Cartan subgroups are all conjugate.

(b) Their union contains a dense open set in G. Let C be a Cartan subgroup.

(c) C=AN4(C).

(d) C=C,xC,, where T=C, is a maximal torus in G, the unique one
contained in C, and C=G'.

(¢) C is a connected nilpotent group, and it is maximal among such subgroups
of G.
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Proof. (a) to (d) have already been proved in 11.7, 11.13.

It remains to show that C is maximal connected nilpotent in G. By virtue
of (c) this follows from the following lemma, reminiscent of its analogue for
finite groups.

Lemma. If G is nilpotent and H is a proper closed subgroup then
dim H < dim A (H).

For the application above take H = C and, for G, a connected nilpotent
subgroup properly containing C.

Proof. Let Z=%(G)’. Il Z¢ H then the conclusion follows because
ZH < & g(H). If not we apply induction on dimension to H/Z in G/Z, the
inverse image of whose normalizer is A (H).

12.2 Regular elements; rank. The dimension of a Cartan subgroup of G is
called the rank of G. If geG then g, belongs to a maximal torus T so
dim % (g,) = dim GT = rank G, and we call g regular if the former is an
equality. Thus g is regular if and only if g, is regular.

The set of regular elements of G will be denoted G,.,. An element in
G — G, is called singular.
Lemma. Let T be a maximal torus in G. The following conditions on teT
are equivalent:

(a) t is regular; (b) Z¢(t)° = GT; (c) t* # 1 for all roots ae d(T, G).

Proof. Since GT is a connected subgroup of Z ;(t) the equivalence of (a) and
(b) follows by dimension count. The equivalence of (b) and (c) follows from 9.4.

It follows from (c) that the regular elements in T form a dense open set in
T. In particular regular elements exist.

Proposition. The following conditions on a semi-simple element geG are
equivalent:

(1) g is regular.

(2) Z(g)° is a Cartan subgroup.

(3) Z(g)° is nilpotent.

(4) g belongs to a unique maximal torus.

(5) g belongs to only finitely many maximal tori.

Proof. Let T be a maximal torus containing g. Then (1)<>(2) follows from
(a)<>(b) in the Lemma, and (2)<>(3) is (12.1(e)).

Since a connected nilpotent group contains a unique maximal torus
(10.6(3)), it follows that (3)<>(4). Moreover (4)=(5) is obvious.

Let H = % ;(g)° Condition (5) implies, by virtue of the conjugacy of maximal
tori in H, that H/A y(T) is a finite connected variety, hence a single point.
Thus T is normal in the connected group H. By rigidity (8.10), T is central
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in H,ie. H=G". But G" <« Z4(g)° so G = H. This proves that (5) implies
(2), and hence completes the proof.

12.3 Theorem. (1) An element geG is regular if and only if it belongs to a
unique Cartan subgroup.
(2) G, contains a dense open set in G.

Proof. (1) Suppose g is regular. Then g, belongs to a unique Cartan subgroup
C=Z%s(g,) (see 12.2), and 11.12 implies geC. If C' is a Cartan subgroup
containing g then g,eC; so C' =¥ ;(C;) (see 12.1(d)) is contained in ¥ ;(yg,),
and hence equals C.

Suppose, conversely, that g belongs to a unique Cartan subgroup C. Since
g,€C, = €(C) it follows that H = Z ;4(g,)° contains C, and C is clearly then
a Cartan subgroup of H. The others are conjugate in H to C and hence
contain g,e%(H). Since g lies in a unique one, the same is therefore true of
g.=9g.'g. Now the regularity of g,, and hence of g, follows, in view of 12.2,
from the

Lemma. Suppose a connected group H has a unipotent element h belonging
to a unique Cartan subgroup C. Then H is nilpotent.

Proof. Write C = HT with T a maximal torus, and embed C in a Borel sub-
group B = T-B,. It suffices, by 11.5(3), to show that B is nilpotent. This will
follow by showing that B = C, which, in turn, results if B, C. Let B, =
N,oN,_; > 2Ny={e} be the descending central series of B,. We will
show, by induction on i, that N, C, and we may assume i >0, clearly. If
xeN; then h~!'xhx~'eN,_, because heB,, so xhx 'ehN,_,<C, by
induction. Thus N; = A 4(C), so N;< A ,(C)’ = C because N; is connected.
This completes the proof of the lemma.

(2) Let C=G"=Tx C, be a Cartan subgroup, and let T, = {teT|t* # 1
for all ae (T, G)}. Then Cy= T, x C, is open dense in C, and the Lemma
of 12.2 implies that Cy = C N G,.,. Since every regular element belongs to a
Cartan subgroup it follows that G, is the image of the morphism

fi:GxCy—>G, flg,c)=gcg™".

Since Co <im(f) =G, it follows that C=C, < G,k,. Since G, is stable
under conjugation it therefore contains °C, and 12.1(b) implies the latter is
dense in G. Since G x C, is irreducible it follows that f is dominant. Thus
G,., =im(f) contains a dense open set.

12.4 Proposition. Let a:G — G’ be a surjective morphism of algebraic groups.

(1) The Cartan subgroups of G' are the images of those in G.
(2) a(G,ey) = G,

reg’
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Proof. (1) Let C = G” be a Cartan subgroup of G. By conjugacy, it suffices
to show that «(C) is a Cartan subgroup of G'. But T'=a(T) is a maximal
torus (11.14) and it follows from 9.6 and 11.12 that GT —G'™ is surjective.

(2 If geG,,, and t=g, then a(t)=u(g),, and 9.6 implies that
Z (1)’ — Zg(a(t))° is surjective. Since Zg(t)° is a Cartan subgroup, part (1)
implies that Zg.(a(t))° is one also, so a(g) is regular.

12.5 Proposition. Let H be a not necessarily connected nilpotent algebraic
group, and let T =(H°), be the maximal torus in H° (cf. 10.6(3)). Then T is
central in H.

Proof. Since H® = T'x (H°), (see 10.6(3)) it follows that T is central in H°
and normal in H. Consider the isomorphism,

X,:End,,  (T)>End,, (X ,(T))

of endomorphism rings (see 8.3 and 8.6). If heH write I(h) for Int(h) on T,
and x(h) for X, (I(h)). If we think of T additively, then commutating with h,
ie. t—(h,t)=hth™ 't~ !, is the endomorphism I(h) — id. Since H is nilpotent,
it follows that I(h) — id, and hence x(h) — id, are nilpotent, i.e. x(h) is unipotent.
Thus x(H), being an image of H/H° is a finite unipotent group in
Auty (X (T)) = GL,(Z) for some n20. But in characteristic zero, there
are no non-trivial unipotent elements of finite order (see, e.g., 7.3). Thus
X (H) = {id}, and this implics that H centralizes T.

alg-grp-

12.6 Chevalley’s definition of a Cartan subgroup. It is condition (2) of the
following theorem. Its interest is that it makes sense for an abstract group.

Theorem. The following conditions on a (not necessarily closed) subgroup C
of G are equivalent:

(1) C is a Cartan subgroup.
(2) (a) C is a maximal nilpotent subgroup; and
(b) every subgroup of finite index in C has finite index in its normalizer
(in G).
(3) C is a closed connected nilpotent subgroup, and C = 4" 4(CY’.

Proof. (1)=(2). If H is a nilpotent group containing C = 24(T), we can
assume H to be closed. Since T is a maximal torus in G it is also one in H®,
so 12.5 implies that T = %(H), i.e. H<= 24(T)=C.

If H is a subgroup of finite index in C then H is dense in C, because C is
connected. Hence A ;(H) < A 4(C). But 4 ;(C)Y° = C, by (12.1), hence the
chain H « C « #4(C) shows that H has finite index in .4 G(H).

(1)=>(3) is contained in (12.1).

(3)=(1). Write C=S x C, with S =C,. Embed C in a Borel subgroup B,
and let T be a maximal torus in B containing S; then B=T-B,. Put



Iv.13 The Borel Subgroups Containing a Given Torus 163

M = Z5(S). Then M is connected (11.12) and M = T-M,, clearly. Now S is
central in M, so S-M, is connected nilpotent, and contains C. Since, by
hypothesis, C = A (C)’, it follows from the lemma in 12.1 that S-M, = C.
Since M is connected and solvable we have (M, M) = M, = C, so C is normal
in M. But C= A 4(C)° and M is connected, so C= M. Thus C > T, hence
S=T, and C = Z(T) is a Cartan subgroup of B, therefore also of G.

(2)=(1). Suppose C < G satisfies (a) and (b). Since C is nilpotent whenever
C is, (a) implies that C is closed. Now (b) implies that C° has finite index in
H6(C%, so we have C°= A4 5(C°°. Since C° is nilpotent it follows from
(3)=(1) that C° is a Cartan subgroup of G. But then (1)=>(2) implies C° to
be maximal nilpotent, so C°=C

Bibliographical Note

Chevalley’s “abstract group theoretic” definition of Cartan subgroups is given
in [12b], where Cartan subgroups are studied in characteristic zero. For the
results of this section, see [1].

§13. The Borel Subgroups Containing a Given Torus

If H is a closed connected subgroup of G then the set #" of Borel subgroups
containing H is empty unless H is solvable. When it is not empty we shall write

I(H)y=14H)= < N B) .
Be #H
If T is a maximal torus then, since I(T) is connected solvable, we can write
I(T)=T-I(T),. The main objective of this paragraph is to prove that I(T),
is the unipotent radical #,(G) (see 13.16) of G.

This fact has several important consequences for reductive groups.
Together with some information on groups of “semi-simple rank 17 in 13.14,
it goes a long way toward showing (in 13.18) that @(T, G) is a root system
when G is reductive. The final proof of this fact in 14.8 requires further
information about actions of tori on unipotent groups.

A further consequence is the construction of the “big cell” associated with
a pair of “opposite” Borel subgroups (see 14.1).

13.1 Regular, semi-regular, and singular tori. Let S be a torus in G.

S is regular if S contains a regular element. Thus maximal tori are regular
(see proof of 12.3).

S is semi-regular if #° is finite.

S is singular if #° is infinite.

Let S be regular. Then, if seS is regular, dim Z 4(s) £ dim Z(t) for any
teS. On the other hand (8.18), there exists teS such that 2 ;(t) = 2 ;(S). Since
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the centralizer of S is connected (11.12), it follows that Z ;(S) = £ 4(s)° if and
only if seS is regular. In particular G° is then a Cartan subgroup, and is
nilpotent. The proposition below implies therefore that regular tori are semi-
regular.

If :GL, - G is a one-parameter subgroup then we shall call 1 a regular,
semi-regular, or singular parameter if the torus S=im(1) has the
corresponding property.

In the next proposition § is a torus in G and X = G/B for some Be%. We
know then (see 11.18) that there is a natural bijection between #° and X5.

Proposition. The following conditions are equivalent:

(1) S is semi-regular.

(2) S has an isolated fixed point in X (i.e. X3 has a connected component with
one point).

(3) G is solvable.

4 GScI(S).

Proof. (1)=>(2) is obvious since X is finite and non-empty.

(2)=(3). G® is connected (11.12) and leaves X stable, so it stabilizes the
connected components of X5. If one of these components is reduced to a
point then that point is fixed by G%. The corresponding Borel subgroup
contains G°, so G° is solvable.

(3)=(1) and (4) follows from (11.15, Cor.).

(4)=(3) is clear because I(S) is solvable.

Corollary. Let H be a connected subgroup of G containing S. If S is regular
(resp., semi-regular) in G then it is likewise in H.

Proof. HS is nilpotent (resp., solvable) as soon as the larger group G° is
nilpotent (resp., solvable).

13.2 Singular subtori, and roots. We fix a semi-regular torus T. If ae X(T) is
not zero, then T, = (ker )° is a subtorus of condimension 1.

We shall denote the roots of G relative to T by @ in place of the usual
&(T, G). Thus

g=9"®[] g.
ac®
Consider also the subset ¥ = @(T, G/I(T)). Recall from (8.17) that, if one
writes g, = L(I(T)),®g/, then ¥ is the set of « for which g/ # 0. These are
the “roots of G outside of I(T).” Moreover, since GT < I(T), and hence
g7 < L(I(T)), we have

g=L{I (T))EBUWQ;-
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Proposition. (1) The following conditions on a subtorus S of T are equivalent:
(a) S is singular; (b) S = T, for some ac¥; (c) G°¢ I(T).
(2) If Ae X (T), then Ais semi-reqular if and only if <a,A> #0 for all xe V.

An immediate consequence of (1) is:

Corollary. A4 singular subtorus of T is contained in a singular subtorus of
codimension 1.

Proof. (1) (a)<>(c). If S is semi-regular then G < I(S) (condition (4) of (13.1)
and clearly I(S) = I(T). Conversely if G° < I(T) then, G® is solvable (condition
(3) of (13.1)), so S is semi-regular.

Now the equivalence of (b) and (c) is just the equivalence of 2(a) and 2(c)
is Proposition 9.4. We take I(T) for the H in that proposition, and use the
fact that G5 is connected (11.12).

(2) is just the equivalence of (a) and (b) applied to S =im(4).

13.3 Actions of one-parameter groups at 0 and co. We shall write
P, =GL,u{0}u{cw}, (disjoint union)

with the following convention: The coordinate ring of GL, is K[x,x '], and
P, is covered by the affine lines with coordinate rings K[y] and K[} ']
The points 0 and oo correspond to the loci “y = 0” and “y ~! = 0,” respectively,
in these open sets. The character y is the identity map of GL, = K*.

Suppose f:GL, — Y is a morphism into a complete variety. Then it follows
from AG.18.5(f) that f extends uniquely to a morphism f:P, — Y. Thus we
may speak of f(0) and f(o0).

Now suppose we have a linear representation of G on a vector space V,
and let A:GL, — T be a one-parameter group in a torus T in G. Then G,
and hence GL,, operates on the projective space P(V). Il xeP(V) then
f:GL,; - P(V), f(t) = A(t)x, extends as above to P,. In place of f(0) and f(c0),
in this case, we shall write

2(0)x and A(c0)x.

To determine these points, choose a basis ¢,,...,e, of ¥ such that e; is an
eigenvector, say with character «;, for T; let {a;,A> =m; (see 8.6). Then if
v=7 a;e;eV and if te GL, we have

M=y a;t™e.

Assume v #0, let x =[v] and I, = {i|a; #0}. Let J,, be the set of iel, such
that m; takes the minimal value, m = min my(iel). Similarly let J,; be the set
of iel, such that m; takes the maximum value M = maxm;(iel,). If [v]eP(V)
denotes the image of v under the projection n: ¥ — {0} — P(V) then we have,
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for any teGL,, [v] = [t~™v] = [t~ Mv]. Define morphisms
gm'GL, U{0} =V — (0}

by
gm(t) = Z aitmi - meb

gm:GL,u{0} =V —{0}
by

gu(t)= Z at™ Me,.
iel
Since m;— M <0< m;—m for all iel, both formulas make sense (at 0 and
0, resp.) and they give non-zero vectors of V. If te GL,, then g,,(t) =t ~"A(t)v
and g,,(t) =t~ ™A(t)v. Thus the morphism f:t+s [A(t)v] coincides with both
nog,, and meg,,. The former of these two gives the extension of f to t=0,
and the latter to t = co. Explicitly, we have

20)[v] =[ Y ajej]

jelm

A(oo)[v]:[ Y ajej].

jelm
It is clear from these formulas that:
A0)[v] = A(o0)[v]

<[, =1y

<m=M (ie. all m(iel) are equal)

<>y is an eigenvector of GL, under 1

<>[v] is a fixed point of GL; under the action induced by 4.

In case 4 is such that m; = {a;, 4 are distinct for distinct o,(1 £ i < n), then
the eigenvectors of GL, (under 1) coincide with the eigenvectors of T. In this
case, therefore, 4(0)[v] = A(oo)[v] if and only if [v] is a fixed point of T.

13.4 Lemma. Let W be a hyperplane in a vector space V, let Y be a closed
subvariety of P(V), and let H=P(W)c P(V).

(@) If dimY =1 then YNnH # ¢.
(b) If Y is irreducible and not contained in H then each irreducible component
of YN H has dimension dim Y — 1.

Proof. (a) If YN H = ¢, then Y is a complete variety in the affine variety
P(V)— H, so Y is finite (see 10.1(2)).

(b) Locally on P(V), the hyperplane H is defined by a single (linear)
equation, and hence likewise for Y n H on Y. Therefore part (b) follows from
AG.9.2.
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13.5 Proposition. Let T be a torus with a given linear representation on a
vector space V. Let Y be a non-empty closed subset of P(V) stable under T.
Then T has at least dim Y + 1 fixed points on Y.

Proof. Being connected, T leaves every irreducible component of Y stable,
therefore we may assume Y to be irreducible. If it is of dimension 0, then it
consists of one point, which is necessarily fixed under T. We may therefore
argue by induction, assume dim Y = 1 and the proposition to be true for any
Y’ of strictly smaller dimension.

Let a,,...,a, be the distinct characters of T in V. We can choose
2eX . (T)= Hom(X(T),Z) (see 8.6) so that the m;={a;,A) are all distinct.
Then GL, (via 1) and T have the same eigenvectors in V¥, and hence the
same fixed points in P(¥). Thus we may, without loss, assume that T = GL,.

If dim YT > 1, then Y7 is infinite. From now on, assume that dim Y7 <0.
Also, replacing V by the intersection of all the hyperplanes containing Y,
which is obviously stable under T, we may (and do) assume that no hyperplane
in P(V) contains Y. We use the conventions and notation of 13.3 and assume
moreover, for convenience, that m; <m; if i <j. Since Y is not contained in
any hyperplane, there exists ve V such that a, # 0 and [v]eY. Then (see 13.3)
[A(0)-v] is defined, belongs to Y and is fixed under T. It does not belong to
the intersection of Y and the hyperplane a, =0. This intersection has
dimension equal to dim Y — 1, (see 13.4), and is stable under T. By induction
assumption, it contains at least dim Y fixed points under T. Altogether, we
get at least dim Y + 1 fixed points, as asserted.

13.6 Corollary. If P < G is a parabolic subgroup, and if T is a torus in G, then
T has at least two fixed points on G/P.

Proof. According to 5.1 (cf. also the proof of 6.8) we can choose a linear
representation G—GL(V) and an xeP(V) so that gr—gx induces an
isomorphism of G/P onto the orbit Y = Gx. The hypotheses imply that Y is
closed and that dim Y 2 1, so the corollary follows from 13.5.

13.7 Proposition. Let T be a maximal torus of G. Then G is generated by all
Be#".

Proof. Let P be the subgroup generated by the Be#7. It is closed, connected
(2.2). Fix Be#", and consider the quotient morphisms

G —— G/B —— G/P.
Suppose P # G. Since P is clearly parabolic, 13.6 implies that T has a fixed
point in G/P distinct from p(n(e)). The inverse image Y in G/B of that fixed

point is closed and stable under T. Thus T has a fixed point n(y)eY, and,
by construction,

p(n(y)) # p(n(e)).
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Now Tyc yB, ie. y~!-T-y < B. By the conjugacy of maximal tori in B we
can write >~ 'T =T for some beB, in which case ybe A 4(T). But it is clear
from the definition of P that #";(T) normalizes P. By the normalizer theorem
11.15 we therefore have A (T)c ¥ ¢(P)= P, so y =(yb)b~'ePB = P, and
hence p(n(y)) = p(n(e)). Contradiction.

Remark. We shall see later (14.1, Cor. 1) that any connected k-group is in
fact generated by two suitably chosen Borel subgroups.

13.8 We fix a semi-regular torus T in G and write X (T),, for the set of
semi-regular one-parameter subgroups in T. According to 13.2(2) this set is
not empty. More precisely (see (13.2)),

X (1), ={2eX (DI, A) #0 for all xe ¥}.

Fix a Bye# and put X = G/B,. If 2eX ,(T),, then the set of fixed points
of im(4) in X is finite, and hence coincides with X 7.

Proposition. Let 1e X (T),.

(1) There is a unique point x(1)eX such that A(co)x = x(1) for all x in some
neighbourhood of x(72). The corresponding Borel subgroup, B(A), contains T.

(2) U ={xeX|A(o0)x =x(1)} is the complement of a T-invariant hyperplane
section (in some P(V)) of X. In particular, dim(X — U)=dim X — 1.

(3) There is a set {§;} of non-trivial characters of T, with trivial restrictions
to TNA(G), such that, for X'eX (T),,, we have B(1) = B(X') if and only if
{Pi,A'> >0 for each i.

Remark. Conversely, the existence of an x(4) as above implies that 1 is
semi-regular, because (see 13.1(2)) x(4) must then be an isolated fixed point
of im(1). The group B(Z) will be said to be associated to 2.

Proof. Since X is irreducible any two non-empty open scts meet, and this
clearly implies the uniqueness of x(1).

Since X = G/By = (G/A(G))/(Bo/%(G)) we can choose a linear representation
of G/%(G), and hence of G, on a vector space V so that X can be identified
with the G-orbit of a point in P(V). Let n:V — {0} - P(V), v—[v] be the
canonical morphism. Replacing V by the subspace spanned by n~'(X), if
necessary, we can further arrange that X lies in no hyperplane in P(V).

Let ey,...,e, be a basis of V such that each e; is an eigenvector, say with
character a;, of T. Put m; = {a;,A> and assume the basis ordered so that
my 2 ---2m, Saym, = --- =m,and m, > m;for i > r. Let W be the hyperplane
in V spanned by e,,...,e,, and suppose v=3 a;e;¢ W (i.e. a; #0). Then the
calculation of 13.3 shows that:

(*) Moo)[v] =[a,e; + - +ae,].
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Let H be the hyperplane P(W) in P(V). We propose to show that r =1,
and that x(4) = [e,] has the property required by part (1). Moreover we will
prove that the U of part (2) is X — (X n H), and this, by virtue of 13.4, will
yield (2).

Suppose r>1. We can find infinitely many beK and v of the form
v=e, + be, + --- such that [v]eX. Otherwise X would lie in the union of
H and of a finite number of hyperplanes, “a, = ba,.” This is impossible since
X is irreducible and lies in no hyperplane. Since r > 1 it follows from (%)
that, for v=e; + be, + --- as above, the 1(c0)[v] are distinct for distinct b.
Thus we obtain infinitely many fixed points of im(1) in X, contradicting the
assumption that 4 is semi-regular. Thus indeed r = 1.

Now that r =1 it follows further from () that A(co)[v] = [e,] if and only
if v¢ W. Thus

{xeX|M0)x=[e;]} =X — (X H).

This completes the proof of (1) and (2).

To prove (3), suppose we are given '€ X (T),,. Let m; = {a;, 4’ ). The proof
above shows that, for some j,m is strictly larger than m; for all i#j, and
that x(1') = [e;]. Thus x(4') = x(4)<>m’, >m; forall i > 1<>{a, ') > (o, 4D
for all i>1<(f,A)>0 for all i>1, where f;,=a, —«; Since «; are
characters of T, trivial on Tn%(G), this proves (3).

Let f:G— G’ be an isomorphism of algebraic groups, and put T' = f(T).
If le X (T), then foleX (T'),, clearly,and B(f 1) = f(B(4)). Now suppose
ne N g(T)and f = Int(n). Then T' = T and, if we write "1 = Int(n)° 4, we have

B("2)="B(A) for neN &(T).

13.9 Lemma. Let T be amaximal torus, W = W(T, G) and X = G/B, as above.
(1) If dim X =1 then card W = 2.
(2) If dim X = 2 then card W 2 3.

Proof. Recall (11.16, 11.19) that W acts simply transitively on X", hence
card W = card XT. Thus the lemma follows from 13.5.

13.10 Weyl chambers. Let T be a maximal torus, and W= W(T,G). To
AeX ,(T),, we have the associated B(1)e#” constructed above in 13.8. Given
Be#T.

WC(B) = {Ae X (T),,| B() = B}
is called the Weyl chamber of B (with respect to T in G).

Proposition. (1) There is a set {B;} of non-trivial characters of T, which are
trivial on TN Z%(G), such that

WC(B) = {1eX ,(T),|{BisA> >0 for each i}.
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(2) The Weyl group W acts simply transitively on the set of Weyl chambers
WC(B) of Be#".

Proof. Part (2) will imply each Weyl chamber is non-empty, whereupon (1)
reduces to part (3) of 13.8.

If ne A/ 4(T) and Ae WC(B) then (see end of 13.8) we have B("1) ="B(4), so
"WC(B)=WC("B). If neG” then "A = 150 W = A4 4(T)/G” acts on the set of
Weyl chambers in such a way that f:B— WC(B) is W-equivariant. Since W
is transitive on the B’s it follows that each WC(B) is not empty (since at least
one of them is not empty). In that case WC(B) determines B, clearly, so f
is bijective. The simple transitivity of W on the WC(B)'s now follows from
the simple transitivity of W on 27 (11.19).

13.11 Centralizers of singular subtori of codimension 1. Let S be a singular
subtorus of codimension ! in the maximal torus T, and let Be#". Then T
is a maximal torus in G5, and we know from 11.15 that BS is a Borel subgroup
of G5. Indeed, the map B B® is a surjection from #(G)” to #(G5)". When
we write WC(B®), it is understood with reference to BS as an element of
B(G5T.

Proposition.

(1) The Weyl group W(T,G®) has order 2.

(2) In X (T) we have WC(B).= WC(B®).

(3) If C is one of the two elements of B(G%)", then there is a non-trivial
aeX(T/S) = X(T) such that, for any BeB", we have

B’ =C<+{a,A) >0 for all AeWC(B).
If C' is the other element of B(G5)T then
B’ =C'+(a,A) <0 for all AeWC(B).

Proof. (1) Put H = G® and let n: H - H' = H/%(H) be the quotient morphism.
Then T' = n(T) is a maximal torus in H’, and 11.20 implies that W(T, H) -
W' = W(T', H') is an isomorphism. We shall show that dim T" =1, and then
deduce from this that card W' = 2, thus proving (1).

Since S < %(H), and S has codimension 1 in T, we have dimT' =
dim(T/Tn#(H))<1. On the other hand, since S is singular, H =G’
is not solvable, hence H' is not solvable, and T'# {e} by 11.5. Thus
dimT' =1.

We just observed that H’ is not solvable, so 13.9(1) implies that card W’ = 2.
On the other hand W' = A . (T")/Z 4 (T') acts faithfully on T, and, since
T' = GL,, it follows from 8.3 and 8.4 that Aut(T')= GL,(Z) has order 2.
Thus card W' < 2.
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(2) Consider the commutative square

G—— G/B

U 1
GS —_ GS / BS’
xS
where © and 7% are the quotient morphisms, and j(r%(g)) = g-n(e). Then j is
injective. If Ae WC(B), then n(e) = x(4), so A(c0) projects an open set onto
(). Hence, with respect to the corresponding action in G5/BS, J(0) projects
an open set onto n%(e), i.e. B is associated to 4 in G%, as was to be shown.
(3) It follows from (1) and 13.10(2) that there are two Weyl chambers
of T as a torus in G5. According to 13.10(1), each one is of the form
{A€X ()| {Bi, 1) > 0 for each i}. Here X ,(T),, refers to the set of A which
are semi-regular in G5, and the B; are non-trivial characters of T/S. Since
dim T/S =1 we have X(T/S)=Z. Since there are two Weyl chambers, each
non-empty, they must be of the form

{AeX (1), |, A) > 0}

where a varies over the two generators of X(T/S). In particular WC(C) has
this form for some a, so that (3) follows immediately from (2).

13.12 Corollary. Let Q be a singular subtorus of codimension 1 in T, distinct
from S. Then there is a B'e BT such that

BS=BS and B9# B2

Proof. Using part (3) above, we can find non-trivial ae X(T/S) and fe X (T/Q)
such that, for B'e#” and e WC(B'), we have

B =B«{(a,)>0
B%=B%=(B,1>>0.
Since S # Q it follows that o and B are linearly independent in X(T) (their

kernels have distinct connected components) so we can find a A'eX (T),,
such that {a,A') >0 and (f,4') <0. Then B' = B(X) solves our problem.

13.13 Groups of semi-simple rank 1, and PGL,. In the following T denotes a
maximal torus in G, and W = W(T, G). The semi-simple rank of G is defined
to be dim(T/(T N %(G))), i.e. the dimension of a maximal torus in G/%(G).
The conjugacy of maximal tori shows that this depends only on G. For
example PGL, is not solvable and it has a maximal torus of dimension 1
(see 10.8); hence its semi-simple rank is 1.

Proposition. The following conditions are equivalent:

(1) G has semi-simple rank 1.
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(2) card W =2.

(3) dim G/B =1 (where Be%).

(4) G/B is isomorphic to P;.

(5) There is a surjective morphism ¢:G —PGL, such that kerp = (| B’ (and
so (ker @)’ = #(G)). Bed

Proof. Theimplication (1)=-(2)is contained in the proof of part (1) of 13.11.

(2)=>(3). Since card W =card 87 > 1, G is not solvable, so dim G/B=1.
Since card W < 3 it follows from 13.9(2) that dim G/B < 2.

(3)=(4). Let AleX (T) be a regular one-parameter subgroup. Then GL,
(via 1) does not act trivially on G/B because T does not. Since G/B is
irreducible of dimension 1 it follows that, for xe G/B and not fixed by T, the
orbit map GL, —» G/B, t—A(t)x, is dominant. Therefore we obtain an
inclusion of function fields K(G/B) = K(GL,). Since K(GL, ) is a pure function
field in one variable it follows from Liiroth’s theorem that K(G/B) is likewise.
Since G/B is a complete non-singular curve, it must therefore be isomorphic
to P,.

(4)=(5). Since G/B x> P, it follows from 10.8 that the action of G on G/B
is given by a morphism ¢:G—PGL, (= Aut(P,)). Clearly the kernel is
(\B'(B'e&), so (ker @)’ = %(G). Since G is not solvable (because B # G) it
follows from 11.6 that dim ¢(G)> 2. However PGL, is connected and has
dimension 3. Hence ¢ is surjective.

(5)=>(1). The existence of ¢ clearly implies that the semi-simple rank of G
coincides with that of PGL,, which is 1.

Corollary. Suppose G has semi-simple rank 1, and let B,, B,, B, be distinct
Borel subgroups of G. Put 1=()B (Bed%). Then (BynB,)/l ~GL, and
BonByNnB, =1.

Proof. We have a surjection ¢:G—PGL,, with kernel I, such that the B;
are stability groups of distinct points of P,. (With the aid of an automorphism
of P, we can even assume B, is the stability group of i (i =0, 1, c0) (see 10.8).)
The assertions of the corollary follow from the fact that PGL, acts simply
transitively on triples of distinct points in P,, and that the subgroup fixing
a pair of points is isomorphic to GL, (see 10.8).

13.14 Reductive groups of semi-simple rank 1. In the following proposition
we assume G to be a reductive group of semi-simple rank 1, and T a maximal
torus in G. We put

I=()B and #"={B,B}.

Be2®

The Lie algebras are denoted:

g=L(G), b=L(B), b =L(B)
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Proposition.

(1) (T)=BnB =T, and I = 4(G).

(2) B,=G, and the action of T on B, is given by a generator, a, of
X(TATnI)). (T, B)={a}, and b = L(T)® g,. Moreover B, is the unique
T-invariant connected subgroup of G such that L(B,)=g,. Similar
conclusions apply to B’ with — « in place of a.

(3) bnb = L(T).

b+b =g=LT)DG, DG,
O(T,G) = {a, —a}.

(4) WC(B)={AeX (T)|<a, A) > 0}
WC(B) = {ieX (T)|<a, 1> <0}.

Proof. From 13.13, we have a surjective morphism ¢:G - PGL, with kernel
I. Since 4,(G) = {e} it follows that ¢:B,— ¢(B,) = G, has finite kernel. Thus
B, is connected, unipotent, and one dimensional, so 10.9 implies there is an
isomorphism 6:G,— B,. Similarly we have an isomorphism §:G,— B. If
teT and beG, we have

to(b)t ! = 0(t*b)

for some aeX(T) (see 10.10). Passing to PGL,, we see that a generates
X(o(T))=X(TAT 1)) and that the action of T on B, is given by —a (see
10.8).

Now B, B, corresponds to a proper subgroup of G, stable under the non-
trivial linear action of T given by «, so B,n B, = {e}. Since B = T" B, it follows
that BAB' =T«(B,nB)=T-(B,nB,)="T. Sincc Tc T)=(BnB')" this
proves the first part of (1). It further implies that I = T, so [ is a normal and
diagonalizable subgroup of G. By rigidity it follows that I ¢ Z°(G). The reverse
inclusion follows from 11.11, thus proving (1).

We have B= T-B, so that b = L(T)® L(B,), and the remarks above show
that L(B,) is a one dimensional subspace of g,. Similarly b’ = L(T)@® L(B,)
with L(B.) a one dimensional subspace of g_,. Hence bnb'= I(T), and
b + b’ = g by dimension count, for dim(b + b)=2+dim T, dim G =dim I +
dim PGL, =dim [ + 3, and dim T =dim [ + dim ¢(T) =dim I + 1.

This proves all of (2) and (3) except for the assertion: If H is a connected
T-invariant subgroup such that L(H) = g,, then H = B,.

Since dim H = 1 it follows that H is either a torus or unipotent. If H were
a torus T would have to centralize H, by rigidity. But T acts non-trivially
on L(H) so we must have H = H,. Next note that T-H is a connected solvable
subgroup containing T, hence contained in B or B'. Since &(T, B')={ —«a}
and @(T, T-H) = {a} we must have T-H < B, and hence H < B,. Dimension
count now implies that H = B,

Finally we prove (4). Let n:G — G/B be the quotient morphism and put
xo = n(e). Since B is the stability group of x, and B, " B = {e}, it follows that
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the points 6'(c)xq(ceG,) cover a neighborhood of x, in G/B=P,. Suppose
AeX (T) is such that m={a,4) > 0. For ceG, and teGL, we have
A0 (C)xo = AD)O'()A(t) 'xo (T fixes x;)
=0 *Pe)xg = 0(t " ™c)xo.

Specializing t ! to O (i.e. ¢ to o) we obtain
A(a))o’(c)xo = 0’(0))(0 = xO.
If follows that A is semi-regular and that x(1) = x,. This proves:

Ais semi-regular

(o, A) > 0=>{and x(4) = xq (i.e. B(1) = B).

According to 13.11(3) the condition, “{a,1) > 0,” defines a Weyl chamber
in X,(T),,, so we must have

WC(B) = {AeX ,(T)|<x, 4> > 0}.

The analogue for B’ follows similarly.

13.15 From now on we return to the general setting, i.e. G is no longer
assumed to be of semi-simple rank 1, unless otherwise stated.

Lemma. Let S and Q be distinct singular tori of codimension 1 in the maximal
torus T, and let Be#".

(1) dim(B3/(B;nI(T),) S 1.
(2) 1(B%2 < I(T).

Proof. (1) Thanks to 13.11(1) and 13.13, we have a surjective morphism
¢:G5 > PGL, such that (ker )’ = #(G®) and ¢(BS)= G,. It follows that
dim (BS/(BS " #,(G%))) = 1. Now (1) follows because #(G®) < I(S) < I(T) (see
11.18).

(2) Choose B’ as in 13.12. Then since B2 # B'? it follows from the Corollary
of 13.13 that B¢nB?=T-%,(G?), and 11.18 again implies this lies in I(T).
Since B'S = BS we have I(B%) c Bn B, and hence I(B%)¢ c B2nB'¢ c I(T).

13.16 Theorem. Let T be a maximal torus in G. Then

KT), = 2.(G).

Proof. Clearly 2,(G)< I(T),, and the latter is connected and unipotent.
Hence we necd only show that I(T), is a normal subgroup of G.

According to 13.7, G is generated by the Be#”. Combined with 9.5(2),
this shows that G is gencrated by groups B, for Be#”, and variable subtori
S of codimension 1 in T. Since BS=T-B5, it suffices to show that BS
normalizes I(T),. Note first:
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(#) If S is semi-regular, then, by 13.1, we have B’ < G < I(S) < I(T), so
BS < I(T),.

Now assume S is singular. Then B? is contained in
H=(I(B%)nB,)",

so it suffices to show that H normalizes I(T),. Note that I(T), < H and that
H is a connected unipotent group, which is normalized by T (because BS
and B, are). Hence it will follow from 12.1 Lemma that H normalizes I(T),
if we show that dim H < dim I(T), + 1.

As above, we know from 9.5(2) that H is generated by the H2 where Q
varies over subtori of codimension 1 in T. If Q = S then evidently H® = BS,
and it follows from 13.15(1) that dim(H5/(HS~I(T),)) < 1. If Q # S and Q is
semi-regular then we have H? < B2 < I(T),, as pointed out in () above.
Finally suppose Q is singular and # S. Then H? c I(B%)?, clearly, and the
latter lies in I(T), by 13.15(2). Hence H2 < I(T), for all Q # S, so the natural
morphism

HS/(H® nI(T),) > H/I(T),

is surjective. Since we observed already that the left side has dimension <1,
the proof is now complete.

13.17 In the following important corollaries T denotes a maximal torus in
G and S a subtorus of G.

Corollary 1.

(@) 2.(G°)=2.(G)".
(b) If S is semi-regular then (GS), = #,(G)’.
© G =T-&,G)".

Proof. (c) is a special case of (b), and (b) follows from (a) because #,(H) = H,,
when H is a connected solvable group (see 10.6).

To prove (a) we may assume S < T (11.3). The group £,(G)° is a connected
unipotent normal subgroup of G, hence contained in %,(G%). On the other
hand, #,(G5) lies in every Borel subgroup of G5, among which are all BS,
Be AT In particular ,(G%) < I(T) = T &,(G), by (13.16) so £,(G®) = &,(G)S.

Corollary 2. Suppose G is reductive, S T.

(a) G5 is reductive.

(b) If S is semi-regular, then G5 = T. In particular, S is regular.

(¢) G =T. The Cartan subgroups of G coincide with the maximal tori.
(d) The intersection, Z, of all maximal tori is €(G).

Parts (a), (b), and (c) follow immediately from the corresponding parts of
Corollary 1. Since Z is a normal diagonalizable subgroup of G, it is central
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by rigidity. Conversely part (c) implies (G} lies in every maximal torus. This
proves (d).

13.18 Roots in reductive groups. T still denotes a maximal torus in G. An
automorphism of X(T) will be called a reflection if it has order 2 and induces
the identity on a subgroup of corank 1.
Recall from 13.2 that ¥ = &(T, G/I(T)); we also write @ for &(T, G).
The next theorem summarizes much of the information we have
accumulated about reductive groups.

Theorem. Suppose G is reductive.
(1) =0, LT)=g",and g=g"®[] 8-
acd
(2) The singular tori of codimension 1 in T are the T, = (ker )’ (a€ D), and

N Ta> =%(GY.
ac P

(3) @ generates a subgroup of finite index in X(T/€(G)°) = X(T). If a and
B in @ are linearly dependent, then f = +a.

(4) Let ae®, and put G,= Z (T,). Then G, is a reductive group of semi-
simple rank 1, and:

(a) —ae®, and L(G,)=g" @8, D9-,

(b) dimg, = 1.

(c) The subgroup W(T,G,) of W(T, G) is generated by a reflection, r,, such
that r (o) = —a.

(d) There is a unique connected T-stable subgroup U, of G such that
L(U,) = g,. It is the unipotent part of a Borel subgroup of G, containing T.

(5) Let BeA".

(a) For each ae®, ®(T,B™) = ®(B)n{a, —a} has precisely one element.
Hence @ is the disjoint union of @(B) and — ®(B).

(b) WC(B) = {AeX ,(T)|<a, 4> >0 for all xc D(B)}.

(c) If 2eWC(B) then ®(B)= {ae®|{a,A) > 0}.

(d) One can give X(T) the structure of a totally ordered abelian group so
that @(B) is the set of positive elements in .

© LB)=¢"® [] 9.

ae M(B)

Proof. (1) It follows from 13.16 and from the assumption G reductive, that
I(T)=T. Clearly @(T,G/T)= ®. One always has

0=9"®[] .
ae®

(see 8.16). By 9.4, g = L(G"), and Corollary 2 of 13.17 tells us that GT =T.
(2) The first assertion follows from 13.2(1) since ¥ = @. We know from
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13.17, Corollary 2, that 4(G)° is a subtorus of T. If S is a subtorus of T, then
we know, by 94, that G°=G<g5=g<Sc T, for each ac®. Thus
4Gy =(NT.y.

(3) The equality just proved is equivalent to the condition that @ generate
a subgroup of finite index in X(T/%(G)), clearly. If a, e X (T), then it is clear
that a and f are linearly dependent, i.e. na = mf for some n, meZ, not both
zero, if and only if T, = (kera)® and T, = (ker f)° coincide. In this case we
have fe ®(G,) so the last assertion of (3) will follow from (4)(a), which implies
that (T, G,) = {a, — a}.

(4) We have L(G,)=g¢"® [] g, From 13.11 we know that G, has

T.c Ty
semi-simple rank 1, and from 13.17 that it is reductive; hence we can apply
13.14. Since ae @(G,), it follows from 13.14 that &(G,) = {«, —a} and that
dim g, = 1. In particular ™ =g" @ g, D g_, so that T, = T} (for fe P)<>f =
+ a. This proves (a) and (b).

As already remarked, W(T,G,) has order 2, say with generator r,
represented by neA; (T). The automorphism of T induced by n has order
2 and fixes pointwise the subtorus T, of codimension 1. Hence the set of
commutators (n, T) is a subtorus of dimension 1 (being a non-trivial image
of T/T, = GL,). If BeX(T), then B(ntn~ )= P(t) for all teT<p((n,T)) =
{1}<>(n, T) = ker B. The set of such f is a subgroup of corank 1 in X(T), not
containing a. Since @(G,) = {a, — «} is stable under r,, we must have r,(a) =
— a, for otherwise r, would fix a subgroup of finite index in X(T), and hence
be the identity. This proves (c).

Finally, to prove (d), let H be a connected T-stable subgroup of G such
that L(H) = g,. Since dim H = 1, H is either a torus or unipotent. If it were
a torus it would be centralized by T, by rigidity of tori, contradicting the non-
triviality of the action of T on L(H). Hence, by 10.9, there is an isomorphism
0:G,— H,and we have t0(b)t ' = 0(t*b)for te T, be G,,. It follows that H = G,.
At this point the uniqueness, as well as the existence, of U, follow from the
corresponding assertion in G, (see 13.14). ‘

(5) (a) follows from 13.14 because BTe%(G,)" and @(G,) = {a, —a}, as
noted above.

Moreover, it follows from 13.11 that

WC(B) < WC(B™) = {Ae X (T)|{a, 1) > 0}

for each ae ®(B). To prove (b) we claim, conversely, thatany 1e () WC(B")
lies in WC(B). aed(B)

If 1 were not semi-regular then, by (2), we would have S =im(4) = T, for
some «, so that G, c G, contradicting the fact that A is semi-regular in G,.
Thus B’ = B(4) is defined, and we must show that B’ = B. The hypothesis
implies that B'™> = B™ for all ae®. But 9.5(2) says B is generated by these
BTe, and similarly for B’; hence B = B’ as claimed.

Part (c) is clearly a consequence of parts (a) and (b).

To prove (d), let 4,,...,4, be a basis for X,(T) such that B = B(4,). For
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a non-zero character o write a> 0 if the first non-zero term among the
{a,A;Y(1 £i<r)is positive. This defines a total ordering of X(T). If a.e @(B)
then (a,4,)> >0 so a>0. If ae®,a¢ P(B) then, by part (a), —aedB), so
a<0.
(e) By definition, if b= L(B), we have b=b"@® |] b,. But clearly b” =
ac®(B)
L(T) = g7, and, if ae ®(B), b, = g, because dim g, =1 (part (4)(b)).

13.19 Proposition. Let G be connected, reductive, X eg and AeG semi-simple
elements. Then Z (X)° and 4 j(A)’ are reductive.

Proof. We keep the notation of 13.18, and let H = Z 4(X)°. By 11.8, we may
assume X et. We have

3aX)=t+[la. (¥={aeddu(X)=0}).
ac¥
By 9.1, 3(X) = L(H). In particular, if ae ¥, then G, < H. We have to show
that #,(H) is reduced to {e}. By 9.5, #,(H) is generated by centralizers of
singular tori in T, ie. by its intersections with some G,, ie. finally by some
U,, with a necessarily in ¥. But if U, < %,(H), then U, belongs to the
unipotent radical of G,. The latter group being reductive (13.17, Cor. 2) this
is a contradiction. Same proof for A4, with AeT and ¥ = {a|4*=1}.

13.20 Proposition. Let G be connected reductive, T a maximal torus of G and
H a closed connected subgroup normalized by T. Then:
() LH=LToH® @D- 8 H=TnHY,U,lxe® (T, H)).

ae®(T,H)

Proof. By full reducibility of the representation of T in g, we have

@ L(H)= LIH)nL(T)® @ (L(H) N g,).

But g, is one-dimensional. Therefore either g, = L(H) and ae ®(T;H) or
g, L(H) = {0} and a¢ &(T, H). Since T is its own centralizer in G, we also
have L(H)nL(T)= L(T n H) (9.2, Cor.). This proves the first part of (1). If
U, < H, then g, < L(H) obviously. The main point is to prove the converse,
namely:

3) 6. L(H)=U,cH, (xe®(T,H)).

We claim that it suffices to prove (3) when G = Z4(T,) and H is replaced
by (HNZ;(T,))’. Assume this has been done. Recall that Z4(T,)=
(T,U,, U_,> (13.18). Then in particular g, < L(Z4(T,)). Then g, < L(H)
implies g, = LH)N L(Z 4(T,)). But the latter is equal to L(HN % 4(T,)) by
9.2, Cor. Therefore U, c(HNnZ4(T,))° < H.

So let now G = Z4(T,). The group H is not a torus, since L(H) contains
g,- Assume it is solvable. Then T-U,=T-H, since T-U, and T-U _, are the
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only Borel subgroups of 2 4(T,) which are invariant under T. Hence U, < H.
Assume now H is not solvable, then it has a non-trivial semisimple quotient
and contains at least two distinct Borel subgroups. Consequently, T-H
contain at least two Borel subgroups. This forces U,, U_, < H.

Let M be the subgroup generated by (T nH)’ and the U, (e &(T, H)). It
is contained in H and its Lie algebra contains L{H), hence M and H have
the same dimension and M = H.

13.21 Corollary. Let H' be a closed connected subgroup normalized by T. Then
L(HNH')= L(H)n L(H').
This follows from 13.20(1), applied to H, H' and (H~H')".

Bibliographical Note

The results of this section up to 13.18 are almost all due to Chevalley (see
[13], in particular Exp. 10, 11, 12). Instead of 13.5, it is proved there that if
dim Y 2 1, then T has at least two fixed points. A few years after I had noticed
the easy generalization of Chevalley’s lemma provided by 13.5, 1 saw that
in fact, over C, it had already been established in 1896 by Guido Fano [16].
13.20, 13.21 will be made more precise with regard to fields of definition in
§20. These results are borrowed from [4].

§14. Root Systems and the Bruhat Decomposition in
Reductive Groups

In this section the connected affine group G is assumed to be reductive. T
denotes a maximal torus in G, and we shall write @ for @(T, G). For each
ae®, we put T, = (kera)’ and G, = Z 4(T)).

The Weyl group W = W(T, G) operates on X(T) and leaves @ stable. We
propose to show that @ is a reduced root system in a suitable subspace of
X(T)g = X(T)QQ, with Weyl group W (14.8). In view of §13, what remains

7

to be shown is mainly the integrality condition r,(f) — feZ-q, to be proved
in 14.6, after some preliminary work in 14.3 to 14.5.

Let Be#7T, let n:G— G/B be the quotient morphism and put o= n(e).
The Bruhat decomposition (14.11) refers to the following: Let U = B,. Then
wi—Uw(o) is a bijection from W to the set of U-orbits in G/B. Moreover,
for weW, Uw(o) is isomorphic to an affine space (a cell) and w(o) is the
unique fixed point of T in Uw(o).

14.1 Theorem. Let AeWC(B). For B, B'e®7, the following conditions are

equivalent:
() BAB' =T, (i) bnb = L(T) (b= L(B), b' = L(B))
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(IT) The product morphism B x B'—G is dominant and separable; (ii)
b+b =g

(ItT) B’ = B(— A); (iii) ®(B') = — @(B).

In view of condition (III) we see that there exists a unique B’ satisfying
the above conditions. It is called the opposite Borel subgroup to B. The “big
cell” associated with T and B is B- B, which contains a dense open set in G,
by (II).

Proof. We know from 13.18 that:

g=0"®[[g, ¢"=LT),

ac®
b=¢g"® [] g
asd(B)
v=9"® [ 9o
ac (B’)

and @ is the disjoint union of @(B) and — @(B) = @(B(— 1)). From these
facts the equivalence of (i), (ii), (iii), and (III) is clear.

The equivalence of (II) and (ii) is also clear (see AG. 17.3).

(I)=>(iii). Suppose, on the contrary, that BB’ =T but that there is an
ae @(B)n ®(B'). Then we must have BT*= B'"* < B B'; contradiction.

(i)=(). Since Tc BNnB" and L(BNB)cbnb’ we see that (i) implies
T=(BnB)°. Since B=T"-B, wec have BnB' =T-C where C=B,nB =
B,nB.,. Now C is a finite group normalized, and hence centralized by (the
connected group) T. Thus C = G" "B, = T n B, = {e} (see 13.17 Corollary 2).

Corollary 1. Let H be a connected k-group, T a maximal torus of H, and B
a Borel subgroup of H containing T. There exists one and only one Borel
subgroup B’ of H verifying the following three conditions, which are equivalent:

BAB =T-R(H), bnab =t+L{R(H)); b+b =

Let n:H— H' = H/R,(H) be the canonical projection. The group H' is
reductive (11.21) and n(B) (resp. n(T)) is a Borel subgroup (resp. a maximal
torus) of H' (11.14). Moreover, the Borel subgroups of H all contain R,(H)
and are the inverse images of the Borel subgroups of H'. This reduces the
corollary to the theorem.

Corollary 2. Let H be a connected k-group and P a parabolic subgroup of H.
Then P is equal to the normalizer in H of L(P). (

Let Q = A 4(L(P)). Then Q contains P, hence is parabolic, and therefore
connected (11.15). Let B be a Borel subgroup of H contained in P. If B' is a
Borel subgroup of Q, then it is conjugate to B by an element of Q, hence
L(B") = L(P). On the other hand, by Cor. 1, there exists such a B’ verifying
L(B") + L(B) = L(Q). Therefore L(Q)= L(P) and Q = P.
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Corollary 3. Let B,B' and C, C' be two pairs of opposite Borel subgroups.
Then there exists geG such that °B=C and °B'=C'.

In view of the theorem, this follows from the fact that Int G is transitive
on the pairs Q, T consisting of a Borel subgroup Q and a maximal torus
contained in Q (11.19¢)).

14.2 The center and derived group. Write C=%(G)’ for the “connected
center” of G. Since G is reductive, C coincides with 2(G) (see 11.21), so that
G/C is semisimple.

Proposition.

1) c=(aQ’ T,,)D=(Tw)o.

(2) 2G is semi-simple
(3) G=C-2G and Cn DG is finite.

Proof. (1) That C= ( (l’l;) follows from (13.18)(2), and clearly C< T¥.

It remains to be shown that (T") = T, for each ae®. According to 13.18
(4)(c) there is a weW such that w(@)= —a. Now if teT" we have
"t=1ts0t*=("1)*=t"® =1~ Thus T" < ker(2a), and (ker(2a))° = (ker )’ =
T,.

(3) To prove that G = C-2G we first recall (10.8) that PGL, is its own
derived group. Since G,/ T, is isogenous to PGL, it follows that G, = T," 9G,
for each ae @. We know (cf. 9.4(4)) that the G, (o€ @) generate G, so il remains
to show that T = C-2G. Put D = (N ((T), T’ <(2GnT). It will suffice to
prove that T = C-D, or that To= CQD + D, where T'= X (T), C' = X ,(C),
D'=X_,D). But C'=T", by (1), and by construction all (1 —w)i (weW,
AeT’) lie in D'. Now the subspace these span in Tq has complement
(T’Q)"' =(TW);D, since the group algebra Q[ W] is semi-simple. This proves
that G = C-9G. '

Once we show that C-2G is finite the semi-simplicity of G will follow
because 2G — G/C = G/R(G) is surjective with finite kernel. Thus the proof
is completed by the:

Lemma. Let C be a central torus in a connected group H. Then Cn%H is
finite.

Proof. Using a faithful linear representation we may assume H < GL(V). Write
V=@V, (1<i<n), where V,=V,,,a ranging over the weights of C in V.
Then H < GL(V)° = GL(V,) x -+ x GL(V,). If teC then t = (t*Id.,...,t*Id.)
in these coordinates. If further te 2H then each ¢*/d. has determinant 1, so
(t*Y" =1, where m;=dim V;. Thus CNn2H lies in a group of the form

C, x -+ x C,, where C; is cyclic of order dividing m;.
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Corollary. (a) The following three conditions are equivalent: G is semi-simple;
G = 9G; and 6(G) is finite. (b) Let H be a closed connected normal subgroup of
G. Then H is reductive, ¢(H)’ = (4(G)n H)’, and 9H =(2Gn H)’,

The first assertion is an obvious consequence of the proposition. Let H
be as in the statement. Then %,(H) < #,(G), hence #,(H)={e} and H is
reductive. The group ¥(H)’ is a torus, normal in G, hence central (8.10, Cor.)
and contained in (4(G)°’n~H). The other inclusion is obvious. That
DH = (2Gn HY is clear. That it is no smaller follows from ¢(H)’ = 4(G) and
the proposition.

14.3 Direct spanning. Let (H;),, be a finite family of closed connected
subgroups of a connected group H. We shall say that H is directly spanned
by the H, if, for some ordering i,...,i, of I, the product morphism

H, x--xH, -»H
is an isomorphism of varieties. We shall denote this circumstance by writing

H=H, H, .  H.

In case n=2 and one of the groups normalizes the other we have, as a
special case, just a semi-dircct product decomposition.

14.4 Certain actions of T on unipotent groups. We consider an action of T
on a connected unipotent group U, subject to the following assumptions,
were @(U) stands for &(T, U):

(i) Each weight « of T in u= L(U) is not zero, so that

«

u= [ u,

ae M(U)

and dimu, = 1 for each ae @(U).
(ii) If a, e @(U) are distinct, then they are linearly independent, i.e. the
subtori T, = (kera)’ and T, = (ker f)° are distinct.

Proposition. (1) If ae®(U) then U,=U"" is the unique T-stable closed
subgroup of U with Lie algebra u,.
(2) Let A denote the set of T-stable closed subgroups of U.
(a) If He A then H is connected and H is directly spanned by

{U,Jae®(H)} = {U,|u, < b},

in any order.

(b) Hwsly is a lattice monomorphism from A to the lattice of T-stable
subalgebras of u.

(c) If H, *He A for some xeU, then H="H.

Proof. We know from 9.4 that for a subtorus S of T, the group US is
connected, and L(U%)=u®=||uyS<=Ty). Taking S=T we see that
UT = {e}. Taking S = T, for some ae P(U), we see that U, is connected and,
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thanks to assumption (ii), that L(U,) = u,. The uniqueness of U, follows from
(2)(a), which we now prove.

Let HeA. We assume first H to be connected. From 9.4 again we know
that H is generated by the subgroups H*(xe @(U)). Now H™ < U, and, if
h=L(H), we have L(H™)=h" =}, cu,. From assumption (i) we have
dim U, =dimu, = 1. Thus either

H™={e}, b,=0, and a¢®(H)
or
H™*=U, b,=u, and oc®(H).
Let a,,...,a, by some ordering of @(H) and let
fiP=U,x--xU, »H

be the product map. To prove (2)(a) we must show that f'is an isomorphism
of varieties. Clearly (df), is an isomorphism, so f is dominant and separable.

There is no loss in generality in assuming that the ordering is chosen so
that the U,, which lie in ¢(H) occur last; say U,,,..., U,  are those not
contained in ¥(H). We distinguish two cases:

(i) m=0; i.e. H is commutative. Then P is a group on which T acts subject
to the analogues of the assumptions made on U, and [ is a dominant
T-equivariant homomorphism with finite kernel. But then, since T is
connected, ker f = PT, and we saw above that the assumptions (i) and (ii)
imply P" = {e}. Thus f is an isomorphism.

(ii) General case. Let n:H — H/4(H)® be the quotient morphism. If i< m
then U, —»n(U,) is bijective, and we have a(H)=n(U,)....n(U,), by
induction on dimH. Therefore H=U,;...-U, -¢(H)°. By (1) 4(H) =
Upir'o Uy

In case HeA is not connected we apply the conclusion above to H° and
to U to write U in the form U = H®-V, where say V = Ug,*... Uy . Then H
is the set theoretic cartesian product of H° and F = Hn V. Since F is a finite
T-stable subset of U we have F < UT = {e}.

This completes the proof of (1) and of (2)(a). Part (2)(b) is an immediate
consequence of (2)(a).

There remains the proof of (2)(c), so suppose H, *He A for some xeU. We
will show, by induction on dim U, that H = *H.

Choose a U, < 4(U) and let n:U —» U’ = U/U, be the quotient morphism.
By induction we have n(H) = n(*H). If U, < H then U,=*U, = *H also, and
we see that H =*H. If not, then at least M = H-U, coincides with *H-U,.
Thus L(M) = L(H)®u, = L(*H)®u,. Since L(H) and L(*H) are T-stable, and
since the weights of T in u have multiplicity 1, it follows that L(H) = L(*H).
Hence, by (2)(a) (or (2)(b)) we have H = *H.

Remark. Each U, above is isomorphic to G,. Thus the product map

fU, x--xU, »-H
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in the proof above gives rise to a T-equivariant isomorphism of H (as a
variety) with the affine space K" on which T acts diagonally via a,,...,q,.
This also shows the existence of a T-equivariant isomorphism of varieties
of L(H) onto H. In characteristic zero, it is given by the exponential map.

14.5 Special sets of roots. Recall first that, if xe @ then (see 13.18 (4)(d)) there
is a unique connected T-stable subgroup U, with Lie algebra g,.

If a, Be @ we denote by (a, B) the set of roots ye @ of the form y =ro + sf,
where r, s are strictly positive integers. If ¥ and ¥’ are subsets of @ write

(P, ¥)=u(e,f) (xe¥,fe?).

We shall call ¥ special if

(@) (¥, ¥)c VP, and

(b) there is a Ae X (T) such that {a,A) >0 for all ae V.

There is no loss, in (b), in assuming that 1 is regular, i.e. that {a,A) #0
for all ae®. For let 1’ be any regular one-parameter subgroup. Since @ is
finite we can choose a large positive integer N so that, if 1" =NA1+ 1, we
have {a, ") > 0 whenever ae @ and {a,4) > 0. Then A" is evidently regular,
and serves as well as 1 in (b).

The terminology “special” is provisional. Once it is established that @ is
a root system (14.8), then we shall see that ¥ < @ is special if and only if it
is closed and belongs to a positive set of roots for some ordering on @ (see
14.7).

Proposition.
(1) If o,Be®, and if B # + «, then

[o, B) = {ye®|y =ra + sB for r, seZ with s > 0}
is special.
Let W < @ be special.
(2) The set {U,|ac ¥} directly spans, in any order, a T-stable subgroup U
of G.
(3) If ae® and (o, ¥) < ¥ then U, normalizes Uy,

Proof. Suppose o, fe® and f+# +a. Condition (a) above is obviously
satisfied by [a, f). To establish (b) recall from 13.18 (3) that § # + a implies
o and B to be linearly independent. Hence there is a e X,(T) such that
{a,A)=0 and {B,A>>0. This A is clearly positive on [a,ff), so we have
proved (1).

Note that (a, f) < [, B). Since condition (a) is obvious for (a, ) we see that
(a, B) is also special. We claim the following.

(*) Let Uy, denote the product, in some order, of {U,|ye(, f)}. Then
(U Up)= Uqy

(In case (a, ) = ¢ we take U, 5 = {e}).
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We shall now give the proof of (2) and (3), using (*), and then prove (*)
at the end.

We are given a special ¥ < @. The remark preceding the proposition
shows that we can choose a regular 1eX (T) such that {a,41) >0 for all
ae'P. Put B=B(A), U=B,, and ®* = @(U)= @(B). Then it follows from
13.18 that the action of T on U satisfies hypotheses (i) and (ii) of 14.4. If
ae®*, moreover, the group U, here coincides with the group so denoted
(w.r.t. T and U) in 14.4. Suppose that the product, in some order, of {U,|ae ¥}
is a subgroup, call it Uy. Then Uy is clearly a closed T-stable subgroup of
U with Lie algebra . g,. It follows therefore from 14.4 that ¥ = @(Uy)

ac¥
and that Uy is directly spanned, in any order, by {U, |ae ¥}.

Now we shall prove (2) and (3) by induction on card ¥. If card ¥ =0
both assertions are clear, with Uy = {e}. Otherwise write ¥ = {#} U V" where
pe¥' and (B, A1) < (y,A) for all ye'¥W' Then it is easy to see that ¥’ is
special and that (8, ¥') « ¥'. By induction, therefore, we have the group Uy
directly spanned by {U,|ye¥’}. In view of (+) Uy is normalized by Uj (see
the proof of (3) below). In particular Uy-Uy. is a subgroup, U, of U, and
the paragraph above shows that Uy is directly spanned, in any order, by
{U,lye ¥'}. This proves (2).

To prove (3), suppose (x, ¥)<= P. To show that U, normalizes Uy, it
suffices to show that, for xeU, and ye ¥, we have *U, < Uy. Suppose yeU,.
Then x, = (xyx~!)(y~'y) = (x, y)ye(U,, U,)U,. Thus it suffices to see that
(U, U,)c Uy. But, according to (*), (u,,U,)c U, where U, , is the
product, in some order, of {U,|d€(x,7)}. Since (,7) = ¥ we have U, ,, = U y,
and this completes the proof, modulo the:

Proof of (*). Put ¥ =(x, f)u{a, B}. It is clear (see proof of (1) above) that
¥ is special. Hence we can choose 4, B=B(A), U = B,, and @* = @(U), as
above, so that ¥ c @*.

If yed™, let 8,:G,— U, be an isomorphism. Then,

‘0,(x)=0,t'x) (for teT, xeG,).

Let ay,...,a, be the elements of @, in any fixed order. According to 14.4
the product morphism

Uy, x-xU,-U
is an isomorphism of varieties. Define
[:Gax G, = U, [(x,y)=(8,(x),04(y)).

Then the isomorphism above shows that

fon=[1 8.(Pdx,y)

15isn

(product in ascending order), where the P; are polynomials in two variables.
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Say
Pl'(xsy)= Z Ci,r,sxrys'
rs20
Since f(0, y) = e =f(x,0) we see that each monomial in P; involves both x
and y, i.e. the summation is actually over r, s > 0.
For teT and x, yeG, we see that 'f(x, y) is equal to

(0,(t7x), B5(t"y)) = I:l 0., (P{t*x, t°))
as well as to

[To, e Pix, ).

This yields, for each i=1,...,n,

Z ci.r.s(tax)r(tpyr= Z Cip St XY

rs>0 rs>0
It follows that
Ciys =0 unless a; = ra + sp.

Since, as already observed, c;, , = 0 unless r,s > 0, we therefore have ¢;, ;=0
unless o;e(a, f). Thus,

P;=0 unless o;e(,f).

The latter is precisely what we sought to prove. It asserts, for x, yeG,, that
(8,(x), 85(y)) lies in the product (in the above order) of those U, for which

%;€(a, B).

Remarks.

(1) Since o and f} are linearly independent there is at most one expression
for an a; in the form ro + sB. Hence the proof above shows that each P; is
a monomial, zero unless o;€(a, ).

(2) We have shown the existence of a smallest set of roots @(a, f) such
that (U,, Up) € U 4, ), Which is contained in («, f). In characteristic zero, the
rule [g,,95] =g,+5 implies readily that @(«,f)=(a,f). In positive
characteristic, there may be a strict inclusion, though only in small
characteristics. In particular, it may happen that (U,, U;) = {1}; even though
o+ f is a root. For a list of the cases in which ®(a, f) #(, f) see [6:4.3].
Obviously, @(«, f) = @(p,«). We shall show (14.8, Cor. 2) that &(—a, — f) =

- (D(a’ ﬁ)

14.6 Corollary. Let ac®, and let r,eW be the generator of the subgroup
W(T,G,). Then if fe @ we have

ra(ﬂ) = ﬂ - nﬂ.aa

with n; ,€Z. Moreover n,,=2.
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Proof. We know from 13.18 (4)(c) that r (@) = — a = a — 2a and that r, fixes
the elements of a subgroup of corank 1 in X(T). Passing to X(T)q, and
extending « to a basis whose remaining members are in the fixed hyperplane
of r, (extended to X(T)q), we see that, for any ye X(T)q, y — r,(y) is a (rational)
multiple of . In particular, r(f)=f —n,,a for some ny,Q, moreover
n,,=2andn, _, = — 2. Therefore, to prove ny ,€Z, we may assume f§ # + a.

We apply the proposition above, which says that [a, ) is special, and hence
that the U (ye[a, f)) directly span a T-stable subgroup H = U,, 5. Evidently
(o, [, B)) = [, B) and (— a, [a, B)) = [, f), so the proposition implies that U,
and U_, normalize H. Since U,,U_, and T generate G, it follows that G,
normalizes H. Now r, arises from conjugation by an ne.#"; (T), and we have
just seen that this n normalizes H. Since fe[a, f) and nUsn ' ="U,; = U4
it follows that r,(f)e[a, B), i.e. that r,(B) = ra + sp for suitable r, seZ, s > 0.
Thus s=1and ng,= —reZ. Q.ED.

14.7 Review of root systems. The facts to be reviewed here can all be found
in ([31], Chap. V and p. VII-13), or in [9:VI].

Let R be a subfield of R. If V is a vector space over R we write
V* =Homg(V,R). Let a be a non-zero vector in V. We call reGL(V) a
reflection with respect to a if r(«) = — a and if r fixes the points of a hyperplane
H in V. Thus r(f)=f—{B,A)a, for peV, where AeV* has kernel H, and
{a,Ay=2.

If @ is a finite spanning set of V, there is at most one reflection with
respect to a leaving @ stable.

A root system is a pair (V, @) where V is a vector space over R, and where
@ is a subset of V satisfying:

(1) @ is finite, spans V, and does not contain zero.

(2) For each ae ® there is a reflection r, with respect to a which leaves @
stable (and which is therefore unique, by the remark above).

(3) If o, fe® then r(f)=f —n, o with n; €Z. The elements of @ are
called roots.

The notion of isomorphism of root systems is evident. We will usually
denote the root system bv @, and say that “@ is a root system in V.” In
particular we havg Aut(®) & GL(V). The subgroup W(®) of Aut(®) generated
by the r,(xe @) is called the Weyl group of @.

Let ae @ be such that the only roots, aa, proportional to « are such that
la] £ 1. If aa is one such then —aa =r(a0) = ax — n,, ,a, so that 2a =n,, ,eZ
Thus the roots proportional to « are either { —a,a} or { —a, —a/2, a/2,a}.
If the latter case never occurs, i.e. if, whenever « and f§ are proportional
roots we have = + a, then the root system @ is said to be reduced.

Fix a root system @ in V. A bhasis of @ is a subset 4 of @, which is a
basis of V such that each root § is a linear combination, = Y, m,a, with

acd
the m, integers all of the same sign. We then define the positive roots @ *
(with respect to 4) to be those f# for which all m, are Z0. Thus @ is the
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disjoint union of @* and &~ = — @*. We call
WC(4) = {AeV*|{a, 1> >0 for all aeA}

the Weyl chamber of A (or of @*. One can clearly replace A by @* in the
definition without essentially altering it.)

Call Ae V* regular if {a, 1) # 0 for all e @. For example, a Weyl chamber
clearly consists of regular elements. If 1 is regular we shall write

(A ={oe®@| o, 1> >0}
and .
A(A) = {ae @ *(A)|a is not the sum of two elements of @*(1)}.

Theorem. Let @ be a root system in V.

(1) If AeV* is regular then A(4) is a basis of @. It is the unique basis contained
in @*(). Thus, A—WC(4A) is a bijection from the set of bases to the set
of Weyl chambers.

Now suppose @ is reduced.
(2) W(®) acts simply transitively on the set of bases of @, and (equivalently)
on the set of Weyl chambers.
Let A be a basis of @.
(3) The r(acA) generate W(®).
@ o= U wa
weW ()

One associates to a basis A of @ the so-called Dynkin diagram Dyn(®, A)
which is a finite graph having A as its set of vertices, supplied with suitable
“weights,” and in which o and f§ in A are joined by n, gn, , edges. The Dynkin
diagrams give a complete classification of root systems. Moreover Dyn(®, 4)
is functorial in (@, 4), and the automorphism group of @ is the semi-direct
product of W and of Aut(Dyn(®, 4)), the latter being the stability group of
4 in Aut(®).

The root system (V,®) is said to be irreducible if one cannot write
V =V, @YV, as a non-trivial direct sum so that @ =(@nV,)u(PNV,).

A subset ¥ of @ is closed if o, fe ¥ and a + fe® imply o + fe'P. We
claim that ¥ is special (see 14.5) if and only if it is closed and belongs to
@* for some ordering. Let ¥ be special. Then condition (a) implies that is
closed and (b) shows that it belongs to some @*{i), hence to a positive set
of roots for some ordering. The converse fo) ows from the fact that if {o;}
(i=1,...,N)is a set of positive roots whose sum is a root, then there exists
a permutation ¢ of the indices such that all sums

jzi
Y a,; (=1,...,N)
j=1

are roots (see VI, 1.6, Prop. 19 in [9]).
A positive nondegenerate scalar product on V or V*, invariant under W,
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will be called admissible. Since W is finite, admissible scalar products always
exist.

14.8 Theorem. Let V = (X(T/4(G)’)q, identified canonically with a subspace
of X(T)q. Then @ = O(T,G) is a reduced root system in V, with Weyl group
W = W(T,G).

Proof. From 13.18(3) we conclude that @ is a finite set of non-zero vectors
spanning V, and that, if « and § in @ are proportional, then = + a. For
the rest we can, without loss, assume %(G)° = {e}, by passing to G/%(G)".

From 13.18 (4)(c) we obtain a reflection r, of X(T) with respect to « which
leaves @ stable. The extension of r, to V (which we shall also denote by r,)
verifies condition (2) in the definition of a root system.

The (integrality) condition (3) is established by 14.6.

This shows that @ is a reduced root system in V, and that W(®)c W.

If we identily V* with X (T)q then it is clear from 14.7 and from 13.18(5)
that the Weyl chambers in V* of bases of @ coincide with the subsets of V'*
obtained from Weyl chambers in X,(T) of Borel subgroups Be#". (The
Weyl chamber in V* corresponding to Be#” is {ieV*|(a,4) >0 for
ae P(T, B)}.) According to 13.10(2), W acts simply transitively on these Weyl
chambers. But 14.7 asserts W(®) does likewise, and hence the inclusion
W(®@) < W is an equality.

Corollary 1. Let Be#" and let A= A(B) be the set of ac ®(B) which are not
sums of two elements in O(B).

(1) A is a basis of @. (We call A the set of simple roots associated with B
(and T).)

(2) G is generated by {G,|ac4}.

Proof. (1) follows from 14.6 in view of the fact (see 13.18 (5)) that
@(B) = {acP|(a,A) >0 for AeWC(B)}, and, for such a 4, {a, 1) #0 for all
ae@, ie. Ais regular.

(2) We know from 13.7 that G-is generated by the set of BeA". If Be#"
then B=T"-B, and 14.4 implies that B, is generated (even directly spanned)
by the set of U (ae @(B)). Thus G is generated by T together with the U (xe ®).

Let H be the subgroup gencerated by G (aed). G, contains U, as well as a
representative, n,e A (T), of r,eW. Hence it follows from 14.7 that H
contains a representative, n=n(w)e.4 4(T), of each weW. If fe® then
"Up= U, Thus H contains all U, for which f8 is a W-transform of some
aeA. According to 14.7 these ff’s exhaust @. Since, clearly, T < H, this shows
that H =G.

Corollary 2. Let a,fe®, a # + § and let @ (o, f) be the smallest set of roots
such that(U,, Uy) € U g, g, (see 14.5, Remark 2). Then &( — a, — p) = — ®(a, p).

Let S = (keranker f)°. It is of codimension two in T and H = Z(S)/S is a
semisimple group of rank two, with maximal torus T’ = T/S.
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If o + B is not a root, then («, B) is empty, so is @(a, f) and (U,, Uy) = {1}.
But then (—a, — f) is also empty and so is @(—a, — f). From now on,
assume that a+ f is a root. In this case @(T', H) is irreducible. By the
classification of roots systems of rank 2, @(T", H) is of one of the types A,, B,,
G,. Assume first it is of one of the last two. Then — Id belongs to the Weyl
group. Therefore there is an inner automorphism of H leaving T’ invariant
and sending U, onto U_, for every ye®(T",H). It maps (U, Uj) onto
(U_, U_p) and U g, 4 onto U _ 4,z Whence our assertion in this case.

Assume now @(T",H) to be of type A,. Since a+ f§ is assumed to be a
root, we may find an ordering on @(T", H) for which « and f§ are the simple
roots. Then either @(o, f) = ¢ or P(a, f) = {« + }. The Weyl group contains
an element (the reflection to a + f = 0) which sends « and f§ onto — f and
— a respectively. The corresponding automorphism of G maps (U,, U) onto
(U_pU_pand U g4 onto U oy _,, and again @(— f, — o) = &(—a, — f)
is either empty or equal to { — «, — f}. Therefore

q)(aa B) = ¢©(Ua’ Uﬂ) =(1)¢>(U—ﬂ’ U—-u)= {1}¢>(D(~ a, _ﬁ) = (b’
(e, f) = {a+ p}<>(U, Uy #(1)
SU_pU_)#{l}e®(~0o,— ) #0=>D(~a, ~f)={—a—f].

14.9. Automorphisms of semi-simple groups. Assume G is semi-simple, and fix
abes”. In

<A=Aut, . (G)

alg.grp.
let Int(G) be the group of inner automorphisms. Also write A r, for the
subgroup of A stabilizing both B and T.

According to (14.8) @(B) is the set of positive roots with respect to a basis
A(B) of @. We shall write Dyn(@®, B) for the corresponding Dynkin diagram
(see 14.7), and Aut(Dyn(®, B)) for its automorphism group.

If ae Ay 1, then, since a*T =T, a induces an automorphism of the root
system @. Since a- B = B it follows that a leaves A(B) stable and hence defines
an element a’eAut(Dyn(®, B)).

Proposition.

(1) A=1Int(G) A 1y

(2) Int(G)N A 1, is the kernel of the homomorphism A g 1, — Aut(Dyn(®, B))
(ar—a’) described above.

(3) There is a natural injection A/Int(G)— Aut(Dyn(®, B)). In particular
Int(G) has finite index in A.

Proof. Clearly (3) follows from (1) and (2).
(1) Let aeA. By the conjugacy of Borel subgroups of G we have cB=B
where ¢ = Int(g)oa for some geG. By the conjugacy of maximal tori in B we
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have dT=T where d=Int(b)oc for some beB. Thus we have
d =Int(b)°Int(g)°a€A 4 1, as required.
(2) Suppose a€A gy 1, If a =Int(g) for some geG then by 10.6, 11.16,

geN gBINN T)=Bn N (T)=Np(T)=T,

so a induces the identity qutomorphism of @.

Suppose, conversely, that a’e Aut(Dyn(@, B)) is the identity. We must show
that a is inner. For each.¢e A(B) we have an isomorphism 6,:G,— U,. Since
aleaves U, stable we have afi (x) = 0,(c,x) for some c,e K*. Since the elements
of A(B) are linearly independent we can find a te T such that t* = ¢, for each
ae A(B). Then Int(t) has the same effect as a on each U (xeA(B)) so we can
replace a by Int(t)"'ca and assume each c,=1. In that case a fixes the
elements of each U (xeA(B)).

We claim a also fixes the elements of T. For if teT then t* = a(t)" for each
aeA(B). Since G is semisimple, A(B) spans a subgroup of finite index in X(T)
(14.8). Hence t = a(t) as claimed.

Evidently a stabilizes G,=G™ and it fixes the elements of the Borel
subgroup T-U,. Hence 11.4 (1) implies a|G, is the identity. Finally 14.8
asserts that the G (xeA(B)) generate G, so a is the identity.

Remark. In (1), G may be any connected algebraic group.

14.10 Proposition. Assume G is semi-simple and # {e}.

(1) Let H be a connected normal subgroup of G, and let H' = (G¥)°.
(a) H is semi-simple.
(b) G=H-H' and HH' is contained in the finite group 4(G).
(c) If G- G’ is a surjective morphism, then G' is semisimple.

(2) Let {G;liel} be the minimal elements among the connected normal
subgroups of dimension = 1.

(a) If i # j then (G;, G;) = {e}.
(b) I is finite; say I ={1,...,n}. The product morphism
Gy xxG,»G
is an isogeny.

(c) If H is connected normal subgroup of G, then H is generated by
{G;|G;,= H}.

(3) G is “almost simple,” i.e. G/€(G) is simple, if and only if the root system
@ is irreducible.

Proof. (1) Assertion (a) follows from (14.2, Cor.). G is the kernel of the
conjugation homomorphism:

G

7, Aut H)

alg.grp.(
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and, by 14.9, the image of H is a subgroup of finite index. Hence H-G¥ has
finite index in G. Therefore, by connectivity, G = H-(G")° = H-H'. Moreover
(HnHY c ZHY c#(H)={e} so HAH’' is a finite normal, and hence
central, subgroup of G.

(c) Let H be the identity component of ker n, H' be as in (1). Then n defines
a surjective morphism with finite (hence central) kernel of H' onto G'. Since
H' is semi-simple (by (a)), so is G'.

(2) Let H be as above and let iel. Then (G;, H) is a connected normal
subgroup of G contained in G;n H. Hence, by minimality of G,, it equals {e}
or G;. In other words, G; = (G¥)° or G; = H. In particular (G, G) = {e} fori # j.

Let J = {i,...,i,) =1 and let G, denote the image of the morphism

f1:G, x - x G, =G

With the aid of the remarks above an induction on r =card J shows that
G,nG, is finite if h¢J, and hence that ker(f)) is finite. Therefore
dimG2dimG,=) dimG,2cardJ, so I must be finite. Moreover,
f1:Gy, X e % G,.r—fé, is an isogeny.

With H and H' as in (1) we see also that I=JuJ' (disjoint) where
J={jel|G;c H}and J' = { jel|G; = H'}. It follows then, since G = G, G,. =
H-H' and Hn H' is finite, that H = G,.

(3) If G=H-H' as above then it is clear that the root system @ of G
decomposes into the direct sum of those of H and of H’, respectively. Thus,
if both H and H' have dimension =1, @ is reducible.

Conversely, suppose @ is reducible; say @ = @, U®, is a non-trivial
decomposition into a sum of two root systems. Let G; denote the subgroup
generated by all U (xe®;). Then, since @, and @, arc both not empty,
dimG, 2 1(i=1,2).

We claim first that G, and G, generate G. For let H be the group they
generate. Then H, = Hn G, projects onto the semi-simple quotient PGL, of
G, (see 10.8) so H, contains a complementary torus T/ to T, in T. Since
(N Ty ={e} (G is semi-simple) it follows that the tori T’ are independent
and generate T. Thus H contains T, and hence each G,, and hence H =G
(see 14.8, Cor. 1(2)).

Next we claim that G, centralizes G,. For if ae®, and fe®, there are
no roots of the form ra + sf with r, s > 0. Hence the assertion () in the proof
of 14.5 shows that U, and U, commute.

Finally, therefore, G, " G, commutes with the group generated by G, and
G,, which is G, so G, N G,( = Z(G)) is finite. This completes the proof of (3),
and hence of the proposition.

a surjective morphism. Then nH = #H' and (R, H)= R H'.
It is obvious from the definition that n(#H)< #£H’. By the universal
property of quotients (6.3), n induces a surjective morphism of H/ZH onto

14.11 Corollary. Let H, H' be connected linear a%:braic groups and n:H — H'
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H'/n(ZH). By 14.10(1c), H'/r(#H) is semisimple, therefore n(ZH) > £H’, and
the first assertion follows. The second one is then a consequence of 10.6.

14.12 The Bruhat decomposition. We fix a Be #” and write U=B, ®* =
®(B), and A for the basis of @ in @7, the set of “simple roots associated
with B.”

Let B~ %" be the opposite Borel subgroup (see 14.1). We put U™ = B,
and @~ = P(B")= — @*. For ac® we shall write a >0 if xe®* and « <0
ifaed™.

If we W we shall allow ourselves to confuse w with a representing element
in .17;(T), whenever the use is unaffected by the choice of a represcntative.

We shall consider the groups

U,=Un"Uand U, =Un"U".

These are both T-stable closed subgroups of U, so it follows from 14.4 that
they are directly spanned, in any order, by the U, (y > 0) that they contain.
The sets of such y are, respectively,

@, =®U,)={y>0[y">0},

and

-

D, =dU,)={y>0ly* <0},

where y"=yeolnt(n) for any ne A o(T) representing w. Since these sets
partition @ it follows also from 14.4 that

u=u,U, =U,U,.
Let x, denote the fixed point of B in G/B.

Theorem. (a) (Bruhat decomposition of G). G is the disjoint union of the double
cosets BwB(weW). If weW then the morphism U, x B— BwB(x, y)— xwy,
is an isomorphism of varieties.

(b) (Cellular decomposition of G/B). G/B is the disjoint union of the U-orbits
Uwx, (weW). If weW then the morphism U, — Uwx,urruwx,, is an
isomorphism of varieties.

Remarks. (1) The fixed points (G/B)T correspond to #7, and we know from
11.19 that W acts simply transitively on this set. In particular, Wx, = (G/B)",
and this set has the same cardinality as W. Part (b) above therefore asserts
that each U-orbit in G/B meets (G/B)7 in precisely one point.

(2) Since B=U"T and W normalizes T it follows that, for we W, we have
BwB = UwBand Bwx, = Uwx,. Thus itis clear that (a) and (b) are equivalent.

(3) Tt follows from 14.4 that each U’ is isomorphic, as a variety, to an
affine space. Thus, if K = €, each of the U-orbits is a ccll and (b) gives rise
to a cell decomposition of G/B in the sense of algebraic topology. Since these
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cells are complex varieties they occur only in even (real) dimensions. Hence
the 2i™" Betti number of G/B is the number of cells of (complex) dimension
i. The latter is the number of we W for which dim U’, = card {y > 0w~ *(y) < 0}
is equal to i.

Proof. In view of remark (2) above, the theorem will follow once we
establish the following three assertions:

(1) If w,weW, then Uwx,=Uwx,=w=w.

(2) G=BWB.

(3) If weW then the map U, x B—BwB given by (x,y)—xwy is an
isomorphism of varieties.

Proof of (1). Say w'x,=uwx, with ueU. Then the stability group in U
of wx,, ie. Un"'B=U,,, coincides with that of uwx,, ie. with U,, =
Un""B="Un"B)="U,. Thus U, and “U,=U, are each closed T-
stable subgroups of U. Therefore 14.4 (2)(c) implies U,, = U,,.. In particular
¢! =9U,) and @}, = ®(U,,) coincide, where @} ={ye®d*|y* >0}, and
similarly for @}.. Therefore the proof is completed by the:

Lemma. If wweW and if @} = &}, then w=w.

Proof. Suppose ne A (T) represents w. We then have the actions of w
on AeX (T) and on aeX(T) given by "A=Int(n)>A and o = acInt(n).
Thus «¥o1 = a°*A, or, equivalenfly, (a*, 1) = {a,"1).

If 1 is semi-regular then the Weyl chamber to which 1 belongs is
determined by the signs of the numbers (a,1), where « varies over @*.
This follows from 13.18(5). Suppose le WC(B), i.e. (o, A) >0 for all >0.
Then for o >0 we have (&, "1) = (a”, 1) which is >0 if ae®} and <0
otherwise. It follows from the hypothesis, therefore, that *A and "' lie in
the same Weyl chamber. Therefore w = w' since W acts simply transitively
on the Weyl chambers (13.10).

Proof of (2). It will be carried out in several steps.

(i) If G has semi-simple rank 1 then (2) holds.

In this case W has order 2. So part(1) implies that BWx, consists of two
U-orbits. Hence it suffices to show that G/B consists of at most two U-orbits.
Consider the morphism U — G/B (u+>uy), where y is not a fixed point of
U. We can identify U =~ G, with P, minus a point, and then extend the
morphism to P, — G/B. The image is closed and one-dimensional, and
hence equals G/B. On the other hand this image consists of a one-
dimensional U-orbit together with a single fixed point.

(i) If ae @ and xe(G/B)", then

Gox = (U ) U (Uar,x).
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Put C =(G,), = G,n B,. This is a Borel subgroup of G, (11.18), and we
have a G,-equivariant and bijective morphism G,/C— G,x. Since G, has
semi-simple rank 1 (13.18) and Weyl group {e,r,} (with respect to T). (ii)
now follows from (i).

(iii) Suppose a is a simple root (i.e. aed) and let W = d* —{a}. Then,
in the terminology and notation of (14.5), ¥ is special, und so the U, (fie V)
directly span a group Uy. Moreover Uy is normalized by G, and
U=U,Uy=UyU,.

It is clear from the properties of root systems (see 14.7) that ¥ is special
and that (o, ¥) = V. Furthermore (— a, ¥) = ¥. For suppose
y=r(—a)+ spe®, where fe ¥ and r,s > 0. Then f = Y, m,0 with m,, > 0 for

ded

some J, # a, because @ is reduced. Hence the do-coordinate of y is sm,, > 0, so
ye®@*. Clearly y #a so ye V.

Now it follows from 14.5 that {U;|Be P} directly span (in any order)
a group Uy, and that U, is normalized by U, and U_,, as well as, of
course, by T. Thus U, is normalized by G,, the latter being generated
by U, U_,, and T. The equalities U = U, Uy = Uy U, are now clear.

(iv) If acA and xe(G/B)T then G,Bx = (Ux)u(Ur,x).

We have B=UT =U,UT (as in (iii)), so

G,Bx=G,U,UyTx
=G, Uyx (Tx=xand U, = G,)
=UyuG,x (G, normalizes U; (iii))
=Uyg((U,x)u(Uyr,x)) (part (ii))
=(Ux)u(Ur,x)

(v) If a€A then G, (BwB) = BwBuU Br,wB.
For if weW then, by (iv), we have

G,BwB = (UwB)U(Ur,wB)  (BwB)U (Br,wB).

According to the corollary of 14.8, G is generated by the G, (xeA).
Hence (v) implies G(BW B) = (BW B), thus proving (2).

Proof of (3). Since w=UN"B=UnwBw '=UnwUw™! we have
U,wc U. Similarly, U wcwU~. Writing B=UT=U,U,T we see that
BwB=U, U,wB=U,wB, so

f:U., x B->BwB, (x, y)—xwy

is surjective. Since U,wcwlU™ and U nB=/e} it follows that f is
injective also. Moreover since L(U™)= )’ g, has trivial intersection with
a<0

LB)=g"® Y g, it follows that f is separable, and hence an

>0
isomorphism.
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14.13 Corollary. If B, B, B"e# then BAB' contains a maximal torus of
G. If B' and B" are opposite to B, then they are conjugate by an element of B.

Proof. B has a fixed point on G/B= | ) Uwx, (in the notation of 14.12).
weW

Say B’ fixes x = uwx,, where we W and ueU. Then B'=""B. Since T =B
we have “T «c*""BnB=BnB.

Let T, T" be maximal tori in BNnB and BN B” respectively. If B’
(resp. B”) is opposite to B, then it is the unique Borel subgroup of G
opposite to B containing T’ (resp. T") by 14.1. Then an element beB such
that *T”" = T" (see 10.6) will conjugate B’ onto B".

14.14 Corollary. Let B, B'eB" be opposite Borel subgroups and U = B,,
U’ =B,. Then the product map U’ x B—G is an isomorphism of U’ x B
onto an open subset of G. The group G is a rational variety.

By 14.13, we may assume that B, B’ are the B and B~ of 14.12. Let w,
be the element of W which maps @* onto @~. Then, left translation by
w, is an isomorphism of U-w, B onto w, U-w,-B=U""B, and the first
assertion follows from 14.12.

T is isomorphic to a product of GL,’s over K. In view of 13.18, the
remark in 14.4 applies to U, U’, hence both are isomorphic, as varieties,
to affine spaces. Since B is isomorphic, as a variety, to T x U by 10.6, it
follows that U~ B is a rational variety, hence so is G.

Remark. We shall see in § 18 that if G is defined over k, then G is unirational
over k, rational over a separable extension of k. It follows from 14.14 and
15.1(2) and 15.8 that any connected affine k-group is a rational variety over k.

14.15 The Tits system I =(G, B, N, S). Let N = #4(T) and S = {r,} (x€4).
Then (W, S) is a Coxeter system [9:1V, 2.1]. These data satisfy the following
conditions:
T1 G is generated by B,N and BAN =T is normal in N.
T2 W = N/T is generated by S.
T3 sBw <« BwBUBs-wB (seS,weW).
T4 sBs # B for seS.

In fact, T1 follows from 14.8 and 10.6, T2 from the fact that (W,S) is
a Coxeter group, T3 from 14.12(v) and T4 from the fact that if s =r, (xe4),
then sBs contains U _,.

This means that J is a Tits system [9:1V, 2.1]. By general arguments
(loc. cit) these conditions already imply the Bruhat decomposition

G =11BwB.

14.16 Parabolic subgroups. In a Tits system J'=(G,B,N’S) the
parabolic subgroups are by definition the subgroups which contain a
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conjugate of B'. For a subset I of S, let W) be the subgroup of
W' = N'/(B'n N’) generated by I. Then P} = B'-W}-B' is a group and every
parabolic subgroup of G’ is conjugate to exactly one of those [9:1V, 2.5,
2.6].

Coming back to our Tits system 7, we note first that B-W, B is a
closed subgroup. In fact, for each a€l, it contains T, U, and r,U,;r,=U_,,
hence G, = 2 (T,). Since I generates W,, it follows that B- W, B is generated
by B and the G, (ael), which are all irreducible subvarieties containing
1, so that our assertion follows from 2.2. In particular we see that any
subgroup containing a conjugate of B is closed. As a consequence, the
parabolic subgroups as defined in 11.2 are the same as the parabolic
subgroups of the Tits system 7.

It follows from general facts about Tits systems that for I, J < 4, there
is a canonical bijection of between W, \W/W, and P\G/P, [9:1V, 25,
Rem. 2]. In particular, G is a disjoint union of double cosets B-w-P,,
where w runs through W/W,. We shall come back to this in a more general
case in §21.

14.17 Standard parabolic subgroups. Once B is chosen, a parabolic
subgroup P containing B is called standard. For later use, we rephrase
here slightly the description of standard parabolic subgroups. For I < 4, let

»

T,= (n kera)".

ael

Let us write B, for BN Z ¢(T),). It is a Borel subgroup of Z4(T;) by 11.15.
It is a well known fact on finite euclidean reflection groups that a subgroup
of such a group fixing pointwise a vector subspace is generated by the
reflections in the group fixing that subspace [9:V,§4,n0.6]. Therefore
W(T, Z (T})) = {r.De;. Moreover, in view of 9.2, &(T,Zq(T)))=1[I],
where [I] denotes the set of roots which are linear combinations of
elements in I. Let @(I)* = @* — [I]. It is the set of roots

1 B=12 clPa

acd
where at least one of the c,(f), a¢l, is >0. As a consequence, in the
terminology of 14.5, @(I)* is special and

Q) (@ ®()*) = O()* for ae[l].

14.18 Proposition. We keep the notation and assumptions of 14.17. The
standard parabolic subgroups are the groups P;=B-W;B (Ic4). The
group P, is the semi-direct product of Z(T;) and of its unipotent radical,
which is equal to U gy +. The group T, is the identity component of the
center of Z(T)), is equal to ZT,)NRP, and is a maximal torus and a
Cartan subgroup of RP;.
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Proof. By 14.5, the U,, for ae®(I)* directly span a unipotent subgroup
U py+. Moreover, this group is normalized by U, for fel, hence by
Z6(T)). The intersection of Ugyy+ and ZG(Ty) is unipotent on the one
hand, central in the latter group, hence consists of semi-simple elements
on the other hand, therefore is reduced to {1}. We have

LUan)= @ 8o LZAT)=LMDO D 9,
ae®(I)* ae(I]

These Lie algebras intersect only at the origin and Zg(T))-U g+ is 2
semi-direct product with unipotent radical U 4,-. It contains B, hence is
parabolic. The Bruhat decomposition of Z'4(T;) shows that it is equal to P,.
The center of 7 (T;) contains T; and is contained in T. But T; is the identity
component of the fixed point set of W, = W(T, % (T,)), hence, a fortiori, the
identity component of the center of Z'4(T,). The subgroup T; U 4+ is
solvable, normal in P,, hence bclongs to #£P;. But the identity component
of AP, N2 &(T;) is the radical of Z 4(T;), hence is contained in T;. Therefore
RP;=T; U 4;,- and T is a maximal torus of ZP;. By construction, no
element in @(I)* is trivial on T;, therefore the centralizer of T, in the Lie
algebra of U 4. is reduced to L(T}) and, by 9.3, 10.6, T} is its own centralizer
in #P,, hence is a Cartan subgroup of #£P,.

For feX(T), let B be the restriction of f to T,. If fe®(T, G), then f =0
if and only if fe[I]. Otherwise, § is an integral linear combination with
coefficients all of the same sign of the &, where ael’=A — I. The & (ael’) are
often called the simple roots of ZP or of P with respect to T;. They are
linearly independent. Of course they are trivial on the identity component
Z of the center of G. They may also be viewed as characters of T} = (T, N 2G)°
or of T,;/Z. Both tori are of dimension equal to Card I’, hence the & (ax€l)
span a Q-basis of X(T})g or X(T;/Z)q. The group X ,(T;) contains an element
A on which the & (xel’) are equal to one another and > 0. Then &(T, P))
(resp. @(T, R,P,).resp. O(T,Z(T)))) is the set of ae®(T,G) such that
{a, Ay =0 (resp. (&, A) >0, resp. (&, 1) =0).

14.19 Corollary. Let P be a parabolic subgroup of G. Then P contains Levi
subgroups. The maximal tori of &P are also Cartan subgroups of RP. The
Levi subgroups of P are the centralizers of the maximal tori of ZP. Any two
are conjugate by a unique element of R,P.

The group P is conjugate to a standard parabolic subgroup. The corollary
then follows from the proposition and 11.23(ii).

14.20 Opposite parabolic subgroups. Two parabolic subgroups of G are said
to be opposite if their intersection is a common Levi subgroup.

If P and P’ are Borel subgroups, then the Levi subgroups are maximal
tori and P, P’ are opposite in the sense of 14.1.

14.21 Proposition. Let P be parabolic subgroup of G and L a Levi subgroup
of P.
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(i) There exists one and only one parabolic subgroup P’ opposite to P and
containing L. Any two paraivolic subgroups opposite to P are conjugate by a
unique element of #,P. '

(i) Two parabolic subgroups P,Q contain opposite Borel subgroups if and
only if their unipotent radicals intersect only at the identity.

(iii) If P’ is opposite to P, the product map p:(x,y)—x-y induces an
isomorphism of varieties of R,P' x P onto an open subset of G, equal to
P'-P.

Proof. We may assume P and L to be in the standard situation of 14.17,
whose notation is kept. Then the argument of 14.17 also shows that U _ 4+
is normalized by Z;(T}), hence that P, = U_ o+ Z(T)) is opposite to P.
The uniqueness follows from 14.18. Thus the parabolic subgroups opposite
to P correspond bijectively to the Levi subgroups of P (by the map Q+—Q N P),
hence also to the maximal tori of £P, whence the conjugacy assertion.

(ii) In this proof we use repeatedly 14.18, 14.19, without explicit mention.
Assume P and Q contain opposite Borel subgroups B and B~. Then PnQ
contains T = BnB~. For each root ae ®(T, G), the group U, is either in B
orin B~, hence either in P or Q. But if U, « 2,PNA&,Q, then U _, is neither
in P nor in Q, whence a contradiction. Therefore Z,Pn%,0Q = 1. Assume
now this last condition to hold and choose a maximal torus T of G contained
in PAQ (14.13). From the discussion in 14.17, we see that P (resp. Q) has a
Levisubgroup L (resp. M) generated by T and the U, such that o, — ae &(T, P)
(resp. a, —ae®(T,Q)). Then R =(LN M)’ is generated by T and the U, for
which ae®(T, L)~ ®(T, M). Thus a root o belongs to @(T, R) if and only if
neither a« nor — « is contained in &(T, #,P)u &(T,R,Q). Let us write I for
O(T,R,P) and J for O(T,Z,Q). Then

(1) ®(T,G)= &(T,RyuluJu — U —J,

(disjoint union). Repeated application of Cor. 2 to 14.8 shows that the U _,
(ael) (resp. U_4(BeJ)) directly span a unipotent group U_; (resp. U_))
normalized by R. Let ael. Then a¢J by assumption, thereforc —ae ®(T', Q).
As a consequence, U _; = Q. Similarly U_; = P. The group U _, (resp. U _))
normalizes #,Q (resp. &,P), therefore generates with it a unipotent group
U ,(resp. Ug),where A= —IuJand B=1u —J = — A. By (1), we see that

®(T, G) = (T, R)U AU — A.

Choose two opposite Borel subgroups C, C~ of R containing T. Then C-U ,
and C™-U_ , are two opposite Borel subgroups of G contained in P and Q
respectively.

(iii) Since #,P'n P = {1}, the map is injective. The image contains B~ -B,
which is open (14.14), and is acted upon transitively by &,P’ x P where the
first (second) factor acts by left (right) translations, hence #,P’- P is open in
G. The differential of u at the origin is an isomorphism, since L(%,P’) and
L(P)are transverse and span L(G). Therefore y is an isomorphism of varieties.
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14.22 Proposition. Let P and Q be parabolic subgroups of G.

(i) PN Q is connected and (PN Q). R,P is a parabolic subgroup.
(i) Let L be a Levi subgroup of P. Then H—H-R,P is a bijection of
the set of parabolic subgroups of L onto the set of parabolic subgroups
of P.
(iii) If Q is conjugate to P and contains R,P, then Q = P.

Proof. By 14.13, P~ Q contains a maximal torus T of G. Fix a Borel sub-
group of P containing T and use the setup of 14.17. Then P = P, for some
set 0 of simple roots. For any a€f, the group P, contains both U, and U _,,.
But at least one of them is contained in any Borel subgroup of Q contain-
ing T. Thus any Borel subgroup B’ ol PnQ containing T contains at least
one of U, U_, for every ae[0]. Then B #,P contains T and one of
U,U_, for every ae®(T,G). Therefore it is a Borel subgroup and
(PN Q) 4,P is parabolic. It is then necessarily connected, hence PnQ is
connected.

(i) We just saw that if Q is parabolic in L, then Q-%,P is parabolic in P
(or G). If now R is a parabolic subgroup of P, it contains #,P and can be
written in the form = (LN R)-#,P. We have P/R = L/(L " R), hence L/(LNR)
is complete and LNR is parabolic. It is clear that this correspondence is
bijective.

(iii) The group (@ N P) A,P is parabolic by (i) and contained in PN Q by
assumption. In particular P nQ contains a Borel subgroup; but a parabolic
subgroup is conjugate to a unique parabolic subgroup containing a given
Borel subgroup (11.17) whence P = Q.

14.23 Lemma. We keep the notation of 14.12. Let X ,(a€A) be a non-zero
element of g, and X =y X,. Then Tr(X,b) = {geG, Adg(X)eb} = B.

aeS
Let geTr(X,b). By 14.12, we may write g =b"wb (b,b'eB, we W). Since
B normalizes b, we may assume b’ =e. By (3.17), Ad b(X) — X lies in the Lie
algebra of the derived group (U, U) of U. It follows from (%) in 14.5 that
(U, U)is contained in the direct span of the U, (ye @ *, y¢ 4). Since w permutes
the g,, we may then write

Ad g(X)= Z Can(a)’ (Xw(a)EQW(az))'
acd
The set of a’s for which ¢, # 0 contains 4, and the corresponding X, are

linearly independent. Since Ad g(X)eb, it follows that w(4) = @*. By 14.7,
14.8, this yields w =, geB.

14.24 Lemma. Let H be a connected group and M a closed subgroup of H.
Assume that there exists X em = L(M) such that the set Tr(X,m) of heH for
which Ad h(X)em consists of finitely many left classes mod M. Then
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N g(m)P=M°, and V=) Adb(m) contains a dense open set of b. If

heH
H/M is complete, then V =1).
A u(m) is a closed subgroup of H contained in Tr(X, m), hence its identity
component is equal to M°. The proof of the remaining assertions is quite
similar to that of 11.9. We consider the morphisms

Hxb-5Hxbh-5H/M b,

where a(x, Y) = (x, Ad x(Y)) and B == x Id, with n:H— H/M the canonical
morphism. Let Q = fa(H x m). By the same argument as in 11.9, it is seen
that Q is closed. By definition, V = pr,(Q), where pr, is the projection on the
second factor, hence V is closed if H/M is complete. The fibre of pr, over
an element Z of V is n(Tr(Z,m)”'). In particular, the fibrc over X is finite.
On the other hand, by using the projection pr, on the first factor, one sees
again that dim Q = dim H, hence pr, is dominant.

14.25 Proposition. Let H be a k-group. Then Yy is the union of its Borel
subalgebras.

(By definition, a Borel subalgebra of |y is the Lie algebra of a Borel subgroup
of H°) B

We may assume H to be connected. Let R be its radical. The canonical
projection H — H/R defines a bijection between Borel subgroups (11.14). This
reduces us to the case where H is semi-simple. Let B be a Borel subgroup
of H. In view of 14.23 and 14.24, the set V of conjugates of b contains a
dense open set of f). But, since H/B is complete, it is closed by 14.24, whence
the proposition.

14.26 Proposition. Let H be a k-group and X ely. Then X is nilpotent if and
only if it belongs to the Lie algebra of a closed unipotent subgroup.

Proof. For the “if” part, see 4.8. Let now X be nilpotent. By 14.25, it belongs
to the Lie algebra of a Borel subgroup of H, which reduces us to the case
where H is connected, solvable. But then, 10.6(4) yields XeL(H,).

Bibliographical Note

Up to 14.14, the results of this paragraph are due to Chevalley [13]. In
particular, see Exp. 13 for 14.11, Exp. 16 for 14.8, and Exp. 17 for 14.9, 14.10.
The main deviation here from [13] is that the integrality condition 14.6 is
proved more directly, without recourse to representation theory.

In 14.12 it is proved that G/B (B a Borel subgroup) admits a partition
into finitely many locally closed subvarieties, each isomorphic to an affine
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space. We also noticed that these are parametrized by the fixed points of a
maximal torus T. The existence of such a decomposition has been since
proved much more generally for any smooth projective variety in which GL,
operates with only finitely many fixed points by A. Bialynicki-Birula, Annals
of Math. 98 (1973), 480-497.

14.25 is due to Grothendieck ([15], Exp. XIV, Thm. 4.11, p. 33). The proof
given here is taken from [3].



Chapter V

Rationality Questions

In this chapter, all algebraic groups are affine. G is a k-group.

§15. Split Solvable Groups and Subgroups

15.1 Definition. Let G be connected solvable. G splits over k, or is k-split, if
it has a composition series G = G, > G,  --- © G, = {e} consisting of connected
k-subgroups such that G;/G,, , is k-isomorphic to G, or GL, (0<Zi<3s).

Examples. (1) The group D, of invertible diagonal matrices of degree n splits
over the prime field. More generally, if a k-torus splits over k in the sense
of 8.2, then it is k-isomorphic to a product of GL, (8.2, 8.3), hence is k-split
in the present sense. The converse then follows from 8.14, Cor.

(2) Since a connected one-dimensional k-group is k-isomorphic to G, ot
GL, (10.9), it follows from 10.6 that if k is algebraically closed, then any
connected solvable k-group is k-split.

15.2 Proposition. Let G be connected, solvable and k-split, and V a complete
k-variety on which G acts k-morphically. If V(k) # ¢, then G has a fixed point
in V(k).

Proof by induction on dim G. Let N be a normal connected k-subgroup
of G such that G/N is isomorphic to G, or GL,. By induction, there exists
xeV(k) fixed under N. The orbit map gr—g-x is defined over k, and induces
a k-morphism f:G/N — V, whose image is the orbit G(x) of x. By assumption,
G/N is k-isomorphic, as a variety, to P, — A where A consists of one or two
points rational over k. Since V is complete, f extends to a k-morphism of
P, into V. Then f(P,) = G(x)u f(A) is complete, hence is the Zariski-closure
of G(x), hence is stable under G. The set f(4) consists of one or two points
rational over k, each of which is fixed under G since otherwise its orbit would
meet G(x). Q.E.D.

15.3 Definition. A k-subgroup H of GL, is trigonalizable over k if there exists
xeGL(n, k) such that x-H-x~" consists of upper triangular matrices.
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A flag F in K" is rational over k if it consists of subspaces defined over k.
This is the case if and only if F is the transform by an element of GL(n, k)
of the standard flag F,:[e,] = [e,,e,] = ---. Thus, H is trigonalizable over
k if and only if it leaves stable a flag rational over k. More intrinsically, we
may say therefore that if V is a k-vector space, a k-subgroup H of GL(V) is
trigonalizable over k if and only if it leaves stable a point rational over k of
the flag manifold & (V).

A trigonalizable group is necessarily solvable. If k is algebraically closed,
any connected solvable k-subgroup of GL, is trigonalizable over k by the
Lie-Kolchin theorem (10.5).

15.4 Theorem. Let G be connected, solvable.

(i) If G splits over k, then every image of G under a k-morphism f (resp.
under a k-morphism into GL(V)) splits over k (resp. is trigonalizable over k)
and R,G is k-split.

Assume G to be linear.

(ii) The following conditions are equivalent: (a) G is trigonalizable over k;
(b) G, is defined over k and G/G, splits over k; (c) X(G) = X(G),-

(iii) If k is perfect, G splits over k if and only if it is trigonalizable over k.

(i) We show first that G’ = f(G) is k-split. To start with, assume G to be
of dimension one, and G’ # {e}, hence of dimension one, too. If G=GL,,
then G’ is k-isomorphic to GL, by 8.2. Let G =G,. The group G’ is then
unipotent; it acts faithfully and k-morphically on the projective line P,; it
has exactly one fixed point, say P, which is rational over k? ~, and one open
orbit (10.9, Ramark). Then G acts k-morphically on P, via f, with P as its
only fixed point. By 15.2, P is then rational over k, hence (10.9, Remark), G’
is k-isomorphic to G,.

In the general case, we have a composition series (G;) of G as in 15.1. Then
(f(Gy)) is a composition series for G', and f induces a surjective k-morphism
of G;/G;,, onto f(G,)/f(G;i4,), (i=0,...,5—1). Our assertion now follows
from the one-dimensional case.

Let now G’ be a k-subgroup of GL,, and %, the flag manifold of K". Since
G’ splits over k, and & (k) # ¢, the group G’ has a fixed point in & (k) by
15.2, hence is trigonalizable over k (15.3).

To prove that 2,G is k-split, we argue by induction on dim G. By definition,
G contains a k-split normal subgroup N of codimension one. By induction,
R,N is k-split. If G/N is a torus, then #,G = #,N. So assume G/N 5 G,. Let
n:G— G = G/R,N be the canonical projection. #,G’ has dimension one and
2,G=n"Y2R,G). It suffices therefore to show that the latter is isomorphic
to @G,. The group N’ = n(N) is a torus, which is normal, hence central, in G'.
Therefore G’ is nilpotent and is the direct product of N’ and £,G’ (10.6). The
latter is defined over k by (ii) below, hence k-isomorphic to G'/N' = G/N = @,

(i) We prove first that (a)=>(b). Let G be contained in the group T, of
upper triangular matrices of degree n, and let U, be the unipotent part of
T, Then G,=GnU,. By 10.6(4), the Lie algebra of G, consists of all the
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nilpotent elements in L(G), hence L(G,)= L(G)nL(U,), and G, is defined
over k by 6.12. The k-morphism of T, onto D, with kernel U, induces an
injective k-morphism of G/G, into D,, hence G/G, is k-isomorphic to a direct
product of GL, (8.4).

(b)=(c) Since G is k-isomorphic to the semidirect product of G/G, and
G,(10.6),and X(G,) = {1}, it is clear that the map n*: X(G/G,) — X (G) induced
by the projection n: G — G/G, is an isomorphism. If G, is defined over k, then
so is 7, hence 7* maps X(G/G,), into X(G),. Therefore X(G/G,) = X(G/G,),
implies X(G) = X(G),.

(c)=>(a) Let 1:G— GL(V) be a k-morphism. By the Lie-Kolchin theorem,
there exists ye X(G) such that the eigenspace V, is # 0. Since, by assumption,
x is defined over k, the space V, is defined over k (5.2). Using induction on
dim V, we see then that A(G)is trigonalizable over k, whence our contention.

(iii) Let now k be perfect. In view of (i), there remains to show that if G
is trigonalizable over k, then it splits over k. Let G = T,. By taking the identity
components of the intersections of G with the standard normal series of T,
(see 10.2), we get a normal series (G;) consisting of connected k-groups, whose
successive quotients are either k-isomorphic to one-dimension images of
subgroups of D, hence are k-isomorphic to GL, (8.2, 15.1) or are unipotent,
one-dimensional. Since k is perfect, the latter quotients are k-isomorphic to
G, by (10.9, Remark). Thus G splits over k.

Remark. By 15.4(ii), a linear k-torus is k-split'if and only if it is trigonalizable
over k. On the other hand, by the same result, a connected unipotent k-group
is always trigonalizable over k, while it need not be k-split. In fact, [26, p. 46]
gives an example of a one-dimensional such group, over a field of character-
istic >2 (which is necessarily imperfect in view of 15.4(iii)).

15.5 Corollary. (i) Let G be linear and trigonalizable over k. Then the image
of G under a k-morphism [:G — GL(V) is trigonalizable over k.

(i) Let G be unipotent. Then G is trigonalizable over k. If k is perfect, G
splits over k. (_ 4w prbivlv il crR=0)

(i) Let G’ = f(G). Then G, = f(G,) and f induces a surjective k-morphism
of G/G, onto G'/G.,. Our assertion follows from 15.4(i), (i1).

(i) This follows from 15.4(ii), (iii).

15.6 Proposition. Let G = G,, GL,. Let X be a(non-empty) k-variety on which
G acts k-morphically and transitively. Then X (k) # ¢.

The variety X is irreducible. If dim X =0, then X is reduced to a point,
necessarily rational over k. Otherwise, dim X =1, and for xeX, the orbit
map f,:g+g-x is surjective (with finite fibres), hence its comorphism is an
injective homomorphism of K(X) into K(G). But, here, K(G) = K(T), where
T is an indeterminate, hence, by Luroth’s theorem, K(X) is also a purely
transcendental extension of K, of dimension one. In other words, X is a
rational curve; it is obviously smooth. There exists therefore a k-isomorphism
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of X onto a k-open subset of a smooth complete curve Y of genus 0. The
action of G on X extends to a k-morphic action of G on Y, and Y - X
consists of finitely many fixed points of G.

We have P, = GuA where either A ={0} or A={0}u{oo}. The orbit
map f, extends to a morphism of P, into Y, which is then surjective, since
its image is closed, one-dimensional. It follows that Y — X = f, (4). The
morphism f, is defined over k(x), so f,(4) < Y(k(x)). This is true for any
point xe X. But we may find two points x, ye X(K) such that k(x)nk(y) =k,
e.g. two “independent generic points,” or a generic point x and an algebraic
point y. Therefore f(4) < Y(k) and the latter set is not empty. Since Y is of
genus zero, it is then k-isomorphic to P, (10.9, Remark). As a consequence,
Y has at least three rational points (corresponding to 0, 1, o). Since f(A)
consists of at most two points, this proves that X (k) # ¢.

15.7 Corollary. Let H be a k-group, L a connected solvable k-split subgroup,
and n:H—H/L the canonical projection. Then n(k):H(k)—(H/L)(k) is
surjective.

Proof by induction on dim L. Let N be the first non-trivial term of a
composition series splitting L. Thus N is k-split, of codimension one, and
L/N is k-isomorphic to GL, or G,. The map = is the composition of the
canonical projections

H-H/N L H/L.

Let xe(H/L)(k) and X = B~ !(x). Since B is separable, X is defined over k.
The group L normalizes N, hence the right translations on H/N define a
k-morphic action of L/N on H/N (6.11). Obviously, its orbits are the fibres
of f. Therefore, 15.6 shows that X (k) # ¢. Since, by induction assumption
a(k) is surjective, the corollary is proved.

15.8 Corollary. Assume H to be connected. Then H is birationally isomorphic
over k to (H/L) x L. If H is a k-split solvable group, then it is a rational variety
over k.

By 15.7 and AG, 13.6, there exists a k-open subset U of H/L and a
k-morphism ¢: U — H such that nos is the identity. The map ¢:(u, g)—a(u) g
is then a k-isomorphism of U x L onto n~*(U) (6.14, note that U x L and
1~ '(U) are smooth). Assume now H to be itself k-split solvable. If it is
onc-dimensional, then it is k-isomorphic to G, of GL,, hence rational over
k. Let N be a normal k-split subgroup of codimension 1 of H. Then H/N is
rational and, by the first assertion, G is birationally k-isomorphicto N x G/N.
Arguing by induction on the dimension, we may assume that N is rational
over k, and the second assertion is proved.

Our next goal is to extend 15.6 to connected solvable k-split groups. This
requires some preparation.

15.9 Lemma. Let G operate morphically on the irreducible affine variety V
with closed orbits. Assume that G° is either a torus or unipotent. Then K(V)¢
is the quotient field of I = K[V]°.
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Proof. Let N=G° and feK(V)". If N is a torus, then f is in the quotient
ring of K[V]" by 8.19. Let now N be unipotent. The ideal J of elements
qeK[V] such that f-qeK[V] is not zero and N-invariant. Let E be a
non-zero finite dimensional N-invariant subspace of J (1.9). The space D of
fixed points of N in E is at least one-dimensional, as follows from 10.5. There
exists therefore g #0, such that r= f-q is regular, hence in K[V]*. Thus
f=r/q, with r, qeK[V]" and q #0. Let now finally f be invariant under
G. We have just seen that f = a/b, with a, be K[ V] fixed under G° and b #0.
The finite group G/G° operates on K[V]¢°. Multiply a and b by the product
of the g-b (geG/H, where H is the isotropy group of b in G) to get f =d'/b’
with b’ # 0, invariant under G, hence a’ invariant under G, too.

15.10 Lemma. Let V be an irreducible affine k-variety on which G acts
k-morphically and transitively. Let N be a normal k-subgroup of G whose
identity component is unipotent or a torus. Assume that the quotient G/INH,
where H is an isotropy group on V, is affine. Then V/N exists over k and is affine.

Proof. Let veV, H its isotropy group and o,:g+>g-v the orbit map. Then o,
induces a bijective morphism ¢ of G/H onto V, hence G/H is affine, too. We
note that, by construction of quotient spaces, we have

(1) K[G/H]=K[G]", K[G/HN]=K[GI'",

hence
K[G/NH]=K[G/H]".

The comorphism ¢°: K[V]— K[G/H] is injective and K[G/H] is a finitely
generated K[V]-module. There exists then nelN such that

@ K[G/H]" < K[V]<=K[G/H],
(here p is the characteristic exponent). This implies
©) (K[G/H]")" <« K[V]" < K[G/H]",

hence K[V]" is finitely generated. We claim that the affine variety Y with
coordinate ring K[V]" is the desired quotient V/N.
The commutative diagram of inclusions

K[V] K[G/H]
K[V ——— K[G/H]

gives rise to a commutative diagram of G-equivariant dominant morphisms
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where ¢, y are bijective, u is open, surjective, separable. Note that K[V]¥
is defined over k (8.19), hence Y and v are defined over k. Since u, @, are
surjective, so is v. The orbits of N are the fibres of u, and ¢ is bijective,
therefore the orbits of N on V are the fibres of v. Thus v is an orbit map.
Since p is open, and a purely inseparable morphism is a homeomorphism
for the Zariski topology (AG, 12.1), v is also open. By 15.9, K(Y), which is
by definition the quotient field of K[Y], is also equal to K(V)", hence v is
separable (AG, 2.4). The group G is transitive on Y, hence Y is smooth, and
in particular normal. It now follows from 6.2 that v is a quotient morphism,
hence Y = V/N.

15.11 Theorem. Let G be a connected k-split solvable k-group and V a k-variety
on which G acts k-morphically and transitively. Then V is an affine variety
and V(k) # &.

Proof. We show first that V is affine. Let ve V(k) and H its isotropy group.
It is defined over k. The orbit map o, yields a bijective morphism of G/H
on V. By AG, 18.3, it suffices to prove that G/H is alfine. So assume that
V =G/H. The group H/H° operates on G/H® and G/H =(G/H°)/(H/H°)
(6.10). Since the quotient of an affine variety by a finite group is affine (6.15),
it suffices to show that G/H" is affine, so we may assume H to be connected.
Assume now in addition that H is unipotent. If H=%,G, then G/H =is a
k-group, hence is affine, so we argue by descending induction on dim H. Let
H be a proper connected subgroup of 2,G. By 10.2, there exists a connected
subgroup H' of #,G normalizing H and such that H'/H has dimension one,
and therefore is isomorphic to G, (10.9). By induction, G/H’ is an affine
variety.

The group H' operates on G by right translations whence, by 6.10, a
morphic action of H'/H on G/H which is free, whose orbits are the fibres of
the projection 1:G/H — G/H'. Let k' be an extension of k in K. Since 7 is
separabile, the orbit over a point ye(G/H')(k") is defined over k', hence contains
a k’-rational point by 15.6. Thus ¢(k'):(G/H)(k')— (G/H')}(k') is surjective for
all extensions of k in K. As a consequence, © has local cross sections (AG,
13.6). Translating them by G(k), we see that their domains of definition cover
G/H. The inverse image of such an open set U is isomorphic to U x (H'/H),
as remarked in 6.14, hence is affine. Therefore G/H' is covered by affine open
subsets whose inverse images are affine; hence 7 is an affine morphism and
therefore the inverse image of any open affine subset of G/H' is affine (AG,
6.5). In particular, G/H is affine.

Let now H be any connected subgroup of G. We already know that G/%,H
is affine. Since H/#,H is a torus whose orbits in G/#,H are all closed, it
follows from 8.21 that (G/#,H)/(H/#,H) is affine. But it is isomorphic to
G/H (6.10).

We now prove the second assertion. If G is one-dimensional, it is the
content of 15.6, so we argue by induction on dim G. The group G contains
a proper non-trivial connected normal k-split subgroup N which is either a
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torus or is unipotent: If G is a torus, then it is a direct product of
one-dimensional k-split tori; if it is unipotent, then take a k-split normal
subgroup of codimension one; if it is neither, then set N = 2,G (15.4). By
15.10, the quotient V/N exists and is acted upon k-morphically, and obviously
transitively, by G/N. By induction, V/N(k) is not empty. We have seen in
the proof of 15.10, or could deduce from 6.5, that the projection V— V/N is
separable. Therefore the inverse image F of a point of (V/N)(k) is defined
over k. It is acted upon k-morphically and transitively by N hence, again by
induction, F(k) is not empty.

15.12 Corollary. Let n:V—W be a separable surjective k-morphism of
irreducible k-varieties. Assume that G operates k-morphically on V and that
the fibres of m are the orbits of G. Then n(k'):V(k')— W(k'} is surjective for
every extension k' of k in K. The map n admits local cross sections.

If weW(K'), then n~!(w) is defined over k' by separability, and it is acted
upon k'-morphically and transitively by G, which is solvable and k'-split.
Therefore ™ !(w) contains a point of V(k') and the first assertion is proved.
The second one then follows from AG.13.6.

15.13. For information, let us mention some further properties of k-split

solvable groups.

(@) If Vis as in 15.11, then V is k-isomorphic, as a variety, to a product of a
certain number of copies of G, and GL,, only of G’s if the isotropy groups
contain maximal tori of G, in particular if G is unipotent [28: Thm. 5].

(b) Let G be connected, unipotent. Assume it admits a k-morphic action of u
k-torus T by automorphisms such that only the identity is a fixed point of
G. Then G is k-split. There is a T-equivariant k-isomorphism of varieties
of G onto its Lie algebra.

The first assertion of (b) is a consequence of Cor. to Thm. 3 in [28], applied
to the semi-direct product G’ of T and G. The second one follows from
[3: 9.12], also applied to G'.

We shall not need these results, except in one case in which a direct proof
will be given (see §21).

15.14 Theorem. Let k be perfect and G be connected. The maximal connected
solvable k-split subgroups (resp. maximal connected unipotent k-subgroups, resp.
maximal k-split tori) of G are conjugate by elements of G(k). If R is one of
them, (G/R)(k) is the set of rational points of a projective k-variety V containing
G/R as k-open subset, on which G acts k-morphically.

Let R be a connected solvable k-split subgroup of G of maximal dimension.
Let n:G— GL(V) be a faithful k-morphism such that dr is injective, and V
contains a line D defined over k whose isotropy group in G (resp. algebra
in L(G)) is R (resp. L(R)) (see 5.1). The image of R in GL(V/D) under the
natural representation is trigonalizable over k (15.4). Therefore, there exists
a flag P in V rational over k, whose one-dimensional subspace is D, and
which is stable under R. Let & (V) be the flag manifold of V and f:g+>g(P)
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the orbit map of G into F(V). Let X = G(P). This is a projective k-variety
on which G operates k-morphically, and it is the union of G(P) and of orbits
of strictly smaller dimension. Let QeX(k), and H its isotropy group. It
is defined over k (since k is perfect), trigonalizable over k, since it leaves
fixed an element of & (V)(k), hence split over k (15.4(iii)). Consequently,
dim H £dim R, and dim G(Q) = dim G(P). It follows that QeG(P), hence
X (k)= G(P)(k). In view of the construction of P, the isotropy group (resp.
algebra) of P is R (resp. L(R)), hence f is separable, and G(P) = G/R, whence
(G/R)(k) = X (k).

Let now H be a connected solvable k-split subgroup of G. By 15.2, it has
a fixed point xe X (k). By the above, xeG(P)(k) = (G/R)(k). 1t follows from
15.7 that x is the image of an element geG(k) under the orbit map f. But,
then, g-H-g~ ! =R, and, if H is unipotent g-H-g~! < R,. This shows that
any maximal connected solvable k-split subgroup (resp. connected unipotent
k-subgroup) of G is conjugate under G(k) to R (resp. R,), and that a k-split
torus H is conjugate under G(k) to a subtorus of R. We already know that
the k-tori of R are k-split (15.4). There remains to show that two maximal
ones T, T’ are conjugate by an element of R(k). We proceed by induction
on dim R. Let @ be a connected one-dimensional k-subgroup of R, normal
in R. It is trigonalizable over k and, since k is perfect, it is k-split, k-isomorphic
to G,. Using induction and 15.7, we see that we are reduced to the case
where T' = T-Q, i.e. where R, = G, is one-dimensional. If R, commutes with
T, then R=T x Q is nilpotent, and T=T". If not, then Z(T)=T and
R, = (T, R) (see 9.3). Let S be the identity component of the centralizer of R,
in T. It has codimension one, is defined over k, normal in R. The groups T,
T’ are conjugate under R, (10.6), therefore S < T', and, dividing out by §,
we may assume T = GL,. Let Y ={neR,, n-T-n~' =T'}. This is a closed
set, not empty (10.6), defined over k. If x, yeY, then y~'-xe#(T), hence
y~l-xeZ(T)= T (10.6), and finally xey-T. Thus T acts transitively on Y by
right translations, and Y(k) s ¢ by (15.6).

Bibliographical Note

Except [or 15.14, the results of this section are due to M. Rosenlicht. Up to
15.5, see [26], which is one of the first papers devoted to rationality questions
on affine algebraic groups, and [28]. For 15.6, see [25: p. 425] or [28: Theor. 4].
15.11 and 15.12 are contained in Theorem 10 of [25]. The argument here is
quite similar to Rosenlicht’s, though expressed in a somewhat different language.
The validity of 15.9 for G connected unipotent was noted in [27: p. 220].
For 15.8, see Cor. 1 and 2 to Theorem 10 in [25]. For 15.13, see [28: 8.2].

§16. Groups Over Finite Fields

In this section, k is a finite field, g = p* the number of elements of k; and
F,:x+>x? the Frobenius homomorphism of a field of char p.
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16.1 Let V be a k-variety. We denote by v'? the image of veV under the
“Frobenius morphism” V' — ¥, also to be denoted by F,. We recall that if
V < K" is affine, then the coordinates of v are obtained by applying F, to
those of v, and the comorphism F 2:k[V] —k[V] is the g-th power
homomorphism f+ f4,

The map Fis a purely inseparable isogeny. It is bijective, and its differential
at any point is the zero map. The fixed point set of F_ is V(k), hence is finite.
If V is a k-group, then F, is a homomorphism.

162 Let f:G x G—G be defined by f(g,h)=g ' h-g'?, and let f, be the
map h+— f(g, h). Then f,, = f,° f,, and f is defined over k. Hence G operates
on itself by means of the f,’s and this is a right k-morphic action.
16.3 Theorem. (Lang). Let acG. Then the orbit map s,:g—>g~ '-a-g9 is
separable. Its image is open and closed.

For the second assertion, it suffices to show that s,(G°) is the connected
component of a in G. We may therefore assume G to be connected. Let
irxr>x~"1 Then (3.2):

(ds,)(X) =di(X)a+ a dF (X), (Xeg).
But (di) = — Id. (3.2) and dF ;= 0 (16.2) hence
(ds)(X) =~ X"a,

which shows that ds, is an isomorphism. As a consequence, s, is dominant,
separable. The orbit s,(G) of a then contains a non-empty open set, hence
is open by homogeneity. This being true for any ae G, the orbit is also closed.

16.4 Corollary. Let G be connected. Then the map g-—>g~ g9 is surjective,
separable.
Apply 16.3 to the case a=e.

16.5 Corollary. (i) Let G be connected, and V be a non-empty k-variety on
which G acts k-morphically and transitively. Then V (k) # ¢.

(il) Let H be a closed connected k-subgroup of G. Then the canonical map
n:G(k)— (G/H)(k) is surjective.

(i) Let veV. By assumption, there exists geG such that g-v!” = v. By 16.4,
we may write g = h™ - h'? for some he G. We have then h-v = h'?-p'? = (h-1)'?,
hence h-veV(k).

(ii) Let xe(G/H)(k). Then n~!(x) is defined over k. It is acted upon
transitively by H. Therefore 7~ !(x)(k) is not empty by (i) and xen(G(k)).

16.6 Proposition. G° has a Cartan subgroup (resp. a maximal torus, resp. a
Borel subgroup) defined over k. Two Borel subgroups defined over k are
conjugate by an element of G°(k).
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Let H be a Cartan subgroup (resp. maximal torus, resp. Borel subgroup)
of G°. Then so is its transform H? under the Frobenius map. Hence there
exists geG° such that

g.H(q).g—l =H
(11.1,11.3). By 16.4, we may find ae G° such that g = a~ ! -a'?. Consequently

aHa ' = g@PH@Dq@~1 = (a'H'a")(‘”

hence aHa™" is defined over k.

Let B, B’ be two Borel subgroups defined over k. The variety V =
Tr(B,B') = {xeG|xBx~! = B’} is defined over k (since k is perfect), not empty
(11.1). Since B is equal to its normalizer (11.16), B acts transitively by right
translations on V. By (16.5), V(k) # ¢.

Remark. The last assertion is in fact valid over an arbitrary field (20.9).

16.7 Proposition. Let H be a connected k-group and f:G°—~H a surjective
k-morphism. Then a Cartan subgroup (resp. a maximal torus, resp. a Borel
subgroup) of H defined over k is the image of such a subgroup of G°.

Let M be a Cartan subgroup of H, defined over k, and M’ = f~}(M)’.
Then M’ is defined over k (since it is k-closed, and k is perfect), and M = f(M"),
since M is connected. By (16.6), M’ has a Cartan subgroup C’ defined over
k. By 11.14, the group f(C’) is a Cartan subgroup of f(M')= M. Hence
f(C')= M. The proof in the other two cases is the same.

16.8 Proposition. Let G be connected, H a connected k-group and f:G—-H a
k-isogeny. Then G(k) and H(k) have the same number of elements.”

Given an isogeny r:M — N of connected algebraic groups, we let degr
denote the degree of the field extension k(M) over r°k(N). The degree of
separability of this extension is the order of kerr.

Let a; be the map grsg~!-g9. It is separable, surjective (16.4) of degree
equal to the number [G(k)] of elements in G(k). Similarly the analogous map
ay has degree [H(k)]. But feag=ayef, therefore

deg(foag) =deg f-degag = deg [-degay,.
Since deg f #0, this proves the proposition.

16.9 Without giving any details, we mention that 16.4 has an interpretation
in Galois cohomology. It is equivalent to the following fact: if L is a finite
(Galois) extension of k, then

HY(Gal(L/k)), G(L)) = 0.
(For the definition of H!, see e.g. [30].)
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Bibliographical Note

Except for 16.6, 16.7 the results of this section are due to S. Lang [21]. That
16.6 was a consequence of Lang’s theorem (16.3) was noticed by Serre (and
mentioned in [26, footnote, p. 45]).

§17. Quotient of a Group by a Lie Subalgebra

In this paragraph, chark=p>0. We put A,=k[G] and Ay=K[G].
We recall 3.3 that g may be identified with the algebra of left-invariant
K-derivations of Ay by means of the map X+ *X, and that g(k)=
gnDer, (A, Ay).

In §6, we introduced the quotient G/H of G by a closed subgroup. Of
course, both G and H were “reduced,” since only such groups have been
dealt with in this book. However, this quotient can be (and has been) defined
in the broader category of group schemes [14]. In this paragraph, we discuss
another special case of this situation, where H is a restricted subalgebra of
g, i.e. is of the simplest type among non-reduced groups of dimension zero.
Our main objective here is 17.8, which will play an essential role in §18.

17.1 Lemma. Let m be a restricted Lie subalgebra of g, which is defined over
k. Let B be the set of elements of A, annihilated by m(k). Then B contains A}
and is a finitely generated k-algebra. Moreover, m = {Xeg, X-B=0}.

Since g acts via derivations on Ay, it annihilates A%, hence B> Af.
Therefore A, is integral over B. The latter is then finitely generated by a
known result (see e.g. Lemma 10, p. 58 in [29]).

To prove the second assertion, it suffices to consider the case where G is
connected. Let L = K(G) and M be the quotient field of By. Then Lo M o L”,
hence L is a purely inseparable extension of M, of height one. The given
action of g on A extends in the abvious way to make g(X)L into a restricted

K

Lie algebra over L of derivations of L. The field M is the field of invariants
of m(@)L. (If D(a/b) =0, where D is a derivation, then D(a-b”~') =0, hence
K

a/b=a-b""'/b" is the quoticnt of two D-invariants.) But then, by Jacobson

Galois theory of inscparable cxtensions of height onc (Jacobson, Lectures

in Abstract Algebra 111, van Nostrand, Chap. IV, Theor. 19, p. 186), m@L
K

is the algebra of all derivations of L which are zero on M, whence our second
assertion.

17.2 Proposition. Let m be a restricted subalgebra of g, which is defined over
k. There exists an affine k-variety G/m, and a k-morphism n:G — G/m having
the following properties:

(1) m is bijective, ker(dn), = x-m(xeG). The comorphism =° induces an
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isomorphism of k[G/m] onto the algebra B of elements in A, annihilated
by m(k).

(i) If Z is an affine k-variety and s:G—Z a k-morphism such that
ker(ds), > x-m(xeG), then there exists a unique k-morphism f:G/m— Z such
that s = fon.

The pair (G/m, n) is unique up to a k-isomorphism.

Let (Vi,m;) (i=1,2) be two pairs satisfying the conditions imposed on
(G/m, m) in (i), (ii). Then we have unique k-morphisms f:V;—V, and
h:V, -V, such that n, = fon, and n, = hom,. It follows then immediately
that f,h are bijective and that the comorphisms f°, h° are isomorphisms.
There remains to show the existence.

Let b,,...,b, be a generating set for B as a k-algebra (17.1). By 1.9, we can
find a finite dimensional subspace W, of A, stable under G under right
translations, defined over k, and containing b; (1 £i<s). Let E=UW,, and
b=b;+---+b,. We claim that the orbit V= G-b of b, under the natural
representation of G in E, and the orbit map n: g+ g- b satisfy our conditions.

If g-b=>b, then b,(g)=b;(e) (1 £i<s). Since the b;s generate B and B
contains Af, this implies f(g) = f(e) for any feA,, hence g=e, and = is
bijective. Let X eg. Then by (3.11), X eker(dn), if and only if b;*X =0, i.e.,
by 17.1, if and only if X em. Thus ker(dr), = m. The equality ker(dn), = x-m
follows then from the fact that the orbit map is equivariant.

The orbit map being bijective, and V being normal, V is affine (AG.18.3)
and n° is injective. The relation ker(dn), = m implies that n°(k[V]) = B. To
establish the reverse inclusion, it suffices to prove that beImz° (1 Si<s).
Fix i. Let uy,...,u, be a basis of Wi(k) and a,, ..., a, the dual basis of W¥(k).
The restriction of a;e W} < E* to V is an element of k[V]. If we denote it
also by a;, we have:

bi(g) =g-bi(e) = Zjaj(g'bi)'“j(e) = Ejnoaj(g)'“j(e)y
which proves our contention.
Let now s and Z be as in (ii). Then s°(k[Z]) is annihilated by m(k), hence

contained in B. Consequently, the unique k-morphism f:V—>Z whose
associated comorphism is s°:k[Z] — B satisfies the relation s = fon.

Remark. To show that V is affine, we have quoted AG.18.3. In fact, this can
be avoided. With a little more work, one can show directly that V is closed
in E. (For a similar argument, see e.g. A. Borel, Introduction aux groupes
arithmeétiques, Hermann, Paris, 1969, Prop. 7.7.)

17.3 Lemma. We keep the notationof17.2and §3. LetfeAg, 9€G, X €g. Then
(i) (°f)* X = %X+ [);
(i) (f*X)(g) =(Ad g(X)=f)(g).
Let f;, h;e A be such that p°f = X, f;® h;. We have then

i"f(g-x)=f(x'l-g")=Z,.i°fx.(x)-hi(g").
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Since (i°f * X)(g) = X(A,-1i°f) (see 3.4), this yields
@f*+X)(g)=Z:XEf) hlg™"),
hence, by 3.19(e),
(Ef*X)9)= — ZXfrh(g™ )= —(X+f)g™ ")
which proves (i). The equality f(g-x) = f(gxg~'-g) gives

Zifi9) - hi(x) = Zi fi(gxg ") hi(9).
Therefore
(f*X)(g)=Z;X(f;°Int g) hi(g).

Since the differential of Int is Ad by definition 3.13, the definition of the
differential of a map, and 3.19, yield

(f*X)(g) = Zi(Ad g(X)- fi)  hi(g) = Ad g(X)* /)(g)-

17.4 Proposition. Let m be a restricted subalgebra of g which is defined over
k and is stable under Ad G. Then the variety G/m of 17.2 admits a canonical
structure of k-group such that n:G— G/m is a k-isogeny. If G' is a k-group and
5:G — G’ a k-morphism whose differential annihilates m, then there is a unique
k-morphism f:G/m— G’ such that s= fon.

We keep the previous notation. Since m is stable under Ad G, 17.3(ii)
shows that By is also the set of invariants of the left convolutions X *(X em).
In view of 17.3(i), it follows then that i"B=B. Let feB, and write
wf=XZf,®h; (f;, hieA,). We may assume the f;'s (resp. h;s) to be linearly
independent over k. For X eg, we have

f*X=XfoXh, Xxf=ZXfrh.

If Xem, both left hand sides are zero. Consequently Xf; = Xh; =0 for all i,
which shows that u°B < B® B. Thus, B, endowed with p, %, ¢, satisfies all
conditions of 1.5 for the coordinate ring over k of an affine k-group. This
yields a group structure on G/m. Since it is compatible with the inclusion
Bc A,, the map = of 17.2 is a k-isogeny. This proves the first assertion of
17.4. The second one follows from 17.2(ii).

17.5 Examples. (1) If m =g, then k(G/m)= AL. The Frobenius isogeny of
16.1 may be viewed as the k-isogeny n of G onto G/g.

(2) Let p=2and G =SL,. Then g = sl, is the Lie algebra of 2 x 2 matrices
with trace zero. It contains the one-dimensional space m of multiples of the
identity, which is a restricted ideal, normalized (in fact centralized) by SL,.
It can be seen easily that G/m = PGL,. The morphism n: G — G/m is realized
by the natural action of G on P, (see 10.8). Then Imdn=n is a two
dimensional ideal of L(G/m), stable under p-power operation and Ad(G/m).
It can be checked that PGL,/n=>SL, and that the composition of the
projections G — G/m—(G/m)/n is the Frobenius isogeny of G.
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17.6 A character of GL, is of the form x+—>x™ (meZ). Its differential is
X+->m-X. Let now T be a torus. From this remark, it follows that
LT =X (TY®k, L(T)*=X(T)®k. In particular, aeX(T) has a zero
differential if and only if aep- X(T).

17.7 Lemma. Let G be connected. Assume all semi-simple elements of g are
central. Then the set of semi-simple elements of g is a subspace defined over
k, and is the Lie algebra of any maximal torus of G.

Let T be a maximal torus of G. Let X eg be semi-simple. It is tangent to
a torus (11.8), say S, and by 11.3, there exists ge G such that g-S-g~' <= T. By
assumption, X is central in g, and therefore also in G (9.1). Hence Ad ¢(X) = X,
and X et. But t consists of semi-simple elements (8.2, Cor.), hence t is the set
of all semi-simple elements of g. There exists a power g = p® of p such that
the s-th iterate [q] of [p] annihilates all nilpotent elements of g (if G « GL,),
s=n will do). If X = X, + X, is the Jordan decomposition of X eg, we have
then X = X4, which shows that [¢] maps g into t. Since [g] is bijective
on t, as follows from 3.3(2), t is in fact the image of [¢]. But [q] is a
k-morphism of varieties (if G = GL,, X'¥ is the matrix product of q copies
of X, see 3.1), hence t =Im[q] is defined over k.

17.8 Proposition. Let G be connected, not nilpotent, and assume that every
semi-simple element of g is central. Let T be a maximal torus of G. Then there
exists a k-group G', such that not all semi-simple elements of g’ are central,
and a purely inseparable k-isogeny n:G — G’ such that kerdn =t and Imdn is
a supplementary subspace in g' to the Lie algebra of any maximal torus.

Let @ = @(T, G) be the set of roots of G with respect to T (8.17). Since G
is not nilpotent, T is not central in G (11.5) and @ is not empty (9.2, Cor.).
Let ¢ be the greatest positive integer such that @ < p*X(T). In view of (17.6),
t is central in g if and only if ¢ 2 1. By 17.7 and the assumption, we have
then ¢ 2 1. The proof is carried out by descending induction on c.

By 9.1 all elements of t are centralized by G. Of course, t is restricted and
invariant under Ad G, hence we may apply 17.4, which yields a k-group
G, =G/t and a k-isogeny #,:G— G, such that kerdn, =t. Let T' be a
maximal torus of G,. By (11.4), dim T = dim T". By (17.7), dn, annihilates all
semi-simple elements of g, hence (4.4), dr,(g) consists of nilpotent elements.
If T’ is a maximal torus of G,, we have then dn,(g)n L(T") = {0}, hence

(1 L(G,)=dn,(g) ® L(T"),

for dimensional reasons. Let now T' = n(T). Since dn, annihilates t, it follows
from 17.6 that the induced homomorphism 7n¥:X(T')— X(T) maps X(T")
into p- X(T). On the other hand, dn, is injective on the sum of the root
spaces g, (xe®). It follows then from equivariance and (1) that nf induces
a bijection of @(T", G,) onto &. Since n¥ X(T") < p- X(T), this shows that if
d is the greatest integer such that @(T", G,) < p?X(T’), then d <c. If d =0,
then we take G, = G', n; = . If not, by induction, we choose G’ and n, which
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verify our conditions with respect to G,. It is then clear that (G', n’ = n,om,)
satisfy our requirements.

17.9 Proposition. Let f:G — G’ be a surjective k-morphism whose kernel N is
defined over k. Then there exist a sequence of k-groups G, = G, G,,...,G, =G
and a factorization f = f,0---of, of f where G, =G/N, f, is the quotient
morphism G- G/N, f;:G;—>G;,, is a quotient k-isogeny of height one
(i=1,....,m—1)andf,:G,— G is a k-isomorphism.

Proof. By the universal property of quotient morphisms (6.3) we have a
factorization f=h,°f,, where h;:G,— G’ is a k-morphism, necessarily
bijective, purely inseparable. If it is an isomorphism (as is the case in
characteristic zero), we are done. Assume p # 0. There exists seIN such that
k[G,]” = h(k[G']). To factor h, we argue by induction on the smallest such
s. If s =1, then we are in the situation of 17.4 and G’ = G, /m,, where m, is
the subalgebra of g, which annihilates h}(k[G']), noting that m, is
Ad G,-stable and restricted. Then h, = f,° f,, where f;:G, —» G,/m, is the
quotient morphism and f, a k-isomorphism. Assume now that s > 1. Let 4
be the subalgebra of k[G,] generated by k[G,]” and h{(k[G']). Every
derivation X €g, is zero on k[G,]” but no X #0 is zero on k[G,], therefore
if A=k[G], then h{(k[G'])=k[G,] and h, is a k-isomorphism. If not, let
m, be the subalgebra of g; which annihilates 4. Again, it is restricted and
stable under Ad G,. We can form the k-group G, = G, /m, and, by 17.4, have,
over k, a factorization h; =h,°f,, where f, is the quotient morphism
G,—»G;/m; and h,:G,—»G' is a purely inseparable k-morphism. By
construction, 4 =k[G,] and

fUk[G, 17 ) = 477 = B (K[G')” ") k[G,]” = h(k[G']).
Thus £3(k[G,1” ") = f2(h5(k[G'])) and therefore
k[G,17" " = hy(k[G'])

so that we can apply the induction assumption to h,.

Bibliographical Note

As was already mentioned, 17.2, 17.4 are contained in much more general
results of [14]. 17.3 was first proved by Serre (Am. J.M. 80 (1958), 715-739),
and Barsotti. See also P. Cartier (Bull. S.M. France 87 (1959), 191-220, §7).
17.8 is Prop. 2.2 of [2]. For a slightly more general version, see [3, §5.3].
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§18. Cartan Subgroups Over the Groundfield.
Unirationality. Splitting of Reductive Groups.

18.1 Regular elements. Let nil X (X eg) be the multiplicity of the eigenvalue
zero of ad X, and let n(g) be the minimum of nil X, as X ranges through g.
The element X is regular if nil X =n(g), singular otherwise. Clearly,
nil X = nil X, hence X is regular if and only if its semi-simple part X is. If
p #0, then X is regular if and only if X" is so.

Taking coordinates in g with respect to a base of g(k), we can write

det(ad X — T) = T"9(co(X) + ¢ (X)T + -+ + c,(X) T,

where the ¢;s are homogeneous polynomials with coefficients in k, and
q = dim g — n(g). By the definition of n(g), the polynomial ¢ is not identically
zero. The singular elements are the zeros of ¢y, hence they form a proper
k-closed algebraic subset of g, and the regular elements form a dense open set.

Let k be infinite. Then there always exists a semi-simple X eg(k) which is
regular. In fact, since g(k) is Zariski dense in g (k infinite), there exists a
regular X eg(k). Let X = X, + X, be its Jordan decomposition (4.4). Then X
is regular. If k is perfect, then X,eg(k). Let p #0. There exists a power [q]
of [p] which annihilates X,. Then X9 = X will do.

18.2 Theorem. Let G be connected.

(i) G contains a maximal torus and a Cartan subgroup defined over k.
(i) If G is reductive or k is perfect, G is unirational over k and its center
%G is defined over k.

(i) A Cartan subgroup is the centralizer of a maximal torus T, and is
defined over k if T is (9.2, Cor.). It suffices therefore to show the existence
of a maximal torus defined over k. If G is nilpotent, see 10.6(3). If k is finite,
see 16.6. In the general case, we shall use induction on dim G.

Let now k be infinite, and G be not nilpotent.

Let T be a maximal torus of G. Since G is not nilpotent, T is not central
(11.5). If p=0, then a non-zero character of T has a non-zero differential,
therefore t is not central in g, and g has non-central semi-simple elements.
We now let G’ and n:G— G’ be as in 17.8 if all semi-simple elements of g
are central (and hence p #0), and G’ = G, n = Id. otherwise. By (18.1), g'(k)
contains a regular scmi-simple element Y. By construction, n(qg’) #dimg/,
hence 3(Y) #g'. We let G operate on g via Ader and, for Zeg’, denote by
G, the stability group of Z in G. Clearly, n(G,) = Z ;(Z). In particular, by
(9.1), dim Gy = dim 3,.(Y) # dim ¢’ hence Gy # G. We claim that Gy is defined
over k. This is clear if k 1s perfect, or, by 9.1, if = is the identity. In the
remaining case, it suffices to show that the orbit map f:g+>g(Y) = Ad n(g)(Y)
is separable (6.7). This amounts to proving that df, is surjective. By 3.16(b)
and 9.1. the tangent space at Y to the orbit AdG(Y)=G-Yis Y +[Y,g'].
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On the other hand, by 3.16:
df(X)=Y +[dn(X), Y], (Xeg)

By (17.8), dn(g) is supplementary in g’ to the Lie algebra of any maximal
torus. We know Y is in the Lie algebra of a maximal torus (see 11.8). Since
the latter commutes with Y, we get [Y,dn(g)]=[Y, g'], which proves our
contention.

Since Y is tangent to a maximal torus, & ;(Y) contains a maximal torus
of G, and therefore G} contains a maximal torus of G. By conjugacy, all
maximal tori of G} are maximal tori of G. By induction assumption, one of
them is defined over k, whence (i).

(i1) Recall first (AG, 17.3) that an irreducible k-variety V is unirational over
k if its function field k(V) is contained in a purely transcendental extension
of k. If (V;) (1 £i £ m) are unirational over k, and f:V, x---x V,»Vis a
dominant k-morphism, then, clearly, V is unirational over k.

Let k be perfect. Then the unipotent radical #,(G) of G and its center,
which are always k-closed, are defined over k. The group £,G splits over k
(15.4), hence is a rational variety over k (15.8). Moreover, also by (15.8), G
is birationally k-isomorphic, as a variety, to G/%,(G) x £,(G). This reduces
the proof of unirationality to the case where G is reductive.

From now on, G is reductive. If G is a torus, see (8.13)(2). We now consider
the casc where k is infinite, and prove unirationality by induction on dim G.
We keep the notation of the proof of (i) and let H be the group generated
by the groups GY, as Y ranges through the regular semi-simple elements of
g'(k). We claim that H = G.

Assume this is not the case. Then )’ = L(n(H)) is a proper subalgebra
of ¢'. Since k is assumed to be infinite, there exists Zeg'(k) which is regular,
and not contained in fy. Let Z=Z_+ Z, be its Jordan decomposition. For
some iterate [q] of [p], we have ZW =Z9 and the element U=2Z" is
regular, semi-simple, rational over k. [t commutes with Z (since Z, does, and
Z'W=2Z7 in a matrix realization of G'), hence 3,(U) ¢ b’ But (9.1) 34(U) is
the Lie algebra of Z4(U) =n(Gy). As a consequence, Gy ¢ H, a
contradiction. Thus H = G. There exists then in the set of G}’s finitely many
groups H,..., H, such that the product map H, x --- x H,— G is surjective.
The groups H; are # G, defined over k by (i), and reductive since their images
under the isogeny n are so by 13.19. By induction, they are unirational over
k, hence so is G.

Let now k be finite. Then (16.6) it has a Borel subgroup B defined over k,
and the latter contains a maximal torus T defined over k. Since k is perfect,
the unique Borel subgroup B~ opposite to B and containing T is also defined
over k, and the unipotent radicals U, U~ of B and B~ are defined over k.
By (10.6), B is k-isomorphic to the semi-direct product T-U. By (14.14), G,
as a variety, is then birationally k-isomorphic to U~ x Tx U. By (15.5), U,
U~ split over k, hence 15.8 are rational varieties over k. Since T is unirational
over k (8.13)(2), G is unirational over k.
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The center € of G is contained in any maximal torus T of G. By (i) there
is one which is defined over k. Therefore €G is defined over k,, (8.2, Cor. and
8.11). Since it is k-closed, it is defined over k.

Remark. It can be shown that any connected k-group is generated by its
Cartan subgroups defined over k: for finite k, see [3: 2.9]. For infinite k, this
follows from the fact that the variety of Cartan subgroups of G is rational
over k, due to Grothendieck (over arbitrary fields) ([15], Exp. XIV, Th. 6.1,
p. 39; this is also proved in [3], 7.9, 7.10). As a consequence G is unirational
over k if its Cartan subgroups are; this includes both cases of (ii).

18.3 Corollary. Let G be connected, k infinite. If either k is perfect, or G is
reductive, G(k) is Zariski-dense in G.

This follows from unirationality. We note that Rosenlicht has given an
example of a one-dimensional unipotent k-group over an infinite k, in which
G(k) is finite [26, p. 46].

18.4 Corollary. Let G be connected, solvable. Then G splits over an algebraic
extension of k.

By (18.2), G has a maximal torus T defined over k. Its unipotent radical
is k-closed, hence splits over a finite purely inseparable extension of k, in
view of 15.5. Since T splits over a finite (separable) extension of k (8.11), the
corollary follows.

18.5 Lemma. Let b be the Lie algebra of a closed subgroup H of G. Assume
that b is defined over k and b = ny(b). Then A () is defined over k, the group
H is of finite index in A (b), defined over a finite separable extension of k, and
H? is defined over k.

Let N = #7¢(h). Then N contains H, and L(N) contains § and normalizes
b. Thus L(N) =1, dim N = dim H. Since N > H, this proves that H° = N° and
H has finite index in N. Assume N to be defined over k. Then so is H® =
(see 1.2(b)), and H is defined over k, by AG.12.3. There remains to show that
N is defined over k.

Let d =dimb, E = A’g and n = A“Ad the natural representation of G in
E. Let D be the line representing b. It follows from the assumptions and the
lemma in 5.1 that N is the stability group of D, and L(N) is the stability
algebra of D. Let f:g+>g-D be the orbit map in the associated projective
space B(E). Since n and D are defined over k, the map f is defined over k.
The kernel of df, is the Lie algebra of the stability group of D, hence f is
separable (see proof of 6.8). Consequently N is defined over k (6.7).

18.6 Split reductive groups. Let G be reductive, connected, T a maximal torus
of G, and @ = @(T, G) the set of roots of G with respect to T. For each ae®
there exists a connected unipotent subgroup U, of G, normalized by T, and
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an isomorphism 6,:G,— U, such that
(1 t-0,(x)t™ ! =6,(t>x) (xekK,teT).

The group U, is the unique one-dimensional subgroup normalized by T
satisfying this condition (see 13.18). The group G is said to split over k, or
to be k-split, if we can choose a T split over k (8.2) and isomorphisms 0,
defined over k.

Note that if 8 is an isomorphism of G, onto U,, then f=0;'°6 is an
automorphism of G,, hence there exists ce K* such that f(x)=c-x (xeK).
Then @' also satisfies (1).

18.7 Theorem. Let G be connected, reductive. Then G splits over k if it has a
maximal torus which splits over k.

Let T be a maximal torus which splits over k. Let U, (xe @) be the unipotent
one-parameter subgroup normalized by T. In view of the end remark of 18.6
it suffices to show that each U, is k-isomorphic to G,.

Let ae @(T, G) and T, = (ker «)°. The group T, is defined over k (8.4), hence
so is G, = Z(T,) (9.2, Cor.). The group G, is reductive, generated by T, U,,
U_,and T-U,, T-U _,are the Borel subgroups of G, containing T (see 13.18).
This reduces us to the case where G has semi-simple rank equal to one. We
shall prove first that U,, U _, are defined over k. Since they are the derived
groups of T-U, and T- U _,, it suffices to show that the two Borel subgroups
B=T-U,and B~ =T-U_, containing T are defined over k. We have

g=1®g,®g9-, b=1Dg, b =tDg_,.

The group T is k-split, hence « is defined over k, and g,, g_, are defined
over k (5.2). Thus b and b~ are defined over k. Since B and B~ are the
normalizers of b and b~ (14.2, Cor. 2) they are k-closed. This finishes the
proof when k is perfect. Let now k be infinite, of non-zero characteristic.
Assume first that t is not central in g, which amounts to supposing that
da # 0. We have then

[t9ga]=ga [t9g—a]=g—a’

which implies that b (rest. b™) is its own normalizer in g. Then, B and B~
are defined over k by 18.5.

If now t is central in g, we let G’ and n:G — G’ be as in 17.8. The group
T'=n(T) is a maximal torus of G’ and is k-split (11.14, 8.4). The groups
B'=n(B) and B'~ =n(B”) are the two Borel subgroups of G’ (11.14)
containing T". By the previous proof, they are defined over k. Let0:G' —» G’/ B’
be the canonical projection, and T =g¢on. It follows from the equality
kerdn =t that dn maps g_, injectively onto a supplement of L(B’) in ¢'.
Therefore 7 is separable, and (6.7) B= 1~ ! (B') is also defined over k. Similarly,
B~ is defined over k.

We now know that U, and U _, are defined over k. Since dr is injective
on g, and g_,, the map = is a k-isomorphism of U, (resp. U_,) onto its
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image. It suffices then to prove that the latter is k-isomorphic to G,, which
reduces us to the case where t is not central in g. If k is perfect, our assertion
has already been proved (10.9, Remark). Let now k be infinite. We may then
find Het(k) such that da(H)#0. We have then 3(H)=t, hence (9.1)
Zs(H)*=T. Using 10.6, we get then Zz(H)=T. In particular, the map
fu—Adu(H)— H of U, into g is injective. Let X be a non-zero element of
g,(k). Since B/U, is commutative, we can write

Adu(Hy=H + c(u)- X, (ueU,),

where c:urc(u) is clearly an injective k-morphism of U, into G,. It is then
bijective. By (3.9)(2), dc(X) = — [H,X] = — a(H)- X #0. Hence c is separable,
and yields the desired k-isomorphism of U, onto G,. The argument is the
same for U _,, which ends the proof.

18.8 Corollary. Let G be connected, reductive. Then G splits over a finite
separable extension of k.

G has a maximal torus T defined over k (18.2). The latter splits over a
finite separable extension k' of k (8.11). G splits over k' by the theorem.

Bibliographical Note

In characteristic zero, 18.2 is due to Chevalley: 18.2(i) is proved in [12b] and
18.2(i1)in J.M.S. Japan 6 (1954), 303-324. It has been established by Rosenlicht
[26] over infinite perfect fields, and by Grothendieck ([15], Exp. XIV) in
general. The proof given here i$ taken from [2]. The paper of Chevalley
quoted above also contains a result (Proposition 3) which appears to be
essentially equivalent to the rationality over k of the variety of Cartan
subgroups of G, when k is of characteristic zero (see remark to 18.2 for
references to the general case of this theorem).

18.7 is due to Cartier (unpublished). More general results can be found in
[15, Exp. XXI1]. Here, we have followed [3].

§19. Cartan Subgroups of Solvable Groups
In this section, G is a connected solvable group defined over k.
We prove here some refinements of the conjugacy theorems already

established. The first lemma is a sharpening of (*) in the proof of 10.6(4),
but note that 10.6(4) is used in its proof.

19.1 Lemma. Let T be a maximal torus of G defined over k. Then every
semi-simple element of G(k) is conjugate by an element of €* G(k) to an element

of T(k).

Proof. Wc usc induction on dimG. If G is nilpotent, then T contains all
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semi-simple elements of G (10.6(3)) and there is nothing to prove. So assume
G not nilpotent, i.e. #°G # {1}, and let n:G - G’ = G/¥*G be the canonical
projection. The torus T’ = n(T) is maximal in G’, and also defined over k.

Let geG(k) be semi-simple. Since G’ is nilpotent, n(g)e T", as already pointed
out. The map = induces a bijective map of T onto T’ and dr also induces a
bijection of L(T) onto L(T"), since Tn¥°G = {1} and L(T)n L(#*G) = {0}.
There exists then a unique te T(k) such that n(t) = n(g). We want to show
that g is conjugate to t under € *(G)(k).

There exists a unique clement ue%™ G(k) such that g =u-t. On the other
hand, by 10.6, we can find ve%¥®G(k) such that (“g)"'eT. We have then
necessarily "g ™' = ¢!, since = is bijective on T. Then g-v-g™'v ™! =u, ie.
uec,(¢*G). It follows from 9.3 that there exists we#*G(k) such that
(9,w) =u. Wehavethenw-g™'w =g '-y=1t"! whencealsow-g-w ! =t

19.2 Theorem. Any two Cartan subgroups (resp. maximal tori) defined over
k of G are conjugate under an element of €® G(k).

Proof. Let T, T’ be two maximal tori defined over k and C, C’ their
centralizers. Then C and C’ are Cartan subgroups defined over k. Conversely,
if D is a Cartan subgroup defined over k, then its unique maximal torus is
defined over k, maximal in G, and D is its centralizer. Therefore it suffices
to prove either that C and C' or that T and T are conjugate under €°G(k).
We distinguish two cases:

(i) k is infinite. Then T contains an element ¢ such that Z4())=24(T)=T
(8.18). By 19.1, there exists geC®G(k) such that 9teT, hence such that
ICoZ4T)=C" But then?C=C"

(i) k is finite. Let

V ={xeG|x-C-x"'=C1}.

It is an algebraic set (1.7), which is k-closed, hence defined over k (since k
is perfect) and non-empty, since C and C’ are conjugate under G (10.6). It
is a homogeneous space under the group H=Ag(T)n¥*G. But
N o(T)=Z4(T) = C(10.6, 12.1). Moreover, H is connected by 9.3 and defined
over k by the Corollary to 9.2, therefore V{(k) is not empty (16.5).

19.3 Corollary. Let T be a maximal torus of G defined over k, S a torus of
G defined over k and L = G(k) a subgroup consisting of semisimple elements.
Then S and L are conjugate to subgroups of T under €* G(k).

Proof. The centralizer Z'4(L) of L is defined over k (9.2, Cor.) and L is
contained in a torus (10.6(5)), hence in a maximal one. Therefore the maximal
tori of 2';(L) are maximal in G and all contain L (by conjugacy of maxirnal
tori in 2 (L)); one of them is defined over k (18.2). Similarly S is contained
in a maximal torus defined over k. We then apply the theorem.
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Bibliographical Note

Theorem 19.2 is due to M. Rosenlicht [28]. The proof given here is essentially
the one of [4: §11].

§20. Isotropic Reductive Groups

In this section, G is a connected reductive k-group, and I" the Galois group
of k, over k.

20.1 Definition. The group G is isotropic over k if it contains a non-trivial
k-split subtorus and is anisotropic over k otherwise.

We shall be interested in the case where G is not commutative and 2G is
isotropic over k and shall prove analogues of the structure theorems of §14
for the k-rational points of G.

20.2 Let T be a maximal torus of G and @= @(T, G) the set of roots of G
with respect to T. It is a reduced root system (14.8). For ae @, the eigenspace

9, = {Xeg|Ad(X) =" X(teT)}

is one-dimensional. It is the Lie algebra of a unique one-dimensional
unipotent subgroup U, normalized by T (13.18(4)).

20.3 Lemma. Let T be a maximal torus defined over k of G and H a closed
connected subgroup normalized by T. Then the following three conditions are
equivalent: (i) H is defined over k; (ii) H is k-closed; (iii) (HNT)° is k-closed
and @(T, H) is I -invariant.

Proof. The implications (i)=>(ii) = (iii) are clear. There remains to prove that
(iii)=>(i). Assume (iii). The group T splits over k, (8.11) and the U, are defined
over k; (18.8); so is TnH (8.4 Cor.). The groups Uk,) (ae®@(T, H)) are
permuted by I" and (T n H)(k,) is I -invariant. Since the groups (T n H)’(k,)
and U (k,) (xe @(T, H)) generate a dense subgroup of H, (i) follows from AG,
14.4.

20.4 Proposition. Let S be a k-split subtorus of G. Then Z(S) is the Levi
subgroup of a parabolic k-subgroup of G.

Proof. Let T be a maximal torus of G defined over k and containing S (which
exists by 9.2, Cor. and 18.2)and @ = &(T, G). Fix a non-zero element 1€ X ,(S)
which is “regular” in the sense that any root which restricts non-trivially on
S is not zero on A. Since @ is finite, 4 obviously exists. Let

(1) ¥ = {ae®|{a,4) > 0}.
Then
) o=oT2S) 1¥L(- ¥
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¥ belongs to @ * for a suitable ordering; it is closed and moreover, in the
notation of 14.5, we have

) @) ¥ if aed(T,Z(S).

By 13.20, Z(S) is generated by T and the U (xe @ (T, Z(S))). It follows then
from (3) and 14.5 that the U, (Be'P) directly span a unipotent subgroup
Uy normalized by Z(S). Since 4 is defined over k, ¥ is invariant under I,
hence Uy is defined over k (20.3). In view of (2), Q = Z(S) Uy is a parabolic
k-subgroup, with Levi subgroup Z(S) and unipotent radical U, which proves
the proposition. Note that

“ ®(T,Q) = {ae®|{a,A) = 0}.

20.5 Proposition. Let P be a parabolic subgroup of G defined over k. Then
RP and R P are defined over k. The Levi k-subgroups P are the centralizers
of the maximal tori defined over k of AP. Any two are conjugate by a unique
element of R,P(k). Given a Levi k-subgroup Lof P, the unique parabolic subgroup
P~ opposite to P and containing L (see 14.21) is defined over k. The natural
map G(k)— (G/P)(k) is surjective.

Proof. The maximal tori of P are maximal in G. One of them, say T, is
defined over k (18.2). Since ZP and #,P are k-closed and normalized by T,
they are defined over k by 20.3. By 1449, the Levi subgroups of P are
the centralizers % 4(S) of the maximal tori of ZP. In view of 9.3, 6.12, 20.4
the group Z4(S) is defined over k if and only if S is. The conjugacy
assertion then follows from 19.2. Extending the groundfield to k,, we write
P=%Z4(Tg) R,P as in 14.1, where everything is defined over k,. The sets of
roots @(T, Z4(T,)) and ®(0)* = @(T, R,P) are defined over k, (20.3), hence
sois — @) = NAT,&,P"). Thus P~ is defined over k, and P~ (k,) is stable
under I', hence P~ is defined over k.

Let n:G — G/P. If k is finite, it is surjective on rational points (16.5) (recall
that P is connected). Let now k be infinite. 7 induces an isomorphism of
A,P~ onto a k-open subset U of G/P, therefore n:%,P~(k)—U(k) is
surjective. Then for any geG(k) the image of G(k) will contain g-U(k). The
union of the g-U (geG(k)) is a dense open set which is invariant under G(k),
whose k-rational points are contained in the image of G(k). Its (closed)
complement F is also G(k)-invariant. But G(k) is Zariski dense in G (18.3),
therefore F is G-invariant. Being proper, it must be empty.

20.6 Proposition. Let P be a proper parabolic k-subgroup of G, L a Levi
k-subgroup of P and S the identity component of the center of L. Then:

(i) L= 2Z(S,);

(i) G contains a proper _parabolic k-subgroup if and only if it contains a
non-central k-split torus,

() the group P is minimal if and only if S ; is a maximal k-split torus of G;

(iv) if P is minimal, A(S)n P = Z(S).
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Proof. Fix a maximal torus T of L defined over k. With respect to T, we use
the notation and conventions of 14.17. Thus

P=P, L=2(T), RP=U,q,.,

for some proper set 8 of simple roots. The Galois group I" of k/k operates
on X(Ty/Z), where Z =(%G)°, and leaves the set of restrictions & of elements
of @(f)* stable. Those are linear combinations with positive integral
coeflicients of elements in @', where 8 = A — 6, (cf. 14.17), which are linearly
independent. Therefore it permutes the elements of §. There exists
AeX ,(Ty/Z) on which the @0’ take the same strictly positive integral value.
It is therefore fixed under I', hence defined over k. Therefore (Ty/Z), # {1}
and T, , is not contained in Z (8.15). Moreover

[0 =1{ae®(T,G)|<a,A) =0}.

Therefore there cxists a one-dimensional k-split torus S’ in T, such that
2(S')= L. A fortiori, L = Z(S,) and (i) is proved.

(ii) We have just seen that if G has a proper parabolic k-subgroup, then
it contains a non-central k-split subtorus. Assume conversely S is such a
torus. Let 4 be a non-zero element of X (S). Fix a maximal torus T defined
over k in Z4(S) containing S. This exists by (18.2) since 24(S) is defined
over k (9.3). Fix an ordering on @(T,G) such that ae® * implies (a,A> 20
and let y = {ae®|{a, 1> =2 0}. Then y is a closed set of roots containing
@ *. There exists therefore a unique = A such that ¢ =[0]u @(G)*
[9:V1, 1.7]. The corresponding parabolic subgroup P, is at first defined
over k. But ¢ is invariant wnder I, hence P, is defined over k
(20.3). It is proper since S is not central. This concludes the proof of (ii).

(iii) We have again P = L-&,P, with L = Z(S,). Assume S, is not maximal
among k-split tori and let S’ a k-split torus properly containing S. Note that
the projection L— L =L/S; maps S onto the center of L. The latter is
therefore anisotropic over k and §'/S, is a non-central k-split torus of L. By
(i), L contains a proper parabolic k-subgroup Q'. Then the inverse image Q
of Q' in Lis a proper parabolic k-subgroup of L. But then Q-#,P is a proper
closed k-subgroup of P containing a Borel subgroup, hence is parabolic and
P is not minimal. Assume now P is not minimal and let Q be a parabolic
k-subgroup of G properly contained in P. It contains necessarily %#,P and
Q/2,P is a proper parabolic k-subgroup of P/#,P = L. It follows from (ii)
that L contains a non-central k-split torus S'. Then, §"-S, is a k-split torus
properly containing S,, and S, is not maximal.

(iv) Let ne A (S)n P. We can write n= x-y with xeZ'(S) and yeZ,P. We
have then yeZ,Pn.4(S) and, 10.6, applied to S-&,P, shows that ye Z(S).
Therefore ne Z(S).

20.7 Proposition. Let P and Q be two parabolic k-subgroups of G. Then:

(i) PN Q is defined over k and contains the centralizer of a maximal k-split
torus.
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(ii) If P and Q are minimal, they are opposite if and only if they contain two
opposite Borel subgroups.

Proof. (i) The group PnQ is k-closed. To show that it is defined over k, it
suffices therefore to prove it is defined over k,. So assume now k =k, We
choose a Borel k-subgroup B of P, a maximal k-split torus T = B and use
the setup of 14.16. The group B splits over k, therefore it has a fixed point
x in (G/Q)(k) (15.2). There exists geG(k) mapping onto x (20.5). Then the
isotropy group of x is ?Q. It contains B. We have shown therefore the existence
of geG(k) such that Q > B. By the Bruhat decomposition over k (recall
k = k), we can write g =a~!'-n" ! b (a, be B(k), ne ¥/ (T)(k)). Of course *P = P.
On the other hand, the relation ?Q oB gives *Q >™B="B, therefore
’0n®P > Tand QP > b~ - T-b. This shows that PN Q contains a maximal
torus of G defined over k. It is then defined over k (20.3).

We now drop the assumption k =k, To prove the second part of (i), we
may assume P and Q to be minimal among parabolic k-subgroups. We have
seen that PN Q contains a maximal torus of G defined over k. The group
S=TANARP is a maximal torus of ZP which is defined over k (since it is
defined over kg, as any closed subgroup of T, and is k-closed). Therefore Z'(S)
is a Levi k-subgroup of P (20.5), and S, is a maximal k-split torus of G (20.6);
then necessarily L = 2(T,). The same argument shows that Z(T,) is a Levi
k-subgroup of Q. This concludes the proof of (i).

(i) Assume P and Q are minimal. Then by 20.6 and (i) PnQ contains a
Levi k-subgroup of both P and Q. Therefore P and Q are opposite if and
only if #,P 2,0 = {1}. But this is also a necessary and sufficient condition
for P and Q@ to contain opposite Borel subgroups (14.21(ii)).

20.8 Lemma. Let P and Q be parabolic subgroups of G. Then the set M(P, Q)
of elements geG such that 9P and Q contain opposite parabolic subgroups is
a dense open set of the form Q-x'P for some xeG. It contains an element of
G(k) if either k is infinite or P and Q are defined over k.

Proof. Fix a pair of opposite Borel subgroups B, B~. For a,beG, it is easily
seen that

M M("P,*Q)=b-M(P,Q)-a"".

Obviously, 8Q-x-“P=b-Q-b~'-x-a-P-a~'. Therefore, in proving the first
assertion, we may replace P and Q by conjugates, and in particular assume
that Bc P and B~ = Q. Then (1) shows that M(P,Q)> Q- P, in particular
M(P,Q) > B™-B, which is open in G (14.21(iii)). Let now xe M(P,Q). The
groups *P and Q contain opposite Borel subgroups C and C~. Since C~
and B~ are conjugate in @, there exists geQ such that %P contains a Borel
subgroup ?C opposite to B™. But the Borel subgroups opposite to B~ are
conjugate under #,B~ (14.21). Therefore we may assume ¢ chosen so that
9P contains B. Then %P = P (11.17), gxeP (11.16) and xeQ-P. This proves
the first assertion.
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If k is infinite, then G(k) is Zariski — dense (15.3) and therefore has a
non-empty intersection with M(P,Q). Let now k be finite. Then P and Q
contain Borel subgroups defined over k and any two such subgroups are
conjugate under G(k) (16.6). It suffices therefore to show that G has a pair of
opposite Borel k-subgroups, but this is easy: Let B be a Borel k-subgroup.
It has a maximal torus T defined over k (16.6). Then @(T;B) is a set of
positive roots @ * for a suitable ordering on @ = @(T, G) and is stable under
the Galois group of k/k. Then so is — @* and therefore the Borel subgroup
opposite to B and containing T is defined over k (20.3).

20.9 Theorem.

(i) The minimal parabolic k-subgroups of G are conjugate under G(k).

(i) The maximal k-split tori of G are conjugate under G(k).

(iii) If P and P’ are parabolic k-subgroups conjugate under G(K), then they
are conjugate under G(k).

Proof. (i) If k is finite, then the minimal parabolic k-subgroups are Borel
subgroups defined over k and any two of those are conjugate under G(k)
(16.6). So assume k to be infinite. Let P and Q be minimal parabolic
k-subgroups. The sets M(P, P) and M(Q, P) (notation of 20.7) are open dense,
hence so is their intersection and the latter contains an element ge G(k) (18.3).
Then ?P and P on the one hand, ?Q and P on the other, contain opposite
Borel subgroups, their unipotent radicals intersect only at the identity (14.21)
and 20.6 implies that 7P and ?Q are opposite to P. They are then conjugate
by an element of #,P(k) (20.5).

(ii) Let S, S' be maximal k-split tori. By 20.4, 2/(S) and #(S’) are Levi
k-subgroups of parabolic k-subgroups P, P'. By 20.6, P and P’ are minimal,
and therefore, by (i), conjugate over k. We may therefore assume P =P’
Then Z(S) and Z(S’) are conjugate by some element ge £, P(k) (20.5). But S
(resp. S') is the greatest k-split subtorus of the center of Z(S) (resp. Z(S")),
hence /S =S

(iii) Since P is equal to its normalizer, the group P has a unique fixed point
x on G/Q, which is therefore k-closed. If yeG/Q is fixed under #Z,P and geG
maps onto y, then ?Q o> %P, hence ?Q = P by 14.22(iii). Therefore x is the
unique fixed point of #,P. But #,P splits over k; and has therefore a fixed
point in (G/Q)(k,) (15.2). Thus x is also rational over k,, whence xe(G/Q)(k).
By 20.5, we can find heG(k) projecting on x. Then "Q = P.

Bibliographical Note

Most results of this section are taken from [4].

We have limited ourselves to reductive groups. However, the conjugacy
under G(k) of maximal k-split tori, or of maximal connected k-split solvable
groups, is true in any connected k-group, as was announced in [7]. This is
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very easily deduced from 20.9 if 4,G is defined over k, but requires new
arguments otherwise.

§21. Relative Root System and Bruhat Decomposition
for Isotropic Reductive Groups

In this section, G is a connected reductive group defined over k, S « maximal
k-split torus of G and Z, the greatest central k-split torus of G.

21.1. The maximal k-split tori of G arc conjugate under G(k) (20.9) and in
particular have the same dimension. The latter is called the k-rank or rank
relative to k of G and will be denoted r(G). Conjugacy, (together with 8.4,
Cor.) also implies that §' = (S~ 2G)’ is a maximal k-split torus of G, and
§=8"2Z, with §'nZ, finite. Therefore

(1) rdG) =r(2G) + r((¢G)’).

The k-rank of ZG is also called the semisimple k-rank of G. This section has
content only if it is > 0.

Let S be a_ maximal k-split torus of G. We denote by ,@ or ,®(G) the set
@(S,G) of roots of G with respect to S. Ifs elements are called k-roots or
roots relative to k of G (with respect to §). This set is empty if and only if S
is central, i.e. G is anisotropic over k. The k-roots are element of X(S), but
they are trivial on Z,, and therefore may also be viewed as elements of X(S')
or X(S/Z,). In fact, the restriction to §' is an isomorphism from @(S, G) onto
d(S', G), as is clear from the definitions.

Similarly, we introduce a Weyl group relative to k, namely the quotient

1°(S)/2(S), to be denoted (W(S, G), or [W(G) or W, as the context requires
it. This group operates Taithfully on S or §', or their groups of characters or
cocharacters, leaving Z, pointwise fixed. Again the restriction to S’ provides
an identification of ,W(S, G) with W(S', 2G).

Given a field E of characteristic zero and a finitely generated free Z-module Y,
we let Y= Y@E The group W operates in particular on X (S)g, X(S)R,

X, (S)r or X*(S )r- Often, we assume these vector spaces to be endowed with
an admissible scalar product (14.7), i.e. a positive definite scalar product
invariant under ,W.

21.2 Theorem. The rank of ,®@(G) is equal to r (2 G). The group \W(G), viewed
as a group of automorphisms of X ,(S)q endowed with an admissible scalar
product, is generated by the reflections to the hyperplanes which annihilate a
k-root. Every connected component of .V'(S) meets G(k).

Proof. For ag, @, let S, be the identity component of ker«. The rank of , @
is the codimension of the intersection of the S,. Since the identity component
of the latter is Z,, our first assertion follows from 21.1(1).
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We show now that if r(2G) # 0, then A (S)k) # Z(S)(k). By 20.5 and 20.6,
there exist two opposite parabolic k-subgroups P and Q having Z(S) as a
common Levi subgroup. By 20.9, we can find xeG(k) such that *P = Q. The
group *Z(S) is a Levi k-subgroup of Q hence (20.5) there exists geQ(k) such
that #*2(S)= Z(S), and therefore S =S. Then gxeA(S)k). But Int gx
transforms #,P onto #,0Q, therefore qx¢ Z(S).

Next we show that W contains the reflections to the hyperplanes X ,(S,)r
of X, (S)r (xg,P). Let ae, @ and M = Z(S,). It is connected (11.12), defined
over k and its Lie algebra is the set of fixed point of S in L(G) (9.2,Cor.),
hence L(M) # L(Z(S)) and therefore M # Z(S). The identity component of
the maximal central k-split torus of M, which contains S, by definition and
belongs to S, is # S, hence equal to S,. As a consequence of 21.1, we see that
r{@M) = 1. Therefore, as was already proved, A4 ,,(S)(k) contains an element
x not belonging to Z(S)k). The element x induces an orthogonal trans-
formation of X ,(S)q which is not the identity but fixes pointwise X ,(S,)q.
It is therefore the reflection to that hyperplane. It will be denoted by r,.

Let W’ be the subgroup of W generated by the r, (¢, ®). The previous
argument shows that any connected component of #7(S) in the inverse image
of W’ contains an element of G(k). To conclude the proof, there remains to
show that W' =, W.

Since W’ is simply transitive on the chambers defined by the hyperplanes
X (Sr (see V, §2, Theorem 2 in [9]), it suffices to show that if we, W leaves
a Weyl chamber C stable, then it is the identity. There exists a point xeC
fixed under w. Let ne A/'(S) be a representative of w. Let T be a maximal torus
of G defined over k and containing S. Then *T and T are maximal tori in
Z(S). We may therefore, after multiplying w by an element of 2/(S), assume
that w leaves T stable. By 20.4 and its proof, there exists a parabolic
k-subgroup P with Levi subgroup Z(S), whose roots with respect to T are
the ae @(T, G) such that {a, x> 2 0. By 20.6, P is minimal. Since x is fixed
under w and w leaves @(T; G) stable, n leaves @(T, P) stable and therefore
P. But P is equal to its normalizer, hence neP, ie. ne#/(S)n P and, by
20.6(iv), ne Z(S).

21.3 Corollary. The group W, operating via inner automorphisms, is simply
transitive on the set Ps of minimal parabolic k-subgroups containing Z(S).

Let we, W, w # 1. It is represented by an element ne A"(S)(k) not contained
in Z(S). Therefore "P # P, in view of 20.6(iv) and the fact that P is its own
normalizer. Thus W operates freely on 2. Let now QeZs. By 20.9, there
exists xeG(k) such that *Q = P. Then *L and L are two Levi k-subgroups of
P and there exists pe P(k) such that P*L = L (20.5). Thus p-xe.4#(S)k) and
P*Q = P, showing that W is transitive on 5. Here L = Z(S).

21.4 Corollary. Let | be an extension of k, and T a maximal l-split torus of
G containing S. Let (S, T)= N (S)NAN(T) and W, = N'(S; T)/Z(T). Then
N(S)=AN(S; T) Z(S) and W is the restriction of W, to S.
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Let we W and ne A/ (S)(k) a representative. The tori T and "T are maximal
I-split in Z(S) hence conjugate under an element of Z(S)() (20.9). Therefore
H(S)k) = H(S, T) - Z(S). Since A (S)k) meets every connected component of
A(S) by the theorem, this proves the first assertion. The second one is just
a reformulation.

21.5 Lemma. Let ¥ be a subset of ,®(G) which contains all the rational
multiples of its elements belonging to ®(G). Let we,W(G) be a product of
reflections r, (xe V') and ce X(S). Then w(c)—c is a linear combination with
integral coefficients of elements in .

Proof. Let T be a maximal torus containing S and j:X(T)— X(S) the
restriction homomorphism. Let n = j~ (W) ®(T, G). By 21.4, W = W(T, G)
contains at least one element w, whose restriction to S is r, (€, ®P). Such an
element acts trivially on the hyperplane V, = X (S,)r of X ,(S)r. Therefore
it is a product of reflections r; in W, where B belongs to the set of roots
which are zero on V, (see V.3.3, Prop. in [9]). For any ae P, these roots all
belong to 7, in view of our assumption on ¥. On the other hand j is surjective,
since S is a direct factor of T'(8.5, Cor.). We are now reduced to the case where
S=T,W=Wand @ = ®(T,G) is a root system (14.8). In this case, we can
use Prop. 27 in VI, 1.10 of [9].

21.6 Theorem. Let S§'=(SNDG)’ and assume S’ #{1}. Let (,) be an
admissible scalar product on X(S')g; let ac®(S,G) and yeX(S). Then
2, Y)/(ot, ®)€Z. In particular (D(S', DG) is a root system in X(S')g, whose Weyl
group is W.

Proof. The restriction X(S)— X(S) is an isomorphism of ,@(S,G) onto
«D(S’, 2G) and the rank of @ is equal to the k-rank of 2G (21.2). Therefore
«@ generates x(S')g over R. On the other hand,

ra()’) =7 2(“7 V).(CQ a)— 16(,

hence 2(a, y)/(¢,®)€Z by 21.5. This and 21.2 show that all the conditions for
a root system with Weyl group W (see VI, 1.1 in [9]) are fulfilled by the
restrictions to S’ of the elements of ,®.

21.7 Remark. The root system @ may be reducible and we shall describe
in §22 a decomposition of G as an almost direct product reflecting the
reducibility of ,@. If k is not a splitting field for G,-it may also happen that
«@ is not reduced (if irreducible, it is then of type BC, in the notation of
[9]). Given ae, @ we let (a) be the set of roots which are positive multiples
of a. Thus (a) consists either of a or of « and 2a. Let also @,, be the set of
non-divisible roots, i.e. of roots o such that a/2 is not a root. Then @ 1s the
disjoint union of the subsets (), where « runs through @,; For ag, @ we
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denote as usual by g, the corresponding eigenspace in g. We let also

B = @ 9p-

Bela)
Thus either g, =g, or g, =9,® g2, We have

g=LZO)® D 9.=LZEN® D g0y

aex P a€Pna
If 20 is not a root then g, is commutative. If 2« is a root. it it usuallv not a
subalgebra, but g,,, is a (metabelian) one. This follows from the standard rule
182 8p] = 8.+ p- As usual, a subset Y of @ is said to be closed if o, feip,
a+ e, @ imply o + fey. Note that now we have also to allow a = f in
checking this condition. We let ,, be the set of aeiy which are not divisible
in ¢, ie. such that a/2¢y. Thus

v=U (@

aAEYnd

21.8. Relations between absolute and relative roots. Let T be a maximal torus
of G defined over k and containing S and j:X(T)— X(S) the restriction
homomorphism. By definition, we have

) @ < j(P) <, @ U{0}.
An ordering on @ and one on ,@ are said to be compatible if
2 D@ty @ U{0}.

Compatible orderings always exist. More precisely, given an ordering on , @,
there is always an ordering on @ compatible with it. Let us give one such
construction. Let T' be a subtorus of T such that T=T"-S and T'nS is
finite (8.5 Cor.). If ae® is zero on §, then it is not zero on T’ (since it is
not zero on T), hence it belongs to @(T", Z(S)) and every such root is obtained
in this way. Fix ceX (S)r in the positive Weyl chamber and choose
c'eX ,(T")r on which no element of &(T’, Z(S)) is zero. Then define ac P to
be positive if either (a,c} >0 or {a,¢) =0 and {a,c'> >0.

Let A and ,A the simple roots for these orderings. Since every element of
a root system is a linear combination of simple roots with integral coefficients
all of the same sign, we see that

€) A e jd)c,4u{0}.
Let 4° = {BeA|j(B) = 0}. Then D(T,Z(S)) = [A°]. We have
) A=4] UA(n(a)n 4),

where, for ae, P, n(a] is the set of roots mapping onto « under j.

21.9 Proposition. (i) Let ae,®. There exists a unique closed connected
unipotent k-subgroup U ,, normalized by Z(S) with Lie algebra gy,
(i) Let ¢ be a closed subset of ,®*. There is a unique closed connected
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unipotent k-subgroup U, normalized by Z(S) with Lie algebra the sum of the
8, (x€y). It is directly spanned by the U,,, (x€¥,,) taken in any order.

Proof. (i) We use the setup and notation of 21.7 and assume @ endowed with
an ordering compatible with the given one on @. For ae, @ the set n(a) is
closed, and all its elements have the same sign as a (in particular, it is special
in the sense of 14.5). Clearly

) Sw= @D 95
Ben(a)

By 13.20, 14.5, the U, (Ben(a)) directly span a T-invariant closed connected
unipotent subgroup U,, with Lie algebra g, and which is uniquely
determined by these properties. Moreover, n(a) is invariant under the Galois
group I" of k /k, therefore U, ,, is defined over k. This group will be our U, By
13.20, Z(S) is generated by T and the U, (e ®(T, Z(S)). It is clear that if
Ped(T, Z(S)), yen(e) and if + jye ® for some strictly positive integers i, j
then if + jyen(x). It follows then again from 14.5 that U, normalizes U,
Therefore 2/(S) normalizes U, and (i) is proved.

(ii) Let n(y) be the union of the n(a) (xey,,). Then, again by 13.20, 14.5
the Uy (Ben(y)) directly span a closed connected unipotent group U,
normalized by T, with Lie algebra the sum of the g, (x€y,,). The Uy may
be taken in any order, hence U, is directly spanned by the U, (x€,,).
It is therefore defined over k and normalized by Z(S).

21.10 Remarks. (1) The proof shows more precisely that
Y U U= Uy

where on the right-hand side we have the groups defined in 14.5 with respect
to absolute roots. This allows one to carry some other results of 14.5 to the
present situation. In particular, assume that (o, ) <  for some a€, @, in the
notation of 14.5. Then, from the definitions, it is clear that (n(e), n(¥)) < n(y).
Therefore 14.5 implies that

@@=

Uy U,) < U,

(2) If (o) = {a}, then the sum of two elements in (y(c)) is not a root, therefore
U, is commutative. On the other hand, if 2a is a root, then U, is not
commutative. It is metabelian, though, and it can be shown that its center
is Us. (see [6:4.10]). )

“(3) We shall see later that U, is k-isomorphic to an affline space.

(@)’

21.11. Standard parabolic k-subgroups. We fix a minimal parabolic
k-subgroup P containing Z(S), let P~ be the opposite parabolic k-subgroup
containing Z(S), and U (resp. U ~) the unipotent radical of P (resp. P~). We
assume , @ given the ordering such that P is associated to the positive k-roots.
U (resp. U") is directly spanned by the U, (ax€,® ) (resp. U, (xe— P ).
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We extend to the present case some definitions of 14.17. For I < 4, we let
[I] be the set of k-roots which are linear combinations of elements in I and set

(0 W(1)=k¢(1)+=k¢+"[l]'
In the notation of 14.5, we have again
@ @ @) < @) i aell]

Let S, = ( N kera) . Then

ael

[ = @(S, Z(S))).

It follows from 21.9, 21.10 that Z(S,) is generated by :#(S) and the U
(ae[1]). It then follows from (2) and 21.10(1) that 2/(S,) normalizes Uguy
Their intersection is reduced to {1} and that of their Lie algebras to zero.
The semi-direct product P,=2(S;) U yay I therefore a parabolic
k-subgroup with Levi k-subgroup Z(S,) and unipotent radical Uy, If I
is the empty set, we get P back. It is also denoted P,.

Given P, we call standard a parabolic k-subgroup containing P.

21.12 Proposition. The parabolic k-subgroups P, (I = ,A) are distinct and are
all the standard parabolic k-subgroups. Any parabolic k-subgroup of G is
conjugate to one and only one P;, by an element of G which may be chosen
in G(k).

Proof. Let Q be a parabolic k-subgroup, L a Levi k-subgroup of Q and C
the greatest k-split central torus 6f L. Then L = Z(C) (see 20.5, 20.6). Let D
be a maximal k-split torus containing C and T a maximal torus of G defined
over k and containing D. Choose Ae X (C) as in 20.4, i.e. such that (with @
standing for @(T,G)),
O(T, Q) = {ae ®@|<a, 1) 2 0}
(1) (T, L) = {ae®|{a,A) =0}
(T, #,0) = {acd[{x, 1) > 0}.
Since @ = @(D,G) may be viewed as the set of non-zero restrictions of
elements of @, we can also write
DD, Q) = {ae, @ [{2, 1) 2 0},
(2) (D, L) = {ag, P |{a, A) =0},
@D, R,0) = {ae,®@|(a, 2> >0}
By 20.9, there exists ge G(k) such that D =S. In view of 21.2, 21.3 and the
transitivity of W on the Weyl chambers, we may also insure that Int g brings

A into the positive Weyl chamber defined by ,® *. Replacing Q by °Q, we
may assume that Q satisfies those conditions and that D=S. Then
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«P(D,Q)>, @+, hence Q o P. Moreover, a linear combination with non-zero
coefficients of the same sign of elements of ;A vanishes on 4 if and only if
each of those simple k-roots vanishes on A. Therefore @ (S, L) = [I], where I
is the set of simple k-roots vanishing on 1. As a result L = 2(S,) and Q = ,P,.
The uniqueness of I follows from 11.17.

21.13 Proposition. Let P be a parabolic k-subgroup of G and L a Levi
k-subgroup of P.

() If Q is a parabolic k-subgroup of G, then (Q\P) & P (resp. LNQ) is a
parabolic k-subgroup of P (resp. L), which is=iminwt=i Q.

(ii) The parabolic k-subgroups of G contained in P are the semi-direct products
of R,P by the parabolic k-subgroups of L. For two parabolic k-subgroups Q, Q'
of P the following conditions are equivalent: (a) Q and Q' are conjugate under
P; (b) Q and Q' are conjugate under P(k); (c) QL and Q' N L are conjugate
under L; (d) Qn L and Q' nL are conjugate under L(k).

Proof. (i) By 14.22, we know that P Q is connected, (P n Q) %, P is parabolic
in P (hence in G) and QN L is parabolic in L. By 20.7, the group PnQ
contains the centralizer of a maximal k-split torus S’ and is defined over k.
Its semi-direct product with %, P is then also defined over k. After conjuga-
tion by an element of P(k) we may assume that S’ =S (20.9). Since Z¢(S)
contains a maximal torus of G defined over k (18.2), the group PnL is
defined over k by 20.3. This proves the first part of (i). If Q is minimal then
only one of U, U _, (x€[I]) can belong to QN L, whence the minimality
assertion.

(ii) The group (@ N P)-&,P is the semidirect product of (QnL) and #,P.
If Q is contained in P, then it contains Z,P by 14.22. Therefore two parabolic
k-subgroups of P are conjugate in P if and only if their intersections
with L are conjugate in L. The remaining part of (ii) then follows from 20.5
and 20.9.

21.14. We keep the previous notation. For we, W, let
(1) (@ = {0, @5 w ) >0} D, ={ae,P}Iw ) <0}

These are closed sets of positive roots, whose disjoint union is , @}, to which
we may apply 21.9. Therefore

) U=U, U, where U,=U_ U,=U,aq,.
Note that
3) wlUywclU, wtU, wclU".

More precisely
4 U,=Un"U U, =Un"U".

as can be seen using 21.9 and 13.20.
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Lemma. Let n,n'e A (S) and w the image of n in \W. The double coset U-n-U
is locally closed in G and the product map defines an isomorphism of varieties
of U\, x {n} x U onto U-n-U, which is defined over k if ne #'(S)(k). The double
cosets U-u-U and U-n'"-U are equal if and only if n=n'.

Proof. The set U-n-U is an orbit of U x U acting on G by left and right
translations, hence is open in its closure (1.8), i.e. is locally closed. By (2), (3)
we have

UnU=U, U, nU=U,nU

therefore the product map ¢:U’, x {n} x U— U-n-U is surjective. Composed
with the left translation by n™", it is the restriction to a closed subvariety of
the product map U~ x U— U~ -U. But the latter is an isomorphism since
UnU~ = {1} and L(U)nL(U )= {0}. The group U being defined over k,
the map is defined over k if ne A(S)(k). This proves the first assertion.

Assume now that U-n-U = U-n’-U. We want to prove that n =/, i.c. that
NAU-n-U={n} or, equivalently by the above, Nn U/ n'U = {n} where
N = A 4(S). In view of (3) it suffices to show that NAnU™-U = {1}. Let
n=vu(ueU, veU~). For any seS, we have clearly

(U-1,ns_v,ns“1).("8.3_1).(3.1‘-3-1~u-l) =1.

The three factors defined by the brackets belong respectively to U™, S and
U respectively, hence are equal to one (see 14.21). Therefore u, ve Z(S), whence
u=v=1land n=1.

21.15 Theorem. Let N = #(S) and P, U be as above. Then G(k)=
U(k)-N(k)- U(k) and is the disjoint union of the classes P(k)-w-P(k) (we, W).
The system 7 =(G(k), P(k), N(k), R), where R is the set of reflections r, to
the simple k-roots, is a Tits system.

Proof. Let geG(k). By 20.7, the group Pn?P contains the centralizer of a
maximal k-split torus §'. The groups 2/(S) and Z(S’) are both Levi
k-subgroups of P, hence are conjugate by an element of U(k) (20.5). There
exists therefore xeP(k) such that *9P > Z(S). Then, by 21.3, we can find
neN(k) such that "*9P = P. Since P is its own normalizer (11.16), we get
n-x-geP(k) and therefore geP(k) N(k)U(k). But P(k)= U(k)-2(S)k) and
Z(S)k) = N(k), so that geU(k)- N(k)- U(k), as claimed. This also implies that
G(k) is the union of the classes P(k)-w- P(k) (we, W). We have to show that they
are distinct. Assume w'e P(k)-w-P(k) and let n, n’ be representatives in N(k)
of w and w. There exist then w,veU(k) and a,beZ(S)k) such that
n' =u-an-bv, whence n' =a'n-b by 21.14, and w' = w by definition.

There remains to prove the last assertion. We have N(k)n P(k) = Z(S)(k)
by 20.6, hence T = N(k)n P(k) is normal in N(k) and N(k)/T = W, therefore
(W, R) is a Coxeter system.
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In view of the definition of a Tits system (see (14.15)), where our G(k), P(k),
N(k) and R are G, B, N, S there, it remains to check:

For reR and we, W, we have
1) r+P(k){w,r-w}- P(k) = P(k){w, r-w}- P(k),

2 r-P(k)r # P(k).

Let ae, A be the k-root such that r =r,. Replacing w by r'w if necessary,
we may assume that w™'(«) > 0. We have Z(S,)nU = U, and the roots of
S in the unipotent radical of ,P,, to be denoted V in this proof, are all
positive k-roots but those in (a). Therefore U =U -V and we have

r-P(k): {w,r-w}P(k) = Z(S)(k)-r- U(k)-{w,r-w}- P(k)

= Z(S)K) V(k)r-U o (k) w, r-w}- P(k)
r-P(k)-{w,r-w}- P(k) = P(k)Z(S)(k)- w- P(k).
By our first assertion, applied to Z(S,):
Z(S)k) = Z(S)K)- Upgp{ 1, r}- U, (k),
hence
r-P(k)-{w,r-w}-P(k) < P(k) {1,r} U ,(k)-w* P(k).
Since w™ () > 0, we have w™ - U ,(k)w 5 P(k), and we get
r-P(k)-{w,r-w}-P(k) = P(k){w,r w}P(k).

If we multiply both sides by r, we get the opposite inclusion, and (1) is proved.
The group r-U-r contains U _,, hence is # U and (2) follows.

21.16. By the general theory, the standard parabolic subgroups of the Tits
system ,J are the groups P(k)-, W, P(k). I = R. If we identify A and R in
the obvious way (a—r,), and use the theorem, we see that P(k)- W, P(k) =
Pik) in the notation of 21.11. Therefore, Q—Q(k) is a bijective
correspondence between the parabolic k-subgroups of G and the parabolic
subgroups of ,7. In particular, a parabolic k-subgroup is completely
determined by its k-rational points.

We shall denote P-w- P by C(w) or ,C(w) if it appears necessary to emphasize
k. If ne A"(S)(k) represents w, then C(w) is k-isomorphic to U’ -n-P hence

1) C(w)(k) = U"(k)n- P(k) = P(k) n- P(k).

C(w)(k) is the C(w)= BwB of the general theory of Tits systems. An easy
induction starting from 21.15 (see Prop. 2 in IV, §2 of [9]) yields

2 P 1(k) w P,y(k) = P(k) W w W, P(k) (we,W;1,J < ,4)
As a consequence. w— P (k) w-, P,(k) yields a bijection

3 W\ W W 5 P (\G(K)/ P (k).
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Also
G(k)/ P k) = Uws,(W/,(w,U(k)'W'kPJ(k)/kPJ(k)

We shall describe the right-hand side more precisely later.

Our next goal is to prove that U, is k-isomorphic to an affine space. That
follows from the much more general results quoted in 15.13. Rather than
invoking them, we shall use the features of the present situation to find a
self-contained way to this statement. The lemmas below are in fact some of
the (elementary) ingredients involved in the proofs of the statements in 15.13.

21.17 Lemma. Let U be a connected unipotent k-group, on which a k-torus T
operates k-morphically. Assume there is a non-trivial character ¢ of T and a
structure of vector space over k, on U so that any te T(k) operates by the
dilation ur>t‘-u. Then this is already so over k and c is defined over k.

The set of weights of T in U reduces to {c} and is on the other hand
invariant under I = Gal(k,/k), hence ¢ is defined over k.

In view of our assumptions, we have y(r-u) = "c-"u for all yerl, rek, and
ue U(k). It suffices then to show that U(k,) has a vector space basis consisting
of elements in U(k). There exists clearly a finite Galois extension k' of k such
that U(k’) contains a vector space basis of U(k,). Let I'' = Gal(k'/k) and
(uy,-..,u,) a maximal set of elements in U(k) which are linearly independent

over k,. For every ue U(k') and aek’, we have that ) Ya-7u is rational over
yeI'*

k, hence a linear combination of the u;’s. By the theorem of the normal basis,
each "u is also a linear combination, of the u;’s, hence those form a basis of
U(k,) over k.

21.18 Lemma. Let V,W,Z be irreducible k-varieties, a:V — W a dominant
k-morphism, B: W — Z a morphism and assume that oo is defined over k. Then
B is defined over k.

Proof. We may replace Z by an open dense affine subset and have to prove
that B°(k[Z]) < k(W). We know that (Bea)’(k[Z])<k[V] and that «° is
injective. Therefore it suffices to show that

(H (K(W))nk(V) = a”(k(W)).
Let f be in the left-hand side. There exist u;, v;ea’(k(W)) and a;eK, linearly
independent over k, (i=1,...,m) such that f(Za,.-u,. =Y a;v, and

therefore such that

) Z a(fu;—v)=0.



V.21 Relative Root System and Bruhat Decomposition 239

But K and k(V) are linearly disjoint over k (AG.12.1), therefore (2) implies
f-u;=v; (1 £i<m), which proves the lemma.

21.19 Lemma. Let L be a connected k-group and H a a connected unipotent
k-subgroup of L which is k-isomorphic to the additive group of some vector
space E over k. Assume that n:L— L/H has a global morphic cross-section a.
Then it has one defined over k.

Proof. We identify H with E and write the group law on H additively. We
fix a basis (¢;) (i=1,...,m) of E over k and denote by h; the ith coordinate
of he H with respect to that basis. Let

F={g,gh} (geL,heH)

be the graph of the operation of H on L defined by right translations. Then
0:(x, y)>x"'-y is a k-morphism of L onto H. Let a;:L— K be defined by
g— (g~ ' o(n(g)); It belongs to K[L]. If geL, heH, then n(g-h) = n(g) and

(g-h)~"-a(n(gh)=h~"-(g™ " a(n(g)).
This can be written
(0] afg-h)=ag)—h;, (geL,heH,i=1,...,m).

For each i, there exist elements ¢; ;e K (1 < j < J(i)), linearly independent over
k, with ¢;; = 1 and ¢;;€k[L] such that

(2 ag)= Zci,j'(Pi,j(g), (geL,i=1,...,m),
J
and (1) yields
3) Z C.',j‘(P.:j(g‘h) = Z ;@i i(9) — h; (geL,heH,i=1,...,m).
i j

By the linear disjointness of K and k(L x H) over k, this gives
4 @ii(gh)=0;1(9)—h, (9geG,heH,i=1,...,m)
9) 0ila ) =0:(9) (j=2....J0)
From (4) we see that there exist ; ;ek[L/H] (j=2,....J(i)) such that

@iy =7 (). We delin€ a morphism of varictics p:L/H — H by

(6) wz)=— Zei‘< Z Ci,j"/’.-,j(z)> (zeL/H),
i j>1
and a new cross section ¢’:L/H — Lby
d'(z) = o(2)- u(z) (zeL/H).
We claim that ¢’ is defined over k. We have

g~ "a'(n(g) = g~ 'o(n(g)) u(n(g))-
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Using (3), (6), we get

@™ omg)i=alg)— Y. ciy@if9)

j>1
and therefore, in view of (2):

@~ o' (m(g))i=oulg) (=1,...,m).
Let ¢,:L— H be defined by

0:(9)= Y erpulg) (gel).

It is a k-morphism of varieties. Then

o'om:grg-9,(g) (gel)

is a k-morphism of L into L. By 21.18, applied to a=n and f =o', the
morphism ¢’ is defined over k.

21.20 Theorem. (i) Fix an ordering on @ = @(S,G) and let \ be a closed
subset of ,@*. Then U, is k-isomorphic, as a variety, to an affine space.

(ii) Let P be a parabolic k-subgroup of G. Then G/P is rational over k. If k
is infinite P(k) is Zariski-dense in P.

Proof. (i) By 21.9, U, is directly spanned, over k, by the U (a€y,,). This
reduces us to the case where | = («) for some ae,@. Assume first that 2a is
not a root. Then U, is a commutative group, which is directly spanned over
k, by the groups U, (Ben(x)) in the notation of 21.9; those are isomorphic
to G, over k,. Then our assertion follows from 21.17.

Assume now that 2a is a root. The previous argument applies to U ,,, and
U/U 24 It follows from 21.9 that the groups Uy (Ben(a)), taken in any
order, directly span a subvariety of U, which defines a morphic cross section
for the projection U, — U, /U,,,. It is only defined over k,, but 21.19 then
provides one which is defined over k. Therefore (see 6.14), U is k-isomorphic,
as a variety, to (U /U ,,) x U,,, hence to an affine space over k.

(ii) The unipotent radical of any parabolic k-subgroup of G is conjugate
over k to a group U, with  as before (21.11), therefore is k-isomorphic, as
a variety, to an affine space. This holds in particular for the unipotent radical
AR,P~ of a parabolic k-subgroup P~ opposite to P. The projection G — G/P
defines a k-isomorphism of #,P~ onto a k-open subset of G/P, as follows
from 14.21, therefore G/P is rational over k.

P is the semi-direct product over k of £,P and a Levi k-subgroup L (20.5).
Assume k to be infinite. Then #,P(k) is dense in &,P by (i) and L(k) is dense
in L by 18.3, whence the second assertion of (ii).

21.21. Our next goal in this section is the description of the relative closure
in G(k) of a Bruhat cell. We first recall or state some facts about Weyl groups
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and root systems to be used below. We keep the notation of 21.14. The length
I(w) of we,Wis defined with respect to the set R of simple reflections r, (x€, 4).

(i) Given J = A and we, W there exists a unique element, to be denoted w’
or w(w, J), of smallest length in the coset w- W,

See IV, §1, Exercise 3 in [9]. In fact, a proof will also be contained in
21.24. We denote by W’ the set of w’ (we,W). It is a set of representatives
for the left cosets w,-W,. Each we,W has a unique expression w=w’-w,,
with w'e, W’ and w,e, W,.

(ii) Let J, <, 4, write W, for W, (i=1,...,n) and let w=w,---w, with
w,eW,. Then there exists wieW, such that w=w,---w, l(w))<l(w;) and

Iw)= Z Iw).

This follows from the exchange condition for Coxeter systems [9:1V, 1.5].
As a direct consequence of (i) and (ii) we get

(iii) Let weW,---W,. Then wheW, ...W,_,.

Finally, by Corollary 2, p. 158 of [9], we have

(iv) llw)=Card, @',
where (see 21.14)

@, =W @ )N, D

21.22 Proposition. Let w,w'e, W be such that [(w) + l(w') = l[(w-w'). Then
M Clw)-Cw) = Clww),
@ Cw)(k)- C(w)(k) = C(w-w')(k).

Proof. We first assume that w=r(ae, 4) and set y =, @/ .. Then
o) @l ={a), 4O, = {ar).
Let n and n’ be representatives in .A(S), of w and w'. Then
@ Cw=UynP CwW)=Uyn' P, Cww)= U(I,U,M,'n'n"P.
All these decompositions are k-isomorphisms of varieties so that
(5) cW)(k) = Upy(k)n-P(k), COw')(K) = Uy (K)n' P(k),
©) Cov W) = U (k) Uy K)o P(R)

We have, taking the above into account

Cw) CW)=UyynUgyyn-P=U, U, nnP=Cww)

and this is also valid for k-rational points. This proves (1) and (2) in the case
where wis a simple reflection. They follow for fixed w’ by induction on l(w).

21.23. If ne A"(S)(k) represents we, W, we also denote by w(P) the conjugatc
n-P-n~' of P. Fix J =,A. By applying 21.3 to a Levi k-subgroup of ,P,
containing Z(S), we see that v—u(P) is a bijection of W, onto the set of
minimal parabolic k-subgroups of P, containing Z(S).
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For any we, W, we know that @, =(w™(P)n,P,) &, P, is a minimal
parabolic k-subgroup of P, (21.13), evidently containing Z(S). Any ve W,
normalizes &, P, and ,P,, therefore
(M Q,.,=v71Q.) (we,W,ve,W)).

In view of our initial remark, there exists a unique w,ew. W, such that
P=g,. . We claim

@ w, =w’
By definition of W, this is (i) in the next lemma.
We let ¥(J)™ = — W(J), where, as in 21.11, ¥(J) is the set of non-divisible

k-roots occurring in the Lie algebra of £, ,P,.

Lemma. Let ve, W, v# 1. Then

@) lw,) < lw,v).
(i) 4@, =w, (P(I))N D"
(ii)) @, - =w (P )N[J1L V1T =0J]n@ ).

Proof. As recalled in 21.21:

(1) Iw) = Card(w ™ '(, @ )N @ ") = Card(w(, @ ), D *).
The condition imposed on w, is equivalent to

@ w605 AT =

therefore ’

3) Iw,)=Cardw, '(,® *)n ¥(J)".

) DL =wI DA P =w(P() )@

The element vleaves ¥(J), ¥(J)™ and [J] stable, but not [J]*. We have then
(5) Card(v™'w, (@) N ¥ (J)")=Card(w, '(,@ )N P(J)")
(6) Cardv™'wy '(,@ )N [J]~ #0.

Since l(w, v) is the sum of the left-hand sides of (5) and (6), these relations,
together with (3), prove (i). Since v leaves ¥(J)~ invariant, (4) also implies
(ii). Moreover

(7 k@, =07 1P )@ =0 ([IT)N T
(since v~ Y(¥(J)")n ¥(J) = ). On the other hand

w G NI =[J],
and thercfore

t)] 0w, 6@ )] =0T (V] ) U

The assertion (iii) now follows from (7) and (8).
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21.24 Lemma. Let J <, A, and we,W..Let geP(k)-w-P(k) and heG(k) and
assume that h™'-P-h=(g~*-P-gnP,). R,P,. Then

g-h™*eP(k)-w’-P(k).

Proof. Set g'=g-h™! and let ug,W be such that g’'e C(u)(k). Since h™*-P-h
is in P;, we have he, P (k) (see 11.17) therefore, in view of 21.16,

g =g -heP(k) u Pyk) = P(k)-u- W, P(k)
whence weu', W, and w(w,J) = w(u, J). But we also have
P=(g"!""P-g P,y AP,
therefore 21.23 shows that u = w(u, J) = w(w, J), which is our claim.

2125 Lemma. Let P,,...,P, be parabolic k-subgroups containing P. Then
P,:--P, is closed and (P, --- P Xk)= P;(k)--- P(k).

Proof. There is nothing to prove if n= 1, so we argue by induction on n.

Assume P, ---P,_, is closed. Of course, P, --- P, _, is right invariant under
P, hence P,---P,_, is the full inverse image of its image in G/P, therefore
the latter is closed. Since G/P is complete, the canonical projection
G/P - G/P, is closed, hence the image of P,---P,_, in G/P, is also closed.
But then, so is its full inverse image P,--- P, in G.

Let J; <, 4 be such that P,=P,(i=1,...,n). Note that in view of 21.15,
it follows by induction on n from Prop. 2 in §2 of [9:1V] that

Py(k)--- Py(k) = P(k) Wy, --- W, - P(k).

Let ge(P, --- P,)(k). Then there exists we W, ---W, such that ge P(k)-w- P(k).
By 21.21 (iii), we have w(w,J )eW,, - W," . By 21 13, the group

P,=(g_1'P'gnPn)"@uPn

is a minimal parabolic k-subgroup. There exists therefore he P, (k) such that

h™':-P-h=P'. But then g-h~'eP---P,_, by 21.21 (iii). Since
(Py-+-Py_y)(k)=Py(k)---P,_y(K)

by induction assumption, our second claim is proved.

21.26 Theorem. Assume k to be infinite. Let we, W and w=s,---s, be a

reduced decomposition of w. Then the set A, =/{s;--s, |meN,1=

iy <+ <i; < q} depends only on w, not on the reduced decomposition, and we

have o
(1 Cw)(k) = Cw)k)nG(k)= | C()(k).

veAw
Proof. The relation (1) and 21.15 imply that A,, depends only on w. It suffices
to prove (1). It follows from 21.20 that U (k) and P(k) are dense in U,, and
P respectively. Since C(w)(k) = U, (k) n- P(k), where ne /' (S)(k) rcpresents w,
it also follows that C(w)(k) is dense in C(w). This proves the first equality in (1).
For X < G(k), let us write A(X) for the relative closure X nG(k) of X in



G(k). If X4,..., X,,€G(k), then we see from (AG, 6.6) that

(2) AX - X)) = A(A(X ) A(X ).
Write P; for P, (i=1,...,9). By 21.25, P, --- P, is closed and we have
©)] A(Py(k)--- Py(k)) = Py(k)--- P,(K).

C(s;)(k) is dense in C(s;) (21.21), hence in P; and the first equality of (1),
together with the Bruhat decomposition (21.195), gives

4 A(C(s)(k)) = Pi(k) = C(si)(k) L P(k).
From (2) and 21.22, we get

A(C(w)(k)) = A(C(5,)(K) - Cls,) (k) = A(A(C(S,)(K))--- A(C(s,)(K)))
A(CW)(k)) = Py(k)--- Py(k) = (C(s1) (k)L P(k)) -+ (C(s) (k) U P(K)).

By repeated application of 21.22, we see that the last term is equal to the
last term of (1), and (1) is proved.

21.27 Proposition. Assume G(k) to be endowed with a topology 7 having the
following properties:

(@) 7 is finer than the topology induced by the Zariski topology.

(b) The product map G(k) x G(k)— G(k) is continuous, the left-hand side
being endowed with the product topology.

() For every a€,A, the group P(k) is not open in P,,(k).

Then the closure of C(w)(k) with respect to J is equal to its relative closure
C(w)(k)nG(k) in the Zariski topology, described in 21.26.

Proof. In the previous proof, the Zariski topology was used only through
the relations (2), (3), (4). It suffices therefore to see they are satisfied by the
relative closure A5 with respect to J. Obviously (3) follows from (a) and
(2) from (b). Let a€,4 and r =r,. If P(k) is not open in P,,(k) then it meets
the relative J -closure of C(r)(k). Therefore A, (C(r)(k)-P(k))> P(k). But
C(r)(k) = (C(r)(k))- P(k) whence A(C(r)(k))> P(k) and 21.26(4) is satisfied
ing.

21.28 Corollary. Assume k endowed with a non-discrete topology &, satisfying
the separation axiom T, and with respect to which it is a topological ring.
Then the closure of C(w)(k) with respect to the topology T of G(k) associated
to & coincides with the relative Zariski closure.

By definition, 7 is the coarsest topology such that the restrictions to G(k)
of any element in k[G] is continuous. It obviously satisfies (a) and (b) above.
By 21.21, U_,,, is k-isomorphic to an affine space. Since k is not discrete,
U_ (k) P(k) = {1) is not open in U _,(k), hence P(k) is not open in Py,,(k)
and 21.27(c) is satisfied, so that 21.27 applies to the present situation.

21.29 Proposition. Let Je, A, we W and n (resp. n,, resp. o) the canonical
projection G— G/P (resp. G- G/, P,, resp. G/P— G/, P,).
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(i) We have P-w-, P, = P-w’'-, P, and n,(C(w)) = n,(C(w’)).

(ii) The canonical projections a:m(C(w))— n;(C(w’)) and n,(k):n(C(w)(k))—
7,(C(w’)(k)) are surjective. They are injective if and only if we, W, in which
case o:n(C(w)) - n;(C(w)) is a k-isomorphism of varieties.

(iii) We have (C(w)-, P,)(k) = C(w)(k) P, (k).

iv) If w,we W' are distinct, then n,(C(w))nm,(C(w))= . The sets
ny(C(w)), (we, W) form a partition of G(k)/, P,(k).

Proof. In the notation of 21.21, we have by 21.22

(1 C(w)=C(w') C(wy), C(w)(k) =(C(W’)(k))-(C(w,)(k)),
therefore
2 CW)'kPy = C(W') Py, (CW)(K)) Py(k) = (C(W)(K)) P (K).

This implies (i) and the first assertion of (ii). Let n,n’ and n, be representatives
in #(S)(k) of w,w’ and w, respectively. The subset X =n’-U’, -n, belongs
to C(w)(k), is mapped injectively by n in =n(C(w)(k)) and we have
n,(X)={n’-P,}. Therefore if n, is injective, then U’ = {1}, and w, =1,
w=w’

We have the obvious relation U’ ,-n < C(w) and, by (2),

U, n Py = C(w),P,.

Moreover, 21.23(ii) shows that n™!-U’, ‘nc &,.,P,, therefore the product
map {U., n,P;—C(w) P, is a k-isomorphism of varieties. From this, (ii)
and (iii) follow immediately.

Let u,ve, W’ If n,(C(u)) and m,(C(v)) have a non-empty intersection, then
the double cosets

C(u)Py=P-u P, and C(v) P;=P-vP,

also have a non-empty intersection, hence are equal and therefore uev-, W,
(21.16). Since u, ve, W, they are equal. This proves the first part of (iv); the
second one then follows from (ii), 21.16 and the surjectivity of =, (k).

Bibliographical Note

Up to 21.21, the results of this section are contained in [4: §5]. The proofs
are similar, with one apparent exception: To establish 21.21 there, use was
made of results of Rosenlicht quoted in 15.13, but not proved here. We have
extracted from his arguments the minimum needed here to handle U,,,. More
precisely, 21.17 is lemma 3.16 of [4], 21.18 lemma 1 of [28] and the proof
of 21.19 follows closely that of a similar statement on p. 100 of [28].

The remaining part of this section is taken from [5]. For k algebraically
closed, 21.26 was proved by C. Chevalley (unpublished). For k = C, with
respect to the analytic topology, 21.28 is proved in R. Steinberg’s Yale Notes,
p. 107.
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§22. Central Isogenies

In this section, G is a connected k-group and T a maximal torus of G defined
over k. Until 22.10, G is assumed to be reductive.

The relative notions introduced in the previous sections, such as k-rank
or relative root systems, are not invariant under arbitrary isogenies, in
contrast with the corresponding absolute analogues. They are quite obviously
so under separable isogenies, but this class is too narrow. The appropriate
concept here is that of a central isogeny, to which this section is devoted. In
order to arrive as directly as possible to those conservation theorems, we
first confine ourselves to reductive groups, using a notion of central isogeny
adapted to that case. From 22.11 on, we shall discuss central isogenies in
the general case.

22.1 Lemma. Let N be a closed normal subgroup of G. Then the following
conditions are equivalent: (i) N is central; (ii) N < T; (iii) N is contained in the
intersection Z of the maximal tori of G; (iv) N consists of semisimple elements;
(v) For every o€ ®(T, G), the group U , is not contained in N;(vi) N° is central.

If N is k-closed and satisfies these conditions, then it is defined over k.

Proof. We first recall that the maximal tori of G are conjugate (11.3) and
that their intersection is the center G of G (13.17, Cor. 2). In particular,
every normal subgroup of G contained in T is central. With that taken into
account, the implicatiors

(1)< (ii) <> (iii) = (iv) = (v)

are obvious. The group N°, being normalized by T, is generated by (N°n T)°
and the groups U, it contains (13.20), therefore (v) implies N° = T, and (vi).
Let us now prove that (vi)=>(ii). Assume (vi). Then N° = T, hence N° = 4(G)
as pointed out above. In order to show that N < T, it suffices to show that
N/N° is contained in T/N° in G/N°, but this is clear since, N/N° being finite
and normal, is central. The equivalence of the six conditions is now proved.
If N satisfies them, it belongs to T, hence is defined over k, (8.2, 8.11) and
therefore over k if it is moreover k-closed.

22.2 Lemma. Let wm be an ideal of q stable under Ad G. Then the following
conditions are equivalent: (i) nt < 2 ((G); (i) m < ; (iii) m is contained in the
intersection 3 of the Lie algebras of the maximal tori of G; (iv)m consists of
semi-simple elements; (v) m does not contain any algebra u, (ae ®(T, G)). We
have the equalities

(1) ) =2 (G)=3
Proof. By the Corollary to 9.2,
) Z(T)=t=LZT),
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therefore (i) = (ii). We have (ii) = (iii) by the conjugacy of maximal tori (11.3)
and (iii) = (i) because every torus centralizes its Lie algebra and G is generated
by its maximal torii (12.1 and 13.16, Cor. 2). The implications (iii) = (iv) = (v)
are obvious. The ideal m, being stable under T is the direct sum of the u, it
contains and of its intersection with t, hence (v)=>(ii). This shows the
equivalence of (i) to (v).

The center 3(g) of g is stable under every automorphism of g, hence under
Ad G. It does not contain any u,, since u, is not central in the Lie algebra of
the subgroup of G locally isomorphic to SL, generated by U, and U_,.
Therefore 3(g) = Z 4(G), and (1) follows in view of the equivalence of (i) and (iii).

22.3. A surjective k-morphism f:G— G’ is quasi-central if its kernel N is
central in G. It is central if it is quasi-central and kerdf, is central in g.

If f is quasi-central, then ker f, which is necessarily k-closed, is defined
over k by 22.1. Since any maximal torus of G’ is the image of a maximal
torus of G (11.14), 22.1 shows that f is quasi-central if and only if the inverse
image of a maximal torus of G’ is a maximal torus of G.

If f is an isogeny, it is automatically quasi-central (22.1). If moreover it is
separable, then, df being injective, it is central. Thus a separable isogeny of
a reductive group is central.

As examples, in characteristic two, the standard isogeny of SL, onto PGL,
(17.6) is central, but the isogeny of PGL, onto SL, is not. Similarly, in
characteristic p, the isogeny of SL, onto PGL,, is central, but not separable.

The definition of quasi-central goes over verbatim to an arbitrary affine
algebraic group, but the usual notion of central isogeny is different in the
general case (see 22.11); however both notions are equivalent for reductive
groups (22.15).

22.4 Proposition. Let f:G—G' be a surjective morphism. The following
conditions are equivalent:

(i) fis central.
(i) The restriction of f to any closed connected unipotent subgroup U is

an isomorphism onto f(U).
(iii) The induced map f*:X(f(T))— X(T) maps @(f(T),G') onto I(T, G).

Assume (i). By 22.1 and 22.2, the kernels of f and df consist of semi-simple
elements, therefore [ is injective on U and df on L(U), whence (ii). If (ii)
holds, then f maps U, (xe @(T, G)) isomorphically onto a one-dimensional
subgroup normalized by f(T), and (iii) follows. Note that f(U,) is necessarily
of the form Uj, (Be@(f(T),G’)). Assume (iii). Let N =ker f. It is invariant,
hence N° is generated by (NN T)” and the U, it contains (13.20). By (iii), df
is injective on each u, hence N° < T, and by 22.1 N is central, contained in
T. Thus f is quasi-central. Ker df is also stable under T, hence direct sum
of its intersection with t and of some u,. Some df is injective on u,, it follows
that m c t, hence m < z(g) by 22.2. Therefore f is central.
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22.5 Corollary. Assume fto be central and surjective. Then Im df contains all
the nilpotent elements of g'. Let T' be a maximal torus of G’ and H' a k-subgroup
of G.Theng =df(g) +t.IfH = T' or H' = T’ thenf ~'(H') is defined over k.

Proof. Every nilpotent element X of g’ is tangent to a closed connected
unipotent subgroup, say U’ (14.26). Any maximal unipotent subgroup of
S YU’y maps onto U’ under f (11.14). Then 22.4(ii) shows that X < Im df.
On the other hand, if U’ and U’'~ are two opposite maximal unipotent
subgroups normalized by T, then g’ is the direct sum of the Lie algebras of
U',U'~ and T'. Since L(U’) and L(U'") belong to the image of df, the first
assertion follows.

If H o T, then ¢' =df(g)+ Y, and H is defined over k by 6.13. Assume
now that H' </T'. Its centralizer is defined over k (9.2, Cor.), contains a
maximal torus of G', hence also a maximal torus T, defined over k of G’
(18.2). Then T, = f ~(T") is defined over k, as we just saw, and is a maximal
torus (22.3). Being a k-closed subgroup of a torus defined over k, the group
H is defined over k (8.2, 8.11).

22.6 Theorem. Let G’ be a k-group and f:G— G’ a surjective k-morphism.
Assume either f central or k perfect:

(i) The parabolic k-subgroups of G' (resp. G) are the images (resp. the inverse
images) by f of the parabolic k-subgroups of G (resp. G').

(i) The maximal k-split tori of G’ (resp. G) are the images (resp. the maximal

k-split tori of the inverse images) of the maximal k-split tori of G (resp. G').
Assume f central.

(ili) Let S be a maximal k-split torus of G and S' = f(S). Then f maps ¥ ¢S
(resp. Z 4(S)) onto N 'g(S') (resp. Z ¢(S')) and induces an isomorphism of
W(S,G) onto W(S',G"). The homomorphism (f|s)*:X(S")— X(S) maps
&(S', G') isomorphically onto @(S, G). If ae &(S',G') and B =(f|s)*(2) then
finduces an isomorphism of U, onto U,

Proof. (i) Let P (resp. P’) be a parabolic k-subgroup of G (resp. G'). It follows
from 11.14 that f(P) (resp. f ~'(P)) is a parabolic subgroup. f(P) is clearly
defined over k, and f ~'(P") is defined over k by 22.5 if f is central, by general
principles (AG, 12.2) if k is perfect.

(i) If S is a k-split torus in G, then f(S) is a k-split torus in G’ (8.15). It
suffices therefore to show that if S’ is a maximal k-split torus of G', then
f~Y8) = H contains a k-split torus S mapping onto §’. The group §' is
contained in a maximal torus of G’ hence H is defined over k again by 22.5
if f is central, by general principles if k is perfect. Let T be a maximal torus
of H defined over k (18.2). Then f(T) is a maximal torus of f(H) (11.14),
hence is equal to §'. But then T, maps onto S, =S (8.15).

(iii) By Corollary 2 to 11.14, f(Z4(S))= Z;(S), hence also Z4(S)=
f Y Z ¢(S) (since ker f = Z4(S) in view of 22.1). By (ii) we know that if P
(resp. P') is a minimal parabolic k-subgroup of G (resp. G') then f(P) (resp.
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f~X(P)) is a minimal parabolic k-subgroup of G’ (resp. G). The previous
remark shows that P (resp. P’) contains 2;(S) (resp. Z4(S')) if and only if
S(P) (resp. f~}(P’)) contains Z;(S") (resp. Z¢(S)). By 21.3, 4 4(S) permutes
transitively the minimal parabolic k-subgroups containing Z4(S) and
«W(S,G) acts simply transitively on them. It follows that f(.4"4(S)) acts
transitively on the set of minimal parabolic k-subgroups of G’ containing
Z(S) and that f(,W(S, G)) is simply transitive on this set. Again by 21.3,
this proves the first part of (iii).

Let P,P~ be two opposite minimal parabolic k-subgroups of G with
intersection Z 4(S) and U, U~ their unipotent radicals. Then f(P) and f(P~)
are two opposite minimal parabolic k-subgroups of G’, with intersection
Z¢(S) and unipotent radicals f(U) and f(U~). Moreover, [ induces a
k-isomorphism of U and U~ onto their images. Let T, be a maximal torus
of G defined over k in Z(S), hence containing S. Then T, = f(T,) is a
maximal torus of G’ defined over k containing §’. We already know (22.4),
that if xe ®(T, G), then f(U,)= U, where o is the root of G’ with respect
to T, mapped onto « by [}, ThlS implies first that [} is a bijection of
(8, G) onto &(S, G). Let ﬂed>(S G). Then Uy, is dlrectly spanned by the
one-parameter groups U, where o runs through the set /(ff) of elements of
@(T, G) whose restriction to S is a positive integral multiple of § (21.9). This,
combined with the similar fact for G’ and the previous remark, implies the
last assertion.

22.7 Corollary. Under the assumptions of (i), (ii), the k-rank of G is the sum
of the k-ranks of G’ and of (ker f)°. In particular, if f is moreover a k-isogeny,
then r(G) =r,(G").

Recall that N = ker f is contained in any maximal torus and is defined
over k. If § is a maximal k-split torus, then (S N)° is the maximal k-split
torus of N. Since f(S) is a maximal k-split torus of G’, the first assertion
follows. If f is moreover an isogency, then N°= {1}, whence the second
assertion.

22.8. Let H be a connected algebraic k-group, H; (i=1,...,m) a finite set of
closed connected normal k-subgroups. Recall (see p. xi) that H is the almost
direct product of the H/s if the product mapping

wH;x---xH,-»H

of the inclusions H;— H is surjective, with finite kernel. In that case, u is an
isogeny, which is defined over k if the H’s are so.

H is almost k-simple if it is semi-simple and has no closed connected normal
k-subgroup of strictly positive dimension.

22.9 Proposition. Assume G is an almost direct product over k of connected
normal k-subgroups G; (i=1,...,m). Then the canonical isogency pn:G =
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Gy %+ xG,—G is central. If S is a maximal k-split torus of G, then
S;=(SNG;)’ is a maximal k-split torus of G; and S is the almost direct product
of the S;'s. In particular,

rk,(G) = z rk,(G,).

Proof. Kcr f is finitc, hence central. Let X eker df. We can write X =3 X,
with X,eq; and must show that X,e3(qg;). Let G(i) be the subgroup generated
by the G/’s (i #j), and X(i) the sum of the X; (j #i). Since df(X)=0, we
have df(X;)= —df(X(i)) and df(X;) belongs to the intersection of g; and
L(G(i)). The group G; centralizes G(i), and therefore also its Lie algebra.
Hence X;€3(g;). -

Let S; be a maximal k-split torus in G; (i=1,...,m), S the product of the
S;s. Tt is a maximal k-split torus of G and S = u(8) is a maximal k-split torus
of G by 22.6. By construction, it is the almost direct product of the u(S;) and
clearly u(S,-)=(u(§)mG,-)°. Thus S satisfies our conclusion. By conjugation
(20.9), this is then true for any maximal k-split torus of G. The last assertion
is now obvious.

22.10 Theorem. Let G be semi-simple. Let G; (icI) be the minimal elements
among the closed connected normal k-subgroups of G of strictly positive
dimension.

(1) G is the almost direct product of the G;, which are almost k-simple.

(ii) Let J be the set of i€l for which rk,G;>0. Then ,W(G) = I, ,W(G))
and ,@(G) is the direct sum of the k-root systems ,®(G;) (jeJ), each of which
is irreducible.

Proof. (i) By 14.10, we have a unique decomposition of G as an almost direct
product of its almost simple closed connected normal subgroups N, (acA).
Each of those is generated by subgroups U, invariant under some maximal
torus T. We may choose T defined over k (18.2). Since T and G split
over a separable extension (18.8), the U, are defined over k,, hence so are
the N,. They are then permuted by I" = Gal(k,/k). Let now H be a connected
normal k-subgroup of G. By 14.10, it is the almost direct product of some
of the N,, which are then permuted by I". But, then the other N,’s are also
permuted by I', hence generate a normal k-subgroup H’, such that G is the
almost direct product of H and H'. From this (i) follows by an easy induction
on the dimension. More precisely, we see that if {4;} (i=1,...,m) are the
orbits of I' in 4, then we may take for G, the subgroup generated by the N;
(jeA)).

(i1) The first assertion is clear for the product G of the G;'s. By 22.6, it also
holds for G. There remains to see that if rk,(G) > 0 and G is almost k-simple,
then , @(G) is irreducible. The proof is essentially the same as in 14.10: Assume
yP(G)= D, ®P,. Then, by 145 and 219, U, and Uy, commute if
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ae®,, fe d,. Therefore the closed k-groups G, and G, generated by the U,
for ae @, and ae P, respectively commute with one another. They are both
normalized by ./ 4(S), where S is the maximal k-split torus underlying the
definition of the Uy,. But G is generated by the U, and 4 4(S). Therefore
G, and G, are normal in G and G is not almost k-simple.

22.11. For the sake of completeness, we discuss now the notion of central
isogeny in the general case.

Let H, H' be k-groups and f:H— H' be a morphism. As before, it is said
to be quasi-central if its kernel belongs to €H. In that case, the commutator
map H x H— H, which sends (x,y) onto x-y-x~'-y~!, factors through
f(H) x f(H), i.e. there exists a map k: f(H) x f(H)— H defined by

(1 k() f())=xyx"1y~! (x,yeH).

k is obviously unique. The morphism f is central if it is quasi-central and «
is a morphism of varieties.

In the context of the functorial definition of an affine algebraic group (1.5),
this condition can also be expressed by saying that for any commutative
K-algebra C, the kernel of f(C):H(C)— H'(C) is central in H(C). In the case
of a connected reductive group, the definition in 22.3 amounts to require
that last condition for the algebra of dual numbers, as can be seen from 3.20.

22.12 Lemma. Let X, X', Y be algebraic varieties, Z an affine variety, f: X —
X' a surjective morphism, y:X x Y = Z a morphism and ': X' x Y - Z a map
such that = y'o (f x 1d.). Then ' is a morphism if and only if the restriction
of Y’ to X' x {y} is a morphism for every yeY.

The latter condition is evidently necessary. Assume it is fulfilled. Our
assertion is local in X’ and Y, so we may assume them to be affine. Let {U}
be a finite open affine cover of X. Replacing X by the product U of the U;
and f by the composition of f with the canonical map[] U;— X, we are

reduced to the case where X is affine, too.

We have to show then that if aeK[Z], then ¢"°(a)e K[ X']® K[Y]. Since
[ is surjective, f° is injective and this amounts to proving that y°(a)e
SUAK[X'])® K[Y]. We can write

VYla= Y b®c (beK[X]ceK[Y]i=1,...,n)
1sizr
where we may assume the ¢;’s to be linearly independent over K. We may
therefore find points y,,...,y, in Y such that the determinant of the c,( y))
is #0. Since the restriction of ' to X' x {y;} is a morphism, we have
Y. ci(y;)bie fAK[X]) for all j’s whence b;e f°K[X'], (i=1,...,7).

22.13 Proposition. Let f:H— H' he a morphism of algebraic groups. The
following conditions are equivalent:
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(i) fis central;
(ii) for every heH, there exists a morphism of varieties ¢@,:f(H)— H such
that @,(f(x))=x"h-x~! for all xeH;
(iii) there exists a morphism of varieties 1:f(Hyx H—H such that
1

Wf(x),y)=xyx""
Proof. Assume (i). With « as in 22.11(1), we have,
enx)=x(x', f(N)h, (x'ef(H)),

which proves that (ii) holds. The implication (ii)=>(iii) follows from the
previous lemma where X =Z =H, X' = f(H),Y = H, and (x,y) =x-y-x" L.
Similarly, the lemma with X=Z=H X = f(H), y'(x,y)=x1(y,x™ ",
(whence §' = k), yields (iii) = (i).

22.14 Lemma. Let G’ be an algebraic group, f:G—G' a quasi-central
surjective morphism, U* and U~ two opposite maximal unipotent subgroups
of G normalized by T and X a variety on which G acts morphically by an
action Y:G x X — X.Then a morphism Y':X — X such that y =y'~(f x Id.)
exists if and only if this is true for the restrictions of Y to U* and T.

This latter condition is evidently necessary. Assume it. Let

(1) vEfUHxX>X and w:f(T)xX->X
be the morphisms defined by
03] Ulgswx =vEe(f x1d), Ylr.x=1o(f x [d).

The existence of T implies that ker f operates trivially on X, hence that there
exists a set-theoretic action

Y':G'x X—>X suchthat Yy =y'o(fcld)

Clearly, y* and t are the restrictions of Y’ to f(U*)x X and f(T) x X
respectively. Let u, e f(U*), u_€f(U~) and te f(T). Then

G VULU_, )=y U, Y EyU-, X)) =v U,y (U_,x)

Let V= f(U*): f(T) - f(U7). The relation (3) and the assumption show that
the restriction of ¢’ to ¥ x X is a morphism of varieties. On the other hand,
for geG, the map x— (g, x) = ¢'(f(g), x) is an automorphism of X, therefore
the restriction of Y’ to (f(g9)' V) x X is also morphic. Since the open sets
(f(g)'V) x X (geG) cover G’ x X, the lemma is proved.

22.15 Proposition. Let f:G—G' be a morphism of algebraic groups.
Then f is central in the sense of 22.3 if and only if it is central in the sense of
22.11.

Proof. Assume f to be central in the sense of 22.11. Given geG, consider
the commutator mapy:x+—g-x-g~'-x~!. By assumption, there exists a
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morphism y’: f(G) — G such that y =y’ f, whence (see 3.16)
(dy), =Adg — 1 =(dy),°df;

therefore kerdf < ker(Adg — 1) for all geG, which implies kerdf < 3(g) by
22.2. This shows that f is central in the sense of 22.3. Assume now the latter.
Let U* and U~ be two opposite maximal unipotent subgroups of G
normalized by T. By 22.4, the morphism U* — f(U?*) is an isomorphism.
Let a be its inverse. Since f is quasi-central, there exists a map1: f(G) x
G — G such that 1(f(x),y)=x-y-x~! (x-yeG). In order to prove that f is
central in the sense of 22.11, it suffices by 22.13 to show that  is a morphism
of varieties. By 22.14, it is enough to prove that the restrictions v* and t of
1to f(U*) x G and f(T) x G are morphisms. The mapv* is the composition
of a* x Id. and of the morphism (u, x)u-x-u" !, hence is a morphism. There
remains to see that t is a morphism. By 22.12, we have only to show that
for every geG, the map 7,:f(T) x G—G defined by t,(t)=1(t,g) is a
morphism. But we have 7,., = 1,71, (¢, he G), therefore it suffices to prove this
when g runs through a generating set for G, for instance for ge TU U LU ~.
If geT, then 1, is the constant map f(T)— {g} and if ge U*, then

()=t (" f@rt'™"),

which shows that 7, is a morphism.

Bibliographical Note

All the results and proofs in this section may be found in §2 of [5]. But
there, the only notion of central isogeny is the general one (22.11) and we
have slightly rearranged this material to suit our purposes.

§23. Examples

In this section, we describe the Tits system in G(k) for various classical
groups G.

For nz 1, we denote by e; ; the n x n matrix all coefficients of which are
zero cxcept for the (i,j)-th one, which is cqual to onc. We let p be the
characteristic exponent of k. For the classification of root systems, we refer
to [9:VI].

23.1 Let D be a finite dimensional central K-algebra endowed with a
k-structure such that D(k) is a central division algebra over k, whose degree
is denoted d. Thus, over K, the algebra D is isomorphic to My (K). We let
D* or GL, (D) (resp. D, or SL,(D)) be the multiplicative group of elements
of D with reduced norm Nr different from zero (resp. equal to one). The
previous isomorphism maps D, onto SL,(K). The group D* is the almost
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direct product of its center S, a one-dimensional k-split torus, and of SL,(D).
Let us show that the latter group is anisotropic over k. Let T be a k-split
torus contained in D. There is a k-basis (1) (1 £ i < d?) of D(k) and characters
2; of T such that

tugt™ =1ty (teT;i=1,...,d%.
However
Nr(t-u) = t*%-Nr(u;)

and, since tu;t~! and u; are conjugate, they have the same reduced norm.
Moreover, Nr(u;) # 0 since D(k) is a division algebra. As a result, 4; is trivial,
hence T is central in D, therefore T =S and T n D, is finite. In view of (22.8),
this also shows that D* has k-rank one.

23.2 The groups GL(D) and SL,(D). Let D be as before and fix neN, n = 2.
We view D" as a right module over D. The group G = GL, (D) can be identified
to the group of invertible D-linear transformations of D". Let M be the group
of diagonal matrices in G. It is isomorphic to (D*)". Its center S is a k-split
torus of dimension n. Let y,e X*(S) be the character of S such that s* is the
i-th diagonal entry of se S (1 < i < n). The y;s form obviously a basis of X *(S).

Itis elementary that M = Z (S). It follows then from 23.1 that S is maximal
k-split in M, hence in G and therefore G is of k-rank n.

For i #}j, let U, ; be the group of matrices 1 + t-¢; ;(teD). It is unipotent,
k-isomorphic to the additive group of D, and normalized by M. In particular

s(1+tey)s P =(1+s""Vte;) (ueU,;,1<i#j<mses)

The Lie algebra g of G is the direct sum of the Lie algebras L(M) and I(U; )
of M and of the U; ;’s. The U, ;s for i < j (resp. i > j) directly span a unipotent
k-subgroup U* (resp. U ") normalized by M. As a consequence, M-U™* and
M-U~ are opposite minimal parabolic k-subgroups and @(S, G) is of type
A,_,. Moreover, each k-root has multiplicity d>. The normalizer of S is the
group of monomial matrices and .4 4(S)/M is the symmetric group in n letters.

The isomorphism D 5 M(K) induces one of M,(D) (resp. G) onto M, «(K)
(resp. GL,4(K)). On K" we use the “telescopic” basis

fie, (i=1,...,na=1,...,d).

The group T of diagonal matrices of GL,,(K) is a maximal torus, the group
of characters X*(T) of which has a basis x;,, where x;, is the character

which associates to te T its (i, a)-th diagonal entry. The roots of G with respect
to T are the characters

xi.a - xj,b ((l, a) #(1: b)a 1 § l9]§ n, 1 éavb éd)

From this the restriction @(T, G)— &(S, G) is easy to describe, namely: the
roots x;,—X;,(a#b) restrict to zero and x;,—x;, (1<a,b<d) to
Yi— .Vj(i #J)-
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Let G' = SL,(D). The isomorphism M,(D)> M,,,,(K) maps it onto SL,,(K).
It is a k-form of SL,,. For each field k' between k and K, the group SL,(D)(k")
is known to be generated by the unipotent subgroups U, ;(k') and to be the
derived group of G(k'). The group G is the almost direct product of its center
and of G'. Hence the latter has k-rank n — 1. The group G (resp. G') is k-split
if and only if d = 1. Then G = GL, and G’ = SL,,.

23.3 The symplectic group Sp,,,. Let V be a finite dimensional vector space
over K endowed with a k-structure, n the dimension of V, and F a bilinear
form on V(k) which is alternating, i.e. F(x,x)=0 for all xeV(k), and defined
over k, ie. k-valued on V(k). If p+#2, our assumption is equivalent to
F(x,y) + F(y,x) =0 for all x, ye V. In characteristic two, F is symmetric. We
assume F to be non-degenerate, which forces n to be even, say n=2m.
As is well-known, V(k) has a symplectic basis (e4;) (i=1,...,m), i.e. such
that

(1) Fle,e_)=1 (i=1,...m), Fley,es)=0 if i#j.

The group G of elements in GL(V) preserving F is the symplectic group
Sp,.. It is defined over k. The torus S consisting of the transformations
e sie, e e, is k-split and a maximal torus of G. We let (y;) be the
basis of X*(S) such that s” is s; in the previous notation. Let L; be the
subgroup of G leaving [e;,e_;] stable and fixing the other basis vectors. It
is isomorphic to SL,, centralizes the kernel of y,, its upper triangular
unipotent subgroup is stable under S, and corresponds to the root 2y;. Let
i#j. The two subspaces E; ;=[e;,e;] and E_; _;=[e_; e_;] are in duality
with respect to F and isotropic for F. The subgroup of G which leaves these
two subspaces stable and fixes the other basis vectors contains SL,, acting
by the identity representation on E;; and the contragredient representation
on E_; _;. It centralizes the kernel of y,—y; in S. Its upper triangular
unipotent subgroup is associated to the root y; — y;. Similarly, by considering
[eie-;] and [e_j,e;], we produce a unipotent subgroup associated to the
root y;+ ;. On the other hand, it is easily checked, and well-known, that
Sp,.. is of dimension m(2m + 1). Therefore we have produced all the roots,
up to sign, and get the root system of type C,,. We leave it to the reader to
check that the parabolic k-subgroups are the stability groups of the rational
isotropic flags.

We have tacitly assumed that G is connected. This can be deduced for
instance from the classical fact that G is generated by transvections, and each
of those is contained in a one-dimensional unipotent subgroup isomorphic
to G, (see e.g. [D:11, §5]). It is also an immediate consequence of the previous
discussion, which we temporarily view as applying to G°. First it is easily
seen that S is its own centralizer in G. By the conjugacy of maximal tori,
any connected component of G contains an element n normalizing S. Int n
induces an automorphism of the root system C,,. But the latter has no
automorphism except those given by its Weyl group, whence the existence
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of n’eG° normalizing S such that n’-n~? centralizes S, whence ne G°. We also
see that G = SL(V) since S = SL(V), obviously.

23.4 Orthogonal groups (p #2). We assume here p#2. Let V be a finite
dimensional vector space over K endowed with a k-structure, Q a quadratic
form on V defined over k and F the associated symmetric bilinear form. We
assume F to be non-degenerate. Let G =SO(Q) be the special orthogonal
group of Q, i.e. the group of linear transformations of determinant one leaving
Q, (or, equivalently, F) invariant.

Recall that Q is said to be isotropic over k if it is vanishes on some non-zero
element of V(k) and anisotropic over k otherwise. We claim first that Q is
isotropic over k if and only if G is isotropic over k (20.1).

Assume first G to be isotropic over k and let S be a non-trivial k-split
subtorus of G. There exists a non-trivial character A of § and veV(k)— {0}
such that s-v=s*v for all seS. Then Q(v)=0 since, on the one hand,
Q(s'v) = Q(v) and on the other s-v = s*v implies Q(s-v) = s**-v for all seS.
Therefore Q is isotropic over k. Now assume the latter. Then V is the direct
sum of a hyperbolic plane E defined over k and of the orthogonal complement
E’ of E. There exists a k-basis e,, e, of E such that

(M Fley,e)=F(ey,e;)=0 and F(ey,e;)=1.
Then the transformations s(x), (xe K*) defined by
03] s(x)e;=xe;,5(x)e;=x""e, s(x)f=f (feE)

belong to G and form a k-split torus, hence G is isotropic over k.

From now on, assume that Q is isotropic over k and let g be its Witt index
over k (dimension of a maximal isotropic subspace defined over k). By Witt’s
theorem, V (k) contains q linearly independent hyperbolic planes H,,...,H,
and the restriction Q, of Q to the orthogonal complement V, of their direct
sum is anisotropic. On H; we choose a basis (e;,e,_, ;) satisfying the same
conditions as (e;,e,) in (1) (i=1,...q) and let e ,,,...,e,_, be a basis of
V,(k). Then it is clear (see (2) above) that the diagonal torus consisting of
elements with diagonal entries

3) (1o sSp Lo, s s, (54,000,5,6K%),

is a g-dimensional k-split subtorus of G. We claim it is maximal k-split.
Indeed, if T is a torus of G containing S, it leaves the fixed point set V, of
S stable; if it is k-split, its restriction to V, is a k-split torus contained in
SO(Q,), hence is reduced to the identity by our initial remark, which implies
that T =S. Therefore q =r,G. We identify SO(Q,) to the subgroup of G
leaving fixed e; for i¢[q + 1, n— q]. Then Z4(S)=S x SO(Q,).

If g = [n/2], then V, is zero- or one-dimensional, SO(Q,) is reduced to the
identity, 2 4(S) =S, hence S is a maximal torus of G. Therefore G is k-split.
If n=2q+ 2, then SO(Q,) is commutative, Z (S) is a maximal torus > §
and the minimal parabolic k-subgroups are Borel subgroups, hence G is
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quasi-split over k. If n> 2q + 2, then SO(Q,) is not commutative and G is
not quasi-split. .

We denote by y; the character of S such that s =s;, is the i-th diagonal
entry of S (i=1,...,q). With respect to the basis (¢; ) of gl,, the weights of
§ for the adjoint action in gl, are given by the following table

i [1,‘1] [‘1"‘1,"—‘1] [n_q+1’n]
J
4 [1,4] Yi—JY; Vi Yit Vi-n+q
[g+1Ln—q] {—y 0 Vi-n+q
[""q+ l’n] —yi—n+q—yj —Vi-n+q —yi—n+q+yj—n+q'

We may assume the e;s (g <i < n— q) chosen so that Q, is diagonal. Then
so is the associated form F, to Q,. We write the elements of M, (K) in block
form, as 3 x 3 matrices corresponding to the above partition of [1,1]. Then
F has entries (I, F,, I,) on the second diagonal, where I, is the g x g identity
matrix. The Lie algebra g of G is the subalgebra of gl, given by

5) g={A=gl|AF+F'4=0}.
Writing A =(4,,) (1 £ a,b < 3), we get from (5)
Ajs+'Ay3=A,3F,+'"433=4,,+'43,=0
(6) Ay Fo+F,'4;,=0
Ay Fo+'A4;,=A;,+'4;,=0.
From this and (4) we see that the k-roots of G with respect to S are
yi—yili #j), with multiplicity one,
(7 +(yi+y)i #j) withmultiplicity one,
+y; with multiplicity n — 2q.

Therefore @(S, G) is of type D, if n = 2q, of type B, otherwise.
If we add to (6) the conditions

®) Ay 1 =A;3,1=0, 4;, upper triangular,

then we get the Lie algebra of a minimal parabolic k-subgroup. It is the
isotropy subgroup of the full isotropic flag over k

[el] C[ehel] c-c [eheZa"'!eq]'

The standard parabolic k-subgroups are the stabilizers of the rational
isotropic flags V, = --- = V,, where V; is of dimension d(i) and spanned by

ey, e (1=2d(l)<d2)< - <d(a)<q)
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It follows from Witt’s theorem that the parabolic k-subgroups are the stability
groups of the rational isotropic flags in V.

Remarks. Asin 23.3, we have implicitely assumed that G is connected. Again,
this follows easily from the previous discussion, viewed as applying to G°.
To see this we may assume that k = K, hence g =[n/2]. We have already
remarked that S is its own centralizer. If n is odd, the argument is the same
as for the symplectic group. Let now n = 2q be even. If g = 1, then using the
basis e,, e, of (1), we see that G = GL,. Letnow g > 1. A connected component
of G contains an element n normalizing S. Moreover, after multiplying n by
an element of A" ;.(S), we may assume that it leaves stable the set of positive
roots for a given ordering, hence that it permutes the elements of a set A of
simple roots. In the previous notation, we may take for A the set consisting
of the roots y;~y;4y (i=1,...,4—1) and y,_, +y, Then Int n leaves
pointwise fixed the one-dimensional torus S, on which these simple roots
take equal values. It follows that S, is given by the relations

s; =817y (i=1,...,q—1),5,=1

In particular, the characters s;, s; ! are distinct on S,. Therefore Int n leaves
invariant the lines k-e; (i # ¢,q + 1) and the plane spanned by e, e, ,. This
implies neS§, in particular neG°. .

23.5 Quadratic forms in characteristic two. Our next goal is the discussion
of orthogonal groups in characteristic two. As a preliminary, we collect here
a few notions and facts on quadratic forms in characteristic two (see [D]
for instance).

Let again V be a finite dimensional vector space over K, of dimension n,
endowed with a k-structure. A quadratic form on V(k) is a k-valued function
satisfying the identity

(1) Qarx+b-y)=a’Q(x)+b*Qy) +a-b-F(x,y), (abek x yeV(k)),

where F is a bilinear form on V(k), which is determined by Q since (1) implies

@ F(x,y) = Q(x +y) + Q(x) + Q(y) (x, ye V(K)).
We also see from (1) that

3 Qla'x)=a*Q(x) (ack, xeV(k))

(4) F(x,x)=0 (xeV(k))

hence F is alternating. Its rank is even and will be denoted 2m. We let V°
be the radical of its extension to V. It is defined over k.

The form Q is said to be non-degenerate if Q(x) # 0 for every xe V°(k) — {0}.
We always assume this to be the case. Then d =n—2m is called the defect
of Q. We also assume d £ 1. Therefore d =0 if n=2m is even, d=1 if
n=2m+ 1 is odd. We also view Q as a quadratic form on V by extension
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of scalars. Clearly, as a form on V, it is still non-degenerate, of defect < 1.
If (eq,...,e,) is a basis of V, then a simple induction from (1) shows that

i=n
(%) Qxyep+ - +xe)=Y x2QE)+ Y  xix;Fle,e;)
i=1 15i<jsn

If n is odd, we assume e, to span V°. Then, given F, it is easily seen that
(5) defines a non-degenerate quadratic form of defect < 1 for any set of values
Q(e;) such that Q(e,) # 0 if n is odd.

A subspace E < V is singular for Q if Q is zero on E. We see again from
(1) that if A and B are two singular subspaces orthogonal with respect to F,
then their sum is singular. In particular the sum of two singular vectors
orthogonal with respect to F is singular. Let us say that a two-dimensional
subspace E of V is hyperbolic if it has a basis e, f such that

(6) Qe)=0(f)=0 F(e, f)=1.
In the associated coordinates x,, x, on E we have
Q(xsx) =Xy'X, F(x’y) =X1"Y2 + X2 V1>
™
(x=xie+x2/,y=yie+y,f).

It is again true (see [D]) that a non-singular plane in V(k) containing a
non-zero singular element of V(k) is hyperbolic. From this we see that if q
is the maximal dimension of a singular subspace in V(k), then there exist q
hyperbolic plancs H,(1 £i < ¢) defined over k, and orthogonal with respect
to F. The integer ¢ is called the index of Q, and Q is anisotropic over k if g = 0.

23.6 Orthogonal groups in characteristic two. We go on with the setup of 23.5
and denote by G the orthogonal group O(Q) of Q, i.e. the subgroup of GL(V)
preserving Q. It automatically belongs to SL(V), as will be clear below. It
preserves F, as follows from 23.5 (2), hence also V°, and is the identity
on V°.

Let n=2m> 3. Fix a symplectic basis (¢;) of V(k) for F. We assume that

(1) Fle,en.)=1 for 1<i<m, F(e,e)=0 if j—i#+m

i.e., written as a 2 x 2 matrix of m-blocks, F is given by

2) F= (10 I(;"), (I,,:m x m identity matrix).
G is a subgroup of Sp,,, = Sp(F). It follows from 23.5 that geSp(F) belongs
to G if and only Q(g(e)) = Q(e)) for j=1,...,2m. i.. if g = (g, ) satisfies the
conditions

(3) y;%jQ(ei) + z Gij'Im+ij= Q(ej) (j=1,...,2m).

i 1Sism

m

]
—

We claim that G is defined over k. It is the intersection of Sp,,,, which is
defined over k, and of the 2m irreducible quadrics Q;, defined by (3), also
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defined over k; it suffices therefore to show that these varieties are smooth
at 1 and intersect properly there. If we write a 2n x 2n matrix in n x n blocks,

. . . X, X o
then the Lie algebra of Sp,,, consists of the matrices ( ! X2> satisfying
the conditions 374

) X+ X, ="X,+X,='X;+X;=0,
(which translate the relation ‘X - F + F- X = 0). On the other hand, the tangent
space at 1 to Q;is the coordinate hyperplane X, ; ;=0ifj<mand X;_,, ;=0

if j > m. Therefore the intersection is proper. This also shows that the Lie
algebra g of G consists of the matrices satisfying (4), in which moreover X,
and X ; have zeroes on the diagonal. This is independent of the values of Q
on the basis vectors. Therefore, the Lie algebras of the groups O(Q), where
Q runs through the quadratic forms with associated form F, coincide. If Q
has maximal index m, then Q(e;) =0 for all i and
) Q)= Y X Xmis

15ism
We let O,,, denote its orthogonal group.

Let now n=2m+ 1, and = the canonical projection V — V/V°=V,. The
form F induces a non-degenerate alternating form on V|, which we also
denote by F. We choose a basis (e;) of V(k) such that e, spans V° and the
e;s (i<2m) project onto a basis of V,(k) satisfying (1). Then the ¢;s also
satisfy (1) and moreover F(e,e,)=0 for i <2m. Consequently geGL(V)
belongs to G if and only if it fixes e,, preserves F and satisfies the same
conditions (3) as before. Let us write an element of GL(V) fixing e, in the form

A0
(6) (a 1)

where a is a 1 x 2m matrix, 0 the 2m zero column vector and 4 a 2m x 2m
matrix. Then g preserves F if and only if 4 belongs to Sp,,.. Let G, be the
group of such matrices. It is defined over k, and its Lie algebra consists of
matrices

X, X; 0,
X, X, 0,
a, a, 0

where a,,a, are 1 x m matrices, 0,, the m x 1 zero matrix, and the X;’s are
m x m matrices satisfying (4). A computation of tangent spaces identical to
the previous one shows again that the intersection of G, and of the quadrics
Q; is proper and that the Lie algebra of G is the set of matrices (6) where
the X; form the Lie algebra of O,,. Here again, the orthogonal groups of
the non-degenerate forms of defect one with associated form F have all the
same Lie algebra. If Q(e;) =0 for i < 2m, then ¢ =m and Q is given by
Q(x) = X: Q(en) + Z xi'xm-H'

1<igm
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We let O, be the corresponding orthogonal group, when Q(e,) = 1.

The projection = induces a k-morphism G — Sp,,,. We claim it is a purely
inseparable isogeny. Incidentally, this will show that G is connected, since
Sp;,, is 50 (by 23.3). Assume n(g) is the identity. Then g-e; = ¢; + ¢;¢, for
i £ 2m and, since F(e;,e,) =0, we have

Qle) = Qlg-e) = Qle) + ¢ Ae,), (i=1,...,2m),

hence ¢; = 0. On the other hand, g-e, = ¢,, hence g is the identity. Therefore n is
injective. It is surjective already for dimensional reasons. A bit more strongly,
it can be checked directly that if k is perfect, then n(k):G(k)— Sp,,.(k) is
surjective: In fact, any element heSp,,,(k) defines h,eG,(k) in the obvious
manner. We still dispose of the 2m first entries of the last row to modify h,
to an element ge G having the same image as h, under n. The conditions for
this are
Qhye;+a,e)=0), (i=1,...,2m),

which can be written

ar; Qle,) +Qhye)=Qe), (i=1,...,2m),
an equation which can be solved uniquely since k is assumed perfect and
Qle,) #0

The previous considerations show that dm maps g onto the Lie algebra of
0O,,, therefore the kernel of dn is 2m-dimensional. It consists of the matrices
for which X;=0 (i=1,...,4) in the above notation, therefore it is com-
mutative, made up of nilpotent elements.

In view of the existence of hyperbolic planes, the proof that the index ¢
of Q is equal to the k-rank of G is exactly the same as in 23.3. We assume
now g =1 and want to show that the k-root system is the same as when
p # 2, and also determine explicitely the kernel of dn when n is odd.

Choose g hyperbolic planes H,,...,H, defined over k. Let V, be the
orthogonal complement to their direct sum, with respect to F. It contains
V° and is defined over k. Let (e,;_,,e,;) be a standard k-basis of H; (see 23.3
(6)). We complete (e;) (i=1,...,29) by a k-basis of V, to get a basis which is
a symplectic basis if n = 2m, such that e, spans V° and the e, (i < 2m) project
to a symplectic basis of ¥, = V/V* if n is odd. Then, in the corresponding
coordinates x;, Q has the form

() Q)= Y x}Qe)+ Y Xz X
i=2¢q+1 1Sism

Since q is the index, the restriction of Q to V, is anisotropic over k. Let S
be the k-split torus consisting of diagonal matrices with entries
(s,,sl",...,sq,sq"‘, I,...,1) and let, as before y,eX*(S) be the character
assigning s, to s.

The Lie algebra of G is that of O,, described explicitely earlier, from which
itisclear thatif g2 2,then + y;+ y;(1 Si<j<q)isak-root. If n =2m=2q,
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then, for dimensional reasons, these are all the k-roots and @(S, G) is of type
D,. Let now n>2q. Fix i £q and j > 2g, and let E; ; be the space spanned
by e;i_i, e,; and e;. The restriction of Q to E, ; is the standard 3-form

@®) Q(x) = X1 X2 + X} Qley),

and Q(e;) # 0 since Q is anisotropic over k on V,. The subgroup H;; of G
which fixes the e,’s for a #2i — 1, 2i, j is isomorphic to O,. The group H;;
is normalized by S and centralizes the kernel of y;. Let U(a) be the 3 x 3
matrix given by

1 00
9) Ua@=U;j@=| a*>Qle) 1 0] (acK).

a 0 1

The U(a) form a one-dimensional unipotent k-subgroup U, ;, k-isomorphic
to G,. It is easily checked that it belongs to H; ;. Indeed, this amounts to
show that

Qleyi-1 + az'Q(ej)'ezi + a'ej) =Q(ez-,)=0
‘U(a) F3-Ula) = F,

where F, is the matrix of the restriction of F to E, ;, which is immediate.
Let s(t) be the diagonal 3 x 3 matrix with entries t, t !, 1. Then we have

s(t)-Ula)-s(t™") = U(t™ ! a)(aeK,teK*)

which shows that G has the root — y; with respect to S. Since j is arbitrary
in (2g + 1,n], this proves that — y; has at least the multiplicity n —2q. On
the other hand, the centralizer of S is § x 0(Q,) where @, is the restriction
of Q to V,. Adding up its dimension to those of the root spaces already found
yields the dimension n(n — 1)/2 of 0(Q). Therefore, if n > 2q, the root system
@(S,G) is of type B, where +y; has multiplicity n—2q (1 £i<q) and
+ y; + y; has multiplicity one (1 i <j<q).

To describe the kernel of dn, for n odd, we may assume k algebraically
closed, hence m = q and Q(e,) = 1. Now + y; has multiplicity one and occurs
in H, ,,in the previous notation. The isogeny n maps U; ,(a) onto the matrix

()

and H; , onto SL,. Therefore n(U;,) is the root group corresponding to the
root —2y; in the symplectic group, and the restriction of = to U,, is the
map ar—a®. Hence the Lie algebra of U, , belongs to the kernel of dr, and
kerdn is the sum of the Lie algebras of the root groups corresponding to
the roots +y, (i=1,...,m).

23.7 Division algebras with involutions. We collect here a few known notions
and facts on division algebras with involution, to be used in the next section.
We again assume p # 2.
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Recall that an involution o:ar>a® of an algebra A over a field E is an
antiautomorphism of order <2, ie. a E-linear bijection of A onto itself
satisfying the conditions

(a-b)® =b%-a°,6% = 1(a,beA).

It defines an isomorphism of A onto its opposite algebra A°. It is said to be
of the first (resp. second) kind if it is (resp. is not) the identity on the center
of A. The algebra A is always assumed to have an identity so that E is
identified to a subfield of the center fixed under o.

Let now D be a finite dimensional K-algebra defined over k, such that
D(k) is a division algebra over its center k', whose degree over k' is denoted
d, endowed with an involution 6. We shall assume to be in one of the
following cases:

(i) k' = k. Then ¢ is necessarily of the first kind. Under the isomorphism
D:= D(k) X) K = M,(K)
k

the involution ¢ extends to one of D. Since X+—'X is already one, there
exists, by the Skolem—Noether theorem, an element JeD* such that

X°=J'X-J"' (XeD)

The relation X°° = I, implies that J-'J " ! is central in D, hence of the form
8-1, (e K*). But then it follows from J = §-*J that 62 =1, hence

J=6J (b=+1)
which implies
Jo=4J.

We shall say that ¢ is of type . Let D* be the eigenspace of ¢ in D for the
eigenvalue + 1. It is defined over k and D =D* @ D~. The dimension of D~
is that of the subgroup of elements in D* = GL,(K) which are fixed under
the automorphism g—(g°) ™}, i.e. such that gJ'g = J. It is an orthogonal (resp.
symplectic) group if & = 1 (resp. 6 = — 1), hence of dimension d(d — 1)/2 (resp.
d(d + 1)/2)). 1t follows that

1) g-J'g=J,dimD* = d(d + 8)]2.

In particular, the two types of involution of the first kind are distinguished
by the dimension of D*.

Let UeD*. It is readily checked that 1:X+—UX°U~"! is an involution if
and only if U =¢U, where ¢= + 1 and that, in that case, t is of type &d.
Now o is the identity if and only if d = 1. If d > 1, both D* and D~ are #0,
hence if D(k) possesses an involution, then it has involutions of both types.
In particular d is always even (in fact, A. Albert has shown that it is a power
of two).

(i) ¢ is of the second kind and its fixed point set on k' is k. Then k' is
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a separable quadratic extension of k and ¢ induces on it the non-trivial
automorphism of k' over k. Under the natural extension of ¢ to k'XK,

k
trivial on the second factor, the latter may be identified to the direct sum of
two copies of K exchanged by o. Similarly, ¢ extends to D(k)Q)K and the

k
latter can be identified to the direct sum of two copies of M,(K) on which
g acts by (x, y)—(y, ).

23.8 ¢-o-hermitian forms. We keep the notation and assumptions of the
previous section. Let V(k) be a finite dimensional right vector space over
D(k) and n its dimension. We view it as the space of k-points of the K-vector
space V = V(k) QK.

k
Lete = + 1. An ¢-o-hermitian form F on V(k)is a map F:V(k) x V(k)— D(k)
which is additive in each argument and satisfies moreover the conditions:

(1) F(x:a,y-b)=a’ F(x,y)b, F(y,x)=¢F(x,y) (x,yeV(k);a,beD(k)).

Let (e;) be a basis of V(k) over D(k). To F is associated the matrix (F;)
where F; = F(e;, ¢;), which we also denote by F, and the value of F on x, y,
viewed as column vectors, can be written ‘x°F-y. The second condition of
(1) is equivalent to F being &-o-hermitian, i.e. to

2 Fy= GF;; (I<i,j<n)

We always assume F to be non-degenerate, i.e. F(x, V(k)) =0 implies x =0
(xeV(k)).

The form is hermitian if ¢ = 1, antihermitian if e = — 1. If ¢ is of the second
kind, there is no essential difference between the two because if cek’ is such
that ¢ = — ¢, and F is ¢-0-hermitian, then c-F is —e&-o-hermitian.

Let now ¢ be of the first kind. If d = 1, an antihermitian (resp. hermitian)
form is a symplectic (resp. symmetric) form. Let d > 1. Then ¢ is of one of
two types 6 = 1, — 1, and ¢ has two values. A priori, this gives four possibilities
but the two for which &d has a given value are equivalent. More precisely, let
ceD(k) be such that ¢ = — ¢ and assume g to be of type 8. Then, as remarked
above xr»x*=c-x"¢”! is an involution of type —d. It is readily checked
that if F is e-o-hermitian, then ¢'F is —e-t-hermitian.

An element xe V(k) is isotropic if F(x, x) = 0. The form F is isotropic over
k if there exists such an x 3 0, anisotropic otherwise. A subspace of V(k) is
isotropic if the restriction of F to it is identically zero. In particular, it consists
of isotropic vectors. A hyperbolic plane in V(k) is a two-dimensional subspace
spanned by two isotropic vectors x, y such that F(x, y) = 1. With respect to
the associated coordinates, F has the form

(3 F(x,y)=x{"y, +ex3'y,.

It is well-known that any non-degenerate, non-isotropic two-plane containing
a non-zero isotropic vector is hyperbolic (cf. [D]).
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The index q of F (over k) is the maximum of the dimensions of isotropic
subspaces of V(k). Assume g = 1. Using the existence of hyperbolic planes
recalled above, we see that V can be written as the direct sum of ¢ mutually
orthogonal hyperbolic planes H,,...,H, and of their orthogonal complement
V,. The restriction F, of F to V, is non-degenerate and anisotropic. In H;
we choose isotropic vectors e;, e,,; such that F(e;, e,,;) = 1. We complete
(e;) (i < 2g) to a basis of V by adding one of V,, with respect to which F, is
diagonal, which can obviously be done. Then F has the form

i-q
@) FOo,y)= ) X0 Vg H X0, Vit 2 X¢i ¥,
i=1 i>2q
where
)] c;= F(e;e), hence ¢; #0, ¢] =ec;, (i=2q+1,...,n).

Conversely, the right-hand side of (4), under the condition (5), defines a
non-degenerate ¢-g-hermitian form of index at least g. In these coordinates
F is given by the matrix

0 I, 0 Cag+1
(6) F={e, 0 0], where C= .0
0 0cC 0 ¢
Of course, if o is of the first kind, d = "and ¢ = — 1, the conditions of (5) are

incompatible and n = 2g¢, as is well-known. But, in all other cases, (5) can be
fulfilled and there is no limitation on n.

23.9. Unitary groups. The unitary group of F in V(k) is the group of
D(k)-linear transformations of V(k) which preserve F. Denote it U(F, k). Its
intersection with SL,(D)(k) is the special unitary group SU(F, k). In matrix
form, these groups are defined by

(1) U(F,k)={XeGL,(D(k)|'X"F-X =F}, SU(F,k)=U(F,k)nSL,(D).

If o is of the second kind, and cek’ satisfies ¢” = — ¢, then U(F, k) = U(cF, k).
If o is of the first kind, and d > 1, let again ceD(k) be such that ¢" = — ¢ and
© = (Int ¢)os. We noticed earlier that if ¢ of type , then 7 is of type —J and
if F is e-o-hermitian, then cF is —e-t-hermitian. Moreover, it is immediately
checked that U(F, k)= U(cF,k), so we could limit ourselves to one value of
¢ if ¢ is of the second kind or & is of the first kind and d > 1, but this would
not bring any simplification in the later discussion.

We want to view these groups as groups of k-points of algebraic k-groups.
We extend F to V, viewed as a right D-module, in the obvious way and let
U(F) (resp. SU(F)) be the group of invertible transformations of V preserving
F.In matrix form, its elements are given by (1), where D(k) is replaced by D.

Recall that D is isomorphic to My (K) (resp. M (K)® M,(K)) if o is of the
first (resp. second) kind. From this we get a natural embedding of U(F) in
GL,/(K) (resp. GL,,; (K)) so that the condition (1) translates to a set of



266 Rationality Questions v

quadratic equations on the coefficients of the image with coefficients in k.
Therefore U(F) and SU(F) are k-closed.

The condition F(x,x) =0 is equivalent to a set of d? (resp. 2d?) quadratic
equations with coefficients in k in nd? (resp. 2nd?) variables. Therefore if
n 22, there are always non-trivial isotropic vectors with coefficients in K.
But these equations define a k-variety, as is readily seen by putting F in
diagonal form, so that there are isotropic vectors already with coefficients
in k,. In other words, we can put F in the form 23.8(4), with n —2¢g £ 1, and
c,=1,ifn=2g9+1, e=1, over k. Then it is clear that U(F) and SU(F) are
defined over k. Being k-closed, they are already defined over k.

From now on, we let G stand for SU(F). As in the previous cases, we see
that if xeV(k) spans a line Kx stable under a k-split torus, on which the
latter acts non-trivially, then x is isotropic. On the other hand, if F has index
q 2 1, then, in the coordinates underlying 23.8 (4), the diagonal matrices with
entries

11,..,1), (seK*i=1,...,q)

from a g-dimensional k-split subtorus S to G. From this we see that S is
maximal k-split, hence that g is equal to the k-rank of G. As before, let y,
be the character of S which assigns s; to s (I £ i £ q). To describe the k-roots
and their multiplicities we go over to the Lie algebra. The condition for
Xesl, (D) to belong to the Lie algebra g of G is

(2) ‘X F+F-X=0.

_1 —
(S15+0+554 5] yeees S

We write X as a 3 x 3 block matrix- corresponding to the partition

[,q], [g+1,2q), [29+1,n]
of n. An easy computation shows that (2) is equivalent to the set of conditions

(3), (4):
(3) E’X;l+X21=’X’;1+X22=’X';2+6X12=0
(4) ngl'C"l"X23=IX;2'C+E'X13=‘X;3'C+C'X33=0

From (3), we see that the entries of X,, and X,, above the diagonal are
arbitrary, and determine those below the diagonal. On the other hand, the
diagonal entries of X,, and X,, satisfy the relation

(5) a’+¢ea=0.

This shows first that if | £i<j<q, then + y; + y; is a root of multiplicity
d?* (resp. 2d%) if o is of the first (resp. second) kind.

The space corresponding to 2y, (resp. —2y,) is the i-th diagonal entry of
X, (resp. X5,;). In view of (5), it is the eigenspace D™° of o with eigenvalue
—¢on D. In the notation of 23.7, it is of dimension d(d — 1)/2 if £ = 1, of dimen-
siond(d + 1)/2if ed = — 1, if ¢ is of the first kind. In particular, this root does
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not occur if d=1 and &6 =1, but it does in all other cases. If ¢ is of the
second kind, then the elements of D are pairs (x, y) of elements of M(K) and
(5) amounts to y= —¢-'x. This defines a space of dimension d?, hence 2y,
has multiplicity d? in that case.

Assume now n > 2q. In gl,(D), the matrices with coefficients zero outside
the i-th row of X, and the i-th column of X, form the eigenspace for S
with character s;. Taking (4) into account, we see that the root s; occurs in
g with multiplicity (n — 2q)d? (resp. 2(n — 2¢)d?) if ¢ is of the first (resp. second)
kind. In short we have shown:

(a) If o is of the first kind of type 6, e6 =1 and d = 1, then &(S, G) is of type
D, (resp. B) if n =2q (resp. n> 2q).
(b) Inthe other cases, @(S, G)is of type C, (resp. BC,)if n = 2q (resp. n > 2q).

Remarks. (1) Let ¢ be of the first kind. If d = 1, then, as already remarked,
we get back over K the special orthogonal group if ¢ =1, the symplectic
group if = — 1. Let now d > 1. Let us denote by J, , the matrix F in 23.8(6)
forn—2qg<1(and ¢, =1if n=2q + 1). We identify M(D) to M,(K) ® M /K).
The form F can be written in d x d blocks as J, ,®1,. Furthermore, since
the J in the definition of ¢ can be replaced by A-J-'A (AeGL4(K)), we may
assume ¢ to be X+—'X if g is of type 1 and X+—J, _,*X-J; 1 if o is of type
—1. Our computations show that g is the Lie algebra of the subgroup of
SL,(D) which preserves J,, ,® I,if 6 =1,and J, ,®J, _, if 6 = — 1. Therefore
G is the symplectic group Sp,, if €0 = — 1, the orthogonal group SO,, if
ed=1.

Let ¢ be of the second kind. Then M,(D) is the direct sum of two copies
of M,,(K). It is clear that there exists a bijection v of M, ,(K), whose square
is the identity, such that X+ X is of the form (x, y)—(v(y), v(x)). The Lie
algebra g is the subalgebra of the direct sum of two copies of sl,,(K) consisting
of the matrices (x, v(x)). Therefore G is K-isomorphic to SL,,(K).

(2) In 23.7-23.9 we have left out the case p=2. If § is of the second kind,
there is little change if we assume F to be a hermitian “trace form”, i.e. F(x, x)
is of the form a + a°(aeD(k)) for all xeV (k) (cf [D]). If ¢ is of the first kind,
then, as in 23.5, one has to adopt a different framework. Once this is done
the results are similar. In fact, [T2] offers a treatment valid in all
characteristics.

(3) The above provides many k-forms of the classical groups. To see how
they fit in the classification, we refer to [Ti 1]: 23.2 gives the forms 'A,, there,
and 23.8, for o of the second kind, the groups of type *Al"). If ¢ is of the
first kind, then 23.8 gives the groups C, if &6 = 1, the groups ZD“" ifed=1.
Ifd=1, =1, we get the type B,,, ID‘f’ in 23.3, 23.5. We refer to [W] for
a systematic description of the classical groups in terms of algebras with
involutions, from which much is borrowed in 23.7-23.9. The discussion in
[W] is made assuming p =1, but is valid for p # 2. It is reformulated in
[Ti 2] so as to hold also for p=2.
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§24. Survey of Some Other Topics

This second edition is an “enlargement” of the first one, but in a limited way,
the only one the author could contemplate at this time. A more comprehensive
exposition would have to include many other topics. To orient the reader,
we survey briefly here two of them, without proofs, but with references. We
have also included a discussion of real reductive groups with some proofs,
mainly to relate the “restricted” root system and Weyl group of Lie theory
to the relative ones introduced in §21.

A. Classification
24.1 Classification over K. Let G be a connected semi-simple group, T a
maximal torus, and @ = @(T, G) the set of roots of G with respect to T. We
have seen in §14 that @ is a reduced root system in the rational vector space
X(T)q= X(TYX)Q. Let @ = Q(P) be the sublattice of X(T)q generated by

the roots and PZ= P(®) the sublattice of weights, i.e. of elements 1eX(T)q
for which 2(4, «)(e, @) '€Z for all ae®, where ( , ) is any positive non-
degenerate scalar product invariant under the Weyl group. Then
Q< X(T)c<P.

Let us call “diagram” the datum D = (@, I') consisting of a reduced root
system in a rational vector space ¥ and of a lattice intermediary between
P(®) and Q(@®). An isomorphism of the diagram D’ onto the diagram D is
the obvious notion: An isomorphism of the ambiant vector spaces V' 5V
mapping @’ onto @ and I’ onto I. We shall consider more generally a
class of maps to be called here isogenies, too (Chevalley speaks of special
isomorphisms). An isogeny or p-isogeny (p prime or equal to 1) from D’ to
D is an isomorphism A: V' 5 V of the ambiant vector spaces mapping I"' into
T, such that there exists a bijection v:® > @' and for each ae® a natural
integer m, satisfying the conditions A(v(a)) = p™.a. Under those conditions,
the map w'—Aw'A~! defines an isomorphism of the Weyl group W’ of @’
onto the Weyl group W of @, and m, is W-invariant.

With this terminology, we can say that §14 provides a map from groups
to diagrams, call it 4, which assigns the diagram D(G, T) = (®(T, G), X(T))
to (G, T). More generally, to an isogeny u:(G,T)— (G, T') is naturally
associated a p-isogeny D(G', T')— D(G, T), where p is the characteristic
exponent of K. It is defined by the comorphism X(T’)— X(T) associated to
the restriction of u to T. It is (contravariantly) functorial with respect to
p-isogenies. If p is central, which is always the case if p =1, then m, =0 for
all a. If p# 1 and p is the m-th power of the Frobenius isogeny, then m, =m
for all «. Assume G to be simple. If all the roots have the same length, m,
must be constant (since W-invariant) and we are in one of the previous cases.
But there are a few cases, where p =2, 3, in which m, takes two values. This
corresponds to the so-called exceptional isogenies, of which one example was
described in 23.6, relating in characteristic two the split orthogonal group
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SO(2n + 1) and the symplectic group Sp,,. (In this case m, =0 if « is a short
root x; + x;(i #j) and m, =1 if « is a long root 2x;.)

The classification theorem asserts that, over K, § defines a equivalence
between the category of isomorphism classes of semisimple groups and
isogenies with that of isomorphism classes of diagrams and p-isogenies.

Over C, the fact that § is a bijection is basically equivalent to the Killing—
Cartan classification of complex semi-simple Lie algebras, completed by the
description of the complex Lie groups having a given semi-simple Lie algebra,
which goes back to E. Cartan and H. Weyl. In general, the result is due to
C. Chevalley ([13], [C]).

Fix @ and denote by G the group with diagram (@, I'). Write G, if
I'=P(®) and G,4 if I'=0Q(@). The classification theorem implies in
particular that G - is a quotient of G, and G,4 a quotient of G - with respect
to a central isogeny. In fact, G,; is the image of G, under the adjoint
representation, and G, is the universal covering of G - in the sense that any
projective rational representation of G - lifts to a linear one of G.. If K = C,
then P(®)/I" may be identified to the fundamental group of G ~-and I'/Q(®)
toits center. We shall also say in the general case that G, is simply connected.

For the discussion, I shall divide the classification theorem into three
assertions:

(i) Two groups with isomorphic diagr,ams are isomorphic,
(ii) any diagram is the diagram of some group,
(iii) (which generalizes (i)) a p-isogeny of diagrams is associated to an
essentially unique isogeny of the groups.

Assertions (i) and (iii) are proved in the last lectures of [13]. (i) is also
established in [17] and [32], and more generally for schemes in [15]. All
these proofs proceed by a reduction to groups of rank 2, where it is then
done case by case, using the classification. An a priori proof, which applies
also to (iii), without use of classification, has been given by M. Takeuchi
[Ta] and is also presented in [J].

A proof of (i), i.. the existence of a group with a given diagram, is already
sketched in [13], but Chevalley comes back to it in [C], where he outlines
the principle of a general argument based on the construction of schemes
over Z. Given a diagram D, Chevalley starts from the pair of complex groups
(G, T) giving rise to it, and then constructs a suitable Z-form Z[G] of the
coordinate ring C[G] of G. The group G over K with the given diagram is
then obtained by a suitable reduction mod p. A survey of this proof is given
in [B1], (with one gap, corrected in the comments to that paper in [B3]
Vol. 2, p. 703). [32] provides a proof operating solely over K. Again, [15]
supplies a more general treatment over schemes.

24.2 Classification over k. The problem here is, given an almost simple
K-group G, to describe the “k-forms” of G, that is, to classify, up to k-
isomorphism, the k-groups G’ which are isomorphic to G over K. There is
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no thorough treatment in the literature yet, the most complete one so far
being [Ti 1]. By known principles (loc. cit.) it essentially suffices to consider,
over the given field k, the almost k-simple groups which remain almost simple
over K, i.e. which are absolutely almost simple. It also suffices to consider
those which are either simply connected or of adjoint type. In fact, assume
G’ is a k-form. We can form its diagram starting from a maximal k-torus.
Then the Galois group I" of k,/k operates on T, X(T), on X(T)q and leaves
@, therefore also P(®) and Q(®), stable. Then the groups in the central
isogeny class over k of G’ which have a k-form correspond to the lattices
between P(®) and Q(@) which are stable under I.

The first step towards the classification is the consideration of the index
of a k-form, which in some way reduces the isotropic case to the anisotropic
one.

Let G' be an isotropic k-form of G. We use the notation of 21.8: S is
a maximal k-split torus of G, T a maximal k-torus containing S and
J:X(T)- X(S) the restriction homomorphism. We assume compatible
orderings on @ = @(7T,G’) and @ = @ (S, G’) to have been chosen and let
4, .4 be the corresponding sets of simple roots. The groups T and G’ split
over k, (8.11, 18.8). There is an operation of I" on 4, to be referred to as the
A-action, (called the *-action in [Til]), defined as follows ([Til:2.3],
[4:6.2]): To aeA we associate first the set of parabolic subgroups of G’
conjugate to P4_(, (notation of 14.17). It is a conjugacy class of proper
maximal parabolic subgroups. Let yeI". Then y(P 4_y,(k,)) is the group of
k.-points of a proper maximal parabolic ki-subgroup Q. There exists therefore
a unique = B(x)eA such that Q is conjugate under G'(k,) to P ,_ (4. Then,
by definition ,y(«) = . This transformation defines in fact an automorphism
of the Dynkin diagram, i.e. of the root system. The k-index of G’ consists of
the A-action of I', together with the set A° of simple roots which are zero on S.

It is not difficult to describe ,@ and ,Win terms of @, W and the k-index
(see [Ti1:2.5] or [4:6.13]). The quotient Z(S)/S is anisotropic over k, as
follows from 22.7, in particular 2.2(S) is anisotropic over k. It is called the
semi-simplc anisotropic kernel. By Theorem 2 in 2.7.1 of {Til], G is
determined up to k-isomorphism by its index and its semi-simple anisotropic
kernel. As a result, the determination of the k-forms of a given K-group G
is reduced to finding the possible indexes and, for a given index, the possible
associated semi-simple anisotropic kernels. We refer to [Til] for a
discussion of these problems and an extensive table of k-forms described in
this way.

B. Linear Representations

24.3. Representations of complex semi-simple Lie algebras. We keep the
notation of 24.1. The Lie algebra t of T may be identified to
X (T =X,(T) ®K and then X( T)@K X(T)x becomes identified to the

dual t* of t. It is enough to check thlS for GL,, where it is clear. If 1e X(T),
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the image of A®1 in t* is the differential dA of 1 at s. More generally,
X(T))K is naturally contained in K[ T, since the latter is the group algebra

Z
of X(T) (cf §8), and the identification of X(T), with t* associates to those
regular functions their differentials at the identity.

Let 6:T—GL(E) be a finite dimensional rational representation. The
eigenspace E; corresponding to let* is

E,={xeE|da(t)x=At)x (tet)}.

Ais a weight of tin E if E; # 0. The weights are the differentials of the weights
of T in E in the sense of §8. Assume p=1, then it is clear that E;; =E,
(AeX(T)). This is not so otherwise in general since two distinct weights of
T may have the same differential.

Assume now p = 1. Then X(T)q defines a Q-form t§ of t*, which is spanned
by the differential of the roots. The previous equality shows that roots may
be defined “infinitesimally” i.e. in Lie algebra terms, the Weyl group may be
viewed as a group of automorphisms of t, and the roots as elements of tg,
forming a reduced root system in t§. More generally, the differentials of the
weights Ae P(®) also identify to the weights of the root system in t§. The
whole theory may be developed infinitesimally, purely in Lie algebras terms,
as was done over C by W. Killing, E. Cartan and then by many others ([10],
[18], e.g). Fix a Borel subgroup B of G containing T and let @* = &(T, B)
or also the set @*(t,b) of their differentials. A weight A in t’(") is dominant if
(A4,) 20 for all xe®™. Here again ( , ) is a positive non-degenerate scalar
product on t§ invariant under the Weyl group.

Let n:g— gl(E) be an irreducible finite dimensional representation of g.
The space E contains a unique line D invariant under b. The weight 1, of t
in D is dominant and is the highest weight of n (i.e. any other weight is equal
to A, minus a positive linear combination of simple roots). Moreover, n— 4,
defines a bijection between isomorphism classes of finite dimensional
irreducible g-modules and dominant weights. For this theorem, which goes
back to E. Cartan and H. Weyl, sec c.g. [10], [18].

These representations do not always lift to representations of a given group
G with Lie algebra g. They do so precisely when 1, is the differential of a
character of T.

We note also that there is a simple way to describe the highest weight of
the contragredient representation n* to n. Let i be the “opposition involution”
of t* (or of X(T)). It assigns — wg(4) to 4, where w,, is the longest element of
the Weyl group (expressed as a product of the simple reflections associated
to the basis of @*). Then 4, = i(4,).

Let A be the basis of @ contained in ®@*. For ae A4, let w, e P(®P) be defined
by the conditions

2Awe B (BB =6.p  (BeA).
The w, are the fundamental highest weights. They form a basis of P(¢) and
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any dominant weight (with respect to @*) is a positive integral combination
of the w,’s. .

24.4 Linear representations of semi-simple groups. We keep the notation
G, T,B, ®*, (,)and i of the previous sections. Given 1e X(T), let E* be the
space of regular functions f on G satisfying the condition

flg'b)=b'Pf(g) (9eG,beB).

It can be shown to be finite dimensional and #0 if and only if A is dominant.
The group G acts on it by left translations. Let first K = C (or, slightly more
generally, p = 1). Then E* is an irreducible G-module with highest weight A,
and A+ E* defines a bijection between dominant characters and equivalence
classes of finite dimensional irreducible representations. This is a global
version of the results of 24.3, the “Borel-Weil” theorem [B3:I, 392-396].
Without assumption on p, it is still true that 1 is the highest weight of E,
(in the sense of 24.3), has multiplicity one, and that the corresponding line
D, is the only B-invariant line in E* but E* need not be irreducible. However,
it contains a unique irreducible subspace F* which in turn contains D,, and
the assignment A— F* yields again a bijection between dominant characters
and equivalence classes of finite dimensional irreducible representations. This
theorem is due to C. Chevalley [13], too. Proofs are also given in [17] and
[32].

The G-module E* is called a Weyl-module. Its dimension and character
are the same as those of the irreducible module so denoted for the complex
group G¢ corresponding to G under the classification. When it is not
irreducible, there arise the problems of finding the character of F* and a
Jordan-Holder series for E%. Though not completely solved, they have been
the object of many papers. See [H], [J] for a general discussion and numerous
references. Earlier surveys are given in [B1] and [B2].

To a linear representation n:G—GL(E) is naturally associated a
representation of G by projective transformations of the projective space
P(E) of lines in E. It is obtained by composing = with the canonical projection
of GL(E) onto the quotient PGL(E) of GL(E) by its center, which may be
identified with the group Aut P(E) of projective transformations of P(E).
Given a line D c E, we denote by [D] the point of P(E) defined by D.

Let now E be the Weyl module E* Then [D,] is the only fixed point of
B in P(E*). The orbit G[D,] is closed (being an image of G/B) and, in view
of the fixed point theorem 10.4, is the only closed orbit in P(E*) (and a fortiori
in P(F?)). The stability group of D, in G may be bigger than B. If so it is a
standard parabolic group P,. It is easily seen that in the notation of 14.18,
P, is the group P,,,, where J(4) is the set of simple roots which are orthogonal
to A. Changing slightly the notation, we see that, given an irreducible
representation n:G — GL(E) of G there is associated to it a unique conjugacy
class 2, of parabolic subgroups, consisting of the biggest parabolic subgroups
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having a fixed point in P(E), those fixed points forming the unique closed
orbit of G in P(E).

In characteristic zero, a rational representation ¢:G — GL(E) is irreducible
if and only if its differential do:g — gI(E) is so. This is by far not so in positive
characteristic. In fact, if p > 1, the set .# ; of irreducible representations whose
differential is also irreducible is finite. To describe it, assume for simplicity
that G is simply connected. Then .#; consists of those representations =
whose highest weight A, is a linear combination 4, =Y c,(m)w, of the
fundamental highest weights with integral coefficients c,(n)€[0, p). It consists
therefore of p' elements, where ! is the rank of G. Moreover, by a result of
C.W. Curtis, their differentials are, up to equivalence, all the irreducible
representations of g, viewed as a restricted Lie algebra. If the c(n) are all
equal to p — 1, then the corresponding Weyl module is already irreducible
and provides an irreducible representation of degree p', called the Steinberg
representation (for all this, see the above references).

In characteristic zero, the representations of G are fully reducible, but this
is not so in positive characteristic. For the purposes of invariant theory, D.
Mumford conjectured that a weaker property, “geometric reductivity”, would
hold. An affine algebraic group H is geometrically reductive if, given a finite
dimensional representation n:G —GL(V) and a point ve V — {0} fixed under
G, there exists a G-invariant homogeneous polynomial in ¥ which is not
zero on v (if a linear form could alwdys be found, this would imply full
reducibility). It is easily seen that if the semi-simple groups are geometrically
reductive, then so are all groups whose identity component is reductive.
Geometric reductivity of reductive groups was proved first by C.S. Seshadri
for GL, and then by W. Haboush in general. This condition implies that
the invariant polynomials on V separate the closed disjoint G-invariant sets
and also that the ring of invariants is finitely generated. For a discussion
and references, see Appendix 1 in [22].

24.5 Rationality questions for representations. So far the discussion of linear
representations has been carried out over K, without any concern for fields
of definition. But various rationality requirements can be investigated. We
summarize here some relevant notions and results, referring for more details
to [4:§12] in characteristic zero and to [Ti 3] for the general case. In the
latter paper, reductive groups are also considered. For simplicity, we keep
here the previous framework.

We shall denote by %(G) (resp. #'(G)) the set of equivalence classes of
irreducible rational linear (resp. projective) representations of G. We have a
natural map Z(G)— Z'(G), which assigns to a linear representations
G — GL(E) the associated representation in P(E). If G is simply connected,
this map is bijective. In general it is injective, but not surjective. An element
of Z(G) (resp. Z'(G)) is said to be rational over k if it is represented by a
k-morphism G — GL(E) (resp. G - PGL(E)), where E is defined over k.



274 Rationality Questions v

It follows first from the general theory that if G splits over k, and A is
dominant, the Weyl module E* may be endowed with a k-structure so that
G —-GL(E" is defined over k. By 2.5 in [Ti 3] this is also true for the
irreducible representation G— GL(F*). Since G splits over k, (18.18), this
implies that any element of %(G) or #'(G) is rational over k.

This first of all allows one to make I' = Gal(k,/k) operate on %(G) or
R'(G). In fact, let n:G — GL(E) be defined over k, and G, E over k. Given
yeI', we define y(n): G(k,) > GL(E)(k,) by y(n(g)) = y(n(y~ 'g)) i.e.y(m) = yemoy~".
This operation is compatible with equivalence (over k) and goes over to
Z(G) and Z'(G). Moreover it is easily seen that if n is irreducible with highest
weight 1., then y(n) is irreducible with highest weight ,y(4,). Therefore the
class of = is stable under I' if and only if 4, is stable under the A-action.

By 12.6 of [4] in characteristic zero, and 3.3 of [Ti3] in general this is
equivalent to either of the following conditions: (a) The image of the class
[%] of = in #'(G) is rational over k; (b) there exists a central division algebra
D over k such that [n] is realized by a k-morphism G — GL,,(D). In (b), the
algebra D is unique up to k-isomorphism and the degree of = is m.d, where
d*=[D:k].

We have associated in 24.4 to an irreducible representation = a conjugacy
class 2, of parabolic subgroups of G. Obviously, 2, does not change if n is
replaced by an equivalent representation, hence a class 2, may be assigned
in this way to any £€4(G) or Z'(G).

Assume ¢ is rational over k and let n:G— GL(E) be a k-morphism
representing £. If a parabolic k-subgroup Q leaves stable a line defined over
k, in E, then so does any I'-copjugate of Q. Therefore the class P, is stable
under I', hence defined over k. However, it does not necessarily contain an
element defined over k. If £ is rational over k, then P, contains an element
defined over k if and only if the highest weight line in E as above is defined
over k, ie. if and only if the highest weight itself is invariant under the
ordinary action (see 8.12) of I'". In that case, & is said to be strongly rational
over k. This holds if and only if £ is ,I-stable and the highest weight 1 (ne&)
is orthogonal to A® ([4:12.10], [Ti 3:3.3]). That second condition is
automatic if 4° is empty, i.e. if G is quasi-split over k. In that case therefore
¢is 41 -stable if and only if it is strongly rational over k. The highest weights
of the strongly rational representations are determined by their restrictions
to S. If G is simply connected those are again all the positive integral linear
combinations of / = dim § fundamental ones [4:12.13].

C. Real Reductive Groups
In this section, we feel compelled by tradition to denote by K a maximal compact
subgroup rather than a universal field (which would be C anyway).

24.6 Real reductive groups and real Lie groups. In the twenties, E. Cartan
introduced for connected non-compact semi-simple Lie groups with finite
center analogues of the Cartan subalgebras, roots and Weyl groups (the latter
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two being often called “restricted roots” and “restricted Weyl group”) by
transcendental methods, relying on the use of maximal compact subgroups.
If H is the identity component of the group of real points of a semi-simple
R-group, they turn out to be part of the Tits system constructed in §21. The
main purpose of this section is to describe this connection. We shall do so
in a slightly more general context, that of reductive groups, the usual one
nowadays for many applications of the theory.

(a) We assume familiarity with the theory of Lie groups and of Lie algebras.
If H is a Lie group, we also denote by H° the connected component of the
identity in H, in the Lie group topology, and by b or L(H) its Lie algebra,
trusting this will net cause any confusion with the corresponding notation
in Zariski topology used up to now.

Let H be a real Lie group. We always assume that H° has finite index in
H, that L(H) is reductive, i.e. direct sum of a semi-simple ideal and of its
center, and that 2H° has finite center. This forces 2H° to be closed in H°
and H’ to be the almost direct product of ZH’ and of the identity component
C° of its center C. Also 2H® n C° is finite. Since H has finitely many connected
components, any compact subgroup is contained in a maximal one. The
maximal ones meet all the connected components of H and are conjugate
under Int H° [This is in fact valid for any Lie group with finite component
group. For connected groups, this is the Cartan-Malcev theorem; the
extension to groups with finitely many connected components is due to G. D.
Mostow; see [Ho] for a detailed account and references.]

Let K be a maximal compact subgroup of H. A Cartan involution © x of
H with respect to K is an involutive automorphism whose fixed point set is
K. Let @ be one. Then h =f®p, where p is the (— 1)-eigenspace of d Oy;
we have

(1 (Lf<t [Lplep, [pplct

and p is invariant under Int Ad,K. Moreover the exponential map exp yields
an isomorphism of manifolds of p onto a closed submanifold P of H and
(k, X)—>k-exp X is an isomorphism of manifolds of K x p onto H. Note that
@ is completely determined by its differential and the requirement that it
leaves K pointwise fixed since d @ determines @, on H° and K meets every
connected component of H.

If H is connected and semi-simple, then the existence of @y is a classical
result of E. Cartan. ® is in fact unique, p being necessarily the orthogonal
complement of f with respect to the Killing form. Let now H be connected
and commutative. Then H = K x A, where K is a topological torus (product
of circles) and A is isomorphic to the additive group of a euclidean space.
We may take for A any subgroup expa, where a is a supplement to f in |
Then, for any such choice, @:k-ark-a~! is a Cartan involution. In that
case, therefore there is no uniqueness (however, there will be a canonical
choice of a in the algebraic group case, see below).

In the general case, we have § = Ph @ ¢, where c is the Lie algebra of C.
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Write 2h = (I~ 2h) @ p,, where p,, is the canonical complement. We can find
a complement p, to N cin ¢ which is invariant under Ad K. Let p =p, + p,.
We claim that it is the (— 1)-eigenspace of the differential of a Cartan
involution. First it clearly satisfies (1), hence u:k + p—k — p (kel, pep) is an
involution of h. Also, p is invariant under AdyK, since p, is so automatically.
Then the above remarks show that p is the differential of an automorphism
@' of C° x PH° having (KN C° x (KNP H®) has its fixed point set, which
commutes with K, acting by inner automorphisms. Since ZH° N C° is finite,
the kernel of the canonical surjective morphism C° x 2H° — H® is finite, too,
hence contained in K, and consequently pointwise fixed under @’; therefore
@’ goes down to H° and defines a Cartan involution @° of H° again
commuting with Inty. K. It is then routine to check that ®° extends to a
Cartan involution of H with respect to K.

(b) In view of (1), a subspace of p is a subalgebra if and only if it is
commutative. It is known that the maximal commutative subalgebras of p
are conjugate under K° and that if a is one, then the eigenvalues of Ad X(X €a)
are all real and | is a direct sum of eigenspaces b, (Aea*), where

b, = {Yehlad X(Y) = A(X)'Y,(X a)}.

The A’s for which b, #0 are the roots of h with respect to a. We have
a=p, +a,, where a,=p,na and we can identify a} to the space of linear
forms on a which are zero on p,. Let W = A 1.(a)/Z x.(a). Then W operates
in a natural way on a, leaving p, pointwise fixed, hence also on a*. The set
@ = @(a,h) of roots of h with respect to a is contained in a¥, is a root system
there and W is the Weyl group of @. For ) semisimple, this is a well-known
result of E. Cartan (see e.g. [He]). The extension to the reductive case is obvious.

We can also consider W’ = A (a)/Z (a). It again defines a finite group
of automorphisms of a* or a¥, which preserves @, and contains W as a
normal subgroup. Note also that A y(a) = A g(a) Z (a) (see 24.7(i)), so that
the consideration of normalizers and centralizers in H or H® rather than in
K or K° would lead to the same groups W’ and W.

The Lie algebra of & y(a) is stable under d@y, therefore direct sum of its
intersections with f and p. The latter is reduced to a, since a is commutative
maximal in p by definition. This already shows that 2 ,(a)- A, where A =expa,
is an open subgroup in Z y(a). In fact there is equality (see 24.7(1)), so that
in particular Z y(a)/A4 is compact.

(c) In the ensuing discussion, we have to consider the usual topology on
the group of real points of an algebraic R-group. It is finer than the topology
induced by the Zariski topology. We collect here some facts to be used below.
G is a connected R-group.

() The group G(R) has finitely many connected components in the ordinary
topology. This can be deduced for instance from the fact that if X is a complex
algebraic variety defined over R, then X(R) has finitely many connected
components (H. Whitney). A proof for algebraic groups, in the context of
Galois cohomology, is given in [BS].
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(ii) Let G be reductive. Then G(R) is compact if and only if G is anisotropic
over R. If it is, then G(R) is connected.

Proof. The group of real points of a R-split torus # {1} contains a closed
subgroup isomorphic to R, hence is not compact. Therefore, if G is isotropic
over R, the group G(R) is not compact. Assume now G to be anisotropic
over R. Then so are all its R-tori. We can find finitcly many maximal R-tori
Ti(1 £i<m) such that L(G) is the sum (not necessarily direct) of the L(T;)
and that the product mapping p:T, x --- x T,,— G is surjective (2.2). Then
L(G) (R) is the sum of the I(T;) (R) and therefore the differential of u(R) is
surjective at the identity. As a consequence, the image of u(R), which is
obviously compact, contains the identity component of G(R). This establishes
the first assertion. To prove the second one we use a result of C. Chevalley
stating that any compact linear group is algebraic [12(b)]. View G as
embedded in GL, by means of a R-morphism. There exists then an ideal J
of polynomials with real coefficients whose only zeroes in R” are the points
of G(R)°. Since the latter is Zariski-dense in G, this shows that J generates
the ideal of G, and our assertion follows. We note that Chevalley’s argument
shows more generally that if L - GL,(R) is a continuous linear representation
of a compact Lie group L, then the orbits of L are real algebraic subsets,
hence are separated by the L-invariant polynomials on R". This assertion
follows easily from the Stone—Weierstrass approximation theorem.

(d) Let now G be a connected reductive R-group. Then H = G(R) satisfics
all the conditions imposed on H in (b). We assume that %G is isotropic over
R and fix a maximal compact subgroup K of G(R). We want to describe a
natural identification between the relative root system g® and Weyl group
rW of§21 and the root system @(a, ) and Weyl group W constructed in (b).

The torus Z = (¢G)° is uniquely the almost direct product of its greatest
anisotropic (over R) subtorus Z, and its greatest R-split subtorus Z, (8.15).
Then Z(R)=KnZ(R) and 34(R) is a supplement to the Lie algebra 3,(R)
of Z,(R) in 3(R). It follows that Z(R) is the direct product of Z,(R) and of
exp 34R). The algebra 3,(R) is obviously invariant under Ad G(R), therefore
it can be chosen as the p, of (b). We say that a or p is admissible if it contains
34(R). The discussion in (b) shows that there is a unique admissible p. We
can now associate to K a canonical Cartan involution, namely the one defined
by the admissible p.

(e) We claim now that if § is a maximal R-split torus of G, then L(S)(R)
is conjugate to an admissible a and conversely any admissible a is of the
form L(S)(R), for a maximal R-isotropic torus S of G. In view of the conjugacy
under G(R) of maximal R-split tori (20.9), it suffices to prove the second
assertion. An admissible a contains 3,(R) by definition. Since G is the almost
direct product of Z and 2G, a maximal R-split torus of G is the almost
direct product of maximal R-split tori of Z and 2G (22.10). This reduces us
to the case where 9G is semisimple. Let 6:G—»AdG be the adjoint
representation. It is a central isogeny, whose differential is an isomorphism.
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Since the maximal R-split tori of Ad G are the images of the maximal R-split
tori of G (22.7), we may further identify G with Ad G = GL(g). In suitable
coordinates a is represented by diagonal matrices. Therefore the smallest
algebraic group «/(a) whose Lie algebra contains a (cf. 7.1) is a R-split torus.
If L(S)(R) # a, then S(R)/(exp a) is not compact, contradicting the fact that
Z y(a)/(exp a) is compact (see 24.7(1)). Hence a = L(S)(R).

It now follows from the definitions that ar—sda defines a bijection of
rP(S, G) onto @(a,h). As a consequence, the Weyl groups W(a,h) and gW
are the same. By definition g W is the quotient .4 ;(S)/Z 4(S), where S is a
maximal R-split torus; by the above, we may assume that a = L(S)(R). By
21.2, we have .4 '5(S) = .47G(SHR)- 2 ;(S). Now an element ge G(R) normalizes
or centralizes S if and only if Ad g normalizes or centralizes s(R) = a. We can
therefore also write g W= A gr,)(a)/Z ¢r)(a). But this is equal to the Weyl
group of @(a,b) hence to A x.(a)/Z k.(a). Therefore the inclusion A g.(a)—
A 6(ry(a) induces a bijection of A g.(a)/Z x.(a) onto A ¢ g)(a)/Z 5(ry(a), which
completes the justification of the claim made at the beginning of this section.
It also follows that these quotients are equal to A x(a)/Zk(a). In this
particular case, the groups W’ and W defined in 24(b) are therefore equal,
although G(R) is not necessarily connected.

24.7. Two remarks on maximal compact subgroups. We have used above a
fact which has been known for a long time, but for which I do not know a
reference. I shall take this opportunity to prove it as well as a sort of
counterpart which has been familiar for an equally long time, has been used
occasionally, but whose proof has not heen published so far to my knowledge.

(i) We again adopt the framework of 24.6(a), fix K and write @ for ©y.
We want to prove

Proposition 1. Let U, V be subsets of p. Assume there exists ge H such that
Ad g(U) = V. Then there exists ke K such that Ad k(u) = Ad g(u) for all ue U.

We claim first it suffices to show that if Xep and peP are such that
Adp(X)ep, then Adp(X) = X. Indeed, assume this to hold, let g, U, V be as
in the statement and XeU. We can write g=k'p (keK,peP) hence
Adg(X)eV implies

Ad p(X)eAd k™' (V) < p,

therefore Ad p(X)= X and Ad g(X) = Ad k(X) for all XeU.

Let now Xep and peP be such that Y=Adp(X)ep. Since @ is an
automorphism we have Ad @(p)(dO(X))=d@(Y). But d® = — Id. on p and
O(p)=p~"', therefore Adp~!(— X)= — Ad p(X) hence Adp*(X)=X. We
have p =exp Z, with Zep and ad Z diagonalizable (over R) in view of 23(e)
and 8.15. If (4,) are its eigenvalues, then those of Adp? are exp2/;. In
particular, the eigenspace for the eigenvalue 1 of Ad p? is the zero eigenspace
for ad Z, and also the 1-eigenspace for Ad p. Since X is fixed under Ad p?,
itis then also fixed under Ad p and it commutes with Z. From this we see that
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M Zy(a)=Z(a)expa,

as was asserted at the end of 24.6(b).

(i) Let now H be any Lie group with finite component group. We have
already recalled part of the theorem on maximal compact subgroups. It is
also known that G/K is homeomorphic to euclidean space. In fact, this can
be made much more precise. (cf. [Ho:III, §3, N°2]): Given K, there exists a
K-invariant subspace m of b, a diffeomorphism ¢ of m onto a
closedK-invariant submanifold M of H, which is K-equivariant, K acting by
the adjoint representation on m, by inner automorphisms on M, such that

o x Id:(X, k= p(X) 'k (Xem,keK)

is a diffefomorphism of m x K onto H, which is K-equivariant, K acting by
the adjoint representation on m, by left translations on K and H. As a
counterpart to the previous proposition, we have the

Proposition 2. Let U and V be subsets of K. Assume there exists geG such
that 9U = V. Then there exists ke K such that *x =9x for all xeU.

Proof. First consider a maximal compact subgroup L and meM such that
™K = L (which can always be found, by the conjugacy of maximal compact
subgroups and the decomposition H = M-K). We claim that m centralizes
LK. Let xeLnK. Then m™*-x-m = yeK hence

my=xm=xmx 'x

and therefore x = y and m = x-m-x ! by the uniqueness of the decomposition
H =M K. Applied to L =K, this shows in particular
2 N y(K)y=(ZuK)nM-K.

Let now g, U, V be as in the proposition. Then V < ?Kn K. We have just
proved the existence of me M centralizing /K n K, in particular ¥V, such that
mK =9K. The element m™! also centralizes V, whence

(3) m-tgugtm=gug ! (uel).

The element m™~!-g normalizes K, hence can be written by (2) as
) m™Yg=nk (neZy(K)nM,keK).

We have then, by (3) and (4):

%) y=m Y u="*y =% (uel),

which proves the proposition.
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Canonical Cartan involution, 24.6

Cartan involution, 24.6

Cartan -Malcev theorem, 24.6

Cartan subgroup, 11.13

Categorical quotient, 6.16

Cellular decomposition (of G/B), 14.11

Centralizer, 1.7, 23.4, 24.6

Character (of an algebraic group), 5.2

Characteristic exponent, AG.2.2

Classification over K, 24.1, 24.2

Classification theorem, 24.1

Closed immersions, AG.5.6

Closed set of roots, 14.7

Closed subvariety, AG.14.4

Combinatorial dimension, AG.1.4,
AG3.2, AG34

Comorphism, xi

Complementary root, 8.17

Completely reducible (representation),
8.19

Complete variety, AG.7.4

Complex semi-simple Lie algebra
representations, 24.3

Conjugacy class, 9.1

Conjugate variety, AG.14.3

Complete variety, AG.7.4

Connected components, AG.1.2

Constructible set, AG.1.3

Convolution (right or left), 3.4

Cross section, 6.13

Defect of Q, 23.5
A-action, 24.5
Density, AG.1.2
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Derived series {2'G}, 2.4
Descending central series {¢'G}, 2.4
Diagonalizable group, 8.2
Diagonalizable group split over k, 8.2
Diagonal map (of a Hopf algebra) 1.2
Diagonal torus, 23.4
Diagram, 24.1
Diffeomorphism, 24.7
Differential, AG.16.1
Differential criteria, AG.2.3
Dimension, 23.7
Dimension of a variety, AG.9.1,
AG9.2, AG.9.3, AG.10.1

Direct spanning, 14.3
Division algebra, 23.7

with involution, 23.7
Dual numbers, AG.16.2
Dynkin diagram, 14.7

Endomorphism

nilpotent, 4.1

semi-simple, 4.1

unipotent, 4.1
Epimorphism, AG.3.5, AG.12.1
e-o-hermitian forms, 23.8, 23.9
-e-1-hermetian forms, 23.8, 23.9

Fibre, AG.10.1, AG.13.2

Field extension, AG.2.1

Flag (rational over k), 15.3

Flag variety, 10.3

Frobenius morphism, §16

Frobenius isogeny, 16.1, 24.1

Full ring of fractions, AG.3.1, AG.3.3
Function field, AG.8.1

Fundamental highest weights, 24.3
Functor of points, AG.13.1

Galois actions, AG.§14
k-structure defined by, AG.14.2
on k-varieties, AG.14.3
on vector spaces, AG.14.1

General linear group GL,, 1.6

Generic points, AG.13.5

Geometric reductivity, 24.4

Grassmannian, 10.3

Group
algebraic (defined over k), I.1

anisotropic over k, 20.1

diagonalizable (and split over k), 8.2

isotropic over k, 20.1

isotropy, 1.7

linear algebraic, 1.6

nilpotent, 2.4

reductive, 11.21

reductive, k-split, 18.6

semi-simple, 11.21

solvable, 2.4

solvable, k-split, 15.1

trigonalizable (over k), 4.6
Group closure, 2.1

Hopf algebra, 1.2
Hypersurfaces, AG.9.2

Ideal, AG.3.2, AG.3.3, AG.34
Idempotents, AG.2.5
Image, AG.10.1
Index of a quadratic form, 23.5
Integral closure, AG.3.6
Integral extensions, AG.3.6
Involutions, 23.7, 23.9
Irreducible components, AG.1.1,
AG.1.2, AG.1.3, AG.3.4, AG.338,
AG.6.4
defined over k,, AG.12.3
Irreducible root system, 14.7
Isogeny, 16.1, §22, 23.6
central, 22.3, 22.11
quasi-central, 22.3
Isogeny (of diagrams), 24.1
Isotropy group, AG.2.5, 1.7

Jordan decomposition
additive, 4.2
multiplicative, 4.2
in an affine group, 4.4
in the Lie algebra of an affine
group, 4.4

k-algebra, AG.5.3, AG.5.4
k-derivations, AG.§15, AG.16.1
k-forms of G, 24.2

k-group, 1.1

Killing-Cartan classification, 24.1
k-index of a k-form, 24.2
k-morphic action, 1.7
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k-morphism, AG.11.3, AG.14.5, 1.1
k-rank, 21.1, 23.1
Krull dimension, AG.6.4
of A, AG.3.4
K-scheme, AG.5.3, AG.5.4, AG.16.3
K-space, AG.5.1
k-split-
diagonalizable group, 8.2, 23.2
reductive group, 18.6
solvable group, 15.1
k-structures, AG.14.2
on k-algebras, AG.11.2
on K-schemes, AG.11.3
on Vector spaces, AG.11.1
k-varieties, AG.14.3, AG.14.4, AG.14.5

Levi subgroup, 13.22
Lie algebra (restricted), 3.1
Lie algebra of an algebraic group, 3.3
complex semi-simple representations,
24.3
Lie-Kolchin theorem, 10.5
Linear algebraic group, 1.6
locally trivial fibration, 6.13
Linear representations of semi-simple
groups, 24.4 :
Localization, AG.3.1, AG.15.5
Locally closed sets, AG.1.3
Local ring, AG.3.1, AG.3.2
on a variety, AG.6.4

Maximal compact subgroups, 24.7
Morphism of algebraic groups, AG.5.1,
AG.10.1, AG.10.2, AG.10.3, 1.1

dominant, AG.8.2, AG.13.4

Nilpotent elements, AG.2.1, AG.3.3,
AG.5.3

Nilpotent endomorphism, 4.1

Nilpotent group, 2.4

Nil radical, AG.3.3, AG.12.1

Noctherian spaces, AG.1.2, AG.34,
AG.3.5, AG.3.7, AG.39, AG.53

Noether normalization, AG.3.7

Non-degenerate quadratic form, 23.5

Normalization, AG.18.2

Normalizer, 1.7

Normal varieties, AG.§18

Nullstellensatz, AG.3.8

One-parameter group (multiplicative),
8.6

Open immersion, AG.5.6

Open map, AG.18.4

Opposite Borel subgroup, 14.1

Opposite parabolic subgroups, 14.20

Opposition involution, 24.3

Orthogonal groups, 1.6(7),23.4,23.6,23.9
in characteristic two, 23.6

Parabolic subgroup, 11.2

p-isogeny, 24.1

Polynomial rings, AG.15.2, AG.15.3
Positive roots, 14.7

Presheaves, AG.4.1

Prevariety, AG.5.3

Principal open set, AG.3.4
Products of open subschemes, AG.6.1
Products of varieties, AG.9.3
Projective spaces, AG.7.2
Projective varieties, AG.7.3, AG.7.4

Quadratic forms, 23.4

in characteristic two, 23.5
Quasi-coherent modules, AG.5.5
Quasi-compactness, AG.1.2
Quasi-projective variety, AG.7.3
Quotient morphism (over k), 6.1
Quotient (of V by G), 6.3

Radical, 11.21

Rank (of an algebraic group), 12.2

Rational functions, AG.8.1

Rationality questions for
representations, 24.5

Rational representation, 1.6

Rational varieties, AG.13.7

Real reductive groups, 24.6

Reduced rings, AG.2.1, AG.3.3

Reduced root system, 14.7, 24.3

Reductive group, 11.21

Reflection, 13.13, 14.7

Regular element, 12.2

Regular element in a Lie algebra, 18.1

Regular functions, AG.6.3

Regular torus, 13.1

Residue class rings, AG.15.3

Restrictions, AG.4.1, AG4.2, AG.4.3

Ring of fractions, AG.2.5
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Root (of G relative to T), 8.17
Root group, 23.6

Root outside a subgroup, 8.17
Root system, 14.7

R-split torus, 24.6

Semi-direct product, 1.11
Semi-simple anisotropic kernel, 24.2
Semi-simple element in an affine
group, 4.5
Semi-simple endomorphism, 4.1
Semi-simple group, 11.21
Semi-simple rank, 13.13
Separable extensions, AG.2.2, AG.2.5
Separable field extensions, AG.15.6
Separable points, AG.13.1 AG.13.2
Separating transcendence basis, AG.2.3,
AG.3.7

Sheafification, AG.4.3
Sheaves, AG.4.2, AG4.3
Simple points, AG.§17
Simple roots, 14.8
Singular element, 12.2
Singular subspaces, 23.5
Smooth varieties, AG.17.1
Solvable group, 2.4
Special set of roots, 14.5
Stability group, 1.7
Stalk, AG.4.1, AG4.3, AG5.1
Subgroup

Borel, 11.1

Cartan, 11.13

parabolic, 11.2
Subschemes defined over k, AG.11.4
Subvarieties, AG.6.3

defined over k, AG.12.2
Support of a module, AG.3.5
Symmetric algebra, AG.16.3
Symplectic basis, 23.2
Symplectic form, 23.8
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Symplectic group Sp,,, 1.6, 23.3, 23.9

Tangent bundle, AG.16.2
lemma, AG.15.9
Tangent spaces, AG.§16
Tensor products, AG.16.7
Tits system, §23, 24.6
Torus, 8.5
anisotropic, 8.14
regular, semi-regular, singular, 13.1
split over k, 8.2
Translation (right or left), 1.9
Transporter, 1.7
Trigonalizable (over k), 4.6

Unipotent element in an affine
group, 4.5

Unipotent endomorphism, 4.1

Unipotent group, 4.8

Unipotent radical, 11.21

Unique factorization domain, AG.3.9

Unirational varieties, AG.13.7

Unitary groups, 23.9

‘Universal k-derivation, AG.15.1

Varieties, AG.6.2

Weight (of a torus), 5.2

Weight (of a root system), 24.1

Weyl chamber (algebraic group), 13.9

Weyl chamber (root system), 14.7

Weyl group (of an algebraic group),
11.19

Weyl-group (of a root system), 14.7

Weyl-module, 24.4

Zariski dense subset, AG.13.5, AG.13.7

Zariski tangent space, AG.16.1

Zariski topology, AG.3.4, AG.6.6,
AG.8.2
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A° (opposite algebra of A), 23.7

*-action (I" operation in [Ti 1]),
24.2

Ad, 3.5

/(M) (M subset of an algebraic group),
2.1

/(M) (M subset of an algebraic Lie
algebra of char 0), 7.2

IA,, 239

a(M) (M subset of an algebraic Lie ~
algebra of char 0), 7.2

o (homomorphism), AG.5.2, AG.8.2
o, AG.5.2

o’ (comorphism of a), AG.6.3

™!, AG.8.2

ann, AG.3.1

A, AG31, AG34

Aut P(E), 24.4

B,, 23.6
BC,, 23.9

C[G], 24.1
#(G), €(G), #(G), 2.4
c,(n), 24.4

coker (f), AG.3.5, AG43

D*,D7,237

D¢ (eigenspace), 23.9
Af(set of simple roots), 24.2
A°, 242

«Alset of simple roots), 24.2
A action, 24.2

A set, 234

(do),, AG.16.1

Der, (4, M), AG.15.1

dim ¥V, AG9.1

dimX, AG.14, AG.34, AG.3.38,
AG.39, AG.10.1

dim X, AG.1.4
€ AG.14.3

e, AG.14.3

e’ AG.16.2

E*, 244

{f}, AG.134

F’ (sheafification of F}, AG.4.3
FS AG.24

F, AG2.1

F,, AGA4.1

G (for SU(F)), 23.9

G% 1.2



G, 1.6

G, 24.1

Gr, 24.1

G, 24.1

Gal (k'/k), AG.14.2

G/H, 6.8

GL,, 1.6(2)

GL,(D), 23.2

GLy,, GL(V), 1.6(8)

gl,, 23.4

G/m, 172

g, 33

gl(E) (E vector space), 3.1
H°, 24.6

Hom,, AG.7.1

Hom, (V, W), AG.14.1
ind. lim. K, AG4.1, AG&.1
IntgoK, 24.6

k(A) (ring of fractions), AG.2.5
K[d], AG.16.2

ker dn (kernel of dr), 23.6
L(G), Lie(G), 3.3, 24.6
ZeM), 1.7

Ay 1.9

Aa 244

Z(a), 24.6

m, 24.7

M, AGS5.5

M,(K), 23.1

m,, 24.1

Mg, 244

Mor (F', G), AG.43

Mor (X, Y),, AG.11.3
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Mory._o,(4, By, AG.11.2
u, 24.1,24.6

nil X, 18.1

N M), 1.7

#(g), 18.1

0,,, (orthogonal group), 23.6
0(Q), 23.6

Q,x, AG.15.1

p (characteristic exponent of k), AG.2.2
Pos» Ps Py, 24.6

P,, AG.7.2

PGL,, 10.8

P, 244,245

P, 24.5

P(D), 24.1

P(V), AG.7.2

(S, G), 23.6

(T, G), (G), D, 8.17
(T, G/H), 8.17

LO(S, G), , 0(G), @, 21.1
m(U,), AG.13.2

q (index of Q), 23.5

0 (@), 24.1

2G, 1.9

2.G,19

£(G), 24.5

#'(G), 24.5

Py 1.9

SA(M), AG.16.3

°W (conjugate variety of W), AG.14.3
SL,(D), 232

Span, 1.6

spec (4), AG.3.4, AG.3.6
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specg(4;), AG.16.1

supp (M), AG.3.5

t*, 243

tg, 243

Trg(M,N), Trang(M, N), 1.7
T(V)., AG.16.2
0,(sheaf), AG.5.1, AG.8.2
0x/#, AG.11.4

U, 1318

U, 145

Uy 219

Ula), 23.6

Vi, AG.11.1

Index of Notation

W, (dense open set in W), AG.14.7
W, 242

W(T, G), W(G), W, 11.19
WS, G), W(G), W, 21.1
*X,Xx 34

X(G), 5.2

X ,(G), 8.6

X(T)q, 24.1, 243

X (T)g, 243

Y,AG.13

3(R), 24.6

(Z,0,), AG.11.4

3,(M), 1.7
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