A proed X Zﬁb Jantzen conjectures

A. Beilinson, J. Bernstein

This paper concerns with some applications of Weil conjectu-
res to representation theory. The main result claims that the lo-
calization functor transforms the Jantzen filtration on Verma
modules or standard Harish~Chandra modules into the weight file-
ration on the corresponding perverse sheaves. This fact implies
in a moment the remarkable properties of Jantzen filtration: name-
ly, the hereditary property (conjectured by Jantzen), the socie
and cosocle properties (the socle one was also proved in |1} by
purely algebraic means), and the generalized Kazhdan-Lusztig al-
gorithm for computation of multiplicities in successive quotients
(conjectured in |15}, [17))

Here is a brief outline of the paper. The first two parag-
raphs review the representations -P-modu.es dictionary; we tried
to fix some topics available in folklore only. The §1 contains
the discussion round the equivariant p-modules with no represen-
tations mentioned; in particular it contains some points about
the equivariant derived category and Langlands classification.
The §2 deals with localization construction: it covers, in par-
ticular, the geometric description of representations with dege-
nerate weight, and the proof of Vogan's semisimplicity conjecture

for wall crossing functor. The §3 contains the proof of some
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geometric properties of K-orbits that are needed for the defini-
tion of Jautzen filtration; one finds there also the geometric
description of contravariant duality for standard modules. In

§4 we define the Jantzen filtration and describe its close re-
lation with monodromy filtration on vanishing cycles. Now in §5
the mixed perverse sheaves appear. We present a proof of a Gab-
ber's theorem about the weight filtration on vanishing cycles,
which, being joined with results of previous §, immediately imp-
lies the basic fact that geometric Jantzen filtration coincides
with weight one. The second point of the § is a remark that
pointwise purity of irreducible perverse sheaves (= Deligne -
Goreski - Macpherson complexes) implies the socle property for
weight filtration in any case when it has chance to occur. Trans-
mitting this stuff to representations world one gets the Jantzen
conjecture and all that.

The main results where found in the first half of 1981; the
most part of work was done jointly, and the final step was taken
separately in Moscow and Bures respectively. The version pre-
sented below, which follows the lectures given at a seminar in
Moscow in spring 1982, was written down by the first named
author; he bears all the responsibility “or the gaps and defects

of exposition.

§1. Equivariant and monodromic D-modules

1l.1. Preliminary notations. In what follows (except §5) "va-

riety" = "scheme" = "quasicompact separated scheme of finite type

over €"; in fact one may replace € by any field of char O in
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any place which has nothing to do with Riemann-Hilbert corres-
pondence. If & : X — Y is a morphism of varieties then 7.,
—* denote the direct and inverse image functors on the catego-
ry of all sheaves on these varieties. If A 1is a C-algebra,
then M(A) will denote category of left A-modules, and EM(A)
will be the category of right ones. A subcategory B of an
abelian category A 1is Serre subcategory if B is strictly
full subcategory closed under extensions and subquotients; we

have the quotient category A/B.

1.1.1. Let i : R — A be a morphism of C-algebras such
that R is commutative €-algebra of finite type. A good filtra-
tion on (A, i) is a ring filtration A ¢ AjC ..., U A; = B,
Ai-Ajc ‘Ai+j’ such that 1i(R) ¢ AO and Gr.A is commutative C-
algebra of finite type; we will say that (A, i) is good R-ring
if it admits a good filtration. A global version of these is a
variety X together with a sheaf A of €C-algebras on X equip-
ped with a €-algebras map 1 : C)X —— A. A good filtration on
(A, i) is a ring filtration Aoc. AlC ... on A such that
i(@x)c AO and Gr.A is a commutative quasicoherent g’x—algebra
of finite type; (A, i) (or simply A) is good if it admits a good
filtration. Any good A is quasicoherent as @ -module. If X
' . ‘ . Q%U. Eo=om _
is affine, then the global sections functor defines\¢EFARLcorres
pondence between good A's on X 'and good lﬂ(x, @X)-rings. If B

is another good algebra on a variety Y, then we have a good al-

gebra A @B on XxY with A @ B(Ux V) = A() & B(V) for af-
c

fine opens U < X, VC Y. The basic example of a good algebra is

sheaf .px of differential operators on X (assumed to be smooth)

—
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with standard embedding G?x = D, .

Let A be a good algebra. Then "A-module" will mean
"sheaf of A-modules guasicoherent as E7X—module". Usually we
will use left A-modules, and call them simply A-modules; these
form an abelian category M(A). The category of right A-modules
will be denoted FM(A). An A-module is coherent if it is locally
finitely generated; these form a full subcategory iMUUcohC M(A)
which is a Serre subcategory.

Lemma-definition. Let A be a good algebra; put R = " (x, a).

We will say that X is A-affine if the following equivalent
conditions hold
(i) For each M ¢ M(A) one has Hi(x, M) =0 for i>» 0 and M
is generated by global sections
(ii) The functor [ (X, ) : M(A) — M(R) is equivalence of ca-
tegories. J
If X 1is affine, then it is A-affine with respect to any A.
If X 1is any quasiprojective variety, then one may choose an af-
fine morphism £ : Y — X with Y affine, hence X is £, (0y)-
affine. In this paper we will deal with non-commutative versions
of this phenomenon.
1.1.2. Let S c¢ fq(X, A) be a subalgebra. We will say that
an A-module M is S-finite if for any local section v of M one

has dimCSv < % ; denote by M(A)f<: M(A) the full subcategory

of S-finite modules. Assume that S lies in the center of A. If

X: S —C is a C-point of S, let mx be the corresponding
maximal ideal of S; for n =1, 2,... put A( n S A/m; A. Clear-
’

ly M(A)X n = M@ ) is a full subcategory of ‘M(A)f; denote
14

IL,n

by M(4) < M(A) the full subcategory of A-modules M

X,



-5~

N
such that for any local section v and N » O one has mx v = 0.

Any S-finite module has X -isotypic decomposition: M =& M’( ,
£

. = i . W i 1so th
M, ¢ M(A)X,“ , SO M(A) ‘7-(] ‘M(A))(,a° We w1l;{r§ed jatb(so e '
. b ws G ﬁuaw ‘Lu,‘
corresponding derived categories D M(A) etc. ;Lea-z—]r-f
b b £ b b b 1)
DM(A), o< D M(A)" € D°M(A) and D M(A)_ , ¢ DM(A) are i-t&y %

faithful embeddings.

1.1.3. Let X be a smooth variety. An @X—Lie algebra is a

a

sheaf of (J X-modules 5 together with morphismg [ ,]

?—r TX (here r/— denotes the sheaf of vector fields) such

g: X

that

D

(1) is coherent @X—module,. £ is @X—linear map.

(ii) [,] 1is Lie algebra bracket, and § is Lie algebras map.

(iii) One has [f, £T] = £(4)(6)T + £(3,T] for 3,Te P,

£e Uy

Lat T ke an C7X-Lie algebra. Its twisted universal envelop-
ing algebra -u(ﬁ’) is the sheaf of associative C-algebras equip-
ped with C-algebras map i : (J g (7)) and C-Lie algebras
map 3§ : 3 — @(P) such that Y(7') is generated by i( UX) and
j(P) with the aly relations i(£)3j(4) = 3(£3), [3(3),1O]=
=1i(g(3)(£)). Clearly {#(4%?) , i) has canonical good filtration
WPy = 1(0p), WP =3P+ i) WP =AKT) 1 P is
locally free ~1d § is surjective then Gr.g(?%) = sym® (7).

£ =7

J gr then L7 =Dy

1.1.4. "2t H be an (affine) algebraic group, X be a smooth
variety, anc T : ; — X be a principal left H-bundle over X. Let

f:= Lie H be Lie algebra of H, and ije f ®(9X twisted by

means of X with respect to adjoint action of H; one identifies
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~
f with the Lie algebra of vertical H-invariant vector fields

Ve

on X. The current algebra/of X ist?'x = 1T, (7§)H c 7. .73; &

@algebra of all H-invariant vector fiel@ One has a
A

canonical exact sequence 0 — f - j—x ﬂ»— ‘TX — O of Lie

algebras on X. Clearly § =477 together with obvious @X-modu-

le structure defines @X-Lie algebra structure on Tx. Let

5X := (’lT.:Di)H c 77.:DX be the algebra of H-invariant differenti-
al operators on X. One has
. . . . ~ . A =
(i) The obvious embeddings i : (© x " Dyr e x Py

L~

identify ﬁx with twisted universal enveloping algebra of 7T

%
(ii) 77’.:)')-{ = 0., (93—( & ;Dx with ring structure that comes
OX
from (i) via the Tx—action on 1 .(932.

(iii) d'7 identifies the quotient ;Dx/;"ﬁx with D, .
(iv) Any (local) section of X + i1.e. an H-isomorphism

X * XxH, induces isomorphism 5X =D, @ ug).
C

If H is commutative, say H is a torus, then j’ = / ® @x,

hence we have the embedding u,(f ) = S(‘{ ) C—'—ﬁx which identi-

fies S({ f) with the center of BX' According to 1.1.2 one gets
. ~ ~ ) ~ £

the categories ‘M(‘Dx)"(,l C ‘M(‘DX))(,Z Cc...C ‘M@X)x,«o C .M(;DX) c

M@,): here xef' .

1.2. Equivariant pP-modules. We use [ 9] as reference book

for p-modules. The category M(;DY) of ;DY—modules will be denot-
ed simply M(Y); same for the derived category: Db(Y) = Db M(Y) etc.
Let G be an algebraic group and Y be a smooth variety
with G-action m : Gx Y — Y. Denote by mb;’ :Ly — TY the cor-
responding infinitezimal action of UJ := Lie G. Let PY : GXY

— Y, PG : GXY —+— G be projections.
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1.2.1. Definition. (i) A (;DY, G) -module M is ;DY—module to-

gether with isomorphism mnM = P;M of DG»Y—modules such that
the usual compatibilities hold.
(ii) A weak ("DY, G) -module M is (DY-module together with iso-

morphism (with usual compatibilities) m'M ¥ P;{ M considered as

(pG @DY -modules (note that (QG 3 ;DY is subring of :I)Gma‘)Y =

= DG“Y) . Equivalently, this is :DY—module M together with G-ac-

tion on M considered as @Y-module such that for geé G and lo-

cal sections 3 & D v € M one has g(3v) = g(3)g(v). o

: Yl
Clearly these form the abelian categories denoted by WM(Y, G),

MY, G) we have the faithful embedding M(Y¥Y, G) &+ M(}, -,

weak'’ weak

and forgetting functor OG: M(Y, G) — M(Y).
Let M Dbe a weak (:DY, G)-module. Then Lg acts on 0 Y—module
M in two ways: first, we have the infinitezimal action that comes

from G-action on M, and the second one comes from D -module

=Y
m .

, i . :
structure v1a(§ —3, TYL JDY. Let L«ys' g — 3, i=1, 2, =
note these actions. Consider the map w :(ﬂ — End M, w(}) =

1 2
= 3 - }

1.2.2. Lemma. (i) w(3 ) commutes with Dg,-action, w(Adg(;)) =
= gw(} )g_l, and w :'—J — EnclD M is Lie algebras map.
Y

s (2*64‘“°J*a
(ii) A weak (Dy, G)-module rés_;.a_-—x—(-\'-.—e-)(—ff/f w(y) =o0. 0

Now let 1 be a;DY-module. Then P'YN is (:Dny, G) -module

(here G acts on G Y along the first multiple). Put

° 3 3 d —-— £l
Indweak(N) := m.PYN. This is a weak (DY, G)-module: namely, the
((9Y, G) -module structure comes from (@GlY’ G) -module structure

on PYN, and a vector field T¢ T v ¢ :DY acts on IndweakN by

~ . ~ ~ -
means of T ¢ TGch DGAY with dpG(r) =0, dm(T ) =" .

This way we get the exact functor Ind M(Y) — WM, G

weak

i
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(exactness follows since m is affine). One has
(i) Consider the G-action * on Gx Y defined by formula

g* (L, y) = (g¢, C-lg—le‘y), g,le G, ye Y (so * is a

\wv )

3 —

free action along the fibers of m). Let L? —*-Jdcﬁy,

pe the corresponding infinitezimal action. Then w(3} )e¢
~

. . Q
eakN) is the action of 3} on PyN.

(ii) Consider the embedding i(l) : Y -— GrYy, i(l)(y) =

End(Indw

= (1, y). The isomorphism i(l)ff}N =" N defines a canonical sur-
_ Jection d : oG Indweak(N) —— N of ﬁY-modules.

(iii) A weak (DY, G) -module structure on N defines the injec-
tion B : N & IndweakN which comes from G-action (the 0 G @:DY—

isomorphism) m°N = P;N joined with canonical map N “-mmN .

1.2.3. Lemma. (i) The functor Ind P M(Y) —-— M(Y, G)

weak weak

is right adjoint to the forgetting functor OG by means of ad-
junction maps ( « +p) of (ii), (iii) above.

(ii) The faithful embedding M(Y, G) — MY, &) has

weak
left and right adjoints defined by formulas M »— Mw“a),
Mo— MY (D) respectively. 0O

Examples. (i) Assume that Y 1is a point. Then M(Y, G) =
representations of finite group G/G° (where G° := the connected
component of G), M(Y, GLh;kalgebraic representations of G (here
an algebraic representation of G on a vector space V is represen-
tation such that V is a union of finite dimensional subspaces
with algebraic G-action). The functor Indweak transforms € to
the regular representation (G) of q.

(ii) Let Y be any G-variety. Then pY with usual G-action
is weak (Dys G)-module with w(3y )r $& 4 , equals to the right

multiplication by - m (3).

9
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(iii) Assume we are in a situation 1.1.3. Since 1 is af-

fine the functor M. : M(X) —— M( T. Qx) is equivalence of cate-
e ~

gories. Consider the adjoint functors M(X, H)weakjifi M(DX)
~ H #

defined by formulas TF# M) := W .M, T (N) :=

-1
M w ~ —3 -~ ¢ = As *
. (TP @ N) =DPg ‘@' TN (9X®7TN.

"

o mo,
1.2.4. Lemma. (i) Tf# ’ 7G* are mutually inverse equivalences
of categories.
(ii) ’ﬂ;t identifies M(X, H) with M(X) (embedded in M(f,)
via 1.1.3 (iii))

(iii) w(¥ ) acts on ¥ v =0 #°'N as multiplication

~ 9
X .
ﬂ(%

by §efc @Yef: (Q_i,"ei@f"" a

1.2.5. The main body of this paper requires only a bit of a
naive equivariant functoriality to be sketched in this n°’. For
the general framework see n&3 [-.7 !

Let a : G —~— G' be a morphism of algebraic groups, Y, Y'
be a smooth G- and G'-variety respectively, and ¢ : ¥ — Y' be
an a-equivariant map.

(i) If N is (py,, G')-module, then @Y—module fo(N) carri-
es an obvious G-action. Hence one has the right exact functor
£° M(Y', G') — M(Y, G). More generally, f!(N) 3 Db(Y) carri-
es the "naive" G-action (we have the isomorphism F>; f!N = n@ le
in Db(Gx Y)), and this way we get the functors Haf! s M(Y', GY)
— M(Y, G).

(ii) Assume that a : G — G' is isomorphism, and M is

(Dy, G) -module. Then the smooth base change gives the "naive" G'-

action on f+(M) € Db(Y'), hence one gets the functors Haf+ :
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M(Y, G) — M(Y', G').

(iii) If a is isomorphism and f is closed embedding,
then H°f_ is faithful :nbedding that identifies WM(Y, G) with
the category of (py,, G')-modules supported on Y; the inverse
functor is H.f!. This follows immediately from usual Kashiwara
theorem (g} VI, 7.13.

(iv) The duality D transforms a coherent (DY, G) -module

Y

to a complex with "naive" G-action, since D, commutes with
smooth base change. Hence we have the functors g DY : iﬁY,(ﬂcoh
—— M(Y, G)coh’ and the holonomic duality DY s M(Y, G)hol —_—
M(Y, G)hol'
(v) If M. ,M, € M(Y, G), then M, @ M, € M(Y, G).
17772 1 B, 2

(vi) If G =G' and f 1is locally closed embedding, then

u’f, D, : MY,

0
one has the right exact functor H £, := D

v y * G o1

— M(Y', G')hol together with a natural morphism Hof, — Hof*.
- L]
Put £,, := im(H £, — Hof*); this functor transforms irreducible

(DY, G) -modules to irreducible @ G') -ones.

Al
The same functoriality (i)-(vi) holds for weak (Dy,rG)-modules.
1.2.6. Lemma. Assume we are in a situation 1.2.4, and either

of the following conditions holds:

- (descent) a : G — G' 1is surjective, G" := Ker a acts

on Y in a free way, and f 1is projection Y — G\Y = Y
- (inductﬂéﬁ) a : G — G' is injective, and f is embed-

ding such that Y' is a-induced G'-variety: Y' =G' x Y
G

Then £° s M(Y', G') —— M(Y, G) is equivalence of cate-
gories.

Proof. The descent property follows easily from, say, the
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usual descent for (0 -modules; the induction case follows from the
descent appliedr;he maps Py : G'x Y —+~Y, m: G'xY¥Y - Y

(here G'= Y is considered as G'x G-variety according to for-
mula (g', g9)(g", y) := (g'g"g T, gy)). O

The results of the next n will not be seriously used in

the main body of the paper, so the reader may omit it.

1.3. Equivariant derived category. As usually one acquires

a functorial freedom by means of appropriate derived categories.
It is easy to see that in case of equivariant D-modules the naive
derived category Db M(Y, G) is too'rigid to work with, and
should be replaced by a different, ﬁore flexible, t-category
Db(Y, G) with core M(Y, G). We know two constructions of this
equivariant derived category. The first one, due to Lunts and the
second named author (see appendix to [28]) works in every geomet-
ric situation: for P-modules or perverse sheaves. It inherits
automatically all the functoriality of its non-equivariant ances-
tor. The second construction, due to Ginsburg and first named
author (see {18)), is a version of BRST method in physics. It
works in algebraic situations: say, for D-modules and Harish-Chand-
ra modules. In this n° will be presented this second construction
(for Harish-Chandra case, implicit in [13], see 2.4 below); we
will show that it is equivalent to the first one on the common
ground of D-modules.

Assume we are in situation 1.2. In what follows "weak (DY, G) -
complex" = "complex of weak (py, G)—modulés".

1.3.1. Definition. A (DY, G)-complex is a weak (Dy, G) ~comp-

lex M° together with a map — Hom M°, M'—l), ) 3 -1,
M(Y) §

|
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1 _ . .
= lAdg(E)' d1;+

+ i‘d = w(y) for ;iecg » 9€ G. A (Dy, G)-complex M" is

such that i'1 1;2 + 1sz i3, = 0, g zig

coherent if it is bounded and each M':L is coherent jDY—module. Qa

The (DY, G) -complexes form an abelian category C° (¥, G);
here - 1is "boundary condition": e« = i, # or b. Let C(Y,G)coh
c Cb(Y, G) be the full subcategory of coherent complexes. Any
bounded below complex M° ¢ C+(Y, G) is direct limit of its cohe-
rent subcomplexes (this follows by the similar fact for weak
(Dy, G) -modules, which is clear since any quasicoherent (<pY’ G)-
module is union of coherent G-invariant subsheaves).

Let q%; be the differential graded Lie algebra with G§°:=
:= U] with usual bracket, C% -1 %ﬁ, 65 120 for i # 0;¢and
d :ia -l 550 is identity map; the group G acts on 55' via ad-
joint representation. The universal enveloping algebra ﬂ&ii') is
just the standard complex C.(Y, 14(¢¥)). Note that any weak
(;Dy, G)-module is naturally a ;DY o) u(ty)-module where (.gc ‘W(‘?)
acts viaw . A (Dy, G) -complex is just a weak (Dy, G) -complex
with the pY ® ‘LL((,Z )-action extended to :DY e u(ig *)-action in a
G-equivariant way: ge(y = @ "l acts as i; .

One may define a homotopy between morphisms of (Dy, G) -comp-
lexes and homotopy category K° (Y, G) in a usual manner. More pre-

cisely, for (Dy' G) -complexes Mi, M2 one has the complex

. ' £ A+
Hom* (M;, M,), Hom™ (M., M,) ={ (£ )¢ 1 Hom (M7, M;7h) e
1 28 1 M) = (E M(Y,G) o L 2
s £i - 0fiE = i - i
LR 2 o}, a (£,) = (@f, - (-1)* £, d). Then

Hom(Mi, Mé) coincides with degree zero cycles in Hom®, and

. ey _ 0 « page . . .
HomK'(Y,G)(Ml' Mz) = H" Hom (Ml' Mz). The category K° (Y, G) is

\ a triangulated category in a usual manner (note that for a (DY, G) -
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complex M® the operators i§ act on shifted complex M'[1] as
minus i} on M'). According to 1.2.2 the cohomologies
Hi(M') of (oY, G)-complex M° are CDy, G) -modules; hence we have
the cohomology functor H : K°(Y, G) — M(Y, G). Localising by
H-gquasiisomorphisms one gets the desired equivariant derived ca-
tegory D'(Y¥, G). It has natural t-structure with core M(Y, G)
(embedded in D' (Y, G) as the subcategory of complexes acyclic
off degree 0) and cohomology functor H. Clearly the similar pro-
cedure applied to C(Y, G)coh gives us the full subcategory
Db(Y, G)coh of Db(Y, G) equivalent to the subcategory of comp-
lexes with coherent cohomology.

1.3.2. Example. Assume that G acts on Y in a free way,
so we have a quotient M : Y — 6&\Y, the equivalence of categori-
es % : M(6\Y) — M(Y, G) and the t-exact functor 7’ pPeY) —
— Db(Y, G). This functor is equivalence of t-categories.
(Proof. Since 7° is equivalence on cores, it suffice to verify

(7°M, M°N) is isomorphism for
(Y,G)

any P rmodules M, N. Using a Cech resolvent for N one verifies
&\ v

that T°: Ext™(M, N) — Ext’

oY(e\Y) pP

that it suffice to consider the case when Y is affine and 7 has
section. Then 1.2.4 identifies C(Y, G) with the category of dif-
ferential graded :DG\Y X u(?g *)-modules, and one verifies the
isomorphism on Ext's computing the right Ext by means of free

P X 'U/(L—j *)-resolvent of e M). Note that the inverse equiva-

o\Y

lence T° “lois right derived functor to L' /— Kernel of ¥ -ac-
. p . . b .

tion on T!’#L (see 1.2.4). For L° € C (Y, G) let DR(L') (y ¢
N. DR(L') be the subcomplex that consists of G-invariant forms

killed by i (here DR(L") =‘Q'Y @ L° is usual de Rham comp-

3 Oy
lex equipped with G-action and operators i i,(wef) =

37

JUT———_ L
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= (m") (3 )Jw)ef + (-1)989%, o ijé ). Then DR(L') . repre-

sents, in the derived category, the de Rham complex DR(WO-III).

The following functors are quite convenient.

For a weak (D, G)-complex L° put C_(L") := ’u,(q Y ® L,
9
g wiy)
C (L*) := Hoqu((uxqg'), L") . These are just the standard comple-
o)
xes of Lﬁ with coefficients in(ﬁ -module L ((? acts via w ),

Clearly Cq(L‘), Cg(L') are CDy, G) -complexes, and qﬂ' C(’:

c’ (Y, G{er C' (Y, G) are exact functors. Denote by 0, : C (¥, G —
wea

- — C° (Y, G)weak the forgetting (of ii) functor.

1.3.3. Lemma. The functors Cﬁ' C% are'respectively left

and right adjoint to O,. Same holds on the.level of homotopy

and derived categories.

Proof. Here are the formulas for adjunction morphisms. The
o pdendigies U with A% SL CCy ) ; the one Y91 O CRLSL fojecks €LY 2 A Y% g !
one X% : L7 — Q«C%L' to L = Ao(%?) & L'. The morphisms
. o . . oY . gy a _
3 P C M) — M, §7: M —co N are é?(giz\...\iaem)-

K ; n
= ii;"' Lfc (m) = & (m) ( PR Ec). 3

1.3.4. Remarks. (i) Denote by Vv the determinant of adjoint
representation; this is rank 1 G-module. One has canonical iso-

morphism Ca.g (L) = C‘?(L ev )[dim ] .

(ii) The exact functor Ind : M(Y) — M(Y, G)wea

weak defi-

k
nes the same noted functor between homotopy and derived categori-

es right adjoint to the forgetting functor Og-
9 o . _
(iii) Put Ind := (C Indweak : C°(Y) C" (Y, G). This func

tor is right adjoint to the forgetting functor 0 := OG OA :
: C°(Y, G) — C"(Y). Same holds on homotopy and derived categori-
es level.

(iv) If I° is injective complex of DY"modyles, then Ind(I")

. . . . . . . +
is injective (DY, G) -complex. This implies that any M ¢ C (Y, G)
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may be quasiisomorphically embedded in an injective complex which
is convenient for computing derived functors.

Now we may compare 1.3.1 with Bernstein-Lunts construction

. 0
"287. Recall the basic definition. Choose a sequence TO —

2 i
Tl — T2 — ... of smooth affine connected free G-varieties

such that Trl(Tj) = 0 and for any Jj > O one has H%R(Ti) = O for

i?® 0 (so T = UTj is free contractible G-space and G\'T 1is

classifying space of G). The object of Bernstein-Lunts equivari-

ant derived category Db(Y, G)' 1is a sequence (M; Mo’ Ml"")'
M€ Db(Y), Maé Db(GAQYxTa) (note that G acts on Y"~Ta in a
free way) together with a system of isomorphisms 7T;Ma = 7’4 in

,
Db(Yx Ta) compatible with respect to ia's (here G\Y&Talé—JL

]
Y % Ta —% v are projections). This Db(Y, G)' 1is a t-category

with core M(Y, G). Now if M’ is a (DY, G) ~complex, then the

(DY’T , G)=-complex ﬂ"g M° descends, according to 1.3.2, to
a
96““7; ~complex Mé, hence (M°, Mé) is an object of Db(Y, G)'.

This way we get a t-exact functor F : Db(Y, G) — Db(Y, G)' that
induces equivalence on cores.

1.3.5. Lemma. This functor is equivalence of t~-categories.

Proof. It suffice to show that Hom b (M*, N°) ——
D~ (Y,G)
Hom (F(M°),F(N')) is isomorphism for any bounded (P, G)-
b . Y
D" (Y,G)
complexes ™", N°. We may assume that N° = Ind L° for a DY—complex

L' (since any complex has a resolvent with induced terms, see

1.3.4 (iii), (iv)). Then 7T;N' = Ind W'QL‘ (since Ind commutes
with inverse image), hence Hom b (M;, Né) =

D” (G\ YeT,)
_ ~0 . ~0_ . - o ., ~0_ ., _
= Hom b (IIYM ' IndlIYL } = Hom b (7TYM ,//YL ) =

DT (Y x Ta,G) D (Yx'Ta)
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_ J . “r_s _ j . -
=@®H (Y) @ Hom . (M°, L"{-3)) @HDR(Y)®Homb M, N°(=3)),
DT (Y) D™ (Y,G)
When a 1is large enough, Hom b (Mé, Né) =
DT (G\Y*T,)
= Hom (M, N°), hence the desired fact. =
D~ (Y,G)

Since Db(Y, G) ' inherits the best functorial properties from
ordinary P-modules (see [28]) the same holds for Db(Y, G). In
fact, one may define all the functors in a intrinsic way. For
example, the functor Ind above is just the direct image functor {
for the equivariant morphism (Y, 1) —i§+ (Y, G) (here 1 1is one
element group). The lemma 1.2.6 also holds with cores replaced

by t-categories Db(Y, G) themselves.

.

If Y is a point, then 1.3.5 identifies Db(Y, G) with
Db(BG) := the full subcategory of derived category of sheaves on
the classifying space BG of G that consists of complexes with .

locally constant cohomology. The core of B, is category of G/G°-

G
modules. If V,, V, are G/G°—modules then Extl (V,, V,) ==
1 2 BG 1 2

:= Hom b (Vl’ V2[iJ) may be computed as follows. The finite

D (BG)

group G/G° acts on BG° with quotient space equal to B hence

GI

H'(B.o) 1is G/G°—module, and one has Exti (Vy, V,)
G BG 1 2

* .
= [Vl ® VvV, 3 Hl(BGJ]G. If Y is any G-space and My, M, e MY, G),

2
then the general functoriality implies that one has a natural

>omplex R Hom (M., M,) ¢ Db(B ) such that R Hom ™, M) =
1 2 G Db 1

(¥,G)
(Ml’ M2)). Hence we get a canonical spect-

P (v)

= R Hom_, (€, R Hom

B b

G D™ (Y)
al sequence that converges to Ext (M,, M,) with second
i Py L1702

q

term EP’9 = Hp(B

G
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Monodr;zfnlc D-modules (see (32} ,/(331) ssume we are in

a s:.tuatlon 1.Z.3 and H is a torus. Buch 1T ; will be

called H-morvodromic space. ;Put M 1= M{( X) . According to
~ £ ~

1.1.3, 1.2.3 we have the categories M(X )?( nC M(X) ¢ M(X) (here

* d th ival f categories 1 7T: M(X) —M®&, H
X € j ), and the equivalence of categories M : M(X) X, )weak'

~o - # ~ ~
Put " := 07 : M(X) — M(X).

If M,, M, are 5 -modules, then M, @ M, is 3') -module ac-

1 2 X 1 Ox 2 X
cording to Leibnitz rule (one has T (mls m2) = T (ml) ® m, +
+meT (my), m;e M, TeT, , see 1.1.3 (i)). One has
. ¥ . -

"]T#(M ® M, = T M, ® T M,, same for ¥ °

1% 2 2

Oy (9~ ,

For a ,Dx—module M let .M be .M considered as 5X-—module;
. : M(X) — M(X) is exact faithful functor right adjoint to re.
Say that M is monodromic if % .M is S( )-finite. Denote by
.M(;()mc .M(%) the full subcategory of such modules; this is Serre
subcategory,

¥* ~
For a monodromic M and X¢ ‘f let T, (M) € M(X)y w be X -com-

~

ponent of " . (M) ; one has ﬁ (M) @ Ty (M) . For ‘e */ * (here
) X 2

*

fz := characters of H embedded in f in a usual way) put

GT’—( M) = D //w((M) this is 7.DPg-submodule of .M, hence Ty (M) =

Xhod,z
= M.(Mz), and we have direct sum decomposition M =_©@, MJ-( . It
Y Xe£75y

is ~~3y to see that M7-( = 7° 77’)( (M). Say that M is (‘3(_ , n)-mono-
dromic if M = M’-( and ”7( (M) ¢ .M(X)’( ,n7 denote by ‘M(X)',n c

M(ff)m the full subcategory of such ones.
* _ e , . .
For e 4, put f? := //? (@'X') (this is a line bundle that

corresponds to (f ) and define the translation functor Tf : ﬁ(x) -

— M(X) by formula T(f(N) = 6%,@(5 N. Clearly T‘ﬁ T‘fz = T'ﬁ‘*“fz

X
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{(in partiqular TT is autoequivalence) and Ty(.ﬁ(xk ) = ﬁﬂx&‘f.
The above may be summarised as follows.
1.4.1. Lemma. (i) One has M(X)™ =iﬂM(>“<)i 5
(i1) For Y = X mod f; the functors M(i%aéé%: ﬁ(x»x-‘are
mutually inverse equivalences of categories. h
(iii) One has i'T? = ¥ for Ye f; .o

Remarks. (i) In a less formal language 1l.4.1 says that M(x)™
is quotient of ﬁ(x)f module the action T of f;.

(ii) f*/;; is character group of the fundamental group of
torus H. The Riemann-Hilbert correspondence identifies tame X -
monodromic. pi—modules with the i -monodromic perverse sheaves on

X, i.e. the ones which are lisse along the fibers having i as
eigenvalues of fiberwise monodromy (see 731}, [32]).

(iii) Let Q ¢ H be a finite subgroup, H' := H/Q. Then %’ s=
:= Q\A)Z is H'-monodromic space and the D's for X and X' are
canonically isomorphic. Hence M(X) depends only on X up to
isogeny.

In the monodromic situation we have two candidates for the
appropriate derived cétegory of monodrpmic modules, namely
D™ (X)" := full subcategory of Db(ﬁ) of complexes with monodromic
cohomology, and the derived category Db M(?()m of ,M(i)m. Simi-

b

larly one has Db(')‘('):(‘,<> and D M(ik“,. Fortunately they coincide:

1.4.2. Lemma. The obvious exact functors DbM(i)m —-Db(§)m,
DpM(i)- — Db(i)_ are equivalences of categories.

X o2 R

Proof. These are t-exact functors between t-categories with

the same cores, so it suffice to verify that these induce isomor-

phism on Hom's. The Cech resolvent shows that the problem is local
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along X, hence we may assume X to be affine and X = X»H. It
suffice to verify that Hom's are the same for generating family.
The one is formed by ﬁ:'UDX ® V), where V 1is an S(f)-module.
The Kunneth formula reduces the problem to the case X = point,
dim H = 1 where it is obvious. O
. b,zm b,z .
1.4.3. It is easy to see that D (X) < D7 (X) 1is stable

with respect to all the standard functors (duality, ® ,... }.
G-o
X

More precisely, the direct and inverse image functoriality holds
for morphisms of monodromic spaces, which are, by definition, maps
equivariant with respect to isomorphisms of corresponding toruses.
This may be proved by local arguments, similar to 1.4.2. The si-
milar functoriality holds also for 5—modules (in a way compatible

with 7 °).

1.4.4. In the rest of the § we will deal with equivariant
moncdromic modules. Soilet H be a torus, G be an algebraic group,
and < : G — Aut H;%ge ; fixed homomorphism ( « factors through
the finite qudtient: G/G° —— Aut H). Let 7 : X — X be an H-mo-
nodromic variety and ™ : GxX — X be a G-action such that
ghX = o g(h)g %X for g¢ G, he H, X X (in particular f
descends to m : Gx X — X). We will call such an object H-mono-
dromic G-variety; this is the same as G 5 H -variety X such
that H acts in a free way. The infinitezimal action ng:(g — :Ti
reduces to a Lie algebras map T :%? — ﬁ%x (¢ ﬂ'.gfi). Also G

— ~
aCtSChyX and D, in an obvious way; this action coincides with «

X

= -
on <39C 7—X and is compatible with m in a sense that

K|
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m . (Ad ‘ = gm for - G e U
G Pdgly)) = g (x)9 ge G oyely
Define (5X, G) -module to be a DX—module M together with G-
action on M as on C7X—modu1e such that one has g(dv) = g(d)g(v)

for ge G, J¢ 5%, v ¢ M, and the two actions of Lg on M, the

first that comes from G-action and the second that comes from

A~

D.,-action via ;ig' coincide (compare with 1.2.1 (ii), 1.2.2 (ii)).

X
The (SX' G)-modules form an abelian category ﬁ(x, G). It contains

a full subcategory M (X, G)f of S(f)-finite modules. For M €

ﬁ(x, G)f consider the ﬁx-decomposition M &) M. . For any

Axeid X

2 * -

4 (G)-orbit X € «(G)\ 4 the submodule M. := & qu}M is
~ XeX

G-invariant, so we have the decomposition M = & Mi in ﬁ(x, G).
Let .ﬁ(x, G),iBo be the full subcategory of M's with M = MX ; then
M(X, G)f = ‘j M(X, G)iﬁ . We have the easy lemma that reduces

A

the study of arbitrary S(f)—finite (D, G)-modules to the ones
supported on orbit i that reduces to a single element:

1.4.5. Lemma. For Xe-f* let(J‘c G be stabilisator of X%
(with respect to « ), i = cx(G)X . Then the functor ﬁ(x, G)@” —
— WX, G, ) MM,

1.4.6. We also have a category MiX, G)™ of monodromic

~

is equivalence of categories. J

(pi, G) -modules together with adjoint functors .M(g, G)m T
J

ﬁ(x, G)f. The category M(§, G)m decomposes by the subcategories
indexed by elements of-x%d\fjgé. If X: _* is such weight that
A (G)X = X, then M(X, G){w‘:;?i’ M(x, G))&_‘e are mutually inver-
se equivalences of categories. These easy facts may be shown the
same way as l.4.1.

1.4.7. Both (5;, G)- and CDi' G)-modules have the same ele-

mentary functoriality 1.2.4 (i)-(vi) as ordinary equivariant mo-
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dules (see 1.4.3); the lemma 1.2.5, as well as its proof, remains
valid in this situation. The proper way to understand the functo-
riality is to introduce the right equivariant derived category.
One can do this in the same manner as in n 1.3. Both 1.4.1 and

1.4.2 remain valid in this context.

1.5. Langlands classification. Let X be a monodromic G-va-

riety. Our aim is explicit classification of irreducible (5X, G) -
modules in case when there are only finitely many orbits on X.

1.5.1. Let x ¢ X be a point, Gx ¢ G be stabilizer of x.

— v
Consider the action of GX on H-torsor l(x). Since G - and
H-actions commute, the group (GX)c acts on ﬁ'_l(x) by means of
H-translations via the morphism §>x : (GX)d — H. The kernel

of ¥y , is a normal subgroup of %; put G( := GX/Ker Y - The

x)

connected component G(;) of G(x) is the subtorus of H via y ,

hence one has the embedding i : Lie G — j . If we put

(x)
Ad := iJGx: G(x) —- Aut H , then ( f, G(x)) together with i, Ad

form a Harish-Chandra pair (see 2.4 for definitions).

1.5.2 Assume that X is a single orbit. Take any x ¢ X;

then X = G x 77 1(x), and by 1.2.5 (ii), 1.4.7 one has canoni-
Ex

cal equivalence ﬁ(x, G) = ﬁ(x, GX). But Qﬁx, GX)—modules are

the same as ( f, G(X))-modules (see 2.4), hence the canonical

equivalence FX : ﬁ(x, G) -- bd(j ’ G(x))' Note that any coherent
monodromic;Di-module is tame and lisse (= rs holonomic @;—cohe—
rent in terminology of [9]), since this is obvious for monodro-

mic ;pﬁ-modules and 1.2.5 preserves the property of being tame
. . . , ® . K ; * . .
and lisse. Similarly, if “X¢ f&':= GFz< ¥ is a rational

weight, then any X -monodromic pi—module has finite monodromy
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group hence has geometric origin |[5] (6.2.4). For xeufi Ad(G) (X)) =)
the category Jﬂ(f, G(x)k,L is semisimple and the set Irr of
isomorphism classes of irreducible objects is finite (e.g.

M4, G(x))a1 is the category of G(X)/G(;)-modules). If Ad(B)¢
Aut f fixes the n-th infinitezimal neighbourhood of X . then
Jd(j, G(X))K,n has no Extl's between nonisomorphic irreducibles

and »M(} , G is equivalent to the category of [] S(f,/

)
éx) X:n Irr
/Lie G(x))/m -modules (here m = f S is maximal ideal).

1.5.3. Assume now that X has finitely many G-orbits; such
monodromic G-variety will be called finite..Let IX . be the
set of orbits on X. This is a partially ordered set: we say

) C —. . . 2 .
that «, ¢u, iff Q,, le(here for «¢ Ix,erL is the
corresponding orbit). Let I be any partially ordered set; for
d¢ I put x := {8 :Bsa} C I.Put Ap:=facI: «ea=
then a~ b, avbe¢eaA

« e aj}: if a,b Ar, 7- Clearly A

is the lattice of all closed G-invariant subsets of X: for

a ¢ A we put X := U Q,  hence X. =0 . For a¢ A
e C dea < Ix,c

let ‘ﬁ(x, G)a be the full subcategory of M(X, G) that consists
of modules supported on Xa; similarly w= have M(i, G)a etc.

Let us fix this kind of frame.

1.5.4. Definition. Let C be an abelian category. An I -

stratification on C is a set Ca ,  a ¢ AI, of Serre subcatego-
ries of C such that (i)-(iii) below holds:

(i) ¢. ¢ ¢C if
a a

is the least Serre subcategory that contains Ca ’ Ca .

C a C = C_ n C_; C

a ;
1 2 a;n a, a1 a, a1° a2

(ii) For ayra, ¢ AI the embeddings
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C, ~as = Civa induce equival <ce of cate-
1 2 C 1 2
a
‘ 2
gories Ca /Ca N oa . Ca /Ca na - Ca v a /Ca N a.’
1 1 2 2 1 2 1 2 1 2

(iii) For a; ¢ a, the projection Ca2 — Caz/cal has

right and left adjoints denoted Jj_, __ , Ja —a. respective-
2 71 2 "1-

ly. (]
our ﬁ(xy G), M(X, G) are I-stratified categories (with

M

coherent modules.

2 as above); same for the subcategories of monodromic,
In any I-stratified category C one has the standard devissa-
ge pattern. Namely, for s« ¢ I put C_  := Cz /C_ . where FUT RN

we will call this subquotient the o stratum. Then one has the

functors ji;,Ja37 c,— Cs right and left adjoint to the
. . -* ] -* . — -& L] —_
projection J,, : Cl — C - Since 3], J,.% 1, jd!— IdCd , one Jets

the natural morphism jJ, — ja» and we put Jj,,, := Im(j‘@—+ Jue)i

this functor transforms irreducibles to irreducibles. One has
Mx, 6), =MEx,, 6, M(X, 6, =MEX_, 6.

We will say that C is finite if any object of C has finite
length. The devissage shows that this is equivalent to the pro-
perty that objects of each C, have finite length.

We may sum up the above discussion, joining it with 1.4.2:

1.5.5. Lemma. (i) M(X, G) is I-stratified category. If we

’

then one has canonical equivalence

choose a point X € X, 1

de: M(X, G) = M(f, G‘x..-))' ,
.. . -~ ¥ m .
(ii) The categories M(X, G)coh’ M(X, G)coh are finite.

(iii) Each monodromic coherent GD§, G) -module is tame.
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(iv) For any irreducible (f, G(x ))—module V the d%y G) -
o
module j , (V) := j_, Ffl(V) is irreducible. This way the iso-
u bx oLl A,

morphism classes of irreducibles (DX, G)-modules become in 1-1

correspondence with pairs (o« , V ), where « ¢ Ix is an orbit,

g
an V is isomorphism class of irreducible (j, G

(xu))—modules.
(v) If X}gié’ , then any irreducible'x -monodromic (Di' G) -

module has geometric origin [5] (6.2.4). iJ
1.5.6. Remarks. (i) The modules jd!(V)“L§y7; Where 'V €

JA(f,(axﬁLare called !- and » - standard modules respectively.
(ii) If the embedding &, “— X 1is affine, then the func-

tors jd:’ jy s are exact. éﬁ/
(iii) Let dim ¢ I — % be a function such that LN S

«FRp = dimo ¢ dim B (4, B & I); e.g. dim« = dim Q« is such

a function on I, .. For n € Z put n := {a: dim«gn}e¢A . Then
X,G I
Cizi € C; and Cp/C— = d.@ C,
IMyg:nNn

(iv) If C is I-stratified category, then the dual category ¢°

is I-stratified by C;; the duality interchanges functors I

and ji*'

{(v) Let Ci' i=1, 2, be Ii—stratified categories. Let

g Il — 12 be a morphism of partially ordered sets and F : Cl —

—- G, is a functor. We will say that & is y -stratified func-

tcr if F(Cll) < C such F induces the functors Fd :

2Gw !
: Cla — ngm“, « € I; call Fd the « -stratum of F. Say that
F _s stratied equivalence if ¥ 1is isomorphism, F is equiva-

lence of categories and F(Cld) = ng%i) for any ¢ I. Clearly,

any stratified equivalence commutes with Jui  and  J.-
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§2. Localization construction

This § is a somewhat swollen review of localization
theory 31, (4], [19), (27], (29); it is also an attempt to fix
some topics skipped in these references.

2.1. Lﬂ-ﬂnodules. Let Lg be a complex semisimple Lie algeb-

ra. Denote by G the algebraic group of automorphisms of Y, so
G° is adjoint group, Yy = Lie G; the action of g ¢ G on Lg will
be denoted Adg. Let = u(Lg) be the universal enveloping al-
gebra, ZcC u¢@be the center, f be the Cartan algebra ong '

o % + e v T, +
Ac j’ be the root system, A be the positive roots,z;-Z(A )

be the set of simple roots, W be the Weyl group, © = L Z:V ;

2 -
for 4¢ /A let h_, be the corresponding coroot and q;g ddaLhe
corresponding reflection. So for any Borel subalgebra b Ciﬂ and
n =ng := [, b] we have canonical identification j = b/n in-
variant under Gc—conjugation, and 4 T are weights of f -action
(Nng/b _n* ). We will consider W as the group of affine
transformations of j* that leave -p fixed, hence W ¢ Aut S(f ).
One has Harish-Chandra isomorphism ¥ : £ % S(j)v% let y° =
: f* = Spec S(;f) —— Spec Z be the corresponding W -sheeted
map of spectra.

Denote by Lk:uu%)gg S(j ) the extended universal envelop-

ing algebra; then S\j ) is the center of U, the group W acts

* .
) Often they use (see e.g. [19], L27]) the opposite ordering
of A ; we choose the one for which a positive root corresponds to

a positive line bundle on flag space.
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on U (via S(§)), and U= u". The algebras ()

’

S(§), U carry
canonical involutions (antiautomorphisms of order 2), denoted

X — tx, compatible with standard embeddings: these are deter-
mined by properties tg = -qg, th = -2p(h) - h for gc¢ Cj‘”%&%)
u, klef ¢ S(f)c U; clearly t commutes with W action. De-
note by S(f )reg the localisation of S(# ) off the non-regular

reg

hyperplanes for W action{ so C-pointfof S(}) are regular

weightg; if A is any S('f)—algebra put areg := S(§ )reg(g A.

()

reg and t extends to U9, The group

In particular we have U
G acts on all above objects in a compatible way; the action on
f, A and W factors through the finite quotient G/G°, and the
action of G/Go on f is faithful.

Let M(y), M(U) be categories of left f{( ¢;)- and U-mo-
dules and M(ﬁ)f'g'c M(U) Dbe the subcategory of finitely ge-
nerated modules; we have also the categories '™ of right ones,

but one may identify Y with M in a canonical way using

* .
For Xe ; ,n=1, 2,..., one has the categories M(U)X’n,
lvl((?;)x.(,)()'n (see 1.1.2). The embedding i) <+~ U induces isomor-
. 05 o Y
phlsm1b@%(xhl = Uy, forany xe §° i if X is regular then

'u“ik(ﬂ),n = U."n for any n. Hence the corresponding functor

M(U)X,l —r M(Q)x(x)'l is equivalence of categories; in case of

regular"x the categories M(U)Xn and M(g&h,n are equivalent
! - y

for any n.

2.2. Flag variety. Let X = ch be the flag variety ofky ;
the points of X are Borel subalgebras of qy. For x ¢ X let
bX be the corresponding Borel subalgebra, Bxc; Go be the cor-

responding Borel subgroup, Ng:c BX be the maximal nilpotent
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sgbgroup, so Lie B, = b_, Lie N, = n_ = [bx, b, ] and $ =

= bx/nx. Put H := BX/Nx : this torus, the Cartan group of G ,
does not depends on the choice of x by the same reason as }
was, Lie H = f . The group G acts on X and on H, compatible
with above actions on Lie algebras; the action of GYon X is

transitive with the stabilizer of x ¢ X equal to B , so X =

_ AC
G /Bx.
Let X = ;°j be the enhanced flag variety (or "base affine
space") of G: its point X is pair (b, {ag} ), where b <!y

is a Borel subalgebra, and ag, ac Y (L)+), is a generator

of « -root subspace in Lg/bx. The groups G and H act on } from
the left according to formulas gx := (Adg(bx), {Adg(a“ '),
hx = (bx, {expci(h). adg ). One has ghx = Adg(h)gx in parti-

cular Gc commutes with H. The H-action is free, H\X = X, and

~

c . ~ B . .
G -action is transitive; for x e¢ X the stabiliser Gg equals

7]
to NX; so, as G x H -space, X is GO/Nx (with H-action

_ -1
h- (g mod Nx) = gh mod Nx).

~

We will consider X as H-monodromic G-variety (with the
compatibility morphism Ad : G — Aut H). Hence we get the al-
gebra ﬁx on X with G-action.’In partic:lar we have the Lie
algebras map ) Af —s—fjx, hence by un’j;ve;sality, the morphism
of algebras (g« f) =4 & S(¥) 5 ‘-5X‘ It is easy to see

that Q(Z@l) = ¢c (lejf(z)) for ZGZ , hence & factors

~ ~ . #
through the same-noted map & : U —+;DX. Also for X e j we
U

have §‘ 1= § mod m" : — 1 (x D ). Same way the
Xn ° X X.n Rt & 8¢
iﬁ)x—action mLéch defines & :'u(Uj)——-,-DX which factors through

a . i . 3 N 3 : . Q‘
o 'm9&10),1 Dyi this ¢ coincides with ¢ 0,1 under the
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identifications Dy =pxo1,u(§?),}(o) ,1 = Up,pr see 1.1.3 (iii),
Z.1. The algebra .‘SX carries a canonical involution t such
t is identity on (DX ¢ :BX and ¢ commutes with t's.

~

that
2.2.1. Remarks. (i) This © identifies 2 =D, with
Remarxs x0,1 = Px

with reversed multipzlication. This is just the

~

standard isomorphism [9]VI.3.
(ii) Consider the Lie algebra JJ 1= U @(Qx. on X with bra-

cket [gl;g fl’ gzefz] s= [gl, gz_]@flf2 - glszu.«uj(c_:;z)(fl)f2 +

I~

*923”’;3(91)“2) £, where gyevf , f.¢ O, . Put M :=
=Lf&l:‘3 P Y (x)en \/xé X} The morphism m"“i LSJ_...TX

extends by © -linearlty to surjective Lie algebra map ij —-'/J; with

kernel ﬁ Hence 5X is twisted universal enveloping algebra
of Gf/"ﬁ, see [3].

2.2.2. Lemma. For any S(f)—mo’dule V the arrow
®Id, : U@ V — ", ‘5X ® V) 1is isomorphism, and

S(§) S(y)

Hl(X, "'BX & V) = 0 for 4i>» 0O. In particular U = [ (X, ~BX) '
S(¢) v '

ern= " (x, pxx,n). 3

For the proof of the first statemcnt, based on Kostant's
theorem, see | 29]. The vanishing follo s similarly from Elkik's

theorem [14].

2.3. Localigation. Now 3 give rise to the adjoint S(f ) -
d
linear functors M(U) T~ M(X), o (V) =v@D,, I ™M:= X, M.
-d-’ [3 X

By restriction to the appropriate subcategories we get

.

£f L, ~ £ . dx.n,. reg __A,_y ~ re
M(U) Py M(X)T, M(U)'K ﬂli"‘ M(X) x.n’ M(U) A M(X)

Q
We may do the same for ¢ , and get the functors M(I%) — M(X)
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which coincide with ([;O 1/ " ). Same way arise the same=
4

0,1
noted functors between categories of right modules; one may
identify them with above ones using t. The functor A 1is right
exact and [ is left exact, so we have the corresponding de-
rived functors Lo, Ri". The functor R has finite cohomo-
logical dimension (equal to dim X) and one may easily see that
the same holds for L A, so we may use bounded derived catego-
ries. Note that Db M(U)f, Db‘M(U)’(;n are full subcategories

of Db(U). Now 2.2.2 implies in a moment (use free resolvents):

Corollary 2.3.1. One has Ri{'¢ LA = IdDeM(U)’

RI? e LA = Id ¢ : . d
) D U
Xln Kln M( )K]n
, o, . .

Recall that \ef is dominant if ( X +.P)(hx )¢ {—l,—2“..}
for any positive coroot hxe<f. We have the basic

2.3.2. Theorem [ 3], l4]. Let n =1, 2,...,% . Then

Dy.n

(1) If X is regular dominant, then .l\fl(U)7(,n y.m M(X))"n

are mutually inverse equivalences of categories.

/

d,
iy . . b s O
(ii) If 3\ is arbitrary regular, then D M(U)x,n R

Db 1\’\/1(X).)(,n are mutually inverse equivalences of categories. 0O
Remarks. (i) These equivalences in:-erchange coherent and
finitely generated modules.
(ii) In [3] (i) was proved for n = 1. The geaeral case
goes the same line: use 2.2.2 joined with’l\fX K,n—affinity of X,

~

which follows from D -affinity by obvious devissage.

X .\’l
Now the easy commutative algebra implies
La -
2.3.3. Corollary. Db.M(Ureg) R Db,M(x)reg‘ are mutual-

ly inverse equivalences of derived categories. O
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To reformulate 2.3.2 in more gec—atric terms, using the

ordinary Jp-modules only, consider the adjoint functors

4 ~ -~

M(U) B M(X) defined by formulas A (V) :=Ds @V = i AV,

~

U
(M) = Iq(ﬁ, M) = FfF.M (see 1.3. ). These functors inter-

’(—J
>l

~s
=

change S(f )-finite & 1 monodromic modules, hence for ')(ei*

—

*
X =X mod‘f z' Ve get the adjoint functors M(U) MCO

7-54—
Xon Lun xm'

a, I, = ”X = IW . We also have the correspond-

i

Ax’n = N

b LA!"‘ b ~ ~

ing derived functors D~ M(U) oF D” M(X): _. Since 7 °, 7,
"n—a—'—lL X'n x

N\ o~
are exact, one has L Axh= T Lo, RI? = Ri’Wk. Hence 2.3.2

joined with 1.3.1 (ii) implies

2.3.4. Corollary. If x is regular dominant then

dyon
= M(X) - are mutually inverse equivalences of ca-

X0 _xs {/n

tegories. Some holds for arbitrary regular X on derived cate-

M(U)

gory level. U

To formulate the localisation theorem in non-regular case
one should start with some preliminaries.

2.3.5. For any subset S c P (A'+) of simple roots let

WS ¢ W be the subgroup generated by S-reflections. For x ¢ X

let P B, ¢ P, ¢ Go, be the corre--sonding parabolic sub-

sx’ X Sx

group. Put P& = fPSX, PSX], Py 24, = Hg 1is the quoti-

ent of H by the subtorus HS generated by hE" ¢ € S. We have

SO

. . . ¢ e ¢ ~ -0
canonical fibrations X = G /Bx —— X, =G /PSx' X =G IN, —
§ o~ E""' o . .
— H\ X -—5--~-XS = G /P4 the space Xg is Hg-monodromic with

"T . o~ i _ R (S)
"S : XS —e»HS\XS- XS and carries G

¢ G is the subgroup that leaves S invariant. More generally, for

-action, where GoC G(S)

a subsets Sl < 52 of simple roots we have the projections
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r . X — X such that T r =T and r =
s,s, * s s, s,s,7s,;s, ~ 's,s, s

1 i
= r

S above; same for rg g - Consider the categories JVI(XS) 1=
< 1

1= M(DXS) r M(Xg

ces. The functors Ig : ﬁ(xs) — M(x), M(is)m — M, ...
futty

are*faithful embeddings and ﬁ(xs)x # 0 1iff X-p is Ws-fixed.

.. appear as Serre subcategories of

)m,..., that correspond to these monodromic spa-

. - ~ m
This way .M(XS), -M(XS) y .

the corresponding categories on X. Clearly ﬁ(x Yreos

SJ_) < M(XS,_

if Sl < S,- One may see that .F'I(XS) coincides with the subca-

tegory of D-modules with singular support in (conormal bundle
I*
to fibers of rs) X jchx;j* . This implies, according to

integrability of characteristic variety theorem, that ﬁ(XSL) Al

‘M(XSQ_) .M(Xslu Sn.) or .M(XS) = deS M(X{d} ). Same holds for M(XS).
Now define M(X)S to be the least Serre subcategory of ﬁ(x)
that contains all :l:"I(X{Ss ), £ e S; define the Serre subcatego-
. ¥, mS ~,m .S s . .
ries M(X) ¢ M(X) 7, M(X) ¢ ¢ M(X): etc. in a similar way.
X0 X/

So their objects are p-modules that admit a finite filtration
with subquotients in either of ﬁ(xm ), ¢ € S.
*
Say that a weight Xéf is good if the stabilizer ch W
of X is sz for some set Z)\ of simple roots. Any X is W-

conjugate to a good dominant weight.

. . : M. M(x _
2.3.6. Theorem. (i) If x is dominant then xon M(M‘x’,n
. - .
— M(U)x,n is exact functor and | '\Ax = ldM(U)?(.n . Hence
I identifies M(U) with the quotient category
on X0

~ A~ 8 ~ [o} .
M(X)X,n/M(X)X,n’ where ‘M(X)J(,n is Sfrre subcategory of modu

i K . I : X) = — M(U .
les killed by | X.n Same holds for | X ,n M(X)x,n M( )’(’n

‘. . . 2, © .S
(ii) If X is good dominant, n <2e, then M(X)i',n =M(X)7(,n'
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< .S -
= = . Li

.M(X),J(,n T-p M(X){fp,n where S ZK (for T_‘p see 1.3.1).
l_'

Part (i) was proven in [3] (there only was consider-

1,1

ed, but the statement for lﬂx n follows by devissage, and | veisicn
14

follows by 1.3.1 (ii)). For part (ii) see 2.7.3 below.

~

2.4. Harish-Chandra modules. Recall that a Harish-Chandra

pair consists of a Lie algebra lj and an algebraic group K to-
gether with embedding i : k := Lie K — 4 and a K-action on
Ly denoted by Ad : K — Autta . These i and Ad should be
compatible that is the two k-actions ontﬂ » the adjoint action
via 1 and Lie(Ad), coincide. Clearly Ad extends to the same
noted K—acﬁion on uALg) and, in case Ly is semisimple, to K=-ac-
tion on U.

A Harish-Chandra module, or ("¢ , K)-module, is a vector
spaceY;ith uig;)-action and algebraic K-action which are com-
patible in a sense that

(i) For ke K, ge 1Luﬁ), vV ¢ V one has k(gv) =
= AdK(g) k(v).

(ii) The k-actions on V that come from K- and ¢ -actions
coincide.

We may replace ﬁxqj) by d to get the definition of (U, K)-
module. Clearly (q, K)- and (U, K)-modules form abelian catego-
ries; denote them M(), K) ', M(U, K) respectively.
Note that the action of K on centers Z ’ S(j’) may be non-tri-
vial (certainly K acts via the finite quotient), and so we

: , . *
e 1n obvious notations. For X ¢ §

have M(U, K)f =_ﬂ M(U, K).
Xeadurge X

let Ky, K% K,C K, be the stabilizer of X . If Ve M(U, Ko r

X
where X = Ad K.Y , then we have U-modules decomposition
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v= &, V.. Clearly VX is KI -invariant subspace, hence

X.’cx
(U, KX y-module, and we get (cf. 1.3.5).

. s #* .

5.4.1. Lemma. For a K-orbit X 1in f and x¢X the
functor M(U, K%ou — M (U, Kx)v~ A VK , is equivalence
of categories. O

The similar fact holds for (¥, K)-modules. Hence the study
of Harish-Chandra modules with locally finite action of the cen-
ter reduces trivially to the study of (U, Kqu, -modules with

*
the K-fixed X ¢ f
It is easy to see that " and A extend in a moment to

the equivariant situation: one has the adjoint functors
A ~ %
M(U, K) 7~ M(X, K) and, for a K-fixed weight X ¢ # , the

corresponding AXW‘ , PX'” .

2.4.2. Corollary. If X is regular dominant weight, then

Oxn

M(U, K) Py M(X,

K), are equivalences of categories.
x,ne—‘_‘ ‘,n

L . . A . s
If X 1is good dominant weight, then X,n identifies M(U,K)\.,n

X

We will say that (¢}, K) is finite Harish-Chandra pair if

. ! s
with the guotient category M(X, K); /M(X, K)f§‘° B
. ’ )

K acts on X with finitely many orbits. Using 2.4.2 we may trans-
late the pattern from 1.5 to(ﬂ -modules to get (we use notations
from 1.5 with "G" replaced by "K"
2.4.3. Corollary. Assume that (Uj, K) is a finite pair. Then
(i) Any finitely generated Z -finite ((j, K)-module has
finite length and there are finitely many irreducibles for each
central character.

(ii) Let X be a good dominant weight. Then M(U, K)X n
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carries canonical IX K-stratification.
I

(iii) If x is regqular dominant then the strata M(U, K)X n «
4

are canonically equivalent to the categories &4(; r K

(X.L))X,n

(recall that x is a point on K-orbit Q4 , see 1.5).

o

(iv) If X 1is any good dominant weight, then M(U, K)
X0 a

is equivalent to the quotient of &l(f r K by the sub-

(x«))x,n

category M(§, K generated by those irreducibles V

)S
(%) "X/n
for which ?png,(V) comes from a certain quotient Xy,

fe S = ZX . [
2.4.4. Remark. In particular in situation (iii) above the

irreducible (U, K) -modules are (V), where V 1is irre-

jdir

ducible ( j, K(x ) -module, and we have the corresponding

o)

‘-and * - standard modules j,; (V), deV) with canonical mor-

phism jw(V) —h-j‘JV) with image (V). Note that jd!(V)

jd!k

(V) in M(U, K),,

is just the projective covering of Wi =

Jire
= lﬂ(ﬁ(X,,K)LL) . » and  J_,.(V)is the injective
envelope of i“*(V) in this subcategory. Now assume that X is
not integral weight. Then one may find another dominant weight

'X' W-conjugate to X i.e. such that ¥ (X) = 3’('x'). Via the

i

i 1 =M = M : -
equivalences ®M(U, KL‘ (q, K)ﬂl’ (U, K)X’ each irreduc

ible (q, K) -module gets two pairs of corresponding standard

J(x)
modules: from X - and X '-sides. These pairs coincide if K = N

(since they are just the Verma and dual to Verma modules, see
3.3); it is natural to suppose that this holds in any case but
I do not know the proof. 3

One may translate the geometric definition of M(J, K
4

183
¢ (xg) Y
iérzi , as follows. Assume that Ad(K) leaves*fixed, if not,

replace K by the stabilizer of §{ . Let E% 2 b = bX be the
&
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parabolic subgroup that corresponds to ¢ P! :=P., B 1.

put K_ . := aa~t
X,

(*) dim K . > dim XK A K_ . (in this case the diffe-
¢ b o X X, ¢

3 8 d

P{ . Assume that

rence between dimensions is 1)

o
:= image of (K N K in K .
g ( Xut ) b (Xa)

is a central subgroup in K

Put K It is

(x,¢ )

easy to see that K(Xdi) (xy )

. o} [»] € A .
Since Ad(dei) ¢ G one has Ad«sz ) Kx ) ¢ Bx_’ and

& A A

N

we have the character expg on (K )N K, , expg (k) :=
e Ko

:= exp § (Ad k mod Nx ). One may see that exp ¢ factors-

through its quotient K(Xdi )

Let V be an irreducible (f ,:K( ). -module. Consider

Xy )

the following condition

(**) The subgroup K acts on V via the cha-
z

(x,¢)
racter which is a square root of exp—lg

){ﬂ

2.4.5. Lemma. The module V belongs to M(f, K(x¢) X

iff (*). and (**)E hold. O
t
This way we arrive to a Langlands classification of irre-
ducible (La, K)-modules. Namely, fix a good dominant X . Then
for any K-orbit d4e Ly o and any irreducible (f K(Xx))x -mo-
dule V we have standard modules jd,(V), jt*(V) and the

irreducible module (V) = Im( j“,(V) — j‘*(V)). If

ja!r
X is regular, we get this way all the irreducible (¥, K) -
modules, each once. If X is arbitrary good dominant, then

for certain V's, namely, for such that (*)E’ (**% hold for

(V) equals to zero. To get the

some ¢ ezx , the module j“(“‘L

classification one has just to delete them from the classifica-

tion list.
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2.4.6. Here is another application of localisation func-
tion. First note the following fact. Assume we have a variety

X with a stratification {Q,} . Then the constant sheaf ¢

X
has an obvious filtration q>o c ¢>lc; ... with successive quo-
tients P /P, . = & i, (Cq, ) (here j, :Q, “>X is the

codim €,=1
embedding). Now assume that X and all Q.’s are smooth and Ju

are affine embeddings. Then C,[dim X], i, (€q )[dim Q ] are
X <! TR, o

perverse sheaves, and our (Cx[dim X],Qﬁ) ; considered as an

object of filtered derived category, is, from the perverse

point of view, just a complex of perverse sheaves ... —

— P/ [dim X - i] —»fPi_l/abi_z[dlm X -1+ 1] — ...

with stupid filtration. Hence it is just a resolvent of

Cx[dim X] in the category of perverse sheaves. We may trans-

late this to .D-modules by means of Riemann-Hilbert correspond-~-

ence to get the resolvent of (ﬁx with i's term @& Jur (0,)
codim =i

in fact, it is dual to Cousin resolvent.
Now, returning to representations, assume that our pair
(Cg, K) is finite and for each K-orbit Q the embedding Iy

is affine. The above construction gives us a canonical resol-

~

“.). The functor [, ,
24 X
where ’X is dominant integral, transforms it to the resolvent

vent of @>§ by standard modules g ¢

of finite dimensional q,—module by means of standard ones. If
K =N this is Bernstein-Gelfand-Gelfana resolvent; if K is
symmetric this is Gabber-Joseph resolvent [16) (see § 3 or 119}
for affinity of j4 ). |

2.4.7. The rest of the n° contains the construction of

Harish-Chandra derived categories. We follow closely the pat-
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tern of n 1.3. The constructions below are implicit in [13].
The subject will not be of much use for the sequel.

Let (Lj, K) is any Harish-Chandra pair (Lﬂ is arbitrary
Lie algebra). The definition of weak Harish-Chandra module co-
incides with that of usual Harish-Chandra module with gxiom

(ii) deleted (see the beginning of 2.4 above). Denote by

M, K)weak the corresponding abelian category. For a weak Ha-
rish-Chandra module V and ?_é k let % le Endcv be the ac-
tion of ¥ that comes from K-action on V, and % 261 Endcv be
the action of i(g)ecﬁ ; put W(?) = '§,l - ?2. Similarly

to 1.2.2 one has
(i) w ¢ k — End (V) 1is Lie algebras map that commutes
with adjoint K-action
(ii) V is usual Harish-Chandra module iff w = O.
Now define a Harish-Chandra complex to be a complex M® of
weak Harish-Chandra modules equipped with a family of operators
i i-1

i : M —— M ’ § ¢ k, such that i

§ 5

— i commutes with adjoint K-action i, i + i, i =0
¥ % ) ' % % 2 %1 ’

commute withtﬁ -action,

and di§ + i§d = W(g ). The cohomology spaces gl (M') are usual
Harish~-Chandra modules by (ii) above. Denote by C‘(ug,K) the
category of such complexes. One immediately gets the correspond-
ing homotopy category K'(L@,K) and, localising by H-quasiiso-
morphisms, the Harish-Chandra derived category D'Uﬁ,K). The

latter is t-category with core M(¢f, K) and cohomology func-

tor H. We will also use the corresponding categories

M(y ., K)ii,... of finite generated modules.
2.4.8. Let O, : C(y, K) = C (g, K, (= C Mg,
K)weak)) be the forgetting of 1§-act10n functor. It admits
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left and right adjoints Cy and Ck respectively which are
just the standard complexes for w-action: Ck(M') 1=

= U(k") x M7, Ck(M') := Hom (k)(uxz'), M*) (see 1.3.3 ).
LK) Uik
The corresponding functors between derived categories

pP(x, k) = P (&, K) will be denoted by the same lat-

weak

ters; the adjunction property remains valid.

The forgetting of K-action functor CDK : M(Yr, K)weak —
—_ M(%j) admits right adjoint functor Indweak' One has
Ind (V) := 0 (K)  V - the space of V-valued functions on
weak c

K, and thelﬂ - and K-action are defined by- formulas

L8 (£ @ vl (k) := £(k) 24, (g) (V), [((f @ V)] (k) :=
:= £(k{ )v (here fe (U (K); ve V; gey k,le K)

The adjunction maps: O, Ind — V is fevre= £f(1)v,

K weakV

M — Ind Ck M is m ++ (the function k +— km).

weak

The forgetting oftg -action functor Oqj:-M(%’, K)

4

weak

—~ M(K) admits left adjoint functor For a K-module

P L]
weak

(= vector space with algebraic K-action) S one has Pweak(s)
tJua) & s with.UJ- and K-action defined by formulas
Ly C . .

g(uc«s) = ‘q;u@s, k{ugs) = adk(u) < ks (here ?ecj, k € K,

u € U(Lg), S ¢ S); the adjunction maps P — M, S —

weakckgM

—_ O‘? Pweaks are ue@mr+~— um, s+~ 1@®s respectively.

The functors Ind P are exact and de-

weak’ OK’ weak '’ Oha
fine the same noted functors between derived categories.

k

The functor Ind := C Ind : C'(qj) — C'(Ly, K) 1is

weak

exact and right adjoint to the forgetting functor OKA := OKOA'

It transforms injective complexes to injective ones. Since

the adjunction map M® —- Imdqsr is embedding, one may use
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Ind for construction of injéctive resolvents of bounded be-

low Harish-Chandra complexes. Similarly the functor P :=

= Ck P C" (K) —F-C'(gy, K) is exact and left adjoint to

weak’

Ouj,\ := Ouy 0,. The adjunction map

,\M' - M" is sur}ective SO one may use resolvents of this

the forgetting functor

PO,

9

type to compute left derived functors.

2.4.9. Let M' ¢ Cb(q1, K) be a finite complex of finitely

generated modules, and N € C+(q;, K) be any bounded below comp-

lex. Consider the complex ofLy ~maps Homé,(M’, N). It has ob-

vious adjoint K-action and the action of operators i, (for

g

§ € Hom one has ig(q ) = ig‘f— ¢ i‘), which means that
Hom® is a functor with values in C+(BK) r= C+(point, K) (see
1.3).

Consider the derived functor R Hmn% : Db(Lﬁ, K)fg X
D+(c§, K) —+ D+(BK). It may be computed by localisation of
Hom® by either of the variables, i.e. one may use either in-

jective resolvents (contructed by means of Ind) for N or pro-

jective resolvents (produced by P) of M. Namely, for

b fqg . _ Ak * .
S € C7(K) the functor HomLa(P(S), ‘) =C(- @ S ) 1is
'
exact, and for an injective complex 1I° ¢ c*}cg) the functor
. * _ * .
Hom\% (*, Ind I) IncIBK(Hom“,“,(O'M , I)) is also exact, hence

R H P(S), -)
om\%(()

= Homlg(*, Ind I).

Hom _(P(S), *), R Hom", (*, Ind I)
3 “3

One has Hom M, N) = [T (B Hom:g(M; N))

c* (g, K) ¢
Homc,(BK)(C, Homkg(M, N)), which gives the morphism
R Hom{(M", N*) — Rl"(BK, R Homla(M, N)).

2.4.10. Lemma. (i) This arrow is isomorphism.

(ii) A natural morphism O R Hom (M} N) —
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— R Hom(qu', q“N') is isomorphism.

2.4.11. Corollary. For (Lﬁ' K) ~-modules M, N one has ca-

nonical spectral sequence that converges to Extnb (M, N)
D™ (g ,K)

with second term EP’Y = HP(B ' Ext9 (M, N)); here

2 K b
D™ (y)
Extqb (M, N) are considered as K/K° -modules by means of
D™ (y)
adjoint action of K.
Proof (i) follows since Homlg(M, *) transforms injective

complex Ind I to injective BK—complex (see above formula).
As for (ii) it suffice to verify it on generators M = P(S),
where S is finite dimensional K-module, and here it is clear. J
2.4.12. If Lﬁ is semisimple, then the functors F’, a
interchange the K-equivariant 5X-complexes and equivariant
Harish-Chandra complexes. If we bound ourselves with regular
central characters the corresponding derived functors are equi-
valences of equivariant derived categories. This follows, say,

from 2.3.3, 2.4.11 and the final lines of 1.3.

2.5. Lie algebra homology. Let M be a right.ﬁx—module,

and N be a left one. Then M@ N has rightjﬁx-module struc-

. Ox
ture (the element Te izx acts by the rule (m e n)T =
=EmMmT8Nn-—meTn . ), hence M@®N := M g N =
QGSQ)
=M@ N/(MQ N)f is right Py-module. Clearly M@ N coin-
@x wx .DX

cides with g‘x coinvariants on M ON. Note that if
R 4 ~0 . .
Me¢ .M(X)'X’N r N & M(X) X,© ' then 7T (M®@N) is the maximal
quotient of #°M @ ¥ °N that belongs to ° TM(X)
ey L
Consider now the derived bifunctions c : D_Hﬁ(X) X
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- A B A L -~ - A
D™ M(X) — D TM(X), ® :D rM(X)_K,n x 0” deoy

—~ D IM(X).
5.5.1. Lemma. For A € D 'M(U), B €& D M(U) one has ca-

nonical isomorphisms

L L L
A®B=Rl"(X, (LAA)@(LAB))=I(LAA)G)(LL\B)
U 2z, X
where ,r : D FM(X) — D Vect is direct image to the point

X

functor. Same holds if one replaces U by U ’ by

X.,n

Proof. The second isomorphism follows from the definition

of i . The first one comes from the obvious arrow A @ B —

. U
— [ (X, 2A $aB). If both A, B are free, then, by 2.2.2,
P L
this arrow is isomorphism. In this case also A = LL&,4§ = %
R X

and " = RI” (see 2.2.2). Now use a free resolvent: to end
up with 2.5.1. 3

2.5.2. Corollary. (i) For A € D "M(U), , B¢ DM (U)yeo

one has
L ~ ~ ~ . " L ~
A@B =R, (L& A)Q® (Lo B))=SLA AQ@ LA B
v 2 X %

(ii) For B ¢ M(U) one has Hi(k%, B) =

0,»

_ ,=i+dim X g ~ 2
= H ~LAB-detj

Proof (i) is 2.5.1 joined with the following easy local

- ~ - L
formula: for Mé D r.M(X)k v ! Ne¢ D M(X),Pone has M 6 N =
- ~ L ~ L . .
= R +( 7'M@® W °N); here, again,’ @ + is right ;Dsz-module,
] O

X
see [9] VI 3.4.

(ii) is (i) applied to A = € with trivial right g;f -
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action: note that E(AJ = in-detf [dim x]. O

2.5.3. We will need a variant of 2.5.1 for an action of
correspondences. If Al, A2 are C~algebras denote by M(Al— A2)
. . _ c
the category of Al— A2-b1modules, i.e. .M(Al- A2) := M(AI%AZ)’
where Ag is A2 with reversed multiplication. One has bi-

functor C @ - :‘M(Al— Az)x M(Az) — M(A,) and the correspond-

Al L 1
ing derived functor -&-: : D M(A;- A)) x DM(A,) — D~ M(A);
A,
- - L
for Fe D M(Al- A2), Mé€& D M(Az) put F(M) := F @ M. Simi-

larly, for good algebras Ai on varieties Xi we have the cate-

< (-]
gory M(A;- Ay) = M(A; B A, ) of A Ajy-modules on X x X,.

Now let X = Xuj' and p;: Xx X — X be projections. We have

the exact functor Py * DM(ﬁX - Py) — DMCﬁX) (the integra-
tion along the second variable, defined just as for usual D-
modules), and the bifunctor & : DTM(ﬁX - ﬁx)“ DTMQBX) —

— D_'M(ﬁX - DX) : the derived functor for F, M — F & M.
5 Sy SM§)
Denote by (F, M) — F(M) := P, (F @ M) the composition of
these functors.
The localisation functor obviously extends to bimodules:

one has the functors & : M(U - U) — M(ﬁx - px),

LA :D M({U-=-U) — D M(ﬁx - Py), and the
2.5.4. Lemma. For F e D M(., - U), Bé€ D M(U) one has

LAF(B) = La(F)(L A (B), F@B =RIL A F L (B))]

The proof is similar to 2.5.1l. Just as in 2.5.1 we have

the obvious variant of 2.5.4 for UX"-modules ( for

F¢ DM(D ), M e DM(D ) we put F (M) :=

Xy PXq,n X x.n

= p (F{@L M),...)

i~
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2.6. Verma modules and equivariant correspondences. For

a point x € X and w € W consider the universal left and

right Verma modules Mi’ er normalized as follows. The mo-

dule M; € M(U) 1is generated by a vector |[vac) ¢ M; sub-

LE)) vaey ,

ject to only relation b | vac) (Zp(E) + W

where b ¢ bX ¢ < Uand b :=Db mod n, € fc S(f)c U. si-

milarly er € PM(U) is generated by <vacj| ¢ rM; such that
vacti b = ac) w 1(B). The module M; is just Mi with U-
r..x

action turned by w € Aut U, same holds for Mw; the involu-

X
tion T of U transforms T'M* to M .-For X&é§ put M~ =
W W wx,n

n

l" One knows that X 1is do-

r )(. . = th /er m
WX)“ W \"

X o £
Mw/m)(mw‘
minant iff Mf(l is irreducible.

Let A be an U.module. Then the homology Hi(nx’ A) car-
ries 2 natural actions of j : the first one is the natural ac-

tion of bx/nx (since bx is normalizer of nx), the second

one comes from jc.center U —— End A. If A 1is an Ureg—mo—
i,r.x & .
dule then H™( M, @ A) is the component of H"i( n
v
which the first action coincides with the second one turned

< A) on

by w; according to Casselman-Osborne theorem (see e.g. {34])

s L

one has H .(n_, A) = & H " (*M* @ 1). The similar fact
-t x weW v
(%

holds if one replaces A by right U-module and rM; by M;.
In fact Verma modules are Harish-Chandra modules with
respect to Nx' The orbits of Nx on X are in 1-1 correspond-

ence with elements of Weyl group: IXN is W with Bruhat or-

T X th

dering. For we W let jw : Qw = wax = X be the w

Schubert cell, Xw = Qw be its closure.
2.6.1. Lemma. (i) L a (M;) is a single.ﬁx—module (i.e.

H'L A (M;) =0 for i # O) supported on iw' Same holds for
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rM;, mx o, T
XN Wy, n
(1i) If X is regular dominant then a MJ( nisfustandard

~ . . X o
(Dy,ns N)-module for the orbit Qw’ namely A M win " Jwg(s(i)/

n . . . . X _
/ my ). If X 1is regular antidominant, then A wa n =

L(S(F)/ mp ).

(iii) If A is a left U-module then one has canonical

L L
isomorphisms Enm* K A=@,‘/m‘®LAA= j/_\( M) LaA =

1 X
= i, LA A [dim X], where X ¢ X 1is any p01nt over X.

X
Sketch of the proof. (i) Consider the morphism of algeb-

ras ¢ : u(bx) ——-5X defined by formula g;(b) = 3(b -w—ldb)
for b ¢ bx (here w-l(B)Gf c 6). Let € be a trivial bx—

~ L

module; one has L 4 (M;) =D, & €. So it suffice to show
14ib,)

that Hi(bx,.ﬁx) =0 for i» O and Ho(bx,fﬁx) is supported

on Xw' Consider canonical filtrations on u(bx) andiﬁx,
and the corresponding morphism of graded commutative algebras

gry : S‘(bx) — gr'D An easy local calculations shows

X.
that Tor? (b*)(c, gr‘BX) =0 for 1i-> 0O and TorS (b )(c
gr DX) = gr DX/bx gr DX is supp?rted on Xw. This implies
the desired fact for HiKbx,,bx)(say by a spectral sequence
that relates this groups).

(ii) If ¥ 1is dominant, then M& , 1s projective ob-

I\,

ject in M(U, N ) (since X is the lowest weight on this

Xn

subcategory), hence is !-standard. The second statement is

equivalent to the following: if X 1s regular dominant, then

A (rMx = (S(f )/ mi ). This is equivalent to the fact

that w A van~ O for any w'¢ w, or, equivalently, that
- b

SAYM‘,"QA = 0 for any A ¢ DM(X, N,) supported on X_~ Q

X
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It suffice to consider only the generating objects, namely

. L
- X 1 X . .
A= qugn’ w' <« w. Then S Mw&,ncj qu,n is weight W
‘ . I
part of H, ( n. Mw@un) which is zero.
(iii) follows from 2.5.1. U

Now consider the Harish-Chandra pair ((axL%, Gc) with

i:9 = Lie Gc<—~ujﬁuj the diagonal embedding and adjoint ac-

i x (3 = ; 82 X =~2 i =~2
tion (Ad, Ad). One has U(ys{y) =U"" Xy = X7y j%‘q §

etc. We have the categories ﬁ(Xz) and so on. This Ha-

Lo a2

rish-Chandra pair is finite; its orbits Yw, W ¢ W, are number-

ed by elements of Weyl group with Bruhat ordering. According

ﬁ(Xz, G) are non=

to 2.43the categories M(Uu®, d3 -

T O
) *
zero iff Y, - wX, ¢ f g for some w ¢ W.

The (({}x(.ﬁ ’ Gc) -modules are almost the same as (UJ , N)-
modules. One may see this using p-modules as follows. For a

point §OE X, X, = ﬁ'(§o) ¢ X consider the subvarieties
X = X* {iolc XxH =X xﬂ'_l(xo) of X X: the first one is

H-monodromic, the second one is Hx H-monodromic. Clearly X

is N. —-invariant, X« H is B -invariant, and iz = G x i =

\(;‘u N:/V_(o'rs;p,"__) ~
= Gi%(xx H)" Hence, by 1.2 (ii) we have canonical equivalen-

ces of categories M(iz, é3m = M(i, N )m = M(Xx H, B )m.

Using 1.3.1 we may reformulate these equivalences in the

language of D * D-modules. Namely, for xl,xléj* put Wes =
LAY
) (Xa®

{eow be the Serre
L'

subcategory of M(X, N ){ " generated by irreducibles sup-

)

(we Wr wxy, ~Xp€ § ;} and let M(X, N

ported at Schubert cells Xw S for we (it coin-

V5K
~ *
cides with the whole M(X, N )7(1,"' if 7(1 - X 2 € fz) . Then

<

one has canonical equivalence of categories ﬁ(xz, G)
(Xa)
ltth

Lo Ya2° =

= M(X, N ) that transforms to the above equivalence via
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the functor 7.

2.6.2. At this point we may explain another equivalence,
namely the one between Bernstein-Gelfand-Gelfand category (@ [*#]
and (¢, N)-modules; this n® will not be used in a sequel. Let
Xl' X 2 € ;; * be regular dominant weights such that )(l -X 5 €
i;. Then the equivalence 2.6.1 joined with 2.4.2 gives rise

to canonical equivalence .M(UG‘, dh@ﬂlpw = M(U, N ) (in

X1
fact, we may assume there that X is good dminant only). Now

let us interchange the multiples, and consider the equivalence

of categories M(HX X, B )ff°iﬁ" = M(X, N_-);zm . It corres-

ponds to the equivalence of categories M(U({H@), B )K”X°f
¢ 3

= M(U, N ) which is just the the forgetting functor for

X2
the obvious embedding U ¢ u(fxtj). Note that this equiva-

lence transforms the subcategory M(U”§Xﬁ), B ) just to

Al X&\°°
(gj, N )-modules which are diagonalisable with respect to the

action of a Cartan subalgebra of b)< , i.e. to Bernstein-
0

Gelfand-Gelfand category (9 . The composition of this with pre-

. . _ 22 0 _
vious equivalences M(U, N Hui = M(U ’(;&ufh?

= M(U’fx(ﬁ ), B")xleﬂbis candnical equivalence between
M(U, N ), ., and (O, .
(O N 20d G
2.6.3. We may use the above equivalences in.Dx—bimodules

case, since t along the second variable identifies them with

.:,DXx x-modules. Hence one .ias the equivalence M(J)X - ;DX,C: )XL," )
=,M(x, N. ){}f . It transforms the correspondence F
to Cﬁx, N)-module F(&§ ), where S' = Ao M¥* is a universal
Xo Xo i

5X-module supported at X We will denote the inverse equi-

(Xa) (
valence M +—- [M]XL, S0 [M]xa (8; ) = M. The point is that the
(<]

total functor F is completely determined by the single value
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2.6.4. Remarks. (i) If F ¢ D Mtﬁx- ﬁx) is a complex with
G-equivariant cohomology, then F is a single '5X—‘ﬁx-bimodule
iff F(Sxo) ¢ M(x) ¢ D M(X).

(ii) Usually one encodters with functors with values in

aﬁ(xxba, (instead of M(X) n finite, as above) that come as

Xrn’
N PSRN 7 ~ Kt ~ .
follows. Put M(X)i 1= Eip M(X)Xm , where .M(X)Ln c M(X)Ln is

the subcategory of S(f )/m? -flat modules, and %&9 is taken

L and

—M = M /miTiM, €

with respect to M e M .
” h X,n-4

X,n
similarly one defines M(U)i etc. Then any object F of
NN o~’\ . . : : 8 o D oy =

M(.’DX ;DX, G )hi\z. (which coincides with .M(DX ‘DX’ G )m Xe,00
- =< _ R c . . -~ L
= M(‘DX Pyr G )h»")’(\z,) defines the exact functor F : D M(X)h‘w
- D_M(X)h}” (by the formula from 2.5.3). 3

Let us consider the basic examples of functors that come

from equivariant correspondences (see 4] for details).

(i) Translation functor. It was defined in 1.3.1; namely,

for any qe;fz we have canonical autoequivalence T? : ﬁ(x) —

- M(X), T QIVI(X)x ) = ﬁ(x) It comes from the correspond-

5 X4
ence supported on the diagonal. The corresponding functor for
representations is coqigent éontinuation functor. Recall its
construction (see [8]5(134] for details). Take an irreducible
finite dimensional representation Vi with boundary weight ¢ .
For X ¢ 5* the coherent continuation functopr *&“%X :Mu?vae—_

— M(l.f})a,nv_‘f)’o¢= transforms L%—module P to Yy (\+\3';)—component of

vV, & P.
b
2.6.5. Lemma. If both X ; X+y are dominant and X is
regular (so M(tg)‘moa° = 'M(U)x,-x) then
[l

‘"YTT B l\};xrif)x P\‘
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Proof. Consider the sheaf V? & @X equipped with obvi-
) C .
ous Ggaction. It admits a Giinvariant filtration F?! such that

F./F,_; are line bundles ifgi, {$;4 1is the set of weights of

Vf' For a Lij)(.n‘module M the sheaf V‘f’ % M= (ng Q@ C X) gx M
is ;5 -module filtered by F, & M, the successive quotients

wx

are ﬁxﬂhm-—modules T‘J"; (M) . Hence V"v ® M as Z -module is sup-
ported at {X (X*fin C Spec Z,. The condition of lemma impli-

es that Tv_?(M) splits off as Y (X+y)-component of V* @ M.
: C

Since ( (X, V,? €& M) = Vif ® ["(M), we are done. 0O

£
(ii) Inteﬁﬁining functors. The action of we¢ W on U

defines an obvious autoequivalence of M(U) which transforms

M(U)K to M(U)wx , M&, to M;w,. It comes from U- U -bimodule

Uy which is U with bimodule structure given by formula
aru-‘b :=w(a)ub. Its localised version is L‘A(Uw) € DTMCﬁX-

—(ﬁx) which transforms Db.l?li(X))(,'1 to Dpﬁ(x)wx“. In fact 2.6.1,

. _ ~ O e, . .
2.6.4 imply that L a Uw = A Uw € M(DX Dys G ) is a single

bimodule supported on Yw.
Here is a geometric version for these correspondences.
First let us construct the monodromic data over Yw. Namely,

assume we have fixed a type of Chevalley basis. Say that

~

~ .~ ~ - &« . . . .
xl,x2 € X, xi = (bi ’ {ai} ) are in relative position w

if (%9, %,) ¢ Y, and for some (or any) Cartan subalgebra iu

A %
C er\ b2 the elements ar s a, of root spaces of 1, 3re

a part of certain common Chevalley basis of Cy (with respect
to ;12) of the type we fixed. It is easy to see that the space

Yw of such pairs is H-monodromic over Yw with H-action given

by formula h(§l, §2) = ((w h)il,kiz). If we change the type
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of basis, then Yw will change into (¢, l)§w<: i}*i, where
¢¢ H is certain element of order 2. Hence the catégory
ﬁ(Yw) actually does not depends on the type of basis.

Consider the H-monodromic projections §wl : Yw — X.
52 : DP(X™ — p2 (™.

They define the functor w,_ := P wa

x Win

It is easy to see that it transforms coherent modules to cohe-

o= [~ ~=~ ~°'
rent ones, hence we have the functor W os DX w’Dx pwijpwz.

: Db(i’)m — Db(i)m. Note that these functors actually does
wheve

not depend on the'‘choice of type of Chevalley basis (since they

differ by H-translation, and we considef monodromic modules) .

2.6.6, Lemma. (i) If C(w) = f(wl) + C(wz), then w, =
= Wiy Wo ot wz = wl! Wyt -
. . -1 _ -1 -
(ii) w:(w L_ = (w h_w! = IdDb(i)m

(iii) If X 1is dominant, then the following diagram of

functors commutes

o W . W .
Db(x)m ! Db(X)m . Db(x)m
i - -
~ . AU'W ~ AU b ~ v
DbM(X)w_txln———— Db\M(X)lm o° f00,,, a

( (i) is immediate, (ii) follows from (i) and an easy calcula-
tion for a simple reflection, (iii) follows from 2.6.1 (ii)).

In particular (i), (ii) imply that w,, w, define the
action of the braid group on o2 (X)™.

The next important example is

2.7. Wall crossing (see e.g. [15],([34]). Let S ¢ 2_(A43

be a set of simple roots and ‘Kéf* be a weight with WK = Wg-

Let ¢ be a positive integral weight (say, § = p) s sO Vo=
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:= X +§ 1is regular dominant. Consider the commutative diag-

ram of exact functors

~ 'T:.y ~ AWV;( ~
M(X)V,ov p— M(X)q(,go M(X)
|ﬂl§ I-'l ‘ﬂls
\K(,\’ kf/v,[
O My M0
Here the left square is 2.6.5, and A:;Vﬂ(:= Ay Yoy )7 . In

fact, &\/—\,‘,,( is an equivariant correspondence, A¢',\é M(ﬁx -
Dy G) . To see this, consider theu(j)-U’(m—blmodule V? & U,(m
(the bimodule structure is g(ve({ )u := gvelu + vegtu,

g e cg N Ux,n) . Let \1/\,-',(‘" be the Yy (v )-component of

V; 8 Uy, with respect to left # -action; this isu(%‘ - U

i X gl -

bimodule, hence U, - -bimodule (since v is regular). We

Uy
get an object \I’v,\:= ];E.“ L,v\;')(’n(;.l"l(U\,,,‘,— U;\ ). By 2.5.5 the
functor A\yu above comes from the complex Low‘,"‘ € D .M(DX— DX).
By 2.6.4 (1) Loy,  is a single bimodule: Loy, = &, ¢

;Y v A Y

M(T =B, 6%055

The functor Rg :=\1/vm\}«’x,\; : M(U)v,w — M(U),,, is S-reflec-

tion functor; this a projective functor [8]. It comes from the

same-noted Us; - U; =-bimodule R and L A(RS) = A (RS) defines

Sl
the functor A';v KT—:f' We will look at Rg through the equiva-

- Xa,__ : Xo n
lence 2.6.3. Denote byMwG'MNg" Ll—l'_n Mw/ m

, € M(U, N )Q the uni-

versal Verma module with weight in formal neighbourhood of v .

o, o \ ,
2.7.1. Lemma. Rg(My5) = [T (a (Rg) (éx&:,)) has a filtration
FP ¢ F ¢ ...CPF = F, terms numbered by the elements of
w, Wy w,
WS (so n = IWS| ), such that
(i) Fwi /F, ~ 1s isomorphic to M. a

2-1 H
(ii) If W < W by Bruhat order, then Fw > F_ .

@ &

b
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Proof.
One
has \(xN(Mi $) = My hence RS(M1$) is ¥ (v )-component of
fog Mii' Consider any Bx -filtration fPlC .. CcPdim VQ =

= V? on V? with l-dimensional successive quotients; denote

by ¢ i the weight of ch]/4>i-l' so Y dim Vg = 4% . The filtra-

—~

tion < ;1= 1’/(‘*‘:})'("’1 & (vacuum vector)) on L{j -module V\j’® Mu‘(
has successive quotients isomorphic to(@ -modules Mii:?i' It
is easy to see such a quotient is supported at Y (v) (with
respect to'E.-action) iff 351 is weight Ws—conjugate toy

ie. ¥y, +tX¢ Wg(y§y+y). Our filtration is the one induced

by ¢ ; : namely F = q>j N Rg(My) where w (y+X) = Y +X .

Clearly it has properties (i), (ii) above. O

2.7.2. Remarks. (i) The functor RS is not S(j')—linear,

though is linear with respect to subring of WS—invariant func-
tions (translated by v ). In particular, RS(MrH) does not be-

longs to M(U, N )vf

(ii) According to 2.6.3, 2.7.1 implies that ;,(RS)E

~ ~ P
M(DX— DX’ G%c has a filtration with successive quotients

. (M
isomorphic to LA ch] ; W € WS' whiclh is a !=standard module

for Gtorbit Yw.

(iii) Clearly 2.7.1 remains valid if we replace Mlg by

M]_V,n ) ch by va,n *

2.7.3. Proof of 2.3.6 (iii). The statements for M(X)

and M(i) are equivalent; we will prove ﬁ(X)-version. Put

_ ~ 20 NS o
An := Tp M(X&J1 ' Bn := M(X)Wn where ¥ = X +p . These are
Serre subcategories of ﬁ(X)Vn; our aim is to show that An = B,

(i) Let us prove that A > B_ . It suffice to show r1TTP
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{5%

sir S € S. But the sheaf @.X(-P) is isomor-

vanishes on ~ﬁ(x)

phic to O (-1) along each fiber of projection 7, : X — X

sy 8}

- n (- o =
X{_S;nodule N one has [ (X, LX( P) € %}}h) 0,

Hence for any (¥
and we are done.

(ii) Let va be the irreducible quotient of M

ww1~Then

~ S . . ~ (s}
43(va)6 ;M(X)\,_,L if we W w# 1l (in fact, a (Lwa) ¢ M(X)v

SI
if 8(dsw)< £ (w)).

(iii) For w e WS le(

plicity one. To see this note that by (7] it siffice to

= Mlv#)occurs in M with multi-

find a projective object P of category O that maps onto

L and contains each Mw W ¢ WS’ with multiplicity one.

1

To cc struct P choose a dominant weight M such that v - m

v, i

is integral and ert= Llr is projective (it means, also, say,
by 3] ", that the values of M+p on each coroot are either

O or non-integral). Then P = V¥

i\"P(l.,'ilr) is also projective,

and it has the desired properties by 2.7.1, 2.7.2 (iii) (in
fact, P is projective covering of LLV).

(iv) For w & W, consider a (unique) embedding Ml“1=

S

. Cs s ~ S
= L, . C ngr Then, by (ii), (iii), one has & (Mwu/Mhu)e M(Xx“.

1y
Hence, by 2.6.3 for any I ¢ ﬁ(XLA_ the induced morphism I =
= [A‘lejv)( I) —~ [Mwmif”( I) is isomorphism in the quoti-
ent category Db(ﬁ(xb /ﬁ(xxf ).

(v) It remains to show that An_c Bn’ We may assume that
n=1 (since n £ ).

Take a module I ¢ ﬁ(x)wf By 2.7.2 (ii), 2.7.3 (iv)
(a RS“I), considered as object of ‘ﬁ(x)wm/Bm (for some m), has

a filtration of lf#ngth H~§[ with successive quotients isomor-

phic to I. If I ¢ A then U&RSKI) = 0, hence I = 0 modulo

l’
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Bm, and we are done. &

2.8. Vogan's conjecture. Consider the case when S re-

duces to a single element « . The short exact sequence O —

— Mgy R{ai(Ml#) — M,y O (see 2.7.1) and O — Mlvl——
— Mo;%l — dev — 0 define a complex O — M;,;— Rm(Ml“)
— Mlv1—+ O with only cohomology equal to Lov . By 2.6.3

i

t a complex of exact functor Id~ — 4R, — Id-~
we ge plex e t functors 8 (x),, ) QMOO%i

on .ﬁ(x)viwith values in <ﬁ(x)*2, and the similar complex for

Lj -modules IQM(UNA.—— RM — IdM(ULJ' For any complex M %
of ,5XVi—modules the complex associated with the bicomplex |

M — AR{“(M‘) — M° is canonically isomorphic to

Lo 1% ) in D° M(x Th i i £
[A qgj(u ( in { Lﬂ . e geometric version of the
above is as follows. Let H"c H be the subtorus generated by
coroot Ld » H, = H/Hd. We have the proper map f; tHAOX —
—v-i; of H*-monodromic spaces (see 2.3.5). Since v takes

integral value on the coroot Lh , we have e ﬁ(x)vxc M(wﬂf)m

C M(X)m, and there is commutative diagram of functors

Tus T4 b

DP M(HAX)™ — D° M(HNK )
T ﬁ. [ ](w ‘%~
- ALe v |, o~
Db -M(X)“ [$9] DO M(X)v)i

Now assume that Vv is rational weight, and (La, K) is
any finite Harish-Chandra pair. Then, by 1.4.4 (v), for any
irreducible (U, K),6 -module V the Di-module A (V) =‘ﬁ‘A (V)
is irreducible ;Dx—module of geometric origin. Hence decompo-

sition theorem implies that r*'qf A (V) has semisimple coho-

~

mologies. Now r

, translates everything back to Uj -modules,

and we get
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2.8.1. Corollary. The complex V —- (V) — V has se-

R{“i
misimple cohomology. O

When (9, K) is symmetric this is just the basic Vogan's
conjecture that keeps his Kazhdan-Lusztig algorithm going. No-
te that we prove 2.8.1 assuming that V 1is rational. Perhaps

2.8.1 for arbitrary v may be deduced from rational case by

some formal algebraic arguments.

§3. Symmetric pairs

In this § we give some preliminaries necessary for the
construction of Jantzen filtration; the lengthy n° 3.3 is
needed for the comparison of definitions of § 4 with classi-
cal Jantzen ones and may be omitted.

3.1. Admissible orbits. Let X be an H-monodromic K-

variety. For x ¢ X consider the pair (%, (see 1.5.1).

K(X))

* ‘ » .
Put 4§ ) := {QQf: Ady (¥) =¢, Y (2k,)) = Oj (thfs? are just

(x})

the morphisms of (f, K(x)) to the trivial Harish-Chandra pair
o * £ _ *

(c, {1} ), jz(ﬂ := {2 A f () . Clearly one has j(kx) =

= Adk( fﬁx)) for k ¢ K. So we may us= Adk to identify cano-

nically f‘u) with x 1in a fixed orbit Q , denote this group

-;QQ), same for f;(Q). It is easy to see that tyé:f%
belongs to f;(x) iff there exists a non-zero K-invariant
function £, on Q =¥ ' such that f?(h'i) = (expy) (D) £(X)
for X ¢ ﬁ'-l(x). Such f? is determined by ¢ wuniquely up
to multiplication by non-zero constant. Say that fy is Q-

regular if ftfé ©WQ) ¢ 0w S . C s fy,



-55-

- *x - -

is Q-invertible if f? e @ (Q); and fy is Q-positive if ff
- - - L35 -

is O-regular and f?l(O) = 3~0Q. Put  £37Q) =} 9e §, (@

P £, s G-invertible }, $:7(Q) = {g¢ {, (@ : £, is O-posi-
tive}.

3.1.1. Definition. (i) An orbit Q is admissible if

j;QQ) is not empty.
(ii) The K-action on X is admissible if it has finitely
many orbits on X and any orbit is admissible. U1

3.1.2. Lemma. (i) For any admissible orbit Q the embed-

g
(JCa X
—_—

a4
dings Q X)are affine.
*

7 (@, and {5 @/ @

(ii) ~§;C(Q) is the subgroup of §
has no torsion.

(iii) If Q is admissible, then fér(Q) is a subsemi-
group of };(Q) that generates fg(Q) and invariant under
j}%Q)-translations. If ¢ € 52 (Q) and ncfe-j;+(Q) for cer-
tain n» O, then Ye¢ f;* (Q) . The quotient §;TQ)/§;O(Q) is
isomorphic to Zi.

(iv) An orbit is admissible iff (some, or any) its connec-
ted component is admissible with respect to K°-action. Hence a
K-action is admissible iff such is k“-action.

(v) Assume we are in the induced situation, i.e. we have

K' ¢ K, a monodromic K'=-space X' and X = K = X! (see 1.2.5).
KI

Let Q' be a K'-orbit in X', Q = KQ' ¢ X. Then j;am=f£(@9, same
for f‘o,j*+. Hence X' is admissible K'-variety iff such is
K-variety X. 0O

3.2. Case of a flag variety. Assume we are in a situa-

Y 15 Semiscmple,
tion 2.4 , so (Y, K) is a Harish-Chandra pair) say that (¢, K)

~

is admissible if such is K-action on X% .
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3.2.1. Lemma. The pair (gj, N), where N is maximal nilpo-
tent subgroup, is admissible.
Proof. Consider Schubert cell Q ., we¢ W. Let j-% be
the cone of pdsitive regular integral characters. We will see
that for any w ¢ W one has 2+(Qw) > p o+ j;’, hence Q, is

admissible. For y¢ p + j;* take an irreducible GZmodule V

with highest weight Y ; let v ¢ VN“{ O} be a lowest weight

vector. Consider the map @V_: X = G?N —= V ~ {0}, qv(g) = gv.
*

So if {«V is a linear function on V, then g, is a x -

- *
homogenuous function on X. Choose (€ V such that [ (wv) # 0,
{ (ntwv) = O (here N = Lie N). One has wv ¢ q,v(ﬁw), the ima-
ge %v(ég) lies in the linear N-invariant subspace generated
by wy, and %V(Xw - 5w) C KN wv. Hence 8gv is the desired

~

”X-homogenuous N-invariant function that vanishes on Xw\ éw. a

Remark. The B-action is not admissible.

Now assume that (Lj, K) is symmetric pair which means that
k = Lye for an involution 6 ofgﬁ . Note that © 1is uniquely
determined by k (its -1 eigenspace coincides with Killing or-
thogonal complement to K. ), in particular @ commutes with
Ad K. For x € X denote by rg(x) € W the relative position
of (bx, €] bx). Clearly Pékx) = Ad(k)(P}x)) for k ¢ K. In
particular Fo is constant along the connected components of
K-orbits; if Q° is such a component we will write FG(QO) =
= Fg(x), xe Q°.

Remark. The following points are equivalent: (i) An or-

bit Q 1is closed, (ii) P(Q) =1, (iii) For x ¢ Q one has

dim K n NX = dim Q, (iv) dim Q = dim Xk'
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3.2.2. Lemma. The symmetric pair is admissible.
Proof. According to 3.1.2 (iv) we may assume that K is
connected
(i) Let us consider the particular case: Lj = kxk,
ik —+—uy is diagonal embedding; hence Q@ 1is transposi-

~s

tion, Xﬁ = ka Xk' If x ¢ Xk' then the K-space Xil is induc-

~

ed from N _-space X, = X * { Xy — Xy s and the K-orbits on

=

X are the same as Nx-orblts on Xk: these are Yw .= K(Qva X)),

Q.j
w ¢ W _. One has Jaz (1) = {(X, - wY yixe§ig b e e fey = fo2

since K\ VY,, 1is isomorphic to Hp with HU3= Hy » Hp -action gi-

ven by formula (hy, h2)k= fhlw(hgl)h,Then clearly j:g; (Y,) =
= {( -wX )/ X € f” (2..) since f ~ = f
X s ' wz (&) v (s —wx )| K x 1%} x

hence we are done by 3.2.1.

(ii) The general case. Consider the embeddings mg * X «—

— X=X, fg X < %« X, defined by formula mgy(x) = (x, 8x)),

same for 59. These maps are equivariant with respect to K-

action on X and the diagonal action of 4 on Xx X (via

Ad : K —— G); one has me(x)e Y For W ¢ W consider

(x)°
the locally closed K-invarignt Eibvariety Xew = Pgl(w) =
= m;l(Yw)c X. The number of K-orbit:s on X is finite since
one has
(*) X is finite disjoint union of K-orbits

ow

This follows from the corresponding infinitezimal state-

ment: namely, for x ¢ xew the tangent spacefr KX , X to the

K-orbit coincides with dm;l( ggkf"“g“’ ) (proof: one has
a
JYW,Mng) = {(g mod bX' g mod © bX)’ g ék’ji = {(g mod bX’

9 (6g mod bx))}. dme(ﬁ;ﬂ ) = {(g mod b, © (g mod bx)}; hence
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_
Jy

w,m9u>'w dme(7:.x) = {(g mod b_, ©(g mod b)) : g - 0(g)eb 3=

= {(g mod bx’ © (g mod bX)), gey e?, and we are done). In

particular (*) implies that for any K-orbit Q on X one has

- o
PG(Q) f PG(Q\ Q). So for any homogenuous G-invariant func-
tion £ on YNQ(Q) the function f£f- ﬁe is homogenuous K-
invariant on 6, and if f was positive, then £ ¢ My is also

positive, and (i) above finishes the proof. O

3.3. Contravariant duality for standard modules. If

Uﬁ, K) is a finite pair, then we have the Verdier duality on
the category of S({ )-finite coherent (5X, K) -modules. This
duality is local with respect to X and transforms to Verdier
duality on perverse constructible sheaves via Riemann-Hilbert
correspondence. On the other hand, if (Lﬂ, K) is symmetric, or
K = N, then one has the usual contravariant duality for (4, K)~-
modules. In this section we will see how this duality act on
standard and irreducible modules (in terms of their geometric
Langlands data); a similar description in a different terms
may be found in [34],

Consider the involution CU on U defined by formula
CU(u) = W tu (here w ¢ W is the element of maximal

max max
length). It coincides with -4 on g, and induces on S(§ ) the

- L] ; —— - -— *
involution C, such that Cj(x ) = W (=2p -X) for Xef .
This Cj comes from the involution CH of torus H; one has
Cf( a¥) = at. For a left U-module V let V® be the dual vec-

tor space to V with left U-module structure defined by formu-

* .k . *
la <uv,v>=<v,CU(u)v>,u€-U, VeV, V e ve As(,j-

module v? is just the dual module tcV; we use CU instead
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of t since CU transforms dominant weights to dominant ones
which is handy for localisation (note that Ve M(U)’\ iff
v°e M(U) ) .
ch ‘
Here is a D-module interpretation of v°. Consider the

open G-orbit Y =Y, ¢ X = X and the variety Y := ‘fw

~ax

o~

defined in 2.6.6; Y is an H-monodromic variety over Y with
. -1 . .

H-action h(xl, x2) = (hxl, CH(h_ )x2), the projections

ﬁl, 52 . ¥ — X are monodromic maps. Hence we have the algeb-

ra 5Y on ¥Y; if M is 5X—module then P; M are ‘5é—modules.

For a pair M, M, of ‘Dx—modules put Ml@ M, :=

.= o] o ) © 2 . . . -
:= Py My f P, Mz/f (pl My %Y p2M2) : this is a Dy module
v

(since pl° My g‘( pz'n M, is ﬁY—module) . Note that if

M. ¢ M(X)u then M, @ M, = O if xl# C;(Xz)'

The tangent space to (xl, x2) € Y coincides with

UJ /b_~ b = ‘-j /j , hence w, is isomorphic canonically to
X, X, LIt !

{(DV = {'@(DY , where § := det j det—l(,j . If N is a left
! €
pY-module, then the sheaf - N 1is just the corresponding

right p-module. The variety Y is affine, hence f (:= zeros
Y
direct image to the point functor) is right exact and we have

f ¢ n= E(l‘(Y, N)/ Y i"(Y, N)); here “¥ acts on sections of
Y v
N via the vector fields that correspond to G-action on Y. In
particular for 5x—modules Ml’ M2 we have the pairing
- - . -1 ‘ .
f (Ml) x [ (Mz) (Y, MlEl Mz) —_> ég MlDMz, or for

U-modules Vl’ V. the one (,) : V,x V, — i—l f{a (Vl) ;jA(Vz).
v

2 1 2

This pairing is U-invariant: one has (uvl, V2) = (Vl’ CU(u)vz),

i.e. we have the map y : £ ( Si’ o(Vy)a & (V2))* —
v

0

2). Now 2.5.1, 2.6.6 imply

— HomU (Vl, v
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2.3.1. Lemma. Assume that v, € M(U) where X , are

XirD

dominant regular. Then Y 1is isomorphism. (g

3.3.2. Let (Lﬁ, Kl), (Ly, K2) be finite Harish-Chandra
pairs; assume for simplicity that Ad Ki act trivially on j .
Let V¢ M(U, Kl)iﬂﬁ (here f means "finitely generated" =

* *
"of finite length"). Put CF K (V) :=4v ¢ ve . dimIieI%v <m}
S
Assume that S g ¥ U melnl
(3.3.2) (i) 'C (V) is finitely generatedAand C (V)
K, K, K, K,

carries in a canonical way the structure of (U, Kz)-module

(i.e. Lie Kz-action on C (V) "integrates" to Kz—action),

K, K,
3
hence CK1K1 (V) ¢ M(U, K2)c,x,n
(11) The condition (i) also holds for C, .(and )
152

and the canonical maps Vl —- CKle;Ky1VL>V2 —_ CKJHCKJQ(Vz)
are isomorphisms.
Then C (V) €« M(U, K,).
K,K, 2 Cxon
ent dual to V; the functors C

is called contragradi-

K, K, ’ CKiKZ are mutually inverse

equivalences of categories.
The above condition holds in either of the following cases:

-- K, =N=N_ is maximal nilpotent subgroup, K, = NﬁﬁGis

a complementary subgroup.

-= (Lﬁ: K;) = (Y, K,) is symmetric cair{ here K = K, is

reductive, for a finitely generated V the . K-isotypic compo-
nents of V are finite dimensional, hence CKK(V) carries the
dual algebraic action of K and CxxCrx (V) = V).

From now on assume that X is dominant and regular. One
2 Cuyu
wishes to compute C géohetrically. In principle 3.3.1 does
this job but in a rather implicit way. In the rest of the §

we will compute the contragradient duals to irreducible and
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standard modules. Namely we will see that C is CI—stratifi—

. . " . .
ed equivalence for certain (g : IXKi_P IXKL' and we will
compute explicitly the corresponding strata C., : MU, Klt N
— M (U, KZ%{LnCﬁu) . According to 1.5.6 (iv), (v) this imp-
lies that one has natural isomorphisms

(3.3.3) Ci, (V) =340, C, (V)
Cly (V) = 3 Cal¥)
Cl, (V) = jtuw! C,(v)
for V, & M(U, KIQMd 25 M(§ ., Ky, )zm
3.3.4. Remarks. (i) Let Irrxd. be the set of isomorphism

classes of irreducible objects in M(U, Kl)rt and [C(.]): IerA—_
— Irr%XCﬂd) be the isomorphism that comes from (, . Then (,
is unique, up to non-canonical isomorphism of functors, S(y )-
linear (with respect to Cj : S(§) — S(f )) equivalence of
categories that induces the map {¢,] on irreducibles. This
follows from the last ligne of 1.5.2 (since we assumed that
Ad K acts trivially on 4 ). Hence the computation of <, up
to isomorphism reduces to the one of i 7]

(ii) To verify that C is CI-stratified equivalence it
suffice to see that CI preserves the ordering of I and for
any irreducible V from « stratum C(V) belongs to CI(x )=

stratum.

3.3.5. Consider the simplest Verma modules case figst,

¢

o] Kl =N = NX ’ K2 =N = Ny are opposite maximal nilpo-
= . joo ___ oy §

tent subgroups, and C = CN°N : M(U, Nkb“ M(U, N )%L“

One has I =1 = W with Bruhat ordering. For w ¢ W

XN XN°®
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$

the subcategory M(U, N&'{; is generated by Verma modules

X
Wiy’
subcategory and the fiber functor Fwx : M(U, N)

M wW'gw, The Verma module M;X" is projective in this
£
v W

X

£ f .
— M(U, N)mw ;.-M(&)m is F -

‘(L) = Hom (M L) = lowest

w

weight vectors of L = the Y -component of the space LN of
singular vectors equipped with 5 -action that comes from bX -

action on LN via the isomorphism S( §{) — S({ ) X —

— W_l( X~ 2p). For w ¢ W put CI(v/) = Cw := wmaxww;ix;

then CI : W-—> W 1is an involution that preserves Bruhat or-
dering. An easy computation with singular vector shows that

¢ trancforms the irreducible quotient wa of wa to LcwX '
hence C is CI—stratified equivalence. By 3.3.3, 3.3.4 one

. . o . . ]
has ¢ J., (V) = Jey (V), CI,.(N) = Je (V') for any

v e.M(f Lfn . The above description of the fiber functor Fox
shows that a canonical map jw.(V) —_ jwﬁ(V) identifies this

[+]
way with j__ (V) — ¢ jqﬂﬁv ) which is exactly the usual cont-

w!
. . . ¢ . . .
ravariant form < > : jw!(V) b3 ch!(v ) =— C€ i.e. the %f"ln‘
variant pairing that coincides with the obvious pairing
)
VxV — € on the space of lowest weight vectors.

3.3.6. Now let us turn to the symretric case. So (Lg, K)

is symmetric pair and the contragradient duality is C =

N . fo : £ . ;

= Cpg ° M(U, K)'K-" — M(U, K)cf(.n . For a K-orbit Q, put
A _ Y, -
Qq := {(Xl’ ¥ale Y i x 1€ 9 ”jkixﬁ o

:= b_n b, is @-stable Cartan subalgebra }

Clearly (xy, x,) > (xl,j’xix)‘_' is 1-1 correspondence

between Q and the set of pairs (x, jx) , X € Q,, fx is o-

stable Cartan subalgebra in bx‘ One has (see, e.g. [17] (A.2.3)):
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~

3.3.7. Lemma. (i) For x ¢ Q, the x-fiber of p Q, —

'J(L:
— Q“ is non-empty and the nilpotent group er\ K acts on
-1

P., (x) in a simply transitive way
(ii) §¢ is a single K-orbit closed in Y. U
Put QCIW):= Raféa) : this is a single K—orbit;‘cfcavﬁ
Cr is an involution of the set I = ek of
orbits.

3.3.8. Let Q0 be Y restricted to Q; consider the K-equi-

. ) i ) ~ > X Pa o~
variant monodromic projections Q¢ —t Qa _:——'QC4d)' Now
L

3.3.7 (i), 1.5.2 imply that ?gi are equivalences of catego-

~
5 N~

~ ~ ~ Py
ries: M(Q , K) féi*\M(QG, K) e:fi M(QC(&), K) . Hence we have
i
N .= VD*i'JU . ~ _—r-/
the equivalence S : P Pg ¢ M(Q, ., K) M(QC#M’ K). One
may define S in terms of fibers: for (xl, xz)e QJ we

have the isomorphisms of Harish~-Chandra pairs ( fr K(x )) =
1

— (. K(XL' x2)) - () K(xl)), hence the composition

Sy, x (4 K(xi)) = (§ K(xl)) which is -C, on j§ » and

X1

fiber functors F_, identify S with equivalence M(}, KO<)) —

— M(f K(xi)) which comes from s . Now let c s MOy K

152 Xy)

—M(f, K be the duality defined by formula C (V) :=

)f
(x). ) C;I:n
* “ *
:= S (V) =S (V) . Our aim is to prove the following

3.3.9. Theorem. (i) C. preserves the partial ordering on

I

I and dimensions of orbits.

(ii) The contravariant duality C : M(U, K)ft‘ —_
— M(U, K),.f
\"‘f;{)n

(iii) The fiber functors Fx identify the strata of C

is CI—stratified.

with C.

3.3.10. Corollary. C interchanges : - and * -gtandard mo-

)

Yo
Ton

NP L
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dules. O

This is 3.3.3 above. In particular the main result of "19]
means that ! -standard modules are just the ones obtained by
Zuckerman's induction.

3.3.11. Remark. Let V be an (;;, K(X1))—module. Then
3.3.9 identifies canonical morphism j“=(V) — ji*(V) with
I (V) — CjCﬁwi(é V) i.e. with the (¢, K)-invariant pairing
<0 3 (V) de#!(é V) — €. This pairing is compatible with
respect to morphi;ms of V's. Hence it induces the non-trivial
pairing between Jj,, (V/ m,V) = j,, V/m,,V and jcﬂ”ﬁf(vﬁmon =
= {jC#m(é»V)]m‘ — jCﬂ%N(é V). If V is indecompgsable mo-
dule then < > is unique, up to isomorphism (i.e. up to mul-
tiplication by an invertible element of S(j‘/Lie K(xi))/m: ),
pairing with this property. U

Proof of 3.3.9. Unfortunately it is long and messy. We

will start with some preliminaries on Weyl group action on or-
bits and © éction on roots.

3.3.12. The Weyl group W acts on Y: for (xl, x2) e Y,
w ¢ W the element w(xl, x2) = (yl, y2) Y 1is defined by
properties .f X, X, := bxf\ bxz = f v,y (xl, yl) ¢ Y . This
action lifts to H-monodromic action on Y: namely &(%l, iz) =

= (¥y, ¥,), where (il, §1) €Y . One has w h(xy, X,)

ad (n)W(xy,%,), Wg(X), X,) = gW(X,, %,) for h ¢ H, ge G°.
Remark. Strictly speaking this H-monodromic lifting w

of the action of w ¢ W on Y depends on the choice of the

type of Chevalley basis that defines gw (see 2.6.6). The va-

rious choices differ by the multiplication by an order 2 ele-

~

ment of H, hence it is the extension W of W by order 2
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elements of H that acts naturally on §. This will make no dif-

ficulties in what follows. U

Clearly W preserves the close K-invariant subvariety

e e N A ~
l'Q ¢ Y. Put Q _ = wQ, ; then 4« +— we« is the action of
€Ly

W on the set of orbits I&K (this action usually breaks the or-

- - P
dering of I&K). Let w denotes the composition  M(Q,, K) —*
W iy
~A A 1 ~ . .
— M(Q,, K) —== M(Q_ ., K) —= M(Q, , K); this equiva-
lence corresponds to the isomorphism ( §, K(XL)) = () Kbﬂﬁzﬂ —

W

~

(g’, K(YL,Yz)) — (j, K(YL)) of Harish-Chandra pairs where (xl,xz)

A}

¢ Qg vy y,) = w(xy, X,). This way the action of W on IX‘K

1ifts to the action on corresponding strata categories. Clear-

ly the action of Woax € W on IXK is just CI’ and Woax

’

= S (see 3.3.8). Hence one has canonical isomorphism of func-

fe ~ £
M(Q W K)".

tors C w= “wC : I\"I(Qu, K)
max

3.3.13. For the details about the action of © on roots
in convenient form see [27] A3, or [34'. For d4e I take
(xl,xz) ¢ Q, and consider the action of © on jixtxz; the

projection f X, X, = bx{ nx1 = ; transmits it to the auto-

morphism @, of } that depends on « only. This ©, decom-

poses the set A'+ of positive roots into the disjoint union

Q
of the following subsets: Aj':={ 8’@¢3+ : eig = -dg,

Q
L, acts on o root space as —l},

a,, ={8c¢n’:9b= 8, o
A2 = {Sea+:e*é\>é—A+) 9,5 # -0} a
:={86A+:9_Agéa+, edS;eSf, A3:={86A+:9¥8=3,

a
Q* acts on © root space as +l§ . The set E: = Z (zx+) of

simple roots gets the induced decomposition: Z:} := Z:!\ZL} etc.
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oo
Now for oe¢2 consider the projection rs : X — X

(see 2.3.5) with fiber 'le = r;\l X, X & Xe“ . For x ¢ rd(Q‘)
N 1 1 . a - 2 1

one has o ¢ 24 == P; N Q, is torus; O¢ § ~ &= Py 0 Qu

s : . X, &3 ) 4 Y y :

is affine line, & ¢ Ly &= (Pilf\ Q, = Py o) 621¢ = P21 Q.

consists of 1 or 2 points, 8 € Z 24 = lP).‘l ® Q, 1s one point.

Y -~ g
A . Ce
For o € le Y. 2a let QO’;('»() be the unique open orbit in

-1 . . v .
r,"ry(Q) : one has dim Q dim Q +i and e, ISE

LA i

3 N
S¢e U1 For 3¢ 52 1et o

. be the unique closed or-
0'0\" (o)

63 («)
bit in rg\l rf:‘(Qo‘): one has dim Qé‘§(a) = dim Q -t ,
Se 2268‘(*) and d = O} Of(a) .

3.3.14. Lemma. (i) Cj’ : a7 = 0% transforms o -de-

composition of A T to C; (4 )-decomposition: Cg (A,;l) =

A C;WJ , etc.
(i) dim @, =} g v af v adi +ija, |
& . 2 - _
(iii) For e Y « one has Sy () = 6 (4) (here 66 ¢ W

is S-reflection); for 8(— Z 24 One has G;(x) = 6‘3(;( ) .

(iv) C, commutes with O’: i.e. for O € > UZ' one
I g’ —= 14 24

+ At v 2 - _
has CICSé\(aL) —5(:Q CI(ut), for g& . 4 one has Clés(m) =

=d A CI(QL). [

c.2

]
3.3.15. Now we may prove 3.3.9 (i). One has dim Q, =
= dim Q by 3.3.14 (i), (ii). It remains to show that

C,— ()
CI(J) ¢ Cy(« ). The proof goes by induction by dim « :=

:= dim Q- The fact is obvious for orbits of minimal dimen-
sion = closed orbits. If Q, is not closed, then Z‘} v 23 #
# @#. Choose 3 € Z_,(l UZQZ; then o« = 5;(}31) for either 1 or

2 elements Pi € IX K’ dim Pi = dim« -1. One has o =
14
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= Blu ﬁz\/{ dg(p')}, where P' runs the elements of ﬁi with

A"

. -} s . = . .
¢ Z,lp. v Z:Zp.- Since CI(Pi)C- CI(Pi) by induction and
o; commutes with cI by 3.3.14 (iv), we are done.
For an orbit A& IXK consider the following condition:

3.3.16. For V ¢ M(j one has canonical mor-

/ Ke) n

phism & : j,cV — ¢3J V (i.e. <P 1is morphism of

M(U, K)Nn—valued functors on &l(i , K(x;))x,n) such that 7 is
non-zero for any V # O.
Recall that dé-Ik'K is called ©-compatible if Zﬂf = @.
3.3.17. Lemma. Assume that 3.3.16 holds for any ©-compat-
ible «¢ Ty ,. Then 3.3.9 (ii), (iii) are valid.
Proof. We will prove 3.3.9 (ii), (iii) using induction
by dimension n of orbits. So assume that for any P ¢ IXK
with dim B < n one has '

(i)l3 For any irreducible module LP that belongs to p

the irreducible module c¢(L,) belongs to cI(P) (this implies

that c transforms M , := Myp to M_ and induces
: . n-1
dim 8¢ n
cI-stratified equivalence on this subcategory).

(ii)3 The p-stratum of ¢ coincides with C .

We have to prove the statements (i)d , (ii), for « with
dim 4 = n. Consider 2 possibilities.

a. o ' is ©-compatible. Let V_, Dbe an irreduéible

( f, K(x )lx -module. Then all the components of vV, but
L

Jun
jare Vi, lie over strata of dimension ¢ n, hence all the com-

ponents of ¢ J,, V. but ¢ Ju,V have the same property by

induction hypothesis. On the other hand jc (i)l*E\Q is the
I !

-

only irreducible quotient of jc_(d)‘c V., hence <f,_ identi-
—)- .

fies it with non-zero subquotient of ¢ j*‘ﬁl. Since it is
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supported on Od, one should have jc

CVy = C s Va
hence (i), . Now (ii), follows since CJCI(*)'V belongs to
Mz and <2 induces isomorphism in the quotient category M, .

b. « is not @-compatible. Choose & ¢ 3! 2 and put B =
= oy (a ). Consider the functor Rg @ M(U, K)Ln — M(U, K)y, e

(see 2.8). Then CRS = R RS(M-)C' M; and RS induces

P

the functor on quotient categories M, — M, which coinci-

B

des with 5& from 3.3.12, 3.3.14 (iii) (the first property

Y C,
( )

follows from definition of R6’ the second one comes from geo-
metric interpretation (2.8.1) of Ré)' Both (iL}, (ii)‘ are
now clear since Ry transforms them into (i)P (ii)P. ()

It remains to ﬁiove the condition 3.3.16 for a ©-compat-

ible e I

X,K’
3.3.18. Consider first the case when Q, =Q 1is open or-
bit and ¥ = Z<}. Then the stabilizer K, of a point xé& Q

is finite, hence Q@ 1is affine, and (j , K(X))—modules are just
the spaces with commuting j'- and Kx—actions. Similarly (5Q,K)-

modules are the same as (DQ, K) -modules with f -action, since

-

over Q we have canonical splitting SA : ﬁ—Q —_— Q’Q : the one

T
ﬁ(k)c Y 0 for any

ke K. Explicitly, if M is (Dys K)-module with § -action,

o~

then the corresponding (5Q, K)-module M 1is M considered

that maps the field m%(k) € 7‘Q to 0

o ~
o~

as ((DQ, K)-module with 9'Q—action given by formula € (m) =
= T(m) + h(< )m, where h :TQ — f:je(ga is projection
h(T) :=T - s, (T). For an (j, K, )-module V we will denote

by ?V the corresponding (DQ, K) -module with i -action, hence
Jv = FR (V). Clearly 3, (v) :=3,,(V) = J, (@, so * -stan-

dard modules are just the principal series representations.
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Denote by ¢ ¢ the rank 1 Kx—module which coincides

with det—lk with adjoint action; one also has ¢ ¢ =

_ ,dim Q ; - o - . :
= Hpg (Q) . Consider the (;f, K.) module g ,(-20); since

'jikblf)z “’Q we have canonical projection S : ﬁixbwéQ) =
= L . (Q) — HdimQ(Q) =t which is morphism of (C K) -modu-
0 ~ fpr K P 7

les ( ¢ has trivialdy -action). This way for any (f » K )=

module V one gets the ({, K) -invariant pairing ¢ f):']V(Q) X

j? ty (Qy — C, (Y, g) == s fg, where ty = V*(—Zp). If V

has finite rank, then <,> identifies (Q) with contrava-

t
~ . \Y
riant dual to G?V(Q) as (07, K) -module. To get the contrava-
riant dual as (U, K)-module one should turn the U -action by

W ax (see the beginning of 3.3). Finally we join this to
2.6.6 (iii) and get
3.3.19. Lemma. Assume that X 1is regular dominant and

conditions 3.3.17 hold. Then for any V¢ $4(§ , Kx)f one

X0
tyy. o

has ¢3, (V) = w . 13,(

Now &P, from 3.3.16 come from the usual intertwinning
operators. These may be constructed geometrically as follows.
First note that 6 projects isomorphically onto Q and 6 is
W-invariant, hence one gets the W-action on Q and 5 such that
wkx = kwx, whx = ad_(h)wx for k € XK, he H, we W, x¢& Q.
So W acts on categories M(Q, K), M(Q, K)™®; for we W de-
note the corresponding functor W : M(Q, K) — M(Q, K); it
transforms ﬁ(Q, K).K to ‘ﬁ(Q, K)WX

3.3.20. Lemma. For a simple reflection ce¢ W and

M€ ﬁ(Q, K)f one has canonical isomorphism of ( 5, Kx)—mo—

dules F_O, j M = F, O M. a
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(this is a matter of a simple calculation; note that if

M ='i, where L is (D K) -module with f -action, then over Q

Q'
one has o@j*M = 6?3:1, so one may work with ordinary local
systems on pls {0,%} )

Clearly 3.3.20 means that one has a canonical morphism
P OEjkM — jkg M which is isomorphism on Q. For we¢ W
consider a reduced decomposition w = dl"'df(w); for a domi-

rv_l

nant regular X(—j* and M¢ M(Q, K), define ¢  : w,j W "M —

n
— j,M to be the composition w!j‘ﬁ_lM —_ ... —
. m-la-1 . O Ty | .' .
— dl!dzejv 62 dl M —— dl!J*dl M JgeM. This is a

classical intertwinning operator; one may prove that < w is

isomorphism being restricted to Q. Now note that E'(V) =

_ t . ' . . - .
= W __x V. Hence 3.3.19 gives us q>wyg" c j,v = j,c V which
is isomorphism over Q; this gives the map from 3.3.16 (the

1

Panx

one that coincides with ¢ on Q).
So we have proven that for this open orbit Q, the duali-
ty C ©preserves 'Mi~¢ and induces ¢ on the quotient M, -

As usually, the definition of j_,, j,» as adjoint functors
to the projection implies that ¢ j,, = JoC, ¢ 3, = j o C -
We may interpret this using 3.3.1: naﬁely it means that for
Ve M( j, K(x)) one has a canonical K-invariant element

§y €€ ({¢ 3,,ma 3, (2" which is non-zero if V is
non-zero. To finish the proof of 3.3.16 we have to construct

the similar elements for any ©-compatible o€ I
1

o

XK' This may

and consider the map rg ¢

: X — Xg. For X € re(Q,) let Pg be the corresponding pa-

be done as follows. Put S = ¥

rabolic subalgebra,ga % be its semisimple Levi quotient. Then

L P .
Xz = rs(x) is flag space for q’i’ Let Ké ¢ Kz Dbe the
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largest connected subgroup that acts trivially on X)~< and

Kig) °= Ke/Kg- Then (see [31], |27] A3) Q,q = rglQ,) 1is a

. . . . -1 N
closed K-orbit, Qi is open suborbit in rSrS(Qi), (‘gi’fﬂiﬂ
is symmetric Harish-Chandra pair, and Q N Xg is open

K orbit such that 3.3.18 holds.

(x)
Put 2 := (rsx rs)(éi) : this is an open K-orbit in

and T := (r.xr _l(Z)'W Y is a connected com-

] S)

Qus™ Qe (w8’
~ - . . [
ponent of (Q_x ch(“)) A Y. The projection 2 —— Q o has

affine fibers and Q&s is a compact K-orbit, hence 2 is simp-

ly connected and dim‘Hdlmz:(z)]K = 1., For z.= (X

DR 1’
= - = - % = | (D e = = I .
one has K, K(X1 ) K(Xz) and ¢ %, P}_{L Px: Y z, Sz

xz)e yA

o o ) o -1 .
This identifies (X» X) := (rsx rs) (z) with X'i” X%z ’

kg
TL with Y(’-J}C X‘f]z‘ Xa]z, (Q“x ch('_”) n (X‘X)L. with the
product of open Kz-orbits in Xoj. This way we see that
Tx
. _ , - dim™L
tSE Jo VY a J._ (*)*(CV) = _,{_ ¢y o2 (..) D> HSR ('Z;)@é
v : Ydoecw ! "3

where S is similar integral for same V, considered as
7L
( fg ’ Kx)—module that corresponds to the open orbit. This
:'l

way we are reduced to the case 3.3.18, and we are done.

§4. Jantzen filtration

In this § we will define Jantzen filtration on standard
modules; the main point is its relation with monodromy filt-

ration on nearby cycles.

4.1. The monodromy filtration (see [12] 1.6). For an ob-

ject Q of an abelian category and a nilpotent endomorphism
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s ¢ End Q let ‘P' =‘P?’ denotes the monodromy filtration on
L #oos ™
1= Ker(Gri — Gri_z) be the

primitive part [12] (1.6.3); one has the primitive decomposi-

Q (12) (1.6.1). Let P2 =P,

tion (i{2] (1.6.4) - a canonical isomorphism of graded Z({s]-
modules Gr! = A P j.g Z[s]/s'i, degs” = -2, deg Pj = -3j.
13 .
Put J,; := Ker s n Im st for i 0, J;; = Ker s

for i > O: this is an increasing filtration on Ker s; dually

one has the filtration J,; := Ker s+ Ims /Ims on Cokers .
Call J,, , J,. the Jantzen filtrations (for reasons to be seen

below). The filtrations J;, , J,. are just the filtrations in-

JJ_P Je _
o= Pyeoor =Py

duced by ﬂ. on Ker s, Coker s, and Gr
{12] (1.6.6). More precisely, let Q be Q/Ker s 2~ Ims
with nilpotent endomorphism s induced by s, and P. be
the corresponding monodromy filtration. Then one has

4.1.1. Lemma. (i) The exact sequences
O — (Rer s, J,.) — (Q, p.) — @, F shifted by -1) — O
o — (Q, ‘G shifted by 1) — (Q, u.) — (Coker s, J,.) — O

are strictly compatible with filtrations

(ii) Conversely, p. is unique filtration on Q such that
s p. ¢ P'-Z and either of two above saquences is strictly
compatible with filtrations.

Proof. (i) is {12] 1.6.5; (ii): let j1!  be another
such filtration strictly compatible with, say, the first exact
sequence. It suffice to show that Pi > Py - But Pi = Fi for
i > O (since Jio = Ker s). For 1ig¢ O pi >3yt S(fl{_z),
and S(}Ji_z) = s( u;_,). So we are done by downward induc-

tion by i. d
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Assume now that our categories are over a field k of
characteristic O, and let & be an exact k-bilinear bifunc-
tor. Let (R, t) be another object with nilpotent endomorphism,

and PB be its monodromy filtration. Consider the tensor pro-
thSR. %Q',R

, := % /uaan\We have Gr‘. =

duct - filtration Pi

at+b=1i
(4& IMR
Gr. 8 Gr. , and the primitive decomposition together with

[12]7(1.6.11, 1.6.12) implies
4.1.2. Lemma. (1) p?’ is monodromy filtration with
respect to s & 1dR + idQsS t.
(ii) One has an "almost canonical" isomorphism_F>9;§R =

-

= &P 9j,@[3 Bj" where (j', j") run the set of pairs
{3 3" = 13" - "l ¢ 3¢ 13"+ 3", 3= 3"+ 3" mod 2} . 0

4.2. The Jantzen and monodromy filtrations in geometric

setting. Recall the construction of nearby cycles for p-mo-
dules [2], 121}, (26], [33); we follow mainly { 2]. Let Y Dbe

a smooth variety, £ : Y ——/Al be a function, Z :=

1

= £ lo) ir v «dsy = £t al

~{0}). For n> O consi-

der the lisse :pﬂhiﬁ -module I(n) with CCS]/sn ~action which

is free rank 1 (QAR{@ Qb(t{s]/sn -module with generator ngSw

such that tat(ts) = sts_l (here t i3 the parameter on ,Al);

we have the obvious projections ) I(n)/sn"l = p(n-b),

For a ;DU—module MU put £5 M(n)

.- go7(n) . ,
U := £ 1 gu MU : this

s, (1) _ s (a) _ S "), a .
MU = MU’ and £ MU = £ MU /s .

Assume now that MU is holonomic. Fix some a » O. Consider

is Py @ C[s]/sn -module, £

\}
a(n) . £S )

. . S, " n
the morphism 4 E M j £ M of Dy ® C(sl/s

ASa(n) n-1

modules that coincides with sa on U; one has mod s =



-74-

_ i;a(n-l).

The lemma on b-functions implies that the projec-

a(n) 7 2

tive system Coker 3 stabilizes, so we may put | ; (M ) =

a(n)

Coker 4 for n>» 0. This is a holonomic D,-module with

Y
nilpotent endomorphism s; one has [ | ?(MU)/S s Coker‘%a+i)
¢ (a) . .
and 3 [7] f(M ) = £° M;"" . The most important 1% are
=: V¥ f - the part of nearby cycles functor with unipotent
. . & o _ 1 _,. — _ -
action of monodromy (j° /)] £ = 0), and B! FT g the ma

ximal extension functor (jcrj % = Id). Here is a list of pro-

perties of rj 2:

is

4.2.1. Lemma (see [2]). (i) [] ? PM(U) ) M(Y),

exact functor.

(ii) For a,b » O one has canonical exact sequences
s (£S @,y _ 7 atb _~ b —

0 —3, (& ™) — [ £P0 — (1204 —o0

o—~{T30n) —[1*e) — 3,4 —o

and Im(s l"} a+b ‘—"‘ a+b - 2 b

(ii)' In particular one has exact sequences

. - o Un .
0 — 3, My = = (M) = ¥ ) — o

0 — Y ) — T oMy — 3y (q) — O

1 ~— . ‘ — —

with j' = Ker(s . = £ —_— ;f ), J.‘ = Coker(s H \-:f_’ - )

(iii) yq ? commutes with duality. J
Now 4.1 gives us the monodromy filtration Pfa) on f]?.

On U the term P;ﬁ' coincides with

ra-i
Ll

£5 M(a) (here [ J := integral part). In particular

we have the monodromy filtrations on ¥ gn and Esz, and the
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Jantzen filtrations Jg ., Jg,.on J,. Jy (Via — ¢ and (i)'
above) .

4.2.2. Remarks. (i) 4.1 implies that, up to shift, we will
get the same Jantzen filtration if we will use 4.2.1 (ii)

j, = Ker(s : 12 — %) for any a > 1; same for J,.

(ii) One has Jf{c = j!, Jf14.= Ker(j{ — jﬂ ), and the
embedding ((ii)' above) y g — = identifies Xer(s
}«?n — ¥ ?n) with Jeioy with corresponding Jantzen filtra-
tion shifted by one. Dually, Jf*{-= 0 Jf*a = jh C jk etc.

(iii) Let QU(; U be a closed subvariety, and Q be
the closure of QU in Y. Let M(Q) ¢ M(Y), M(QU) ¢ M(U) 1
be the subcafégories of p-modules supported on Q. The above
functors {—]2 transform M(QU) to M(Q), and, being restricted
to .M(QU), they depend on f‘Q only. Since everything is lo-
cal, we get the functors ] ? : M(QU) —-— M(Q) and all the
stuff above for any regular functions £ on Q with QU =
= o\ £7H(0) .

(iv) The above functors will not change if we multiply 7
f by non-zero constant c ¢ C since one has the isomorphism
of ‘QR\{Oés]/Sn -modules IT =~ ¢'If, f’r—% (ct)S (here c : t i—
ct is multiplication by ¢ automorphism of A ~10%).

(v) The above constructions have obvious counterpart for
constructible perverse sheaves compatible with Riemann-Hilbert
correspondence (see [9)}). One identifies canonically ﬁ’?n with
the part of nearby cycles functor R‘%L—l] on which the geo-
metric monodromy acts unipotently and 5 corresponds to loga-

rithm of monodromy; here a is the generic geometric point

spec U c((t¥M)) of c((e)).
N
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4.3. Case of standard modules. Assume we are in a situa-

tion 3.1. Let Q ¢ X be an admissible orbit. For ¥ o€ f;+(Q)

consider the corresponding function ff on 6 and the corres-

ponding functors N ;Y : M(Q) — M(é), see 4.2.2 (iii); since,
by 4.2.2 (iv), they depend on y only, we will write IW? := {1 ? .
b

-

These functors preserve K-equivariance and monodromicity (by

construction), so we have the functors |1$ : Ld(f ;s K )

B (x) "3, ~
M(Q, Kige — 4(Q, Kl > M(X, K)gw (here x ¢ Q, see

1.5.4) and the Jantzen filtrations Ji. » Je. on the functors
JQ{' g, :.M(f ’ K(x))L" — M(X, K)i’n. In particular we have
the Jantzen filtrations on standard modules I (V) jQ*(V),
where V 1is irreducible ('f, K(x)a;module. A priori these
filtrations depend on the choice of ¥ ¢ f;f(Q).

Note that these constructions may be done directly in

terms of I-stratification pattern (see 1.5.4). Namely, for

L3
an orbit QUL, X ¢ Qd and ye¢ fz‘-(Q“‘) _ let I;n) be

the (j‘, K ))—module C[s]/s % such that he-f acts as

(%
?(h)s and K(x) acts trivially. The equivalence of catego-
ries FX : ﬁ(Qﬂ, K) — M({( f, K(x)) (see 1.5.2) transforms
Me f; (I(n)) to FX(M) @ I;P), and we may repeat the const-
ructions of 4.2 using the functors jJ!, Jux and @ I;n).

If (La, K) is admissible Harish-Chandra pair, we get the
Jantsen filtrations on !- and * -standard (U, K). -modules

%* L‘C"'n;.hs‘ur\t X
( Xe¢ 4 is*regular weight) using the equivalence 2.4.2. If
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K = N or K is symmetric than j, —extension 1is contravariant

.

conjugate to j‘—extension (see 3.3) hence the morphism

(n)

(n), __ =

J (vel ) is just the contravariant form.
This shows that here our definition of J. . coincides with
the original Jantzen's one.

Remark. In Verma modules case one may define the Jantzen
filtration using the deformations of central character in ar-
bitrary non-degenerate direction § , not necessary in the posi-
tive one. According to Barbash [1l] the result does not depends
on the choice of gy - In the geometric situation we may do, in
principle, the same constructions and consider for any non=

zero meromorphic function £ on X the morphism j,Uﬁjef°(]ﬁnH)—

(n)y,

—- j*(MU<3f°(I where U := X~ div(f). To define the vanish-
ing cycles one needs the stabilization of cokernel when n —— @ .
It would be very nice if this fact weuald be true for any £,

just as in the case when £ (or f_l) is regular on X, but I

have no idea how to prove it.

§5. Weight filtrations

5.1. Weights of nearby cycles. The Gabber's theorem,

which is our main tool, seems not to be published yet. Below
we reproduce the proof following Gabber's report at IHES in
spring 1981.

5.1.1. Kunneth formula for nearby cycles. Let S be spect-

rum of a strictly localHenselian ring; 0 , ¥ be closed and ge-

neric points of S respectively, 9 be a geometric point loca-

lised at . Let X — S be an S-scheme, Xa°i+ X <~ X?fE— X§
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be the fibers. In what follows Db(Y) wi}l denote either the
bounded derived category of étaleiazyég‘fiheaves on Y (where

{ is prime to char ¢ ) or its Q, ~counterpart. According
to [11l] (3.2) one has the nearby cycles functors *V§ = Yoyt
: D°(x,) — DP(x,), Wsx = 1 RI,k,k". Let Y — S be another
S-scheme, and 7 = X x Y — S be the fiber product. Then for

Fe Db(XY), G € Db(Y:) one has a canonical morphism in

D% (7,

() Wa (F) @ Ye (&) — Y54 (FB6)

Lemma (*) is isomorphism.

Remark. The transcendental version (and, hence, characte-
ristic O case) is almost obvious by ordinary Kunneth applied to
local varieties of vanishing cycles. This, joined with Riemann-
Hilbert correspondence, implies the similar fact for tame pD-
modules. To have this formula for arbitrary holonomic p-modules
one should use the total nearby cycles functor of Deligne (let-
ter to Malgrange )

Proof of lemma. We may assume that the coefficients are

4Z/p (the z/¢" and Qe version follow in a moment). Put
m=dim X , n =dim Y . The proof goes by simultaneous induc-
tion by m, n. The induction assumption plus the trick of De-
ligne [tt] (3.3) show that cohomology sheaves of a cone of (*)
are supported at finite set of points. So cone (*) = 0O is
equivalent to R ['(Cone (*)) = O. The problem is local, hence
we may assume X, Y to be affine, then projective, and the
usual Kunnet formula for X , Y implies RI” (Cone (*)) =0

(since R Y (R) = Rl (Fg ) in projective case). O
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5.1.2. Gabber's theorem. Assume we are in a mixed situa-

tion, so our scChemes are over the finite field Fq. Let

M(X) < Db(X) be the category of mixed perverse shea-

mixed mixed

ves on X and the corresponding derived category. Let T Dbe a
curve, ¢&€ T be a closed point, U :=T-> {0}, S be the
strict localisation of T at ¢ , » be the generic geometric

point of S. For a T-gscheme f : X — T put X, = f_l(o Y,

= g1 . pP —
Xy = £ *(U). One has a nearby cycles functor w@x : D (XU)Hlixed

— Db(Xo) (see [12]). It is convenient to use the shift

mixed

¥ = Vi [-1]. This functor is t-exact, i.e. +7f( M(X,)) ¢
M(X,), and commutes with Verdier duality as follows:

wny =D yf(l) (here (1) = @(ﬁk(l) is Tate twist). The mo-

nodromy group acts on }/f; for a perverse sheaf M let

s ¢ End y/f(MU) be the logarithm of the unipotent part of

geometric monodromy, and M. be the corresponding monodromy

filtration on }/f(MU).

Theorem. If MU is pure of weight w, then Jerw-t coin-
cides with weight filtration W..

Proof. The case when f is identity (or finite map) 1is
Deligne's theorem [12] (1.8.4). The prcof in the general case
follows the similar lines.

(i) We may assume that MU is irreducible.

(ii) Replacing T by a finite cover, we may assume that
the geometric monodromy is unipotent.

(iii) The weights on Ker s (= invariants of monodromy ac-
tion) are ¢ w-l1. Proof. Consider a canonical isomorphism
Ker s = Ker(ijU — j~MU)' Since Jj, does not increases weights,

are ¢ w. But the only irreducible quoti-

the weights of j'MU
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ent of jLMU is j:.MU, hence Ker s = Ww—l(JtMU)'

Dually, the weights of Coker s are » w-1 (since Coker s
Coker (j, My — J.My) (1)) .
(iv) Since the weight of s 1is -2, to prove the theorem

it suffice to show that the primitive part P_i is pure of

J
weight w-1-i. We have Gr.l = P,, Grq'= P .(-i) (see 4.1),
i i i -i

so (iii) implies the inequalities for weights {wi} of Pi:

Wy ¢ w-1, wi + 2i » w-1, i.e. w-1l-2i ¢ Wios w=1l. In particu-
lar for i = 0 we are done.

(v) Consider the fiber square Mgz[—l}: this is a perverse

sheaf on X;‘X (at least over the generic point of T - the

only thing we need) of weight 2w-1. Since *’fxf(Msz i-11 =

¥ M) by 5.1.1, the lemma 4.1.2 (ii) implies that

. . a2 .
P_iﬁgfti(—l) occurs in PO(\fof My [-11). Hence, by (iv), one
has 2wi +2i=2w-2, or w, = w-i-1. O

t e QT
Assume we have a parameter t at O,YWe may define the

functors of 4.2 in the mixed situation (see f21): one has

T]; : M(U) — M(X) Kﬂ ?M&h;is successive extension

mixed mixed’

of twists MU’ MU(l),...,MU(a—l). Now 5.1.2 joined with 4.1.1,
4,2.1 and 4.2.2 (v) gives
5.1.3. Corollary. (i) If My is pure of weight w then the

filtrations J., , W, on ]U!(MU) coincide. Same for filtra-

tions J;{ W, On JU*(MU)’

(ii) The monodromy filtration p. on n ;(MU) coincides

with W In particular on :‘f(MU) one has p. = W-+w'

+ +w+a-1’

5.2. Pointwise purity and socle property of weight filtra-

tion. A mixed complex F° on X is * -pointwise pure of weight

*
w if for any closed point x ¢ X the complex 1i,(F") is pure
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of weight w (i.e. Hli:F' is pure of weight i+w; here ix

x ¢+ X). One defines ! -pointwise purity similarly using
ié instead of i;; the Verfier duality interchanges *- and
'-purity. Note that if a pure perverse sheaf is *-pointwise
pure of weight w, then w coincides with its weight.

Now let X be a finite monodromic K-variety. Recall that
any pure monodromic sheaf has finite geometric monodromy along
the fibers of X — X hence is Y -monodromic for X¢ fg/fz
(by local monodromy theorem; note that restriction of monodro-
mic sheaf to the fiber is tame [32]). We will say that X is
(K,v‘( )-pointwise pure (here )'(e f;/;;) if any pure K-equivari-
ant X -monodromic sheaf is *- and !-pointwise pure, and § is
K-pointwise pure if this holds for any X -

5.2.1. Examples. (i) Here is a simple sufficient condition
for *-pointwise purity. Let M be a pure perverse sheaf. Assu-
me that for any x ¢ X there exists an etale neighbourhood
U of x such that a canonical map H" (U, M) — H" 1} M is
surjective. Then M is *-pointwise pure (since the weights on
H° (U, M) are > + +w by Deligne's Weil II, and weights on
H'i;M are &°+W by definition). In particular this implies
that "toric" irreducible perverse shea/es on a toric variety
are pointwise pure, which leads to the explicit formula for Go-
reski-Macpherson Betti numbers of toric varieties (J.Bernstein,
summer 1981).

(ii) According to Kazhdan-Lusztig (23] and Lusztig [ 24]
ch.l the flag variety i‘? is N-pointwise pure. Lusztig and

Vogan [25] have shown that XU” is K-pointwise pure if X is
d

a fixed point subgroup of an involution; it seems that their
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method, joined with decomposition theorem, should prove the K-
pointwise purity of gq}for any symmetric pair (\g, K) .
Recall that one defines a socle filtration S.(M) on an

object M of an abelian category by induction: S_l = 0O, SO 1=

maximal semisimple subobject of M, Si(M)/Si_l(M) 1= So(M/
/Si_l(M)). One defines a cosocle filtration M = C_ (M)~
C_l(M)J ... in a dual manner.

If M is a mixed perverse sheaf, then s. (M), C.(M) will
denote socle and cosocle filtrations on M considered as geomet-
ric sheaf (Frobenius forgotten). Clearly both S. and C. are

(being functorial) Frobenius invariant, hence S.(M), C.(M) are

mixed subsheaves of M.

5.2.2. Lemma. Let iY : Y <~ X be a locally closed sub-

scheme, and MY be a weight w pure perverse sheaf on Y. Let

N C ﬁiothMY be a mixed subsheaf such that any irreducible sub-

quotient of N is ! -pointwise pure. Then S.(N) =W, __ (N).
Proof. We have S_l(N) =0 = Ww_l(N) (since i, , increas-

es weights), SO(N) = WW(N) = iY,*(f§ N) {(since, by adjunction

property of i.,. So(PHiY*MY) = i!*MY)' Since Gr" is geometri-

cally semisimple one has Si(N):) Wi+w(N), so it remains to
prove that Si(N) C Wifw(N) for i2 1. We will do this by the
double induction: first by dim Y, then by i. So assume that
5.2.2 is known for any (Y', MY') with dim ¥Y'< dim Y, and

that Sj(N) = Wj+w(N) for j < i. Suppose that Si@U & WIH”N)'
Then S,/S; ; = Siﬂ%wi—l contains a pure geometrically irreduc-
ible subsheaféof weight a > i+w (possibly, after a finite ex-
tension of the finite base field). Note that Supp AC Y-~ Y.

(i) Assume that A 1is supported at closed point x. Con-



sider the extension O —~ W 2,(N y/W., (N) =B —A — 0O
defined by N. Since B ¢ Si-l(N)’ this extension is geometri-

cally non-trivial, hence it corresponds to non-zero element in

1.1 . . . .
HomFié, HOi) WQ,pJN)/Ww;LﬁN))' By | -pointwise purity condi
. 1.1
tion H lk(ww+i—l

(N) /W (N)) has weight w+i; but

w+i-2

a > wt+ti, hence contradiction
(ii) If dim supp A > O we will use the induction by

dim Y. The conditions of lemma are local, so we may assume that

X 1is affine. Choose a generic hyperplane section Z ¢ X, name-

ly such one that for any irreducible subéuotient L of PH°Q,MY

) *
a canonical morphism iiL(l)[ 2] — iZL is isomorphism. Then

]
= lyng

My, g % (MY) 1] is a pure weight w+l1 perverse sheaf
|
on YA Z. Consider the complex iy, ,«My,,) = 1Z[l] 1y aMyi
P d ! o
one has W, H ly,M, . = 1Z[l] W1 HlM,. A subsheaf
N Pl vy oy
N, := i Q1 (N)  of " H 1y My, , satisfies the conditions of

lemma, hence, by induction hypothesis, i;Ll](A) has weight
'

i+l. Since ié[l}(A) # O (since dim supp A > O) our A

has weight i, and we are done. O

5.2.3. Corollary. Let Ml’ M2 be nure perverse sheaves of

weights Wy Wy that are both *- and ! -pointwise pure. Sup-

pose that Exg& (M

M2) # 0. Then either of the following
mixed

ll

conditions holds (here Yi := supp Mi)

(i) Yl < Y2, Yl # Y2, Wy = W, + 1

"
£
+
.—l

(ii) Y2 < Yl’ Yl # Y2, Wy 2

(iii) Yl = Y2.

Proof. Clearly either ch Y or Y2<: Y, (otherwise
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Extl = Q). Let 0O — M2 — N — Ml — O be the non-split m’'x-

ed extension. If Yl # Y2 and ch: Yz, then a canonical mor-

phism N -—- PHO i i* N = Pg° i, (M, | ) is injective
Y_)_\YL* Y;_‘ YL Y.L\ YLl 9_ Yl \YL

(since N 1is non-split), so we are in situation (i) by 5.2.2.

If Yl # Y2 and Y2<: Yl’ then N is a quotient of

lY,\ Yl!(MllﬁﬁVi)’ and (ii) holds by the Verdier dual to

5.2.2. 4

Let X be a finite monodromic K-variety. Note that if

Ml’ M2 are irreducible objects in M(i, K)i 1 such that
Extl - My, M,) # O then supp M, # supp M, (this follows,
M(X,K)X‘"l

using the functor 1i,,, from the fact that the category

M(Q, K)i 1 is semisimple if Q 1is a single orbit).
)
5.2.4. Corollary. Assume that X is K-pointwise pure.
. : > - #
Let M be an object in M(X, K)wanxea (so xe iu, ) such
that Wa_l(M) = 0 and Wa(M) = So(M)f Then Wa+i(M) = Si(M)

for any 1i.

Proof. Induction by i, using 5.2.2, the previous remark
and also the fact that any subquotient of M is Ko-equivariant.ﬂ

5.2.5. Example. Consider an irreducible K-equivariant
sheaf M. Let I(M) be an injective envelope of M in M(i’K)X,l'
Then I(M) admits a mixed structure (possibly after a finite
extension of base field), and for any one the weight filtration
coincides with socle filtration up to a shift.

Proof. The only problem is existence of mixed structure.
But M clearly has one (being a middle extension of a lisse

sheaf with finite monodromy). Any extension of Frobenius action

* *
M —-— Frob M to I(M) — Frob I(M) defines the mixed structure
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on I{M) (since any irreducible subguotient of I (M) admits
mixed structure, and any Frobenius action on irreducible is

unique up to twist).

5.3. Jantzen conjectures. Let us apply the above conside-

rations to (ka, K) -modules. Let (Lg, K) be an admissible Ha-
rish-Chandra pair (see 3.2), and Xe‘fé' be a fixed rational
dominant regular weight. The irreducible objects of .M(g, K)i
have geometric origin (see 1l.5.4 (v)), hence the corresponding
standard objects carry the weight filtration defined up to a
shift. According to 5.1.3 (i) it coincides with the Jantzen
filtration. So a bunch of weight filtration properties also

holds for the Jantzen counterpart via the equivalence

~r

Fs) ~
M(U, K&J”-—l+— M(X, KLiP° (below we use freely the road

from F to €, see [5), §6):

5.3.1. Corollary. The Jantzen filtration on standard
(U, K)bl—modules has semisimple successive quotients and does
not depends on the choice of positive deformation direction
Y (see 4.3).40

5.3.2. Corollary. Assume that X is (K,i ) ~pointwise pure
(see 5.2.1 (ii)). (UKD,

(1) The Jantzen filtration J,. on *~standard"module coin-
cides with the socle filtration; the one J!, on !-standard
module coincides with cosocle filtration.

(ii) If K = N, then J,. also coincides, up to a shift,
with cosocle filtration, and J!, - with socle one.

Proof (i) is, say, 5.2.2 plus the Verdier dual statement.

(ii) follows from 5.2.4 and the fact that Verma module contains

a unique irreducible submodule. O
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5.3.3. Remarks. (i) The siatewd(ii) above was proven in [1!
by purely algebraic means. One may conjecture that it remains
valid in case of arbitrary symmetric pair.

(ii) In fact, in !1l] the socle property of J:. for Verma
modules was proven for Jantzen filtration defined by means of
deformations of central character in arbitrary non-degenerate
direction, and we in §4 used the deformations in positive di-
rections only. I do not know whether one may use such arbitrary
deformations in the definition of J!, for any symmetric pair.A

For a regular X 13‘ put A (X) .- {ded:X(h )¢ Z}

It is well known that A (x) is root system with Weyl group
wix) o {w ¢ W: wY-Xe€ f;} (recall that f; =Z46 ). The or-

bit W(’( )x contains unique dominant weight, and for ')(/¢ W(X )x

one has Hom(M,,, My ) = O and [M, : Lyl = Ol here My € MU Mgyt
Verrma moduds w i.t'».&dw'ﬂf;- wetght 20+, Loy is its 2 duccble guetiznt ).
Let Y,,X, ¢ f@. be regular weights such that My, & My s
i 2

Then for ( unique) dominant X one has Xi = wi X where

Wik W(X ) and w with respect to usual order on W(X ).

1¢ "2
5.3.4. Corollarx..??f has J!i(M)(i )y = MXLr\ Jli*ﬁ“&%éug)(MXz)
(L\Q"Lz ¢ i &.thL ~fuwct£¢"ﬂ o )

Proof. Since dim Hom(Mx ’ sz) = 1 the embedding of the
4
corresponding standard mixed sheaves is nure of certain weight a.

Turning back to representations we see that J,. (M ) =
: X1

= MXL.\ Jf'*G(MXz)' It remains to show that a = t(mz) - ﬁ(wl).
We may assume that [Z(wz) - E(wl\ = 1 (if not, choose a
chain M, ¢ M, C ...c M cM of Verma submodules

A4 ¥, o Ve, -ty -1 X2

such that each successive M's has this property, and descend
along it). Then the Shapovalov's formula for the determinant

of contravariant form implies that the vacuum vector of Mj(
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lies in J!_l(MxL)\s J!"Z(Mlz)' Hence a =1 g.e.d. O
Let %X¢ f&_ be dominant regular, WyWo € W(X ). Put

_ Y . i

Py vy T 23 Gr i [M, * Lug) t7-

5.3.5. Corollary. This polynomial equals to Kazhdan-Lusz-
tig polynomial for the group W(x ).

Proof. According to [24) ch.l the Kazhdan-Lusztig polyno-
mials form the matrix coefficients of the matrix that transforms

the basis jw|( Qe) of K-group of the category M(i)i mixed

to the basis jw-

»(Qé ) . Since Jantzen filtration coincides
with weight one, our polynomials correspond to the entries of
the inverse matrix. Since these matrices coincides up to stand-
ard changes of signs of the coefficients {221, we are done.

5.3.6. Remarks. (i) 5.3.4 is Jantzen's conjecture [20]
(5.18), see also £15] (4.2), and 5.3.5 was conjectured in ([15],
[17); in [15] it was shown that 5.3.4 implies 5.3.5 by purely
algebraic arguments.

(ii) It would be nice to get the analogs of 5.3.4, 5.3.5
for arbitrary symmetric pair. The only problem is to compute
the weights in the space of Hom's between standard modules.
Also one wishes to know the weights in all the Ext's; I am ig-
norant of this even in Verma modules case. May be Extiﬂﬂwl, M%a)
is pure of weight 2i + ((wz) - é(wl) )

(iii) Denote by M(La, N)(x ) the Serre subcategory of
M(ga, N)X(’)\) generated by L‘:, )(/e W(X );( . one knows that
M(\a, N)X(W\) splits into the direct product of such subcate-
gories (with X runs the set of dominant weights in W-orbit).

It seems that the category -M(Q?, N)(X ) depends on the root
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(x)
system & X only (i.e. that M(yy, N)(X ) o g with isomorphic

root systems A (X)'s are equivalent). In particular,

M(y, N)(Xl) is equivalent to My, N)(x") if ¥ () = ¥ (X,).
Also this will imply the above corollaries for arbitrary (not
necessary rational, as we supposed) weights by reduction to ra-
tional case. I do not know any proof.

(iv) Consider the category M(i, N)i mixed which may be
called the category of mixed representations. One knows that it
is equivalent to the category of graded modules over certain
graded finite dimensional Koszul quadratic algebra possibly
Koszul self-dual l6]. Whether one may ascend the Kazhdan-Lusztig

algorithm to get the construction of this category (or this al-

gebra) directly in terms of root system or Weyl group?
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