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PREFACE

One of the fundamental techniques in physics and mathematics is the dis-
covery and exploitation of symmetry in a geometrical setting. The history of
mathematics is filled with instances of its use, from Felix Klein’s Erlangen
programme, Sophus Lie’s study of the invariants of differential equations
and the work of Cartan and Weyl to the modern representation theory of
reductive Lie groups in which the geometry of flag varieties plays a cen-
tral role. In physics, there is the development of relativity and of modern
quantum field theories in both of which the requirement is made that the
equations of the theory exhibit natural invariances. Special relativity, for
example, is the result of seeking a Poincaré invariant theory of mechan-
ics; Einstein’s motivation came from the Poincaré invariance of Maxwell’s
theory of electromagenetism.

Twistor theory, introduced by Roger Penrose in [116,118,119,120], is in
part a geometrical study of conformally invariant physics in four spacetime
dimensions. Maxwell’s equations are conformally invariant as is a closely
related family of equations, the zero rest mass field equations. This family
describes massless fields of arbitrary spin; they include Weyl’s equations
for massless neutrinos and the equations of (anti-)self-dual linearized grav-
ity. Initially, Penrose showed how solutions of these equations on spacetime
could be expressed as contour integrals of free holomorphic functions over
lines in three dimensional complex projective space; he later realized that
the freedom allowed in the function for a fixed solution was exactly the
freedom of a Cech representative of a sheaf cohomology class. The result-
ing isomorphism between a sheaf cohomology group on a region of projec-
tive space and solutions of a zero rest mass field equation on a region of
spacetime has become known as the Penrose transform. Since his origi-
nal work an entire industry has developed. Originally the impetus came
from mathematical physics and there is a wide literature from this point
of view [90,120,121,126,128,155,157]. Additionally, much fruitful work has
been done on the generalization of twistors and the Penrose transform to
curved spaces [3,6,8,11,12,26,58,70,86,106,123,154].
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The purpose of this monograph is to construct an analogue of the Penrose
transform when the conformal group is replaced by any complex semisimple
Lie group G and to study its relation to the representation theory of reduc-
tive Lie groups and algebras. Spacetime and projective space are replaced
by suitable open subsets X and Z of compact complex homogeneous spaces
or flag varieties for G; the transform calculates the cohomology of a homo-
geneous vector bundle on Z in terms of kernels and cokernels of invariant
differential operators on sections of homogeneous vector bundles on X.

For the physicist, this means that we are able to give a systematic ex-
ploration of twistor theory in higher dimensions than four. There is much
current physical interest in such generalizations since many mathematical
models of our universe (e.g. Kaluza-Klein [148], supergravity [130], string
theories [89], ...) view the usual four dimensional spacetime as a dimen-
sional reduction of a rather larger manifold. Thus, we hope that the Penrose
transform herein will find application in such settings. One such applica-
tion has already been suggested by Witten [162]. We set up a simple al-
gorithm for computing the transform so that our readers can explore the
consequences of the theory for themselves. In doing this, we make use of
two important results in representation theory, namely, Bernstein-Gelfand—
Gelfand resolutions and the Bott-Borel-Weil theorem. We shall give proofs
of these results which we hope physicists will find geometrically appealing.

For the mathematician, we wish to present the Penrose transform as of
interest in its own right as a construction in representation theory. We shall
see that it can be thought of as a geometric globalization of Zuckerman’s de-
rived functor construction. The transform can be used to construct unitary
representations on cohomology groups (without the technical difficulties of
L%~ cohomology) and to study homomorphisms between Verma modules
(induced from a parabolic) especially those, called non-standard, associated
to multiple subquotients of Verma modules.

Often, Z will be the complement of a Schubert variety and cohomology
over Z will be isomorphic to cohomology supported on the variety (up to
a finite dimensional error). Such relative cohomology occurs in the work
of Beilinson-Bernstein as the cohomology of a Dx-module on the total flag
variety G/B of G. Here, X is a weight for the Lie algebra g of G. Via the
Penrose transform, we can compute examples of such cohomology when A
is not dominant and see how the lack of dominance affects the structure of
the resulting g-modules. Non-standard homomorphisms of Verma modules
seem to be easy to generate when we do this.

We have tried to write this book in a way which will be intelligible
to both mathematicians and physicists. So we presuppose no acquaintance
with twistor theory and a minimum of representation theory. This inevitably
means that we shall have to spend time expounding some basic material in
either camp and we apologize in advance for the irritation this may cause
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the experts. Since our aim is to use this material we have kept such ex-
positions short—[94,127,128] will provide fuller explanations. We require
a certain amount of mathematical sophistication ([25] contains most of the
homological algebra we shall need, especially concerning spectral sequences)
but we hope that in return the reader will be rewarded by the sight of ab-
stract methods being used to compute concrete results. We are keen to
give a practical “user’s” guide to the transform and strongly encourage the
reader to compute examples for each recipe encountered.

For completeness, we begin the book with an introductory chapter which
sketches the development of the Penrose transform. In it we explain what
Minkowski space is (for the non-physicist), show how solutions of the zero
rest mass field equations can be given in terms of integral formulae, and
interpret these geometrically. Along the way we note several topics (e.g. ho-
mogeneous spaces and vector bundles, cohomology, double fibrations) which
we will take up in detail later. None of this chapter is needed in the remain-
der of the book so it may be omitted on a first reading. On the other hand
it could serve as a handy route map when the going gets tough. ,

Chapter 2 reviews the basic structure theory of complex semisimple Lie
algebras and introduces the class of manifolds, namely complex homoge-
neous manifolds or flag varieties, on which the Penrose transform is defined.
In it we introduce a useful notation, based on Dynkin diagrams, for rep-
resenting parabolic subalgebras and the associated flag varieties, which we
shall develop as the book advances until it (or, rather, the reader) is capable
of computing the Penrose transform. In chapter 3 we review some represen-
tation theory, discuss homogeneous vector bundles, and adapt the diagram
notation to these. Chapter 4 deals with the Weyl group of a semi-simple Lie
algebra and explicitly indicates its action on weights. This is in preparation
f(?r computing cohomology using the Bott—Borel-Weil theorem for which we
give a simple proof (in the geometrical spirit of this book) in chapter 5. The
tl}eorem is the first main ingredient of the transform—we use it to compute
direct images in the “push-down” stage. The reader who is already familiar

with the theory of Lie algebras is encouraged to skim these chapters for
notation.

‘ Chapter 6 (which may be omitted on first reading) is by way of a digres-
sion; having developed the abstract theory of Lie algebras, Weyl groups, etc.
we set ourselves an exercise on understanding a little more about the si’;ruc-
ture of flag varieties. We first see how they can be projectively embedded
and given a cell decomposition. Then we compute their cohomology rings
fmd, lastly, study their symplectic geometry. All this is well known, but it
}s derived easily at this point and is so beautiful that we could not resist its
inclusion. We encourage the reader to skip this on a first reading and hurry
along to the next chapter, which is where the book really begins.
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Chapter 7 introduces the Penrose transform itself. We give it first in
a very general setting of a complex or algebraic variety fibred over two
varieties. The transform then relates cohomology on one of these to solutions
of differential equations on the other. Later (in chapter 9) we specialize to
double fibrations of the form

G/R G/P

where G is a complex semisimple Lie group and P, Q and R are parabolic
subgroups. We set X C G /P to be open and, usually, Stein or affine, and
Z =nor~1X. Then, if £ is a homogeneous holomorphic vector bundle on Z,
the Penrose transform computes H*(Z,€) in terms of invariant differential
operators between sections of homogeneous sheaves on X.

The second main ingredient in computing the transform is a resolution,
due to Bernstein-Gelfand—Gelfand, along the fibres of 7. This is dealt with
in chapter 8 and is based on the following simple idea. Suppose given on
a manifold a family of vector fields X; with the property that whilst they
themselves may not span the tangent space at each point, the Lie algebra
they generate does. Then a smooth function f is constant if and only if
all X;f vanish. From this we can develop a differential resolution of the
constants analogous to, but more efficient than, the de Rham resolution.
Exactly this situation pertains on flag varieties and the construction yields
the Bernstein-Gelfand—Gelfand resolutions.

All of this theory is brought together in chapter 9 where we are able to
give many worked examples of the Penrose transform, from the standard
four dimensional conformal Penrose twistor theory to higher dimensional
twistor theories on conformal manifolds, on Grassmannians and for excep-
tional groups. Using the results of this chapter we show (chapter 10) how
the Penrose transform can be used to construct realizations of unitary rep-
resentations for real forms of G on the cohomology groups in the transform.
We should stress again that this construction avoids L? cohomology and its
technical difficulties. It is a cohomological translation of a physical inner
product on solutions of invariant differential equations (specified by a Dirac
operator, say).

Chapter 11 is devoted to understanding the various module structures
on cohomology, comparing the Penrose transform with Zuckerman functors
and with Beilinson—Bernstein theory. In it we study invariant differential op-
erators between homogeneous sheaves and their relation to Verma modules
and show how the Penrose transform, and therefore Zuckerman’s functors,
can be used to generate homomorphisms of Verma modules.

Chapter 12 reviews the constructions of the book and suggests further
avenues for research.
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INTRODUCTION

In this first chapter we want to try to develop the Penrose transform from
scratch. Penrose originally noticed that there are simple contour integral
formulae! for solutions of a series of interesting equations from physics,
namely the zero rest mass free field equations of mathematical physics. The
Penrose transform is, in one sense, a machine for showing that all solutions
can be obtained in this way. It is a lot more than that, for, as we shall see, it
generates the equations as geometric invariants and says much about their
symmetries.

Zero rest mass fields are of fundamental importance in physics. They
describe electromagnetism, massless neutrinos, and linearized gravity. They
all share the property that they are conformally invariant—that is they are
determined by the conformal geometry of spacetime and so depend only
on knowing how to measure relative lengths and angles, not on an overall
length scale. Thus the equations which specify these fields are invariant
under motions which preserve this conformal geometry and so the space of
fields is invariant under the group of these motions. Our ultimate aim is
to develop a Penrose transform when this group is any complex semisimple
Lie group and to see what the representation theory of such groups implies
about the Penrose transform.

We shall begin with a short study of Maxwell’s equations for electromag-
netism, which, in the absence of charges, amount to a pair of zero rest mass
equations on Minkowski space. The idea is first to see where they are most
naturally defined, and then to understand the contour integral formulae for
them geometrically.

The rest of this book does not depend on an understanding of this chap-
ter, which may therefore be omitted at a first reading. We hope, however,
that the reader will eventually take some time out to understand the origins
of the transform in mathematical physics.

1Similar to those of Bateman and Whitacker for the wave equation and Maxwell’s equa-
tions [13]
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Minkowski space

Maxwell’s equations for a free electromagnetic field (i.e. one in the absence of
charges) can be succinctly written down using differential forms as follows:

dF =0 and dxF=0.

Here F is a two-form on R* which represents the electric and magnetic fields,
d is exterior differentiation, and * is the Hodge star operation with respect
to a (flat) Lorentz metric g on R*. Using indices, they may be written as

V[anc] =0 and V[a*Fbc] =0

where [...] indicates that the enclosed indices are to be skewed over. Here
xFy, = %EadeFCd where €504 is the volume form with respect to g and we are
using the Einstein summation convention (as in [127], for example). It is
easy to check from these formulae that * acting on two—forms is independent
of the scale of the metric g—any metric x2g yields the same * on two-forms.
Of course, d is invariant under any diffeomorphism of R*, and it follows
that Maxwell’s equations are invariant under the conformal motions of R4,
i.e. diffeomorphisms of R* which preserve g up to scale. These include the
Poincaré motions which are those globally defined conformal motions which
preserve the scale of g. Now on two forms, x2 = —1 and so we may write

F=¢+¢

where ¢ and qg are in the +i eigenspaces of *—in particular, they are neces-
sarily complex two-forms (and conjugate). In terms of these, Maxwell’s

equations become 3
dp=0 and d¢=0.

There are three observations to make here. First, if the metric g is taken
to be Euclidean, then %2 = 1 and there is no need to introduce complex
two-forms to obtain the decomposition; on the other hand, we may simply
choose to allow F to take complex values and replace R* by C*. This turns
out to be a very convenient thing to do and even the most natural thing
to do when we study contour integral formulae, in a moment. It may seem
rather strange physically, but even then it is a wise move, especially if we
have quantum mechanics in mind—there we are actually interested in the
analytic continuation of fields from R* to tube domains in C*. There is
also the bonus of not having to distinguish between different signatures for
g. So, from now on, we work over C and refer to four dimensional complex
Euclidean space (with its flat holomorphic metric) as affine Minkowski space.

The second observation is that not all conformal diffeomorphisms of
affine Minkowksi space are well defined everywhere. For example, if
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x,b € C* then the mapping

x + b||x||?
14+ 2b-x+ ||x|2|b||

is conformal but not defined on the light cone of the point —b/||b||%2. To
rectify this we need to compactify affine Minkowski space. This is very
similar to forming the Riemann sphere from C so that fractional linear
(Mobius) transforms are globally defined. We will do this in detail in a later
chapter; it turns out that the right choice is the Grassmannian Grz(C*) of
all two dimensional subspaces of C*. The embedding is given by sending the
point x = (z°, z!, 22, 2%) of affine Minkowski space to the subspace spanned
by the vectors

1 0

0 1
z0 + ! and 22 +ixd | (1)
z? —ig® 20 — gt

Denote the image of x in Gry(C*) by z. We shall refer to the resulting
conformal compactification as Minkowski space. Then the global conformal
motions of Minkowski space can be realized as the group SL(4,C) (modulo
its centre) with its natural action. Indeed, consider the matrix

1 0 ®—-b —b2—4bd
0 1 —b>+ib® bO+p!
00 1 0
00 0 1

Applying this to the two vectors representing x yields the image of y in
Grg(C4).

Homogeneous bundles on Minkowski space

This brings us to our third observation—the two-form F' is a section of a
homogeneous vector bundle on Minkowski space and the decomposition given
above is its reduction into its irreducible components. Let us briefly recall
the natural bundles on Gry(C*). The simplest is the so—called tautological
bundle, S’, whose fibre S, at z is the two dimensional subspace z C C* itself.
Similarly, there is the quotient bundle S whose fibre S, at z is C*/z. §’,8
are the spinor bundles on Minkowski space. In Penrose’s abstract index
notation [44,127] they are denoted

S = OA/ and S = OA.
Their duals are denoted

S* =04 and S§*=0,.
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(Thus the natural pairing between dual bundles is achieved by contrac-
tion between an upper and lower index.) Both S and S’ are homogeneous
bundles—this means that the action of SL(4,C) on Minkowski space lifts to
an action on sections of these bundles. This is easy to see, since any ele-
ment of SL(4,C) mapping z to y in Minkowski space is by definition a map
sending S, to ). Furthermore, both bundles are irreducible in the sense
that the isotropy group of z acts irreducibly on S;,S,. Put another way,
neither contains a proper homogeneous subbundle. Bundles formed from
S, S’ by taking tensor products, direct sums, etc. are also homogeneous, in
the obvious way.

Now it is a standard fact that on any Grassmannian the tangent bundle
is the tensor product of the quotient bundle and the dual of the tautological
bundle; so the tangent bundle of Minkowski space is

0=5®5" =0
and the cotangent bundle, or bundle of one—forms, is
AN =5"®S5 =044
From this it is easy to compute that two-forms are sections of
02 = [025%] ® [A2S' @ A2S" ® ©25']

where ©*S’ indicates the k™ symmetric power of S’. The bundle L = A%S
is called the determinant line bundle on Minkowski space. It is convenient
to fix an element of A*C? so that we can identify L = A%2S™. In the notation
of [44] L = O[1] and L* = A’S* = O[-1]. Then

0= O(AB)[—l] (&) O(A'B')[_ll

(where (A'B') indicates that the enclosed indices are to be symmetrized).
This gives the decomposition F' = ¢ + ¢. Maxwell’s equations become

vﬁlQSAB =0 and Vﬁ,&AIB/ = 0.

To write these equations we have had to choose a metric locally on
Minkowski space and form the Levi-Civita connection V 44 on spinors. We
must choose a metric in the conformal class of metrics. To see what this
means, notice that a metric must be a section of

®2 Ql = [@25* ® ®2sl] o) [/\25* ® /\2511 (2)

and is in the conformal class if its projection onto the first factor is zero.
Such a metric must have the form

Jab = €ABEA'B
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where €45 and €4 are antisymmetric and each is a square root of g
(noting A28* = A25’). Let €4P and €4’ be their inverses. Va4 is defined
by the requirement that it be torsion free and preserve both €’s; define
V4, = 4BV and V4 similarly. The fact that Maxwell’s equations are
conformally invariant corresponds to the fact that the operators

bap — Vidap and dap — V4 bup

do not depend on the metric g, but only on the decomposition (2).

Penrose’s contour integrals

Consider the second of these equations. Penrose has given a contour integral
formula for its solutions [119,128]:

Pap(@) = § mams fn(m,2))n” drp.

To interpret this formula, let = be fixed and let 74 € S; determine a vector
z = n(m,z) € C*. f is a holomorphic function on an appropriate region of
C* which is homogeneous of degree —4 so that f(Az) = A=*f(z) for A € C.
Let 72" = ¢P'E' g, It is easy to see that the integrand is independent of the
scale of 7 (because of the homogeneity of f.) It is therefore well defined on
a domain contained in the projective line P S, of one dimensional subspaces
of z. By requiring f to have appropriately situated singularities, we may
suppose that this domain is not simply connected and choose to evaluate
the integral over a non-trivial contour. We may also suppose that this
prescription may be carried out smoothly as we vary z.

To check that ¢ is a solution we confine ourselves to affine Minkowksi
space X. Then V4 = 8/8z44 where z44" is the matrix

204+t 2?4 izt
2 —ird 20—zt

and the index A labels rows whilst A’ labels columns. Following (1), z is

the column span of
IS
(%)

IC/I A
z=17(7r,av)=(w;{‘c,)ﬂ'c/=(QEAC‘I1 )

VYol

and

It follows that we may write

0
Wf(z) = 7o fo(2)
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and so - ) .
V&dap(z) = *“Vaoocdan
= fﬁAlClﬂAlﬂBlﬂclfc(z)’n’Dldﬂ'D/

=0

(by the antisymmetry of e4'C").
We required that f be homogeneous of degree —4; it is clear from this
calculation that if f is homogeneous of degree —n — 2 and if

Yap..c(z) = f{ﬂ'AfWB' ey f(ﬂ(”ax))ﬂpldﬂ'pf

n terms

then
VA bap. o =0

where ¢ € O"S' ® L* = O pr..cn[—1]. Solutions of these equations are
called free zero rest mass fields of helicity n/2. The operator

7
Yap..o— Vitap. o

is conformally invariant and is nothing more than the Dirac—Weyl operator
of helicity n/2.

Let us try to give a geometrical interpretation of these integrals. Notice
that f should be thought of as a section of a homogeneous line bundle over
CP3. The natural homogeneous line bundle on CP? is again a tautological
bundle, H, whose fibre at a point is the one dimensional subspace of C*
specified by that point. We claim that if f is homogeneous of degree —1 on
C* then f determines a section of H. This is easy to see: for Z € C* consider
f(Z)Z € C*. This is constant along any one dimensional subspace of C*
and defines an element of that subspace. Moreover, if f is homogeneous
of degree —k < 0 then f defines a section of H®*. (This bundle is usually
denoted by O(—k).)

Notice also that f may not be defined over all of CP3, for otherwise,
by Cauchy’s theorem, 1) would be zero. To avoid this, f should have singu-
larities arranged in such a way that f(n(w,z)) is non-singular over, say, an
annulus in PS,, for each z € X. There is also a natural freedom to change f
without affecting ¢; by Cauchy’s theorem, again, if we add to f a function
f with f(n(m,z)) non-singular over a contractible region of PS; for each
x € X, 9 is unchanged.

Penrose recognized that this freedom is exactly the freedom of a Cech
representative of a first cohomology class with values in O(—n — 2) defined
over the region Z in CP® swept out by all the lines PS,. So contour inte-
gration gives a map

P: HY(Z,O(—n —2)) — zero rest mass fields 945 on X.
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(It has to be checked that the domain of P is all of the cohomology group.)

We shall see that P is an isomorphism. The general machine which has
been developed to prove this is the Penrose transform. We can construct this
machine from the contour integral formula by trying to give it a geometrical
interpretation.

The Penrose transform

The first thing to note is that the contour integral is really defined on the
projective bundle P5’, for that is where its integrand lives. The second is
that it is well defined if we replace f(n(m,z)) by any function f’ of z and
7 which is homogeneous of degree —n — 2 in « (although, of course, the
resulting field 1) may not then satisfy the zero rest mass equations). What
does such a function represent? The reader will be unsurprised to learn that
it is a section of a homogeneous line bundle. To see this, observe that

PS ={F,CFKCcC!'|dmF =i}=Fp

is a partial flag variety with an evident transitive action of SL(4,C); if H' is
the tautological line bundle assigning to ([r], z) the span of 7 then f’ gives
a section of H'®"*2, Adapting the comments of the previous paragraph
we see that, provided the singularities of f’ are appropriately situated, f’
represents a first cohomology class with values in H'. If 7 : PS" — Gry(CY)
sends ([r],z) to z and if Y = 771X then

f' € HY (Y, H'®"*?).
The point is that contour integration identifies
HY(Y,H®"*?) 2 (X, Oap..co[~1]).

Put another way, cohomology on Y can be computed by first computing
cohomology along the fibres of Y — X (using a contour integral) and then
by taking sections over X.

Now let us understand where the zero rest mass equations arise. If 5
denotes the map PS’" — CP3, then it is evident that H' = n*H and that
any section f of H defines a section n*f of H' by the formula

n*f(m z) = f(n(rw,z)).
This means there is a map
n* : HY(Z,0(=k)) — H'(Y,H'®"). @)

Furthermore, any f’ is of the form n* f only if it is constant along the fibres
of 1; we can express this as a differential equation:

[l =74V gu f (m,2) = 0.
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f4 is also a section of a homogeneous vector bundle on PS’; we shall simply
call this Q,(H’) to indicate that it arises when we differentiate sections of
H' along the fibres of . (The justification for the notation will come later.)
Contour integration (for example) shows that

HY(Y,Q,(H"®"*?)) 2 (X, 04 5...cH[—2])
N —

n — 1 terms
and that 74V g4 induces the operator

Hl(Y, Hl®n+2) N HI(Y, Qn(Hr®n+2))
Yap.. .o — Vibas. o

The facts that n* H'(Z, O(—k—2)) is the kernel of this operator and that n* is
an isomorphism onto this kernel now seems intuitively reasonable (although
there is a substantial amount of technical detail to be checked here).

We may summarise this discussion as follows. We have been considering
a double fibration or correspondence

Fi2
n T
/ N\
CP3 Gr,y(C?)

of generalized flag varieties. Given an open (affine) X C Gry(C*) such as
affine Minkowski space we induce a sub-double fibration

Using n*, we identify cohomology on Z with coefficients in a homogeneous
sheaf F with cohomology on Y of the sheaf =1 F (an isomorphism requiring
a topological restriction on X, in general—affinity is sufficient). This is a
submodule of the cohomology of *F on Y, distinguished by means of certain
invariant differential equations along the fibre of . Finally, we interpret the
cohomology of n*F and these differential equations in terms of sections of
homogeneous bundles on X. Modulo technical questions this should express
H*(Z,F) in terms of invariant differential equations on X.

This, in a nutshell, is the Penrose transform. We have glossed over
several technical matters and swept a large amount of homological algebra
(or abstract nonsense as some call it) into a future chapter where it properly
belongs. But at last we are in a position to explain to the reader what this
book is really about.
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The Penrose transform on flag varieties

Our aim is to provide the reader with a streamlined and finely tuned version
of this machine in the context of arbitrary complex semisimple Lie groups.
To construct it we shall replace Gry(C*) and CP? by two compact complex
homogeneous manifolds G/P and G/R for an arbitrary complex semisimple
Lie group G. P,Q are parabolic subgroups of G and we shall require that
@ = P N R is parabolic also. The basic geometric setting is the double
fibration
G/Q

7
7 N\
G/R G/P.
Let X be an open submanifold of G/P; X may, for example, be a maximal
affine subvariety (an affine “big cell”) or a union of open orbits of a real
form of G. Set Y = 77X and Z = nX. Let F be the sheaf of germs of
holomorphic or regular sections of a homogeneous vector bundle on G/R.
By following the ideas sketched above we shall interpret H'(Z, ) in terms
of kernels and cokernels of invariant differential operators on sections of
homogeneous vector bundles on X. The invariant differential equations
on Y will be induced by Bernstein-Gelfand-Gelfand resolutions and the
cohomology of the homogeneous sheaves on Y will be computed as sections
of homogeneous sheaves on X using the Bott-Borel-Weil theorem. The
whole construction will be manifestly invariant under the action of the Lie
algebra g of G and under any subgroup of G which preserves X.
So now it is time to begin our journey. We do so with a review of the
theory of Lie algebras and their representations.
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This and the next few chapters are concerned with developing the mathe-
matical background we shall need for the Penrose transform. They consist
of (brief) reviews of the representation theory of complex semisimple Lie
algebras and the geometry of flag manifolds.

In this chapter, we review the structure and geometry of generalized
flag manifolds; these are the varieties of parabolic subalgebras of complex
semisimple Lie algebras and so are homogeneous spaces G/P where G is
a complex semisimple Lie group and P is a parabolic subgroup. As com-
plex manifolds, they are compact, Kéhler (indeed, projective), and simply
connected; they exhaust all such manifolds which also admit a holomorphic
homogeneous action of a complex Lie group.

There is no loss of generality in assuming that this Lie group G is simply
connected, in which case its properties are determined by the Lie algebra g
associated to G. Accordingly, we review the structure theory of semisimple
complex Lie algebras and their parabolic subalgebras, introducing a par-
ticularly useful notation, using Dynkin diagrams, to distinguish parabolic
subalgebras and flag manifolds. In fact, we shall usually assume that our
Lie algebra g is simple, the semisimple case being a fairly trivial extension
of the simple theory.

Several examples are constructed: in particular, we give a brief exposi-
tion of fibrations of generalized flag manifolds.

The reader who is unfamiliar with the details of the structure theory of
Lie algebras may wish to consult [94] and more detail on generalized flag
manifolds may be found in [18,85,156].

2.1 Some structure theory

Let g be a complex semisimple Lie algebra and G the associated simply
connected Lie group. A maximally Abelian self-normalizing subalgebra h
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is called a Cartan subalgebra, and any two of these are conjugate under the
adjoint action of G. Fix such a subalgebra, once and for all, and consider
its adjoint action on g:

for heh, veg, (adh)v=[h,v].

Then g decomposes as a direct sum of joint eigenspaces under this action.
The zero eigenspace is h itself. All others (called root spaces) are one-
dimensional. We set, for « € h* = Homg(h, C),

8o = {v € g s.t. [h,v] = a(h)v}.
The collection
A(g,h) = {a € b s.t. g, # {0},a £ 0}

encodes much of the structure of g and is called the set of roots of g relative
to h. (Having fixed h, we shall often simply write A for A(g,h).) Thus,

g=h@®ga~
aEA

Since, by the Jacobi identity on a Lie algebra, [g4,8s] C 8a+s (which may
be zero), A(g,h) spans an integral lattice in h* called the root lattice: let
hg be the real span of that lattice. Then hy is totally real and has real
dimension the same as the complex dimension of h*. In other words, h* is
the complexification of hg.

A subset S C A with the property that every @ € A may be expressed
as a linear combination of elements of & with all non-negative or all non-
positive coefficients is called a system of simple roots of g. Such S exist and
then S is a basis for h* and A is contained in the integral lattice generated
by S. Any two such S are conjugate. We shall fix a choice of S once and
for all. There is then an induced partial ordering on h*; if A\, u € h*, write

A p <= A-p=)_ a;o; witha; €S and a; > 0.

The subset
At(g,h,S) ={a € A(g,h) s.t. a > 0 w.r.t. S}

is called the set of positive roots (with respect to S).
Now g admits a bilinear form, the Killing form, as follows: if u,v € g,
let ad u and ad v be the corresponding endomorphisms of g given by

(adu)z = [u, z] etc.
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Table 2.1. Dynkin diagrams of simple Lie algebras

A, sl{(n+1,C)) o o o ---0—o
B, (so(2n+1,C)) e --- e
C, (sp(2n,C)) oo o - ote

E8 o—o—[—a——o—o—c
Fy .—‘.=)=._.
G2 -

Then set
(u,v) = tr(ad u)(ad v).

This bilinear form is non-degenerate on h and hence on h* which is thus iden-
tified with h by means of { , ). It restricts to a positive definite quadratic
form on hg.

It is the central theorem of the structure theory of complex semisimple
Lie algebras that a knowledge of the conformal structure of this Euclidean
space together with the basis S determines and is determined by g. Specifi-
cally, if o € A(g,h) and

a¥ =2a/{a,a)
is its co-root, then for S = {a;}, the Cartan integers
Cij = (ai,a}/)»

called the Cartan matriz, uniquely specify g. This matrix is severely re-
stricted. A useful shorthand to describe it is a so-called Dynkin diagram
(as in table 2.1). This is a graph (with some directed edges) whose nodes
correspond to the simple roots «; and whose edges determine c;; thus:
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1. {a; ) =2

2. a; # a; are connected iff (a;, o) # 0

Q
)

3. o = (apY)=-1
L:=)=lz — (a,ﬂv) = -2 (ﬂaav> = -1
s = (@) = -3 (BaY) = -1

2.2 Borel and parabolic subalgebras

We shall be concerned with a certain class of subalgebras of g. The sim-
plest of these are the Borel subalgebras defined to be the maximal solvable
subalgebras of g. The prototype or standard Borel subalgebra is

b=h®n

where

n= P g

acAt(g,h)

Example (2.2.1). If g = sl(n, C), then h consists of the diagonal ma-
trices, n the strictly upper triangular matrices, and b the upper triangular
matrices.

Every Borel subalgebra is G-conjugate to the standard prototype b. A
parabolic subalgebra of g is one which contains a Borel subalgebra. Again,
there exists a standard form for these. Given g, h, and S as usual, let Sp
be a subset of S and set

A(l,h) = spanSp N A(g, h)

so that

l1=he P ga
aeA(lh)

is a subalgebra of g. 1is reductive: 1= [1,1] 4+ 1; where 17 is the centre of 1
and 1g = [1,1] is semisimple of rank = |Sp|. Let A(u,h) = A*(g,h)\ A(l,h)
and take
u= P 8.
a€A(uh)

Then u is nilpotent, and the subalgebra

p=1l6u (4)
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contains b and is hence parabolic. Up to conjugation, all parabolics arise
in this way. The decomposition (4) of p is called a Levi decomposition. It
will also be useful to set

uw= P g

aeA(u,h)
This gives a complement to p in g, that is a subalgebra u_ with
g=u_op.

A parabolic is called mazrimal if it is a maximal proper subalgebra of g.
Then Sp, is just one element short of S.

A useful notation for a standard parabolic p C g is to cross through all
nodes in the Dynkin diagram for g which correspond to the simple roots of
g in §\Sp. For example, the standard Borel subalgebra has crosses through
every node whilst a maximal parabolic has only one crossed node. The Levi
factor 1 of p then comprises a semisimple part lg, whose Dynkin diagram is
obtained from that of p by deleting crossed nodes and incident edges, and
a centre 1z C h of dimension |S \ Sp| = number of crossed nodes. We may
choose a Cartan subalgebra hy of g so that hy @1z = h. Specifically, for our
standard parabolic, if we use the Killing form to identify h with h* then we
should take

h; = spanSp, = hNls.

Example (2.2.2). Let g = sl(4,C) with h and S as above. It can
readily be checked that, for example,

Xk ) ok ok
Xk ) ok ok
o — . €sl(4,C)
0 0!x x
JKAK Kk
O!x x x
X—o—o — 0% % x € sl(4,C)
0 E * k%

The subalgebras 1, u consist, respectively, of the “diagonal blocks” and the
“top right hand block”.

2.3 Generalized flag varieties

Again, let g be a complex semisimple Lie algebra and p C g a fixed parabolic
subalgebra. Let G be the associated simply connected Lie group with g as
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Lie algebra. Then p gives rise to a subgroup of G which will be denoted by
P. The subgroups which arise in this way are called the parabolic subgroups
of G. All are conjugate to a standard parabolic subgroup i.e. one obtained
from a standard parabolic subalgebra. Let X be the set of all parabolics in
G which are conjugate to P. The stabilizer of the conjugation action of G
on X is exactly P whence X may be regarded as a homogeneous space:

X =G/P

as in, for example, [95,139]. As pointed out above, X is simply connected
and compact. In fact, P is parabolic if and only if G/P is compact [95].
As a complex manifold it is Kéhler; indeed we will show how to construct
a projective embedding in section 6.1. Conversely, Wang [152] has shown
that all compact simply connected homogeneous Kéhler manifolds are of
this form.

These spaces will be called generalized flag varieties, in honour of the
case g = sl(n,C). To designate a particular generalized flag manifold we
shall abuse notation and denote X by the same Dynkin diagram as p.

Example (2.3.1).  The basic examples of flag manifolds are the varieties
of complete flags in a vector space V; a complete flag in V is a nested
sequence of subspaces

wcwc...cV,=V

where dimV; = i. If {e;} is a basis of V, then a standard flag is given by
V; = span{ey, e3,...,€;}. SL(V) clearly acts on this variety, with stabilizer
the subgroup B of upper triangular matrices, at the standard flag. Thus,

F (V) = Variety of complete flags in V = SL(V)/B.

In the notation introduced above, F, = %—<—X -+ %—X (m—1 nodes). The
simplest case is x = CP;.
More generally, we may consider the varieties of partial flags in V. Let
n = (a,b,...,d) be a strictly increasing sequence of natural numbers with
d < m = dimV; then a partial flag of type n in V is a sequence of nested
subspaces
Vv,.cV,c...cV,CcV

where dimV, = e. A standard flag is easily constructed from a basis {e;}
and, relative to this basis, the stabilizer of the standard flag is the parabolic
- Qa ap
p— —@ - 0—X—@ - 0—X—9 - etc'

realizing the variety Fn(V) of partial flags of type n in V as a generalized
flag variety. Projective spaces and Grassmannians are particular examples
of such varieties.
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Example (2.3.2). In Penrose’s twistor theory [90,126,128,155], we
should take G = SL(4,C). To see why this is so, begin with complex
(affine) Minkowski space which is just C* with a complex metric which may
be written in null coordinates as

Iy 11? = 2(y194 — v2us)
where y € C*. Similarly, if x € CS write
[x)1? = 2(z126 — 225 + T324).

Then define a mapping C* — C¢ by

1
qS:y—* (5,:‘/1,-"7?/47”3’”2)

so that ||¢(y)]| =0, i.e. ¢(y) is null.

Twistor theory, however, concerns itself primarily with the conformal
geometry of Minkowski space; so we should allow for the replacement of the
metric on C* by a conformally rescaled metric

IIyII':’ = 252(311114 — Yay3)

with k € C and adjust ¢ to
K 1112
¢I€ 'y — (§,ﬁy1,-'~,'€y4”‘3 ”y”n)

so that again ||¢.(y)|| = 0. Of course, ¢, = k¢ so that the conformal geom-
etry of C* defines an embedding of affine Minkowski space into CP5 whose
image is evidently an open dense subvariety of the quadric corresponding to
the null cone of the origin in C%. In twistor theory it is customary to call
this quadric (complexified, compactified) Minkowski space; it is a conformal
manifold, for locally we may use ¢, to define a complex metric up to scale.
Of course, this quadric is also the complexification of the four sphere (since
signature is irrelevant over C.) Denote it by

M = CSs*

Spin(6, C) acts transitively on M and a moment’s thought shows that
it covers the group of conformal motions of M which is just the image
of Spin(6, C) in PSL(6,C) so that the covering is 4 — 1. Now recall that
Spin(6, C) is just SL(4,C), for we may identify C® with A2C* and SL(4,C)
is simply connected. The metric on CS8 is defined by the following: let
n € A*C* be a volume form preserved by SL(4,C) and if x € A2C* then

zAhz = |x|*n.
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So a vector is null if and only if it is represented by a simple two-form; but
simple two forms defined up to scale are in one-to-one correspondence with
two dimensional subspaces of C* so that

M = Gry(C*) = e—x—s,

As an even dimensional quadric, M has two distinct families of (totally
null) two-planes usually called a-planes and (-planes. These families con-
stitute generalized flag varieties also: they are projective spaces

PT = %—e— and PT* = e—e—x,

Each point in M corresponds to a complex line in PT or PT*—a fact
classically known as the Klein correspondence. Any two a-planes or (-
planes in M intersect in a single point. However, an a-plane and a (-plane
generically miss each other. If they happen to intersect, then they intersect
in a line which is null in the conformal structure on M. All null lines of M
arise in this way and so the space of such lines is the partial flag variety

N = x—e—x,

Remark (2.3.3). In standard twistor theory, N is called ambitwistor
space A, since a point of A is a pair of points ([Z?],[W,]) (in homogeneous
coordinates) with [Z°] € PT, [W,] € PT*, and Z*W, = 0. This extremely
useful situation has no analogue for spaces of null lines in dimensions other
than four (see example 2.3.5).

The remaining partial flag varieties of T play the role of correspondence
spaces in the Penrose transform.

Remark (2.3.4). The observations of example 2.3.2 led one of us
[50,51] to generalize the well-understood Penrose transform between these
spaces [44] to a transform between all partial flag varieties; this book may be
regarded as a continuation of that programme to generalized flag varieties.

Example (2.3.5). It is easy to generalize example 2.3.2 to higher
dimensions; the analogue of Minkowski space will be the complexified sphere
or complex quadric CS™. Simply replace C* and C® by C™ and C™*? and
adapt the formulae for the metrics and the embeddings ¢, in the obvious
way.

In even dimensions m = 2n we find

CS™M= o 4 o... ,_< (n + 1 nodes).



18 2 LIE ALGEBRAS AND FLAG MANIFOLDS

CS2" again contains two distinct families of n-planes, namely

Z2n= —e ....g_<
Z2n = .._<

each being n(n + 1)/2-dimensional. They generalize the (projective) twistor
spaces for M and so we shall call them higher dimensional twistor spaces.
In example 6.1.3 we shall identify them as the projective spaces of reduced
pure spinors for SO(2n,C).

In odd dimensions m = 2n +1

and

Cs2n+1 — X—e—9 " .%:‘ (TL + 1 nodeS).

0Odd-dimensional quadrics have only one family of (totally null) n-planes.
This is the generalized flag variety

720+l _ o o0 - &FX

of dimension (n + 1)(n + 2)/2. It is again the natural generalization of the
twistor space for M and the projective space of pure SO(2n + 1,C) spinors.
In even dimensions, there is a natural analogue of the ambitwistor space

in four dimensions, namely

A2n= o——+—4‘—< .

However, for n # 2, A?® is not the space of null lines in CS2". This latter
space N2% may be identified as follows: LeBrun observed [105] that the space
of null geodesics in any conformal manifold admits a contact structure. The
homogeneous contact manifolds were identified by Boothby [21], there being
exactly one for each complex simple Lie algebra. So

Nznz .—X——.""_<

N2n+1:.+.....=):. .

Of course, these identifications may also be made by pure thought.
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2.4 Fibrations of generalized flag varieties

If q C p are parabolic subalgebras of g, then we have a natural fibration
G/Q 5 G/P.

The fibre is easily identified: let p = 1@ u be a Levi decomposition with Lg
the semisimple simply connected Lie group corresponding to the semisimple
part .ls of the reductive factor 1. Then q N1 is parabolic in lg and the fibre
of 7 is isomorphic to P/Q = L/(LN Q) = Ls/(Ls N Q) and, consequently,
a generalized flag manifold. The Dynkin diagram for the fibre is evidently
obtained from the following

Recipe (2.4.1). Delete from the Dynkin diagram for q all crossed
nodes (and incident edges) shared with p and then delete all connected
components with no crossed through nodes.

Thus, for example, the fibration
has fibres isomorphic to

x x = CP! x CP!.

i

Similarly, the fibration -

G™= .._.< S e < = cs™

has fibre

*x—e ’—<: (one node fewer) = CS2n-2

Taking p and r to be standard parabolics, now otherwise unrestricted,
P Nr = q is a standard parabolic (with Dynkin diagram obtained by cross-
ing through all nodes which are crossed in either of p or r). Thus, to any
pair of generalized flag varieties, G/P and G/R, there is associated a double
fibration:
G/Q

n T

v N
G/R G/P.
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Notice that 7 and n provide an embedding
G/Q— G/P x G|R

so that the fibres of 7 are embedded into G/R by means of n and vice
versa. This gives a correspondence (see page 67) between points of G /P atnd
certain submanifolds of G/R and vice versa. This is exactly the situation
obtaining between Minkowski space and twistor space in Penrose’s original
construction.

Example (2.4.2).  The double fibration

has x for the fibre of n; thus, points of N2 correspond to lines in Cs2n,
On the other hand, as we have seen, the fibre of 7 is CS2n-2 50 all the lines
in CS?" (arising from points in N2®) through a particular point in Cs2n
generate the null cone through that point, as expected.

So now we have the basic geometric structure required in Penrose’s orig-
inal transform. We next need a class of bundles on these spaces, whose
cohomology is to be the subject of the transform.

HOMOGENEOUS VECTOR BUNDLES ON G/P

In this chapter we recall the construction of homogeneous vector bundles on
homogeneous spaces G/P from representations of P. We shall use as our
building blocks those which arise from irreducible representations of P and,
occasionally, the restriction to P of an irreducible representation of G. Thus,
we must briefly review the representation theory of semisimple Lie algebras;
in particular, we introduce a useful notation for weights and representations
with which we shall be able to compute later. We also briefly discuss the
question of taking pull-backs of homogeneous bundles under homogeneous
fibrations, since this forms the start of the Penrose transform.

3.1 A brief review of representation theory

In section 2.1 we fixed, once and for all, a Cartan subalgebra h and a set of
simple roots S of g. Recall that a weight for g is an element of h* and that
if v € V with V a representation space of g then v is a weight vector for h,
of weight A € h*, if and only if

Vh € h, hv = A(h)v.

The set of all vectors in V of weight A is called the A-weight space of V, its
dimension being the multiplicity of A\. Denote by A(V) the set of all weights
whose weight spaces in V' are non-trivial. If A € A(V') then A is said to be
a weight of V. Let

n= @ g; n= P sg.

acAt(gh) acAt(gh)

be the raising and lowering subalgebras of g. A vector v € V is called
mazimal (resp. minimal) if and only if it is annihilated by n (resp. n_) under
the action of g. Recall that h* has a partial ordering as in section 2.1; then
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a maximal (resp. minimal) vector of weight A is highest in V (resp. lowest
in V) if A = X (resp. A < X) VX € A(V).

Next, consider the weights in hf. The form (, ) on h* restricts to
a positive definite form on hy. For each a € A(g,h), W, is the wall or
hyperplane in hi perpendicular to a. These walls partition hf into distinct
open regions called Weyl chambers. A unique chamber, the fundamental
chamber, is distinguished by requiring its elements A to satisfy

(\,a) >0 Vae A*(g,h,S)

(equivalently, Va € ). A weight in the closure of the fundamental chamber
is called dominant for g. A weight not on any wall is called regular.
Given S = {a;} define a dual set of weights {\;} by requiring

(Aiy o) = 65
Then {\;} is a basis for h* and any X € h* is expressed as

A= a)) A

3

)\ is said to be integral if and only if the coefficients in this sum are integers;
clearly, X is dominant if and only if they are non-negative. We need a

Notation for weights:
Represent a weight A for g by inscribing the coefficient
(A, @)) over the j* node of the Dynkin diagram for g.

Example (3.1.1).
1
-1 0 3 4 -2 1
5_—<1 oo o

The classification theorem of irreducible finite dimensional representa-
tions of semisimple Lie algebras, g, is:

Theorem (3.1.2). A finite dimensional irreducible representation of
g has a unique highest weight vector, of weight \, which is dominant in-
tegral for g, and this induces a one-to-one correspondence between finite
dimensional irreducible g-modules and dominant integral weights.

If V is such a representation space, then V*, its dual, has a lowest weight
vector of weight —A. So the theorem may equivalently be given in terms
of lowest weights. We shall adopt this seemingly perverse point of view
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because the Bott—Borel-Weil theorem (which we shall use extensively below)
is most easily expressed in this form. Furthermore, we shall extend our
abuse of notation and allow the Dynkin diagram for A to denote also the
representation with lowest weight —A. (This is consistent with the notation
we shall shortly establish for vector bundles. View a representation of g as
a vector bundle over G/G = {pt}.)

If p is a parabolic subalgebra of g, then, since h C p, weights have a
meaning also for p. Notice that if p = 1 ® u is a Levi decomposition of
p, then u acts trivially on any irreducible representation of p (since, by
Engel’s theorem, u acts by nilpotent endomorphisms). Thus, an irreducible
representation of p corresponds to an irreducible representation of 1. Let
7 : h* - (hNlg)* be the natural projection. Then a weight A is integral
or dominant for p according as 7(\) is integral or dominant for lg. These
are the obvious conditions on the nodal coefficients (), ;') for ; € Sp.
Namely, coefficients over the uncrossed nodes are constrained to be integral
or non-negative respectively. Then we obtain

Theorem (3.1.3). The finite dimensional irreducible representations
of p are in one-to-one correspondence with A € h* which are dominant and
integral for p.

Remark (3.1.4). A similar comment concerning lowest weights is
applicable here and the Dynkin diagram for A (with choice of p recorded
by means of crosses) will be used to denote the representation of p whose
lowest weight is —A.

Remark (3.1.5). Since the same weights could be used to determine
representations for different parabolics p and p’, this distinction must be
incorporated into the notation for the corresponding representation. This is
automatic in the Dynkin diagram notation. A useful alternative is to write
Fp(p) for the irreducible representation of p with p as an extremal weight.
Thus, F(—A) is the required representation of p. In case p = g, we shall
simply write F/(—A). These notations agree with [151] but we shall further
set
Ep(A) = Fp(=A) and E(X) = F(=)).

Again, our reasons for these slightly odd conventions stem from the Bott—
Borel-Weil theorem of chapter 5 and also our use of the Bernstein—Gelfand-
Gelfand resolution of chapter 8 in a form dual to the usual.

Remark (3.1.6).  In fact, we are really concerned with Lie groups and
their representations rather than just Lie algebras. For semisimple g, the
classification coincides with that for the associated simply connected Lie
group G. However, if the parabolic p C g corresponds to P C G, then in
order for an irreducible representation of p to “exponentiate” to one for P,
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Table 3.1. A Young diagram

[ 1]

(a,b,...,c,d) =

it is necessary and sufficient that the dominant weight A in theorem 3.1.3
above be integral for g and not just for p. We shall assume this to be the
case unless otherwise indicated.

Example (3.1.7). Recall that any irreducible finite dimensional rep-
resentation of sl(n + 1,C) is obtained as an irreducible submodule of the
tensor algebra on the self-representation of sl(n + 1, C). Indeed, a similar
statement is true for GL(n+1, C) and the representations of sl(n+1, C) are
obtained by restricting to SL(n + 1,C) and differentiating. The irreducible
finite dimensional representations of GL(n+1, C) may be specified by means
of a Young diagram as in table 3.1 [50,112,127,159]. If the abstract index
approach is used, as in [127], then Cn*! = V@ and the Young diagrams with
m boxes specify symmetries on the m-fold tensor power of Ve

m

——
®"C =V L.

Strictly speaking a Young diagram does rather more than just this. The
imposition of symmetries may be regarded as projecting from V% onto
a copy of the required representation by a GL(n +1, C)-equivariant homo-
morphism. Since such representations are apt to occur inside V%% with
multiplicity greater than one there is a good deal of choice for such a pro-
jection. Indeed, the symmetric group Sy, acts transitively on the space of
such projections via its action on Vo8 This action provides an irreducible
representation of S, and all such representations of S,, arise in this way.
In other words, Young diagrams also parametrize the irreducible represen-
tations of S,, and are best thought of as describing the splitting of yop-s
under the action of GL(n + 1, C) x Sp.
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For any Young diagram thought of as a representation of S,, a basis for
the representation space is provided by filling in the m boxes with the num-
bers 1,2,...,m such that each row and each column is in increasing order,

forming a Young tableauz. Thus, (1,1) is a two dimensional representation
of 83 with basis

2 | 13

3] 2]

These two elements describe, in the notation of [127], the particular projec-
tions

=8 = M-

Restricting to SL(n + 1, C) eliminates the determinant representation.
In other words, under SL(n + 1, C) we have

(a,b,...,d) = (a+n,b+n,...,d+n)

fc.)r any n. This redundancy shows up in our notation for the finite dimen-
sional irreducible representations of sl(n + 1, C):

(a,bye,d,....e,f,g) =23 8 dg  Fe &f
so that, in particular, the self representation is

0 0 0 0 1

(The reader will easily check that this is consistent with the “dual” approach
that we are taking when specifying representations using Dynkin diagrams.)

Thus, for the mathematical physicist, (non-projective) twistor spaces
are

T = ¢ e s To = oo
Ts) = o—o—s Tiog) = o—a—s =TI

0 1

Note that 5 1 9 may also be regarded as the self-representation of
s0(6,C) and the last of these demonstrates the isomorphism of this self-
representation with its dual, afforded by the metric preserved by so(6, C).
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Example (3.1.8). Spinors are of great importance in mathematical
physics; these correspond to the following representations (cf. e.g. (81,149]):

1
0 0 0 0o 0
0

(

For SO(2n,C) :

For SO(2n+1,C) : o4 4 ... s -

Example (3.1.9).  The adjoint representation of SL(3,C) is L 5. The
“baryon octet” consisting of spin—% particles, the proton, the neutron, and
their siblings is regarded as providing a basis for this representation (of the
corresponding real form SU(3)), as described, for example, in [111]. This
symmetry group is known as a gauge group, the classification scheme being
known as the “eight-fold way” of Gell-Mann.

Example (3.1.10). An important representation of a parabolic p C g
is the adjoint action of p on g/p. Unless p is a maximal parabolic, it is
evident that the representation is reducible (we see from the root space
decomposition of g that g/p has no highest weight vector). Maximality
is a necessary but not sufficient condition for irreducibility. To investigate
further (following Kobayashi and Nagano [100]) let

p=1du g=u_-@p

be fixed with S, = S\ {a}. Fix e € 1z by a(e) = 1 and observe that
the eigenvalues of ad e are integral, negative on u_, zero on 1, and positive
on u. If p acts irreducibly on g/p, then the eigenvalues of ad e are -1, 0,
or 1; conversely, if this is so, then, by a simple argument involving roots
strings [94], p acts irreducibly on g/p. Equivalently, the coefficient of a in
an expansion of the highest root 6 of g (in terms of §) is 1. When g/p
is irreducible, the lowest weight of g, namely —0, is the lowest weight of
this representation; by consulting a table of highest root vectors for simple
g (e.g. [94]), we can list the irreducible g/p as in table 3.2. The general
structure of the representation is explained in section 9.9.

Remark (3.1.11). For p C g as above, the decomposition
g=u_@®louis a |l|-grading of g (cf. [115]); this is significant for the
extension of the Penrose transform (and its various invariant differential
operators) to curved spaces [8,11].

3.1 A BRIEF REVIEW OF REPRESENTATION THEORY

Table 3.2. Irreducible g/p

| g | Irreducible g/p as a p-module |

an

bn

Cn

€6

€r

1 0 0 0 0 0 1
T any node
0 1 0 0.0
x_._..=>=.
2 0 0 0.0
(
0 1 0 0 0 0
0
0 1 0 0 0 0
0
o1 0 o o0o2°
0
\

27
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Remark (3.1.12). Note that g/p is irreducible if and only if u- is
Abelian (this latter condition being equivalent to ade having eigenvalues in

{-1,0,1}).

3.2 Homogeneous bundles on G/P

We can now construct the bundles which will be the subject of the Penrose
transform in this book. Let p : P — End(V) be a representation of P on
s finite dimensional C-vector space V and induce the homogeneous vector

bundle
y = GXPV

1
G/P.
A section of V may be thought of as a V-valued function on G satisfying
the relation

flgp) = u(@)f(9)

(for g € G and p € P). We shall usually take f to be holomorphic and so an
equivalent differential condition is (for z € p, thought of as a left invariant
vector field on G):

o[f] = —du(z)f.

The sheaf of germs of holomorphic sections of V is denoted by OV);ifVis
the trivial representation on C, then O(V) = O, the holomorphic structure
sheaf of G/P. Thus, for each integral weight for g which is dominant for
p one obtains an irreducible representation of P (as in remark 3.1.6) and
hence an irreducible homogeneous bundle on G/P. In this case we shall
write Op() for O(Ep(X)). With the Dynkin diagram notation we can omit
the reference to p. Thus,

O(e—3s) (p,r20)

is a bundle on CS* and

0k 35%...9%) (5)

is a bundle on CP,, (namely the k*h tensor power of the hyperplane sec-
tion bundle, usually denoted by O(k)). Many more examples are given
below (and related to standard bundles on various spaces). Before looking
at these, note that we shall yet further abuse our long-suffering notation:
when Dynkin diagrams are used to indicate irreducible P-modules, the same
diagram shall also stand for the sheaf of the associated homogeneous bun-
dle. In other words, where no confusion will arise, we shall omit “O( ) in
the notation above.
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Example (3.2.1). Regarding g as the left invariant vector fields on G
yields an isomorphism

O(G/P)= O(g/p)

identifying the holomorphic tangent bundle of G/P as a homogeneous vec-

tor bundle. The cases in which this is irreducible were discussed in example

3.1.10 above. They comprise projective spaces, Grassmannians, complex-

ified spheres, and their twistor spaces (in even dimensions), Lagrangian

((i}lrassmannians, and two exceptional examples. Dually, the cotangent bun-
e is

QY(G/P) = O(g/p)" = O(u)

where u is the maximal nilpotent part of p and we have used the Killing
form on g to identify (g/p)* = u. For both these bundles, table 3.2 may
now be interpreted as giving the irreducible cases of ©(G/P) and Q'(G/P).

Example (3.2.2). On the complete flag variety F.(V) (cf. 2.3.1) we
have homogeneous line bundles such as

]:_pqr t u

It is easy to give a simple geometric description of these bundles: at a flag
{Vi} € F(V), the stalk of F is isomorphic to

le ® (VZ/Vl)p+q ®...0 (Vn_l/Vn_2)p+q+T+...+t+u

or
(V2/V1)p ® (VS/V2)p+q ®...® (V/Vn_l)p+q+r+..‘+t+u

(since detV is trivial). A similar identification is possible on partial flag
manifolds as in [50]. Thus, for example, on ®—x—e :

%o = (0,1)V,®(1,2)(T/V,)
> VeT/V,

where V, C T is the two dimensional subspace of T corresponding to z.
This is the tangent bundle to Minkowski space. Another example is

8
o
o
o
o

(0,m)L ® (m,m,...,m)(C"*!/L)
(_‘m’ O)L ® (07 0,..., 0)(Cn+1/L)
Lo,

|
|

R 1R 1R

This is the m' tensor power of the hyperplane section bundle on CP,
verifying the claim at (5).



30 3 HOMOGENEOUS VECTOR BUNDLES ON G/P

Example (3.2.3). Bundles on Minkowski space

We identify here the standard bundles on Minkowski space M = e&—x—e
as given, for example, in [44,127]; this provides theoretical physicists with
some concrete examples of homogeneous bundles and will serve to introduce
others to Penrose’s abstract index notation [127].

Spinor bundles

0 A’ — 1 0 O 0 A — 0 0 1
Op = L0 04 = 0 L1
O[n) = 3_% 3 (the conformal weight n line bundle)

and, taking tensor products,

y4 T

o’ / EF H r
OWB .DVEF. Mg =% 8 {=0up  pyer. mp+a+r]
N —— ——

Tangent bundle on M

Forms on M

Q' = O = o e

2 _ 2 30,0 3 2
Q = Oup)-1]®O0up)[~1] = e % oDex—s
DB = Oual-2] = o %
o = 04 = 3 % e
O’ = Owupyap) ® O[-2] =I5 ies i q.

Example (3.2.4). Bundles on CS?" and CS?7*!
Generalizing from above it is natural to make the following definitions on
CS?n and CS20+1,

Conformal weights on CS2™:

Olg] = x_0._2u<°
0
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Sections of this line bundle may be represented locally, given a choice of
metric g, by functions f which rescale according to f — x9f when g is
replaced by x%g. g must be a metric in the conformal class of metrics—see
remark 3.2.5 below.

Spinor Bundles on CS2?™:

1

’ 0 0 0 0 0

or = x—o—o‘—<

0
0

0 0 O 0 0
0% = x-o—oo——<
1

If n is odd, these are dual, up to a conformal factor:

-1 0 0 000
Oa’=x.o-~~
1
1
0_-100 0 0
a T X—e—e - .
0

If n is even, the spinor bundles are self-dual, again up to a conformal factor:

1
-1 0 0 0 0
Oa’:x—o—-o-n’-{
0
0
-1 0 0 0 0
0 = LS8 .<
1

On CS22+1 there is only one type of spinor:

0% = % o o e
with dual
O, =—>1(—(0]—00---2%=£-

The tangent bundles are given in table 3.2; it is useful to work out the
bundles of p-forms. A simple method of doing this is given in chapter 8,
but in any event it is not too difficult to compute them directly by taking
exterior powers of the one-forms.
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Forms on CS2n

0
» = x_Fg._._.u< 0<p<n-1
nodep+1T 0

1
Qn_l _ m 0 0 0 0
T x—e—0 - 0o«
1
10 0 0 0 2 10 O 0 0 0
_ -n- -n- —_ On n
Qn = oo - @ X—0o—@ --- —Q_‘_@Q_
0 2
1
Qn+1 _ =20 0 0 0
= x—e—0 - 04«
1

0
o =>e_._2._._22_.< n+1<p<2n
node 2n + —pT

0

an _ 2n 0 O 0 0
-_ F._.~-o .
0

Remark (3.2.5). Regarded as generalized flag manifolds, the complex
spheres CS?™ come with a conformal structure; this is the distinguished line

bundle
2 0 0 0 0::0
0

in 2, the bundle whose sections are (complex) metrics. A choice of a
metric g in the conformal class together with a choice of complex orientation
gives a Hodge operator

x 1 Qp 5 Qo (6)

This scales by

* - k2P « when g — k2g.

The isomorphism (6) together with this scaling is evident in the above enu-
meration of the forms as homogeneous bundles. When p = n, * depends
only on the conformal structure. ** = %1 and so * has two eigenvalues.
Q" = QF @ Q" is a splitting into the eigenspaces of *, i.e. the self- and
anti-self-dual n-forms.
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Forms on CS2n+1,

@ = R0 00 0<p<n
nodep+1T
-n-1 0 0 0,2
Q" = l;&.—...%:.
1 _ -n20 0 0 2
Qnt = nx__._..%:.
974 = ";1_0._24..(14_0....(;)3. n+l<p<2n+1
nodep+1T
2 2020 0 0.0
Qn+1 = nx._._..=)=.

3.3 A remark on inverse images

As in section 2.4, suppose that Q C P so that there is a fibration
G/Q % G/P.
Then there is a natural map of sheaves
0= n7'0p(A) — Og() (M)

induced by the projection Ep(A) — Eq(A). Irreducibility of the representa-
tion Ep(A) yields injectivity of the map. (7) is the beginning of a resolution
of n7'Op(A) on G/Q by homogeneous vector bundles, which will be com-
pleted in chapter 8.



THE WEYL GROUP, ITS ACTIONS, AND HASSE
DIAGRAMS

The combinatorial key to the Penrose transform is the Weyl group of a
semisimple Lie algebra and the Hasse diagram or subgraph associated to
a parabolic subalgebra, together with their action on weights. With this
machinery we may describe the two key ingredients of the transform—
the Bernstein—Gelfand—Gelfand resolutions and the Bott—Borel-Weil the-
orem for computing cohomology and direct images of homogeneous sheaves.
Again, the forbearance of the reader who is familiar with this material is re-
quested whilst we review it for the mathematical physicist. A good reference
for what follows is the excellent book by Humphreys [94].

4.1 The Weyl group

Recall that on hg, the bilinear form ( , ) is positive definite. For any
a € A(g) the wall W, as in section 3.1, is the hyperplane perpendicular
to a. Let o, be the reflection in W, : then the Weyl group of g, Wg or
simply W if g is understood by context, is the group generated by the o,
for o € A(g). In fact it is sufficient to deal with simple roots only—if S
is a fixed system of such for g then {o, s.t. o € S} generates Wg. Given
any w € W, there exists a minimal integer £(w), called the length of w,
such that w can be expressed as a product of £(w) simple reflections. Such
an expression, which is generally not unique, is called a reduced expression
for w. W is finite, and there is an unique element w® of maximal length.

Example (4.1.1). [The Weyl group of s1(3,C)] Let g = sl(3,C)
with simple roots numbered as ‘g % and denote by (i...k) the product

Oq; --+0q,. Then the reader may verify that reduced expressions for ele-
ments of Wy are

{id, (1), (2), (12), (21), (121)}.
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Notice that (121) = (212). The reader should check that Wg = S, the
symmetric group on three letters; o,, and ¢4, correspond to the simple
transpositions {12} and {23}. Generally, if g = sl(n, C) then Wg = S,,;.

Remark (4.1.2). Simple realizations of Weyl groups for various g may
be found in several places—for example [85]. Wy is a particular example of
a class of finite groups called Cozxeter groups.

W acts on hk, by definition. It permutes the set A of roots of g. The
orbit of any root consists of roots of the same length, since reflections pre-
serve (, ) and, in fact, consists of all such roots. As in section 3.1, the walls
W, for a € A carve up hj into cones known as Weyl chambers all of which
are congruent. The Weyl group acts faithfully on these chambers. In other
words there is precisely one element of W which maps any given chamber
into any other. Thus, if one chamber is arbitrarily chosen then there is a
one-to-one correspondence between these chambers and the elements of W
in which the identity element of W corresponds to the chosen chamber. In
particular, we can take this to be the fundamental or dominant chamber as
in section 3.1. Recall that the dominant chamber is obtained from a choice
of simple roots. Conversely, any chamber determines a set of simple roots.
The action of the Weyl group on the chambers corresponds to its action on
choices of simple root systems.

W also permutes the weights in any finite dimensional irreducible rep-
resentation of g. The highest weight lies in the closure of the dominant
chamber, the lowest weight is obtained by action of the longest element w®
of W, and the orbit of the highest weight under W is called the set of ez-
tremal weights. Thus, an extremal weight A determines the representation,
which, as in remark 3.1.5, we denote by F'(A).

To realize this reflection action of W we shall need an explicit form for
the action of a reflection o, on a weight A, written in the Dynkin diagram
notation. If A € hy then:

g.(A) =2 = (A a)a

(recall that o¥ = 2a/{a, @) is the co-root of ). Thus the node coeflicients
for o,(A) are given by the formula

{oa(V), o) = (A, o) = (A, @) e, o)
where the a; range over S. If « is simple, (a,a)) is a Cartan integer ob-

tainable directly from the Dynkin diagram as in section 2.1. This yields the
following;:
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Recipe (4.1.3).  [The action of a simple reflection] To compute
a(A), let ¢ be the coefficient of the node associated to .. Add ¢ to the
adjacent coefficients, with multiplicity if there is a multiple edge directed
towards the adjacent node, and then replace c by —c.

Example (4.1.4). Reflect in the simple wall W, indicated by 1:

a b ¢ a+b -b b+c
— e o o oo
]

a b,c  atb-b2btc
’_‘=)=‘T ’_‘;'

a b ¢ a+b -b b+c
-=)=T’—° T e
The Weyl group Wy admits the structure of a directed graph as follows:
let w,w’ € Wy and write
w— w

if £(w') = £(w)+1 and w’ = o,w for some o € A(g). These are precisely the
directed edges in Wg. This directed graph structure gives a partial ordering
known as the Bruhat ordering [18] on Wg: we write w < w' if either w = w’
or there exists a directed path from w to w’ in Weg.

Example (4.1.5).  [Directed graph structure of W3 o))

— (12)

(1)
id< >< >(121).
(2) = (21)

This directed graph structure is important for several reasons. As will
be seen below, it is closely related to the topology of a generalized flag
manifold, by specifying a stratification by affine cells of increasing complex
dimension. It also restricts the possibility of the existence of invariant dif-
ferential operators between homogeneous sheaves, for these correspond to
homomorphisms of Verma modules (see section 11.1 and [17,39,53,110,150])
which are restricted to lie between Verma modules whose highest weights
are related by the affine action of Wy given below. The differential opera-
tors which occur in the Penrose transform are precisely of this form (and
this is one reason for studying it). It is therefore important to have at hand
a method for computing the structure.
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The actual computation of Wy from its definition is extremely tedious. A
straightforward alternative (which will be generalized in the next section) is
obtained by noting that the elements of the orbit of any regular weight are in
one-to-one correspondence with Wyg. This follows because a regular weight is
defined to be one which lies on no wall. In particular, set p = % Yaent(g) O
It is readily checked that (p,a)) = 1 for all simple «; so that p = >, A,
Thus the Dynkin diagram for p has a 1 over each node. Geometrically, p
is the integral weight in the dominant chamber which lies closest to the
origin i.e. right in the corner of the chamber. We may now compute the
orbit of p by repeatedly applying simple reflections (using the recipe given
above). This results in a one-to-one correspondence with the elements of
Wg. Reduced expressions for such an element are then obtained by tracing
back all possible concatenations of simple reflections producing an element
of the orbit from p.

Example (4.1.6). [Computing the Weyl group of sl(4,C)]
The diagram in table 4.1 shows the action of Wgycy on p = P
where the lines denote the application of a simple reflection according to

recipe 4.1.3. Other reflections are not recorded on this diagram (see exam-
ple 4.1.9 below).

To obtain the directed graph structure of Wg, we make use of the fol-
lowing lemma [18]:

Lemma (4.1.7). If w — w' then a reduced expression for w is obtained
from any reduced expression for w' by omitting one simple reflection. More
generally, if w <X w' then a reduced expression for w is obtained by omitting
several simple reflections.

Remark (4.1.8). Notice that simply omitting a reflection from a re-
duced expression for w’ may produce w with ¢(w) < £(w’) — 1 so that
w - w'—consider omitting the (2) from (121) in example 4.1.1 above, for
example.

Since the method of computing Wy yields all possible reduced expressions
for elements of Wy, it is feasible, with care, to apply this lemma. Let us do
this for the Weyl group of s1(4,C):

Example (4.1.9). [Directed graph structure of W4 )]
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-
'
-
'
-

(1)

1

Table 4.1. Orbit of p under Wy4 c)
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(321)
(21) (1321)
(121)
(1) (12) (2321) (21321)
(213)
id (2) (13) (2132) (12321) 121321).
(132)
(3) (32) (1213) (12132)
(232)
(23) (1232)
(123)

4.2 The affine Weyl action

It turns out, as a consequence of Harish Chandra’s theorem [94], that the
most significant action of the Weyl group on weights is not the straightfor-
ward one generated by reflection as in the previous section but rather the
affine action obtained by conjugation with translation by p =3 A;:

w A =wA+ p) —p.

It is this action which determines the correct parameters in calculating co-
homology (via the Bott—Borel-Weil theorem) or resolutions (of Bernstein,
Gelfand, and Gelfand). A crucial distinction occurs in both these results
which depends on whether A has a non-trivial stabilizer under the affine
action: if it does, we call A singular and A + p is in some wall. Otherwise,
X is non-singular (rather than regular which means that A itself is not in a
wall). If X is singular, then for some w € W and o; € S, (w(A + p), &) = 0.
So a singular weight may be detected by applying the reflection recipe to
the Dynkin diagram notation for A + p and seeing if a node integer can be
made zero.

4.3 The Hasse diagram of a parabolic subalgebra

The Weyl group introduced above has an important subgraph or Hasse
diagram WP (see, for example, [35]) attached to a standard parabolic sub-
algebra p of g. This diagram is related to the topological structure of the
generalized flag manifold G/P and the structure of the Bernstein-Gelfand-
Gelfand resolution on G/P explained in chapter 8. It is important also in
determining the direct images of homogeneous sheaves under projections
between generalized flag manifolds (using the Bott-Borel-Weil theorem as
in chapter 5).

It is distinguished as the subset of Wy whose action sends a weight A,
dominant for g, to a weight dominant for p. To elucidate this condition, let
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=1 u be the Levi decomposition of p given by the fixed choice of the
Carta,n subalgebra h and the system of simple roots S = {a;}. Let {\i} be
the basis of weights dual to {a)} under ( , ), as before. Then if w € WP
and if A is dominant for g, we must have

(A wla) = (wA,a) >0 Va € A*T(1).

Letting A run over {);} forces w™'a € A*(g). This is clearly sufficient, also,
for wA to be p-dominant and hence for w € WP. Defining

A(w) = {a € A*(g) s.t. wla € ~AT(g)},
we obtain
WP = {w € Wg s.t. A(w) C A(u)}.
Remark (4.3.1).
L. Note that [A(w)| = £(w) as in [94, pp. 51-52].

2. A(w) and its complement A*(g) both have the property that a sum of
two elements in the set is either in the set or is not a root. A(-) is a bi-
Jection of Wy with such sets [102]. Complementation then corresponds
to multiplication by w®, the longest element of Wg.

3. We induce the subgraph structure on WP.

Example (4.3.2). [Minkowski space] If p = e—x—e then, as can be
seen directly from examples 4.1.6 and 4.1.9, WP is

(21)

/! N
id — (2) (213) — (2132)
N\ 037

Computing WP from the definition is usually lengthy. However, the
method introduced above to compute the Weyl group Wy is readily modified
to yield a method which can be very efficient indeed. To give it, we need an
alternative characterization of WP, due to Kostant [102]. This identifies WP
WIth the set of minimal length right coset representatives of the subgroup

p of Wy generated by simple reflections o, for a € Sp (Wp is just the
Weyl group of a reductive Levi factor of p).

Lemma (4.3.3).  [Kostant] Any w € Wy admits a unique decomposition
w = wpwP with wp € Wy, and wP € WP. Moreover, f(w) = £(wp) + £(wP)
and wP is the only element of the right coset WpwP with this minimal length.

To use this, let pP = 3~ A; where i ranges such that a; € S\ Sp. Thus the
Dynkin diagram for pP has ones over nodes crossed through in the diagram
for p and zeros elsewhere. The idea is to identify the orbit of pP under Wy
with WP just as the orbit of p is identified with Weg.
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Lemma (4.3.4).  The stabilizer of pP in Wy is Wp.

Proof  Certainly Wy, stabilizes pP, so we need to prove that wpP = pP =
w € Wp. By Kostant’s lemma (4.3.3) we can write w = wpwP, in which
case wPpP = pP and it suffices to shew that then wP is the identity. By
definition, wP takes any weight dominant for g to a weight dominant for p.
In particular, wPp is dominant for p—in terms of Dynkin diagrams, wPp
has non-negative integers over the uncrossed nodes. Hence, for sufficiently
large N, wPp + NpP is dominant for g. However, this is wP(p + NpP) and
p+ NpP is strictly dominant for g. Since W acts faithfully on the Weyl
chambers this forces wP to be the identity. O

Thus the orbit of pP under the right action of Wy given by
(PP, w) — w1 P

is in one-to-one correspondence with WP, by Kostant’s lemma. To trace out
the orbit, we again repeatedly apply simple reflections to pP. Every member
of the orbit is connected to pP by one or more paths of such simple reflec-
tions. The corresponding member of WP has reduced expressions which are
obtained by taking their composition in the reverse order (to account for the
inverse in the above action). This is illustrated in the following examples.

Example (4.3.5).  [Minkowski space] If p = &—%—# as in example 4.3.2
as above then the orbit of pP under the Weyl group of s1(4,C) is

0

01 0 -11/ \1- 0.1 0

H—.—’0+0\1 1/0—%(—.—’.+.-

This gives WP as in example 4.3.2. For later use (in section 8.5.1) notice that

the left action of the elements of WP on the dominant weight p = 1.__;%1

is

11 -2/' \2-2 1 1

.—)&—.—’.—)(—O\3_21/G—)6—._’F+.'

Notice that these weights are all dominant for p as in our original definition
of WP,

Example (4.3.6). [Complex projective space]

. 0 o, .
Consider p=w_o o ---0o—e ;0P = >1<__2_0. 99 (it is convenient to

0 0 0 0
)

carry the cross rather than just use 1._._. ... e—e )- We compute the
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orbit of pP under Wy (using the recipe) as:
10 0 00 -1 1 0 00 0 -1 1 0 0

0 0 O .11 0 0 O 0 -1

from which the Hasse diagram for p follows as

id - (1) —» (12) — (123) — --- — (123...n).

Example (4.3.7). [Even dimensional spheres]

Let p= % o _0--- ._< with n + 1 nodes numbered from left to right

and top to bottom. Then WP has a single element of each length 0,1,...,n—
1,n+1,...2n and two elements of length n as follows:

element length

So = id 0

§; = 0102...0; j, IS]S'R—].
S84 =0102...0,_10y n

§_ =0102...0p-10pn4+1 n

Sn+l = 0102...05_10p0n41 n+1

Sntj = 0102...0n 10n0ny10n_10n_2...0n41—5 N+j, 2<j<n

giving rise to the following picture:

7N

o—»o—>~-.o\ /o-—+--~o—>o

for WP as a graph. Notice, from example 3.2.4, that the de Rham sequence
on CS?" displays exactly the same pattern. This is not a mere coincidence
(see chapter 8).

Example (4.3.8).  [Odd dimensional spheres]
Let p = %x—%—» - 5= a0ain with n + 1 nodes numbered from left to
right. Then WP has a single element of each length from zero to 2n + 1:

element length
To = id 0
’I'j=0'10'2...0'j j, IS]S'R-FI

Tntj = 0102...0p0n410n0n-1..-Ony2-j N+J, 2<j<n+1.

4.4 RELATIVE HASSE DIAGRAMS 43

Remark (4.3.9). The weights for g traced out in computing WP are
the extremal weights of a finite dimensional irreducible g-module, of highest
weight pP.

Remark (4.3.10). The cardinality |WP| = |[Wg|/|Wp|, by Kostant’s
lemma. The table on page 66 of [94] gives |Wg| for g simple. Of course
dimG/P = |A*(g)| — |A*(Is)[, and these cardinalities are also given in the
table. This difference is also the length of the unique longest element wg in
WP since A(wp) = A(u).

4.4 Relative Hasse diagrams

In the sequel we shall usually need to apply Bernstein-Gelfand—Gelfand reso-
lutions and the Bott—Borel-Weil theorem to the fibres of a double fibration;
we have already seen that these are generalized flag varieties in their own
right. To do this we shall need to work with a relative Hasse diagram which
we shall now define. As in section 2.4 consider the fibration

G/Q = G/P

and recall that the 7 fibres have the form P/Q = Lg/LsNQ where Lg is the
semisimple part of a reductive Levi factor of P. The Weyl group of the Lie
algebra of Lg is W}, and this plays the role of Wy in fibrewise computations.
The only difference is that Wp, as a subgroup of Wy, acts on weights for
g. This is important in later calculations where, in terms of our Dynkin
diagram notation, we must keep track of what happens to coefficients over
the crossed nodes as well as over the uncrossed nodes. The latter merely
specify a weight for 1. For example, the Weyl group of the Lie algebra of
LsNQ sits inside W and so defines a relative Hasse diagram Wy which we
identify again as a subset of W}, and hence of Wy by representing each right
coset by its unique minimal length representative. Relative Hasse diagrams
may easily be calculated by adapting the method given above for ordinary
Hasse diagrams.
In summary our notation is

Wg Weyl group of g—associated with topology
and resolutions on G/B.

Wp Weyl group of a reductive Levi factor of p
and a subgroup of Wg.

WP = W, \ Wg Hasse subgraph of p—associated with G/P.

Wgt = Wq\ W Hasse diagram associated to the fibration
G/Q — G/P. 1t is a subgraph of W} and
hence of Wy.



THE BOTT-BOREL-WEIL THEOREM

It is now time to introduce the first key ingredient in computing the Penrose
transform for homogeneous spaces. This is the Bott—Borel-Weil theorem
[24], which computes the global sheaf cohomology of irreducible homoge-
neous vector bundles using the Weyl group and its affine action on weights.
We shall use it in the Penrose transform in a relative form to compute di-
rect images—see section 5.3 below. For completeness, we give a very simple
proof of the theorem in section 5.1 below; the proof is in keeping with the
flavour of the book so far and depends on first explicitly computing coho-
mology for the SL(2,C) case and then reducing the general case to this one.
For simplicity, the theorem will from now on be referred to simply as BBW

Theorem (5.0.1). [Bott-Borel-Weil] Let G be a simply connected
complex semisimple Lie group and P C G a parabolic subgroup. Suppose
A € h* is an integral weight for G dominant with respect to P. Consider the
homogeneous bundle Op(A) on G/P. Then:

o If X is singular for g, then
H"(G/P,0p()\)) =0Vr.

o If A is non-singular for g, then as a representation of G,
HY)(G/P,0p(X)) = E(w.))

for w € Wy the unique element such that w.\ is dominant. All other
cohomology vanishes. (Recall that w.\ refers to the affine action of
the Weyl group as described in section 4.2.)

Remark (5.0.2).  Notice that if A is dominant for p and w.) is dominant
for g as in this theorem, then w.\ + p is dominant for g and

wHwA+p) =w (wA +p) =A+p

5.1 A SIMPLE PROOF 45

is dominant for p whence w=! must be in the Hasse subgraph WP. This is
one reason for our concern with WP in section 4.3. It is used implicitly in
section 5.2 and explicitly in section 5.3.

5.1 A simple proof

We shall first give a proof for G/B where B is Borel. As is often the case in
these matters, a general proof for G/P follows by considering the fibration
G/B — G/P.

The structure theory of semisimple Lie algebras follows from the example
of sl(2,C): it is used as a building block in the investigation of a general
algebra. A similar comment applies to generalized flag manifolds. In order
to study G/B, choose a@ € § and let P, be the parabolic subgroup of G
corresponding to the subset {a} C S as in section 2.2. Thus, there is
fibration

7:G/B— G/P,

whose fibre is the Riemann sphere P; as a homogeneous space for SL(2, C):

P1=><=SL(2,C)/(; :)

This is a well-known trick (cf. Demazure’s proof of Bott’s theorem [37]). It
is easy to prove the BBW theorem for SL(2, C). This reads:

HO(X) = & fork>0
H(%) = Ofork<—1
H1(>]<) = % for j < -2
HY(X) = 0forj> 1.

k
In more familiar notation, x = O(k) is the sheaf of functions homogeneous

of degree k and ¢ = O*E for E the self-representation of SL(2,C). Thus,
the first two equations above are just a restatement of Liouville’s theorem of
one-variable complex analysis. The last two equations either may be verified
by using the Mayer—Vietoris sequence and Laurent expansions for the cover

P; = (P1\ {south pole}) U (P1 \ {north pole})

[73] or may be deduced from the first two equations as an extremely special
case of Serre duality [140]

H(%)" = H(Q'® %) = H (% @ ) = H( X ).
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. j o —i-2. . .
Notice that @ ‘e _is indeed the affine action of the Weyl group of sl(2, C),
generated by just one simple reflection.

To use this in the general case consider the following typical example:

G/B = %—ax L, x—e3x = G/P,.

The P; case above applies to the fibres of this mapping to allow computation
of direct images:

T(eseds) = e if k>0 ®)
T (ek) = 0ifk<—1 (9)
ﬂ_i(a j C) a+j+l_]_26+2j+2 lfJS—2 (10)
T (xdas) = 0ifj> -1 (11)

The third of these equations comes from the affine action of the simple
reflection o, inside the Weyl group Wg. In particular, note that for any
irreducible representation s s of B, at most one direct image is non-
zero. Thus, the Leray spectral sequence [69] degenerates to give, for j < —2,

a c

Ho (% da%) = HP(G/Pa,mh(%dak))

_ Hp_l(G/Pm a+j+1"I—2c4+2j+2 )

= HPU(G/Paymd( *H g )

HrY( atj+177"2c+2j+2 ).

To summarize, for a corresponding to the middle node of the Dynkin dia-
gram e—e==e if ) is an integral weight with (\,a") < —2, then

HP(G/B,0u(X)) = H*(G/B, Op(04-1)).

Notice also that if X is singular by virtue of this of" node, that is if
(A, a¥) = —1, then both direct images vanish under = : G/B — G/P, and
so all cohomology H?(G/B, Op())) vanishes.

Of course, these are perfectly general results, i.e. they hold for any com-
plete flag manifold and any simple root.

Lemma (5.1.1). Suppose that X is an integral weight for the simply
connected complex semisimple Lie group G and consider the cohomology
of the holomorphic line bundle Op()\) on G/B. If A is singular, then all
cohomology vanishes. If A is non-singular and X\ lies to the non-dominant
side of the a'® root plane for some simple positive root o (in other words,
(A, aV)y < =2), then

HP(G/B,0y(\)) = H1(G/B, Op(0a-})).
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Repeated application of this lemma now shows that if w € Wy is chosen
so that w.\ is dominant for g, then

HP*)(G/B,0y(N)) = H?(G/B, Op(w.}))
and
H?(G/B,0p(A)) =0 for p < 4(w).

However, the lemma also shows that if A is dominant then all higher coho-
mology vanishes for if wy € Wy denotes the longest element, then

H?(G/B, Op(X)) = HY*)(G/B, Op(wo.)))

but £(wy) = dimg(G/B) and so the right-hand side vanishes for p > 1. To
summarize:

Theorem (5.1.2).  [Bott] Suppose that A is an integral weight for the
simply connected complex semisimple Lie group G and consider the coho-
mology of the holomorphic line bundle Oy () on G/B. If X is singular, then
all cohomology vanishes. If A is non-singular and w € Wy is the unique
element such that w.\ is dominant, then

H'™)(G/B,0p(X)) =T(G/B, Op(w.}))

and cohomology in all other dimensions vanishes.

The Borel-Weil theorem [24] now identifies
I'(G/B,0p(A) = E())

for dominant A. However, this too may be proved by similar means as fol-
lows. In chapter 8 we shall construct a resolution of the constant sheaf E())
on G/B by sheaves of holomorphic sections of homogeneous line bundles.
Actually, we shall only sketch the proof of the existence of this Bernstein-
Gelfand—Gelfand resolution but the first step is straightforward and gives
an exact sequence

0 — E(X) = Op(A) = @ Op(0a-A).
a€eS

Now by Bott’s theorem above, the right-hand term has no global sections
S0

E()) = T(G/B, Op(N)).
Finally we say how to deduce the BBW for G/P. Consider the projection
7:G/B— G/P.

The fibre of 7 is itself homogeneous: as described in section 2.4 the fibres
may be identified with P/B which is isomorphic to Ls/(Ls N B) for Lg the
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semisimple part of L, the reductive part of P. Hence, since LsN B is a Borel
subgroup of Lg, these fibres are complete generalized flag manifolds and the
BBW theorem now applies fibrewise. In particular, if A is an integral weight
for G, non-singular and dominant for P, then

Op(A) = 7(Ob(N))

and all higher direct images vanish. The Leray spectral sequence degenerates
to an isomorphism

H'(G/P,0p(A)) = H"(G/B, Op(}))
and the full BBW theorem is immediate.

5.2 Some examples

To compute examples, we use WP as given in the examples of section 4.3
above, for various p.

Example (5.2.1).  [Borel-Weil]
If X is already g-dominant,

H°(G/P,0p())) = E())
and all other cohomology is zero.
Example (5.2.2). [Hyperplane section bundle]
IfG/P=% o o ---e—e = CPythen for
A=k 00 00
we have that Op(\) = O(k). For k > 0 it follows from the previous example
that

HY(CP,,0(k) =% § 3...0.% = of(C™)).
This isomorphism is easily realized in abstract indez notation [127,128]. If
Z* € C™1 50 that [Z°] are homogeneous coordinates for CPy and if A, g =
A(a...p) € ©F((C™)*) then the isomorphism above is given by

A@.p — Aa.pZ®... VA

If —n < k < 0 we can readily check that A + p is singular. For if the
simple roots are ordered from left to right in the Dynkin diagram for A,
then oq_,,, *** 0ay0a, (A + p) has a zero over the (—k)*™® node. Thus, in this
range, all cohomology vanishes.

If k< —n—1then H*(G/P,0(k)) = 3 5 & ... 3¢ =z ok 1(C).

These results are standard in complex analysis [63].
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Example (5.2.3).  [Global vector fields]
Now consider Minkowski space ®—>—=. Since & *0 L is dominant already
we have

0 ifi#0

HiM,l 0 1 —
( ) {1._2_l=sl(4,0) ifi=o0.

Now w is the holomorphic tangent bundle of Minkowski space (see
example 3.2.3) and since SL(4,C) acts on Minkowski space by left translation
there is an evident map

sl(4,C) > T(M, ¢—%_s)

whose image consists of the conformal Killing vector fields on M. The BBW
theorem tells us that this is an isomorphism and the only global holomorphic
vector fields on M are the Killing fields.

Indeed, if € is a highest root of g for any g then

0 ifi#0

H'(G/P,05(0)) = { g ifi=0.

Recall that the holomorphic tangent bundle © of G/P is induced by g/p;
the p-module with lowest weight —6 is a quotient of this and it follows that
Op(0) is a quotient of ©. If p = 1@ u is a Levi decomposition of p then the
remaining composition factors in © are of the form Op(u) where p is a root
of u with u < 6 so that at least one nodal coefficient of y is strictly negative.
It follows that p + p is not dominant regular so that H(G/P, Op(u)) = 0.
Taking the long exact sequence in cohomology for each short exact sequence
in a composition series for © now shows that

i _Jo ifi#0
H(G/P’@)_{g ifi=0.
So again the natural map
g~ I(G/P,©)

is an isomorphism—otherwise put, the global vector fields on G/P are pre-
cisely the infinitesimal symmetries of G/P.

Example (5.2.4).  [Cohomology on Minkowski space]
Consider & again. As a first example of a bundle with no non-
trivial global cohomology at all consider A = 32 3. Then o(A+p) =

o1 (1._;1<_£) =e_> & 50 that A is singular and so

Hi(M, e 2 $)=0 for every i.
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Sections of this line bundle are metrics in the conformal class on Minkowski
space so we see in particular that none of these metrics is globally defined.

Next let A = 52 & so that Op(\) = Q'. Then

nO+p) =0 (i i) =gt =0

so that
H' M, Q) =C
and all other cohomology vanishes. The Kahler form given by the projective
embedding of the following chapter generates this isomorphism.
More generally, the reader may verify that each irreducible summand of
QP on M has p** cohomology equal to C whilst the cohomology in all other

. . 1 -4 1
degrees vanishes. For instance, 0= and we compute

1 -4 1 0 0 0
010302 " &—x—o = &—x—»

so that
H3(M, 93) =C.

More examples of how to use the BBW theorem to compute cohomology
appear in the next section.

5.3 Direct images

The main use of the Bott—Borel-Weil theorem in this book is to comp?ute
higher direct images of holomorphic homogeneous sheaves under ﬁbratlops
between generalized flag manifolds. Consider, for @ C P standard parabolic,

Ga/Q = GJP.

Then, as observed in section 2.4, the fibre P/Q is itself a generalized flag
manifold. If lg is the semisimple part of the reductive Levi factor 1 of p
and if Lg is the corresponding subgroup of G, then P/Q = L/(LN Q) =
Ls/(LsNQ). Applying the BBW theorem along these fibres tq compute 'the
direct image of Og()) on G/P, we seek a p-dominant weight in the orbit

(WI‘,‘)'I./\ = {wlAst we Wi}

Recall that, as in section 4.4, Wf,‘ is the Hasse subgraph of W), associated
to the parabolic g N ls and regarded as a subgraph of Wg by means qf the
inclusion Wi, = Wp C Wy. If none of these weights is p-dominant (i.e. /\
is p-singular) then all direct images of Og(A) vanish. Otherwise there is
a unique p-dominant element, w='., and the direct image (R“*)7,)Oq(}),
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or simply Tf(w)(’)q(/\), is given by Op(w™'.A) whereas all the other direct
images vanish.

Recall that the method of determining Wy as in sections 4.3 and 4.4
directly gives (Wg')~! instead. This makes it especially straightforward to
compute direct images in the Dynkin diagram notation:

Recipe for computing direct images

Step one: Determine the Hasse diagram Wy by allowing Wy to act on p9.
It is only necessary to record the simple reflections.

Step two: To compute the direct images of Oq(A) add one to each node
coefficient of A (so forming A + p) and act on the result (as one acted
on p%) with the graph of simple reflections constructed in step one.

Step three: If any element of the resulting orbit is repeated, \ is p-singular
and all direct images vanish. Otherwise . ..

Step four: Precisely one element of the orbit has positive entries over all
nodes not crossed through in p. Subtract one from each of its node
coefficients obtaining u, say. This is p-dominant. If ¢ is the number
of simple reflections required to produce y then

Tfoq()‘) = Op(p)
and all other direct images vanish.

Remark (5.3.1). In practice, of course, it is seldom necessary to
compute the entire orbit in steps one and two. Indeed, step one can be
omitted entirely! This is because if in step two we start with a weight A+ p
which has large negative numbers over all the uncrossed nodes and act on
this with the simple reflections of W}, then we will create precisely the same
pattern as acting on p9. In other words, we will construct (Wg)~1. For a
weight which is not so antidominant the pattern persists as far as the first
occurrence of a weight dominant for p. At this stage, however, if the weight
is not strictly dominant (i.e. if there is a zero over one of the uncrossed
nodes) then all direct images vanish (in other words, step three is valid)
whereas if the weight is strictly dominant the fourth step can be invoked.
This should become clear in the following:

Example (5.3.2). Consider — , numbering the
simple root associated to the i*" node a;. So we are studying the projection
of the projectivized bundle of pure spinors on CS® to CS®. Apply the recipe

to compute direct images of (i) 8(_2_(;); and (ii) M.
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Step one: Compute Wy by acting on 0 ! with simple reflections

corresponding to the nodes az, a3 and ay. Obtain the following graph,
for use in the next step:

1R (3) ()

W ® gy N, 100
/M—*M RE RS
4

9988 — 0945} — 21-1;5<
PP

where ¢ denotes g,.

Step two: (i) Consider A = 2(_2_(;); . Add ones to the node co-efficients
to obtain X »_ 2. Act with the simple reflections in the graph

of the previous step, obtaining

(9 234 (2) ()
(4) (3) . N (3) . N
>£}&>'\2 — %}'.%% — :£9.1>9 N y. }9.;9 — S e .)3 — >£&.>?
(2) X4 (4

Note the zeros which appear after just two reflections and which
ensure repetitions.

(ii) Consider A = 2(_‘1_‘1%.;5. Add ones to the coefficients over the
nodes to obtain 7 . Act with the simple reflections in

the graph of the previous step, obtaining

(4) A28 ()
(3) S N 5(3)_ N (4)_11
AL — LG — A /MAM—*M-

Step three: In (i), all direct images vanish.

Step four: In (ii), the last element in the orbit yields

5 0 0,2

Tf@q(o 0 0 -8)= .

REALIZATIONS OF G/P

To conclude our survey of some of the geometry of generalized flag manifolds,
we shall present two realizations of these manifolds using standard tech-
niques from algebraic and symplectic geometry. We shall do so at this point
because we now have the requisite machinery in place. But we earnestly
recommend that the reader leave this chapter for a second reading, since it
is only incidental to the rest of the book. Hasten on to the next chapter,
where we begin the Penrose transform!

The first of these, the n-tuple embedding, realizes a G/P as a complex
projective variety; indeed, it is easy to give a direct embedding into the
projective space of a finite dimensional G-module. This shows, amongst
other things, that G/P is a Kahler manifold, as claimed. The imaginary
part of the Kéhler structure is a symplectic structure, preserved by the
action of the compact real form Gy of G. Consequently, we may take the
moment map of this action and so obtain a second realization of G/P as an
orbit in the co-Adjoint representation of Gy.

Closely related to these realizations is the study of orbit structures on
G/P. There are two possible kinds of orbit that might be studied. The
first are those which arise from the left action on G/P of a Borel subgroup
of G. These are easy to describe—they are all affine and affinely embedded
and in one-to-one correspondence with the elements of WP. The dimension
of an orbit corresponds to the length of an element and the partial order
on the graph WP indicates when an orbit is in the closure of one of higher
dimension. Indeed, all of this can be realized explicitly and we do this
below. The set of orbits stratifies G/P; the stratification is perfect and it
determines the integral homology of the space. It is also the link between
the structure of G/P and the structure of a large class of g-modules. The
link is realized in the beautiful geometry of Kempf [98] used in the proof
by Beilinson—Bernstein [15] and Brylinski-Kashiwara [28] of the Kazhdan-
Lusztig conjecture [97).
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The example which may be familiar to the mathematical physicist is
complexified compactified Minkowski space, viewed as a generalized flag
manifold as above, and acted on by the lower triangular matrices of SL(4,C).
This can be constructed as the union of an affine Minkowski space (C*—the
largest orbit) and the light cone “at infinity”. This light cone itself is a union
of five orbits—the vertex i, a single generator (not including the vertex),
two totally null two-surfaces (less their intersection in the distinguished
generator), and the remainder of the cone. Each orbit is biholomorphic with
some CF. This example is quite generic—note especially how the boundaries
of orbits can be singular.

The second possibility is to study orbits of a non-compact real form
G, of G on G/P. These are, unfortunately, rather more difficult to de-
scribe and we shall not do so here—the interested reader may consult the
exhaustive work of Wolf [160] on the subject. Again this geometry re-
lates to some representation structure theory, namely the form given by
Vogan [151] for the Langlands classification of Harish Chandra modules and
the Kazhdan-Lusztig conjecture in that setting. It is also extremely im-
portant in the construction of unitary representations of G,; the simplest
form of this is the technique of geometric quantization [77,102,163]. An ad-
vanced version of geometric quantization, using L?-cohomology and finally
constructed in [136,137], obtains the so-called discrete series of unitary rep-
resentations for G,,. The problem is to construct an invariant inner product
on a Harish Chandra module. There are indications that this can be done
without L?-cohomology by using the Penrose transform (in a guise some-
times called the twistor transform). (More on this, again, in chapters 10
and 11.)

The example of Minkowski space will again be familiar to the mathe-
matical physicist. Here, G, is SU(2,2). Thinking of Minkowski space as the
Grassmannian Gry(C?), again, the orbits of G, consist of sets of planes on
which the restriction of the Hermitian form has a particular signature and
(in)definiteness. The possibilities are (+,+), (=, —), (+, =), (0,+), (0,—-),
and (0,0). The last of these is the (unique) closed orbit of SU(2,2) which
is just real compactified Minkowski space. The orbits (+,+) and (—,—) are
usually referred to as M+ and M~; see e.g. [127].

The material we present is standard—further details may be found in
[18,77,160]. Much of what we say is not immediately related to the construc-
tion of the Penrose transform; it seems reasonable to include it since it is
both extremely beautiful and readily accessible given the material we have
presented thus far. We shall indicate in detail how G/P may be realized as
a projective variety and how the Weyl group W can be used to compute the
cohomology ring H*(G/P,C). Also, we shall explicitly construct a moment
mapping G/P — g to realize G/P as a co-Adjoint orbit.
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6.1 The projective realization

In section 4.3 we assigned a weight pP to a parabolic subalgebra p of g by

letting
w_J0 aes
(", a >‘{ 1 a€8\S

Take G to be simply connected, and consider the finite dimensional irre-
ducible G-representation F'(pP) with highest weight pP. Let f be a highest
weight vector in F'(pP) (unique up to scale) and consider the action of G on
f. Being maximal, f is annihilated by the positive roots spaces of g and
hence fixed by their exponential group. Maximality and (pP,a") = 0 for
a € Sp, hence for o € A(l), implies that f is fixed by the reductive Levi
factor L of P, also. The Cartan subgroup H (corresponding to h) preserves
f up to scale, and so it follows that P is contained in the stabilizer of the line
[f] in the projective representation of G on P(F(pP)). It is easy to see that
ifg=ud®pandifyeu_,say y € g, for a« € A(u_), then (pP,av) < 0,
so that y acts non-trivially on [f]. y cannot kill [f] because, for z € g_,,

zyf = [z,ylf = (z,y)(p®, a) f #0.
Thus P is precisely the stabilizer of the line [f], and
G/P = G[f] C P(F(pP))

realizing G /P projectively.

Remark (6.1.1). By the Borel-Weil theorem, FE(pP) =
I'(G/P,Op(pP)). The above construction is then nothing more than the n-
tuple embedding construction of algebraic geometry. A similar construction
obviously works for any line bundle Op()) provided A — pP has no nega-

tive nodes. Note that the pull-back of the tautological bundle on P(F(pP))
under such a realization is just Op(A).

Example (6.1.2). [Complex spheres] Consider Minkowski space
o—>—e; then pP = 34 §. F(pP) is just A2C* with SL(4, C) acting on C*
by the self-representation. Alternatively, F'(pP) is the self-representation of
SO(6, C). It is easy to see that a highest weight vector for this representation
is a simple bivector, equivalently null, as a vector in the self-representation
of SO(6, C), and that its orbit under G simply consists of all such. So the
above construction giving the projective embedding finds e—<—e — CP®
and identifies —<— as the quadric of null directions at the origin of C8,
as we saw in example 2.3.2. Similarly, the projective construction above
applied to the complexified spheres CS?, that is to x—e—e --- == and

o --- ,_< , realizes each as the projective light cone of the origin

in CP+2,



56 6 REALIZATIONS OF G/P

Example (6.1.3). [Pure spinors] The associated representation for the

space
7= .._.<

is a (reduced) spinor representation for Spin(2n + 2, C). A highest weight
vector is easily seen to be a pure spinor (see e.g. [81]) and its orbit again
consists of all such. So Z is the space of projective pure spinors as claimed
in example 2.3.5 and is therefore a space of totally null n-planes in the
quadric CS?". It is the natural higher dimensional analogue of Penrose’s
original (projective) twistor space. Similar comments apply to the other
higher dimensional twistor spaces.

6.2 The cell structure of G/P

We now indicate how an affine stratification of G/P may be constructed
which characterizes the integral homology of the space. A little further
work, using the full Weyl group Wy, characterizes the cohomology ring also.
A model for this is the decomposition of CP™ into a disjoint union of a point
and one copy of C* for 1 < k < n. For example, CP? is C? with a CP* “at
infinity” which is itself stratified as the one point compactification of C.

For w € Wg let f* be a vector of weight wlpP in F(pP) defined up
to scale, so the projective point [f*] is well defined. As in chapter 4, the
extremal weights of F(pP) are in one-to-one correspondence with the ele-
ments of WP. Thus we obtain, for each w € WP, a distinct point [f*] in the
projective realization of G/P. Pick a weight vector basis {f*} of F(pP), and
let {f;} be the dual basis of F(—pP). Let U = expu in G where p=1&u
is the Levi decomposition as above. Then, for w € WP, define the Schubert
cell

Xy = {[f/1€Ulf"]st fulf) #0}.

X, is an affine subvariety of G/P open in its closure, the Schubert variety
X,. To see this, note that the annihilator of [f*] in U corresponds to the
root spaces in u conjugate to positive root spaces under w. For under such
a conjugation of g, [f*] becomes a highest weight space. It follows that X,
is codrdinatized by wunNw®u (where w° is the longest element of WP so that
wPu is a direct sum of negative root spaces). Hence X,, has dimension £(w)
and is contained in the open affine “big cell” ww®U[f*]. The boundary

X\ Xo = Xu N {[f: fu(f) =0}

(which is generally a singular variety) contains exactly those [ Y] with
w' < w. This is evident if we think of “raising” [f*°] through the extremal
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weight spaces of F(pP) using u, repeatedly. The same consideration shows
that G/P = U,cwp Xy In summary, we have proved :

Lemma (6.2.1). G/P is stratified by affinely embedded affine cells X,,,
of dimension £(w) for w € WP and

BX_w = U Xw’-

w eWP; w/<w

Corollary (6.2.2). The integral homology module of G/P is freely
generated by the Schubert varieties X,,.

In other words, we have the remarkable fact that the directed graph WP
records the homology of G/P.

Remark (6.2.3). The Bruhat decomposition of G with respect to P
[156] is the disjoint union G = II,.cyyp BwP, for the (presently fixed) Borel
subgroup B; so the strata X, are just the B orbits on G/P.

Remark (6.2.4). For each w € WP and for each U_ = expu_, where
g8 = u_®p, wU_[f*] is an affine coordinate system about [f*], again referred
to as a “big cell”.

Example (6.2.5). [Even dimensional quadrics] For Minkowski space,
WP was computed in example 4.3.2 above. The reader will easily relate this
to the cell decomposition given in the introduction to this chapter. For even
dimensional quadrics the situation is similar (WP is given in example 4.3.7 ).
Thus their integral homology is zero in odd degrees, Z ® Z in the middle
degree and Z in all other degrees.

Example (6.2.6). [Projective spaces and odd dimensional quadrics]
The Hasse diagram associated to projective space CP™ has a single element
of length £ for 0 < £ < n (see example 4.3.6); the resulting stratification is
the usual one by copies of C* “at infinity” so that the integral homology of
CP" is Z in even degrees [25].

On the other hand, the Hasse diagram for an odd dimensional quadric
similarly has a single element in each length (see example 4.3.8); so an odd
dimensional sphere is a homology projective space even though these spaces
are quite distinct. For example, the line bundle >1<_2_0. .39 hasa
(2n + 2)-dimensional space of sections whereas no such a line bundle exists
on CP". Thus they are holomorphically distinct. We shall see in a mo-
ment that they are topologically distinct by computing the ring structure on
their cohomology. Then the difference is unsurprising, for the ring structure
depends on the full Weyl group Wg.

?30 WP does not, in general, completely determine the topology of G/P;
notice, however, that it is occasionally possible for the same manifold to
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admit distinct homogeneous structures. This certainly occurs whenever G
can be embedded in a larger group G’ so that U maps to a unipotent sub-
group U’ which is the unipotent factor of a parabolic P’ c @, for then
G'/|P' = G/P.

Example (6.2.7).  Take G = Sp(2n) and let G’ = SL(2n). Then G acts
transitively on CP?"~! identifying it with the space e—e—e --- eEtx | This
space is the homogeneous complex contact manifold associated to Sp(2n)
[21], obtained by projectivizing C?" with a fixed symplectic structure pre-
served by Sp(2n).

Example (6.2.8). Consider the exceptional quotients %= and €=X;
both are five dimensional and for both the Hasse diagrams have a single
element of each length £, 0 < £ < 5, so that both spaces have the same
homology groups as CP®. They are not holomorphically CP? since the
line bundles w3 and 25)31< have fourteen and seven dimensional spaces of
global sections. Actually it is easy to identify the second space directly. The
representation F(0 1) used in its projective realization is the restriction of
the self-representation of SO(7) under the inclusion Gy — SO(7); it follows
that €=x is the five quadric. The space %3 is topologically different,
again, as we shall see in the next section.

6.3 Integral cohomology rings

To say more about the topology of G/P we shall investigate its integral
cohomology. As a module, of course, it is simply the dual of the integral
homology. But its cup product ring structure is more delicate. We shall
investigate this by first computing the first Chern classes of homogeneous
line bundles on G/P and then computing their products, and so the total
Chern class of any homogeneous bundle. Central to this computation is
the observation that since we may regard WP as a subgraph of Wy each
Schubert variety of G/P lifts to a Schubert variety of G/B. It follows that
if v : G/B — G/P is the projection then v* : H*(G/P,Z) — H*(G/B,Z) is
an injection which maps a basis dual to the Schubert varieties in G /P toa
similar one on G/B".

So let us compute the first Chern class of a homogeneous line bundle
Op(Ai). Recall the exact sequence of sheaves

0-Z2F 00 -0

where O is the sheaf of nowhere-vanishing holomorphic functions on G/P.
HY(G/P,0*) is the space of line bundles on G/P and (using the BBW

Indeed [18], H*(G/P,Z) is the space of Wp-invariants in H*(G/B, Z).
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theorem) the long exact sequence on cohomology gives an isomorphism
HY(G/P,0°) B H*(G/P,Z) ~ 7P (12)

where k(p) = |S\Sp|. The image of a line bundle under chy is its first Chern
class, and the isomorphism with Z*P) is obtained by pairing with Schubert
varieties X,, with ¢(w) =1 and w € WP. To calculate the composition use:

Lemma (6.3.1).  [18] Let a € S\ Sp and let o, be its simple reflection.
Then

(O] = (Aa).

In particular, in (12) Z*®) s the lattice in H?(G/P,C) C H*(G/B,C) = h*
spanned by weights \; annihilating [p, p] N h.

(See remark 6.4.2 for an explicit calculation which can be used to prove this
lemma.)

Let z;(p) = ch;Op(A;)—these Chern classes span H*(G/P,Z). By the
remark above, there is no confusion in identifying z;(p) with z;(b) and
writing z; for either. Note that the z;(b) generate H*(G/B,Q) as a ring
over Q but do not in general generate the integral cohomology ring.

The next step is actually to compute the ring structure on H*(G/B, Z)
from which, again by the remark above, the ring structure of H*(G/P, Z) fol-
lows. Let z(;z; ...z (£ terms) be the symmetrized product in HY(G/B, Z).
Then

Lemma (6.3.2).  [18] Ifw € W

2T w0 Xo] = D _(AauYAims) - Q)

where the sum runs over all collections py, . .., e of positive roots of g such
that

-1 __
W =00, ...0y

is a reduced expression. (Recall that these collections may be read off the
graph structure of Wyg.)

Example (6.3.3). We compute the initial part of the ring structure on
H*(=Ex,Z) as follows: let \; = IE)EO, and Ay = %:_)El. . The initial part of

a1, a2

the Weyl group of FRe is

i A i
$ <2 -1 ><-2 5><3 -5
Nep L Nep e
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(the entry against each edge signifies the simple root whose corresponding
reflection links the nodes—the remaining edges correspond to reflections in
non-simple walls). If u is not a simple root then there exists a w € Wy with
a = wp simple—w is easily read from the Weyl group. Because reflection
preserves (, ) we have (A, n’) = (w™'A;,@¥) and so these quantities are
easily calculated. We find that

23 [Xep) =3 z3[X(12)) =0
l‘%[X(zl) = 0 III% X(12)] =1
zazy[Xenl =1 zazy[Xay] =1

where X;; is the Schubert cell for 0,,04;. Observe that

z? + 322 — 3Ty, =0

(see [2]). From this the initial algebra of H*(%3= , Z) and H*( =X, Z) is eas-
ily derived. Note that on 3=, z? does not generate the fourth cohomology
(3 # 1). This compares with the situation for CP?® where the first Chern
class of the hyperplane section bundle generates the integral cohomology
ring. So == is not homeomorphic to CP°.

Finally we calculate the total Chern class of a homogeneous bundle £
on G/P. To do this, we employ the splitting principle [25]. The bundle v*€
on G/B has a composition series whose terms are line bundles—evidently,
there is a term Oy (p) for each weight p (with multiplicity) in the p-module
inducing £. Then v*ch(€) is the product of the ch(Oy(1)). Thus

ch;(§) = formal character of representation inducing €.

Example (6.3.4). To illustrate, we compute the total Chern class and
first Pontrjagin class of the tangent bundles on X3 and €. The weights
of these two homogeneous bundles are easily read off the list of roots of G2
and so, continuing the notation of the previous example,

ch(0(==)) = (1 + 271 + 3z2)(1 + 71 — 2)(1 — z2)(1 — &1 + 3z2)(1 + 71)
ch(O(&=x)) = (1 — 1 + 232) (1 + 21 — 22)(1 — z2)(1 — 21 + 3z2)(1 + 1).

Recall that if
ch(€) = ] A +dy)

1<i<n
then

p€)= [ (1-d)

1<i<n
is the total Pontrjagin class of £. The Pontrjagin class of a manifold is the
Pontrjagin class of its tangent bundle and is a topological invariant. The
first Pontrjagin class is its component in degree four. For example

p(E=)=-1€Z= H' (== 2)
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compared with —6 for CP®, confirming, again, that these spaces are topo-
logically distinct. Also,

pi(E) = ~1 € Z = H'(e=,Z)

which is consistent with our identification of this space as CS®.

Very much more is known about the geometry of generalized flag mani-
folds explored using a projective realization and its relation to Wg. See
[2,18,22,85].

6.4 Co-Adjoint realizations and moment maps

The second realization of G/ P is as an orbit in the dual gf of the Lie algebra
of the compact real form Gy of G. This realization is important for the
emphasis it places on the real structure of G/P, particularly its structure
as a non-trivial example of a real symplectic manifold. We shall say more
about the physical implications of this structure in a remark below. From
a mathematical point of view recall that any symplectic manifold with a
symplectic action of Gy is (a covering of) an orbit in gj; G/P is such a
manifold by virtue of its projective realization (the symplectic structure
following from the inherited Kéahler structure and complex structure). The
passage from the projective realization to the co-Adjoint realization is the
moment map of the action of Gy which we shall explicitly construct.

The first step is to observe that if Ky = Go N P then Gy/Kp = G/P.
Recall that it is possible to find a basis es of the root spaces of g so that
the root space decomposition of g takes the form

g= he (®aEA+Cea) b (®aeA+Ce—a)—
Then gy may be taken to be
80 =t ® (Gaca+R(ea — €_0)) ® (Daca+Ri(en +e_a))

where t corresponds to ihg under the Killing form. kg has a similar form
where « ranges over the positive roots of a Levi factor of p and its comple-
ment in this direct sum will be denoted by gg. k, p are the complexifications
of these. It is clear from the differential action of gy that Gy acts locally
transitively so that the orbit of any point is open and closed (by compact-
ness) hence all of G/P.

The second is to find a vector in g whose stabilizer under the co-Adjoint
action of Gy is K. The evident candidate is a weight canonically associated
to p; we have already encountered pP defined by

0 ifaes
P V) = P
(0%, a%) {1 ifaes\Sp.
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The infinitesimal complex co-Adjoint action of a vector v € g, on pP is
given by

coad(v) - pP(w) = —(pP, ") (v, w)
for w € g. From this formula and the decomposition of g, it follows that
the stabilizer of ipP € t* under Gy is K. So its orbit in g} is G/P.

A complex projective space is a real symplectic manifold whose sym-
plectic form is constructed from the Fubini-Study metric b and the complex
structure J by the formula w(v,w) = b(Jv,w). If G/P — P(F(pP)) is a
projective realization then G/P is a complex submanifold of P(F(pP)) and
it follows that the restriction of w to G/P makes G/P a real symplectic
manifold. It may be assumed that the Fubini-Study metric is invariant un-
der Gy and so the action of Gy on G/P is symplectic and that there is a
moment map ® : G/P — g} [77)].

This symplectic form and moment map may be explicitly constructed as
follows. A left invariant two-form on Gy may be defined by the formula

([v, wlf, f)
(£, 1)

where v, w are right invariant vector fields on Gy, [f] € G/P C P(F(pP))
and (-,-) is a Gy invariant Hermitian form on F(pP). Q is exact; define

P,(v) = Z((U;j,].tf))

and observe that, since ® is also left invariant,
d®(u,v) = ®([u, v]) = Qu, v)

for u, v right invariant. Now  descends to a two-form on G/P. To see this,
let u,v be root vectors in g with u € k, realized as right invariant vector
fields. By the left invariance of it is no loss of generality to suppose that
[f] is a highest weight space. Then either [u,v] € [k, k] and [u,v]f = 0 or
[u,v] € p and [u,v]f, f lie in different orthogonal weight spaces so that in
either case Q(u,v) = 0. The resulting closed form, w, is the Gy invariant
symplectic form on G/P.

Recall that if (X,w) is a symplectic manifold with a symplectic G, ac-
tion then w may be pulled back to a left invariant closed form on Gy; this
represents a class in the Lie algebra cohomology group H?(gp, R), which
is the second cohomology group of the complex of left invariant differential
forms on Gy with the de Rham differential. It is a classical result that g
semisimple implies H2(gy, R) = 0. The pulledback form is therefore the dif-
ferential of a left invariant one-form on Gy which defines a mapping X — gy,
the moment mapping of the action [77,163]. In the present situation, this
construction is transparent and the moment map is

®:9P - 9,

Qy(v,w) =1
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(acting on gp realized as the right invariant vector fields on Gy).
Observe that if g € Gy then

o= v9f9f) _ (g7vg £ f) _
Sl === =" Coad(g)®([/])v

so that @ intertwines the actions of Gy. If [f] is a A-weight space in F'(pP)
then the orthogonality of weight spaces implies that

o([fI)v = iA(v).

In particular, if [f] is the highest weight space of F(pP) then ®([f]) = ipP.
In other words, the image of the moment map on the projective realization
of G/P is its co-Adjoint realization.

Example (6.4.1). To illustrate this construction consider Minkowski
space M C P(T*) in the abstract index notation [127]. Let Z* ~» Z, [128]
be the conjugate linear mapping T* — T, given by a Hermitian structure
(of signature (+,+,+,+)) on T%; so

(Z2*,2P) = Z°Z,.
Then gy = so(6, R) and consists of A{zf]] satisfying a reality condition:
] voT 6]
A = € caprs Al
and a skew symmetry condition:
[aB] _ afByé gloT

Here, €7 is the preserved element of A*T* under SL(4,C); equivalently,

regarding a skew pair [a/3] as a single abstract index and Tl as the selfrep-

resentation of so(6,C), € is the preserved inner product. Its appearance in

the two previous equations therefore serves to raise and lower such indices.
Then the moment map

®: M — s0(6)*
is determined by

B(X](A) = iAp] X IR o/ XDIX
or, taking account of the skew symmetry of A,

1o —fuw -
o([X]) = 5Z(X[” X fag) — Xiap X )/ XOX

(where Xop = €455 X, etc.).
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Equivalently, take gy = su(4), a typical element of which is a trace-free
matrix Aj satisying

Zﬂ = _Ag.
Then 9
? ay Yy a 5d
XD = s, (X Xy = 85X X ).
Remark (6.4.2). Observe that ® does not descend to a one-form on

G/P for it does not annihilate vectors parallel to Gy — G/P. It follows
that w may represent a non-trivial class of H2(G/P,R). Which class it is
is easy to check; for each o € S\ Sp, O, = X, is the orbit of the identity
coset under the corresponding copy of SU(2) C Gy. Then

(@) [0u]) = [ w.

(-1

Setting
1 i
Lo = ﬁ(e-a —€) and Yy, = ﬁ(e—a + eq)
whose projections span the tangent space of O, at eP and using the left
invariance of w we obtain

([w]’ [Oa]) = Wep(Ta,Ya) = (PP, aV).

So [w] = pP € H*(G/P,R) C h} (see lemma 6.3.1).

In particular, [w] is integral and is the first Chern class of the line bundle
Op(pP) on G/ P, which, we have observed, is the restriction of the tautolog-
ical line bundle on P(F(pP)).

More generally, let A be any dominant integral weight satisfying

(%“){21 ifaes\S.

Then Op(A) is ample and the associated n-tuple embedding realizes G/P —
P(F())). Given this embedding, there is a Gy-symplectic form wy on G/P,
constructed as above. Thus w) is determined by the left invariant form on
Gy defined at the identity by

fo if o £ B
2(Za) ys) = { A aY) fa=p

with Q)(z4, z5) = Qr(Ya, ys) = 0. Then a moment map realizes G/ P as the
co-Adjoint orbit through i\ with the standard symplectic form.

Given the symplectic realization of G/P, with one of these symplectic
forms wy, the projective realization may be recovered using geometric quanti-
zation. wy determines an integral cohomology class A € H%(G/P,R) and so
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a smooth homogeneous line bundle. The complex structure on the orbit is
given by declaring the complex span of the projections of the right invariant
vector fields {z, — iy, }, @ € A(u), to be the holomorphic tangent bundle.
This is a Lagrangian distribution on G/ P and so yields a holomorphic struc-
ture on the line bundle, recovering Op()). Then H(G/P,Op(X)) = E())
with its Gg-invariant Hermitian form is the quantum Hilbert space associated
to the physical system described by (G/P,w,). Of course, E()\) = F(X)*.
Much information about this physical system can be obtained from
P(F())), for the physical observables are the eigenvalues of operators on
this space. The projectively embedded G/P is recovered by seeking certain
special states, called coherent states, which are in a suitable sense the “best”
approximation to the original classical states, i.e. to the points of G/P. Pre-
cisely, z € G/P C g} determines a vector v, € go via the Killing form and
so an Hermitian operator # = —iv,- € End(F(A)). Finding the best approxi-
mation in P(F())) to z corresponds to maximizing the (normalized) matrix

element @1 f)
TJ,

The stationary points of ¢, correspond to the eigenspaces of . If z = eP,
so that z = i\ € gf, then £ = h) € h and the eigenspaces of & are the
weight spaces of F()). If f is a u-weight vector then ¢ ([f]) = (i, AY); it
is a standard result that (u,p) < (A, A) so that ¢, is a maximum at the
highest weight space which is therefore the coherent state associated to eP.
But

PcoAd(g)z = L;(p (13)
and so the map
z € G/P C g; — coherent state associated to =
recovers the projective embedding G/P — P(F())) as the G, orbit of the
highest weight space.

Remark (6.4.3). @aj/p is a perfect Morse function; its set of critical
points is the Weyl orbit of z. From (13) observe that if v is a right invariant
vector field on G and pr v denotes its projection onto Go/ Ky = G/P then

([v, 21, f)

?

iglvz,fv][, f)

= Qvg,v)

dpz(prv) =

so that the projection of —v, regarded as a right invariant vector field is the
Hamiltonian vector field associated to ¢, and the resulting cell decomposi-
tion of G/P is exactly that outlined above.
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Remark (6.4.4). It is amusing to note that the correspondence implied
by a double fibration has a neat interpretation in terms of coherent states.
Let y € G/R be realized as a point in the co-Adjoint orbit of ip* € g. As
above, y determines an Hermitian operator § on F()). The coherent states
in P(F(pP)) corresponding to y are those maximizing

_hh

In particular, restrict attention to those [f] € G/P. (This restriction is
called the Hartree-Fock approximation in physics and chemistry.) Again,
suppose y = e so that § = h,p and the critical submanifolds of ¢ are
the intersections of direct sums of extremal weight spaces and G/P. At an
extremal p-weight space, ¢, = (u, p9¥) which is maximized for ;1 dominant,
i.e. p = pP. Recalling (13), it follows that ¢, is maximized on Q@ - eP, i.e.
on the subvariety of G/P corresponding to y, and that this last statement
is true for arbitrary y.

Coherent states may be more generally defined in the setting of sym-
plectic manifolds with suitable symplectic group actions; given two such
manifolds, suitably restricted, the observation of this remark will yield a
double fibration and attendant Penrose transform between the manifolds of
coherent states. The details of this symplectic Penrose transform are yet to
be investigated.

THE PENROSE TRANSFORM IN PRINCIPLE

It is now time to set up the Penrose transform—we shall do this first in its
most general setting in this chapter and then, in chapter 9, we shall specialize
to the homogeneous setting in which, thanks to the representation theory
of the earlier chapters, it becomes computable.

The general form of the Penrose transform is as follows. Suppose X,Y
and Z are complex manifolds and suppose given a double fibration

Z'VYYX

where ) and 7 are surjective mappings of maximal rank and the pair (7, 7)
embeds Y as a submanifold of Z x X. This shall be called a correspondence
between Z and X. The simplest example is where the fibres of 7 are just
single points, whence Y is merely the graph of a function
x: X — VA
w w
z — n(r7(z))
In this case the Penrose transform is simply the pull-back of functions
x":I(Z,0) - I'(X,0),

where x*f = fox for f a holomorphic function on Z. More generally, points
of X describe a family of submanifolds of Z and vice versa:

Y Y
VA X A X
w w w w
z — 1(n7'(2)) n(rHz)) ~——
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The situation is not symmetrical, however, because the fibres of 7 are
always supposed to be compact. The Penrose transform starts with data on
Z in the form of an analytic cohomology class

w € H?(Z,0(E))

for F a holomorphic bundle on Z. In its simplest form, the Penrose trans-
form consists of just restricting this cohomology class to the submanifolds
7(n7}(z)) as ¢ € X varies:

(Pw)(z) = H?(r(n"'(z)), O(E)).

Since, by assumption, ¥ may be regarded as a submanifold of Z x X, each
7(n~!(z)) is isomorphic to the fibre n~}(z) and, in particular, is compact.
Thus, H?(7(n~!(z)), O(E)) is finite dimensional [34] and, if of constant di-
mension, gives a holomorphic vector bundle on X as x € X varies. In this
way, Pw has a natural interpretation as a section of this bundle. The sec-
tions which arise in this way are usually further restricted in some way, often
as being annihilated by a holomorphic differential operator.

In order to investigate this rather naive description of the transform it
is evidently a good idea to split it up into two steps.

e Pull back to Y Roughly speaking, the cohomology class w is re-
garded as a cohomolgy class on Y which is constant up the fibres of 7.
This constancy is interpreted by means of a differential equation. If
suitable topological conditions, to be described in section 7.1, pertain
on these fibres, then this pull-back is an isomorphism.

e Push down to X Restricting w to n(77!(z)) now coincides with
the notion of direct image under 7. The transform may therefore be
investigated by means of the Leray spectral sequence which is designed
exactly for the situation. In this way the differential equations along
the fibres of 7 manifest themselves on X and the transform may be
proved to be an isomorphism onto an appropriate solution space.

In fact, this way of looking at things also deals with the general case of the
Penrose transform where the simple idea of just restricting to the corres-
pondence submanifolds is inappropriate. In other words, the Leray spectral
sequence is able to interpret the data on X in all cases. In general, there is
often a final step taken down on X where the output of the whole process is
subject to some further reinterpretation. In the classical case (for Minkowski
space), the simplest form is the twistor description of right-handed fields
whereas the less obvious transform gives a description of left-handed fields.
The combined form of the transform in the classical context is given in [44].

Our application of this machine is in the case in which X,Y and Z
are corresponding open subvarieties in a double fibration of generalized flag
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varieties. If P and R are standard parabolic subgroups of G then so is
@ = PN R and there is a double fibration
G/Q

v N
G/R G/P

(see section 2.4). We take X to be an open subset of G/P (most often an
affine “big cell” or an open orbit of a real form G, of G) and let Y = 771X
and Z = n(Y). The transform is then applied to calculate the cohomology
on Z of the restriction of irreducible homogeneous bundles on G//R.

7.1 Pulling-back cohomology

This section discusses just one aspect of the Penrose transform, namely the
first step of pulling back cohomology classes on Z to Y by means of the
mapping n : Y — Z. For the purposes of this discussion it is irrelevant as
to whether Y and Z are homogeneous.

Given any holomorphic vector bundle E on Z with O(E) as the sheaf of
holomorphic sections, there is a natural map on cohomology: :

n~':H(Z,0(E)) — H'(Y,n 'O(E))

where n7!O(E) is the topological inverse image sheaf of O(E); in other
words, the sections of 7*(F) which are locally constant along the fibres of .
Certainly, if these fibres are connected, then there is an isomorphism on
sections:
H®(2,0(E)) = H(Y,n"'O(E))

and this leads to the question as to what happens on higher cohomology.

To investigate this question, consider the Dolbeault resolution (e.g.
[63,78,157])

0 — O(E) — £2°%(E) 5 2Y(E) 2 £%2(E) — - .

of O(F) where £P9(E) denotes the sheaf of smooth forms of type (p,q). This
gives rise to a resolution

0— 7 'O(E) — 1~ 'E°(E)

of n7'O(FE) and the homomorphism above may be realized as the composi-
tion:

H'(2,0(E)) = H'(I(2,£*(E))
> H'(T(Y,n'&%(E))) (if n has connected fibres)
— H'(Y,n'O(E)).
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Thus, the question as to whether this composition is an isomorphism is
reduced to the question as to whether n71£%*(E) is an acyclic resolution
of n”!O(E). This question is no longer in the holomorphic category and
may be rephrased as follows. Suppose 1 : Y — Z is a smooth mapping of
maximal rank between smooth manifolds. Suppose F' is a smooth complex
vector bundle on Z. Let £(F') denote the sheaf of smooth sections of F.
Under what circumstances is it the case that

H'(Y,n'E(F)) =07

As an example, consiRhder the case when Z is a single point. Then F is
trivial and may as well be C. The sheaf n~1£(F) is just the constant sheaf
C and the vanishing of H"(Y,n~£(F)) is therefore precisely the vanishing
of the de Rham cohomology H"(Y,C). The cohomology H'(Y,n 1E(F)),
in general, may be similarly realized as a fibrewise de Rham cohomology.
Since F is locally trivial and since H*(Z,E(F)) = 0, by partition of unity, it
is clear that the discussion is local on Z (which may as well be a disc) and
that F' is actually irrelevant. Thus, it suffices to demonstrate the vanishing
of H™(Y,n7€).

Let 8,} denote the sheaf of one-forms relative to the mapping 7, i.e. dual
to the vertical vectors (tangent to the fibres of ). Thus, there is a projection

& - E,}
and a relative exterior derivative d, defined as the composition
£L et el
This extends to a resolution
O—nle—eRelBgr ...
in the obvious manner. This is a resolution by acyclics and, hence,

kerd, : T'(Z,€r) — T(Z, £
H -1 o~ n (/] s & .
(¥on™) imd, : T(Z, &) = [(Z,£])

If n were a fibration, in other words if we could take Y = Z x F for some
fibre F' with 7 as projection onto the first factor, then this would be just the
deRham cohomology depending on a parameter z € Z. Thus: H"(Y,n™1£)
would vanish precisely when H"(F,C) did. This would always be the case
if n had compact fibres. In the case of the Penrose transform it is almost
always the case that n has non-compact fibres but, nevertheless, is often
a fibration. The following argument is also valid for the cases of interest
(see chapter 9). By mimicking the usual proof of homotopy invariance of
ordinary deRham cohomology, it follows that H™(Y,n~1£) is invariant under
homotopies of Y which preserve 5. Thus,

7.2 PUSHING-DOWN COHOMOLOGY 71
Theorem (7.1.1). If the fibres of n are contractible by means of smooth
homotopies varying smoothly with z € Z, then H™(Y,n71€) =0 Vr > 1.

The definitive answer is given by Buchdahl [31] who showed that:
Theorem (7.1.2). If, for each fibre Y,,
H"(Y,,C) =0 and H(Y,,C) =0,

this second condition being replaced by connectivity of Y, if r = 0, then
H(Y,n'€) =0.

He also gives an example to justify the condition H™"*(Y,,C) = 0. In
general Michael Singer [142,143] has proved a local relative universal coeffi-
cient theorem:

Theorem (7.1.3). There is an exact sequence of £-modules on Z
0 — Ext!(Hp1(n),€) = HP(n) = Hom(Hp-1(n),€) — 0
where
M (n) = ni(n”'€)

is a local fibrewise cohomology, and
Hr(n)z = Hr(yz, C) ®cé.

1s a local fibrewise homology.

He has used this theorem to investigate the Penrose transform when the
fibres of n have non-trivial topology. This case is especially relevant to the
twistor description of zero rest mass fields with sources, e.g. electromagnetic

fields with charges [7].
In any case, as explained earlier, we now conclude

Theorem (7.1.4). If the fibres of n: Y — Z are contractible by means
of a smooth homotopy which preserves n, then

H'(Z,0(E)) S H'(Y,n'O(E))

for all r.

7.2 Pushing-down cohomology

The aim of this section is to describe the interpretation of H"(Y,n 'O(E))
down on X under the mapping 7: Y — X. To do this, consider the resolution

0—n'O(E) — Q5 (E)



72 7 THE PENROSE TRANSFORM IN PRINCIPLE

of n71O(E) by the locally free sheaves
Q(E) = Q, ®0 n"O(E)

where F denotes the sheaf of relative holomorphic p-forms defined by anal-
ogy with the smooth version of section 7.1. Notice that d, : QF — Qf,“
induces a well-defined operator
Vi, QE(E) — Qg“(E)

since n*(E) is naturally given by transition functions constant along the
fibres of . In other words, n*E is flat relative to n. The operator V, is a
relative connection in that it is determined by V,: Q0(E) — Q1(E) which
satisfies a Leibnitz rule V,(fs) = fV,(s) + d,f ® s. Conversely, if n has
connected and simply connected fibres, then the vector bundles on Y which
arise from pull back from Z are precisely those which admit a flat relative
connection, i.e. one with vanishing relative curvature, so that the Qy(E) is
exact. See [50] and section 9.9 below for more details and a discussion as
to how this structure yields the Ward transform under push-down to X.
By general abstract nonsense [42,69], the cohomology H™(Y,n 'O(E)) is
determined by the cohomology H(Y, % (E)). Specifically, there is a spectral
sequence (a special case of the hypercohomology spectral sequence):

Byt = HU(Y, Q4 (E)) = HY"(Y,n~'O(E))

and, thus, it suffices to calculate H?(Y,Q¥(E)), an easier task since the
coefficient sheaves are locally free. Recall that 7 is always supposed to
have compact fibres. Thus, for any fixed p the direct images 70/ (E) are
at least coherent [65,71,99] and often locally free. Certainly, if everything
is homogeneous, then 7{QF(E) is always locally free. Indeed, in this case
direct images are always computable by Bott—Borel-Weil (as explained in
section 5.3). In any case, the cohomology H(Y,QF(E)) is given by the

Leray spectral sequence (e.g. [69]):
By = H*(X, 7[00 (E)) = H*"(Y,Q(E)).

We shall usually assume that X is Stein, in which case the higher cohomol-
ogy of X vanishes by Cartan’s theorem B [63,78,157]. Certainly, it is always
possible to consider a polydisc neighbourhood X’ of z in X, replacing Y
by Y = 771(X’) and Z by Z' = n(Y’'). In this way, we can say that the
Penrose transform is always valid locally.

7.3 A spectral sequence

The discussion so far is now fairly standard [50] but, as will be demonstrated
in chapter 9 it is crucial for the homogeneous case to incorporate a varia-
tion by allowing an arbitrary resolution to replace the holomorphic relative
de Rham sequence. We summarize the preceding discussion as follows:
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Theorem (7.3.1).  Suppose that the fibres of n: Y — Z are contractible
by means of a smooth homotopy which preserves n. Let

0—n'OE)— ANE)

be a resolution of N~ O(E) by locally free sheaves. Then there is a spectral

sequence
EP! =T(X, r]AN(E)) = H""(Z,0(E)).

The Penrose transform wuses this spectral sequence to interpret
H"(Z,O(F)) in terms of differential equations on X. Just as for the relative
de Rham sequence, the differentials &,: A?(E) — AP*!(E) are, in practice,
designed to be differential operators so that, in case T/AP(E) are locally
free, we obtain differential operators

786,: TIAD(E) — TIAPTL(E)

which induce the differentials of the E;-level of the spectral sequence. Sim-
ilar comments apply to higher levels of the spectral sequence. It is in this
way that the differential equations on X arise.

For the moment, however, things must be left at this somewhat vague
stage whilst the proposed improved resolution A;(E) is constructed in the
homogenous case outlined at the beginning of this chapter. That is, we shall
seek an efficient replacement for the relative de Rham resolution of n~1O(E)
for the case in which 7 : G/Q — G/R and O(E) = Oy(A) is an irreducible
homogeneous sheaf on G/R, restricted to Z C G/R. This replacement, the
(dual) Bernstein—Gelfand—Gelfand resolution, is the subject of the following
chapter, after which the Penrose transform will be brought to life with many
examples and applications in chapter 9.
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On a holomorphic n-manifold the de Rham sequence can be used to resolve
the constant sheaf C by locally free O-modules

0-CoP4 402 ... Q"0

where QP denotes the sheaf of holomorphic p-forms. For a general manifold,
this is the best we can hope for, but on a homogeneous manifold there
is a resolution due to Bernstein, Gelfand, and Gelfand which is, in many
ways, more efficient. We shall need a relative or fibrewise version of this to
compute the Penrose transform. In order to construct it, we start with the
deRham complex and try to modify it as follows.

8.1 A prototype

The first thing to observe is that if ¥; and Y; are vector fields on a mani-
fold X which annihilate a function f, then their Lie bracket [Y7,Y5] also
annihilates f. Thus, if a distribution D C T (the tangent bundle of X) has
the property that [D, D] = T then in order that a function be constant it
is sufficient that it be killed by sections of D. Dually, let Q' — A! be the
corresponding projection on sheaves. The initial segment of the de Rham
resolution may be replaced by the exact sequence

0—C— A5 Al

where A° = Q0 and § is the composition A? = Q° % Q! — Al. On a general
manifold there is no natural choice for D but on a homogeneous manifold
we can make a natural choice at the identity coset and then move this choice
around under the action of the group.
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Consider, as a prototype, the homogeneous space ¥—X , i.e. the complete
flag manifold of SL(3, C). The tangent space T at the identity coset may
be identified with the strictly lower triangular matrices

000
* 0 0
* x 0
and within this space is the natural subspace D of matrices of the form
000
* 0 0 |.
0 = 0

The inclusion D C T is a homomorphism of B-modules, for B the upper
triangular matrices. Specifically,

2 -1
*—x

® CT— s1(3,C)
12 b
X—x

Thus, D gives rise to a homogeneous distribution on *—x which is, however,
not integrable since

000 000 000
*x 00|, 00 =000 |.
0 = 0 0 x 0 x 00

This is exactly as desired and we can conclude that there is an exact sequence

2201
*¥—X

0o 0
0-0C—  x — D
1 -2
»—X

which can be completed into a resolution of C as follows. The kernel of the

projection Q! — A! is the line bundle >l<al< . Since X is three dimen-
sional, the Hodge *-isomorphism gives 22 = Q3 ® (Q2!)". As a homogeneous
bundle, 23 =2 2 . Combining these facts gives an exact sequence

-3 0

1 -1
0— (&) _’92_7-9( — 0.
0 -3
*xX—xX

Thus, there is the following commutative diagram
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0 0
l '
-3 0
»¥—x
1o ®
*¥—x 0 -3
|
|
0 —d g1 d g2 d | g 0.
NV
-2 1
6 *—x
D -1 -1
1 -2 *¥—x
*X—X
; |
0 0

In this diagram, consider the composition
1l grd g2 L1
By the Leibnitz rule,

d(fw)=df A\w+ fdw for f € O and w € Q.

But, for w € %%,

dfrwe @ cQ?

0 -3
xX—x

a1 B T T . . . . .
80 % % — x—x 1is just linear over the functions, i.e. an invariant homo-

morphism of homogeneous bundles. Hence, by Schur’s lemma, it is simply
scalar multiplication. As demonstrated below, this scalar must be non-zero.
Thus, the compositions

d -1 -1 -1-1
QL0271 and Lk —ot4 o2

split the vertical exact sequences in the above diagram. Notice that these
vertical sequences certainly do not split as homogeneous bundles (or, indeed,
as holomorphic bundles). Rather, they are split as C-sheaves by means of
invariant differential operators. A simple diagram chase (i.e. pure thought)
now establishes the exactness of the following Bernstein—Gelfand—Gelfand
resolution:

2 1 3 0

X o %X
oo 7 NG 2 -2
0 —C— »x @ @ -
C \ 1 -2 >< / *»X—x 0.
x—x

0 -3
»X—X

8.1 A PROTOTYPE 7

. 1 - 1 -1 .
It remains to be seen why 5% — % as constructed above is non-zero.

There are two possible arguments.

Method 1 Label the entries of the strictly lower triangular matrices by

0 0 0
Y1 0 0
Y; V2 0

Thus, Y; may be regarded as vector fields on SL(3,C). Let w; denote the
dual ome-forms: thus, w;(Y;) = &;;. Then Q* — Y% is accomplished on
SL(3,C) by 6 — 6(Y;,Y3). Also, w3 € %% C Q. Hence

(dws)(V1,Y2) = 3Yi(ws(Y2)) — 5Ya(ws(Y1)) — ws([Y1, Ya])
= 0-0+ws(Y3)
= 1.

This calculation on SL(3, C) shows that % 5% — Y5 down on —x is the
identity.

Method 2 The inclusion % 5 < Q! may be regarded as a one-form w
with coefficients in ;_Ix . The kernel of w is the distribution D and the
statement that D is nowhere integrable is precisely equivalent to w being

a contact structure on %—x . But w A dw is precisely the homomorphism

11 1 -1
X—X T X%—X -

Remark (8.1.1). Method 1 can be interpreted as a calculation down
on *—x using the affine coordinate patch of the cell structure described in
chapter 6. This method evidently generalizes to allow calculation of similar
operators on arbitrary complex flag manifolds. On the other hand, method 2
yields a resolution on any three dimensional contact manifold and, indeed,
may easily be modified [27] to yield an analogous resolution on contact
manifolds of higher dimension.

Remark (8.1.2). Even in the homogeneous case, however, it should
be noticed that the claimed increase in efficiency has been achieved at some
expense. The improvement over the de Rham sequence is in the dimensions
of the bundles which in this case read

1221 ratherthan 1331.

The price to pay for this gain is that the differential operators are no longer
necessarily first order. An increased order has crept in because the split-
tings used in the construction were also achieved by means of differential
operators. By checking symbols it follows that the four operators
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2 1 3 0
X—X T %X
5, X ,°
1 -2 0 -3
Xx—x T xx
are second order whilst the others are all first order.

Remark (8.1.3). The usual discussion of the Bernstein-Gelfand-
Gelfand resolution [17] employs a dual formulation in terms of Verma mod-
ules (see section 11.1 and theorem 11.2.1). The equivalence between these
two viewpoints is discussed in [563]. As a sequence of Verma modules, the
above resolution reads

Vi) —. V(EX)

0 — V(2 2y ® o ™ (%) wgc—0
TN v<°x:<>>ﬁ< S .

and it is often useful to adopt this alternative formulation. From now on,
either of these resolutions shall be known simply as BGG resolutions.

8.2 Translating BGG resolutions

An extremely useful device which may be applied to the BGG resolution is
the Jantzen—Zuckerman translation functor (see e.g. [151]). The application

of this functor on %—x is as follows. Choose any irreducible representation
o—4 of SL(3,C). As a representation of B (by restriction) this gives rise to

a (reducible) homogeneous vector bundle on ¥—x which, as merely a vector
bundle, is nothing other than the canonically trivial bundle

- X X—X .

Thus, we may tensor the BGG resolution of C with this bundle to obtain a

resolution of 3__§. The essence of the Jantzen-Zuckerman functor is the fact
that this resolution automatically decomposes according to central character
(see [53] for some examples and chapter 11 for more Lie algebraic machinery
which is relevant here). The result is the following BGG resolution:

-p-2 ptat+l -pq3 p
—_—

x—x *—x
0.—5 3.2 1 A o) >< o) \p2 a2 0

*—X
N\ ptatl -a-2 a -pa3 "
X—X *—X

At this point, the reader will recognize this diagram as a picture of the Weyl
group of SL(3, C) (see example 4.1.5) as a partially ordered set and, more-
over, observe that the weights which appear are precisely those obtained by
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the affine action of the said Weyl group elements on the weight 3§ . That
the central characters agree is a consequence of Harish Chandra’s theorem
[94]. Indeed, conversely, this theorem implies (as in e.g. chapter 11) that
a homomorphism between Verma modules is necessarily restricted to those
occurring in the same affine Weyl group orbit as above.

8.3 The general case on G/B

Bearing these observations in mind, it is easy to guess the general form
of the BGG resolution on a complete flag manifold G/B for any complex
semisimple Lie group G and Borel subgroup B. We should start with any
irreducible representation of G and expect to resolve it by a complex of
homogeneous line bundles linked by invariant operators. Specifically, if A
is a dominant integral weight for G, then E()) is resolved by a complex
whose structure is exactly the same as the Weyl group Wy of G with the
line bundles in question obtained by the affine action of Wy on A. In other
words, we have a

Theorem (8.3.1). If X is a dominant integral weight for g then there
is an ezxact resolution
0— E(\) — A*(N)

where
AP()) = P  Op(w.h)
w€Wg,l(w)=p
and where the differential AP(\) — APYL()) is obtained by taking the direct
sum of the operators
Op(v.)\) — Op(w.\)

where w = ov for some reflection o (not necessarily simple).

In fact, Bernstein et al. [17] show much more than the general validity of
this resolution in that they demonstrate that a non-zero invariant operator

Op(u.X) = Op(v.2)

exists precisely when v < v in W in which case this operator is unique up
to scale. Indeed, they use this fact, together with a combinatorial argument
concerning the structure of Wy, to prove exactness of their resolution.

Alternatively, the resolution may be derived from the de Rham sequence
as in our initial example. From this point of view it is clear that

Al = P O(0.0)
g€EA

is a reasonable choice for the term following O in a resolution of C' since it
is dual to the smallest homogeneous subbundle D C T with the property
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that [D,D] = T. The notion of infinitesimal character (see 3. on page
163) determines the remaining terms. The general case then follows by
translation. Presumably, the machinery of Spencer [145] also generates the
BGG resolution if we specify the composition O 4 Q! - Al as the first
differential operator § of the complex.

A typical BGG resolution (for the complete flag manifold of SO(5, C) or
SP(2,C)) is as follows

3.6 -6, 6 -6, 2

/ \.3_4
0— o ;%@2(\4-4><4-8><1-8/>¢)=x 0

8.4 The story for G/P

The discussion so far has been restricted to complete flag manifolds, i.e. of
the form G/ B for B a Borel subgroup of a semisimple G. However, there is a
similar resolution on any generalized flag manifold, i.e. of the form G /P for
P parabolic. The pattern on such a manifold follows the partially ordered
set WP as discussed in section 4.3. In other words, we have an analogue of
theorem 8.3.1 above:

Theorem (8.4.1). If )\ is a dominant integral weight for g then there
is an exact resolution
0— E()\) — A*(N)

where
AP()) = &b Op(w.\).
weWP £f(w)=p
A typical example is the following resolution of E(e% %)
3 -3 0
1 0 0 2 2 1 7 & N1 52 0 5 1
_..x.—>.x.\0_43/.+_.—>._x_.-—>0.
*—>—=e

Notice that this resolution is no longer composed of line bundles but, rather,
of irreducible homogeneous vector bundles. This particular resolution has a
well-known physical consequence [31,44] on ®—<—* regarded as Minkowski
space, namely that helicity —g massless fields

0 -4 3 1 5 2
ker: ¢ % o — o—x—o
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may be locally represented as potentials/gauge (see page 77)

2 30
ker: g % o — s
.1 0 0 2 -2 1°
I : e —x—e — e

The general case is proved in [66,110,131]. However, more in the geo-
metric spirit of this book, these BGG resolutions on G/P may be derived
from those on G/ B as follows. Consider the natural projection

G/B 5 G/P.
The fibres of this projection are themselves homogeneous as quotients
P/B=L/LNB

where L is the reductive part of P as in section 2.2. Thus, homogeneous co-
homology along the fibres of 7 may be computed by BBW. In other words,
for any homogeneous line bundle Oy ()) on G/B, we can use BBW to com-
pute its direct images 7?Op(A). Specifically, the answer is as follows. Con-
sider the affine action of the Weyl group W, on the weight A. If the orbit of
A under this action contains no weight dominant for P, then all the direct
images are zero. Otherwise, A is said to be non-singular for P and Wg.A
contains precisely one weight dominant for P. If w.A is this weight, then

T 0p(A) = Op(w.Ap)
and all other direct images vanish. Consider now a BGG resolution
0—-E(\) — A

on G/B. Then, 77 E(A) = nTA*()A). But, E()) is a constant sheaf on G/B
so its direct images are given by

#"E(\) = H'(P/B,C) ® E()\)

and, from the cell structure of generalized flag manifolds discussed earlier
in section 6.2,

dim H*(P/B, C) = #{w € Wp, s.t. £(w) = r}.

On the other hand, 77A®*(\) may be computed by the hyperdirect image

spectral sequence
EP? = miIAP()\) = 7PTIA%(N)

whose E;-terms are given by BBW as above. For ease of discussion, suppose
that A is non-singular (for B and hence for P). Indeed, we could just do
the case A = 0 and use the Jantzen—Zuckerman translation to arrive at all
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other cases. Then recall (section 4.3) that WP is characterized inside the
Weyl group Wy of G as

WP = {w € W s.t. w.\ is dominant for P}.

Thus, E{”O is a copy of what we are trying to prove is the BGG resolution
of E(\). Indeed, since WP consists of canonical representatives for the
right cosets of Wp, it follows from BBW that the Ei-level of the spectral
sequence is made up of Wy copies of this proposed resolution emanating
from the E*-positions with multiplicity = #{w € Wp s.t. {(w) = s}. The
BGG resolution on X=X as above gives a typical example under projection

to &= .

q
1,2 4 4

e=x  e=x ﬁ-)-Li 10%=$<
SORETERETE I
In general, if these were resolutions of E()), then the Es-level would consist
of E(\)’s scattered along the diagonal E3* with appropriate multiplicity.
The spectral sequence would therefore collapse and give the correct answer
for the direct images 77E()). Conversely, it is clear that this is the only
way that the spectral sequence is going to converge to the right answer.
Notice that, as for complete flag manifolds, the BGG resolution of O on
any generalized flag manifold is closely related to the de Rham resolution.
In particular, the bundle Al has a similar geometrical interpretation as
dual to the smallest homogeneous subbundle D C T' with the property that
[D,D] = T. As before, the BGG resolution may, alternatively, be derived
from the de Rham resolution (cf. [51]) and if the tangent bundle happens
to be irreducible (see table 3.2) then the two resolutions will coincide. This
happens, for example, in the case of Minkowski space M as the homogeneous
manifold ®—%—e where the BGG resolution

b

2 -3 0

——x—o
0__.0__000__>1-21/' \\1-41_»0-40__’0
\0-3 2/

coincides with the de Rham resolution
e Qi N

0—C — Q0 — o QB — o —0
\ Q2 /

the two-forms being split Q2 = Q2 & Q? into self-dual and anti-self-dual
types by virtue of the conformal structure on M (see example 2.3.2 and
remark 3.2.5).
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In fact, for any complex quadric the tangent bundle is an irreducible
h.omogeneous bundle and the de Rham and BGG resolutions agree—this
gives a simple method for computing the form bundles on a quadric as
homogeneous bundles; the reader may wish to use this observation to verify
example 3.2.4.

8.5 An algorithm for computation

We can use the method for determining WP given in section 4.3 to calculate
a BGG resolution. This really is the key computation in constructing a
Penrose transform so it is worth illustrating the algorithm in detail.

Example (8.5.1). To determine a BGG resolution on ambitwistor

space %—¢—x we should first allow the Weyl group Wy to act on the weight

1 “ .
._2_1, obtaining the result

0 -1 2 01 -2
._._.—-—’._._.
111 7 RS S|
1 o1~ -
N1 2 -1 1 21 ~ NS T
N1 1 a1 "
N1 7
N2 10 210 7
* —o—0 — o—0—0

In this diagram only the simple reflections are shown. To use this to create
. 0
the BGG resolution of ._1,_3, for example, consider the composition

1 0 1 o-1 1 -
A 1;012'

Inverting this composition and computing the affine actionon 94 2 gives

0 1 272 -3 4040 4
This is thgrefore the appropriate weight for the corresponding position in
the resolution. Adding in the non-simple reflections gives

-4 0 4 70 1
22 2 7 N7 2 -3
o1 2 7~ x x
x :\-25-4 4 5 6 7 . 6 1 -4
o %—o—xX T x—e—x *X—e—x
22 >< >
*X—e—X
N2 2 -6 12 7~
XX > x—e—x

. 01 2 . .
as a resolution of ¢ o ¢ On %—*—X using irreducible homogeneous bun-

dles and invariant holomorphic differential operators between them.

Remark (8.5.2). The algorithm used to compute a BGG resolution
may be applied to a singular (but dominant) weight. The result is an ex-
act sequence, still, which is no longer a resolution of a finite dimensional
representation. For example, the sequences
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1 30
TN 3 0 0
P

0 2 1
0 '55\021

and

0
N0 30 0 30
A M

0 -1 0 0-10/
\
0

X9 T o X—e

are exact on &—x—=e,

8.6 Non-standard morphisms

In their article [17], not only did Bernstein et al. prove the exactness of
their resolution on G /B but also they classified all the invariant differential
operators between homogeneous line bundles on G/B. The result is that,
up to scale, they are precisely those which arise in the resolution together
with compositions thereof (as in theorem 11.2.2). We might expect that
the invariant operators on G/P are similarly classified. However, this is
not the case. In other words, there are operators on G/P which do not
arise as direct images of operators on G/B under the natural projection
G/B — G/P. These operators are called non-standard [19,20,110]. There
are non-standard operators in the singular case too and in fact the simplest
example is an extra operator in the previous diagram

0.0 1o 0 3 0
Pe—x—e T e—x—e

which is the wave operator or Laplacian. More generally, there is an extra
operator

p g r __ T D

-p-q-r-4

and, together with those which arise from the BGG resolution, this forms a
complete list of SL(4, C) invariant operators (see [53] for more details). Al-
though these operators do not arise as direct images of operators on X—%—x,
they arise naturally from the Penrose transform (the wave operator is ex-
plained on page ?? and a more exotic example given in section ?7). The
ingredients for this transform, however, are all standard, i.e. the construction
relies only on the BGG resolution. We may hope, therefore, that all invari-
ant operators arise from the Penrose transform. This would be a very useful
phenomenon, the general invariant operator being unknown at present. We
shall take up this question again below and show that the Penrose transform
does generate all conformally invariant differential operators.
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8.7 Relative BGG resolutions

The final variation which we shall need concerns relative BGG resolutions.
These are resolutions along the fibres of a projection G/Q > G/R for the
case of two standard parabolic subgroups @ € R C G. Since the fibres
are themselves homogeneous, we can construct a BGG resolution on each.
Thus, given an irreducible homogeneous bundle E on G/R, we can restrict
to each point z € G/R and resolve along the fibre n~!(x). It is then easy
to see that the resulting resolutions vary in a homogeneous manner as we
vary the fibre. In other words, the resolution is by invariant differential
operators acting between irreducible homogeneous bundles on G/Q. The
ordinary BGG resolutions on G/Q correspond to the special case when
R = G so that 7 is just collapsing to a point. In general, the relative
BGG construction resolves the topological inverse image sheaf "' O(E). An
alternative resolution is given by the relative holomorphic de Rham sequence
and until recently [44,50] it was this resolution which was used to describe
the Penrose transform. The use of the BGG resolution and, indeed, the
Jantzen-Zuckerman functor for its construction is implicit in [51] for the
special case of Minkowski space where to use the de Rham sequence for
a general homogeneous bundle is already unmanageable. More generally
the BGG resolution is absolutely crucial in order to avoid the difﬁcultiesj
which inevitably arise with reducible tangent bundles. The algorithm for
computing these relative resolutions is a straightforward generalization of
the previous discussion.

‘ To compute a relative BGG resolution simply carry out the algorithm as
in example 8.5.1 but using W, the relative Hasse diagram of the fibration
(see section 4.4).

Example (8.7.1).  Consider the fibration

xX—x—e

n

xX—eo—eo

To compute the relative BGG resolution for this fibration the first step is

to compute the orbit of 2_1._2 under W, (which is generated by o,, and
Oay) 88
Sigoiiioiey
which gives
WA = {id,04y,00,005}

from which we deduce the resolution

-1k 0 O k 0 0 k+1 -2 -
0_}71 N _kt 1_)k+23 0_)0.
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This is the start of the classical Penrose transform and will be used in

section 9.2 below.

THE PENROSE TRANSFORM IN PRACTICE

This chapter is devoted to the calculation of several examples of the Penrose
transform on generalized flag manifolds. We shall illustrate the computa-
tions involved in some detail—it is our intention that this book should be
useful as a handbook of techniques. Of course, an endless repetition of an
unvarying theme is tiresome, so we will use the opportunity to illustrate the
large variety of applications of the transform. Some of these are as follows.

Firstly, and historically, the Penrose transform gives an algebraic con-
struction of solutions to a wide class of physically important differential
equations, as pointed out in the introductory chapters. It provides a means
of writing down these solutions quite explicitly in closed integral form. More
significantly, it gives a definite structure to the space of all solutions of the
equation by recognizing it as a sheaf cohomology group on an associated
complex manifold. This gives us a chance to directly address problems in-
volving the total structure of the solution space. For example, we may
hope to manipulate the solution space geometrically to quantize the classi-
cal system associated to the original differential equations. In doing this it
seems essential that the space of solutions should admit a unitary structure,
invariant under a suitable group action.

This gives a second consequence of the transform. For in a form often
called the twistor transform, it provides a direct method of constructing
an invariant inner product on many of the cohomology groups (without
having to resort to the use of L2-cohomology). It turns out not to be too
difficult to show the definiteness of this inner product in good cases. Not
all cohomology groups will admit this structure, since, as we shall see, their
K-finite vectors form a subquotient of a dual Verma module. Not all such
subquotients are unitarizable [61]. We investigate the twistor transform and
take up the unitary question in chapter 10.

Thirdly, as has already been mentioned, the differential operators which
arise in the Penrose transform on a generalized flag manifold are invari-
ant under left translations. They correspond to homomorphisms of gen-
eralized Verma modules [53,110]. Actually, these operators arise in two
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stages: firstly as differentials in the Bernstein-Gelfand-Gelfand resolution
(the “pull-back” part of the construction) and secondly as the derived direct
images of these differentials (in the hypercohomology part of the transform).
Now, taking direct images of the Bernstein-Gelfand-Gelfand differentials
corresponds to pushing down a (generalized) Verma module homomorphism
from a module induced using a small parabolic to one induced using a larger
parabolic. This is a standard procedure; the result is always defined, but
may be zero. In this eventuality, surprisingly, there may still exist a non-zero
non-standard homomorphism for the larger parabolic [110]. The Penrose
transform handles this situation easily, producing non-standard homomor-
phisms directly. The reason lies in the fact that the transform considers
derived forms of the homomorphisms. The occurrence of non-standard ho-
momorphisms is exactly the occurrence of irreducible subquotients of Verma
modules with higher multiplicity than one. So the transform gives structural
information on Verma modules.

Fourthly, the Penrose transform has several applications in differential
geometry. More complete information is given in [90,93,123,128,155] and we
briefly study only two. The cohomology of tangent bundles on generalized
flag manifolds (or subsets thereof, more correctly) relates to the holomorphic
deformation theory of such manifolds [101]. If the tangent bundle is not re-
duced then the cohomology of (sub)quotient irreducible sheaves corresponds
to deformations preserving the part of the composition series structure of
the tangent bundle. The simplest case of this is when the manifold admits
a contact structure which must be preserved under deformation. Spaces of
null geodesics in a conformal manifold are precisely of this form [105] and
the Penrose transform then realizes deformations of these spaces which pre-
serve the contact structure as deformation of the conformal structure of the
manifold in which the geodesics live.

The chapter is divided as follows: in section 9.2 we review the historical
examples of the transform originally due to Roger Penrose [119]. Thus
we compute the cohomology of powers of the tautological bundle on CP?
restricted to the neighbourhood of a line and identify these with solutions
of the zero-rest-mass field equations on an affine region of Minkowski space.
This prototype has many of the features of the more general setting. We also
consider the twistor transform. Sections 9.3 and 9.4 consider more general
homogeneous bundles over CP? such as the holomorphic forms and the
tangent bundle. Another useful version of the transform in the physically
relevant case of four dimensions is that for “ambitwistors” and this is the
subject of section 9.5. We point out how infinitesimal character explains
the calculations involved in the extension problems on ambitwistor space.

Next we consider higher dimensional analogues of the Penrose trans-
form. From the physical point of view there are two possibilities—we may
generalize the conformal structure of four dimensional Minkowski space or
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(what amounts to the same structure in four dimensions) the fact that the
tangent bundle occurs as a tensor product of two more basic bundles. The
first possibility is considered in section 9.6, where we discuss quadrics of
arbitrary dimension. On the twistor spaces which we introduced for these
spaces in section 2.3, there is a natural line bundle which generalizes the
tautological bundle. Taking cohomology of its powers on a suitable region of
the twistor space leads again to solutions of higher analogues of the zero rest
mass field equations. The second possibility is the subject of section 9.7.
For this, G/P is the Grassmannian Gr,(CP*?) and the twistor spaces are
the adjacent Grassmannians Gr,.;(CP*?). Grassmannians occur because
their tangent bundles are naturally a product of bundles—if S’ denotes the
tautological bundle on a Grassmannian and @ its quotient bundle, then its
tangent bundle is S ® ). In many ways, the resulting twistor theory is a
closer analogue of the four dimensional case than the conformal generaliza-
tion.

The machinery that has been developed in this book easily deals with
many variations on the Penrose transform. This is illustrated in section 9.8
with an example homogeneous under the complex Lie group Eg. There
is a “non-Abelian” version of the Penrose transform known as the Ward
correspondence [153]. This is the subject of section 9.9.

9.1 The homogeneous Penrose transform

Fix G and standard parabolics P, R so that Q = P N R is parabolic. The
basic correspondence to study is the following:

, €9
v N\
G/R G/P.

Let X C G/P be open and put Y = 771X, and Z = Y’; we assume for the
most part that X is affine or Stein, and certainly contractible, so that the
pull-back stage of the Penrose transform is trivial:

HY(Z,F) = H'(Y,n ' F).

Take F = Or(A) restricted to Y. Then on Y there is a Bernstein—Gelfand-
Gelfand resolution:

0— 770\ — Ar(N)
where

AN = P Oq(wh).

wEW;.l;lf(w)Zp
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Assuming that X is Stein or affine, the Leray spectral sequence collapses to
give a series of isomorphisms:

HY(Y, 55(N) = (X, m1AL(N)

where 74 denotes the ¢'" direct image and is computed by means of the
Bott—Borel-Weil theorem. Lastly, we may use the hypercohomology spectral

sequence
EPY = HP(Y, Aj(N)) = H'* (Y, 717 O:(}))

or, in other words,
EP? = T(X, 7IA2(N)) = H?*9(Z,0:(N))

as in theorem 7.3.1 to complete the transform. The differential equations
on X are induced by the differentials of this spectral sequence which are, in
turn, derived from those of the BGG resolution.

This machine is really best understood when one uses it! So, rather
than try to elaborate this brief recipe we shall now give many examples
of its practical calculation. We strongly recommend that the reader don
her/his overalls, fetch lots of fresh paper and pencils, and calculate along
with us.

9.2 The real thing

In this section we illustrate the machinery of the Penrose transform by
rederiving the original results of Penrose [44,119,124,125]. He considered
the holomorphic cohomology of powers of the tautological sheaf on cp3
restricted to a neighbourhood of a line and showed that it is isomorphic
with the solution spaces of the so-called zero-rest-mass field equations on
the corresponding region of Minkowski space. For this, G = SL(4,C) and
the basic double fibration is

X—x<—o
n T

7 N

CP3 = x—o— e—x—o = Gry(C*) =M.

As the image variety of the transform we choose a Stein subset of
Minkowski space. From the algebraic point of view, this could be the
open affine cell surrounding a base point (the identity coset, say). That
is, M! = CS*\ { light cone at infinity } . This is the set X of the previous
section. The Y is the set FI = 7~1M/ and the corresponding subset of the
twistor space P is easily identified as P! = CP3\ L, where L is the line
whose points correspond to totally null a-planes contained in the light cone
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at infinity. Thus we are considering the following double fibration:

FI
U N T
P! M

In what follows we shall want to give explicit formulae (in the abstract
index notation of [127]) for the differential operators produced by the trans-
form. To this end, it is convenient to fix a flat metric on M’ and have avail-
able its Levi-Civita connection V,, acting on sections of all homogeneous
sheaves. Such a metric is easy to construct. The open affine cell M is the
orbit of a distinguished parabolic subgroup P of SL(4,C) (whichisa 4 —1
covering of the Poincaré group): the stabilizer of a point of M’ is a maxi-
mal reductive subgroup isomorphic to Spin(4, C). P stabilizes an extremal

weight space in L (the lowest, say), so fixing a skew twistor Ij,s up
to scale. This gives an element of I'(CS*, 2_,1(_2 whose zero variety is

the “light cone at infinity”. Its square, in T'(CS* w), is the desired

flat metric. The associated (affine) Levi-Civita connection corresponds to
the Maurer—Cartan form on P, and parallel transport corresponds to left
translation by P. An irreducible homogeneous sheaf on CS* evidently gives
such a sheaf on M!; note, however, that restrictions of irreducible SL(4, C)
representations to Spin(4, C) split into direct sums of irreducibles, so that
on M/ exact sequences such as

01 10 00 1 00 1 _ 4

*—x—o *—eo—o *——e
split canonically over Oppr once a base point has been fixed. We shall use
this in our discussion of the wave operator (or complex Laplacian) below.

Let O(k) = X 33 be the k*® power of the tautological sheaf on CP?,
restricted to subsets, where appropriate.

We distinguish three cases according as k+2 is negative, zero, or positive.
In physics, these cases correspond to solving the positive helicity zero rest
mass (ZRM) field equations, the conformally invariant wave equation, and
providing potentials modulo gauge for solutions of the negative helicity zero
rest mass equations. From the point of view of the representation theorist,
they correspond to varying degrees of singularity for the weight £33
Not surprisingly, the details of the transform vary markedly in each case.
We take the easiest first.

Positive helicity ZRM fields: k+2 <0

Because the fibres over P! are topologically trivial, the cohomology
H*(P!,0(k)) is identified with H*(F!,n'O(k)). We compute this. The
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first step is to calculate the Bernstein—Gelfand-Gelfand resolution of
n~1O(k) on the fibres of . This is
k 0 0 k12 1 ki23 0

— 0.

0—ntO(k) —

Now we take direct images of this resolution, A}. Using the (relative) Bott-
Borel-Weil theorem of chapter 5 we obtain:

k 0 k-2 k+1 0
e S ) = e = Ouwse..l-1l
—k-2
k+l -2 1 k3 k
:( >+el—>2eo) = o+i = OB(B’C"..D’)[_Z]
—k-3
k41 -2 1 O n—4] ifk<-—-4
1{c+2 3 0 _ ——x—e »_(C".__I'D)[ ] -
Ty >e+0) = = k4
0 0 if k=-3.

Because k + 2 < 0, only first direct images occur. (We have indicated, also,
the abstract index notation for the direct images on Minkowski space [127].)
Notice that if £ + 3 < 0 then the weight “‘:2_'.3_2 is non-singular: thus all
resolving sheaves have exactly one non-zero direct image. The case k = —
is singular, a fact mirrored in the vanishing of all direct images of the last
resolvent. This only makes things easier, so let us treat the remainder of
the transform for it, first. The next step is to compute the cohomology of
each A’ on the 1ntermed1ate space in terms of the cohomology of their direct
images on the target subset of Minkowski space. Because the image variety
of the transform is affine, the Leray spectral sequence collapses to a series
of isomorphisms:
HI(F! AL = T(M',7IA)).

Substitute these in the hypercohomology spectral sequence to compute the
cohomology H*(P!,0(=3)). The EP term is as follows (for notational
brevity, the sections of a sheaf over M are denoted by the sheaf itself in
this and subsequent spectral sequences):

EM:| 0 0 0
1 -2 0 0 -3 1 0
*——X—8 6 xX—0o

0 0 0

Deriving once, obtain the E$? term:

ER?: 0 0 0
ker: 652 8 — 8 3o coker: o X o — e s 0
0 0 0
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All differentials are now zero, so E§? = E24 from which we deduce that

H'(P',0(-3))

1R

ker F(MIa 1——-)(—.0) F(M17 .—-)%i)

ker F(MI,OAI[—].]) — F(MI, OA[—?)])

1%

It remains to identify the differential operator d in the right-hand terms of
this isomorphism. To do this, we identify its symbol, since this determines
such an invariant differential operator [53]. Recall that ._>L. Opn
is the holomorphic tangent bundle of Minkowski space. The only possible
symbols are proportional to the projection

08 1o1 21024 1,031 031
o x 00 e x9 =0 x0Dex 9o e x o

or in abstract index notation
Ou[~1] ® Opgu = O gapy[—1] ® Oa[-3] — O4[-3].
This is the symbol of the Dirac operator [38] which is given by
pa = Vi o

In a moment we shall argue that d is non-zero and so the first cohomology of
O(—3) on twistor space has been identified with the kernel of this operator
on Minkowski space; that is with (classical) massless right-handed neutrinos.

Remark (9.2.1). It is easy to see that P can be covered by two Stein
sets: write L as the intersection of two planes and consider the complements
of these two planes. Thus, by the Mayer-Vietoris sequence, HP(P! F)
vanishes for any coherent sheaf F when p > 1. So, necessarily,

T, e 52 ) - T(ML, %))

is surjective and, in particular, non-zero. This observation is very useful:
it leads to the existence of many non-standard homomorphisms of Verma
modules, as we shall see in section 9.8 and chapter 11.

Now suppose k + 3 < 0. The E?? term of the hypercohomology spectral
sequence is as follows:

EP9 0 0 0
-k-2 k+1 0 k-3 k1 k-4 k 0
*—>x—o *—>xX—o *—x—o

0 0 0

Now observe the following
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Remark (9.2.2). To continue remark 9.2.1, observe that the vanishing
of second cohomology on P! makes the second row of E? exact except at
Ef’l; indeed the row resolves the cohomology at this term.

This remark implies that

EP9 = Epa 0 0 0
ker: -k-2 k+1 0 _)—k—3 k 1 0 0
0 0 0

and again the spectral sequence converges after just one derivation. We
deduce that

HY(P!,0(k)) = ker 1"(M1,'k'.2 10y o F(M’,'k'3 k )

= ker F(MI, O(A’B’...D’)[_]-]) — F(MI, OA(B’C’...D’)[_3])- (14)
-k-2 terms -k-3 terms

The symbol of the differential operator is the projection

&2 k+1 0 2 1o Kkl k11 . k3k 1 _ k3 k 1
o~ xo o x oD oo

® l&—x—o = — e—x—o
which is the symbol of the Dirac-Weyl operator on totally symmetric spinors
of higher helicity:
pap.c— Vi eap.o

So, the first cohomology of O(k) (k < —2) is identified with the kernel of this
operator, in other words with solutions of the zero rest mass field equations
of helicity 3(—k —2).
Remark (9.2.3). The transform has been applied with an open affine
subvariety of Minkowski space as a target space; we took this to be the
largest left orbit M? of the Borel subgroup B. It is just as interesting to take
as target space an open orbit of a non-compact real form of SL(4, C), such
as SU(2,2). As observed in chapter 6, there are two open orbits, M* and
M-, consisting of two-planes in C* on which the restriction of the SU(2, 2)-
preserved Hermitian form is positive and negative definite, respectively. The
corresponding subspaces Pt and P~ of twistor space CP3 consist of those
lines on which, again, the Hermitian form is positive or negative definite
and the isomorphisms (14) hold with M’ and P’ replaced by M* and P*.

Indeed, we may go even further and compute the transform on the clo-
sures of these regions, M' and P”. Although M" is not a Stein manifold,
it has arbitrarily small Stein neighbourhoods in M, so the Leray spectral
sequence degenerates in the same way. The resulting ﬁrst cohomology group
is naturally somewhat smaller (cf. page 153). Now M has as Silov bound-
ary the unique closed orbit of SU(2,2) which is just the set of real points of
Minkowski space (relative to the conjugation defining SU(2,2)). This is the
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conformal compactification of the real physical Minkowski space, and so this
cohomology group is identified with real analytic solutions of the zero rest
mass field equations on real Minkowski space which extend to the “forward
tube” M. Such fields are called positive frequency fields [146] and are of
fundamental importance in physics.

The usual path followed in quantizing free zero rest mass fields begins
by equipping the space of all such with a unitary structure. We will see
in chapter 10 how this can be done using the twistor transform—that is,
a double Penrose transform. It is possible to generalize this construction
considerably to recover all discrete series representations for real reductive
groups [41].

Remark (9.2.4). Although the Stein property of M* and M/ is a con-
venient one causing the Leray spectral sequence as in section 7.2 to collapse,
in this case, since TBA; = 0, the spectral sequence of theorem 7.3.1 always
has E} "0 — 0 and we continue to obtain the identification of positive helic-
ity massless fields on U C M with the cohomology H'(Z,O(k)) provided
that the argument of section 7.1 is still valid. In other words, the analytical
properties of U are irrelevant whereas the topological restriction is that all
a-planes intersect U in connected and simply connected regions.

Remark (9.2.5).  Another obvious variant is to compute the transform
within the algebraic category. Since this naturally includes in the holomor-
phic category, we obtain a distinguished subset

HI(PI7Oalg(k)) — Hl(Plao(k))

where the subscript “alg” indicates the algebraic sheaf. The corresponding
solutions of the field equations are polynomials on M’. These are often
called elementary states [43,54,120].

We shall study elementary states in greater detail below where we will
see that they can be identified with global sections of local cohomology
sheaves; we will see that H' (P!, O,,(k)) is actually an irreducible lowest
weight modules over U(sl(4, C)) which shows that the mapping

H'(P!,0.,(k)) — H'(P',0(k))

is an injection. The special significance of the elementary states is that they
are dense in the latter group, when it is equipped with the unitary structure
mentioned above [54]. Indeed, they constitute precisely the S(U(2) x U(2))-
finite vectors in this module.

Negative helicity fields: k+2 >0

The next instance of the transform is concerned with O(k) on P!, again,
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but with k+2 > 0. We again recover an isomorphism between a cohomology
group and a space of solutions of zero rest mass equations on M’ but with
the opposite handedness, or helicity as the physicists call it. An interesting
new feature is that the result of the transform is not directly a solution of
the zero rest mass equations. Instead, we obtain a potential for a solution.
This potential is a section of an auxiliary sheaf on Minkowski space. An
actual zero rest mass field is obtained by applying an invariant differential
operator occurring in a Bernstein-Gelfand—Gelfand resolution on M!. In
fact, the potential comes naturally defined only up to an element of the
kernel of this operator, usually called gauge. But since this ambiguity lies in
the kernel of the invariant operator, the exactness of the resolution identifies
the cohomology group and negative helicity zero rest mass fields.

Here are the details. Compute the relative BGG resolution on the fibres
of n:

0 — 77 O(k) — kK 0 0 _kil2 1 k23 0 _ o

The case k = —1 is singular and is left to the reader. Suppose k£ > 0. Then

the 7 direct images of the sheaves of the resolution are non-zero only in
degree zero:

0 k 0 0
TE( ) = e—x—»
o/k+l -2 1, _ kt+l1-2 1
7.( ) = Te—x—e
o/k+2 -3 0y _ k4+2-3 0
7 X—%—e) = o x_e

The Leray spectral sequence is, again, a series of isomorphisms
HY(F', A7) = T(M’, 7A7)

so that the hypercohomology sequence which computes H*(P!,O(k)) has
an EP? term with three terms in its lowest row and zero entries elsewhere:

EPM:| 0 0 0
k 0 0 k+1 -2 1 k+2-3 0
—X—0 66— X—0 o&6—X—o

The sequence collapses after one derivation:

EY1 = EPg . 0 0 0
k+1 -2 1 k+2 -3 0
Kk 0 0o kKer("e 5 o — "o x e
e—o—o k 0 k+1 -2 1 coker
im(e H

Thus

ker : F(MI,k+1 -2 1) N F(MI,k+2 -3 0)
im : F(MI, k 0 0) N F(MI,k+2 -3 0)

HY(P!, 0(k)) =
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whilst (cf. remarks 9.2.1 and 9.2.2) the vanishing of H?(P?,O(k)) implies
that the differential *¢ 52 ¢ — *$25% 3 is surjective on M.

The differential operators appearing in the above passage come from
the BGG resolution of LE_E on M!. Using the technique of identifying
their symbol they are readily computed as the (higher valence) dual twistor
operator [128]

Tp ..o = Vaamp. o
k terms

and an invariant operator

@ABIC/ D' VA A/QA/ ’
( B'C'...D")
k+1 terms

Now the full BGG resolution of 5_2_2 is

k+2 3 0
k 0 0 k+121/ \1k4k+1 0 k4 k
o—x—e ~x—e o—x—eo — (.
TN o k3 k+g/
(15)
This is exact, so
ker Kf12 1 ki23 0
€l ' o—x—9 — o—x—9o ker : 0 B k42 1 k4 kil (16)
0 0 k+1 -2 1 T —x—o —x—o

im : 5—)&0 —x—e
(This identification, using this resolution, first appeared in twistor theory
in [30], before twistorians were aware of the full BGG resolution.)

The isomorphism is achieved by the mapping
anp.co V{ YVE VG Opjap e (17)
—,_/
k + 1 terms

applied to any representative of a class on the left-hand side of (16).
This (and a check on the singular case kK = —1) establishes that, for
k> -2,

HI(PI, O(k)) o ker F(MI 0 —k‘3k+2) (MI, 1 -k-4k+1)
= ker VA O(AB C)[ 1]—)0(3 C)[ 3]
———
k + 2 terms k+1terms

This is commonly called the space of negative helicity zero rest mass fields;
the case k¥ = 0, for instance, describes what physicists call left-handed
Mazwell fields, on M!. The interesting new feature is that the transform no
longer produces the physical fields directly. Instead (cf. the left-hand side of
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(16)), it gives potentials determined up to a freedom which physicists call a
gauge freedom. These potentials must be differentiated (17) to obtain fields.

To illustrate this, concentrate on the case k¥ = 0. The resolution (15)
is the holomorphic de Rham resolution of C, the operators in it being the
usual exterior differentials on forms. The transform identifies

kerdt : T(M!,Q!) - I'(M!,Q2)
imd : T(M!,0) - I'(MI, Q1)

H'(P,0)=

A one-form, ®, representing a class of this group is a traditionally called a
potential in electromagnetic theory. It is determined up to the addition of
an exact one-form, which is called a gauge freedom. To compute an electro-
magnetic field, F, from a potential, we apply the exterior differential (which
annihilates the gauge freedom, since the de Rham sequence is a complex).
® satisfies d*® = 0 so that F = d® = d~® is an anti-self-dual two-form.
By construction F' is exact, so d*F = —dF = 0; in other words, F'is a left-
handed electromagnetic field satisfying Maxwell’s equations. Conversely,
given any closed two-form F € I'(M’,Q2), the exactness of the de Rham
resolution on M implies that F' = d~® for some one-form potential ® sat-
isfying d*® = 0 and determined up to the gauge freedom of adding an exact
one-form. This establishes that

HY(PT!,0) = kerd : T(M!,Q2) - I'(M’,Q3).

It is this case that admits a non-linear version known as the Ward corres-
pondence which gives a twistorial account of anti-self-dual Yang-Mills fields
(see [153] and section 9.9).

Remark (9.2.6). The construction has been carried out explicitly
for cohomology on P!, but extends, as before, to PT" and P~ etc. to
give, respectively, positive and negative frequency, negative helicity, massless
fields.

Remark (9.2.7).  For these left-handed fields the analytic properties of
the chosen U C M are crucial (in addition to the topological properties (cf.
remark 9.2.4)). Not only is the Leray spectral sequence affected, but also
the identification on U of potentials modulo gauge as fields. This boils down
to being able to compute the topological cohomology of U by means of the
BGG resolution, a fact which relies on Cartan’s theorem B. For example,
it may be impossible to find a holomorphic potential for an anti-self-dual
holomorphic Maxwell field even though there is no topological obstruction
to so doing. Indeed, in [29] Buchdahl exhibits a contractible open subset
U c M for which there is an exact sequence

kerd® : T'(U, Q') — I'(U, Q%)
imd : T'(U,0) - T'(U, Q)

] < [kerd : T(U,0%) - T(U,0%)] - C - 0.
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A complete proof involves some detailed hard analysis but the rough idea
is as follows. The first two terms are unchanged if U is replaced by U, its
envelope of holomorphy. Specifically, we choose

~ [ A Stein “fattening” in C3
v= ( of the sphere S2 C R® C C3 ) x {]zg] < 1}

and
U={zeUs.t. (z1,z) # (0,0) and z3 > 0}.

Since holomorphic functions extend uniquely across a non-complex codi-
mension two real analytic subvariety it is clear that U is the envelope of
holomorphy of U. By construction, U has the homotopy type of the sphere
52 whereas U has the homotopy type of a puntured sphere i.e. is contractible.
The C which occurs in the exact sequence above now comes from H 2((AJ ,C)
and the remaining analysis of [29] is to show that, by a suitable choice of
U, the natural mapping

[kerd : T(U,92) — T(U, )] - C

is surjective as claimed. A further discussion is in [29,44].

The scalar wave equation: k = —2

The third historical case of the Penrose transform interprets the cohomology
of O(—2) on P! as solutions of the massless free field wave equation on
M. From the point of view of representation theory, it is perhaps the
most interesting case. Because the weight <3 s “very singular”, the
hypercohomology spectral sequence takes longer to converge. The most
immediate consequence of this is that first-order differential operators in
the fibrewise resolution induce a second-order differential operator between
sections of homogeneous sheaves on M’ where a first-order operator has
hitherto arisen. Higher order operators have already appeared above, but
these came always from higher order operators in the Bernstein-Gelfand-
Gelfand resolution.
Resolving, as usual, we obtain

0__)77—1-2 0 0_’-2 0 2_')-1 -2 i__)O -3 2—')0

Direct images are computed as

12 0 0 _ 0 -1 0
Ty %o = o_x_o
00 30 _ 0 30
T, %0 = eo—x—e
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and all others vanish. In particular this means that there is a column of
zeros in the EP? term of the hypercohomology spectral sequence, where
previously at least one non-zero entry occurred:

EM: 13 230 o0
0 0 0 -3 0
*—><—e

Consequently, EY? = E2? and the sequence converges on the second deriva-
tion to

-1 -
EPT—FPa: ker: 9 % 09— 0 % 0 0 0
0 0 coker:9 1 0 _,0 30
COKET : o—x—o — o—x—o

This time, therefore, the differential operator induced down on M/ arises
as a dy differential at the second level of the spectral sequence. To compute
the operator (up to scale), we recall again that

2 4 2 0 -2 0
®2Qi\41 = o xoDex»

so that the symbol of the operator is the projection

0 -1 0 52,0 30
o xe®(@Ur) = ¢ sDe X o
., 0 30
(we readily check that there is no other possibility). This identifies the op-
erator as the wave operator, 0 = V°V,, acting on functions with conformal

weight [—1] and so

ker O: (MY, 9 5t 8) >l 332 9)

R

H'(P1,0(-2))

1%

ker O: (M, O[-1]) - T(M!,0[-3])

Remark (9.2.8). In the introduction to this chapter we remarked
that the translation invariant differential operators produced by the Penrose
transform are dual to homomorphisms of (generalized) Verma modules. The
wave operator is our first example of an operator constructed by the trans-
form which is related to a non-standard homomorphism of Verma modules.
Geometrically, this is a consequence of the fact that O is not a direct image
of an invariant differential operator on the intermediate space FY.

Remark (9.2.9). It is quite easy to compute the dy differential in the
hypercohomology spectral sequence.
Recall, firstly, the construction of the hypercohomology spectral se-

quence for a resolution
0—-F — A:] (18)
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of coherent sheaves where the sheaves A% may have non-vanishing higher
cohomology. We shall, for definiteness, work with Cech cohomology, but of
course we could equally work abstractly with injective resolutions or with
Dolbeault cohomology. So let U be a good Stein (or affine) cover of the
ambient space, X. This means that for all coherent sheaves G, H(U,G) = 0
for ¢ > 0 where U is a (finite) intersection of members of U. Let C*(U,G)
be the usual Cech cochain complex of G [80]. The differentials d of the
resolution (18) and § of the complexes C*(U, A}) make

Ef? = CP(U, AY)
a double complex [25]. Deriving with respect to d, first, gives

EPa — CPU,F) ¢q=0
! 0 otherwise

and then, deriving with respect to 4,

EP9 — HP(X’}-) g=0
2 0 otherwise

since U is a good cover. This spectral sequence has converged to the total
cohomology of Ef?, which is therefore just the cohomology of F on X.
Alternatively, deriving first with respect to § gives

EP = HY(X, A?)

which is just the first term of the hypercohomology spectral sequence. By
the general theory of spectral sequences, this must converge, also, to the
total cohomology of E}? i.e. to the cohomology of F.

The differentials in H?(X, A?) are induced from the d of the resolution
(18). We are interested in deriving once again and computing the differ-
entials ds in the E5? term. A detailed description of what follows is given
in [25, on p. 161ff] . This differential maps dp : EP? — EZ*27! A little
thought shows that a class [@] € EY? may be represented by an element
a € CY(U, AP) satisfying

(i) =0

(ii) da = 68
where 8 € C971(U, AP+!). The first condition expresses the fact that oz must
represent a cocycle in EP? and the second the fact that this cocycle lies in
the kernel of the induced differential d : EP? — EP*"9, so that [o] is a class

in E¥?. Then,
dafa] = [df]
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(standard “diagram chasing ” ensures that d, is well defined and independent
of any choices of class representatives).

Now we have a sufficiently explicit description of the workings of the
hypercohomology spectral sequence to calculate directly the wave operator
as a dy map. We wish to compute cohomology on the intermediate space
F! c x—<—e which, we observed, is the projectivization of the spinor bundle
M on M’. As a complex manifold, the intermediate space is a trivial
product CP! x M, for M admits a basis of non-vanishing sections over
M. To see this, recall that P! = CP?\ L where L is the line in Twistor
space corresponding to the light cone at infinity in CS*. Fix A%, B* € C*
whose span gives L. A choice of flat metric on M’ gives a splitting of the

sequence

0 1 -1 0 0o 0 1 0o 0 1
— e %o oo o ox—-9a—0

so we let 04,14 € T(MI, l._xl_g) correspond to A%, B® under this split-

ting. They constitute the required basis, and are covariant constant with re-
spect to the Levi-Civita connection of the metric. Let [m4/] be homogeneous
co-ordinates on the factor CP' (which may be thought of as covariantly
constant spinor fields on M!.)

A choice of metric fixes also two covariantly constant antisymmetric
spinors €45’ and 4P and a means of raising indices:

’ rp! ’ rp!
OA = EA B op/; LA = EA B Lpr; VA/ = EABVBAI etc.

Normalize so that 04¢4" = 1. This gives
mar = (. C’LC/)OA' — (70 ear.
Then there is a good Stein cover of F!, U by two sets:
{[mal;man® # 0} x M!
and
{[ma); mar0® # 0} x M1,
The resolution of 77} '>3_2_2, with its differentials, is

Al BvA
_1 -2 -2 T4V 1 - 7’ -
0_)771 0 0_’ 0 0__) gA'l 2 1 B 30_')0.

Remark (9.2.10). The composition VA(A,VQ,) is the square of the
exterior differential on functions (given the choice of metric), hence zero.

Any element of H'(F!,32_% 3) can be represented by a two-cocycle of

the form
g

@ = —
(w0 Y(mwpiP")
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where g € T(MZ, 3_5 3) (by the Leray sequence and the Bott-Borel-Weil
theorem). This satisfies condition (i), above, trivially, since our cover has
only two sets. Applying the first differential of the resolution, obtain

'V ang
(WC/OC,)(TFDILD,)
— AV ang  0*Vang
wort w10’

da =

This clearly has the desired form, 63, where
B = (LA,VAA’Q 0AIVAA’9>

7l meof
is a one-cocycle relative to . Then

dolo] = [dP]

LAIWB'Vﬁ/VAB/g
7TC/LCI

W oP' V4 Vapg

VAYY 4ug

Ug

(a reader unfamiliar with the abstract index notation and spinor algebra
used here should consult [127]). An alternative argument for identifying O,
midway in abstraction between the two given above, is provided in [44].

9.3 The Penrose transform of forms on twistor space

Tt is now time to apply the Penrose transform to some homogeneous vector
bundles, rather than simply to line bundles. We shall see that the Penrose
transform for vector bundles often yields rather more complicated results
than those obtained so far for line bundles. Up to now, cohomology groups
have been identified with solutions of differential equations (perhaps after
slight reinterpretation). They have, in fact, been irreducible modules for
g = sl(4,C) as we shall see in section 11.4. This is not generically true;
to see examples of the more general behaviour of the transform we shall
study its application to differential forms on P. The result is typical of
what is obtained when the transform is applied to a sheaf Op(A) where A is
non-singular but neither dominant nor antidominant for g. See [51] for an
earlier version of these calculations.
Consider 0%, first. The Bernstein-Gelfand-Gelfand resolution is

1 210 0 32 1 -4 1
0—77'% o 8= %x9— x> x>0
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and the first term of the hypercohomology spectral sequence is

EM|O 0 0
0 Q2 0

(where, as before, the individual entries in this term stand for the space of
sections of the indicated bundles over the affine set M’). Deriving once,
using (remark 9.2.2) the exactness of

(M, Q%) - T(M!, Q%) — (M, Q%) — 0

on MI, obtain
B | O 0 0
0 kerd:Q2 - Q3 O

Observing, yet again, that H2(P!, Q') = 0, deduce that the operator

dy : T(M!, 0) - T(M!, Q%)

is surjective. Checking possible symbols we quickly find that dy is pro-
portional to the square of the Laplacian, 0% = (V.V)2, where V is the
Levi-Civita connection of any flat metric in the conformal class of metrics
on M. In particular, this operator is invariant under conformal motions on
M!. It follows that

0 — {ker d: T(M', Q%) - T(M’,Q%)} — HY(PL,Q})
— 1M, 0)Z rME, f) — 0

is exact. Notice that the first term of this sequence is exactly the space of
anti-self-dual Maxwell fields on M’ which, as on page 95, may be represented
as H'(P’, O) on twistor space. The mapping to H(P!, Q') is induced by the
exterior differential d: O — Q!. 02 is another example of a non-standard
differential operator, coming from a non-standard homomorphism of Verma
modules.

Next, consider Q% = 301

%—o—ao- This has a BGG resolution

0_’77—1-3 0 1__)-3 0 l___)-2 -2 2_’0 -4 2_)0

The first term in the hypercohomology spectral sequence is

EPTIQY Q2 0
0 o o

Deriving, obtain

EPi|{kerd_:Q'—>Q2} 0 0

0 0 O
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The vanishing of second cohomology again implies that
{ker T(M!, Q') — (M, 02)} — T(MZ, Q%)
is surjective. Hence
0— H' (P!, 0%) — {ker T(M!, Q') — T(M/,Q%)} - T(M',Q*) -0

is exact. This may be rephrased by using the following sequence, deduced
from the exactness of the BGG resolution of C on &—x—

0—C— 03 {ker T(M), Q") —» T(M!,02)}
— {ker [(M%, Q%) - T'(M",Q%*)} -0

and the fact that 02 factors through O 2 Q! to deduce an exact sequence

0 — SIMLOIMLAY _, (P!, 02) — {ler (M, 93) — T(M/,28)} - 0.

In particular, since the maps in this sequence intertwine the action of
sl(4,C), HY(P!,Q?) is not irreducible.

Notice also the space of self-dual Maxwell fields in this sequence and
recall, as on page 91, that this space is the Penrose transform of H!(P!, Q3).
Thus we see that the whole sequence

H'(P',0) - H'(P', Q") H' (P!, Q%) — H'(P', Q)

has been Penrose transformed to M.

9.4 Other bundles on twistor space

All other non-singular homogeneous bundles on P will transform according
to a pattern similar to one of the form bundles (including 3(_2_2 and
o 3= 3). Nonetheless, it is worth while to compute some further
examples which have particular significance in twistor theory.

Deformations and nonlinear gravitons

One of the most significant results of twistor theory, obtained by Penrose
in [123], is the characterization of all anti-self-dual conformal manifolds in a
neighbourhood of Minkowski space using deformations of P, or, at least, of
some neighbourhood of a line in P?. The first step in this construction is to
compute the (Zariski) tangent space to the moduli space of such conformal
manifolds at Minkowski space. Penrose showed that this is equivalent to
computing the (Zariski) tangent space to the space of deformations of P!
at P,
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This can be computed, following the work of Kodaira and Spencer [101],
as the cohomology group H'(P!,©) where © is the holomorphic tangent
bundle of P!. (For a brief sketch of why this should be so, see [12,33].)
Furthermore, there may exist obstructions to a particular direction in the
Zariski tangent space corresponding to an actual finite curve in the moduli
space. Indeed, an infinite sequence of such obstructions exists, each lying
in H?(P!,©), according to the general theory. Fortunately for twistor the-
ory, this group is zero, so that by (a small modification of) the work of
Kodaira and Spencer there is no obstruction to the exponentiation of these
infinitesimal deformations.

Now © = ;_2_2; the appropriate BGG resolution is

0_)1 0 l_}l 0 l_)2 -22_}4 -4 0_’0.

The first term of the hypercohomology spectral sequence is

EPY| 0 0 0
1 0 1 2 -2 2 4 -4 0
—X—0 06— X—0 o6 X—o

This yields, in “potential modulo gauge” form,

2 -2 2 4 -4
ker 2 2 2.4 523
HY(PL o) =
) = S 1 0 1 2 2 2
M ¢ 8~ e—x—e
2

0 4 4 __ 2 -6
ker o 5 o — o

%

which identifies the infinitesimal deformations of P! with linearized anti-
self-dual deformations of Minkowski space.

The Finstein bundle

A closely related bundle is £ = 3(_1_2. The space of sections of £ is

identified by the Penrose transform as
I(P,€) = ker I(M, &5 o) 2 T(M, 3 % 3). (19)

Up to now, we have expressed the differential operators in the Penrose trans-
form using the Levi—Civita connection of a flat metric in the conformal class.
They can be expressed in terms of the Levi—Civita connection of any metric
in the conformal class. Letting

2<Dab = _(Rab - %gabR)
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for R, R the Ricci and scalar curvature of the metric g,;, we obtain
A
D:f— {VL V) + @451 (20)

However, £ = Q! ® O(2) gives an intrinsic definition of £ even on de-
formations P of P!. There is a curved space version of the Penrose trans-
form in which (19), with D as in (20), remains valid [8,11,58,70]. Then, if
I'(P,£) # 0, there is a non-zero section f € 8 L 3, the conformal weight
one line bundle on the anti-self-dual conformal manifold M corresponding
to P. Rescale the metric by gs — §a» = f 2gas replacing @, — ‘i%b etc.
and f —» f = f1f = 1. Then

cAem s .
0={ViLVE, + 0451/ = &4

and §, is an Einstein metric on M. The non-vanishing of I'(P, £) is conse-
quently of differential-geometric and physical significance [57,106,154].

9.5 The Penrose transform for ambitwistor space

The Penrose transform interpretation of zero rest mass fields has the rather
interesting feature that it treats fields of positive or negative helicity in an
essentially different way. So, for example, left- and right-handed Maxwell
fields are obtained from distinct cohomology groups. This may be an ad-
vantage in trying to build a physical theory using the transform, for nature
iself appears to be biased between left- and right-handedness. From the
representation theory point of view the situation is clear: different helici-
ties lie in distinct cohomology groups on twistor space because (see 11.4)
they correspond to distinct irreducible representations. On the other hand,
mixed helicity fields often occur in nature so we should find a way of using
the Penrose transform to describe them. The answer is to study an ob-
struction problem on ambitwistor space. Exactly why this works from the
representation point of view will be explained below.
Consider next the double fibration

»X——X
n T

7 N\

»X—e—X *——xX—=o,

The fibres of i are one dimensional so that points of ¥—#—x correspond to
lines in &—>—o which are null in the conformal structure of &—<—e and all
null lines arise this way (see example 2.3.2). The manifold %—e—x is often
called ambitwistor space and denoted A. The open subset corresponding to
M is denoted AL,

Because the n-fibres are one dimensional, BGG resolutions in the Pen-
rose transform are short exact sequences and the long exact sequences in
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cohomology which they induce amount to the hypercohomology spectral
sequence. Consider, for example, H'(A’, 0). The BGG resolution is

0O 0 O 0o 0 O 1 -2 1
0— % o x — — — 0.

Taking the long exact sequence in cohomology on 7'M (and using the
degenerate Leray spectral sequence as usual), obtain

I'(A",0)=C and HYAL,0) = coker I(M!,0) % (M Q) .
=~ ker [(M!,02) 4 T(M!, Q%)

This is not quite as satisfactory as we might have hoped, from the phys-
ical point of view. Contained in I'(A!, ©) are the Maxwell fields

{F e T(M!,Q2)[d*F = dF = 0}

where * is the Hodge star operator of a flat metric on M!. These repre-
sent free electromagnetic fields on M’. These may be singled out using an
extension problem for the embedding AT «— P! x P*! as first observed by
Green, Isenberg and Yasskin [72] and Witten [161] with cohomological in-
terpretation by Henkin and Manin [84,113], Buchdahl [32] and Pool [129).
Here, P*! C —e—x corresponds to M! and the embedding comes from the
projections
%00 X8 X oo X,

Let T denote the ideal sheaf of this embedding. Define Oy = Opxp- JTFHL,
Sections of this sheaf correspond to functions determined to order & off AX.
(The ringed space (A, Oy)) is called the k' formal neighbourhood of AT).

Then T#/TF1 = ¥ § ¥ is the k*h symmetric power of the conormal bundle
of AT and there are exact sequences

0 — M — O(k) — O(k—l) — 0. (21)

An element of H*(A’, O) extends to an element of H'(P! x P*/, O) only if
it extends to each H'(A', O(,). This yields an infinite series of extension
problems which can readily be solved using the Penrose transform.

We first attempt extension to H'(A!,0(;)). The long exact sequence
in cohomology, applied to the sequence (21) with £ = 1, and the Penrose
transform yield the exactness of

0—-T(M!, ¢ 5% 8)— HY(A!,0y)) — H'(A!,0) — 0.

Each of the spaces in this sequence are modules over sl(4, C); the outer two
have distinct infinitesimal character (see chapter 11) and so this sequence is
split. It follows that every element of H'(AZ, O) lifts uniquely to an element
of HY(AT,Oy)).
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Next, we attempt extension to H*(A’, O(3)). Sequence (21), with k = 2,
and the Penrose transform yield the following exact sequence of sl(4,C)-
modules

0— H'(AT,0p) — H'(A!,04) BT, $_3 ).

Infinitesimal character implies that the image under ¢, of any element lifted
from H'(A!,©) must be zero and, canonically,

H'(A',0) = HY(A',0).

Lastly, we attempt extension to H'(A!,O,). We obtain the exact se-
quence

0 — HY(A',04) — H'(A!,0p) & T(M!, 0% 4 r(M7, %)

using the Penrose transform to identify H2(AZ,53 3 5¥). Then ¢5 corres-
ponds to dx : T(M’, Q%) — I'(M!,Q3), and H'(A!, O(,) is identified with
Maxwell fields on M.

The obstructions to further liftings lie in H2(A’,% 3 %) for k > 4; the
Penrose transform identifies these spaces with the kernels of appropriate
differential operators on M. It is easy to see that these spaces have an
infinitesimal character distinct from that of H'(A’, O(3)) so that all further
obstructions vanish. In fact, with a little further work, it can be shown that

HY(A!,0p) =2 HY(P! x P, 0).

Remark (9.5.1). These results may also be deduced from a supersym-
metric correspondence and its Penrose transform [52,62,161].

Remark (9.5.2). A very similar construction exists for

2 -2 2
HY(AT! Y
( ’X—‘—X) - . 1 0 1 2 -2 2
1l ¢ x—e—0—x—o
> ker (M1, 4 54 S@8 58 &)~/ 258 2)

which corresponds to infinitesimal conformal deformations of M! (and to
deformations of A which preserve its contact structure, viz. ©5 — %o

[12]). We find that

(Ala x—0—>1<) (A 0(4) ® X—H)

and
0—)H1(AI O(s)@)l&g—;() - Hl(AI O(4)®>l(——2——-)1<)
_)I-\(MI 2 -6 2)_)1-\(MI 1 -6 )_,0
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Hence H'(Af ,O0p) ® x__l 3 xl) corresponds to the space of spinors fields
Yapop and Yapep on M| satisfying

{(VQVE + 955 Wasop = {VSVE + 5% }vascp = 1Bay = 0

where, again, V is allowed to be the Levi-Civita connection of any metric
in the conformal class on M.

B,y is a linearized form of the Bach tensor, defined by the same formula
on an arbitrary four dimensional conformal manifold M. This is important,
for over such a manifold the vanishing of the Bach tensor is a necessary con-
dition for the existence of an Einstein metric in the conformal class [103]. Af
may be replaced by the space A of null geodesics in M although analogues
of P and P* do not exist. Nonetheless, it seems that

HI(AI,O(5)® 1 0 l)

corresponds to deformations of O(s) preserving some kind of contact struc-
ture, and that .4 might possess a formal extension to order five if, and only
if, M has vanishing Bach tensor [12,59,107].

9.6 Higher dimensions—conformal case

It is now time to employ our machinery to compute the Penrose transform for
higher dimensional spaces which generalize the standard Minkowski space
of four dimensions. There are really two ways to go. One is to focus on
conformal structure, arguing that physically the relevant structure in four
dimensions is the metric or conformal structure in Minkowski space and that
in higher dimensions this ought to be available. The second is to concentrate
on the isomorphism

10 1 _0 0 1,1 0 O
*—xX—o — ®.._)(__.

or, in abstract index notation,
0= 0% =040 0%

and seek higher dimensional spaces on which the tangent bundle factors sim-
ilarly. The first case evidently means considering higher dimensional com-
plex quadrics (complexified spheres)—we take up this case in this section
and return to it in greater detail when we consider non-standard homomor-
phisms below. The second case concerns Grassmannians and is the subject
of the next section.

Consider the general complex quadric in CP?; this bears a conformal
structure which is easy to specify geometrically—two points are null separ-
ated if the straight line joining them lies entirely in the quadric. There
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is a distinction between odd and even dimensional cases because of the
distinction between odd and even orthogonal Lie algebras so these will be
taken separately. It is, in fact, quite remarkable how large this distinction is
under the Penrose transform. An example of this is the fact that whilst in
even dimensions there is an analogue of the conformally invariant Laplacian
of four dimensions no such operator exists in odd dimensions (unless we
restrict ourselves to real manifolds; the difficulty is that such a Laplacian
would need to be defined on fractionally conformally weighted functions

[56]).

Zero rest mass fields in even dimensions

We shall continue to denote an affine open “big cell” in CS* by M!. The
corresponding open subvariety of the variety of pure (reduced) spinors of
one kind will be denoted by P!. This corresponds to M! under the double

fibration
n T
v N
72 — ._..__..t—< x—o—o--~>—<=cszn

where each diagram has n + 1 nodes. The fibres of n are n-dimensional
projective spaces whilst those of 7 are isomorphic with the twistor space
Z2"~2 two dimensions down. Recall that Z?" is n(n+1)/2 dimensional. The
analogue of the Hopf line bundle and its powers on projective spaces must

be
O(k) = FHF{
0

since these are the only homogeneous line bundles on Z*".

When we return to the Penrose transform for quadrics to compute homo-
morphisms of Verma modules we shall compute rather more directly using
the group structure of the Weyl group in detail. For the moment we will
be content to compute explicitly in the Dynkin diagram notation. The
Bernstein-Gelfand-Gelfand resolution of the inverse image of O(k) is

0— n'O(k) — A
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where
k
0 0 O 0 0
A?, = )(—0—0‘—<
0
. k
Aﬁl = ‘;'(1 .0 .0....0 .1 .O...3_2< for1<i<n-2
nodei+17 0

An_l . -n 0 0 0o 0 k+1
n = x—e—e---

1
An = ®10 0 0 o/ k+2
n = x—e—e--

0

(which is the relative deRham resolution). The direct images of these resol-
vents vary with k and n, much as in the four dimensional case. Again, the
singular and non-singular cases behave quite distinctly. The non-singular
case has two subcases (obtaining a “fields” or “potential modulo gauges”
description), corresponding to p < —2n and p > 0. For p < —2n the unique
dominant weight conjugate under the affine action of Wy to the weights in
the above BGG resolution is

-k-2n
0 0 0 ) o
,_._.._< if n is odd
0

or

0
090 2_2< if n is even.
-k-2n

In both cases, the direct images of the resolvents all occur in the same degree;
therefore, the hypercohomology spectral sequences collapse to a single com-
plex in one row. This complex is a subcomplex of the BGG resolution for the
conjugate dominant weight on M. Below we give the relevant BGG resolu-
tions and encircle where the direct images fall. In all cases, the subcomplex
begins or ends in the middle degree of the BGG resolution.
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Non-singular case: k > 0: negative helicity fields

In this case, all resolvents have non-trivial direct images only in degree zero,
yielding the subcomplex encircled:

908 4RE— = 0L QR .n.w_“cgﬂl
\ ®

knl 00 g0 — kn2Qg gosl

k+2 k+1

It follows that
_ )
H"'(P',0(k)) = ker xn3gg g 0:0 = 0200 9 2:1
k+2 k+1

using the exactness at the central square of the BGG resolution. Re-
call (3.1.8) the definition of spinor bundles on CS?". Then the subject
of 0 is the highest irreducible component of the symmetric spinor bundle
Olr-ar+2)[—f — n — 1]. Its image is the highest irreducible component of
Oer-ekt1)e’ [k — n — 2]. Furthermore, 3 is a first order differential opera-
tor (as is readily checked by observing that the only possible symbol is of
first order). It is obtained by applying the Dirac operator [127] and project-
ing out the highest irreducible component of the result (which is the only
part of the Dirac operator in higher dimensions that is conformally invari-
ant). It is reasonable, therefore, to identify H" (P!, O(k)) with a higher
dimensional analogue of the negative helicity zero rest mass free fields of
four dimensions.

Non-singular case : k < —2n

As should be expected, H*(P!,O(k)) again corresponds to an analogue of
the zero-rest-mass fields; a novel feature is that the helicity of the result
depends on the parity of n.

All resolvents have non-trivial direct images only in degree @ so that
the hypercohomology spectral sequence collapses to a subcomplex of a BGG
resolution on M?" encircled in the following diagrams:

n even : positive helicity fields

ktnl g Q. 'g_gc-k—2n+2 g, kng 9 Q. _g_g(-k-znﬂ -
0 1

Sf—e—

0 —> o
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so that

n(n—1 I ~ 6'
H 7 (P,O(k)) = kerk+n1 00 00®-k2n+2 — k+n2 Q0 0 0®-k2n+l
%o o-< 0 X—g—g g—( L

8 acts on the highest irreducible component of O(1-@-k-2n+2)[k 4+ p — 1]
and so the cohomology group may be identified as an extension of positive
helicity zero rest mass fields.

n odd: negative helicity fields

0
k+n-1 0 8 0 0:0 = k+n-2 2 8 8 2: 1 PO
o -k-2n+2 o -k-2n+1 j

so that

HY7 (P 0(k)) = ker k+n-1gg“g_2<0

-k-2n+2

0
— k+n-2 Qom1
%33 '_'(: k-2n+1
that is negative helicity zero rest mass free fields, again. Observe that when
n is odd only negative helicity fields occur in the cohomology of the sheaves
O(k), irrespective of the sign of k. To obtain positive frequency fields it is
necessary to compute cohomology on the other space of kpure spinors for
so(2n + 2,C). Notice that it is precisely in this case that the two spin spaces
are not contragredient representations; naively, they should not be expected
to hold the same “information content”.

Singular cases k = —2n+1 or —1

When k£ = —2n + 1, only the zeroth and first terms of the BGG resolution
have non-trivial direct images:

n nz—l Oa[—’n] n Odd
Tx X 2041 = ,
$833..34 . - O*[-n] n even
n(n=1) O¥[-n—1] nodd

2
T* =

210 0 0X-2n+1
Xo-o--

0%[-n—1] n even.

Therefore, H*7> (P!, O(k)) consists of helicity +3 zero rest mass fields,
depending on the parity of n. The reader will easily check that for &k = —1,
helicity +1 fields are obtained.
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Singular cases k = —2n + 2 or —2

In the case k¥ = —2n + 2, only the zeroth and second terms of the BGG
resolution have non-trivial direct images:
n(n-1
2 p—
I 000 0gX-2m+2 O[-n+1]
0

. T = O]-n-1]
* 101 0 0X-2n+2
Xee -

0
and the hypercohomology spectral sequence is

EM = E29| O[-n+1] 0 0
0 0 Ol-n—1] ---

so that
H(PL,O(-2n+2)) = ker O: O[-n+1] — O[-n— 1]
where O is the Laplacian. The reader may check that
H"Y(P',0(-2)) & ker O: O[-n+1] — O[-n —1].
O is, again, a non-standard differential operator.

Other singular characters

For the remaining singular cases, —2n + 2 < k < —2, it turns out that all
cohomology vanishes:

Theorem (9.6.1). If 2n+2 <k < -2 then

The cases n = 3,4 are easily checked directly—the remainder follow by
induction.

Zero rest mass fields in odd dimensions

The non-singular cases in odd dimensions are not very different from those
in even dimensions; the singular cases are. This is because of the lack of
non-standard differential operators in odd dimensions.
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The double fibration is

where each diagram has n+1 nodes. M! and P! will denote an affine 2n+1
dimensional Minkowski space and the corresponding twistor space. Notice

that e—e—e --- e==x isthesame as ¢ o o --- ‘_< (n+2 nodes) as a

manifold (but not as a homogeneous space [128])—in particular, Z***! has
dimension {"H1ir+2),

The Hasse graph for the n-fibres is
ng = {ida01a0102,---,rj = 0'10’2'“0']',...,7‘”}

and so if we let
O(k) = ¢—o—o-.. &3
then the i** term in the BGG resolution of n~1O(k) is

o _ 0 0 0 0, k
A"-—— ¢=)E)<

A= P28 010 0k fri<i<n-l
node i+ 17T
-n-1 0 0 0 k+1
An = e —eo--- .

If £ > 0 then the zeroth row of the first level in the hypercohomol-
ogy spectral sequence is simply the subcomplex of the Bernstein-Gelfand-
Gelfand resolution of

A= 00 0 0E on xe—e et

consisting of the first n resolvents (since Wy C WP). If r;, € WP (for
%—e—e - -+ &= ) denotes the unique element of length i (see example 4.3.8)
then the exactness of this BGG resolution implies

H"(PL,O(k) = coker Op(rn1.A) O Op(ra-A)

> ker Op(rns1-A) > Op(rassA)

-k-n-2 0 0 0 k+1 -n-k-30 0 1.k
—_— X—o—@ - -

= ker X—o—o- - ete S
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and cohomology in all other positive degrees vanishes. 8 is again the confor-
mally invariant part of a Dirac operator, and a space of zero rest mass fields
is obtained. (In odd dimensions the concept of left- or right-handedness
does not occur since there is only one irreducible spinor representation).

If £k < —2n — 1 then the BGG resolution consists of bundles which have
nontrivial 7-direct images only in degree n(n + 1)/2 (which is, of course,
the 7-fibre dimension). The result is a first term in the hypercohomology
spectral sequence whose n(n + 1)/2%* row is part of the BGG resolution on
M just obtained so that

H™ (P, 0(k)) = ker Op(ras1.A) O Op(rayaA)
as before.
This deals with the regular cases. We will leave the general singular case
to the reader as an exercise; observe, typically, that in five dimensions, the
hypercohomology sequence in the Penrose transform of O(—2) is

EP">FER|0 % eye O

* 0 0 3 0.0

which is rather different from the corresponding even dimensional case! This
is closely related to the lack of non-standard homomorphisms of integral

Verma modules induced from p in this case (see [56]).

9.7 A Grassmannian generalization

An alternative higher dimensional analogue of Penrose’s four dimensional
twistor theory is obtained by generalizing the factorization of the tangent
bundle of Minkowski space into a tensor product of vector bundles:

0 = OA ® OA’
or, in our Dynkin diagram notation,

1 0 1_10 0,0 0 1

0= 00D e x -
A quick glance at table 3.2 shows that the tangent bundle of a general-
ized flag variety is irreducible and factors like this only if the variety is a

Grassmannian

A node
——x—o -

G‘rp(Cp+q) =~ o—o - P R ——

(with p+ ¢ — 1 nodes in all; p, g > 2 to avoid degeneracy). Then its tangent
bundle is

© = o 0---0-x0--0o—o
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In Penrose’s abstract index notation we should denote
o4 — 10 0 0 0 0 0
*—>—e -

= [ ® - . . 0—0
oA = 00 00 0 0 1
= o9 - 0—X—9 - -0—@

(which are bundles of ranks p and ¢ respectively) so that
0 =6 = 04,

With this settled, we must now decide on an accompanying twistor space.
There are two strong contenders: the first is obtained by recalling that in
the four dimensional case a point in twistor space corresponds to a plane in
Minkowksi space. A moment’s thought shows that if we wish to generalize
this fact then we should choose to replace twistor space by Gr,_;(CP*?) and
consider the following double fibration:

n T
N\

p — 1% node p* node
(22)
For then the fibres of 7 are CP?’s and project to the desired planes. (Using
p+1 instead of p—1, yields the analogue of dual twistor space.) This option
seems best from a physical point of view because it will admit a non-linear
graviton-like construction—see [6,123] for details.

A second possibility is afforded by

77 H..'H .
/ N (23)

pth node

X—9 - 0—@ *—e - cr0—e -

This is an interesting choice from the representation theory point of view
for, as we shall see, it leads to the ladder representations of SU(p, q) [47,54].

In both cases there is a difference depending on whether p > 3 or not. (If
p = 2 the cases agree on twistor spaces, if not on their duals.) We consider
p,q > 3 and leave the remaining cases for the reader (equipped with fresh
pencils and paper!). Let X denote an affine or Stein region of Gr,(C**?)
and set Y = 771X, Z = nY, as usual.

Consider (22). Let A be dominant for g = sl(p + ¢, C). For example we
might take A = X\ where

Ay = 0 0 ptk0 0 0 0
k= o—8 ::"X—e—9 - ---06—9

with k > p and then O(—p + k) = Op()\) is a line bundle on Z and
its sections are a natural substitute for the ordinary homogeneous twistor
functions.
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Our aim is to compute
H'(Z,0:(}))

via the Penrose transform. Using the methods of section 4.4 we quickly
compute that the Hasse diagram associated to the fibres of 7 is

W:l = {id,O'p,...,Zk =0p* " Optk-1,- Zq}
so that the i*! resolvent in the BGG resolution of n71Oy()) is
Ai, = 0g(Z;.N).
Because A is dominant, these only have zero’th direct images:
R = T,.Af? = Op(Zi.N).

R* is a subcomplex of the BGG resolution of E(A) on X, and its coho-
mology is H*(Z,Or())), by the Penrose transform. In particular we have

ker Op(X1.4) = Op(X2.2)
im Op(A) = Op(X1.2)

HY(Z,0:(\))
so that

ker

. 0 9-prktl:2 10 0,0 pki2:3 0 1
H(Z,0(-p+k)) = - '
i

0

IRy — 3 — oo -0

0 0 -p+tk 0 0 0 0 0 0-p+k+1-2 1 0 0
0 - - X0 - 0—0 " 0—0 0 XK—@ "

This is in potential modulo gauge form as we should expect. To obtain a
field formulation we must use the exactness of the BGG resolution on X.
The first few terms of this are determined by the following terms of WP:

id
1
Op
/ N
Op0p-1 OpOpt1
v N / N
OpOp—10p_2 OpOp—_10pi1 OpOpi10ps2-

(This is the first point at which the case p = 2 differs from the others; it
has no “o,0p_10p—2".) Thus

X Op(0p0p-_10p_2.X)
HY(Z,0:()\) = kerd: Op(0,0,-1.A) — ®
Op(UpUp_10p+1.A)
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(there being only one irreducible term in the range of d when p = 2.)

When A = 0, since the tangent bundle of a Grassmanian is irreducible as
a homogeneous bundle, the BGG resolution is just the de Rham resolution of
C. Then d is just the exterior differential applied to an irreducible summand
of the two-forms. In abstract index notation

Q2 = Op(0,0p-1.0) ® Op(0,0p41.0)
= Ousas) ® OBl

and d is

draByaB) = Vaadscse) ® Viaa ¢snesic

(the first term, evidently, being absent if p = 2). The connections V on o4
and O4" are determined by requiring that they agree on the determinant
bundle

0 0 0 1 0 0 0
EEH---Q+‘-'~H

where they preserve a section € and that the induced connection on © be
torsion free [6]. The operators in the Penrose transform are all invariant of
€.

We might wish to interpret the kernel of d as left-handed electromag-
netism and, by analogy, the remaining H!(Z, O(k)), k > 0, as left-handed
generalizations of massless fields. It is not clear what the physical nature of
such fields might be, however.

Now consider H*(Z,O(—p + k)) with general k. We find that the j**
BGG resolvent is

0

0 -prktjl 0 1
® - cer @ e @
T p+ 7 node

;

If j < —k this has only a non-trivial p — 1% direct image of

0

ke 0 -p+k 0 1
... . .. .
T p+ 5 node

;

If —k+1 < j < p—k—1 then there are no non-zero direct images whilst if
j > p— k only the zeroth direct image is non-trivial:

0 -pt+ktj-j1 0 1 0
. .. ... . ... .
T p+j* node

;
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The hypercohomology spectral sequence has an E; term of the form

00 00 0
p—1%row|* x ... *+ 0 O
00 00 0
0

0 00O 0

0 0 * =« *

T T
—k*® column p — k' column

and converges after p derivations. When k < —q or k > p the first level of
this sequence has a single row (and one is in the anti-dominant or dominant
situation, respectively). Otherwise, )y is singular and non-trivial higher
differentials can occur in the spectral sequence.

We shall show in chapter 11 that H*(Z,O(k)) vanishes in degree p or
higher for all k. As in remark 9.2.1 this implies the non-vanishing of some
of these higher differentials. For example, when k = 0 this gives a p* order
non-standard differential operator

E[AIBIWDI]V%Q,VB(...Vg],] : u w ...9_2 - 22_?(:1_232
2pth node T
whose kernel, H?~!(Z, O(—p)), might be thought of as zero rest mass scalar
fields.

Now consider the double fibration at (23). As indicated above, the
Penrose transform in this context will be of considerable interest in con-
structing ladder representations of SU(p, q) in the next chapter. Again let
X C Gry(CP*9) be open; it could be either an affine “big cell” or a Stein
open orbit of SU(p,q) such as the orbit of p-planes on which the restric-
tion of the Hermitian form is definite. To continue the notation introduced
earlier, we will denote these orbits by M*—of course, if p # ¢ only M™ is
defined. Let Z be the subset of CP?*?"! corresponding to X and P* the
two open orbits of SU(p, q).

It is clear that Wi is the Hasse subgraph of WP whose elements do
not contain the simple reflection o;. (As elements of the symmetric group
on p + g letters they are the elements of WP which leave the first letter
fixed.) Its complement specifies a complex of homogeneous sheaves on X
whose cohomology is H*(Z, O(\)), if A is dominant. For example, the least
degree (> 0) in which non-trivial cohomology occurs is

HPYZ,0.(\)) = ker I'(X, Op(0p0p_1---01.1))
— I(X, Op(0p0p-1 -+ 010p41.1)).
In fact cohomology in degrees above p — 1 vanishes, also; we shall see this

in chapter 11—on P* this follows from the fact that P* is (p — 1)-complete
[54,134).
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On the other hand wy = 0105 ... 0p1q—1 is the longest element of W4a; it
is the cycle (123...p + q) as an element of the symmetric group on n + 1
letters. It follows that conjugating an element w of the Hasse diagram Wa
by wq:

w— w = wy 'wwo

has the effect of replacing each simple reflection o; in w by o;_;—the result
is the Hasse subdiagram of Wy determined by the fibration

node p—1
.‘o-.+._.--~x
o - —0—0—0 - X

Notice that for such a w', g,...0pq—1w € Wi and these exhaust all ele-
ments containing op44—1. It follows that

TP 0g(wor .. . Opig-1.A) = Op(0p .- Tpyg-1w)

and that the subgraph of elements of Wil containing 0,441 is a complex
whose jt* cohomology is H(Z, O(01 ... 0p4q-1.A)). This computes the Pen-
rose transform for all antidominant homogeneous bundles on Z.

Example (9.7.1). Let A = £ 3... oo, k>0,s0 Oq(A) = O(k).
Then
HPY(Z,0(k
(2,0(k))
—kerT(X, 0.0 .. 047, 8 0) - T(X,8... A1 ... 0)
= ker ['(X,05...c)) = ['(X,04 B...cip)R)-
N N——
k + p indices k + p — 1 indices
This extends through the singular cases k > —p. Similarly, if £ < —p —¢
(the antidominant cases) then
HPY(Z,0(k
(2,0(k)) k+p-1 1 ktp2
Cker (X, 98 5Py §..0.0) S T(X,3... &85 d. . )
= ker ['(X, Owp ...cpy[—1]) = T(X, Oaarp...crpryen[—1])-
[ N —r
—k — p indices —k — p+1 indices

Again, this extends through the singular cases k < —p — 1 —we leave the
verification of this to the reader [47]. The final possibility is

HPY(Z,0(-p))
= kerI'(X,3.9..351 3.8 3)>I(X,8...6 828 4...0)
= ker F(X, 0[—1]) — F(X, O[A’B’][AB][—]-])
f+— Vu1aVpysf.
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9.8 An exceptional example

This example of the Penrose transform is more exotic than is usually con-
sidered. It is defined between homogeneous spaces for the exceptional group
Eg and is included here purely to emphasize the simple algorithmic form of
the transform as described in abstraction in chapters 7 and 8.

In the notation of chapter 7 we shall take

Xcoq—L—o—x
Zc*—)ﬁ——*—m

As usual, Z = n(r7!(X)) for the correspondence

and

VN
The fibres of n are therefore
X &x=P; x Py
whilst the fibres of 7 are
o—x—x—e = Fy3(C°).
Let us take the Penrose transform of the cohomology
'z 1 2 -1 1 o)
I 1

assuming, as usual, that the fibres of n have sufficiently simple topology.

The relative BGG resolution on ‘—X—I—‘—X is

1 -2 -1 10 1 -2 -1 2 -2 1 21 0 4
OH(—I-—O—)(_>‘—-)(—I—OH< . L
1 \ 1 ](1
1 21 1 0 1 21 2 -2 1 -2 3 0 4
I-:’o ](-3 1;-3

Only first direct images under 7 are non-trivial:
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0000-4

0 00 0 1 0 0 0 0 2 \0020-4

Notice that the operators

comprise part of a BGG resolution for the mapping
o—o——L—cq N -——O—L—o—c
so that, for example,
000 0 2 -2

1 -2 .11 0 o 0 0 1 O
H%(Z, ’+—I—4—0)=ker:F(X, ~—~—L—~—><)—>F(X, -—o—I—o—x)
1 -3 -3

00 0 1 0 .
may be interpreted as sections of ‘—‘—L—‘—‘ over the appropriate open
-3

1211 0
subset of ’—‘TH Similarly, H*(Z, 0—><—I—‘—-‘) is identified as
1

0 0 0

0 -4
sections of H—I—‘—X under the Penrose transform.
1

As another example, consider the Penrose transform of the cohomology

0 -3 -3 0 0
H"(Z, >e<—r—o—~).
0

The relative BGG sequence is

0 O -3 1-2 -2 0»3

DN m\ i\

P
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and all except the first of these have vanishing direct images under 7. For
the first term we have

g 0 -3 3 0 0 0 0 0 0 -3
T, o—)%I—o——x = .—.—I—.—)(
0 -6

and so

0 -3 -3 0 O 0O 0 0 o0 -3
82, HT‘—‘)=F(X, .—x—f4—x).
0 -6

A more interesting variation is to consider

0 4 -3 0 O
H'(Z, o—x—T—4—o).
0

Here, the relative BGG resolution is

0 -4 -3 0 0

LT ST
< mo\ \T

and so the spectral sequence of direct images is

* g

Notice that the fibres of 7 are eight-dimensional whence, for X a
ball, Z is eight-complete [134] (our conventions follow [144]). Since

HY%(Z, '+T——‘—0) must therefore vanish, we may deduce the existence

of a non-zero (indeed, locally surjective) invariant differential operator
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0 4 -3 0 0
whose kernel is H¥(Z, '—>%I—‘—0 ). This operator D is non-standard and
0

is a good example of an operator whose existence may be deduced through
the Penrose transform (see section 8.6).

9.9 The Ward correspondence

The Ward correspondence is a non-linear version of the Penrose transform
for the cohomology H'(Z,0). An element of H(Z, O) gives rise to a holo-
morphic line bundle under the exponential map

HY(Z,0) 2 HY(Z,07)

and the Penrose transform may then be regarded as a construction starting
with this line bundle as datum. The Ward correspondence, first devel-
. oped for the standard case of twistor theory of Minkowski space by Richard
Ward [153], takes its datum from a general class of vector bundles rather
than just a line bundle.

The theory for a general correspondence as in section 7 is as follows. As
observed in section 7.2, a holomorphic bundle E on Z gives rise to a relative
connection

O(n"E) = Q2(E) 33 QX(E)
on the pull-back bundle n*E on Y. Conversely, if the fibres of n are con-
nected and simply connected, then a vector bundle on Y with flat relative
connection defines a bundle down on Z by means of the covariant constant
sections along the fibres. Now suppose that the pull-back 7*(E) is trivial
on each fibre of 7. Then, the direct image

A~

E=rnnE

is a vector bundle on X of the same rank as E. Following Manin [113],
we shall say that a bundle on Z is X-trivial when it has this property.
Evidently, this is equivalent to saying that E is trivial on n(7~!(z)) for each
z € X. The Ward correspondence arises by considering what happens to the
relative connection under direct image by 7. Supposing that I'(r~!(z), Q}I)
is of constant dimension as x varies, 'r,,Q,l7 then defines a vector bundle on
X and, always, we obtain a first-order differential operator

DEnV,,:E—»nQ%@E‘.

This operator satisfies a Leibnitz-type rule induced by the similar property
of V,: if 0 denotes the operator

0=7d,: 0— 7'*9,17
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then
D(fs)=fD(s)+0f ®s.

The direct image T,,Q,l, is closely related to Qﬁf via a canonical map

1
Qy — T*Q,lr
In fact, as pointed out to us by Victor Guillemin, it is straightforward
to check that there is a commutative diagram on Y with exact rows and
columns

0 0
! T
Q = o
! T
0 — QL — QL o 0
T ! I
0 N——7"Q) Q 0
T !
0 0

where A'* is the conormal bundle of Y inside Z x X. The canonical map
Q% — 7.0} is then given by

1 1 1
Qx ="y - 1.0,

provided that 7 has connected fibres. This homomorphism of vector bundles
relates 0 to exterior derivative:

o

Ol
0

7;(2,17 .
To proceed further it is necessary to investigate T*Q}, in greater detail. Fix
a point x € X and write F for the fibre of 7 at x. Then F' lies inside
the submanifold n~1(n(F')) of Y and the normal bundle V of F' inside this
submanifold may be regarded as those vectors along F' which are tangent
to the fibres of 5. The derivative of T induces a mapping of vector bundles
/
Vv T
Lo

F ——{z}

where T denotes the tangent space to X at z. Notice that V is not in general
trivial although it is a subbundle of the trivial bundle F' x T. The fibre of
the vector bundle 7,02} at the point z is precisely

L(F, V")
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and the canonical mapping Q! — T*Q}, is given at = by

T* — T(F,V*)
w w

w T™* W

where
(T"w(y))(v) = w(7'(v)).

Clearly ker 7* = span(7/(V))° and so 7* is always non-zero. On the other
hand there is no reason generally that 7* should be either injective or surjec-
tive. Thus, D cannot be related to a genuine connection down on X. Never-
theless, a generalized version of the Ward correspondence goes through as
follows. For any y € F the fibre V, of V at y is injected into T by 7. But V,,
may be regarded as the tangent vectors to the fibre of  through y. Thus, if
D and E are restricted to 7(~!(z)) for any z € Z, then we simply recover
V, on n*E. Although D satisfies a Leibnitz-like rule, there is no natural
operator
9 : 7. — NPT

and so it is impossible to make sense of a curvature D?2. However, as already
observed, D induces a connection on each 7(n~!(2)) corresponding to z € Z
and so it makes sense to require that D be flat on each such submanifold.
Of course, this is just the same as asking that V, be relatively flat. This
completes the circle and we have now proved (with the usual notation and
assumptions):

Theorem (9.9.1). There is a one-to-one correspondence between:
e Differential operators
D:E— T,,Q,l7 ®FE

satisfying
D(fs)=fD(s)+0f ®s

flat on each T(n~1(z)) for all z € Z.
o X -trivial bundles E of the same rank on Z.

As an immediate corollary:

Corollary (9.9.2). If the natural homomorphism
ol - T*Qzl

is an isomorphism then there is a one-to-one correspondence between:
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e Connections R
V:E-QQ®F
flat on each 7(n71(2)) forall z € Z.

o X-trivial bundles E of the same rank on Z.

This is the usual and more useful form of the Ward correspondence.
To apply it in the case of generalized flag manifolds, it is now necessary
specifically to compute 7;9,17 for the case of a homogeneous correspondence.

We start by investigating the structure of the cotangent bundle of a
general homogeneous manifold G/P. As explained in example 3.2.1, this is
the homogeneous bundle arising from the co-Adjoint representation of G on
the vector space (g/p)*. For P parabolic it is possible to study (g/p)* by
identifying it with u, the nilpotent part of p in a Levi decomposition. The
representation is often reducible as in the following typical examples:

2'09) = S +
(o) = L+ B+

00 0 1 -2 1

H—K—0—0—X—8

1 R -1 00 0 -1 1
Q(x_x..;(.)zlzlooo_._ "
1110 00
XX 08

-2 1.0 0 0 0
X——o—8—X—0

where the notation denotes a composition series with factors as shown.
Thus, for example, there is an exact sequence of P-modules:

Oﬁ;g —->Ql(>é5)—>;éq; — 0.
In general, let Sp denote the subset of the simple positive roots S defining

p as in section 2.2. Recall that Sp corresponds to the uncrossed nodes on
the Dynkin diagram. In the notation of section 2.2, define

7w : A(u,h) — Zgo\spl

to be taking the coefficients of the roots in S\ Sp. Let II denote the image
of . For any a € A*(g,h) define the height of @ to be the sum of the
coefficients of o when written as a linear combination of the simple roots
S. For each n € II let a(n) € A(u,h) be the element of minimal height
such that m(a) = n. By considering root strings [94], it follows that a(n) is
uniquely specified by this requirement and it is easy to see that

(8/P) =) [@ E(a(n))] -

E>1 ||n|=k
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Notice that requiring a(n) to be of minimal height implies that —a(n) is
dominant for P. This formula is easy to use in practice.

Example (9.9.3). If P =>3 then
A(u, h) = {al, a) + ag, 0 + 202, a; + 30!2, 201 + 302}
SO
a(l) = «q, a(2) = 201 + 3as.

To write these in terms of their weights it is elementary to check that, in
general,
a=—0,0foranyoc €S

whence, in this particular case,

_al=é33a —a2=¥
5 2, 3 _ 1,0
—o(l) = &= —a(2) = —201 - 32 = &

and we conclude that

Qe = E(a(1)) + E(a(2))

_ 2. 3 1.0
== ==
as above.

Example (9.9.4). If P = %—x—e—e—x—e then

ay, (g, a5, 01 + i, Q2 + O3, 0y + 5, A5 + g,

o) + ag + ag,as + ag + oy, a3 + ag + as, aq + a5 + g,
A(u,h) = ¢ o + oz +az+ oy, 02 + ag + ag + a5, a3 + g + a5 + as,

artogt+ag+ag+as,02+ a3+ 04+ a5+ ag,

]+ g+ ag + a4+ as + ag

{0)

a(1,0, 0)=a (0,1,0) = oy
«(0,0,1) = a(1,1,0) = a1 + oy
(O 1 1)—a2+a3+a4+a5

0(1,1,1) =1 + a9 + az + a4 + as.
We can write these in terms of their weights as in the previous example.
For example

—a(0,1, 1) = awt+as+as+as

1 -2 1 0 0 O o1 -2 1 0 O
= e o090 ¢ o = oo o o o o
0 0 1 -2 1 0O o 0 0 1 -2 1
+ oo o o 0o o 1+ oo o o oo
1 -1 0 0 -1 1
+ e—eo-—9o-9o o o
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These computations give rise to

0 0 0 1 -2 1
K080

. 100 0 -1 1
Q! (xx—e—e—x—e) = %> oo %3+ Txx—o o % o
1-1100 0
XX—e—o X o

21 0 0 0 O
X—HK—0—0—X—0

as above.

Remark (9.9.5). Notice that these computations are compatible with
the BGG resolution of chapter 8. Recall that the first term A! of this

resolution is given by
P 0(0..0)

a€S\Sp
which is precisely the first term in the composition series above for Q1.

In other words, there is a surjective homomorphism Q! — Al as already
investigated in chapter 8.

It is now possible to compute directly examples of Ql and their direct
images T,,Ql for various cases as follows.

Example (9.9.6).  Consider the double fibration

2\

Z C X%—e—e e—x—e DO X
as in section 9.2. The fibre of 7 is %—® with cotangent bundle
Ql(H ) = _:25 .1 .

The relative version of previous considerations together with the Bott—
Borel-Weil theorem along the fibres of 7 now gives

121 12 1
Oy =xx-oe and 7.0 = ¢ % o =0} (e—x9)

so the Ward correspondence is valid in this case. This is the standard ex-
ample of twistor theory. Notice that the requirement that the connection V
generated by the Ward process be flat on the subvarieties n(r=1(z)) (usu-
ally referred to as a-planes in this example) is re-expressible as a curvature
condition as follows. The curvature of a relative connection along the fibres
of n lies in 9,27 and arguing as in the general theory of the Ward correspon-
dence shews that the corresponding connection V down on X is flat along
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the a-submanifolds if and only if its curvature is annihilated by the natural
composition of bundle homomorphisms

02 - /\2‘1'*9117 — 7'*9127.
It is possible to determine the implications of this condition as follows.

2 a2/1 2 1y _ 2 3 0 2_2 30
0, =N (x—x—8) =% x 05078 = e % o

whereas

02 =N =N (e )=a B d0st i=0200

where the last splitting is into self-dual and anti-self-dual parts as explained
in [127], for example. Thus, a connection on a vector bundle over X is
flat on all a-planes if and only if its curvature is anti-self-dual. This is the
original form of the Ward correspondence as in [153].

This last argument may, of course, be repeated generally: the Ward
connection V will be flat on a-manifolds precisely when its curvature lies in
the kernel of

0 - T*Q%.

Sometimes this homomorphism is an isomorphism in which case V will be
flat and the Ward correspondence of less interest.

Example (9.9.7).  Consider the correspondence

<
N
Zg._< X_.<QX

This is the natural twistor correspondence for six dimensional compactified
complexified Minkowski space CS®. In this case we easily compute that

2 1 0 30 1
Q! X_< and 02 = x_<
0 1

so that
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and the Ward correspondence is valid; however,

1
2_ -3 0 — 02
T*Q"l_ x_< —QX
1

so the result is only flat bundles on X. This observation extends to all
higher dimensional spheres (and is also the reason why there is no non-
trivial analogue of Penrose’s non-linear graviton construction [123] in higher
dimensions, for conformal manifolds).

It is not always the case that the Ward transform is valid.

Example (9.9.8). Consider the following correspondence of homoge-
neous spaces for the exceptional Lie group Fg:

Y N

The fibre of 7 is ._)H< with cotangent bundle
0 1 -2/\' 1
1
0 ::)z ® L1 1 L1
12 1 : 0 !
0

Thus,
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and

01 -2 1 0
0L = & +._._t_>H" +-—-—IHH+ -—-—IHH :
0 0 1 -2 1 1 0 0
IO

However, further computations (for which [94] is an invaluable aid) yield
001 -2 1 0
. r 1 1. ; ;
Q X = o) + o—a-THeo_F o—c—Tq(—o +
0 0 1 -2 1 1 0 r 0
r 0

so the natural mapping Q% — T*Q,II is surjective but not an isomorphism.
The usual Ward correspondence therefore fails in this case.

Example (9.9.9). The Ward correspondence also fails for the double
fibration

>
N
<= s

since
-2 3) 2. 3

T*Q1l7 =T(a=x) = 3=
whereas
1 _ -2, 3 1,0
Qx = + 0
as in example 9.9.3.

It is easy to see from the composition series for 2} and Q, that Q% —
T*Q}, is always surjective for a homogeneous correspondence. Certainly, as
in remark 9.9.5, one has an isomorphism

1 1
A= T*An

so that the composition series have the same first term. However, the ex-
tensions in Q}7 are non-trivial so surjectivity is forced.

To see whether Q% — T*Q}, is an isomorphism, therefore, it is necessary
and sufficient to check the last term in the composition series for Q% and
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see whether it also occurs in T*Q,ll. This is a straightforward task as follows.
Consider the dual problem of investigating the first term in the composition
series for O, the tangent bundle to X. The tangent bundle is given by the
Adjoint representation of P on

g/p = u_ (as a vector space)

as in example 3.2.1. A lowest weight vector for this is the same as a lowest
weight vector for the Adjoint representation of G on g so the resulting
computation is independent of P and we can simply list the results (as in
[94]). Thus, the following are the Adjoint representations of the complex
semisimple Lie groups:

2 1,0 1 0.0 0
. == O
1 0 O 0 1 0 0 0 0 O
*—eo—0 - 0—0 .—‘—I—.——.
1

— o o - 2__.)=2 (> 3 nodes)

._._....2=(=2(22n0des) [0
9 1 9. 0._(< 0(Zélnodes) 0

0

The particular parabolic is hence unimportant in determining the first term
in the composition series for ©(G/P). For example

O(x—xte—e)=L 0.0 04 .
@(o-—.:):)%o):ll 0%0 O ...,

The particular parabolic 4s important in taking duals, however. Thus,

2 1.0 0
X—e—e
QI)EN)'.: 1 0 0 0
( ) 1 2@20+ * ;

Ql(o—adx—e)= 0 1\2 1 1.4 0 120

In general, the dual of a representation of a semisimple Lie group is com-
puted by considering the action of the longest element of the Weyl group.
The result of this consideration is that representations are isomorphic to
their duals with the following exceptions where the weights on the Dynkin
diagram are reflected as shown:
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o o o --- k<;—| (if number of nodes is odd)

For a representation of a parabolic, this process is applied to the connected
pieces of the Dynkin diagram consisting of uncrossed nodes and the weights
over the crossed nodes are then uniquely determined since Wy, is a subgroup
of Wg. Thus, the integers on those crossed nodes which adjoin the uncrossed
ones are altered in a prescribed manner. The precise details are unimportant
for our purposes here but the following examples are typical:

(1234)*_-823-14

X—e=r8—X X—eye—x
(1 2 3 4 5)* _ <10 4 3 2 -23
o—o—o—o:):o = oo o oo
The above information is sufficient to allow a complete determination as to
when the Ward transform is valid. Apart from the obvious condition that the
fibres of n should be connected, the result of this exercise is unilluminating.
Thus, the transform is valid (though trivial) for

I and I
VN VN
A S S R S

but not for

Y\
R R

or, indeed, any other homogeneous correspondence for Eg. For SL(n, C) the
connectedness of the fibres of 7 is also sufficient (as previously observed in
[50]). For other simple Lie groups this is not the case as already illustrated
in the examples above. We conclude this section with another example for
which the transform is valid and gives non-trivial answers.
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Example (9.9.10). Consider the following correspondence for the
complex Lie group SO(10, C):

VN

Ql_ 0 1 2 1 L Lo 0
V= e a< e <
1 0

and

1 0
0o 1 -2 1 0 -1
&’21_—..;< +..;<
X
1 0

so U = 7.0, and the Ward transform is valid. However,

Q

2]
0 2 <3:2
0
2= o
0 2 -3:0
2
b
10 -1:0
0
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whereas

0
0 1 -2
02 = + & T e
0
0 00-2:1
2 1
1 0 20
0

m

Remark (9.9.11). If all the fibres 7=!(z) are isomorphic as in the
case of a homogeneous correspondence, then it makes sense to require that
a bundle E on Z belong to the same isomorphism class upon restriction
to each n(7~1(x)). We can develop the Ward correspondence for such X-
uniform bundles. The results in certain cases are described in [50,108] and
Leiterer has employed them to study stable bundles on projective spaces
[109].

Background coupling

We can also feed the Ward correspondence back into the Penrose transform.
In other words, if E on Z is the Ward transform of a connection V on the
bundle E over X, then we can choose any bundle F' on Z, for example a
homogeneous bundle, and inquire as to the interpretation of the cohomology

H'(Z,0(E ® F))

in terms of equations on X by means of the Penrose transform. In chapter 7
the bundle was not assumed homogeneous and so we can apply the general
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machinery therein. Recall that if F' is homogeneous, then we can use the
Bernstein-Gelfand—Gelfand resolution

0— 7 'O(F) — AN(F)

rather than the de Rham resolution in executing the Penrose transform. For
E, however, there is no such alternative and the best we can do is to use

0— 1" (E®F) — A}(F, E)

where AP(F, E) = AP(F)®n*(E). This is possible because n*(E) is naturally
given by transition functions constant along the fibres of n (cf. the case of
the relative de Rham resolution explained at the beginning of section 7.2).
Now recall that the bundle E is X-trivial. In other words, n*(E) is trivial
on the fibres of 7. The bundle F is simply the direct image 7,7* (E). Thus,
it is clear that
TIAP(F,E) = TIAN(F)® E

and so, in the Penrose transform spectral sequence of theorem 7.3.1, we have
EY =T(X,72A2(F) ® E) = H"™(Z,0(E x F))

as opposed to
EPT =T(X,r]AN(F))

for the Penrose transform of H"(Z, O(F)). In other words, it seems as if £
is just carried along as a passenger. However, the importance of the Ward
correspondence is that the bundle E comes equipped with a connection
obtained as the direct image of the relative de Rham differential

V,: Q(E) — QL(E).

Bearing in mind that the BGG resolution is also constructed from the
relative deRham resolution, it follows that the differential operators which
occur in the Penrose transform spectral sequence for the cohomology of EQF
are given by precisely the same formulae as for the cohomology of F' except
that the Levi-Civita connection must be replaced by the tensor product of
the Levi-Civita connection with the connection on E supplied by the Ward
correspondence. In physics a bundle with connection such as E is called
a gauge potential (strictly, the gauge potential is the connection one-form
obtained from a local trivialization (a choice of gauge)). A crucial aspect of
gauge theory is the realization of the importance of the gauge potential (the
connection) as opposed to the gauge field (the curvature of this connection).
Physicists already know this and mathematicians may find [16] illuminating.
If we are given some physically meaningful equations on Minkowski space,
such as the massless field equations, then the same equations with the bundle
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connection replacing the ordinary derivative are known as minimally coupled
to the background gauge potential. An electromagnetic field provides an
example of such a background potential. Indeed, suppose that we consider
the standard Penrose transform for Minkowski space as in section 9.2 and
suppose that, as on page 95,

w e HY(P!,0)

corresponds under Penrose transform to ® € I'(M’, Q') such that d*w = 0,
i.e.
V?AIQB/)A =0.

Then, whereas the usual massless field equations for positive helicity mass-
less fields read
VA% .0 =0,

the background-coupled versions read

DA% g =0
where D, = V, + ®,. For negative helicity massless fields, extra care must
be taken. For recall that the Penrose transform does not yield fields directly
but rather potentials modulo gauge. In the background-coupled case it is
generally no longer true that these are equivalent to fields. For example,
in the helicity —1 case (anti-self-dual Maxwell fields) the Penrose transform
gives
ker d* : T(M!, Q') - I'(M!,Q2)

imd : I(M!,0) - I'(MI, Q1)

and so the background-coupled version for the line bundle £ = exp 2miw is

HY(PI0)~

ker Dt : T(M/!, QL)) —» I'(M!, Q2 (L))

HUPY, L) & = 5 T(MT, £) — T(MT, (L))

where D is the connection on the trivial bundle given by using ®, as connec-
tion 1-form. The de Rham sequence was employed on page 95 to identify po-
tentials modulo gauge as fields; however, the background-coupled de Rham
sequence

P 02 (C
() 2. aic) - Q3(L) — Q4(L)

)
N
Q2 (L) -
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is no longer exact or even a complex, the composition
D?: L — Q*L)

being precisely the curvature. Thus, the very existence of a background-
coupled field rather than a potential modulo gauge entails some algebraic
relationship between the fields and the background curvature. For example

VAY + 04 =0 = FAPpup=0

where
— (4 !
FAB = v(igB)4
is the anti-self-dual part of the curvature or background field induced by

the potential ®,. In general, such algebraic relations are known as Buchdahl
conditions [127].
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CONSTRUCTING UNITARY REPRESENTATIONS

One of the advantages of the twistor description of positive frequency mass-
less fields via cohomology

H'(PT™,0(k))

as in section 9.2, remark 9.2, and [44,119,120,121,125] is that it is evident
that SU(2,2) is represented on this vector space. This is somewhat sim-
pler than the action of the conformal group Cl(l, 3) on the corresponding
spacetime fields first noticed by Bateman and Cunningham [14,36] in 1910
for Maxwell’s equations and by McLennan [114] in 1956 for general mass-
less fields. This representation is unitarizable, i.e. it admits an invariant
Hermitian inner product usually called the scalar product and, although its
definition on massless fields is physically well motivated [64] (in 1961, only
informally for spin > 3) and [96](in 1977, with full details), it takes some
effort to show its conformal invariance [75] (in 1963) under conformal trans-
formations. However, once the definition of this scalar product has been
transferred to cohomology (accomplished in [45,67,68,120]), its invariance is
clear. These are the so-called ladder representations of SU(2,2) and we can
expect the construction to generalize greatly, namely to other groups and
their representations on appropriate cohomology. This chapter will describe
the extent to which this is justified by means of the studied so far.

10.1 The discrete series of SU(1,1)

The prototype for any construction concerning semisimple Lie groups is the
case of SL(2,R) = SU(1,1). The irreducible unitary representations of this
group are completely understood (e.g. [138,147]) and, of these, the so-called
discrete series representations are often regarded as the most interesting
[135].

T

|
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The usual construction of the discrete series is as follows. SU(1,1) acts on
the unit disc A = {z € Cs.t. |z| < 1} by factional linear transformations:

a b
z %H for ( € SU(1,1)
c d

ie. fora =d, b = ¢, and |a]? - |b> = 1. For later use notice that A
corresponds to the northern hemisphere

S+CS=CP1

under stereographic projection from the south pole. As a subset of projective
space, S consists of those lines in C? on which the Hermitian form preserved
by SU(1,1) is positive definite. Now for each integer n > 1, consider the L2
Hilbert space

H, = {g €T(A,O) s.t. /A(l — 22" f(2)|Pdzdy < 0o}.

This is non-empty and provides a unitary representation of SU(1,1) which
acts according to

[(‘c’ Z>_ f] (2) = (cz+d) Dy (Zj—:S)

The simplest case of n = 1 can be usefully rephrased as follows. Notice that

1

/A|f(z)|2dxdy=§/Aif(z)ﬁdz/\dz=%/Aiw/\w

where w = f(z)dz. Moreover, if f transforms as above then w transforms
by

az+b
cz+d

w = f(2)dz — (cz +d)%f ( ) dz = f(a(z))d(a(z)) = a*w

where a(z) = ‘c‘jj:g In other words, H; consists of the L? holomorphic one-

forms on A. The natural action of SU(1,1) by pull-back is trivially unitary.
These representations are the holomorphic discrete series for SU(1,1). Along
with their conjugates H, they exhaust the discrete series representations.
Another representation which morally belongs to this series (but just fails
properly to be square-integrable) is the representation on

Ho={f €D(8,0) st lim [(1= |2) | (2) Pdudy < oo}.
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An alternative description of these representations which fits rather well
with the twistor approach is as follows. Consider the vector space

I(5%,0).

We have the exterior derivative d : @ — Q! and, hence, an SU(1,1)-invariant

transformation o
d:T(S+,0) - T(S+,0Y)

which is surjective and has C as kernel. The Hermitian form on C? as
preserved by SU(1,1) gives rise to an involution of S = P(C?) by

¢ — ¢+ (orthogonal complement).

This involution is antiholomorphic, interchanges S* and S~, and has S0 as
fixed points.

In the usual affine piece = C it is just complex conjugation so the notation of
complex conjugation will be maintained by writing z — Z. If f € T(ST, 0),
then f(z) € T'(S—,0), the antiholomorphic functions on 5=, whence f(z)
is a holomorphic function on S-. A similar observation applies to one-
forms: if w € T'(§F,Q!), then write w(z) for the pull-back to S-. It is an
antiholomorphic one-form so w(z) is a holomorphic one-form on S—. In the
usual affine coordinate this is just

9(2)dz — g(z) dz = g(Z) d=.

In this way, we obtain conjugate linear isomorphisms

I(S%,0) 3 f(2) — f(z) €T(5-,0)
(57,0 3 wr— w(?) e T(S-,0)

which shall simply be written as f +— f and w — @. These transformations
are manifestly SU(1,1)-invariant. We can now define an Hermitian form on
['(5F,0) by

mm=fﬁ@
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where § means integrate over SO, noting that f is defined on S* whilst CE
is defined on S— so that their product is well defined on S° as common
boundary. Integration by parts gives

(o) =-fidtg=figd =To.7)

so this form is indeed Hermitian symmetric. Of course, it is not positive
definite since it vanishes whenever f or g is constant. In fact this shows
that it is better regarded as an Hermitian form on

_+ [~3 —_—
nifDQNﬁﬂW

At this point, Stokes’ theorem gives
(f.9)=fifdg=fifdg= [ idfndy

which is just the usual formula for the L? inner product on holomorphic
one-forms and hence this construction recovers the simplest discrete series
representation H;.

The reason for this somewhat convoluted procedure for deriving what is
certainly more transparent in the classical construction is that it generalizes
easily to give all the discrete series as follows. Consider the vector space

I'(S+,0(k)) for k > -1

with its SU(1,1) action. The sheaf O(k) occurs in the very simplest BGG
resolution for S = SL(2,C)/P = x

-2

k k § -k
e > X—> X —0

0—
which for ¥ = 0 is the de Rham sequence. This differential operator ¢ is
0%*1 called edth, as described in [46]. Thus, we obtain an exact sequence

0 — OQFC? - T'(8F,0(k)) 5 T'(5F,0(=k - 2)) > 0

equivariant under the action of SU(1,1). There are conjugate linear isomor-
phisms for all j

L(S%,0(7)) 3 v — 7 € T(S-,0(3))

obtained from complex conjugation in the obvious way generalizing the cases
j=0and j =2 (for Q') used above. Again these isomorphisms are mani-
festly SU(1,1)-equivariant. The formula for the inner product is now essen-
tially as before:

(®,0) = fik“@ﬁ
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noting that the product 6V is a section of
Ok)®O(—k—2)=0(-2) = ol

so that it makes invariant sense to integrate it over S°. This is Hermitian
symmetric by integration by parts and is SU(1,1)-invariant by construction.
As before, it vanishes on OF C? and so descends to an Hermitian form on
I'(S+,0(—k — 2)). Thus,

(R®=fﬁ“M?mMew=E

Here we should anticipate that it is positive definite. This is readily verified
by expanding elements of I'(S*, O(—k —2)) as power series about the north
pole. The poles are stabilized by the maximal compact subgroup K =
S(U(1) x U(1)) and this power series expansion is precisely an expansion
in K-finite vectors of the representation. This expansion also shows that
the representations for £ > 0 are indeed the holomorphic discrete series
representations Hj1 since the K-types agree. The details are in [47]. Notice
that we also obtain a representation when k = —1. This is the mock discrete
series representation Mo, one which just fails to be in L? as indicated earlier.
It is obtained with no extra effort.

A rather remarkable consequence of this construction of the discrete
series is the following derivation of the Virasoro algebra.

Example (10.1.1). The Witt algebra is the algebra of vector fields
on the circle. A natural complexification of this is to consider holomorphic
vector fields on §2\ ({N} U {S}) (where N and S are the north and south
poles). Put Ut = 5%\ {S} and U~ = %\ {N}; then the algebra of interest

18
V=[(U*NU",0)

2
where ©® =x. The BGG resolution
0— g — >2< KN % — 0
yields the following exact sequence in the cohomology of UTNU™:

0—sl(2,C) = V & T(UTNU-, %) —sl(2,C) — 0

—4
(x is the sheaf of quadratic differentials on S?). In this case ¢ is a third-order
operator. Put

L,=z""— wm = 2™ 2(d2)?.

Then we have
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whilst
6L, =n(l —n?w_,
and so if w(X,Y) = (X,Y) then

w(Ly,Ly) = _ifz—n+1;l_sz(1 _ mZ)Z—m—2(dz)2
= 2em(l = m)p .

Clearly w is an antisymmetric form on V; indeed, it represents a cocycle in
the Lie algebra cohomology

H(V,C)

whic.h is non-trivial. The corresponding central extension of V is a complexi-
fication of the Virasoro algebra (a central extension of the Witt algebra).
Writing
2 2
r'U-,x NG
= —( %) @sl(Z,C)@——(U %)

s1(2,C) s1(2,C)
realizes V' as a direct sum of sl(2, C) and two discrete series representations.
The central extension comes from the duality of these representations.

10.2 Massless field representations

The definition of the scalar product on massless fields as in [64,75] bears
a striking resemblance to the construction of the previous section. The
procedure for Maxwell’s equations is as follows. Suppose the F is a self-
dual solution of Maxwell’s equations on M = real compactified Minkowski
space (see [117])

*F =4F and dF =0

or, in usual spinor notation (as in section 9.2),
VA% ¢ ap =0 for Fy = papeap.
M is diffeomorphic to S* x S? so, in particular, H?(M, C) = 0 and we can

ﬁnfi a potential ® for F', namely a one-form & such that d® = F. Now, if
G is another self-dual solution of Maxwell’s equations form

f@A@

where the integral of this three-form ® A G is taken over the S3 of M =
S! x 83, Notice first that ® A G is closed:

d@AG)=(d®)ANG=FAG
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which vanishes because F is self-dual whereas G is anti-self-dual. Thus,
the particular S% is unimportant other than it represents the generator of
H3(M,Z) = Z. Observe, secondly, that this integral is also 1ndepenc}ent
of choice of potential ®, for, if ¥ is another, then d(® — ¥) = 0, so in a
neighbourhood of S in M we can find f s.t. df = ® — ¥ and now

dfG)=dANG-YAG

whence

f@A@:f@A@
by Stokes’ theorem. The formula
(F,G) = f OAT
or, in spinor notation,

(parp, Yap) = j{iq’ﬁ@AB

to the formula proposed for the case of SU(1,1). Again, it is manifestly
invariant under SO(2,4), the group of orientation preserving conformal auto-
morphisms of M and if I is a potential for G, then

is the definition of the scalar product and bears an obvious resemblance ,

GKE=%¢Amii%ﬁAT=fFAF=RfE

so it is Hermitian symmetric too. As it stands, this Hermitian form is not ,
positive definite on the space of all self-dual Maxwell fields on M. These
Maxwell fields, however, do not constitute an irreducible representation of
SO(2,4) but rather split into two irreducibles

{positive frequency self-dual Maxwell fields on M}

o
{negative frequency self-dual Maxwell fields on M}

as in [5,128,146]. It then turns out that the scalar product is positive d(?ﬁ—
nite on one summand and negative definite on the other (precisely which
depending on how we choose to orient the 53 over which we integrate). This v
is usually seen by Fourier analysing a massless field in terms of plane waves
[5,146]. ' ‘

A similar analysis applies for fields of other helicities. In two-spinor
notation for helicity n/2 > 1/2,

n—14 BC..DT.
(parpr. DB ..Dr) = fﬁn 1955 YY 5. p
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where ® is a potential for ¢ as explained in section 9.2. Notice that this
makes good sense because

b4po.p €T(M, 1 -2 n-l) and P, p € D(M, 0 -n-1 1)

whence 5% P%, 0 1 € T(M, s_3o) = ['(M,Q3). For helicity zero, i.e.
for solutions of the wave equation, we have

(8,9) = §iPVup = VP,

Our aim in the next section is to show that this seeming analogy with the
discrete series realization for SU(1,1) is more than just an analogy. From
the twistor point of view they will both turn out to be special cases of the
same procedure.

10.3 The twistor point of view

Recall (section 9.2) that the Penrose transform interprets holomorphic mass-
less fields of helicity n/2 on M™* as cohomology

HYPT,0(-n - 2))

where PT* is the open orbit of PT under SU(2,2) consisting of those lines
where the Hermitian form on T is positive definite. Thus,

_ SU(2,2)
PT* = S(U(1) x U(1,2))"

M is the Silov boundary of M* and these fields have hyperfunction bound-
ary values [5] on M. In this way the cohomology is precisely the positive
frequency hyperfunction massless fields of helicity n/2 on M. Similarly, the
cohomology .

HY(PT*,0(-n —2))

under the Penrose transform is interpreted as the positive frequency real
analytic massless fields of helicity n/2 on M. Thus, we expect the scalar
product on massless fields, as in the previous section, to find interpretation
on HY(PT*,0O(—n—2)). Before Penrose introduced cohomology into twistor
theory [124,125,128], the twistor description of massless fields was given
in terms of integral formulae [118,119,122]. The description of the scalar
product in terms of these integral formulae first appeared in [120, pages 277—
278]. The cohomological interpretation of this description was accomplished
in [45,67,68] and may be given as follows.
The main ingredient is the twistor transform

T : H(PTF,0(~-n - 2)) — HY(PT, O(n — 2))
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obtained by composing the two Penrose transforms identifying the two sides
with the holomorphic massless fields of helicity —n/2 on M*. Ifn > 2
then the left-hand side under the Penrose transform yields these massless
fields directly whereas the right-hand side yields a potential modulo gauge
description of these same fields (as in section 9.2). Notice that this follows
precisely the nature of the classical scalar product formula from the previous
section. According to this same formula, the next thing we should do is
to take the complex conjugate. On real Minkowski space M this turns
positive frequency into negative frequency and helicity n/2 into helicity
—n/2. Evidently, this is accomplished on cohomology by the conjugate

linear isomorphism
~. H\(PTT,0(-n - 2)) > H{(PT*,0(—n - 2))

where

HUAENIUS)

on the level of homogeneous functions. Here, W* € T is characterized by
B(Xo, W) = X W

for ® the given Hermitian form on T*. In other words, ® is regarded as
a conjugate linear isomorphism T = T*. To complete the definition of the
scalar product, therefore, what is needed is a pairing

H'(PT—,0(-n—-2)) ®c H'(PT*F,0(n - 2)) —» C.
On the common boundary we can pair two classes to obtain an element of
HY(PT?,0(—4)) = HY(PT*, Q%)

and now PT* is five-dimensional so we can integrate a representative (3,2)-
form in this cohomology over it to obtain

meTo,0) L .

This last map may also be regarded as the connecting homomorphism in
the Mayer—Vietoris sequence for PT*:

H2(PT®,0%) — HYPT, %) = C

In this way, the interpretation of the scalar product on massless fields
through the Penrose transform becomes

(# ) = (T9)

for ¢, € H(PT+,0(—n — 2)).

10.3 THE TWISTOR POINT OF VIEW 151

At this point we can investigate the formula directly, discarding its ori-
gins on Minkowski space. We must show that it is Hermitian symmetric
and positive definite. One way of showing that it is Hermitian symmetric
is by expressing the twistor transform in terms of twistor propagators as in
[45] where the resulting formula has the required property by inspection.
In this way the twistor transform is constructed directly without having to
use fields on Minkowski space. Just as the Penrose transform is a complex
analogue of the Radon transform, so the twistor transform is a complex ana-
logue of the Fourier transform. This is explained in [45] and its application
in solving differential equations appears in [48]. The construction of the
scalar product by means of the twistor transform may be regarded as paral-
lel to the fact that the Fourier transform preserves L2. An alternative direct
construction of the twistor transform without passing through Minkowski
space is given in [141]. To show that the scalar product is positive definite
from the twistor point of view is more difficult. This is reasonable since there
is also some effort needed in the classical construction to show positivity.
A good deal of Penrose’s original exposition™{120] concerns computations
with twistor diagrams. This was before the introduction of cohomology as
the way to understand twistor functions. The resulting calculus may now
be viewed as a method of manipulating K-finite vectors which in [120] are
termed elementary states. (In fact, these are conceptually distinct but turn
out to agree; see [54] and below.) Precisely, we can proceed as follows. Fix
a maximal compact subgroup

S(U(2) x U(2)) = K C SU(2,2).

Such a subgroup stabilizes a line L in PT~ and, indeed, the choice of L is
precisely the choice of such a K. The complementary line L+ in PT* is also
fixed. For the analogous case of SU(1,1) acting on the sphere, a maximal
compact
S(U(1) x U(1)) = K C SU(1,1)

fixes a pair of complementary points, one in each hemisphere S*, which may
be taken as north and south poles. For the case of SU(1,1), recall that we
could show positivity by expanding homogeneous functions on St as Taylor
series. The method for SU(2,2) is precisely the same whereby we should
expand in K-finite vectors. Thus, one needs to

1. identify the K-finite vectors
2. justify expansion
3. prove positivity.
To accomplish these steps, first consider the cohomology

HY(PT — L,0(—n — 2)).
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This is as discussed in section 9.2. It may be computed directly (without
reference to spacetime) by choosing two planes whose intersection is L and
using their complements as a Leray cover as in section 9.2. See [43,54]
and section 11.4 for the details of this computation. The result is that
HY(PT — L,O(—n — 2)) can be described as a set of Laurent series. Since
K stabilizes L, it acts on H'(PT — L,O(—n —2)) in a manner which may
be specifically identified on these Laurent expansions. The K-finite vec-
tors are precisely the finite Laurent series and these form the cohomology
HY(PT — L, Oyg(—n — 2)). Specifically, as K-modules,

ifn>0,

n+2 -n-5 2 n+l -n-3 1 k -n-1 0

HY(PT — L,Ogg(-n—2)) =@ o

ifn <0,

2 05 -n+2EB 1 n3 -n+1®0 n-1 -n (24)

HI(PT - L, Oalg(_n -2)=--® *——x—o

as explained in example 11.4.13 [54]. In standard twistor terminology,
an element of one of these irreducible K _representations is called an ele-
mentary state [43,120] and the theory of twistor diagrams [87,88,120] or
[91, chapter 5] was initiated by Penrose specifically in order to calculate
with them. Since PT — L is not a union of orbits for SU(2,2), this group
does not act on the cohomology H'(PT — L, Oag(—n — 2)). However, since
PT — L is open each of its points has a neighbourhood on which a neigh-
bourhood of the identity in SU(2,2) does act and so the cohomology group
is a module over the Lie algebra su(2,2). Thus, these K-finite vectors
HY(PT - L, Oyg(—n—2)) form a Harish Chandra module for su(2,2). There
is more on this and on the determination of K-types in chapter 11. Argu-
ments of pseudoconvexity [54] using theorems of Andreotti and Grauert [1]

shew that
Hl(PT - L, O(_n _ 2)) — HI(PT+, 0(—" - 2))

is a dense inclusion where HY(PTT,O(-n — 2)) is equipped with the
natural Fréchet topology induced, for example, by the topology on Dol-
beault representatives of uniform convergence of all derivatives on com-
pact subsets [104,140]. This is the hyperfunction globalization of the Harish
Chandra module HX(PT — L,Oyg(—n — 2)) as in [40]. The cohomology
Hl(F’er, O(—n — 2)) also has a natural topology (of the strong dual of a
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Fréchet space [54]) and lies between the previous two:

1
H'(PT — L, Oyy(—n — 2)) = K-finite vectors

N
H'(PT — L,0(—n — 2))
n
HI(PTT,0 )
,n (—n—2)) = “analytic” globalization
1
H'(PT*,0(-n—2)) = “hyperfunction” globalization

ane the K-finite vectors have been identified as elementary states, it is a
simple matter to compute the scalar product on them as in [45,120] indeed
the ca%culus of twistor diagrams is designed for such purposes’. It t'urns out,
tha,? filfferent K-types are mutually orthogonal whilst the scalar product is
Posmlve definite on each specific K-type. Together with the density proved
in [54] this shows that the scalar product is at least non-negative deﬁflife We
can refine this final argument slightly [54] to prove positivity. The Hiibert
space completion of H*(PT™, O(—n—2)) is called the space of normalizable
states of helicity n/2 in the physics literature. The very simple pattern
of K-types which occurs for these examples (lying on a ray in thepwei ht
lattice of K and all occurring with multiplicity one) has given rise to ;gh

name ladder representations [96]. ’

The above reasoning is not restricte i
generally to the case of SU(p,q) for p, q Z(i;(;ctt}ilrelgczze S0(22) but apples

HY{(PF,0(-n - p))

whi:re Pt i?, the orbit of SU(p,g) on CP?*?~! consisting of those lines in
CP*? on which the invariant Hermitian form is positive definite. The detail
of the general case are explained in [47]. When p or ¢ is 1 th.ere is onl X
slight difference in that the module may not be irreducible. Specificall , '?
may be that H(P, O(—n — 1)) is non-zero: this happens when n < —1}.” Iln

thlS case the COIlStIuCthIl 1ves an 1n.Va;Ila;Ilt Calal pIOdLlCt on tlle 76dUC€d
g 5

HO(PT,0(~n - 1))
HO(P+,0(-n—1))’

V‘Vhen‘this modification has been incorporated it can be seen the construc-

tion gives the discrete series representations of SU(1,1) as in section 10.1

Thu:?, the two analogous constructions of sections 10.1 and 10.2 have beco ne

special cases of a procedure which should generalize consideliabl e
Notice that, using the long exact sequence g

H'(PF,0(-n - 1)) (26)

0=H)P~,0(-n—-1)) - HYP,0(-n-1)) - HPF,O(-n — 1))
— H(P~,0(-n-1)) » H(P,0(-n—-1)) =0
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we can regard SU(1,q) as acting on H}(P~,O(—n —1)). This allows p =0
in which case P = P~ and SU(q) acts on H°(P,O(—n)) according to the
Borel-Weil theorem giving the irreducible unitary representation

n 0 O 0 0

— 6 0 0o for n > 0.

10.4 The twistor transform

The non-trivial ingredient of the previous section was the twistor transform.
For SU(p,q) generally,

T __
H'(P*,0(-n—p)) 2 H'(P*",0(n - q)).

The proof [47] is by using the Penrose transform to identify both sides with
the kernel of an appropriate holomorphic differential operator on

+ SU(p7q) p+q
M= s - S
as for the case p = ¢ = 2. We gave the transform for this in example 9.7.1 (at
least from P+ to M*+—the calculation for P*~ is a mirror image). Note that
the differential operator involved is standard for n # 0 and non-standard
for n =0.

It is straightforward to apply the Penrose transform of chapters 7 and 9
in order to investigate generally the extent to which the twistor transform is
valid. We can try other groups than SU(p,q) and use coefficients in homoge-
neous vector bundles rather than just line bundles. The case of SU(2,2) (ac-
tually U(2,2) for slightly greater generality) and of a general homogeneous
vector bundle is treated in [51] where the generalized de Rham resolution
on M should be recognized as a BGG resolution. The result proved there
is, in the notation of this book, that there is a natural isomorphism

T:H\(PTH % & 5) — H(PT™, 1 485"
provided p < -3 —¢q¢—r,p=-2—gq, or p > —L Combined with the
conjugate linear homomorphism
HYPT % 4 3) - HPT , e+ %)
this gives rise to a pairing on cohomology since
g_r.;p;(q-r-élz (:__2_1))()* ® 0 0 -4
giving a natural homomorphism

r r -p-gr-4 0O 0 -4
q P®q p-q-r-4 __, =Q3.
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Table 10.1. Classical Hermitian symmetric spaces and associated twistor
spaces for the twistor transform.

G K P R,R
A SU(p, q) S(U(p) x U(q)) |ee-exe-ee| xoo oo
oo ox
B |SO@2p+1,2) |U(1) xSO(2p+1) | xee-oe | eee-ex
C Sp(p,R) U(p) coe- sl | xoe-als
DI SO(4p, 2) U(1) x SO(4p) | xee-eel | eoe-ee’
eee- H:(

DII |SO(4p+2,2) [U(1) X SO(4p+2) | xee-ee® | ces-ee”

[ ] [ ]
DIII | SO*(2p) U(p) eos 00 | xeo oo’

The K-finite vectors in the cohomology are easily identified but an investi-
gation as to whether the pairing is positive definite has not yet been carried
out.

10.5 Hermitian symmetric spaces

As far as other homogeneous spaces are concerned, it seems that there is
a valid isomorphism, or twistor transform, whenever we may choose the
target space X C G/P to be Hermitian symmetric. That is, if G has a real
form G, so that G,/K C G/P is a noncompact Hermitian symmetric space
[83], then we can choose R, R’ so that there is a twistor transform from
G/R — G/R'. The case G, = SU(p,q) above is exactly such a situation.
The others, amongst classical groups, are in given in table 10.1.

Where only one R is listed the twistor transform acts from G/R to itself.
These are precisely the cases in which the variety G/R embeds projectively
into a representation F' of G which is self-dual and in which the conjugation
on G over G, permutes the G, orbits in G/R. In the other cases, the spaces
G/R and G/R' embed projectively into contragredient G-modules and are
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sent to each other under conjugation. This is exactly the “right” situation,
for it will allow us to construct a scalar product.

The twistor transform for these spaces is given in table 10.2 for line
bundles. Here we denote by Z (respectively Z*) the subspace in G/R (re-
spectively, G/R') corresponding to X = G,/K C G/P. We let O(j) on Z
or Z* be the line bundle specified by setting j over the crossed through node
in R or R’ and zeros over the remainder. Of course, the twistor transform
is valid for any Z, Z* corresponding to a Stein or affine X C G /P. Apart
from the cases C, DIII, which the reader is invited to check, the calculations
needed to verify this table are in section 9.6.

The twistor transform is more generally valid for vector bundles, in the
same cohomology degrees as indicated in the table. The bundles are in-
duced by weights with an extreme property relative to WT. Specifically, the
transform acts as follows:

T : H(Z,0:(0)) = H*(Z or Z",0(wy.)))

where A + p or wy.A + p is dominant for g and wo € W% is the longest
element. This covers most of the cases detailed in [51] and explained above.

From this, when Og(}) is a line bundle, we should be able to construct
unitary representations in the continuation of the holomorphic discrete series
for these groups. For line bundles we expect to obtain ladder representations
in all cases but C,,, with K-types occurring along a ray in weight space, with
multiplicity one. Notice a common theme amongst all but B.,, namely that
at the limit of the transform (n = 0 in the table) the spectral sequence in the
Penrose transforms used to prove the twistor transform converges only after
several derivations. The differential operators that describe the cohomology
are non-standard. This generalizes the case of O : w — w whose
kernel is massless scalar fields for SU(2,2) and should be associated with a
limiting behaviour in any L* construction.

10.6 Towards discrete series

The full extent to which the twistor transform can be defined and is an
isomorphism has not yet been determined but, in principle, is simply an
exercise in using the Penrose transform of chapter 9. The construction of
an invariant sesquilinear pairing now follows. The investigation of these
representations and this form by means of their K-finite vectors is still in
an early stage but we feel that it is a promising line and deserves further
effort.

Recent work by Ed Dunne and one of the authors (MGE) suggests that
the twistor transform is valid in a very general setting for orbits of a real
form of G on G/B. The calculations strongly suggest that all the discrete
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Table 10.2. Twistor transform for Hermitian symmetric spaces. n > 0

A HP"Y(Z,0(-p —n)) = HH(Z",0(—q + n))
B HPP=D/2(Z O(=2p +1—n)) 2 HP(Z,O(—1+n))
C HPY(Z,0(-p—1-n)) = H*"Y(Z,0(~p+1 +n))

DI | H*-V/2(Z O(—4p+2—n)) =X HPY(Z*,0(-2 +n))
DII H@+Y2(Z O(—dp —n)) = H?(Z,0(-2 + n))

DIII| HPY(Z,0(-p—n)) = H"%(Z*,0(—p+ 2+ n))

series representations and their limits may be constructed directly on the
Dolbeault cohomology of these orbits (to complete the approach of Schmid
[133,134]).
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MODULE STRUCTURES ON COHOMOLOGY

So far, we have really only used representation theory as a rather power-
ful tool in the calculation of the Penrose transform on an amenable class
of manifolds. But the transform is really best thought of as a functor in
representation theory, and this chapter turns attention to an attempt to
study it as such. The transform should be thought of as a derived functor,
closely related to the derived Zuckerman functors [151] and this is probably
the best way for a representation theorist to view what follows. The un-
derlying motivation is quite simple. The Bott-Borel-Weil theorem realizes
the cohomology of irreducible homogeneous sheaves on a flag variety G /P
as finite dimensional irreducible G-modules. Evidently, cohomology of such
sheaves on open proper subsets of G/P cannot bear a G-module structure
(since the subset is not preserved under G). But it does bear a U(g)-module
structure and, if the subset is an appropriate union of orbits, a K- or G-
structure, for K a complex semisimple subgroup and G, a real form of G.
These modules vary according as one works in the algebraic or holomorphic
category (a new feature), but the results are closely related; indeed they
give the geometric equivalent of K-finite vectors as we shall see. As a con-
sequence of the “rigidity” of the holomorphic and algebraic categories, over
open non-affine or non-Stein subvarieties, these modules may have special
properties—e.g. they may be Harish Chandra (g, K)-modules, irreducible,
etc. On the other hand, over open affine or Stein subvarieties of G/P,
spaces of sections of homogeneous sheaves may be acted on by invariant
differential operators, i.e. by operators which intertwine /(g)-module struc-
tures. These spaces admit composition series whose terms are kernels and
images of such operators. The Penrose transform is the geometric bridge
between these two constructions of modules. It begins with cohomology
over an open (non-affine) subvariety of one G/R and identifies this in terms
of kernels and cokernels of invariant differential operators on sections of ir-
reducible homogeneous sheaves over a different G/P, intertwining ¢(g) and
K- or G,-module structures.

11.1 VERMA MODULES AND DIFFERENTIAL OPERATORS 159

Bridges between viewpoints are always useful; this is certainly true of
the Penrose transform. The first side of the bridge, involving cohomol-
ogy, is immediately related to the relative cohomology picture occurring in
the work of Kempf [98], Beilinson-Bernstein [15] and Brylinski-Kashiwara
[28] associating to closed Schubert varieties irreducible quotients of Verma
modules. Transport this across the bridge and discover a construction of
homomorphisms of Verma modules (including non-standard ones) and de-
tailed structural information on Verma modules. Or, if you are a physi-
cist, walk in the opposite direction to discover that spaces of solutions of
zero-rest-mass equations (and the solution spaces of several other physically
interesting systems of equations) are irreducible quotients of Verma mod-
ules, and identify techniques such as helicity raising and lowering [128] as
standard representation techniques (in this case, the translation principle).
Various structures on representations are more transparent in one picture or
the other. The existence of unitary representations whose K-finite vectors
constitute an irreducible quotient of a Verma module [61] exemplifies this;
as in the previous chapter, we can utilize the twistor transform, (a double
Penrose transform) to construct certain unitary representations.

11.1 Verma modules and differential operators

The basic modules which underlie a representation theoretic understanding
of the Penrose transform are Verma modules, introduced initially by Har-
ish Chandra in [79] and Verma in [150] and studied since then by very many
authors—see [17,39,110] for example. Their particular interest for us is that
the differential operators that arise in the Penrose transform are induced by
homomorphisms of Verma modules. Also, it is often true that the cohomol-
ogy groups calculated by the Penrose transform are irreducible quotients of
Verma modules.

Verma modules

Let g be a semisimple complex Lie algebra and let b be a Borel subalgebra.
Any finite dimensional irreducible representation of b is one dimensional;
recall from section 3.1 that if b = h & n is a Levi decomposition of b
then n acts trivially and h acts by a weight A € hi;. The corresponding
representation has been denoted by Fi,(A). A Verma module is a g-module
induced from such a representation, namely, the module

V(A) = U(g) Bug) Fo(A) = indEFy(A)

where g acts by multiplication on the left. The Poincaré-Birkhoff-Witt
theorem implies that if n_ is a complement to b in g then

V) 2 UMm) ® Fy()) (27)
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as a vector space, indeed, as an h-module. V() is a direct sum of finite
dimensional weight spaces. It is clear from this decomposition that the orbit
of any element of V()) under the action of U(b) is finite dimensional. This
fact is usually summarized by saying that V(X) is U(b)-finite. The image
¥ of 1 ® v in V()), for any non-zero v € Fy,()), is clearly a highest weight
vector. The highest weight space is evidently one dimensional and spanned
by ¥ which is annihilated by n; that is, it is a maximal vector. Finally,
acting with /(n_), observe that 0 generates V/(X).

Relation to differential operators

Suppose now that \ is g-integral. Represent a section of Op(A) in the
vicinity of the identity coset by an Fy,(—\)-valued holomorphic function f
on G. If the representation is

dn : b — End(Fp(—2))

and if U(g) is realised as left invariant differential operators on G, then for
beb

b[f] = —dn(b)f.
Any differential operator from Fy(—\)-valued holomorphic functions on G
to holomorphic functions on G is specified by a formula

fo (£ ulf1)

where f* is an Fy(\)-valued function on G and v € U(g). When f is a
section of Op(A) and b € b then

(£, —dm(b)f)
(dm*(b)f*, f)-

Therefore, regarding these differential operators as elements of U(g)® Fy, (1),
at the identity, the action of b® f* and 1 ® dn*(b) f* is the same. In other
words, the stalk at the identity coset of the sheaf D(Op(A), Og/p) of linear
differential operators from Op(A) to Og,p is identified with V'()). Indeed,
V()), regarded as a left U(b)-module by left multiplication, induces this
sheaf.

So a good way to visualize Verma modules is as finite order differential
operators taking, for example, a holomorphic spinor or tensor field to a
holomorphic function.

(£ 0lf1)

Duals of Verma modules and jet sheaves

There are two possible modules which we might consider as duals of a Verma
module V()). We shall denote the first of these, the algebraic dual, by
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V(A)*. This is the vector space of all linear functionals on V()). g acts
contragrediently:

zw*(w) = w*(—zw)
for w* € V(A)*,w € V()) and = € g. The degree filtration on U (n_) induces
a filtration on V(A), using (27):

V:(A) =U(n_), ®c Fu(})

(so that V.(A)/V,_1(A) = ©™n_ ® Fy,(})). V,())* induces the rtt jet bundle
J"(Op(A)). (Recall that sections of J"(F) consist roughly of sections of F
and their derivatives up to order 7.) V(A)* is the inverse limit of the duals
of these:

V()" = lm V()

and it induces the formal jet bundle J*°(Op(A)) whose sections are formal
power series of sections of Op()).

On the other hand, Oy () is a sheaf of U(g)-modules via the left transla-
tion action of G. This induces an action of g on J2(O (X)) which coincides
with the contragredient action of g on V()\)*. Define

ar V(A ={w e V(A)*|In"w = 0}
and hence a direct limit
V)Y = lgnn:V(A)* cVv.

This distinguishes a subbundle of J>°(Oy(A)). Sections of Oy ()\) whose jets
at the identity coset lie in this subbundle should be thought of as polynom-
ials; they are precisely the algebraic sections of Oy () which extend to the
“big cell” exp(n-)eB.

It is easy to describe V(A)Y if we pick a weight basis {w;} of V()) by
successively extending bases of V(\),. Such a basis might be constructed
using a weight basis of n_ and the Poincaré—Birkhoff-Witt theorem. Let
{w;} € V(X)* be dual to this basis:

w,-(wj) = (5,]

Then V(A)¥ = span {w;}; any element of V()\)* is a possibly infinite linear
combination of w;. In particular, V/(X)" is a dense g-submodule of V(A)*
(relative to the topology in which K, = ker V(\)* — V())* form a basis
of open neighbourhoods of zero).

Another characterization of V(A)V is as the h-finite vectors in V())*;
this follows easily from the fact that the weights of h on w; occur with finite
multiplicity. Equivalently, it is the largest g-submodule of V/(A)* on which
h acts semisimply. V(A)Y will be called the h-finite dual of V/()), or simply
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a dual Verma module, where no confusion can arise. It is perhaps the more
natural notion of dual, here, since (V(A)¥)Y = V(X). It is also occasionally
useful to adopt the notation

V)Y = proFu(—3)
¢ :
LT Hom (U(g), Fo(~\)n_finite:
Remark (11.1.1). [Evaluation.]  The evaluation of a differential

operator in D(Oy()), Og/p) on a section of Op(A) may be described in
terms of Grothendieck duality [74]. If dimc(G/B) =n and if T C Og/p is
the ideal sheaf defining the identity coset eB, then for each integer k¥ > 1
there is a perfect pairing

I(G/B, 0y(\)/T*) x Extgy5(Op(V)/T", Q") — H"(G/B, Q") = C.

Now I'(G/B, Op()\)/Z**!) is just the fibre at eB of the k** associated jet
sheaf:
T(G/B, Op(N)/TF) = Ji5(Op(N)).

So, as k — oo, this identifies
lim Extg,5(Op(A)/TF, Q") 2 D(Op(A), Og/p)es = V(X)

and the pairing is just differentiation. In 11.4 a similar construction will
give an abstract account of contour integration. (We will say a little more
about Grothendieck duality there.)

Elementary properties of Verma modules

A module over U(g) which is generated by a single maximal highest weight
vector is called standard cyclic. Such modules possess certain rather special
properties [94]:

1. The homomorphic image of any standard cyclic module of highest
weight ) is again standard cyclic of highest weight A, and V/(}) is uni-
versal amongst these, the evident homomorphism to any other being
a surjection.

2. Each standard cyclic module has a unique proper maximal submodule
over U(g), and hence an irreducible quotient; this quotient depends
only on A and is universal in the sense that the evident homomorphism
from any other standard cyclic module of weight X is a surjection. We
will denote this quotient by L()). If X is dominant integral, then L(X)
is the finite dimensional irreducible g-module of highest weight A. So
Verma modules should be thought of as rather more fundamental even
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than finite dimensional irreducible representations of g. If A is anti-
dominant then V()\) = L()). In the category Oy, of finitely generated
U(b)-finite g-modules, the L(u) are the only irreducible objects. They,
or the Verma modules V'()), constitute a basis for the Grothendieck |
group of this category.

3. The maximal submodule of a standard cyclic module is always a sum of
standard cyclic modules; this sum is not direct in general. Nonetheless,
this means that such modules admit a composition series by irreducible
subquotients of the form L(y). It is easy to describe all possible p.
For the centre Z(g) of U(g) must act on any standard cyclic module
by scalars, determined entirely by its action on a generating vector.
This set of scalars depends, therefore, only on the highest weight A;
thought of as a homomorphism

& Z(g) » C

it is usually referred to as the infinitesimal or central character of
the module [79,151]. L(g) can therefore occur as a subquotient of a
standard cyclic module of highest weight X only if {, = £,. This is only
possible, by Harish Chandra’s theorem [94] if p = w.), for w € Wy,
the Weyl group of g. Also it is clear by construction that if L(u) is a
strict subquotient then p < A. These facts imply that, in particular,
the composition series has finite length.

4. The h-finite duals V(A)Y have unique irreducible submodules, namely
L(N\).

Verma modules for other parabolics

A series of particularly important quotients of Verma modules are the gen-
eralized Verma modules, constructed as follows. Suppose A is dominant and
integral for a parabolic subalgebra p of g. Then F},()) is a finite dimensional
irreducible p-module, dual to Ep()), and we may again induce a g-module
by

My(X) = U(g) Qu(p) Fp(N)-

This is standard cyclic, by letting v € Fp(\) be a highest weight vector and
considering the image of 1 ® v. Indeed, if S, C S is a set of simple roots
defining p then it is easy to show that there is an exact sequence of U(g)
modules
P V(oar) = V(A) = Mp(X) — 0
a€8\Sp

(dual to the initial part of the relative Bernstein-Gelfand-Gelfand resolu-
tion).
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Again, when ) is g-integral and on G/P, sheaves of differential opera-
tors and jet sheaves of homogeneous sheaves are homogeneous sheaves, in-
duced by Mp () and Mp())* respectively. A dual generalized Verma module
Mp(X)V is defined, in particular, using any complement u_ of p in g (instead
of n_). If k is a reductive Levi factor of p then

Mp(X)" = Mp(N)y_finite-

11.2 Invariant differential operators

We can now come to an algebraic understanding of the differential operators
that occur in the Penrose transform. The key observation is that the whole
transform is manifestly invariant under the action of g so that the differential
operators which occur must be G-invariant. But we can classify invariant
differential operators in terms of homomorphisms of Verma modules.

Characterization

Recall that a finite order linear differential operator
D : Op(A) = Op(k)
can be thought of as a homomorphism of sheaves of Og,/p modules
D : T*(0p(A)) = Op(n)

which factors through a finite order jet sheaf. Such an operator is called in-
variant if it commutes with the action of G on sections of Op(A) and Op(u).
So an invariant differential operator is determined by its action at the iden-
tity coset, where it induces a p-module homomorphism Mp(A)* — Fp(p)*,
using the characterization of differential operators given above. Taking ad-
joints and applying a version of Frobenius reciprocity, namely

Homp(Fp(#)aMp()‘)) = Homg(Mp(M)aMp()‘)) (28)

proves

Theorem (11.2.1). Invariant linear differential operators between ir-
reducible homogeneous sheaves on the flag variety G/P are in one-to-one
correspondence with g-module homomorphisms of generalized Verma mod-

ules
Mp(p) — Mp(X).

As we said, the differential operators which occur in the Penrose transform
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are necessarily invariant. So the transform gives a means of construct-
ing homomorphisms of Verma modules. We shall see in 11.5 below that
it constructs a great many such homomorphisms, even the rather difficult
(non-standard) ones. (See section 8.6 and below for an explanation of non-
standard.)

Conformally invariant operators

On the other hand, given a Verma module homomorphism we can construct
an invariant differential operator which is of some physical interest. Perhaps
the most interesting case is for

G/P= H_.__.< or X—e—o - ake

when the operators are conformally invariant. Theorem 11.2.1 and [19,20]
classify all conformally invariant operators on conformally flat spacetimes
[8,53]. We will return to this case below (11.5).

General results

The question of when homomorphisms exist between V(u) and V(X) for
integral p, A is classical [17,150]. The solution may be summarized as:

Theorem (11.2.2). Let )\ be a dominant integral weight for g. Then
the following statements are equivalent:

1. There exists a non-zero injective homomorphism V(p) — V(A),
(unique up to scale).

2. L(p) is a subquotient of V(X).

3. u = 05,08, ,...05.X where {B;} is a sequence of positive roots of g
satisfying

(a) (A+p,0Y)>0
(b) Forp=2,3,...,n, (05,_,08,_,---08,-(A + p), B)) > 0.

The situation for a general parabolic is much more delicate [110]. Sup-
pose there exists a homomorphism from V(p) to V(). We can check that
this covers a homomorphism from Mp(p) to Mp(A). From the geometri-
cal point of view, this is obvious. We pull back a section of Op()) under
the fibration 7 : G/B — G/P, apply the invariant differential operator
corresponding to the homomorphism, and take a direct image of the result
to obtain a section of Op(x). This composition is an invariant differential
operator on G/P, corresponding to the desired homomorphism.
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The homomorphism constructed in this way is called standard [110]. It
is quite possible for it to be zero. There may, nonetheless, exist a non-zero
non-standard homomorphism from Mp(p) to Mp(A) which is not covered by
a homomorphism from V(i) to V()).

Example (11.2.3). Consider *—%—xX. Let V be the relative differ-
ential of the fibration — o—x and let  and O be the relative
differentials on the fibrations ¥—%—X— &—¢—X and *—>¢—X— X—x—e,

respectively. Then v295: 9% L ¢ 9% 3 O isan invariant operator (cor-
responding to a homomorphism of Verma modules, as in theorem 11.2.2).
Evidently, it pushes down to zero between w and 33 3. But the
wave operator (see the subsection on page 99)

is non zero and corresponds to a non-standard homomorphism of generalized
Verma modules.

The existence of non-standard homomorphisms is limited by the follow-
ing
Lemma (11.2.4).  [110] Suppose that there exists a non-zero homomor-
phism Mp(p) — Mp(X). Then L(p) is a subquotient of Mp().

Remark (11.2.5). The occurrence of non-standard homomorphisms
implies the multiple occurrence of L) as a factor in the composition series
for V(X). This suggests that the Penrose transform should give us a better
understanding of such composition series.

Remark (11.2.6). The Penrose transform makes it clear that non-
standard homomorphisms of (generalized) Verma modules can also be de-
duced from homomorphisms of (ordinary) Verma modules. But to make this
deduction, we need to consider resolutions such as the Bernstein—Gelfand-
Gelfand resolution and higher terms of spectral sequences. In other words,
we need somehow to pass to a derived category.

11.3 The algebraic Penrose transform

So now we have a good algebraic grasp of the differential operators which
occur in the Penrose transform. The next question is this: can we make alge-
braic sense of the transform itself? The answer is yes. Precisely, the Penrose
transform is a globalization of Zuckerman’s derived functor construction or
cohomological parabolic induction [151].
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Categories of g—modules and homogeneous sheaves

The first step is to see where the transform should be defined. Let r =
1® u C g be a fixed Levi decomposition of a parabolic subalgebra, and
suppose g = u_ ®r. Sor' =16 u_ is a parabolic opposite to r. We may
associate two full Abelian subcategories of the category of g-modules to r.
The first is & which consists of finitely generated g-modules which become
direct sums of finite dimensional irreducible l-modules, on restriction to
1. The second, Oy, is the full subcategory of & whose objects are U(r)-
locally finite: any element of such a module has a finite dimensional orbit
under U(r). Oy is also defined. K(O;), the Grothendieck group of Or
has two distinguished bases, the generalized Verma modules My()) and
their irreducible quotients L()). Similarly, My())" generate K(Oy:). The
notation @ for “holomorphic” and £ for “smooth” belies its geometric origin.

Also, let O denote the category whose objects are complexes of holomor-
phic (or regular) homogeneous vector bundles on G/R whose differentials
are C-sheaf morphisms which intertwine the action of G. It is too much
to ask that these be O-linear because that excludes invariant differential
operators. On the other hand, suppose that d is such a differential and
that, for any collection {fi, fa,..., fo} of holomorphic functions, acting by
multiplication, the operator

[[---[ld, fi], fol, - -], fa] = 0.

Then d is an invariant differential operator of order at most n.

Algebraic equivalent of cohomology
The second step is to find an algebraic equivalent of cohomology. By the
discussion above, there is a covariant exact functor

JX: 0p — Op.

This takes a homogeneous sheaf F to the l-finite submodule of Jog(F) (with
the g module structure induced by left translation on G):

J2(F) = TiJR(F).

Here, I is the functor which assigns to a g module its subset of 1-finite vec-
tors. That this subset is a g-submodule is easy to prove—see lemma 11.3.4

below.
Identify Jo5(F) with the stalk at e € G of F-valued functions on G
satisfying the usual invariance property

flgr)=r"1-f(9)-
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Then the trace on Jo3(F) of I'(G/R, F) is a finite dimensional g-submodule.
Conversely, if f € J%(F) is U(g)-finite and so in some finite dimensional
g-submodule F’, then F” is a G-module (compatibly with g), since we may
assume that G is simply connected. Then f extends to a global section of
F by the formula

f(9) = 97" f(e) sothat f(gr) =r~'g7"f(e) = 7' f(g).
This proves that
I(G/R,:) = TgoJ()

so that I'g is a functor on O, which corresponds to the global sections
functor on sheaves under J@°.
Then the composition of derived functors and the exactness of J3° imply

Lemma (11.3.1). On the category of homogeneous sheaves on G/R,

H'(G/R,") = TioJ2()

where Ty are the derived functors of T'g.

The algebraic transform and Zuckerman functors

This lemma provides an algebraic equivalent for the push down side of the
Penrose transform. Suppose that p has a reductive Levi factor k. Then
the corresponding complex reductive group K acts transitively on the fibre
G/Q 5 G/P and it follows from the lemma (in a relative form) that

Tk @ Ogt — Op
corresponds, via J®, to the direct image Ti:
i

P 00 00
kodg =Jp o

In other words, '} supplies an algebraic form of the push down side of the
transform. The left-hand side of the transform is equivalent to the inclusion
Opt = Oqt. So the algebraic Penrose transform is the derived functor (on
derived categories):

Rr
RPL : Op — Oq — Opye

Remark (11.3.2). [Zuckerman functors.]  The derived functor RI';
was introduced originally by Zuckerman [151], in 1977 (and explained in his
Institute for Advanced Studies lectures in 1978). It is remarkable that the
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Penrose transform was conceived quite independently (and with no repre-
sentation theory in mind) by Penrose at about the same time! Closely allied
to Zuckerman’s functors is his notion of parabolic induction defined by

R]g,i def T o pro8(- ® D)

where D = det u and
prof(-) = [1Homy ) (U(g), ) = (ind§-)".
If F induces the homogeneous sheaf F then
JXF = progF,

so parabolic induction is the algebraic Penrose transform, composed with
tensoring by D.
The Penrose transform itself can be thought of as a derived functor RPf
from Of to Op; we leave the details of this to the reader. Thus
RPE = Rr. on~! : D(Og) — D(Op).

(D means “derived”).
The content of the transform lies in the fact that if

X =P'tePCG/P and Z =P'eRCG/R
are corresponding open subvarieties, then

It is worth remarking that the Penrose transform is naturally a derived
functor. n~! is not a functor between categories of homogeneous sheaves,
though it is a functor between derived categories, using, say, a BGG or
relative de Rham resolution. Then the algebraic and sheaf theoretic Penrose
transforms intertwine J*°:

RPPoJ® = J¥ oRPE. (29)
A moment of pure thought shows that on X C G/P
Iy () =Tko (X, ")
50 (29) becomes
RPE 0 J2(-) = Tk o RI(Z, ). (30)

Remark (11.3.3). The elements of the cohomology of the right-hand
side of (30) are the K-finite vectors of the P*-modules H'(Z,-). We shall
shortly see another construction of these, which will identify them with the
so-called elementary states of twistor theory.
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Dolbeault resolutions and Fig

It is worth taking a moment to say something about the construction of
right derived functors, Fig of I'g, from a differential geometric point of view.
This will perhaps make them more accessible to physicists. It is easiest to
work in the category &.. We must construct an injective resolution of each
object and then apply I'g to the resolution; the derived functors, applied
to the object, are the cohomology of the resulting complex. Remarkably,
geometry supplies just such a resolution, at least for M(A)Y. First recall
the following lemma on projective and injective objects in &;:

Lemma (11.3.4).  [60,151] If V is a direct sum of irreducible 1-modules,
then
indfV = U(g) Suq) V
and
prof V. = TjHomy)(U(g),V)
= (indfV)¥

are projective and injective objects in &E.

Proof ~ We shall concentrate on profV and leave ind§V to the reader.
Notice that Homyy(U(g), V) is a g-module, by regarding U(g) as a right
g-module. Now profV is still a g-module. To see this, we must check that
if f € W is U(l)-finite then so is vf, for v € g. But for lj,l,...I, € 1,
commuting gives, for some v; € g,

Loodwof =@l dof +vili. borf + ...+ oo f) €g- U S

This last subspace is evidently finite dimensional.

To show that profV is injective, we must show that Homg(-, profV) is
exact. Let reslg denote the functor which restricts a g-module to an I-module.
Then evaluation at 1 € U(g) induces a natural equivalence of functors on
&r (Frobenius reciprocity):

Homg (-, profV) = Homl(res]g('), V)

so that reslg is a left adjoint of prof. But Hom(-,V) is exact since 1 is
reductive. 0

Up to now, we have been concerned mostly with the structure of G/R
as a complex manifold. As a real manifold it is a homogeneous space Go/Ly
where G is a real compact form of G and Ly = RNGy. (We may assume that
1, the Lie algebra in G corresponding to L, is the complexification of Ly.) To
this real structure are associated sheaves of smooth sections of homogeneous
vector bundles: the notation £:()) denotes the sheaf associated to Fr(—A),
thought of as a complex representation of L,. We may now argue as in
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our characterization of differential operators above to show that the sheaf
D(&r(N),E) of linear differential operators from &x(X) to £ (the sheaf of
complex smooth functions) is induced by indf(Fr(A)) and, hence, that the
infinite jet sheaf of smooth sections of &£:()) is induced by ind§(Fr(X))*.
Both of these modules are in &; in particular, J° extends to the category of
sheaves of smooth sections of homogeneous vector bundles over G/R, with
values in &. The complexified cotangent bundle of Go/Lo is induced by
(g/1)*, as a homogeneous bundle. It follows that J;°, sends the Dolbeault
resolution [157]

0— O:(N) — 82’0(/\) —z gl(.)’l(/\) -2 e

to an injective resolution of M;())Y, in &. Here, EP4(N) is the sheaf of
smooth sections of the bundle Op(—A) ® AP4T*(Go/Ly)). This makes lemma
(11.3.1) entirely clear.

Remark (11.3.5).
morphicity.

Notice also that (r)-finiteness corresponds to holo-

11.4 K-types, local cohomology, and elementary states

In section 11.3 we established the formula
I'roRI(Z,:) = RPPoJ;

where Z = P'eR C G/R was our twistor space, and we worked in the
derived category of homogeneous C-sheaves on G/R. The cohomology of
this functor evaluated on a sheaf F is the space of K-finite vectors in the P*-
module H*(Z, F), so that the algebraic Penrose transform may be thought
of as half way to computing the K-types of these representations. These K-
finite vectors are the elementary states of twistor theory, originally singled
out because as cohomology classes they have simple rational function Cech
representatives. In this section, we give a brief account of elementary states,
as they were originally defined and then in terms of local cohomology (a local
form of relative cohomology). Then we show how these ideas may be used
to calculate K-types.

As before, K is a reductive Levi factor of P; we shall in fact assume that
K = PN P where P! is a parabolic opposite to P (with respect to our fixed
choice of Cartan subalgebra and positive roots). If possible, we let G, be a
real form of G whose maximal compact subgroup is a real form of K. To
begin with, we take G = SL(4,C) and G, = SU(2,2).
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Elementary states

To describe the original construction of elementary states [43], consider the
following particular case:

H = HI(Z,'H_2 0 0)

where Z = x—e—= \ line L. The Penrcse transform identifies H with
solutions of the zero rest mass field equations which blow up along the light
cone of the point in ®—x—e corresponding to L. If [Z*] are homogeneous
coordinates on —e—e and A,,B, € Fg(l._u) = T, then L may be
taken to be the intersection of the two planes

A,Z°=0 and B,Z%=0. (31)

The complements U, and Up of these planes together form a Stein cover of
Z and so H may be computed with respect to them using Cech cohomology
and Laurent series. An element of H is then represented by a function,
homogeneous of degree —n—2, on U4 NUp. To avoid degeneracy, we require
these to have poles on the planes at (31):

H = { Z aij(Aaza)—'i(BaZOt)—j}
0<i,j
where a;; € I'(L,O(i + j —n — 2)) and the series is convergent. Following
[43] define H, to be the subspace of H with a;; =0 if i+ 7 > £ and so obtain
a filtration

...Hy—> Hp,1 — ... — H.

H, = h_I}ng C H is the set of elementary states. It differs from H only in

that H permits infinite series, in the holomorphic category. (In the topology
of section 10.3 H is dense in H.) In the algebraic category, there is no
difference.

The above filtration and definition of elementary states depends, a priori,
on a choice of planes defining L. Invariantly, however, consider instead the
algebra

A= @ri—e—,i i)
J
which acts naturally on

H=@H (2% e%) > H
J

If [ C A is the ideal defining L (generated by A,Z®, B,Z®) then Hy is the
subspace annihilated by I*.
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Remark (11.4.1). Using the realization of generalized flag varieties as
projective varieties in section 6.1, it is possible to extend the above invari-
ant construction to cchomology on the complement of any subvariety of a
generalized flag variety.

g-module structure on Hy,

The explicit description of H,, just given makes it clear that it bears an
action of sl(4,C) that generates new elementary states from old. To see
this, extend A,, B, to a basis {Aa, Ba,Cs, Do} of Ty, and consider the
following realization of gl(4, C) by vector fields:

ABy Adp A0c Adp
B3y Bdg BOc Bip
Cdy CIp COc Cop
D&y DO DOc Dop

_ A 7°9
where Adp = B(Bs2%) ete.
An elementary state in H is a finite linear combination of terms of the form

(CaZ®)P(DaZ®)!
(AaZ*) (BaZ®)

withp+gq—i—j=-n—2andi,j>0 (32)

(any such expression with i or j = 0 is cohomologous to zero). All of these
may be generated under U(sl(4, C)) by repeatedly applying the vector fields
above to the following elementary states

(CaZ)
B e <
(A4, 2°)(B.Z%) orn<0
! fi >
(A7) (BoZ°)™ or n > 0.

The vector fields given above correspond to right invariant vector fields
on SL(4,C). Recalling that the action of any G on sections of a homogeneous
vector bundle is by g : f — L¥_. f (to obtain a left action), we readily check
that the action of

—A0s + BOg, —BOg +CIc and — COc + Dop

corresponds to the action of the basis elements of our fixed Cartan subal-
gebra. Thus the positive root spaces of sl(4,C) are spanned by the vector
fields below the diagonal. With respect to this ordering, the generating
elementary states are lowest weight vectors, of weights

0 -n+1
0 "% whenn <0

or

oo+l 0
o sl e whenn>0.



174 11 MODULE STRUCTURES ON COHOMOLOGY

So H, is a lowest weight sl(4, C)-module; it is easy to see that it is irre-
ducible (the action of any vector field being reversed by another) and hence
an irreducible submodule of a dual Verma module.

Of course, this result is hardly surprising from the point of view of the
Penrose transform, since any invariant differential operator determines a
submodule of the stalk of the infinite jet bundle at the identity coset, which
is a dual Verma module, in this case associated to the lowest weights given
above.

Notice that each H,/H,_; is actually a module over K = S(GL(2, C) x
GL(2, C)), the complexification of a maximal compact subgroup of SU(2, 2).
Which finite dimensional irreducible representation it is is easy to compute:

(Caza)p(Da Za)f-—n-—p—2
(AaZa)i(BaZa)l—i

Hg/Hg_1=span{ |1§i§€—1,0§p§€—n—2}

for £ > max (2,n + 2). From the formulae above,

(Caza)l—n—2
(AaZ*)(BaZ®)*!

€ Hy/Hy,,

is a lowest weight vector for K so that, in our notation
H[/Hg__l I~ Fp( -2 n+3-2¢ {-n-2 )

As a K-module, H,, is the direct sum of these. That these constitute
all the K-types in H will follow from arguments given below. We will also
recompute this result as an example (11.4.13) of the more general machine
we are about to present.

Remark (11.4.2). Note that the “lowest K-type” in the representation
is given by a weight different from that inducing the initial homogeneous
sheaf, since it occurs in the cohomology of this sheaf. This is analogous to
the parameter shift between the weight inducing a homogeneous line bundle
(£») and the lowest K-type in the calculations given by Schmid in [133].
We shall see below that our calculations and his are essentially dual.

Local cohomology

We now want to find a method for computing “elementary states” or K-
finite vectors in the general H*(Z, F) which we can compute using the Pen-
rose transform. To do this we need to localize the invariant definition of
elementary states given above.

The evident analogues of A and T are Og/r and the sheaf of ideals
T C Og/r defining V. C G/R. Given a sheaf F of Og/g-modules, the
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calculation above suggests that we should consider sections of F annihilated
by Z¢ for some £. Define a subsheaf by

»F(U) = {f e FU)ITf =0}

and observe that 7. F = Homop, /R(OG/R/Ie,J-' ). The phrase “for some £”
indicates that we should consider

lgllHomoG/R(Og/R/Ie,f) C F.

Since T = Og g away from V, this sheaf is a subsheaf of the sheaf Ty (F)
consisting of local sections of F with support on V; indeed, in the algebraic
category, they are isomorphic [76, Theorem 2.8]. Because this case is so
important, we will adapt our notation to it and set

L) = li_I,IlHOmOG,R(OG/R/IZ, )

Remark (11.4.3). The sheaf O = OG/R/I“'I is the structure sheaf
of the £* formal neighbourhood of V in G/R.

If F is locally free it is not going to have any sections supported on V.
To remedy this situation we consider as always the derived functor RLy,
whose cohomology on F is

Hiyy(F) = lim Eatip,, . (Oc/r /Tt F)

(recalling that direct limits commute with homological algebra). We should
then regard this functor, the local cohomology of F with respect to V, as
the local equivalent of the construction of elementary states.

Remark (11.4.4).  [A local differential structure] ~ Elementary states
have a g-module structure, as we have seen. This will arise from a local
differential structure supplied abstractly by the following observation. Let
D(F) be the sheaf of linear differential operators on F. When F is locally
free, this is defined in the usual way by choosing local trivializations. The
Leibnitz rule in D(F) implies that if D € D(F) is of order < i then

1it¢DF C  preF (33)

so that I'[y(F) has a D(F)-module structure. Indeed, (33) shows that if
G is any D(F)-module then I'y((G) is a D(F)-module. We can show that
the category of D(F) has enough injectives [23] so it follows by the usual
abstract yoga that Hf,(F) is a D(F)-module. Put in such a way, this
structure is obscure! But we shall give explicit representatives for sections
of Hf,(F) in a moment and then it will be quite evident.

To recover elementary states we ought to take global sections or coho-
mology of these local objects. Abstractly this gives

RI(G/R,-) = RI(G/R,RLy(+)) =1i_r,nRH°mG/R(OG/R/I£a')
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by composition of derived functors. In other words, there is an E, spectral
sequence
E2% = H?(G/R,H},\(F)) — HE'(G/R,F)

which allows us to compute (algebraic) relative cohomology from the coho-
mology of local cohomology sheaves. In the holomorphic category, we obtain
a U(g)-submodule of this relative cohomology by the natural maps

(7273 HEV](G/R, ]:alg) - H[iV](G/Ry fanalytiC)'

Remark (11.4.5). [(g, K)-module structure] ~ When we take global
cohomology and compute H{"f]q(G /R, F), using this spectral sequence, for
example, we obtain modules over I'(G/R, D(F)). When F is homogeneous
there is a natural surjection

Oc/r ®c U(g) — D(F)

by realizing g as right invariant vector fields on G and sections of F as
F-valued functions on G. So there is a mapping U(g) — ['(G/R,D(F))
which makes H[’";iq(G /R, F) a g-module. This is the g-module structure we
observed in our example of elementary states above.

If, furthermore, V' is a union of K orbits, then 7 is a K-homogeneous
subsheaf of Og/p. It follows that H[*V](G /R, F) is also a K-module, com-
patibly with its g-module structure. In other words, it is a Harish Chandra
module.

Hf{;ﬁq(G/R, F) is related to cohomology over Z = G/R — V by the long
exact sequence on relative cohomology:

— HYY(G/R,F) — H”"Y(G/R,F) —» H"Y(Z,F) % HE(G/R,F) — .
(34)

The groups H'(G/R, F) are finite dimensional, non-zero in at most one de-
gree if F is irreducible and this is a sequence of U(g)-modules. So we may
use relative cohomology to determine H*(Z, F) up to a finite dimensional er-
ror (related to the need to take “reduced” cohomology at (26)). Notice that
this long exact sequence and the Penrose transform (and Serre’s “GAGA”)
show that the maps ¢ are injections.

We shall see that when V is smooth local cohomology occurs only in
degree p = codim V. So then the spectral sequence becomes simply a set
of equalities:

H[i‘}L]p(G/R’f) = IEIIEXtin‘-‘—/l;i(OG/R/IZ,.F)

= lmH (X, Ext,, (Oc/n/T!, F)). (35)

This is the form we shall need for computing K-types. To do that, we
need to make rather more concrete our notion of local cohomology. We want
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explicit representatives in terms of functions with poles etc. which look like
our elementary states on which we can compute the action of K. To find
these, at least when V is smooth, we need to use a Koszul complez.

Koszul complezes and local cohomology

Suppose that V 4@ /R is a smooth subvariety, codimension p, defined by
the vanishing of a section s of a rank p vector bundle E. Our first task is
to compute é'zt’(*gc/a((’)g/g/l', F), where Og/r/T = Oy. There is a standard
way of doing this, using the Koszul complez which resolves Oy as a module
over Og/r [74]:

0 APE* Y armipr 09 pr Y Og/r — Oy — 0.

Apply Homo, (-, F) and take cohomology to compute Extp, /a(OV’]:)‘
Because V is smooth, this is non-zero in degree p, only:

N Homoy, ,(\PE*, F)
gxt%G/R(OVaF) = m HomOG/R(Ap—lE*’f) — 'Homoc/a(/\pE*’]:)
t*(det E ® F)
det N @ o*F

(36)

IR IR

where N 2 *E is the normal bundle of V in G/R.
Our second task is to compute SztgG/R(OG/R/I“l,J-'). To do this, we
employ the short exact sequences:

0— II/I“I — Oy — O(g_l) — 0. 37)
Now it is a standard fact that Z¢/Z**! = Oy ® ©°E* so that

Exth, (T[T, F) = Eaty, (Oy,0'E@F)

*(det E® O'E® F) (38)
det N®@ O'N @ *F

RIR 1R

and vanishes in other degrees. The £zt long exact sequences deduced from
(37) degenerate into short exact sequences:

(O, F) = Eatyy, (T /T, F) = 0
(39)
which give a filtration of Hf,(F) (by normal order) and show it to be zero
in other degrees.
Global cohomology is obtained by taking the long exact sequence in
cohomology of (39).

0 — Eaty,,,(Ope-1), F) — Exto

G/R
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Example (11.4.6).  As a simple first example of the above, let G/R =
G/B = CP! and let V = eB be a base point. Recall that elements of B are
SL(2,C) matrices of the form

* X

0 =

and let T = K consist of diagonal matrices such as

H,,:(g 1;)“).

We calculate H[iV](CPl, O(—n — 1)) as a T-module as follows. First, T
fixes V = eB and so acts on the normal bundle of V. This is the fibre of
the tangent bundle © at eB, and so it is just the T-module

N=Fy( % )

(In our notation, remember, this is the T-module in which H, acts by multi-
plication by p~2.) Of course, N is one dimensional so det N = N and

therefore
Exthy (T¢/TH,0(-n—1)) = det N ® @'N @ *O(-n —1)
20—n+1

F( x )

1

1

as a T-module.

These £zt sheaves, being supported at a single point, have only sections
and these are very easy to compute! Coupling the results for various /¢
together, using (39), gives

20—n+1
H}(CP!, O(—n — 1) 2 limExth, (0/T,0(-n— 1)) = P Fy( %
£0
(40)
as a T-module. As a g-module it is the Verma module of highest weight n>—<1
which follows easily from remark 11.1.1.

Remark (11.4.7). We can see all of this from the “elementary state”
point of view rather easily. Let m4 be homogeneous coordinates on CP?
and choose a basis {0%', 14} of C? so that eB is given by (4’74 = 0. Realize
gl(2,C) by the following vector fields:

Ao oA'd
N DN
A A (4 1 )
P
do Al o Al
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These correspond to the left action of gl(2, C) on homogeneous line bundles
over CP!; bearing in mind that this is given by

9-f=Lg
we have that the generator of t

o¥d A0

10 corresponds to -
P 8o A

0 -1

The ideal Z defining eB is generated by &A,’—) so it follows from (36),

(LA’WA )

(38) that the £t summand in (40) is spanned by

_ (0¥ my)

e = (A )1
Now we check the t-weight of the summand:
e )
-t = = — 14 28)¢,.
(<55 + 5 ) # = (= 1200
This agrees with the answer above, bearing in mind the sign introduced in

our notation.
We may, if we wish, switch V' to be the point V' given by oy = 0.

This is the coset
01
gB = ( 10 ) B.

The above calculation can now be repeated, with the proviso that the vector
fields in (41) represent elements of gl(2, C) conjugated by g. In particular,

10 nds to o"'d — L—A—IQ
0 -1 corresponds ErV Wy

so that Cotent
Hyg(CPLO(-n-1)) 2@ Fp( x ).

>0

For n < 0 these are just the “K-types” of the discrete series representations
‘H_,, encountered in section 10.1.

Example (11.4.8). [Minkowski space]  As a second illustration, let
z be the base point eP in Minkowski space and L, C Z the corresponding
line in twistor space. We shall compute

HE ,(O(n —2)). (42)
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Actually, the simplest way of doing this whilst keeping track of g-module
structures is to consider all x at once! Namely, consider the embedding

K—XK—0 y X—0—0 X O&6—X—0

and apply the above theory to compute local cohomology using sheaves

supported on ¥—%—e. A moment’s thought shows that (42) is obtained by

taking direct images to &—>—e and examining the stalk of the result at z.
Then

E=% % 4 dtE=% 5 3 and o'E=%3% o
so that with F = O(n — 2)
Eathy (T¢I, F) 2" 5 &,

To use (35) take zeroth direct image 7, of this, obtaining

mttl L provided n+£,£>0.
Restriction to x now amounts to viewing these as finite dimensional K-
modules. Then H, [QIJ:](CP?’, O(n — 2)) is their direct sum, as a K-module.

Explicit hyperfunction representatives

We want now to show directly that the abstract calculations given above
have a simple concrete realization. In this we can compute explicit local rep-
resentatives of ’va] (F) in terms of hyperfunctions or meromorphic sections
of . We will suppose that F is a homogeneous sheaf but the construction
is valid more generally. It depends on the following two lemmata (the first
of which is a variant of Kashiwara’s theorem).

Lemma (11.4.9). If v : V. — G/R is a smooth embedding of co-
dimension p, then ’Hf’v (F) is generated over the sheaf D(F) of differential
operators on F by £z OG/R(OV’ F).

Proof  [23, p. 261] The category of D(F)-modules has enough injectives
[23]. So, assuming F injective, it therefore suffices to show that F is
generated over D(F) by rF. Proceed inductively, supposing the result true
for £ and letting v € e F. Let f = (f1,..., f,) define V locally, so that the
monomials f” (v a multi-index with |v| = ) generate Z* over Og . Then

s{eo+£85 10}
= e+ 2 {Gprsi- v
= 0.
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So, by induction,
w+ Y Z_f. fiv € D(F)2F.

But then f;v € 7« F, so fiv and hence ngiv € D(F) F. a

Now suppose that F is homogeneous. Consider the subsheaf of D(F)
consisting of functions taking values in U(l,) over r, € G/R with reductive
Levi factor 1) and take its image in D(F). Then it is clear that any non-
zero section v of F generates F locally under the action of D(F). Similarly,
v)y generates t*F locally over D(4*F). So by the theorem

0 0
V—N... N —

afl afp
generates £ zt’(’gG/R(OV, F) over D(t*F) and we have proved:

Lemma (11.4.10). Let . : V — G/R be a smooth embedding, locally
defined by the vanishing of co-ordinates fi ... fp, and F an irreducible homo-

) ; 9 9
geneous sheaf on G/R. If v is any local section of F then VaF; A A a7,
generates Hiy,(F) locally, over D(F).

(For a fuller understanding of the D(F)-module theory underlying this
result see [23, VI, 7.9 & 7.10], where Ly is interpreted in the category of
D(F) modules.)

Now, following Schapira [132], we may turn the wheel of abstraction full
circle to regain contact with elementary states. Define, in the local situation
of the lemma,

K(F) = { > a,f | meN,aq, is alocal section of *F,v € N”}
0<fyj<m

and

L(F)= Z a,f"}.
o<lvj<m and v; = 0 at least once

05(0) = + — 7

generates K(F)/L(F) under the obvious action of D(F). Its annihilator is
the left ideal generated by Z and the annihilator of v in D(+*F) (identified
locally with the commutator of multiplication by Z). But this is precisely

the annihilator of vg—ﬁ AN %;; In other words, the correspondence

Then

v Io} 1o}

—rv—A...\N—

fioofp N Ofp
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establishes a local isomorphism of D(F)-modules
K(F)/L(F) = Hpyy(F)

which is easily checked to be invariant under a change of defining coordinates
for V. In particular the left-hand side makes global sense and defines a sheaf
which is often called the sheaf of hyperfunctions on V with values in F.

Example (11.4.11). Let us illustrate the previous remark in the con-
text of the twistorial elementary states given at the start of this section.
The point given by

A,Z* =B,7*=C,Z* =0 and D,Z%#0
lies on L and
Az f B.Z*
T D,Zc  Du,Z°
are locally good normal co-ordinates to L. Elementary states are finite linear
combinations of terms such as

S

. 402 0 0
for a a local section of " %" o o

sitd
w20 0 ). Indeed, they are precisely the global sec-

tions of this sheaf. The local D( 3¢ % _%)-module structure induces the

global action of s1(4, C).

hence sections of Hf’L]

K -types and Grothendieck duality

Suppose, as before, that P has a reductive Levi factor K; this may be
the complexification of a maximal compact subgroup of a real form G, of
G. We shall suppose that an opposite parabolic P has been chosen so
that PN Pt = K. We now want to use the machinery just developed
to evaluate K-types in the cohomology groups H*(Z,F) where F is an
irreducible homogeneous sheaf on G/R and Z C G/R is either P'.eR or
G,.eR or its closure.

The easiest situation is when V = G/R—Z is a smooth closed subvariety
of G/R and therefore a union of K-orbits. For then we can use the Koszul
complex of V as above to calculate the relative cohomology H[’Q}HI(G /R, F)
as a K-module and substitute this in the long exact sequence on relative
cohomology (34).

Example (11.4.12). [Discrete series for SU(1,1)] From exam-
ple 11.4.6 we have that

—2l+n—-1
H[IV,](CPI,O(—n—l))Eg%Fb( .
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This and the long exact sequence on relative cohomology (in the algebraic
category):

0 — T(CP',0(-n—1)) = I'(Z,0(-n — 1)) = Hpy,(CP',0(-n—-1)) - 0

computes the K-types of H_,. It is easy to see that a holomorphic section
of O(—n—1) over Z is K-finite only if it is algebraic, i.e. only if it is a linear
combination of the ¢, given in 11.4.6.

Example (11.4.13). [Ladder series for SU(2,2)] Consider example
11.4.8. The long exact sequence in relative cohomology gives, with coeffi-
cients in O(—n — 2) (in the algebraic category, again)

H'(CP®) — H'(Z) 5 H{(CP®) — H*CP®).
Il [
0 0
To compute cohomology relative to L from cohomology relative to L, (given

in 11.4.8) we should conjugate by the following element of SL(4,C) which
interchanges L, and L:

0010
0001
1000
0100

This sends the weight 5_$_¢ to $"" '3 and corresponds to the Weyl group
element 90,0302 which is the longest element of WP where p = e—x—s,
So as a K-module

HY (Z,0(-n-2)4) 2 @ Fp( &%)

£>max{0,n}

(see (24)). Tt remains to see that these are all the K-types in the holomor-
phic cohomology on Z, even when Z is taken to be the closure of an orbit
of SU(2,2) like PT*. That will be seen from the arguments to follow.

This is all very well provided V is a smooth closed subvariety of G/R. Tt
almost never is. Usually it is either a singular Schubert subvariety of G/R
(when Z = P'.eR) or a holomorphic submanifold, with a possibly singular
boundary (when Z is (the closure of) a union of G, orbits).

For example, in the ambitwistor double fibration

X—>—X
v N

7 = Pt.eR C x—&—X o—x—o O X = PteP
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the complement V of Z is a pair of CP%'s each blown up along a common
quadric. (Physically, this corresponds to the light rays which lie in the light
cone of the point “at infinity” for X. These are intersections of a- or S-
planes with the light cone (giving the blown-up CP?s); the generators of
the cone lie in both families and form the common quadric.)

Actually, there is still a way to use Koszul complexes, etc. to compute
K-types (for good cases) provided we shift our point of view slightly.

Let p(r7'z) =L, C Zforz =eP € G/P. Then L, = K.eR= K/KNR
so it certainly is a smooth (homogeneous) subvariety of Z. We can use the
methods of the previous section to compute, say,

HE (G/R,F Q") = limExty, (F ® O/I,Q").

Here n = dim G/R and T defines L,. The point is that each term in
the limit on the right of this equation has a natural dual, which is easy to
construct geometrically:

Theorem (11.4.14). [Grothendieck duality] — There is a perfect pair-
ing of K-modules
Ext!(F ® 0/T¢, Q") x H"%(G/R, F ® O/T*) —» H"(G/P,Q") = C.

(For a detailed explanation of the duality theorem of Grothendieck on

which this is based see [74]. We can use this to give an abstract account of
Penrose’s contour integral formulae which amounts to evaluating residues

along L, as z varies through X.)
Of course, there is a natural family of maps

pe: H"4Z,F) - H* %G/R, F ® O/T"")
consistent under further restriction. So deduce a map
p: H%(2,F) - im H"*G/R, F @ O/I*).
Under the Penrose transform p, becomes restriction to the £'t formal neigh-
bourhood of z in G/P; so by elementary complex analysis we have:
Lemma (11.4.15).  p is injective.

Putting this together with theorem 11.4.14 yields

Theorem (11.4.16). The K-types of H"4(Z,F) occur amongst the
contragredients of the K -invariant direct summands of H, [‘iZz](G /R, F*®Q").

Actually, as the reader will readily check, it is often the case that the
K-types are exactly given by H[‘iz_z i (G/R, F* ® Q%). Consider, for example,
the ladder series for SU(2,2) and the corresponding series for Hermitian
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symmetric spaces. What is required is that the maps p, should be surjective.
We shall not study general conditions for this here but merely remark on
two cases in which they are.

The first is when the Penrose transform of H*(Z, F) is the space of
solutions of a system of equations and not the subquotient of a second
differential operator. For then it may be possible to extend each finite order
solution of the equations to a solution on X, in which case p; is surjective.

The second possibility is that there may exist a second K-orbit L} with

ZCG/R\ L}
so that we have maps
H*(G/R\ L;,F) — H*(Z,F) - lim H*(G/R, F ® O/T*1).

We may then compute K-types in the first of these spaces, using the methods
outlined below and compare them with those in the last, just computed
using Grothendieck duality. If they agree then they agree with the K-types
in H*(Z, F).

11.5 Homomorphisms of Verma modules

In theorem 11.2.1 homomorphisms of (generalized) Verma modules and in-
variant linear differential operators between homogeneous sheaves were iden-
tified. As observed there, any differential operator occurring in the Penrose
transform is evidently invariant and so the Penrose transform gives a method
of constructing homomorphisms of Verma modules.

As remarked in section 11.1, homomorphisms of generalized Verma mod-
ules (for some parabolic p) are of two kinds. The simplest are the stan-
dard homomorphisms, which correspond to invariant differential operators
on G/P which are direct images of operators on G/B for B a Borel sub-
group. When such a direct image is zero there may nonetheless exist a
non-zero invariant differential operator; the corresponding homomorphism
of generalized Verma modules is not covered by a homomorphism of Verma
modules and is called non-standard [110]. These non-standard operators or
homomorphisms are obtained in the Penrose transform whenever the hyper-
cohomology spectral sequence takes more than one step to converge. Put
another way, the standard operators are obtained if the (derived) direct im-
age functor is applied to a complex of length two (whose differential is the
inducing operator on G/B); applying it to longer complexes will produce
non-standard operators.

The construction is best illustrated by means of an example. Let

p=x_._....._<
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tl\t
/0N
NI
AN
ENIZNEZN
NS
NN NN
AN
° . . Uy 1
NN N
NN,
NN
LN
N
/

Figure 11.1. Initial block of Hasse diagram for r

r= ._H._<

and consider the Penrose transform based on the double fibration
G/RLG/Q 5 G/P.

We shall construct non-standard homomorphisms of generalized Verma
modules for p which are of non-singular infinitesimal character.

In order to do this, we shall vary the subject of the transform through
all homogeneous sheaves Op(w.\) where w € W' and A is dominant for g.
Indeed, by the translation principle, we may take A = 0. The first task is
therefore to compute W' using the method of section 4.4. Denote by o; the
simple reflection corresponding to the i** node in the Dynkin diagram for g,
with simple roots labelled from left to right (and top to bottom). Observe
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that

Then the only w € W of length one is ¢, and of length two is ¢,0,_;.
Thereafter, there is much choice. The most basic path in W7 consists of
elements of the form

gy =0p0n_10p—2...0p_s1 for k=0,1,...,n—1.

From this path, several shorter parallel paths are derived whose elements
contain o,.41; for example, the next path is given by

U =tonyy  for k=2,3,...,n—1.

These paths yield an initial block in W* as shown in figure 11.1.

G/R is, recall, a space of (reduced) projective pure spinors for
SO(n + 2,C). Choose an embedding so(n,C) C so(n + 2,C) by letting the
simple roots for so(n,C) correspond to as,as,...,a,1; this realizes the
space of projective pure spinors for so(n,C) as a smooth subvariety of G/R
of codimension n. (It is the subvariety corresponding under the double fi-
bration to an origin stabilized by SO(n,C) in G/P.) G/R may be built
from this variety by attaching various Bruhat cells which are parametrized
by the elements of the initial block of W* just constructed. The remaining
elements of W* correspond to Bruhat cells building the subvariety. This is,
in turn, a variety of projective pure spinors, and the construction of W* may
now proceed inductively; the Hasse diagram in case so(n + 2,C) is obtained
from that in case so(n,C) by attaching an initial block. The result is given
in figure 11.2.

Remark (11.5.1). This inductive construction of pure spinors lifts to
an inductive construction of spinors which is beautifully described in the
appendix of [128].

We shall be most interested in those elements of WT which begin each
successive block. The first, of course, is wy = id. The second lies at the end
of the basic path of ¢;’s and is therefore

Wy = 0p0p-10p_9...071.

(Observe that £(w;) = n, in accord with the codimension of the first sub-
variety.) Inductively,

Wk-107410n_10n—2...0% k even
W =
Wk—10p0pn_10p_3...0k k odd.
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Wo

block 1

w1

block 2

block 3

block 4

etc.

Figure 11.2. Hasse diagram of r
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These are reduced expressions, so £(wy,) = £(wy_1)+n—k+1 = k(2n—k+1)/2
(and, again, the relative codimensions are correct).

The next step in the transform is to compute the relative Hasse diagram
WP so as to find the Bernstein—Gelfand—Gelfand resolutions along 1. This
is easily checked to be

Wl? = {ld, 01,0102,...,01*°*0pn-1,01 " 'an—10n+1}~

Denote the element of length j in this by v;. Then the Bernstein-Gelfand-
Gelfand resolution of 7~ 'O (wy.A) has k™ term Og(vjwy.A).

Finally, R‘r,Oq(vjwg.A) is non-zero only when £ = {(w) where
vjwp = ww' with w € Wy (the Hasse diagram for the fibration 7) and
w' € WP. The direct image is, in that case, just Op(w'.A). Observe that
W} is easily obtained from the calculation of WT given above, since the fibre
of 7 is still a projective pure spinor variety. WP is given in example 4.3.7.
Carrying this out we obtain:

Lemma (11.5.2). Let1 < k <n—1. Then the EY? term in the spectral
sequence computing the Penrose transform of Or(wy.0) is

EM|l0 0 - 0 0 0 o0
QF Q1 o0 0 - 0
0 0 ..« 0 0 0 e 0
0 0 oo 0 Q2R Q2n-k+2 ... Q2n
0 0 .o 0 0 0 .0

where the non-trivial rows are at ¢ = nk —k(k+1)/2,n(k—1) — (k—1)k/2,
and Q2=* =1 Lies in column n—k+1. The rows form part of the holomorphic
de Rham sequence on G/P (and the occurrence of Q7 or Q" depends on the
parity of k).

Deriving once yields

B 0 0 - 0 0 0
ker QF — QF+1 0 ... coker Q"1 — Q% 0 0

0 0 - 0 0 0

0 0 --- 0 ker Q2n—k+1 _, O2n—kt+2

0 0o --- 0 0 0

since the holomorphic de Rham resolution is exact when evaluated over affine
Minkowski space in G/P. The following terms in the spectral sequence are
stable until we reach E%?,  , when we obtain a differential:

dn-—k+1 . ker {Qk — Qk+1} — ker {92"""""1 N Q?n—k+2}.
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Using the exactness of the de Rham complex again, this may be written as
dn—k+1 - im {Qk—l N Qk} — ker {an—k+1 N Q2n—k+2}

which, when composed with the exterior differential d : Q! — QF and
writing k—1 for j, gives an invariant differential operator (i.e. a non-standard
homomorphism):

D: Q¥ -Q" 7 for0<j<n-2.

These are all the non-standard homomorphisms in this case [19].

12

CONCLUSIONS AND OUTLOOK

To conclude, we should like to mention briefly some further directions for
research, especially in representation theory. There are two major topics to
consider, namely homomorphisms of Verma modules and unitary represen-
tations.

We have seen in chapter 10 how the Penrose transform, in the guise
of the twistor transform, leads to the construction of the ladder series of
representations for SU(p, q); it is clear that similar techniques will generate
ladder representations for Hermitian symmetric pairs [9]. These all occur as
the holomorphic cohomology of line bundles; we should like to understand
those representations which arise from applying the twistor transform to
vector bundles. Not all of these will be unitary (i.e. the twistor transform
will not produce a suitable isomorphism) but we expect that those which
are should lie in the continuation of the holomorphic discrete series for a
Hermitian symmetric pair. On the other hand, we anticipate that there is a
variant of the twistor transform, defined on the full flag variety G/B, which
will allow the construction of the full discrete series, for appropriate G.
Preliminary calculations in [41] show that representations with the correct
K-types can be constructed; by a theorem of Schmid this means that these
representations are in the discrete series. These calculations are, however,
at an infinitesimal level, and are not yet refined enough to indicate how
the K-types fit together in the representation. When this is understood,
a self contained cohomological construction of the discrete series will have
been obtained which avoids all the analytical difficulties associated to L2-
cohomology calculations. The relationship between the geometry of the flag
variety and the discrete series will be manifest.

In the final section we indicated how the Penrose transform generates
(non)-standard homomorphisms of Verma modules. It is an intriguing ques-
tion as to why this should be so and what class of homomorphisms can be
generated. We hope to establish the relationship between this construction
and the D-module constructions of Beilinson and Bernstein.
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In addition to the two main topics there are several others that merit
attention. The methods of this book extend to a setting in which G/P is
replaced by a curved manifold. This has structure group K where K is
a reductive Levi factor of P and (G, K) is a Hermitian symmetric pair—
accordingly, these manifolds have been called “almost Hermitian symmetric”
[6,10]. Using the Penrose transform, it is possible to study the deformations
of such structures. We have also mentioned the possibility of a symplectic
Penrose transform which may be of interest in studying symplectic manifolds
with a symplectic action of a semisimple complex Lie group G; very little
work has been done on that so far.

From the physicist’s point of view, we feel that representation theory
is more than merely a useful computational tool in twistor theory. As our
understanding of the subject has developed, we have been struck by the
scale to which twistor-theoretic constructions can be given representation-
theoretic interpretations. We believe that this is not merely accidental, for
our understanding of physics should ultimately depend on natural symme-
try principles (or even combinatorics) in a geometric setting. As a specific
example, we now know that zero rest mass free fields correspond to certain
irreducible Verma modules. We should expect that understanding how to
decompose tensor products of such modules would lead to a theory of in-
teracting fields. The projections onto components of such a tensor product
would be twistorial vertex operators.
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Minkowski space 3, 30
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spinor 30, 31
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matrix 12
subalgebra 11
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g-modules 167
holomorphic 176
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Schubert 56
structure 56

central character 79,163
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infinitesmal 80,163

cohomology, algebraic equivalent

167

analytic 68
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integral 58
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projective space 48
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representation 53,129
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Hasse diagram for 42
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compactification 3
invariance 1
line bundle 30
motion 2-3
structure 4,32
of Minkowski space 16
weight 30
conformally
invariant differential operators
165, 185
weighted functions 30
connection, relative 72,126
conormal bundle 108, 127
contact manifold, homogeneous
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resolution on 77
structure and deformations
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three dimensional 77
contour integrals 5
conventions for bundles 28
representations 23
correspondence 8,20,67
Klein 17
CcS™ 17,18
cotangent bundle 129
Coxeter group 35
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deformations 88,105,110
Demazure 45
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differential operators 26, 84, 100,
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conformally invariant 165,185
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Dirac opera/tor 93
Dirac-Weyl operator 6,94
direct images 50
recipe 51
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twistor approach 144
holomorphic 143
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on G/B 156
Dolbeault resolution 69
and Fig 170
dominant chamber 35
weight 22
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double fibration 8,19,67
ambitwistor space 107
exceptional 123
higher dimensions 111,118
homogeneous 69,89
Minkowksi space 90
Ward 126
dual
representation 22, 23, 135, 136
twistor space 17
Verma module 160,174
duality, Serre 45
Dynkin diagram 12
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flag varieties 15
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parabolic 14
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edth (3) 145

eight-fold way (of Gell-Mann) 26

electromagnetic field 98, 108
potential 98
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Einstein bundle 106
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E()) 23
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elementary states 95,151,169.171
g-module structure 173
differentiation 173
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homomorphism 126

Penrose transform 123
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expansion, Laurent 45
plane wave 148

expression, reduced 34,35,37,40

extension problem 108
central 147

extremal weight 35
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fibration 19
double 8,19,67
ambitwistor space 107
exceptional 123
higher dimensions 111,118
homogeneous 69,89
Minkowksi space 90
Ward 126
finite dimensional representations
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flag variety, 8
bundles on 29
cohomology on 44,58-61
complete 15
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form, Hermitian 146
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on Minkowski space 30
Fourier analysis 148
Fp(X) 23
Frobenius reciprocity 170
Fubini-Study metric 62
functor, derived 168
translation 78
Zuckerman 158,166,168
fundamental chamber 22,35

I'; 168
8o 61
gauge group 26
freedom 98
potential 98,139
generalized de Rham resolution
154
flag variety 8,14
Verma modules 163
homomorphisms of 163-166
geometric quantization 64
g-module categories 167
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globalization, analytic 153
hyperfunction 152, 153
of Zuckerman functors 166
G/P, cell structure 56
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cohomology of 44
cohomology ring 57-61
cotangent bundle 129
homology of 57
tangent bundle 26,135
g/p, irreducibility 26
grading, [1] 26
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Grassmanians 3,15,29,89

Penrose transform on 117
Grothendieck duality 162,182,183
groups, Coxeter 35

gauge 26

Weyl-see Weyl group

Hamiltonian vector field 65
Harish Chandra module 152
theorem 79,163
Hartree-Fock approximation 66
Hasse diagram (WP) 39
complexified sphere 42
Minkowski space 40,41
projective space 41
quadric 42
relative (Wy!) 43
height, of a root 129
helicity, lowering 159
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raising 159
Hermitian form 146
operator 66 (
symmetric space 155 |
twistor transform on 155,157 !
highest weight 22 |
root 26,49,135 |
Hilbert space, quantum 65 '
Hodge *-operator 32 |
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holomorphic bundle, on twistor
space 126
holomorphic discrete series 143
homogeneous bundle, 3,21,28,44
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functions 6
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ules 84,163-166,185
hypercohomology  spectral se-
quence 72,73,92,93,96,100
hyperfunction globalization 152
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representatives 180
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index, abstract 3, 5, 24, 30, 92
induction 159
parabolic 169
infinitesmal character 80,163
integer, Cartan 12,35
integral cohomology 57-61
weight 22
for p 23
invariance, conformal 1, 165, 185
invariant differential operator 26,
84, 100, 159
characterization 164
inverse image 33,65
irreducible representation 22,23

jet bundle 160
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Kéhler form 50
manifold 15,61
Kashiwara’s theorem 180
K-finite vectors 95,151,169
in cohomology 152
Killing form 11,61
Klein correspondence 17
Koszul complex, local cohomology
177
K-types 171,174,183
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Kostant’s lemma 40
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Lagrangian Grassmannians 29
Laplace operator 84
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left-handed fields 68
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Leray spectral sequence 46,68,72
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Levi-Civita connection 91, 106
Lie algebra 10
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Lie group 10
light cone, at co 90
local cohomology 171,175,177
differential structure 175,180
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173,175,180
long exact sequence
cohomology 177
relative cohomology 183
longest element 26
lowering subalgebra 21
lowest K-type 174
weight 22
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M’ 91
M* 94
M* 94
Mp(X) 163
map, moment 54,61,62
massless field representations 147
matrix element 65
maximal weight 21
Maxwell equations 2
fields 97,108,148
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Mayer-Vietoris sequence 150
Minkowski space 2,41
affine 2
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bundles on 3,30
cohomology on 49
compactified 3
complexified 2,16
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real 94
tangent bundle 29
minimal coupling 140
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Mobius transform 3
mock discrete series 143,146
moment map 54,61,62
Morse function 65
multiplicity 21
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negative frequency 148
helicity 91,96

neutrino 1,93

non-linear graviton 105
higher dimensions 133

non-singular 39
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operators 84,166,185

normalizable states 153

notation for flag varieties 15
homogeneous bundles 28
parabolics 14
weights 22

n-tuple embedding 53,55

null geodesics 17,18,20,107

obstruction, topological 98
odd dimensional quadric 18
operator, Dirac—Weyl 6,94
exceptional 126
Hodge 32
invariant 26,84,100,159
conformally 165,185
Laplace(-Beltrami) 84
02 104
nonstandard 84,166,185
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parabolic induction 169
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Penrose transform 1
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ambitwistor space 107
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on Grassmanians 117
on flag variety 9
symplectic 66
exceptional spaces 123
plane waves 148
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prof 170
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Hasse diagram for 41
psuedo-convexity 152
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PT* 150
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in Penrose transform 68,69-71
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quadractic differential 146
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cell structure 57
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invariant operators on 185
quantum Hilbert space 65

res‘g 170
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Radon transform 151
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real analytic 149
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reduced expression 34,35,37,40
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relative BGG resolution 85
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connection 72,126
de Rham resolution 70
form 70
universal coefficient theorem
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representation 21
adjoint 26,135
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conventions 23
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Dynkin diagram 23
finite dimensional 22
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notation 23
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spinor 26
unitary 142
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root 11
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space 11
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scalar curvature 106
product 142
Schubert cell 56
variety 56
self representation (of sl(n, C)) 25
—dual 132
Silov boundary 94
simple reflection 36
two-form 17
singular weight 39,91,99
spectral sequence
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72,73,92,93,96,100
hyper-direct image 81
Leray 48,68,72
Penrose transform 73
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bundles on 30-33
cell structure 57
Hasse diagram for 42
invariant operators on 185
smooth bundles 170
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Sp 129
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ambitwistor 17,107
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Hilbert 65
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higher dimensional 18,110



212

weight 21
spectral sequence
Leray 48,68,72
hypercohomology 72,92,93,96
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on Minkowski space 30
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pure 18,56,187
representation 26
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splitting principle 60
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stratification of G/P 53
stereographic projection 143
subalgebra, Borel 13
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standard 13
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