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1. Inroduction

The characteristic cycle of an irreducible admissible representation is an important invariant of
the representation. This invariant consists of a the closure of several nilpotent orbits (the associated
variety) along with integers (the multiplicities). In this article we consider discrete series represen-
tations of the group SU(p, q). It is known that the associated variety is the image of a moment
map γ (see (2.2)) and the multiplicity is the dimension of a cohomology space on the fiber of γ. We
present an algorithm for computing the associated variety and, more importantly, for describing the
fiber of the moment map in a simple way. This description of the fiber can be used to compute the
multiplicities. An effective algorithm is given in Section 6 for computing the multiplicities.

Assume that G is a connected real semisimple Lie group with Lie algebra g and maximally
compact subgroup K. Write KC and gC for the complexifications of K and g respectively. Assume
that π is an irreducible admissible representation of G on a Hilbert space H. An important invariant
attached to π is its distributional character Θπ. In the early 1980’s Barbasch and Vogan [1] showed
that θπ (the pullback of Θπ by the exponential map to a neigborhood of the identity in g) has an
asymptotic expansion at 0 which is a sum of homogeneous tempered distributions on g. Its leading
term is of the form

(1.1)
∑

cjµ̂Ωj ,

where the Ωj ⊂ g∗ are nilpotent G-orbits and µ̂Ωj
is the Fourier transform of the Liouville measure

on Ωj . Call cj the analytic multiplicity of V at Ωj and write cj = multanalytic(π,Ωj). The leading
term (1.1) can be called the ‘wave front cycle’ and is an invariant of π. This analytically defined
multiplicity coincides with an algebraically defined multiplicity ([18]), which is defined in terms
of KC-orbits in pC. The multiplicity is very difficult to compute from both the analytic and the
algebraic points of view. See, for example, [12].

The starting point for our method is a formula of J.-T. Chang for the characteristic cycle of a
discrete series representation. It is well-known in this case that the associated variety is the closure
of a single nilpotent KC-orbit KC(f) in pC. Chang’s formula for the multiplicity is expressed as the
dimension of a cohomology space

(1.2) H0(γ−1(f),Oµ),

where γ is the moment map. Explicit formulas, applying 1.2 were found for the holomorphic discrete
series and for discrete series representations of groups of real rank one. See [4] and [6]. The key is
an understanding of the fiber of the moment map, which, in these special cases is given by easily
described homogeneous spaces. In general the structure of γ−1(f) is difficult to understand.

Our algorithm does the following. The discrete series are parameterized (up to K-conjugacy)
by regular weights λ ∈ h∗C satisfying an appropriate integrality condition. Such a regular weight
determines a positive system of roots ∆+

λ (gC, hC). This positive system determines a Borel subal-
gebra bλ = hC + n. The KC-orbit (having closure equal to the associated variety) has the property
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that KC(f) ∩ (n ∩ pC) is (Zariski) dense in n ∩ pC. We give a simple algorithm which determines a
convenient base point f (in terms of root vectors) for the associated variety. The key feature of this
algorithm is that a useful expression for γ−1(f) results. In particular reductive groups L1, . . . , Lm

are specified so that

γ−1(f) = Lm . . . L2L1(bλ) ⊂ Z.

Here Z = KC(bλ), a closed KC-orbit in the flag variety for GC. Then the cohomology space (1.2)
is given by

(1.3) H0(γ−1(f),Oµ) = spanC{Lm . . . L2L1L · w−µ} ⊂ W−µ,

where W−µ is the irreducible representation of KC (of lowest weight −µ) which is isomorphic to the
lowest K-type of the discrete series. As the groups Lj are easily described in terms of the positive root
system ∆λ(gC, hC), there is an algorithm to compute the multiplicity from (1.3). The algorithm uses
not much more than the branching law for restricting finite dimensional representations of GL(n) to
GL(n− 1). This algorithm is described at the end of Section 6 and examples are given in Section 7.
Incidentally, one may conclude from (1.3) and the work of Yamashita ([19]) that (1.3) is the isotropy
representation ([18, Section 2]). The action of the centralizer of f is clear from Section 5.

In [16] an algorithm is given to compute the associated varieties of a Aq(λ) representations of
classical groups in terms of the tableaux describing the nilpotent orbits. In [19] a method for
constructing the isotropy representation is developed. The polynomials giving multiplicities are
studied in [11] and [12]; computation of the multiplicities is also discussed.

Our study of the moment map yields some interesting facts. As mentioned above, the character-
istic variety is the closure of an orbit KC(f) having the property that KC(f) ∩ (n ∩ pC) is dense in
n∩pC. It is natural to ask if the Borel subgroup B∩KC acts with an open orbit on KC(f)∩(n∩pC).
The answer is no in general ([15]). However, one may also ask the following question. Let q be the
parabolic subalgebra of gC containing b defined by q = l + u with ∆(l) spanned by the simple com-
pact roots in ∆+

λ (gC, hC), and let Q be the corresponding parabolic subgroup of GC. Then Q∩KC

acts on n ∩ pC. Does Q ∩KC have a dense orbit in KC(f) ∩ (n ∩ pC)? Again the answer is no in
general. In Section 8 we give a condition, in terms of the algorithm of Section 3, for determining
when there is a dense Q∩KC-orbit in KC(f)∩ (n∩ pC). An example in SU(7, 7) is given for which
there is no such dense orbit.

We thank D. Barbasch, H. Ochia and P. Trapa for useful conversations. We also thank H.
Yamashita for showing us an example which greatly influenced this paper.

2. The characteristic cycle

For this section let GC be a connected complex semisimple Lie group and G ⊂ GC a real form.
Let the Lie algebra of GC (resp. G) be denoted by gC (resp. g). Choose a Cartan involution θ of g

and let g = k + p be the corresponding Cartan decomposition. The complexifications of k and p are
denoted by kC and pC. The connected subgroup of GC with Lie algebra kC is denoted by KC. The
nilpotent cone in gC is denoted by N . Now set NR = N ∩ g and Nθ = N ∩ pC.

The wave front cycle described in the introduction has an algebraic counterpart. If (V, π) is
an irreducible admissible representation, then the K-finite part of V is naturally a (U(gC),KC)-
module, where U(gC) is the universal enveloping algebra of gC. With respect to the usual filtration
by degree, the graded algebra gr(U(gC)) is just the symmetric algebra S(gC). In [18], Vogan defines
a notion of “good filtration” on the Harish-Chandra module of V . The associated graded object
gr(V ) turns out to be a finitely generated module over gr(U(gC))/kCgr(U(gC)) ' S(pC). Regarding
S(pC) as the polynomial ring on p∗C, invariants of the Harish-Chandra module of V are defined via
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commutative algebra theory. In particular, the characteristic cycle of V , Ch(V ), is the support with
multiplicity of gr(V ) in p∗C ' pC. While gr(V ) depends on the choice of the good filtration, Ch(V )
is a well-defined invariant. The cycle Ch(V ) is closed, Ad(KC)-invariant and lies Nθ. As KC acts
on Nθ with a finite number of orbits, Ch(V ) is a union of the closures of finitely many nilpotent
KC-orbits (in fact, all having the same dimension) in Nθ. Then the characteristic variety is written
as a formal linear combination of these orbits with integer coefficients:

Ch(V ) =
∑

multalgebraic(V,Oi)Oi,

where Oi are KC-orbits in pC. The integers multalgebraic(V,Oi) are the multiplicities in the charac-
teristic cycle of V at Oi.

Vogan conjectured that the wave front cycle and the characteristic cycle are related. Recall that
there is a one-to-one correspondence, referred to as the Sekiguchi correspondence, between G-orbits
in NR and KC-orbits in Nθ. The relationship between the two types of cycles was proved by Schmid
and Vilonen. Their result is the following.

Theorem 2.1 ([14]). Let (V, π) be an irreducible admissible Harish-Chandra module and let Ω ⊂
NR and O ⊂ Nθ be nilpotent orbits which are paired under the Sekiguchi correspondence, then
multanalytic(V,Ω) = multalgebraic(V,O).

Therefore, the problem of computing the multiplicities can be addressed in the algebraic setting.
The representations we wish to consider are the representations in the discrete series. Therefore

we assume that rank(G) = rank(K). This means we may choose a Cartan subalgebra hC of gC

which is a Cartan subalgebra of kC. Fix ∆+
c ≡ ∆+(kC, hC), a positive system for the roots of hC in

kC. Write ρc for one half the sum of the roots in ∆+
c .

Let X be the flag variety of gC, i.e., X = {b : b is a Borel subalgebra of gC}. The closed KC-
orbits in X are in one-to-one correspondence with with the positive root systems ∆+ ≡ ∆+(gC, hC)
containing ∆+

c . In particular, given such a positive system there is a Borel subalgebra b = hC + n−

with −∆+ = ∆+(n−, hC). Then the corresponding closed KC-orbit in X is Z ≡ KC · b. Write ρ for
one half the sum of the roots in ∆+. The family {πλ} of discrete series representations associated
to Z (equivalently, associated to ∆+) is parameterized by λ ∈ h∗C satisfying (i) λ is regular and
∆+-dominant and (ii) λ − ρ is analytically integral. The infinitesimal character of πλ has Harish-
Chandra parameter λ and the lowest K-type has highest weight λ + ρn − ρc (where ρn = ρ − ρc).
Considering all of the closed KC-orbits Z in X, this gives a parameterization of the representations
in the discrete series.

The main result on characteristic cycles for the discrete series representations is stated in terms of
the moment map as follows. Write the conormal bundle of Z in X as T ∗

Z(X) = KC ×
KC∩B

(n− ∩ pC)

and observe that the moment map γ restricted to T ∗
Z(X) is

γ : KC ×
KC∩B

(n− ∩ pC) → gC

γ((k, Y )) = k · Y.
(2.2)

It is well-known that γ(T ∗
Z(X)) is a closed irreducible subvariety of Nθ, Indeed, γ(T ∗

Z(X)) is the
closure of a single nilpotent KC-orbit in pC.

Definition 2.3. We say that an element f ∈ n−∩pC is generic in n−∩pC if and only if γ(T ∗
Z(X)) =

KC(f).

When f is generic in n− ∩ pC, the closure O = γ(T ∗
Z(X)) of the orbit O = KC(f) is an invariant

of πλ called the associated variety of πλ. We write Av(πλ) = O.



4 L. BARCHINI AND R. ZIERAU

Theorem 2.4. ([6]) Let πλ be a discrete series representation of G corresponding to a closed KC-
orbit Z in the flag variety X. Let f ∈ n− ∩ pC be generic. Then,

Ch(πλ) = dim(H0(γ−1(f),Lλ−ρc+ρn
|γ−1(f))) · γ(T ∗

Z(X)).

An important observation is that γ−1(f) may be identified with a (closed) subvariety of Z. To
see this, suppose f ∈ n− ∩ pC is generic and define

NKC
(f, n− ∩ pC) = {k ∈ KC : k · f ∈ n− ∩ pC}.

The fiber of the moment map is given by

γ−1(f) = {(k, Y ) ∈ T ∗
Z(X) : k · Y = f}(2.5)

= {(k, k−1 · f) : k−1 · f ∈ n− ∩ pC}
∼= {k · b : k−1 · f ∈ n− ∩ pC}
= (NKC

(f, n− ∩ pC))−1 · b ⊂ Z.

3. Associated variety of πλ when G = SU(p, q)

In this section we give an algorithm for finding Av(πλ) for the indefinite unitary groups. This
algorithm is given in terms of ∆+, the positive system of roots determined by πλ as above. Other
algorithms are available that associate to discrete series representations the nilpotent orbit O with
Av(πλ) = O. See for example [2], [16] and [19]. However, it is important for us that our algorithm
allows us to give a description of the fibers γ−1(f) of the moment map. An elementary proof that
the algorithm does in fact result in a generic element in n− ∩ pC is the contained in Section 4. The
description of the fiber γ−1(f) is given in Section 5

From now on we assume that G = SU(p, q). We use the realization

G = {g ∈ M(p+q)×(p+q)(C) : gIp,qg
−t = Ip,q,det(g) = 1} where

Ip,q =
(

Ip 0
0 −Iq

)
.

The Cartan involution is chosen to be θ = Ad(Ip,q). Let hC ⊂ kC be the diagonal Cartan subalgebra
and let εj ∈ h∗C be, as usual, so that the roots of hC in gC are given by ∆(gC, hC) = {εi−εj : i 6= j}.
As in Section 2, fix once and for all ∆+

c ≡ ∆+(kC, hC) = {εi − εj : 1 ≤ i < j ≤ p or p + 1 ≤ i <

j ≤ p + q}. For each positive system ∆+ containing ∆+
c there is a Borel subalgebra b = hC + n−

having nilradical spanned by the negative root vectors. The closed KC-orbit Z = KC(b) is therefore
determined, as is a family {πλ} of discrete series representations.

We use the following well-known properties of Av(πλ) = O:

(1) O ∩ (n− ∩ pC) is open and dense in n− ∩ pC and
(2) O is the unique largest dimensional nilpotent KC-orbit that intersects n−∩pC non-trivially.

In order to implement Theorem 2.4, we need an algorithm that picks a “convenient” base point f

in O from ∆+. We also want to identify O by means of a signed tableau.
Before describing the algorithm it is convenient to recall a parameterization of nilpotent KC-orbits

in pC for the group SU(p, q); see for example [2] and [3]. Let {e, h, f} be an sl(2)-triple so that
θ(e) = −e, θ(f) = −f and θ(h) = h. Consider the group Z2oSL(2,C) where the non-trivial element
of Z2 acts on {e, h, f} as θ does. Irreducible representations of SL(2,C) extend in two inequivalent
ways to representations of Z2 o SL(2,C) according to whether θ acts by ±1 on the lowest weight
vector. Define the signature of a (not necessarily irreducible) representation π of Z2 o SL(2,C) to
be the pair of integers (a+, a−) where a± is the dimension of the ±1 eigenspace of θ in the kernel of
π(f).
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Extend the representation of SL(2,C) on Cp,q to a representation of Z2 o SL(2,C) so that the
action of the nontrivial element of Z2 is by Ip,q. Define a±(f j) to be the dimension of the ±1
eigenspace of Ip,q on the kernel of π(f j). Write a(f j) = a+(f j) + a−(f j) for the dimension of the
kernel of π(f j). Decompose Cp+q = ⊕Vi into irreducible Z2 o SL(2,C) representations and let δi

the eigenvalue of θ on the lowest weight vector of Vi. The nilpotent orbit KC(f) is parameterized
by the tableau with rows having lengths equal to the dimensions of the irreducible representations
Vi and alternate signs +′s and −′s starting with the sign of δi. It is then clear that the number of
± signs in the first column is a±(f).

Theorem 3.1. ([8]) Two nilpotent elements f and f ′ are KC-conjugate if and only a±(f j) =
a±(f ′j), for every j. The relation O(f ′) ⊂ O(f) holds if and only if for every j

a+(f ′j) ≥ a+(f j) and a−(f ′j) ≥ a−(f j).

Lemma 3.2. A nilpotent element f is generic in n− ∩ pC if and only if for all j

a+(f j) = min{a+(f ′j) : f ′ ∈ γ(T ∗
Z(X))} and

a−(f j) = min{a−(f ′j) : f ′ ∈ γ(T ∗
Z(X))}

Proof. An element f is generic if and only if γ(T ∗
Z(X)) = KC(f). Thus, f is generic if and only if

KC(f ′) ⊂ KC(f) for any other f ′ ∈ γ(T ∗
Z(X)). The lemma now follows from Theorem 3.1. �

We next describe an algorithm which specifies a convenient generic element f in n− ∩ pC.
The algorithm. There is a one-to-one correspondence between positive systems ∆+(gC, hC) con-
taining ∆+

c and ordered sequences of integers (p1, q1, p2, . . . , pr, qr) so that

Σpi = p and Σqi = q,

pi, qi are non-negative integers and(3.3)

pi > 0 for i = 2, 3, . . . , r and qj > 0 for j = 1, 2, . . . , r − 1.

Starting with such a sequence we form an array

•1 . . . •p1 •p1+1 . . . •p1+p2 . . .

•p+1 . . . •p+q1 •p+q1+1 . . . •p+q1+q2

We call a sequence of consecutive labeled dots in the array a block. Therefore, the blocks in the
upper row have pi dots and those in the lower row have qi dots. The simple compact roots are the
roots εi− εi+1 with (i, i+1) indexes of dots that belong to the same block. The simple non-compact
roots are the roots εi− εj with i, j indices of consecutive dots that lie in different rows, and so that i

precedes j when reading the array from left to right. Thus, the simple non-compact roots correspond
to the “jumps” between the rows. Here is an example. The array

•1 •2 •3 •4

•5 •6 •7 •8 •9

determines the Dynkin diagram

◦ • • ◦ • ◦ ◦ ◦
1-2 2-5 5-3 3-4 4-6 6-7 7-8 8-9

where i − j means the root εi − εj (and the blackened nodes correspond to noncompact simple
roots).

Our algorithm is as follows. From the sequence {p1, q1, . . . , pr, qr}, form an array as above.
Second, form a string consisting of diagonal lines connecting the first dots in each pair of consecutive
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blocks. Define a nilpotent element f0 of n− ∩ p as follows. Let S0 = {i1, i2, . . . , iN} be the set of
indices of dots which the string passes through, ordered from left to right. Then

(3.4) f0 =
N∑

s=2

Xis,is−1 ,

where Xi,j is the matrix which is a root vector for εi − εj with a one in the (i, j) place. In the
example, we have

•1 •2 •3
xxppppp •4

•5

jjUUUUUUUUUU •6

hhQQQQQQQ •7 •8 •9

Third, omit the dots that are vertices of the drawn string and repeat the procedure. The procedure
is continued until no more diagonals can be drawn. In the example, we have

•1 •2 •3
xxppppp •4

•5

jjUUUUUUUUUU •6

hhQQQQQQQ •7

mm[[[[[[[[[[[[[[[[[[[[[[[[[[[ •8

jjVVVVVVVVVVVV •9

Note that as the dots in the most recent string are omitted, a new array is formed. For example,
to choose the second string in the example we omit the dots numbered 1, 5, 3, and 6 to get

•2 •4

•7 •8 •9

.

Each string corresponds to a sum of root vectors in n− ∩ pC. In the example, we have

f0 = (X5,1 + X3,5 + X6,3), f1 = X7,2 and f2 = X8,4.

Set
f = f0 + f1 + . . . + fm−1, with m equal to the number of strings.

Theorem 3.5. Let {p1, q1, p2, . . . , pr, qr} be a sequence satisfying (3.3). Let ∆+(gC, hC) be the
positive system determined by the sequence {p1, q1, p2, q2, . . . , pr, qr} and let b = hC ⊕ n− be the
corresponding Borel subalgebra. Set Z = KC(b) and let f ∈ n− ∩ pC be the nilpotent element built
by the algorithm. Then, KC(f) = γ(T ∗

Z(X)), i.e, f is generic in n− ∩ pC.

We will prove this theorem in Section 5.

Proposition 3.6. Let {p1, q1, p2, q2, . . . , pr, qr} be a sequence satisfying (3.3) and f = f0 + f1 +
. . . + fm−1 as constructed by the algorithm. Let t be the number of dots that do not belong to
any of the strings built by the algorithm. The signed tableau corresponding to the nilpotent KC-
orbit KC(f) has m + t rows. If 1 ≤ i ≤ m, then the length of the i-th row in the tableau is
the number of dots occurring in the i-th string built by the algorithm. If the i-th string ends at a
point in the top row of the array, then the i-row of the tableau has alternating signs starting with
+. Otherwise, the i-row of the tableau has alternating signs starting with −. The remaining t rows
have length one and their corresponding signs are so that the total number of + signs in the tableau
is p and the total number of − signs is q.

Proof. To prove the Proposition observe that for each string, fj is a principal nilpotent element in a
subalgebra sl(dj ,C) where dj is the number of dots in the corresponding string. Starting with fj it
is possible to form an sl(2)-triple {fj , hj , ej} so that hj ∈ hC and ej =

∑
{(k,l): Xl,koccurs infj}

ak,l Xk,l

with non-zero coefficients ak,l. Since the sl(dj)’s commute, {f, h =
∑

hj , e =
∑

ej} spans a copy of
sl(2). Let SL(2,C)f be the Lie subgroup of SU(p, q) whose Lie algebra is this copy of sl(2). It is
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clear that the standard basis vectors el ∈ Cp+q are weight vectors for the action of Z2 o SL(2,C)f

on Cp+q. We may conclude

(1) the dimension of the non-trivial irreducible subrepresentations of Cp+q are given by the
number of dots in the corresponding string,

(2) the lowest weight vector of an irreducible subrepresentation is ek where k is the label of the
last dot in the corresponding string,

(3) the trivial subrepresentations are spanned by the t vectors ek so that no dot contained in
any string has label k.

�

In our example the tableau corresponding to KC(f) is

- + - +
- +
- +
- .

In order to prove Theorem 3.5 we need some preliminary results on generic elements in n− ∩ pC.
The following definitions are important in what follows.

Definition 3.7. Starting with ∆+(gC, hC), let S be the set of simple compact roots and let 〈S〉 be
the set of roots generated by S. Define a parabolic subalgebra of gC by

q = l⊕ u− ⊃ b with l = h⊕
∑

α∈〈S〉

gα and u− =
∑

α∈∆+−〈S〉

g−α.

Denote the connected subgroups of GC corresponding to q, (resp., l) by Q (resp., L). Observe that
L ⊂ KC and that n− ∩ pC = u− ∩ pC. Let QK be the parabolic subgroup Q ∩KC of KC.

Start with a sequence {p1, q1, . . . , pr, qr} satisfying (3.3). This sequence determines an array
and a positive system ∆+(gC, hC). Use the algorithm to produce the first i strings and delete
the vertices of these strings from the array, keeping the numbering of the untouched dots. The
resulting array determines a Dynkin diagram corresponding to a subalgebra gi isomorphic to some
su(p′i, q

′
i) ⊂ su(p, q). In particular, the new array defines a Borel subalgebra bi = b ∩ gi,C of gi,C.

Let Si be the set of simple compact roots in the Dynkin diagram of gi,C ⊂ sl(p + q,C) and let
〈Si〉 be the set of roots generated by Si. Define parabolic subalgebras of gi,C by

qi = li ⊕ u−i ⊃ bi, with li = hC ⊕
∑

α∈〈Si〉

gα.

Denote the connected subgroups of GC corresponding to qi (resp., li, u−i resp.) by Qi (resp., Li,
Ui). Let Qi,K = Qi ∩KC.

Remark 3.8. The following properties follow easily.

(1) QK normalizes n− ∩ pC.
(2) Li ⊂ KC and u−i ∩ pC = gi,C ∩ (n− ∩ pC).
(3) It is not always the case that q ∩ gi,C = qi.
(4) Observe that, by construction, u−i ⊂ u−i−1.
(5) Writing f = Σm−1

j=0 fj as in the algorithm, Qi · fk = fk for all k = 0, 1, . . . , i− 1.
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4. Generic elements.

Let {p1, q1, p2, q2, . . . , pr, qr} be a sequence satisfying (3.3). From now on we assume without
loss of generality that p1 6= 0. (See Remark 4.14.) Let {e1, e2, . . . ep+q} be the standard basis of
Cp+q. Let f = f0 + g with g = f1 + . . . + fm−1 be the nilpotent element built by the algorithm
and form the sl(2)-triple {e, f, h} with e and h as in the proof of Proposition 3.6. Let (π,Cp+q)
be the representation of Z2 o SL(p + q,C) for which the nontrivial element of Z2 acts by Ip,q and
SL(p + q,C) acts by the standard representation of SL(p + q,C) on Cp+q.

Each element fi corresponds to a string in the array given by the sequence {p1, q1, p2, . . . , pr, qr}.
If A1 is the set of indexes labeling the vertices of the string corresponding to f0, then we set
N = #{A1}. An argument similar to that in the proof of Proposition 3.6 leads to the following
Lemma.

Lemma 4.1. Let f = f0 + g be as above. Let V0 = spanC{ej : j ∈ A1} ⊂ Cp+q. Let SL(2,C)f

correspond to the triple {f, e, h}. Under the action of Z2 o SL(2,C)f , Cp+q splits into invariant
subspaces as Cp+q = V0 ⊕W0 in such a way that

π(f0)|W0 = 0 and π(g)|V0 = 0

π(f0)V0 ⊂ V0 and π(g)W0 ⊂ W0.

Remark 4.2. If Y ∈ n− ∩ pC, then we can write Y = Y1 + Y2 with Y1 upper triangular and Y2 lower
triangular. In other words, Y1 in the span of the roots spaces gεi−εj so that

(i, j) ∈{(i, j) : p + 1 ≤ j ≤ p + q1 and i ≥ p1 + 1}∪
∪k {(i, j) : p + q1 + q2 + . . . qk + 1 ≤ j ≤ p + q1 + q2 + . . . qk+1 and i ≥ p1 + . . . + pk+1 + 1}

and Y2 is in the span of the roots spaces gεi−εj so that

(i, j) ∈{(i, j) : 1 ≤ j ≤ p1 and i ≥ p + 1}∪
∪k {(i, j) : p1 + . . . + pk + 1 ≤ j ≤ p1 + . . . + pk+1 and i ≥ p + q1 + . . . + qk + 1}.

Moreover, writing

Y1 =
(

0 Y ′
1

0 0

)
and Y2 =

(
0 0
Y ′

2 0

)
,

we have

π(Y )
(

v1

v2

)
=

(
Y ′

1 · v2

Y ′
2 · v1

)
, where

(
v1

v2

)
∈ Cp+q.

The following gives a flag which defines the parabolic subgroup Q.

Definition 4.3. For j = 1, . . . , r, define

U2j−1 = span {ei : (Σj−1
1 pk) + 1 ≤ i ≤ Σj

1pk}

U2j = span {ei : p + (Σj−1
1 qk) + 1 ≤ i ≤ p + (Σj

1qk)}

Fk =
N⊕

l=k

Ul.

Proposition 4.4. (1) If Y ∈ n− ∩ pC, then π(Y )(Fk) ⊂ Fk+1 and π(Y s)(Fk) ⊂ Fk+s.
(2) If Y ∈ n− ∩ pC, then π(Y N−k+1)(Fk) = 0. In particular π(Y N ) = 0.
(3) The spaces Fk are preserved by the QK-action.
(4) The stabilizer of the flag Cp+q = F1 ) F2 ) F3 ) . . . FN ) FN+1 = {0} is Q.
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Proof. Part (1) of the proposition follows from the Remark 4.2 and the fact that π(Xl,t)ej = δt,jel.
Part (2) is obvious since π(Y N−k+1)(Fk) ⊂ FN+1 = 0. Part (3) is a consequence of the definition
of the flag. To show part (4) observe on the one hand that the stabilizer of the flag is a parabolic
subalgebra of SL(p + q,C) with Levi component S(Π

i
GL(pi,C)×GL(qi,C)). On the other hand,

by (1) and (3), Q is contained in the stabilizer. �

Lemma 4.5. Assume that Y ∈ n−∩pC is so that KC(f) ⊂ KC(Y ). Form an sl(2)-triple {X, H, Y }
with X ∈ pC and H ∈ kC and denote by SL(2,C)Y the copy of SL(2,C) with Lie algebra {X, H, Y }.
Then Cp+q has a Z2 o SL(2,C)Y -irreducible constituent of dimension N .

Proof. By Proposition 4.4, π(Y N ) ≡ 0. Hence, Cp+q admits no constituent of dimension greater than
N . Assume that Cp+q = R1⊕ . . .⊕Rt where Ri are Z2 oSL(2,C)Y -irreducible subrepresentations.
If maxi{dim(Ri)} = N ′ with N ′ < N , then dim(Ker (Y N ′

)) = p + q. On the other hand, since
Z2 o SL(2,C)f admits an irreducible subrepresentation of Cp+q of dimension N , dim(Ker(fN ′

)) <

p + q. This is a contradiction to the assumption that KC(f) ⊂ KC(Y ), by Theorem 3.1. �

Continue with Y as in the lemma. Decompose Cp+q under the Z2 oSL(2,C)Y -action as Cp+q =
VN ⊕W with VN irreducible of dimension N . Denote by v0 the highest weight vector of VN . The
set {v0, π(Y )v0, . . . , π(Y N−1)v0} is a basis for VN .

Lemma 4.6. For each k, Fk = (Fk ∩ VN )⊕ (Fk ∩W ).

Proof. Write v ∈ Fk as v = vN + w with vN =
∑N−1

j=0 ajπ(Y j)v0 ∈ VN and w ∈ W . We need to
show that vN and w belong to Fk. It is enough to show that vN ∈ Fk.

Observe that 0 = π(Y N−k+1)v = π(Y N−k+1)vN + π(Y N−k+1)w, so 0 = π(Y N−k+1)vN =∑k−2
j=0 ajπ(Y N−k+1+j)v0. Since the vectors {v0, π(Y )v0, . . . , π(Y N−1)v0} are linearly independent,

we have aj = 0 for all j ≤ k − 2. Thus, vN =
∑N−1

j=k−1 ajπ(Y j)v0 lies in Fk, by Proposition 4.4
(1). �

Since (Fk ∩ VN ) = C · π(Y k−1)v0 + Fk+1 ∩ VN , we have the following corollary.

Corollary 4.7.
dim (Fk ∩W )/(Fk+1 ∩W ) = dim(Fk/Fk+1)− 1

Definition 4.8. Let Cp+q = F1 ) F2 ) F3 ) . . . FN ) FN+1 = {0} be the flag introduced in
Definition 4.3. Define,

Pi : Fi → Fi/Fi+1
∼= Ui

to be the natural projections.

Write Cp × {0} (resp., {0} ×Cq) for the eigenspace of Ip,q with eigenvalue +1 (resp., −1).

Corollary 4.9. Assume that Y ∈ n− ∩ pC is so that KC(f) ⊂ KC(Y ). Form Z2 o SL(2,C)Y as
above and decompose Cp+q as Cp+q = VN ⊕ W . Then, there exists a basis β1 of W consisting of
vectors in either Cp × {0} or {0} ×Cq so that

(4.10) #{v ∈ β1 : v ∈ Fk ∩W and Pk(v) 6= 0} = dim(Fk/Fk+1)− 1.

Proof. Since the spaces W ∩ Fk are Ip,q-stable it is possible to find vectors {w2j+1,i : w2j+1,i ∈
W ∩Cp × {0} ∩ F2j+1} so that {P2j+1(w2j+1,i)} forms a basis for (F2j+1 ∩W )/(F2j+2 ∩W ). Sim-
ilarly, we choose vectors {w2j,i : w2j,i ∈ W ∩ ({0} × Cq) ∩ F2j} so that {P2j(w2j,i)} is a basis of
(F2j ∩W )/(F2j+1 ∩W ).

We claim that the set of vectors {w2j,i}∪{w2j+1,i} forms a basis for W with the desired properties.
First, we argue that the selected vectors are linearly independent. Indeed, if Σk,iλk,iwk,i = 0, then
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P1(Σk,iλkiwk,i) = Σiλ1,iP1(w1,i) = 0. Since the vectors {P1(w1,i)} are linearly independent, it
follows that λ1,i = 0 for all i. Assume we have shown that λk,i = 0 whenever k ≤ j. Then,
0 = Pj+1(Σk,iλkiwk,i) = Σiλj+1,iPj+1(wj+1,i) and once again we get λj+1,i = 0 for all i.

To prove that the set {w2j,i, w2j+1,i} is a maximal set of linearly independent vectors, observe
that #{w2j,i, w2j+1,i} = ΣN

1 [dim(Fk/Fk+1)− 1] = p + q −N = dim(W ). �

Define a basis of Cp+q as follows. Assume that Y ∈ n− ∩ pC is so that KC(f) ⊂ KC(Y ).
By Lemma 4.5, Cp+q = VN ⊕ W as a Z2 o SL(2,C)Y -representation, where VN is irreducible of
dimension N . Let v0 be the highest weight vector in VN . Form S0 = {v0, π(Y )v0, . . . , π(Y N−1)v0},
a basis for VN . Let β1 be the basis of W built in Corollary 4.9. Construct an ordered basis β of
Cp+q from S0 and β1 in the following manner.

(1) The first vector in β is v0, the vector in position p1 + 1 is π(Y 2)v0, in position p1 + p2 + 1
is the vector π(Y 4)v0 and so on so that in position Σj

k=1pk + 1 is the vector π(Y 2j)v0; in
position p+1 we place the vector π(Y )v0, in position p+(Σj

k+1qk)+1 we place π(Y 2j+1)v0.
(2) Between π(Y 2j)v0 and π(Y 2j+2)v0 we place the vectors {w2j+1,i} in β1.
(3) Between π(Y 2j−1)v0 and π(Y 2j+1)v0 we place the vectors {w2j,i} in β1.

Lemma 4.11. Let β be the ordered basis of Cp+q just introduced. Let {e1, e2, . . . , ep+q} be the
ordered standard basis of Cp+q. If T : Cp+q → Cp+q is a linear transformation that sends vectors
of the standard ordered basis to vectors in the basis β preserving the order, i.e first vector goes to
first vector and so on, then there is a q ∈ QK so that T = π(q).

Proof. Since p1 6= 0, v0 ∈ Cp × {0} and the linear transformation T is an isomorphism so that
T : Cp×{0} → Cp×{0} and T : {0}×Cq → {0}×Cq. Hence, T = π(k) for some k ∈ KC. On the
other hand, by the construction of the basis β, such a T preserves the flag Cp+q = F1 ) F2 ) F3 )
. . . FN ) FN+1 = {0}. Since the stabilizer of this flag is Q it follows that k ∈ Q ∩KC = QK . �

Proposition 4.12. Assume that Y ∈ n−∩pC is so that KC(f) ⊂ KC(Y ), then there exists q ∈ QK

so that q · Y = f0 + y1 with f0 as in Lemma 4.1 and y1 ∈ u−1 ∩ pC.

Proof. Without los of generality we assume that b is determined by an array so that p1 6= 0. Form
Z2 o SL(2,C)Y and decompose Cp+q as Cp+q = VN ⊕W where VN is Z2 o SL(2,C)Y -irreducible
of dimension N . The existence of such decomposition is guaranteed by Lemma 4.5. Similarly,
decompose Cp+q as Cp+q = V0⊕W0 with V0 = Σi∈A1Cei and W0 = span {ei : i /∈ A1}. Let q ∈ QK

be as in Lemma 4.11. Then, the map π(q)−1π(Y )π(q) : Cp+q = V0 ⊕W0 → V0 ⊕W0 is so that

(1) π(q)−1π(Y )π(q)W0 → W0,
(2) [π(q)−1π(Y )π(q)]|V0 = π(f0)|V0 .

Now, π(f0)|W0 ≡ 0, π(q−1Y q − f0) preserves W0 and π(q−1Y q − f0)|V0 ≡ 0. Hence, q−1Y q − f0 ∈
(n− ∩ pC) ∩ g1C = u−1 ∩ pC. �

Proposition 4.13. Assume that Y ∈ n−∩pC is so that KC(f) ⊂ KC(Y ), then there exist elements
q ∈ QK and qi ∈ Qi,K so that qm−1qm−2 . . . q2q1q · Y = f .

Proof. By Proposition 4.12, there exists q ∈ QK so that q · Y = f0 + y1 with y1 ∈ n−1 ∩ pC. Form
Z2 oSL(2,C)q·Y . By Proposition 4.12, we have Cp+q = V0⊕W0 as Z2 oSL(2,C)q·Y -representation
and π(f0)W0 ≡ 0, π(f0)V0 ⊂ V0, π(y1)V0 ≡ 0 and π(y1)W0 ⊂ W0. Hence, Ker(π(q · Y )j) =
Ker(π(f j

0 )|V0)⊕Ker(π(yj
1)|W0) and

a±(Y j) = a±((f0|V0)
j) + a±((y1|W0)

j).
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On the other hand, f = f0 + g with g = f1 + . . . + fm−1 and

a±(f j) = a±((f0|V0)
j) + a±((g|W0)

j).

The assumption KC(f) ⊂ KC(Y ) and Theorem 3.1 imply that a±(gj) ≥ a±(yj
1). The vectors g and

y1 belong to n−1 ∩pC = u−1 ∩pC ⊂ q1, where q1 is a parabolic subalgebra of a smaller g1
∼= su(p′1, q

′
1).

If K ′
1,C is the complexification of the maximal compact subgroup of G1, then K ′

1,C(g) ⊂ K ′
1,C(y1).

Applying Proposition 4.12 to (g, y1) we obtain q1 ∈ Q1,K so that q1 ·y1 = f1+y2 with y2 ∈ (n−2 ∩pC).
The construction of Q1,K guarantees that q1 ·f0 = f0. Thus, q1qK ·Y = q1 ·f0+f1+y2 = f0+f1+y2.
The proof of the theorem now follows by induction on the complex rank. �

Remark 4.14. Assuming p1 6= 0 has no loss of generality. If p1 = 0, then there is an isomor-
phism σ : su(p, q) → su(q, p) preserving the diagonal Cartan subalgebra and sending the positive
system attached to {p1 = 0, q1, . . . , qr} to a positive system ∆+(gC, hC) corresponding to a se-
quence {p′1, q′1, . . . , q′r} with p′1 = q1 6= 0. Now we may apply Proposition 4.13 in the case p′1 6= 0,
g′ = su(q, p), to get the same result for p1 = 0, g = su(p, q).

Proof of Theorem 3.5. Assume that Y ∈ n− ∩ pC is generic. Then KC(Y ) is the unique maximal
dimensional nilpotent KC-orbit that meets n− ∩ pC . Hence, KC(f) ⊂ KC(Y ). By Proposition
4.13, there exist k0 = qm−1 . . . q1qk ∈ KC so that k0 · Y = f . Hence, KC(Y ) = KC(f), i.e., f is
generic. �

5. The fiber of the moment map

In this section we use the algorithm developed in Section 4 to determine the structure of the fiber
of the moment map.

Theorem 5.1. With the notation of Section 4,

γ−1(f) = (ZKC
(f)Qm−1,KQm−2,K . . . Q1,KQK) · b ⊂ KC/KC ∩B.

Proof. By equation (2.5), γ−1(f) = (NKC
(f, n− ∩ pC))−1 · b where

NKC
(f, n− ∩ pC) = {k ∈ KC : k · f ∈ n− ∩ pC}.

To prove the theorem it is enough to show that NKC
(f, n− ∩ pC) = QKQ1,K . . . Qm−1,KZKC

(f).
To show that NKC

(f, n−∩pC) ⊂ QKQ1,K . . . Qm−1,KZKC
(f), take k0 ∈ NKC

(f, n−∩pC). Then,
k0 · f ∈ n− ∩ pC is generic and by Proposition 4.13, there exist qi ∈ Qi,K and q ∈ QK so that
qm−1qm−2 . . . q1q(k0 · f) = f . Thus, qm−1qm−2 . . . q1qk0 ∈ ZKC

(f). The inclusion follows.
To show the other inclusion observe that QK normalizes n− ∩ pC and ZKC

(f) fixes f . Hence, it
is enough to show that Q1,KQ2,K . . . Qm−1,K ⊂ NKC

(f, n− ∩ pC).
Write f = f0 + f1 + . . . + fi + . . . + fm−1 with f0 ∈ n− ∩ pC and fi ∈ u−i ∩ pC for i ≥ 1. Recall

(Remark 3.8) that Qi,K normalizes u−i ∩ pC, u−i ∩ pC ⊂ u−i−1 ∩ pC and Qi,K stabilizes all fj with
j < i. Then,

Qm−1,K(f) ⊂ f0 + f1 + . . . + fm−2 + Qm−1,K(fm−1)

⊂ f0 + f1 + . . . + fm−2 + (u−m−1 ∩ pC).

Assume we have shown that

Qi,KQi+1,K . . . Qm−1,K(f) ⊂ f0 + f1 + . . . + fi−1 + (u−i ∩ pC).
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Then,

Qi−1,KQi,KQi+1,K . . . Qm−1,K(f) ⊂ f0 + f1 + . . . + fi−2 + Qi−1,Kfi−1 + (ui ∩ pC)

⊂ f0 + f1 + . . . + fi−2 + Qi−1,K

(
fi−1 + (ui−1 ∩ pC)

)
⊂ f0 + f1 + . . . + fi−2 + (ui−1 ∩ pC)

Thus, by induction we conclude that Q1,KQ2,K . . . Qm−1,K(f) ⊂ (f0 +(u1 ∩ pC)) ⊂ n− ∩ pC and the
theorem follows. �

Remark 5.2. In Theorem 5.1, Qm−1,KQm−2,K . . . Q1,KQK may be replaced by Lm−1Lm−2 . . . L1L.

The next theorem (Theorem 5.8) makes structure of the fiber of the moment map much more
tractable. It essentially says that the centralizer may be dropped from the expression for the fiber in
the above theorem. We must however include Lm, which is formed in the algorithm for the generic
element f after the last string is formed. Note that Lm is contained in the centralizer of f (thus not
included previously) and ∆(lm) consists of roots with indices not in any of the strings.

The proof will require a fairly explicit description of the centralizer of f , and this will require
some (temporary) notation.

Recall that m is the number of strings. These strings give f = f0 + · · · + fm−1. For a =
0, 1, . . . ,m−1 define Sa = {indices in the string from which fa is formed}. In other words Sa is the
set of indices occurring in the root vectors in the expression for fa. Let Sm be the set of indices not
occurring in any of the strings. Now set

Va,b = spanC{Xi,j : i ∈ Sa, j ∈ Sb}.

Recall that Xi,j is the root vector with a 1 in the (i, j)-place and zeros elsewhere. Let z = zkC and
set

za,b = z ∩ Va,b.

Since Va,b is ad(f)-invariant

z = ⊕za,b.

In fact, Va,b is invariant under the sl(2,C) corresponding to f .
Consider one of the Sa’s. Write Sa = {i1, . . . , iR} ordered so that so that each ir occurs to the

left of ir+1 in the array. Therefore,

fa =
R∑

r=2

Xir,ir−1 .

Similarly, write

fb =
T∑

t=2

Xit,it−1 .

We now find a basis of z by finding a basis for each za,b. There are 5 different cases which must
be considered.
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Case (1), a 6= b and a, b 6= m. Let X =
∑

aijXi,j ∈ Va,b. We see when X commutes with f .

[f,X] = [fa, X] + [fb, X]

= faX −Xfb

=
R∑

r=2

∑
i∈Sa

∑
j∈Sb

aijXir,ir−1Xi,j −
T∑

t=2

∑
i∈Sa

∑
j∈Sb

aijXi,jXjt,jt−1

=
∑
r=2

∑
j∈Sb

air−1,jXir,j −
T∑

t=2

∑
i∈Sa

ai,jtXi,jt−1

=
R∑

r=2

T−1∑
t=1

(air−1,jt − air,jt+1)Xir,jt +
R∑

r=2

air−1,jT
Xir,jT

−
T∑

t=2

ai1,jtXi1,jt .

This is 0 precisely when

air,jT
= 0, for r = 1, . . . , R− 1,

ai1,jt = 0, for t = 2, . . . , T and

air,jt = air+1,jt+1 , for r = 1, . . . , R− 1, t = 1, . . . , T − 1.

Therefore, the centralizer of f in Va,b is spanned by
n∑

s=1

XiR−n+s,js , for n = 1, . . . , R, when R ≤ T(5.3)

and by

n∑
s=1

XiR−n+s,js
, for n = 1, . . . , T, when R ≥ T.(5.4)

Case (2), a = b 6= m. Essentially the same calculation as in Case (1) (with R = T ) gives a basis for
the centralizer of f in Va,a as

(5.5)
R∑

s=n

XiR−n+s,js
, for n = 1, . . . , R (= T ).

Case (3), a 6= b, b = m. A similar calculation gives a basis for the centralizer of f in Va,m as

(5.6) XiR,j , j ∈ Sm.

Case (4), a 6= b, a = m. A basis for the centralizer of f in Vm,b is

(5.7) Xi,j1 , i ∈ Sm.

Case (5), a = b = m. Then Va,b commutes with f by the construction construction of f .

Theorem 5.8. If f is the generic element constructed by the algorithm then

γ−1(f) = Lm · · ·L2L1L(b) ⊂ KC/KC ∩B.

Proof. The proof is by induction on m, the number of strings in the array determined by ∆+. We
have given a basis for the centralizer zkC in (5.3-5.7). Since ZKC

is connected (a special fact for the
indefinite unitary groups), ZKC

is generated by exp(tZ) with t ∈ R and Z in the basis described in
(5.3-5.7). Therefore, by Theorem 5.1 and Remark 5.2 it suffices to show that for such Z

(5.9) exp(tZ)Lm · · ·L2L1Q ⊂ Lm · · ·L2L1Q.

There four number of cases.
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Case (1): Z ∈ za,b, 1 ≤ a, b ≤ m. This puts us in the situation of f ′ = f − f0 (m− 1 strings) inside
G1. By induction

exp(tZ)Lm · · ·L2Q1 ⊂ Lm · · ·L2Q1.

Therefore,

exp(tZ)Lm · · ·L2L1Q = exp(tZ)Lm · · ·L2Q1Q

⊂ Lm · · ·L2Q1Q

= Lm · · ·L2L1Q.

Case (2): Z ∈ z0,0. Each of the root vectors occurring in Z is in q ∩ kC by (5.5). Also, note that Z

commutes with each Lk, therefore (5.9) holds.
The final two cases are za,0 and z0,a, a > 0. The proofs of (5.9) in these two cases require some

preparation.
Recall that the array consists of a number of blocks and the string defining f0 passes through each

block. Now consider the strings defining fc for c = 1, 2, . . . ,m − 1. Define an equivalence relation
on the set {1, 2, . . . , p + q} of indices by i ∼ j if and only if either (i) 1 ≤ i, j ≤ p and there exists
no ` ∈ Sc so that p + 1 ≤ ` ≤ p + q and εi − ε` and ε` − εj are both positive or both negative, or (ii)
p + 1 ≤ i, j ≤ p + q and there exists no ` ∈ Sc so that 1 ≤ ` ≤ p and εi − ε` and ε` − εj are both
positive or both negative. We call the equivalence classes c-blocks.

Now define a Levi subalgebra of k1,C by specifying its roots: ∆(mc) contains εi − εj if and only
if i, j /∈ S0 and i, j are in the same c-block. Let Mc be the connected subgroup of K1,C with Lie
algebra mc. Note that for k = 1, 2, . . . , c, ∆(lk) ⊂ ∆(mc). Therefore,

Lc · · ·L2L1 ⊂ Mc.

In the remaining two cases we will show that [ma, za,0] ⊂ q ∩ kC and [ma, z0,a] ⊂ q ∩ kC. Then (5.9)
will follow.
Case (3): Z ∈ za,0, a ≥ 1. First suppose that a 6= m. Then, as in (5.3), Z is a linear combination of
root vectors XiR+s−n,js

, n = 1, . . . , R. Since js ∈ S0 and f0 passes through each block in the array,
js is the label of the first dot in the sth block. It follows that for each s = 1, . . . , R, js is to the
left of is in the array, and therefore js is also to the left of iR−n+s. With this observation and the
equivalence relation defining the a-blocks we will show that

(5.10) [ma, XiR−n+s
] ∈ q ∩ k.

Let Y be a root vector in ma. Then

(5.11) [Y, XiR−n+s,js ] ∈ CXi′,js

with i′ ∼ iR−n+s (i.e., i′ and iR+s−n in the same a-block. If s = 1, then js = j1 si the dot farthest
to the left in the array, so XiR+s−n,js

∈ n− ∩ k ⊂ q ∩ k. When s > 1, consider εi′ − εjs
. Suppose

εi′ − εjs
were positive. Then in the array i′ would be to the left of js, so also to the left of js−1.

But js−1 is to the left of iR+s−n−1 (by the above observation). Therefore εi′ − εiR+s−n−1 > 0 and
εiR+s−n−1 − εiR+s−n

> 0, and we have a contradiction to i′ ∼ iR+s−n. We therefore have that
Xi′,js

∈ n− ∩ k ⊂ q ∩ k.
From (5.11), it follows that ad(Y )k(XiR−n+s,js

) is contained in the span of Xi,js
with i ∼ iR−n+s,

so is in q ∩ k. Therefore, Ad(exp(Y ))(XiR−n+s,js
) ⊂ q ∩ k, and so Ad(Ma)(exp(tZ)) ⊂ Q ∩K, for Z

in the basis for za,0. In particular, for `k ∈ Lk, k = 1, 2, . . . , a,

exp(tZ)`a · · · `1 ∈ `a · · · `1Q ∩K.
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Now, za,0 commutes with Lm, . . . , La+1 (since these lk have no root vectors involving indices from
Sa and S0). Therefore,

exp(tZ)Lm · · ·L1QK = Lm · · ·La−1 exp(tZ)La · · ·L1QK

⊂ Lm · · ·L1QK .

Now if a = m, then Z is a linear combination of root vectors Xi,j1 , i ∈ Sm. For any root vector
Y in k1, ad(Y )k(Xi,j1) ∈ q ∩ k. So, Ad(K1,C)(exp(tZ)) ⊂ Q ∩K. So (5.9) follows.
Case (4): Z ∈ z0,b. This case is very similar to Case 5. Here, Z is a sum of root vectors XiR−n+s,js

,
with n = 1, . . . , T , as in (5.4). �

6. An algorithm for computing the multiplicity of πλ

Let πλ be a representation in the discrete series of SU(p, q). Then, as described in Section 2, πλ

is associated to a closed KC-orbit Z in the flag variety X. Also, there is a corresponding positive
system ∆+ = ∆+(gC, hC) containing ∆+

c . Then, by Theorem 2.4 ([6, Prop. 1.4]), the characteristic
cycle of πλ is given by

(6.1) Ch(πλ) = dim(H0(γ−1(f),Lλ−ρc+ρn |γ−1(f))) · γ(T ∗
Z(X)).

The goal of this section is to use this formula for the multiplicity along with our description of the
fiber of the moment map (Theorem 5.8) to give an algorithm for computing the the multiplicities of
discrete series representations of SU(p, q).

First, we give a description of the cohomology space H0(γ−1(f),Lλ−ρc+ρn |γ−1(f)) in terms of
representations. Identify Z with the flag manifold KC/B ∩KC for the complex group KC and we
interprete γ−1(f) as the closed subvariety NKC

(f, n− ∩ pC)−1 · b of KC/B ∩KC.
Let µ = λ− ρc + ρn and view µ as a linear functional on b∩ kC by setting µ(u− ∩ kC) = 0. Since

µ is analytically integral, χµ(b) = eµ(log(b)) is a well defined character of B ∩KC. We denote by
O(µ) the KC-equivariant sheaf over Z defined by the local sections

Γ(U,O(µ)) = {f : regular function on p−1
o (U) and f(gb) = χ−1

µ (b)f(g), for b ∈ B}.

Let Oγ−1(f) (resp., OZ) be the structure sheaf over γ−1(f) (resp., Z) and let O(µ) = O(µ) ⊗OZ

Oγ−1(f). Then, the cohomology in (6.1) is the sheaf cohomology H0(γ−1(f),Oγ−1(f)(µ)).
Now take W−µ to be the irreducible representation of K with lowest weight −µ and let w−µ be

the lowest weight vector in W−µ. The Borel-Weil theorem gives an isomorphism

(6.2) H0(Z,O(µ)) = W ∗
−µ

which is implemented using matrix coefficients by

W ∗
−µ → Γ(Z,O(µ))

v → 〈v, kw−µ〉.

The description of such a space of sections, along with the following definitions are in [10, page
590] We set Wγ−1(f) ≡ {zw−µ : z ∈ NKC

(f, n− ∩ pC)−1}, qγ−1(f)(µ) ≡ dim(spanCWγ−1(f)) and
W⊥

γ−1(f) ≡ {f ∈ W ∗
−µ : f(a) = 0 for all a ∈ Wγ−1(f)}.

As in [10], we conclude from Serre’s theorem [9, page 228], that for λ sufficiently dominant

H0(γ−1(f),Oγ−1(f)(µ)) = Γ(Z,O(−µ))/{g ∈ Γ(Z,O(−µ)) : g(γ−1(f)) = 0}

= W ∗
−µ/W⊥

γ−1(f).

Therefore, for sufficiently dominant λ

(6.3) dim H0(γ−1(f),Oγ−1(f)(µ)) = qγ−1(f)(µ).
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Putting together the above observations and using our description of the fiber γ−1(f) in Section
5, we conclude the following.

Proposition 6.4. The multiplicity of O = KC(f) in the associated cycle of the discrete series
representation πλ is dimC(spanC({z · wµ : z ∈ LmLm−1 . . . L1L}), provided λ is very dominant.

Recall q∆+(µ) = dim(spanC{Lm · · ·L1L(w−µ)}). Then, by Joseph’s argument, q∆+(µ) is the
multiplicity of πλ (where µ = λ + ρn − ρc) when µ is dominant enough. Since the multiplicity of πλ

is a polynomial in λ we will see that q∆+(µ) is the multiplicity for all λ if we can show that q∆+(µ)
extends to a polynomial in µ. This is contained in the following theorem.

Theorem 6.5. q∆+(µ), defined for µ integral and ∆+
c -dominant, extends to a polynomial on h∗.

Therefore, q∆+(λ+ ρn− ρc) is the multiplicity of discrete series representations πλ corresponding to
∆+.

Proof. We proceed by induction on m. If m = 1 there is just one string in the array determined
by ∆+ and L1 ⊂ L. Therefore, U−µ ≡ spanC{L(w−µ)} is the irreducible L-representation of lowest
weight −µ. The dimension extends to a polynomial on h∗ by the Weyl dimension formula.

Now consider m > 1. Decompose U−µ as a representation of L1 ∩ L. Write this decomposition
as

∑
E−µi and write the lowest weight vectors as w−µi .

Claim: each w−µi is annihilated by n− ∩ g1 ∩ k. To see this, note that since L normalizes u− ∩ k and
w−µ is annihilated by u− ∩ k, each w−µi (in fact all of U−µ) is annihilated by u−. Now each w−µi

is annihilated by n− ∩ l1 ∩ l. But, n− ∩ g1 = n− ∩ q ⊂ u− ∩ k + n− ∩ l1 ∩ l.
The claim tells us that F−µi ≡ spanC{G1(w−µi)} is the irreducible G1-representation of lowest

weight −µi. Therefore,

(6.6) q∆+(µ) =
∑

i

dim(spanC{Lm · · ·L1(w−µi)}) =
∑

i

q∆+
1
(µi).

By induction each q∆+
1
(µi) extends to a polynomial in µi.

We now make two observations. First, L is a product of a number of groups isomorphic to a
GL(r) for various r. Furthermore, L1 ∩ L is a product of various groups isomorphic to GL(r′),
and r′ is r or r − 1. The standard branching law for the restriction of representations of GL(r) to
GL(r − 1) is as follows. Let V−a be the irreducible GL(r) representation of lowest weight −a =
−(a1, . . . , ar), a1 ≥ a2 ≥ · · · ≥ ar. Similarly, let U−b be the irreducible GL(r − 1) representation of
lowest weight −b = −(b1, . . . , br−1). The the restriction of V−a to GL(r−1) is

∑
U−b, with the sum

being over all b ∈ Zr−1 so that a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ br−1 ≥ ar. Each occurs with multiplicity
one.

We state the second observation as a Lemma

Lemma 6.7. If p(b), b ∈ Cr−1 is a polynomial, then for a ∈ Zr

P (a) ≡
∑

a1≥b1≥a2≥b2≥···≥br−1≥ar,bj∈Z

p(b1, . . . , br−1)

extends to a polynomial on Cr.

Proof of lemma. For a ∈ Zr,

P (a) =
a1∑

b1=a2

· · ·
ar−1∑

bn−1=ar

p(a1, . . . , ar)

extends to a polynomial in a ∈ Cr. This is essentially because
N∑

n=M−1

nk =
N∑

n=1

nk −
M∑

n=1

nk is a

polynomial in M,N .
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We now conclude the proof of the theorem by noting that the µi’s occurring in (6.6) come from
the branching rule mentioned above (for the various factors of L), and the Lemma along with (6.6)
says that q∆+(µ) extends to a polynomial in µ.

�

Corollary 6.8. The multiplicity of KC(f) in πλ is q∆+(µ) = dim(spanC{Lm · · ·L1L(w−µ)}), for
all λ (dominant with λ− ρ dominant integral for ∆+).

The proof of the theorem contains an algorithm for computing the multiplicity KC(f) in πλ. We
describe an algorithm for computing

q∆+(µ) = dim(spanC{Lm · · ·L1L(w−µ)}

for any µ which is a ∆+
c -dominant weight. This algorithm may be stated as follows. Given a positive

system ∆+ containing ∆+
c , form the array as in (3). Form the first string and f0 as in (3.4), also

form and G1 and Q1,K (as at the end of Section 3).

(1) Decompose the L-representation U−µ = spanC{L(w−µ)} into L ∩ L1-representations using
the branching law for restricting GL(r)-representations to GL(r − 1)-representations. Call
the constituents F−µi .

(2) As shown in the proof of the theorem (see the ‘Claim’), each µi is dominant for ∆+
c ∩∆(l1)

and
q∆+(µ) =

∑
i

q∆+
1
(µi).

(3) Now repeat the procedure to find the q∆+
1
(µi), a computation on a smaller rank group.

The procedure ends after m (the number of strings) iterations.

Remark 6.9. In [20] Yamashita constructs a ZKC
(f)-representation which is contained in the isotropy

representation ([18, ]). The description of H0 given here shows that Yamashita ZKC
(f)-representation

is equal to spanC{Lm . . . L1L(w−µ)}. As we will see in Section 8, if QK has a dense orbit in n− ∩ p

then the isotropy representation is spanC{Z(f)L(w−µ)}.

7. Examples

We give several examples of computations of the multiplicities of discrete series representations
using the algorithm of Section 6. The result of the first example is now well-known ([11] and [4]).

Example 7.1. (Holomorphic Discrete Series) This is the case where there is a unique simple non-
compact root. The array is therefore one of the following:

•1 . . . •p

•p+1 · · · •p+q

or •p+1 · · · •p+q

•1 · · · •p

and (assuming p ≤ q) f = ±
∑p

i=1(εi − εp+i). Therefore, L = KC, so L1L = KC the multiplicity of
πλ is the dimension of the lowest K−type of πλ.

Example 7.2. (Quaternionic Discrete series of SU(p, 2)) Consider the positive system determined by
the following diagram:

•1
{{www

•2 . . . •p

•p+1 •p+2

llXXXXXXXXXXXXXXXXX

.

The reductive part of QK is L = S(GL(p,C) × C×) and L1 ⊂ L. Therefore, m(KC(f), πλ) =
dimC(L · wµ), i.e., the dimension of the irreducible representation of L with highest weight µ =
λ + ρn − ρc.
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Example 7.3. Consider the group G = SU(p, q) with p ≤ q and the positive system is given by a
Dynkin diagram with the maximum number of simple roots noncompact. The array is

•1 •2
{{www

. . . •p

•p+1

ccGGG
•p+2

ccGGG
· · · •2p

bbEEE
•2p+1 · · · •p+q

.

Here L = L1 = the torus and the multiplicity is one.

Example 7.4. We consider G = SU(7, 7) and the positive system determined by the following array

•1 •2 •3 •4 •5 •6 •7

•8 •9 •10 •11 •12 •13 •14

.

(See also Example 8.22.) Then spanC{L · w−µ} is the irreducible L-representation of lowest weight
−µ, call it U−µ. Then L is a product of six copies of SL(2) (and a torus) and U−µ is the tensor
product of representations of these SL(2)’s. Since L1∩L is the torus the decomposition of U−µ|L1∩L

is given by the weights

−µ + a(ε1 − ε2) + a(ε4 − ε5) + c(ε6 − ε7) + d(ε8 − ε9) + +e(ε10 − ε11) + f(ε13 − ε14).

with a = 0, . . . , µ1−µ2, b = 0, . . . , µ4−µ5, c = 0, . . . , µ6−µ7, d = 0, . . . , µ8−µ9, e = 0, . . . , µ10−µ11

and f = 0, . . . , µ13 − µ14. L1 is the product of two copies of SL(2) (and a torus). The roots in l1

are ±{ε5 − ε7, ε9 − ε11}. Using the formula
N∑

n=0

n =
N(N + 1)

2
, the dimension of spanC{L1L ·w−µ}

is therefore∑
a,...,f

(µ5 − µ7 + b− c + 1)(µ9 − µ11 + d− e + 1)

= (µ1 − µ2 + 1)
(
(µ4 − µ5 + 1)(µ6 − µ7 + 1)(µ5 − µ7 + 1 +

µ4 − µ5 − µ6 + µ7

2
)
)

(
(µ8 − µ9 + 1)(µ10 − µ11 + 1)(µ9 − µ11 + 1 +

µ8 − µ9 − µ10 + µ11

2
)
)
(µ13 − µ14 + 1).

Writing this in terms of λ (using µ = λ + ρn − ρc) the formula for multiplicity is
1
4
(λ1−λ2)(λ4−λ5)(λ6−λ7)(λ8−λ9)(λ10−λ11)(λ13−λ14)(λ4 +λ5−λ6−λ7)(λ8 +λ9−λ10−λ11).

8. QK-orbits in u− ∩ pC

In this section we consider the QK = Q ∩K-orbits in u− ∩ pC. It is reasonable to ask whether
the Borel subgroup B ∩KC (with Lie algebra (t + n−) ∩ k) has a dense orbit in u− ∩ pC. There are
examples for which the answer is no, see for example [15]. In fact, we will see that even QK does
not always have a dense orbit in u− ∩ pC. We give a criterion in terms of the algorithm of Section
3 for QK to be transitive (or have a dense orbit) on u− ∩ pC. At the end of the section an example
is given, in SU(7, 7), for which there is no such dense QK-orbit.

We begin this section with two propositions which indicate that it is of interest to understand
the QK-orbits on u− ∩ pC.

Let γ̃ be the moment map γ̃ : KC ×
QK

(u−∩pC) → gC Consider Y = KC/QK as a closed KC-orbit

in GC/Q, so Y = {k · q : k ∈ KC}. Then the fiber of γ̃ : KC ×
QK

(u− ∩ pC) → pC may be described

as follows. For x ∈ u− ∩ pC let N(x, u− ∩ pC) = {k ∈ KC : k · x ∈ u− ∩ pC} (as in Section 2). Then

γ̃−1(x) = {q′ ∈ Y : x ∈ q′}
= {k−1 · q : k ∈ N(x, u− ∩ pC)}.

Note that KC(x) ∩ (u− ∩ pC) = {k · x : k ∈ N(x, u− ∩ pC)}.
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Proposition 8.1. For arbitrary x ∈ u− ∩ pC, there is a bijection

{ZKC
− orbits in γ̃−1(x)} ↔ {QK − orbits in KC(x) ∩ (u− ∩ pC)}

ZKC
· (kq) ↔ QK(k−1 · x), k ∈ N(x, u− ∩ pC).

Moreover, if x is generic in u− ∩ pC, then ZKC
· q is open in γ̃−1(x) if and only if QK(x) is open in

u− ∩ pC.

Proof. For the first statement, notice that for k1, k2 ∈ N(x, u− ∩ pC)

ZKC
· k1q = ZKC

· k2q if and only if

k1 = zk2q, for some q ∈ QK , z ∈ ZKC
if and only if

k−1
1 x = q−1k−1

2 , for some q ∈ QK if and only if

QK(k−1
1 x) = QK(k−1

2 x).

For the second statement apply Lemma 8.13. �

Here is an alternative to the formula of Proposition 6.4 for the multiplicities.

Proposition 8.2. If there exists x ∈ u− ∩ pC generic so that QK(x) ⊂ KC(x) ∩ (u− ∩ pC) is open
and dense, then

m(KC(x), πλ) = dimC{ZKC
(x)L · w−µ}.

Proof. Indeed, under the assumptions in the Lemma we have

m(KC(x), πλ) = dim H0(γ−1(x),Oγ−1(f)(µ))

= dim H0(ZKC
(x)QK · b,Oγ−1(f)(µ))

= q
ZKC

(x)QK ·b(µ) = qZKC
(x)QK ·b(µ).

�

Let γ̃ be the moment map γ̃ : KC ×
QK

(u−∩pC) → gC given by γ̃(kQK , Y ) = k ·Y . For x ∈ u−∩pC

generic, we write a formula for the dimC(γ̃−1(x)) in terms of data produced by the algorithm in
Section 3. This formula will be used later in this section to study the structure of QK-orbits in
u− ∩ pC.

Let {p1, q1, p2, q2, . . . , pr, qr} be a sequence satisfying (3.3) and let ∆+(gC, hC) be the positive
system determined by the sequence. Let Np (resp., Nq) stand for the number of pi (resp., qi)
occurring in the sequence. Then N = Np + Nq. Write, as in previous sections, QK = Q0,K =
L exp(u− ∩ kC) and Qi,K = Li exp(u−i ∩ kC). We obtain a formula for dimC(γ̃−1(x)) as a corollary
of the following theorem.

Theorem 8.3. Let x ∈ u− ∩ pC be a generic element. Then,

dim ZGC
(x) =

Np∑
1

p2
i +

Nq∑
1

q2
j + 2

N∑
1

dim(QK,i/QK,i ∩QK,i−1)

= dim l + 2
N∑
1

dim(QK,i/QK,i ∩QK,i−1).(8.4)

Corollary 8.5. If x ∈ u− ∩ pC is generic, then dim γ̃−1(x) =
∑N

1 dim(QK,i/QK,i ∩QK,i−1).

Proof. On the one hand

dim γ̃−1(x) = dim(KC/QK) + dim(u− ∩ pC)− dim(O)

= dim(u−)− dim(O).(8.6)
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On the other hand, the dimension of the nilpotent KC-orbit O = KC(x) is half the dimension of
GC(x). Hence,

dim(O) =
1
2
(dim(gC)− dim(zgC

(f)))

=
dim(l)

2
− dim(zgC

(f))
2

+ dim(u−).(8.7)

Combining formulas (8.6) and (8.7), we get dim γ̃−1(f) = dim(zgC
(f))

2 − dim(l)
2 . Now, the formula

in Theorem 8.3 gives dim γ̃−1(f) =
∑N

1 dim(QK,i/QK,i ∩QK,i−1).
�

We begin the proof of Theorem 8.3 with two preliminary lemmas.

Lemma 8.8. Write qK = l + (u− ∩ kC), q1,K = l1 + (u−1 ∩ kC). Then,

dim(l) = dim(l ∩ l1) + 2 (p + q)−N.

Proof. By construction, dim(l) =
∑Np

1 p2
i +

∑Nq

1 q2
j , while dim(l∩l1) =

∑Np

1 (pi−1)2+
∑Nq

1 (qj−1)2.
Hence,

dim(l ∩ l1) =
Np∑
1

p2
i +

Nq∑
1

q2
j − 2 (

∑
pi +

∑
qj) + N

= dim(l)− 2 (p + q) + N.

�

Lemma 8.9. Starting from the partitions {pi} of p and {qj} of q, form the nilpotent element
f = f0 + f1 + . . . + fm as in the algorithm in Section 3. Set f ′ = f − f0 = f1 + f2 + . . . + fm. Then,

dim ZGC
(f) = dim ZG1,C

(f ′) + 2 (p + q)−N.

Proof. Associate to f the tableau that parameterizes the nilpotent KC-orbit through f . Let ai stand
for the number of rows in the tableau having at least i blocks. Then, by [7, Thm 6.1.], we know that
dim ZGC

(f) =
∑

a2
i . Similarly, since the tableau corresponding to the nilpotent orbit K1,C(f ′) is

obtained from that of f by removing a longest row, we have dim ZG1,C
(f ′) =

∑
(ai − 1)2. Thus,

dim ZGC
(f)− dim ZG1,C

(f ′) =
∑

a2
i −

∑
(ai − 1)2 = 2

N∑
1

ai −N = 2 (p + q)−N.

�

Proof of Theorem 8.3. We proceed by induction on the number of strings produced by the algorithm.
Assume first that our algorithm has produced only one string, i.e., f = f0. Without loss of

generality we can assume that qj = 1 for j = 1, 2, . . . , Nq = q. The tableau corresponding to the
nilpotent orbit KC(f) has a row of length N and p + q −N rows of length one. By [7, Thm 6.1.3]
we have

dim ZGC
(f) = (p + q −N + 1)2 + (N − 1).
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On the other hand, the right hand side of (8.4) is

Np∑
1

p2
i +

Nq∑
1

q2
j + 2 dim(Q1,K/Q1,K ∩QK)

=
Np∑
1

p2
i +

Nq∑
1

q2
j + 2 dim(u− ∩ l1)(8.10)

=
Np∑
1

p2
i + q + 2

∑
i<j

(pi − 1)(pj − 1).

However,

∑
i<j

(pi − 1)(pj − 1) =
∑
i<j

pipj −
∑
i<j

(pi + pj) +
∑
i<j

1

=
∑
i<j

pipj −
Np=N−q∑

1

(N − q − i)pi −
N−q∑

1

(j − 1)pj +
(N − q)(N − q − 1)

2

=
∑
i<j

pipj − (N − q − 1)
N−q=Np∑

1

pi +
(N − q)(N − q − 1)

2

=
∑
i<j

pipj − (N − q − 1)p +
(N − q)(N − q − 1)

2
.

(8.11)

Combining equations (8.10) and (8.11) we write the right hand side of (8.4) as

Np∑
1

p2
i +

Nq∑
1

q2
j + 2

N∑
1

dim(QK,i/QK,i ∩QK,i−1)

=
Np∑
1

p2
i + q + 2

∑
i<j

pipj − 2(N − q − 1)p + (N − q)(N − q − 1)

= (
∑

pi)2 + q − 2(N − q − 1)p + (N − q − 1)2 + (N − q − 1)

= [p2 − 2(N − q − 1)p + (N − q − 1)2] + N − 1

= (p + q −N + 1)2 + (N − 1) = dim ZGC
(f).

(8.12)

Therefore, the proposed formula (8.4) holds when the algorithm produces exactly one string.
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Next, assume that the dimension formula holds for f ′ = f1 + f2 + . . . + fm with m ≥ 1. By
Lemma 8.9, we know that

dim ZGC
(f) = dim ZG1,C

(f ′) + 2 (p + q)−N

= dim(l1) + 2
m∑
2

dim(QK,i/QK,i ∩QK,i−1) + 2 (p + q)−N

(by the induction hypothesis)

= dim(l1 ∩ l) + 2 dim(l1 ∩ u−) + 2
m∑
2

dim(QK,i/QK,i ∩QK,i−1) + 2 (p + q)−N

= dim(l1 ∩ l) + 2
m∑
1

dim(QK,i/QK,i ∩QK,i−1) + 2 (p + q)−N

(since dim(Q1,K/Q1,K ∩QK) = dim(L1/L1 ∩QK) = dim(l1 ∩ u−))

= dim(l) + 2
m∑
1

dim(QK,i/QK,i ∩QK,i−1)

(by Lemma 8.8).

We give a condition for QK to be transitive (or have a dense open orbit) on n−∩pC . See Theorem
8.14 and Corollary 8.21.

Lemma 8.13. Let x ∈ u− ∩ pC be generic. Then,

dim γ̃−1(x) = codimu−∩pC
QK(x) + dim ZKC

(x)− dim ZQK
(x).

Proof. This is a simple computation:

dim γ̃−1(x) = dim u− − dimO
= dim u− − dim kC + dim ZKC

(x)

= dim(u− ∩ pC)− dim qk + dim ZKC
(x)

(since dim kC = dim qk + dim(u− ∩ kC) and dim u− = dim(u− ∩ pC) + dim(u− ∩ kC))

= (dim(u− ∩ pC)− dim QK + dim ZQK
(x)) + (dim ZKC

(x)− dim ZQK
(x))

= (codimension QK(x)) + (dim ZKC
(x)− dim ZQK

(x)).

�

Let f be constructed by the algorithm in Section 3 and O = K(f).

Theorem 8.14. QK acts transitively on O ∩ (u− ∩ pC) if and only if QK ∩Q1,K acts transitively
on the set of generic elements in u−1 ∩ pC.

Proof. Assume that QK acts transitively on O ∩ (u− ∩ pC). Let x′ ∈ u−1 ∩ pC be a generic element
and form x = f0 + x′. By Proposition 4.13 we know that x ∈ u− ∩ pC is generic. Since QK is
assumed to act transitively on O ∩ (u− ∩ pC), we conclude that QK(x) = QK(f0 + x′) is open in
u− ∩ pC. Hence, the tangent space to the orbit QK(f0 + x′) at the base point f0 + x′ coincides with
u− ∩ pC. This implies that

(8.15) [q ∩ kC, f0 + x′] = Tf0+x′(QK(f0 + x′)) = u− ∩ pC ⊃ u−1 ∩ pC.

We show that QK ∩Q1,K(x′) is open in u−1 ∩ pC.
The Borel subalgebra b = hC + n− ⊂ q is determined by an array of numbered dots. The first

step of our algorithm determines f0 by choosing a first string. Let S be the set of labels of the
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dots in the array that are left after deleting labels of the first string. In particular, notice that
f0 is a sum of root vectors for roots εi − εj where neither i nor j belong to the set S. Moreover,
∆(g1,C, hC) = {εi − εj : i, j ∈ S}. The set S determines a decomposition

q ∩ kC = q ∩ g1,C ∩ kC + vo + v1

where

∆(q ∩ g1,C ∩ kC) = {εi − εj : i, j ∈ S} ∩∆(q ∩ kC)

∆(v0) = {εi − εj : i, j /∈ S} ∩∆(q ∩ kC)

∆(v1) = {εi − εj : exactly one of i, j belongs to S} ∩∆(q ∩ kC).

Observe that,

(8.16) [v0 + v1, f0 + x′] ⊂ span{Xγ : γ = εi − εj with at most one of i and j ∈ S}.

If Xβ is a root vector in u−1 ∩ pC, then β = εi − εj with i, j ∈ S and, by inclusion (8.15),

Xβ ∈ [q ∩ kC, f0 + x′] = [q ∩ g1,C ∩ kC, f0 + x′] + [v0 + v1, f0 + x′].

Now, the observation (8.16) and the description of the root β imply that Xβ ∈ [q∩g1,C∩kC, f0 +x′].
Hence,

u−1 ∩ pC ⊂ [q ∩ g1,C ∩ kC, f0 + x′] ⊂ u−1 ∩ pC,

i.e Tx′ [Q1,K ∩ QK(x′)] = u−1 ∩ pC and Q1,K ∩ QK(x′) is open in u−1 ∩ pC. Since x′ is an arbitrary
generic element in u−1 ∩ pC, we conclude that Q1,K ∩ QK acts transitively on the set of generic
elements in u−1 ∩ pC.

For the converse, let x be generic in u− ∩ pC and let f = f + f ′, f ′ =
m−1∑
i=1

fi as constructed by

the algorithm of Section 3. By Proposition 4.13 there exist q ∈ QK and qi ∈ Qi,K so that x =
qq1 · · · qm−1(f0 +f ′). Since each qi commutes with f0), q−1x = f0 +x′, where x′ = q1 · · · qm−1(f ′), a
generic element of u−1 ∩pC. Now assume QK ∩Q1,K is transitive on the generic elements of u−1 ∩pC.
Then,

(8.17) dim(Q1,K(x′)) = dim((QK ∩Q1,K)(x′)) = dim(u− ∩ pC).

Therefore it suffices to show that QK(x) = QK(f + x′) has codimension zero in u− ∩ pC.
By Lemma 8.13 and Corollary 8.5 applied to x′ ∈ u− ∩ pC, along with (8.17),

(8.18)

0 = codimu−1 ∩pC
(Q1,K(x′)) =

m−1∑
i=2

dim(Qi,K/Qi,K ∩Qi−1,K)−
(

dim ZK1,C
(x′)− dim ZQ1,K

(x′)
)
.

Also, by (8.17),

dim(Q1,K/(Q1,K ∩QK)) = dim Q1,K − dim Q1,K ∩QK

= dim ZQ1,K
(x′)− dim ZQK∩Q1,K

(x′).
(8.19)

Applying Lemma 8.13 and Corollary 8.5 for the first equality and (8.18) and (8.19) for the second,
we have

codimu−∩pC

(
QK(f + x′)

)
=

m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K)−
(

dim ZKC
(x)− dim ZQK

(x)
)

=
(
ZK1,C

(x′)− dim ZQ1,K∩QK
(x′)

)
−

(
dim ZKC

(x)− dim ZQK
(x)

)
.

(8.20)

Since
ZK1,C

(x′)/ZQ1,K∩QK
(x′) → ZKC

(f0 + x′)/ZQK
(f0 + x′)
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is injective, we may conclude that the right hand side of (8.20) is less than or equal to zero. Therefore,
codimu−∩pC

(QK(f + x′)) = 0, and the proof is complete.
�

Corollary 8.21. QK has an open orbit in u− ∩ pC if and only if Q1,K ∩QK has an open orbit in
u−1 ∩ pC.

We conclude this section with an example of how Corollary 8.21 produces a situation where QK

does not have an open orbit in u− ∩ pC.

Example 8.22. Let G = SU(7, 7) and let hC be the diagonal Cartan of gC = sl(p+q,C) as in Section
3. Consider the positive root system ∆+ = ∆+(gC, hC) determined by the following numbered array,
and the first string formed by the algorithm,

•1 •2 •3
vvmmmmmmm •4

uukkkkkkkk •5 •6
||xxx

•7

•8

jjUUUUUUUUUU •9 •10

ggOOOOO
•11 •12

hhRRRRRRR
•13

jjUUUUUUUUUU •14

Equivalently, ∆+ is the positive system of roots having positive inner product with

(14, 13, 10, 7, 6, 4, 3|12, 11, 9, 8, 5, 2, 1).

Apply the algorithm in Section 3 to produce the first string. After deleting the first string the
resulting array is

•2 •5 •7

•9 •11 •14
Thus, g1 = su(3, 3) and QK ∩ K=B1 is a Borel subgroup of K1. Moreover, dim(kC ∩ b1) = 11

while dim(u−1 ∩ pC) = 9. An arbitrary element X in u−1 ∩ pC is of the form

X = aX9,2 + bX11,2 + cX14,2 + dX14,7 + eX5,11 + fX14,5 + gX5,9 + hX7,9 + iX11,7.

We claim that KC ∩ B1(X) is not dense in u−1 ∩ pC for any X ∈ u−1 ∩ pC. Indeed, when a 6= 0,
then zkC∩b1(X) contains

aX5,2 + fX14,9, aX7,2 + dX14,9; aX14,11 − bX14,9.

We then conclude that dim(KC ∩ B1)(X) ≤ 8 < dim(u−1 ∩ pC) = 9. When a = 0, the argument is
slightly different; X9,2 /∈ [kC ∩ b1, X] (as is easily checked). But, [kC ∩ b1, X] is the tangent space
to (KC ∩ B1)(X) at X, so dim((KC ∩ B1)(X)) < dim(u− ∩ pC). This proves the claim. Now,
Proposition 8.14, implies that QK has no open orbit in u− ∩ pC.

The orbit structure of QK on the generic elements in u−∩pC may be described as follows. Assume
that x ∈ u− ∩ pC is generic. By Corollary 8.5, we know that dim γ̃−1(x) = dim L1/(L1 ∩QK) = 2.
Hence, by Lemma 8.13, the only possible dimensions of the QK-orbits in KC(x)∩ pC are 47, 48 and
49. We have just argued that no orbit has dimension 49.

Observe that L1 = L1
1 × L2

1 is the product of two commuting copies of GL(2,C) (generated by
the roots ±{ε7 − ε5, ε11 − ε9}). By using the Bruhat decompositions of the subgroups Li

1, i = 1, 2
one sees that the QK-orbits in the generic elements of u− ∩ pC are as follows. Orbits of dimension
47:

QK(f), QK(exp(X9,11) · f), QK(σ5,7 exp(X9,11 · f),

and orbits of dimension 48:

QK(σ5,7 · f), QK(σ9,11 · f), QK(σ5,7σ9,11 · f), QK(exp(X5,7) · f), QK(exp(X5,7)σ9,11 · f),

QK(exp(X5,7 exp(sX9,11), s ∈ C (an infinite family).
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KC(x) ∩ pC = QK(f) ∪QK(exp (X9,11)f) ∪QK(s9,11f) ∪QK(s9,11exp (X5,7)f) ∪QK(s5,7f)

∪QK(exp (X9,11)f) ∪ ∪s∈CQK(exp (X5,7) epx (sX9,11) · f) ∪QK(s9,11s5,7f)

with s9,11 and s5,7 the non-trivial Weyl group elements of the respective copies of GL(2,C).

Appendix A. Real distinguished orbits

In this appendix we show that the associated variety of any discrete series representation of
SU(p, q) is the closure of distinguished real nilpotent orbit. This seems to be known by the experts,
but no proof has appeared. We give a proof here because it follows very directly from our algorithm.

Definition A.1. A nilpotent element E ∈ g is said to be R-distinguished if E does not lie in
a Levi subalgebra of a (proper) parabolic subalgebra of g. A nilpotent orbit Ω in g is called R-
distinguished if Ω does not meet the Levi component of a (proper) parabolic subalgebra of g. (So,
Ω is R-distinguished if and only if each element of Ω is R-distinguished.)

We remark that an element in the complex Lie algebra gC is distinguished means that it does not
lie in a Levi component of a parabolic in gC (see [7, page 121]). Thus E ∈ g is distinguished implies
E is R-distinguished. However, the converse fails.

Lemma A.2. Let E be a nilpotent element in g and {E,H, F} a standard basis for a subalgebra of
g isomorphic to sl(2,R). Then E is R-distinguished if and only if ZG(E,H, F ) is compact.

Proof. We may assume that the triple {E,H, F} satisfies θ(H) = −H and θ(E) = −F . Then, since
the triple is θ-stable, the centralizer decomposes as

zg(E,H, F ) = zk(E,H, F )⊕ zp(E,H, F ).

Therefore, ZG(E,H, F ) is noncompact if and only if zp(E,H, F ) is nonzero. However, the centralizer
of a nonzero element of p is a Levi subalgebra of a proper parabolic subalgebra of g. Therefore, if
the centralizer is noncompact, then the orbit is not R-distinguished. Conversely, if the orbit is not
R-distinguished then some element of Ω lies in a Levi subalgebra of a proper parabolic subalgebra.
By conjugating in G we see that some E′ in Ω lies in the centralizer of some nonzero X ∈ p.
Then, inside the centralizer of X (a reductive group), E′ is part of a triple {E′,H ′, F ′}. Therefore,
X ∈ zp(E′,H ′, F ′), so ZG(E,H, F ) is noncompact. �

In order to see that the associated variety of a discrete series is the closure of an R-distinguished
orbit we will need to consider the Sekiguchi dual of a real orbit. For this let us write the triple
{e, h, f} for the Sekiguchi dual of {E,H, F}. We assume that θ(H) = −H and θ(E) = −F . Then

e =
1
2
(H − i(E + F ))

f =
1
2
(H + i(E + F ))

h = i(E − F )

Observe that the two triples have the same centralizer z in gC (as they span the same complex
subalgebra, which we will call s). Since z is stable under both the complex conjugation and the
Cartan involution, we have

z = zk(s)⊕ izk(s)⊕ zp(s)⊕ izp(s).

Let S be the subgroup of GL(p + q,C) with Lie algebra s = spanC(E,H, F ) = spanC(e, h, f).
Consider the the representation of Z2 o S on Cp+q. The algorithm has the property that for any
isotypic subspace for the S-representation, all highest weight vectors (i.e., annihilated by e) lie in
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either Cp × {0} or in {0} × Cq. If F were not distinguished then there would be some nonzero
X ∈ zp(s). Since X maps Cp × {0} to {0} ×Cq (and {0} ×Cq to Cp × {0}), X must be zero on
each highest weight vector. Since X commutes with S, X must be zero. This is a contradiction. We
have proved the first part of the following theorem.

Theorem A.3. The associated varieties of the discrete series representations of SU(p, q) are the
closures of R-distinguished orbits. Every R-distinguished orbit is the associated variety of some
discrete series representation.

The second part follows by induction on the number of strings (or the number of rows in the
tableaux). It is convenient to use the characterization of R-distinguished in terms of the tableaux: a
nilpotent orbit is R-distinguished if and only if all rows of a given length begin with the same sign.
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