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REPRESENTATIONS FOR SU(p, q)
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1. INRODUCTION

The characteristic cycle of an irreducible admissible representation is an important invariant of
the representation. This invariant consists of a the closure of several nilpotent orbits (the associated
variety) along with integers (the multiplicities). In this article we consider discrete series represen-
tations of the group SU(p,q). It is known that the associated variety is the image of a moment
map v (see (2.2)) and the multiplicity is the dimension of a cohomology space on the fiber of 7. We
present an algorithm for computing the associated variety and, more importantly, for describing the
fiber of the moment map in a simple way. This description of the fiber can be used to compute the
multiplicities. An effective algorithm is given in Section 6 for computing the multiplicities.

Assume that G is a connected real semisimple Lie group with Lie algebra g and maximally
compact subgroup K. Write K¢ and gc for the complexifications of K and g respectively. Assume
that 7 is an irreducible admissible representation of G on a Hilbert space H. An important invariant
attached to  is its distributional character ©,. In the early 1980’s Barbasch and Vogan [1] showed
that 6, (the pullback of ©, by the exponential map to a neighorhood of the identity in g) has an
asymptotic expansion at 0 which is a sum of homogeneous tempered distributions on g. Its leading
term is of the form

(1.1) > cifia,

where the Q; C g* are nilpotent G-orbits and fiq; is the Fourier transform of the Liouville measure
on §2;. Call ¢; the analytic multiplicity of V' at Q; and write ¢; = multanaiytic(m, €2;). The leading
term (1.1) can be called the ‘wave front cycle’ and is an invariant of w. This analytically defined
multiplicity coincides with an algebraically defined multiplicity ([18]), which is defined in terms
of Kg-orbits in pc. The multiplicity is very difficult to compute from both the analytic and the
algebraic points of view. See, for example, [12].

The starting point for our method is a formula of J.-T. Chang for the characteristic cycle of a
discrete series representation. It is well-known in this case that the associated variety is the closure
of a single nilpotent K¢-orbit Kc(f) in pc. Chang’s formula for the multiplicity is expressed as the
dimension of a cohomology space

(1.2) H (Y7 (f), Op),

where ~y is the moment map. Explicit formulas, applying 1.2 were found for the holomorphic discrete
series and for discrete series representations of groups of real rank one. See [4] and [6]. The key is
an understanding of the fiber of the moment map, which, in these special cases is given by easily
described homogeneous spaces. In general the structure of y~1(f) is difficult to understand.

Our algorithm does the following. The discrete series are parameterized (up to K-conjugacy)
by regular weights A € h§ satisfying an appropriate integrality condition. Such a regular weight
determines a positive system of roots A;\r(gc, he). This positive system determines a Borel subal-

gebra by = ho + n. The Kg-orbit (having closure equal to the associated variety) has the property
1
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that Kc(f) N (nNpe) is (Zariski) dense in n N pe. We give a simple algorithm which determines a
convenient base point f (in terms of root vectors) for the associated variety. The key feature of this
algorithm is that a useful expression for y~1(f) results. In particular reductive groups L, ..., Ly,
are specified so that

Y UNf) = Lyn ... LaLi(by) C Z.

Here Z = K¢(by), a closed Kc-orbit in the flag variety for G¢. Then the cohomology space (1.2)
is given by

(1.3) HO(vY(f),0,) = spang{Ly, ... LoL1 L -w_,} C W_,,,

where W_,, is the irreducible representation of K¢ (of lowest weight —u) which is isomorphic to the
lowest K-type of the discrete series. As the groups L; are easily described in terms of the positive root
system Ay (gc, he), there is an algorithm to compute the multiplicity from (1.3). The algorithm uses
not much more than the branching law for restricting finite dimensional representations of GL(n) to
GL(n —1). This algorithm is described at the end of Section 6 and examples are given in Section 7.
Incidentally, one may conclude from (1.3) and the work of Yamashita ([19]) that (1.3) is the isotropy
representation ([18, Section 2]). The action of the centralizer of f is clear from Section 5.

In [16] an algorithm is given to compute the associated varieties of a A4(\) representations of
classical groups in terms of the tableaux describing the nilpotent orbits. In [19] a method for
constructing the isotropy representation is developed. The polynomials giving multiplicities are
studied in [11] and [12]; computation of the multiplicities is also discussed.

Our study of the moment map yields some interesting facts. As mentioned above, the character-
istic variety is the closure of an orbit Kc(f) having the property that Kc(f) N (nNpc) is dense in
nNpc. It is natural to ask if the Borel subgroup BN K¢ acts with an open orbit on Kc(f)N(nNpc).
The answer is no in general ([15]). However, one may also ask the following question. Let q be the
parabolic subalgebra of go containing b defined by q = [+ u with A(I) spanned by the simple com-
pact roots in A:\"(gc, hc), and let @ be the corresponding parabolic subgroup of G¢. Then Q N K¢
acts on nNpc. Does @ N K¢ have a dense orbit in Ka(f) N (nNpc)? Again the answer is no in
general. In Section 8 we give a condition, in terms of the algorithm of Section 3, for determining
when there is a dense Q N Kg-orbit in Ke(f) N (nNpc). An example in SU(7,7) is given for which
there is no such dense orbit.

We thank D. Barbasch, H. Ochia and P. Trapa for useful conversations. We also thank H.
Yamashita for showing us an example which greatly influenced this paper.

2. THE CHARACTERISTIC CYCLE

For this section let G¢ be a connected complex semisimple Lie group and G C G¢ a real form.
Let the Lie algebra of G¢ (resp. G) be denoted by g¢ (resp. g). Choose a Cartan involution 6 of g
and let g = €+ p be the corresponding Cartan decomposition. The complexifications of £ and p are
denoted by tc and pc. The connected subgroup of G¢ with Lie algebra ¢ is denoted by K¢. The
nilpotent cone in g¢ is denoted by N. Now set N\g = N Ngand Ny =N Npc.

The wave front cycle described in the introduction has an algebraic counterpart. If (V,7) is
an irreducible admissible representation, then the K-finite part of V is naturally a (U(gc), Kc)-
module, where U(gc) is the universal enveloping algebra of gc. With respect to the usual filtration
by degree, the graded algebra gr(U(gc)) is just the symmetric algebra S(ge). In [18], Vogan defines
a notion of “good filtration” on the Harish-Chandra module of V. The associated graded object
gr(V) turns out to be a finitely generated module over gr(U(gc))/tcgr(U(ge)) ~ S(pc). Regarding
S(pc) as the polynomial ring on pg, invariants of the Harish-Chandra module of V' are defined via
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commutative algebra theory. In particular, the characteristic cycle of V', Ch(V), is the support with
multiplicity of gr(V) in pg& ~ pc. While gr(V') depends on the choice of the good filtration, Ch(V)
is a well-defined invariant. The cycle Ch(V) is closed, Ad(K¢)-invariant and lies Ny. As K¢ acts
on Ay with a finite number of orbits, Ch(V) is a union of the closures of finitely many nilpotent
Kc-orbits (in fact, all having the same dimension) in Ny. Then the characteristic variety is written
as a formal linear combination of these orbits with integer coefficients:

Ch(V) = Z Hllﬂtalgebraic(va Oz) @v

where O; are K¢-orbits in pc. The integers multalgebmic(V, O;) are the multiplicities in the charac-
teristic cycle of V' at O;.

Vogan conjectured that the wave front cycle and the characteristic cycle are related. Recall that
there is a one-to-one correspondence, referred to as the Sekiguchi correspondence, between G-orbits
in Nr and Kc-orbits in AVy. The relationship between the two types of cycles was proved by Schmid
and Vilonen. Their result is the following.

Theorem 2.1 ([14]). Let (V,7) be an irreducible admissible Harish-Chandra module and let © C
Nr and O C Ny be nilpotent orbits which are paired under the Sekiguchi correspondence, then
muuanalytic(‘/a Q) = mu“algebraic(‘/a O)

Therefore, the problem of computing the multiplicities can be addressed in the algebraic setting.

The representations we wish to consider are the representations in the discrete series. Therefore
we assume that rank(G) = rank(K). This means we may choose a Cartan subalgebra hc of gc
which is a Cartan subalgebra of £c. Fix AT = AT (¢c, hc), a positive system for the roots of hc in
tc. Write p, for one half the sum of the roots in AT.

Let X be the flag variety of gc, i.e., X = {b: b is a Borel subalgebra of gc}. The closed K¢-
orbits in X are in one-to-one correspondence with with the positive root systems AT = A+ (g, o)
containing A}. In particular, given such a positive system there is a Borel subalgebra b = hc +n~
with —AT = AT (n™,hc). Then the corresponding closed Kg-orbit in X is Z = K¢ - b. Write p for
one half the sum of the roots in A*. The family {m)} of discrete series representations associated
to Z (equivalently, associated to A™) is parameterized by A € h§ satisfying (i) A is regular and
AT-dominant and (ii) A — p is analytically integral. The infinitesimal character of 7, has Harish-
Chandra parameter A and the lowest K-type has highest weight A 4+ p,, — p. (where p,, = p — p.).
Considering all of the closed K¢-orbits Z in X, this gives a parameterization of the representations
in the discrete series.

The main result on characteristic cycles for the discrete series representations is stated in terms of

the moment map as follows. Write the conormal bundle of Z in X as TH(X) = Kc X (n~ Npg)
KcnNB
and observe that the moment map + restricted to T5(X) is

v:Kc x (0" Npc)— gc
KcnNB

C

A(k,Y)) = k- Y.

It is well-known that v(7% (X)) is a closed irreducible subvariety of Ny, Indeed, (7% (X)) is the
closure of a single nilpotent Kg-orbit in pc.

(2.2)

Definition 2.3. We say that an element f € n™ Npc is generic in n~ Npc if and only if v(T5 (X)) =
Kc(f).

When f is generic in n™ N pg, the closure O = v(T%(X)) of the orbit O = K(f) is an invariant

of 7y called the associated variety of my. We write Av(my) = O.
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Theorem 2.4. ([6]) Let m) be a discrete series representation of G corresponding to a closed K¢-
orbit Z in the flag variety X. Let f € n~ Npc be generic. Then,

Ch(my) = dim(H" (Y7 (f), La-potpn ly-1()) - 7(T2(X)).

An important observation is that yv~!(f) may be identified with a (closed) subvariety of Z. To
see this, suppose f € n~ N pc is generic and define

Nko(f,n” Npe)={k€ Kc:k-fen Npc}.

The fiber of the moment map is given by

(2.5) YU =k Y) € TH(X) 1 kY = f}
={(kk7 - )k - fen Npc)
~{k-b:k'-fen Npc}
= (Nko(fin™ Npe)) ™t -bC Z

3. ASSOCIATED VARIETY OF w) WHEN G = SU(p, q)

In this section we give an algorithm for finding Av(ry) for the indefinite unitary groups. This
algorithm is given in terms of AT, the positive system of roots determined by 7 as above. Other
algorithms are available that associate to discrete series representations the nilpotent orbit O with
Av(my) = O. See for example [2], [16] and [19]. However, it is important for us that our algorithm
allows us to give a description of the fibers y~1(f) of the moment map. An elementary proof that
the algorithm does in fact result in a generic element in n~ N p¢ is the contained in Section 4. The
description of the fiber y~1(f) is given in Section 5

From now on we assume that G = SU(p, q). We use the realization

G ={9 € Muig)x(p+0)(C) : 91p,q9~" = Ipq,det(g) = 1} where

I 0
foa = (67 _Iq) '

The Cartan involution is chosen to be § = Ad(I, ). Let hc C £ be the diagonal Cartan subalgebra
and let €; € h§ be, as usual, so that the roots of hc in gc are given by A(gc, he) = {e;—€; = i # 5}
As in Section 2, fix once and for all AT = AT (tc,bhc) ={e; —¢; :1<i<j<porp+1<i<
j < p+q}. For each positive system AT containing AT there is a Borel subalgebra b = hc +n~
having nilradical spanned by the negative root vectors. The closed Kc-orbit Z = K¢(b) is therefore
determined, as is a family {m)} of discrete series representations.

We use the following well-known properties of Av(my) = O:

(1) On(n~ Npc) is open and dense in n~ N pc and

(2) O is the unique largest dimensional nilpotent Kc-orbit that intersects n™ Npc non-trivially.
In order to implement Theorem 2.4, we need an algorithm that picks a “convenient” base point f
in O from AT. We also want to identify O by means of a signed tableau.

Before describing the algorithm it is convenient to recall a parameterization of nilpotent K ¢-orbits
in pc for the group SU(p, q); see for example [2] and [3]. Let {e, h, f} be an sl(2)-triple so that
0(e) = —e, 0(f) = —f and O(h) = h. Consider the group Z3 x SL(2, C) where the non-trivial element
of Zy acts on {e, h, f} as 0 does. Irreducible representations of SL(2, C) extend in two inequivalent
ways to representations of Z; x SL(2,C) according to whether 6 acts by +1 on the lowest weight
vector. Define the signature of a (not necessarily irreducible) representation m of Zy x SL(2,C) to
be the pair of integers (ay,a_) where ay is the dimension of the £1 eigenspace of § in the kernel of

m(f)-
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Extend the representation of SL(2,C) on C”? to a representation of Zy x SL(2,C) so that the
action of the nontrivial element of Zy is by I, ,. Define ay(f7) to be the dimension of the +1
eigenspace of I, ; on the kernel of m(f7). Write a(f7) = a4 (f7) + a—(f7) for the dimension of the
kernel of 7(f7). Decompose C*t? = @V} into irreducible Z x SL(2, C) representations and let &;
the eigenvalue of 6 on the lowest weight vector of V;. The nilpotent orbit Kc(f) is parameterized
by the tableau with rows having lengths equal to the dimensions of the irreducible representations
V; and alternate signs +’'s and —’s starting with the sign of §;. It is then clear that the number of
+ signs in the first column is ax (f).

Theorem 3.1. ([8]) Two nilpotent elements f and f’ are Kc-conjugate if and only a4 (f7) =
ax(f"7), for every j. The relation O(f’) C O(f) holds if and only if for every j

ar(f7) = ap(f7) and  a_(f7) > a_(f).
Lemma 3.2. A nilpotent element f is generic in w~ Npg if and only if for all j
ay(f) = min{ay (f7) : f € ATH(X))} and
a_(f7) = min{a_(f7): f' € v(T7(X))}

Proof. An element f is generic if and only if v(75 (X)) = Kc(f). Thus, f is generic if and only if

Kc(f') € Ke(f) for any other f' € v(T5(X)). The lemma now follows from Theorem 3.1. O

We next describe an algorithm which specifies a convenient generic element f in n™ Npc.
The algorithm. There is a one-to-one correspondence between positive systems AT (gc, hc) con-
taining AT and ordered sequences of integers (p1, g1, p2, - - -, Pr,qr) S0 that

Yp; = p and Xg; = q,
(3.3) Di, q; are non-negative integers and
p; >0fori=2,3,...,rand ¢g; >0for j=1,2,...,r — 1L

Starting with such a sequence we form an array

1. .- Oy Op1+1 -+ Opi+po

®p+1 - Opta ®ptqitl - ®ptaitan
We call a sequence of consecutive labeled dots in the array a block. Therefore, the blocks in the
upper row have p; dots and those in the lower row have ¢; dots. The simple compact roots are the
roots €; — €;41 with (7,74 1) indexes of dots that belong to the same block. The simple non-compact
roots are the roots €; —€; with ¢, j indices of consecutive dots that lie in different rows, and so that i
precedes j when reading the array from left to right. Thus, the simple non-compact roots correspond
to the “jumps” between the rows. Here is an example. The array
® o e3 04
*5 ° o7 ez &g
determines the Dynkin diagram
oO———o——O0— @& — O—— O——O

-2 25 53 34 46 67 78 89

where i — j means the root ¢; — ¢; (and the blackened nodes correspond to noncompact simple
roots).

Our algorithm is as follows. From the sequence {pi1,q,...,pr, ¢}, form an array as above.
Second, form a string consisting of diagonal lines connecting the first dots in each pair of consecutive
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blocks. Define a nilpotent element fy of n= N p as follows. Let So = {i1,ia,...,in} be the set of
indices of dots which the string passes through, ordered from left to right. Then

N
(3.4) fo=> Xi i,
s=2

where X ; is the matrix which is a root vector for €; — €; with a one in the (7,7) place. In the
example, we have

o1<02\.5/03&.6

Third, omit the dots that are vertices of the drawn string and repeat the procedure. The procedure

o7 o3 ®9

is continued until no more diagonals can be drawn. In the example, we have

W‘ﬁ\%

o7

o

®9
Note that as the dots in the most recent string are omitted, a new array is formed. For example,
to choose the second string in the example we omit the dots numbered 1, 5, 3, and 6 to get
o ey
°7 o3 &g
Each string corresponds to a sum of root vectors in n= N pc. In the example, we have
Jo=(Xs51+ X35+ X63), f1 = X72 and fo = Xg 4.

Set
f=fo+fi+...+ fimn_1, with m equal to the number of strings.

Theorem 3.5. Let {p1,q1,p2,--.,Dr,qr} be a sequence satisfying (3.3). Let AT (gc,hc) be the
positive system determined by the sequence {p1,q1,02,92,-..,0r,qr} and let b = hc ® n~ be the
corresponding Borel subalgebra. Set Z = Kc(b) and let f € n~ Npc be the nilpotent element built
by the algorithm. Then, Kc(f) = v(T5 (X)), i.e, f is generic inn™ Npc.

We will prove this theorem in Section 5.

Proposition 3.6. Let {p1,q1,p2,q2,-..,Pr, G-} be a sequence satisfying (3.3) and f = fo + f1 +
..+ fin_1 as constructed by the algorithm. Let t be the number of dots that do not belong to
any of the strings built by the algorithm. The signed tableau corresponding to the nilpotent Kc-
orbit Kc(f) has m +t rows. If 1 < i < m, then the length of the i-th row in the tableau is
the number of dots occurring in the i-th string built by the algorithm. If the i-th string ends at a
point in the top row of the array, then the i-row of the tableau has alternating signs starting with
+. Otherwise, the i-row of the tableau has alternating signs starting with —. The remaining t rows
have length one and their corresponding signs are so that the total number of + signs in the tableau
is p and the total number of — signs is q.

Proof. To prove the Proposition observe that for each string, f; is a principal nilpotent element in a

subalgebra s((d;, C) where d; is the number of dots in the corresponding string. Starting with f; it

is possible to form an s[(2)-triple {f;, h;,e;} so that h; € hc and e; = Z g, X,
{(k,l): X roccurs inf;}

with non-zero coefficients ay ;. Since the sl(d;)’s commute, {f,h =) hj,e =) e;} spans a copy of

s[(2). Let SL(2,C)y be the Lie subgroup of SU(p, q) whose Lie algebra is this copy of s[(2). It is
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clear that the standard basis vectors e; € CP*9 are weight vectors for the action of Zy x SL(2,C);
on CP*4. We may conclude

(1) the dimension of the non-trivial irreducible subrepresentations of CP*? are given by the
number of dots in the corresponding string,

(2) the lowest weight vector of an irreducible subrepresentation is e, where k is the label of the
last dot in the corresponding string,

(3) the trivial subrepresentations are spanned by the ¢ vectors ey so that no dot contained in
any string has label k.

O

In our example the tableau corresponding to Kc(f) is

- +]

+
- |+
+

In order to prove Theorem 3.5 we need some preliminary results on generic elements in n~ N pc.
The following definitions are important in what follows.

Definition 3.7. Starting with A% (gc, hc), let S be the set of simple compact roots and let (S) be
the set of roots generated by S. Define a parabolic subalgebra of gc by

g=1ou Db withl=heo Z g and u” = Z g
aE(S) aEAT—(S)

Denote the connected subgroups of G¢ corresponding to g, (resp., [) by @ (resp., L). Observe that
L C K¢ and that n™ Npc =u~ Npc. Let Qi be the parabolic subgroup @ N K¢ of K.

Start with a sequence {p1,qi,...,pr, qr} satisfying (3.3). This sequence determines an array
and a positive system AT(gc,bc). Use the algorithm to produce the first ¢ strings and delete
the vertices of these strings from the array, keeping the numbering of the untouched dots. The
resulting array determines a Dynkin diagram corresponding to a subalgebra g; isomorphic to some
su(p}, q;) C su(p,q). In particular, the new array defines a Borel subalgebra b, =bN g, ¢ of g; c.

Let S; be the set of simple compact roots in the Dynkin diagram of g; ¢ C sl(p + ¢, C) and let
(Si) be the set of roots generated by S;. Define parabolic subalgebras of g; ¢ by

qi:[i@ui_)bi, with [; = b @ Z ga.
a€e(S;)

Denote the connected subgroups of G¢ corresponding to ¢; (resp., l;, u; resp.) by Q; (resp., L;,
Uz) Let QZ}K = Qz NKcg.

Remark 3.8. The following properties follow easily.

(1) @k normalizes n~ N pc.

(2) L; C K¢ and u, Npc =gicnN (n~ Npe).

(3) It is not always the case that qN g, c = q;.

(4) Observe that, by construction, u; C u;_;.

(5) Writing f = E;-”:Blfj as in the algorithm, Q; - fx = fx for all k =0,1,...,7— 1.
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4. GENERIC ELEMENTS.

Let {p1,q1,p2,q2,---,Pr,qr} be a sequence satisfying (3.3). From now on we assume without
loss of generality that p; # 0. (See Remark 4.14.) Let {e1,es,...€ep4q} be the standard basis of
CPH,. Let f = fo+ g with g = f1 + ... + fm_1 be the nilpotent element built by the algorithm
and form the s((2)-triple {e, f,h} with e and h as in the proof of Proposition 3.6. Let (m, CP™?)
be the representation of Zs x SL(p + ¢, C) for which the nontrivial element of Zs acts by I, , and
SL(p+ ¢, C) acts by the standard representation of SL(p + ¢, C) on CP*4.

Each element f; corresponds to a string in the array given by the sequence {p1,q1,p2, ..., Dr,qr}.
If Ay is the set of indexes labeling the vertices of the string corresponding to fy, then we set
N = #{A;}. An argument similar to that in the proof of Proposition 3.6 leads to the following
Lemma.

Lemma 4.1. Let f = fo + g be as above. Let Vo = spanc{e; : j € A;} € CP9. Let SL(2,C);
correspond to the triple {f,e,h}. Under the action of Zo x SL(2,C), CPT9 splits into invariant
subspaces as CPT4 =V & Wy in such a way that

T(fo)lwo =0 and 7(g)lv, =0
m(fo)Vo Vo and w(g)Wy C Wh.

Remark 4.2. If Y € n~ Npc, then we can write Y = Y7 4+ Y5 with Y7 upper triangular and Y5 lower

triangular. In other words, Y7 in the span of the roots spaces g, so that

(i,7) €{(4,7) :p+1<j<p+q and i > p; + 1}U
U {6, )):p+a+qe+...an+1<j<p+a+q@+...qpr1and i >p1+...+pry1+1}

and Y3 is in the span of the roots spaces g, so that

(4,7) €{(4,4) : 1 <j<prandi>p+1}U
Ue{,9) i+ o+ +1<i<pi+...4+prrrandi>p+aq +...+q + 1}

(0 Y] (0 0
Y1<0 0> andY?(Yg 0>’

v\ Yl/ ) (%} p+q
(YY) <v2> = <Y2’ . U1> ,  where <v2> e CP™1,

The following gives a flag which defines the parabolic subgroup @.

Moreover, writing

we have

Definition 4.3. For j =1,...,r, define

Unj—1 = span {e; : (] 'pp) +1<i < Sipp}
Uy =span {e; :p+ (5 'qe) +1 <0 <p+ (Digr)}

N
F, = @ul.
1=k

Proposition 4.4. (1) IfY e n” Npc, then n(Y)(Fy) C Fry1 and 7(Y*®)(Fr) C Fgs-
(2) If Y € n” Npg, then n(YN=KN)(F,) = 0. In particular m(YN) = 0.
(3) The spaces Fy, are preserved by the Qx-action.
(4) The stabilizer of the flag C*P*" = F} D F, D F3 D ... Fy 2 Fyy1 = {0} is Q.
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Proof. Part (1) of the proposition follows from the Remark 4.2 and the fact that 7(X; )e; = &, je;.
Part (2) is obvious since 7(YVN=F+1)(F,) € Fyy1 = 0. Part (3) is a consequence of the definition
of the flag. To show part (4) observe on the one hand that the stabilizer of the flag is a parabolic
subalgebra of SL(p + ¢, C) with Levi component S(l;[ GL(p;,C) x GL(g;,C)). On the other hand,

by (1) and (3), @ is contained in the stabilizer. O

Lemma 4.5. Assume thatY € n~ Npg is so that Kc(f) C Ke(Y). Form an sl(2)-triple {X, H,Y }
with X € pc and H € tc and denote by SL(2,C)y the copy of SL(2, C) with Lie algebra {X, H,Y }.
Then CP*9 has a Zy x SL(2, C)y -irreducible constituent of dimension N.

Proof. By Proposition 4.4, (YY) = 0. Hence, C**? admits no constituent of dimension greater than
N. Assume that CP™7 = R1 @ ...® R, where R; are Z, x SL(2, C)y-irreducible subrepresentations.
If max;{dim(R;)} = N’ with N’ < N, then dim(Ker (Y"')) = p 4 ¢. On the other hand, since
Zy x SL(2,C); admits an irreducible subrepresentation of C*™ of dimension N, dim(Ker(fN")) <

p + ¢. This is a contradiction to the assumption that Kc(f) C Kc(Y), by Theorem 3.1. O

Continue with Y as in the lemma. Decompose C**? under the Zy x SL(2, C)y-action as CPT7 =
Vn @ W with Vi irreducible of dimension N. Denote by vy the highest weight vector of V. The
set {vo, T(Y)vg,...,m(YVN"Hug} is a basis for Vy.

Lemma 4.6. For each k, F, = (F, NVy) @ (F "W).

Proof. Write v € Fj, as v = vy + w with vy = Z;V;Ol ajw(Yj)vo € Vy and w € W. We need to
show that vy and w belong to Fj. It is enough to show that vy € F}.
Observe that 0 = 7(YVN " 1)y = (YN )y + 7(YV " D)w, s0 0 = a(YVNFH)oy =

25;02 ajm(YN=FF1+3) g, Since the vectors {vg, m(Y)vo,...,m(Y¥"1)vg} are linearly independent,
we have a; = 0 for all j < k —2. Thus, vy = Zjvz;l_l a;m(Y9)vg lies in Fg, by Proposition 4.4
(1). O

Since (F, N V) = C - 7(Y* 1)vg + Fry1 N Vi, we have the following corollary.

Corollary 4.7.
dim (Fk n W)/(Fk+1 N W) = dlm(Fk/Fk+1) -1

Definition 4.8. Let CP™9 = [} 2 F, 2 F3 2 ... Fx 2 Fyy1 = {0} be the flag introduced in
Definition 4.3. Define,
P :F— F/Fig =2U;

to be the natural projections.

Write CP x {0} (resp., {0} x C7) for the eigenspace of I, , with eigenvalue +1 (resp., —1).

Corollary 4.9. Assume that Y € n~ Npc is so that Kc(f) C Kc(Y). Form Zy x SL(2,C)y as
above and decompose CP19 as CPT1 = Vy @ W. Then, there exists a basis 31 of W consisting of
vectors in either CP x {0} or {0} x C? so that

(410) #{’U efr:veF,NW and Pk(’()) =+ 0} = dlm(Fk/Fk+1) — 1.

Proof. Since the spaces W N Fy, are I, ,-stable it is possible to find vectors {woji1,; @ wajt1, €
W NCP x{0}N Fyjt1} so that {Paji1(waj+1,:)} forms a basis for (Fpjr1 NW)/(Fajr2 NW). Sim-
ilarly, we choose vectors {wsq;; : wa;; € W N ({0} x C¥) N Fy;} so that {Psj(ws;,)} is a basis of
(Fo; NW)/(Faj1 OW).

We claim that the set of vectors {ws; ; }U{wz;+1,} forms a basis for W with the desired properties.
First, we argue that the selected vectors are linearly independent. Indeed, if ¥y ;Ax ;wy,; = 0, then
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Py (2 idiwgi) = YihPi(wi;) = 0. Since the vectors {P;(ws )} are linearly independent, it
follows that A;; = 0 for all 4. Assume we have shown that A;; = 0 whenever £ < j. Then,
0=Pj11(Zki eiwWk,i) = ZiXjy1,:Pj+1(wjy1,:) and once again we get A;4q1,; = 0 for all 4.

To prove that the set {woj;, wa;+1,:} is a maximal set of linearly independent vectors, observe
that #{wa;;, waji1,:} = LN [dim(Fy/Fey1) — 1] =p+q— N = dim(W). O

Define a basis of CP™7 as follows. Assume that Y € n~ N pc is so that Kc(f) € Kc(Y).
By Lemma 4.5, CPT? = Vy @ W as a Zo x SL(2, C)y-representation, where Vi is irreducible of
dimension N. Let vg be the highest weight vector in V. Form Sy = {vg, 7(Y)vo, ..., (YY"},
a basis for Viy. Let (1 be the basis of W built in Corollary 4.9. Construct an ordered basis 8 of
CP*4 from Sy and £, in the following manner.

(1) The first vector in 3 is vg, the vector in position p; + 1 is (Y ?)vg, in position p; + pa + 1
is the vector 7(Y*)vy and so on so that in position X7 _ py, 4 1 is the vector 7(Y?/)vy; in
position p+ 1 we place the vector 7(Y)uvg, in position p+ (Ziﬂqk) +1 we place 7(Y27+1)uy.

(2) Between 7(Y#)vy and 7(Y272)v, we place the vectors {wajt1,} in (.

(3) Between m(Y# 1)y and (Y21 )vg we place the vectors {wo;;} in ;.

Lemma 4.11. Let 8 be the ordered basis of CPT? just introduced. Let {eq,ea,...,eprq} be the
ordered standard basis of CPT. If T : CP*1 — CP1Y js q linear transformation that sends vectors
of the standard ordered basis to vectors in the basis B preserving the order, i.e first vector goes to
first vector and so on, then there is a ¢ € Qx so that T = mw(q).

Proof. Since p1 # 0, vg € CP x {0} and the linear transformation T is an isomorphism so that
T:CPx{0} - CPx {0} and T: {0} x C? — {0} x C?. Hence, T = w(k) for some k € Kc. On the
other hand, by the construction of the basis 3, such a T preserves the flag CP*7 = F| D F, D F3 D

..Fn 2 Fn41 = {0}. Since the stabilizer of this flag is @ it follows that k € QN K¢ = Qk. O

Proposition 4.12. Assume thatY € n~ Npc is so that Kc(f) C Kc(Y), then there exists ¢ € Qk
so that ¢ - Y = fo +y1 with fy as in Lemma 4.1 and y1 € u; Npc.

Proof. Without los of generality we assume that b is determined by an array so that p; # 0. Form
Zy x SL(2,C)y and decompose CP™? as CPT9 = Viy @ W where Vi is Zy x SL(2, C)y-irreducible
of dimension N. The existence of such decomposition is guaranteed by Lemma 4.5. Similarly,
decompose CPT? as CPT1 = V, @ W, with Vy = Zica, Ce; and Wy = span {e; : i ¢ A1}, Let ¢ € Qg
be as in Lemma 4.11. Then, the map 7(q) " '7(Y)n(q) : C*T9 = Vo & Wy — Vo @ W is so that

(1) ()~ 7 (Y)7m(q)Wo — Wo,

2) [m(@)" 7 (V)7 (@)]lve = 7(fo)lvs-
Now, 7(fo)|lw, =0, 7(¢~ 'Y q — fo) preserves Wy and (¢~ 'Y q — fo)|lv, = 0. Hence, ¢~'Yq — fo €
("™ Npc)Ngic =u; NPc. O

Proposition 4.13. Assume that Y € n~ Npg is so that Ko(f) € Kc(Y), then there exist elements
q € Qr and q; € Q; i 50 that ¢m_1Gm—2...q2q1q-Y = f.

Proof. By Proposition 4.12, there exists ¢ € Qx so that ¢-Y = fo +y1 with y1 € n] Npc. Form
Z3x SL(2,C),y. By Proposition 4.12, we have CPT¢ = V, & W, as Zy x SL(2, C),.y-representation
and 7w(fo)Wo = 0, 7(fo)Vo C Vo, m(y1)Vo = 0 and 7w(y;)Wo C Wy. Hence, Ker(n(q - Y))) =
Ker(r(f3)|v,) ® Ker(m(yi)w,) and

a+(Y?) = ax((folv,)’) + ax((y1|wy,)?)-
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On the other hand, f = fo +¢g withg=f1 + ...+ fn—1 and

ax(f7) = ax((folv)’) + ax((glw)?)-

The assumption Kc(f) € Kc(Y) and Theorem 3.1 imply that a+(g7) > ax(y}). The vectors g and
y1 belong to ny Npc = u] Npc C q1, where q; is a parabolic subalgebra of a smaller g1 = su(p}, ¢).
If Ki,c is the complexification of the maximal compact subgroup of Gy, then KLC(g) C Kj o).
Applying Proposition 4.12 to (g,y1) we obtain 1 € Q1 k so that g1-y1 = f1+y2 with y2 € (ny Npc).
The construction of 1,k guarantees that qi- fo = fo. Thus, qigx-Y = q1- fo+ fi+y2 = fo+ 1+
The proof of the theorem now follows by induction on the complex rank. O

Remark 4.14. Assuming p; # 0 has no loss of generality. If p; = 0, then there is an isomor-
phism o : su(p,q) — su(q,p) preserving the diagonal Cartan subalgebra and sending the positive
system attached to {p1 = 0,q1,...,q,} to a positive system A*(gc,bhc) corresponding to a se-
quence {p},q},...,q.} with pj = ¢1 # 0. Now we may apply Proposition 4.13 in the case p] # 0,
g’ = su(q,p), to get the same result for p; =0, g = su(p, q).

Proof of Theorem 3.5. Assume that Y € n~ Npe is generic. Then K¢(Y) is the unique maximal
dimensional nilpotent Kc-orbit that meets n~ N pe. Hence, Kc(f) € Kc(Y). By Proposition
4.13, there exist kg = gm—-1...q1qx € K¢ so that ko - Y = f. Hence, Kc(Y) = Kc(f), ie., fis
generic. O

5. THE FIBER OF THE MOMENT MAP
In this section we use the algorithm developed in Section 4 to determine the structure of the fiber
of the moment map.
Theorem 5.1. With the notation of Section 4,
T = Zre(f)Q@m-1.Qm 2k ---Q1xkQk) - b C Kc¢/KcN B,
Proof. By equation (2.5), v"1(f) = (Nko(f,n~ Npc))~! - b where
Ngo(fin Npc)={k € Kc:k-fen Npc}

To prove the theorem it is enough to show that Nk (f,n” Npc) = QxQ1.kx - - - Qm-1,8Zk(f)-

To show that NKC (f7 n- ﬂpc) C QKQLK .. 'mel,KZKC (f), take ko € NKC (f, n- ﬂpc). Then,
ko - f € n” Npc is generic and by Proposition 4.13, there exist ¢; € @Q; x and ¢ € Qx so that

Am-1Gm—2 ---q1q(ko - f) = f. Thus, ¢m-1G¢m—2 .- @1qko € Zx(f). The inclusion follows.

To show the other inclusion observe that Qg normalizes n~ N pc and Zk(f) fixes f. Hence, it
is enough to show that Q1,kQ2.x - .- Qm-1,k C Nr(f,n~ Npc).

Write f = fo+ fi+...+ fi+ ...+ fm—1 With fo €n” Npc and f; € u; Npc for ¢ > 1. Recall
(Remark 3.8) that @Q; x normalizes u; Npc, u; Npc C u,_; Npc and Q; k stabilizes all f; with
7 <. Then,

Qm-1,x(f) T fo+fi+. ..+ frn—2+ Qum-1,K(frm—-1)
Cfot+fit+. o+ fna+ (u,_1 Npc).

Assume we have shown that

QikQit1,K - Qu-1,x(f) C fo+ fi+ ...+ fici+ (u; Npe).
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Then,

Qi1 kQikQit1,k - - Q-1 xk(f) Cfo+ fi+...+ fico+ Qic1,x fic1 + (w; Npe)
Cfot+fit. .+ fico+ Qimrk(fir + (wim1 Npc))
Cfot+fit...4 fico+ (w1 Npc)

Thus, by induction we conclude that Q1 k Q2. - - Qm—1,x(f) C (fo+ (u1 Npc)) C n~ Npc and the
theorem follows. 0

Remark 5.2. In Theorem 5.1, Qm—1,k@Qm—2,K - . Q1,kQ Kk may be replaced by Ly,_1Ly—2...L1L.

The next theorem (Theorem 5.8) makes structure of the fiber of the moment map much more
tractable. It essentially says that the centralizer may be dropped from the expression for the fiber in
the above theorem. We must however include L,,, which is formed in the algorithm for the generic
element [ after the last string is formed. Note that L,, is contained in the centralizer of f (thus not
included previously) and A([,,) consists of roots with indices not in any of the strings.

The proof will require a fairly explicit description of the centralizer of f, and this will require
some (temporary) notation.

Recall that m is the number of strings. These strings give f = fo + -+ + fin_1. For a =
0,1,...,m—1 define S, = {indices in the string from which f, is formed}. In other words S, is the
set of indices occurring in the root vectors in the expression for f,. Let S, be the set of indices not
occurring in any of the strings. Now set

Va,b = spanC{Xm- 1€ Sa,j S Sb}

Recall that X, ; is the root vector with a 1 in the (i, j)-place and zeros elsewhere. Let 3 = 3¢ and
set

dab = 3 N Va,b'
Since V, 5 is ad(f)-invariant
3 = DBda,p-

In fact, V, 5 is invariant under the s[(2, C) corresponding to f.
Consider one of the S,’s. Write S, = {i1,...,ig} ordered so that so that each 4, occurs to the
left of ;11 in the array. Therefore,

R
fo= Xipins-
r=2
Similarly, write
T
fo= Z Xit»'it—l'
t=2

We now find a basis of 3 by finding a basis for each 345. There are 5 different cases which must
be considered.
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Case (1), a#band a,b# m. Let X =>"a;; X, ; € Vo . We see when X commutes with f.
[f; X1 = [fa, X] + [fs, X]

= faX - be
T
= E : E E Wi Xipjin 1 Xij E E @i X X5, jia
r=24€S, jESp t=214i€S, jESY
= E , E Wiy Xiyj — E E :aldt i1
r=2j€ES,
R T-1 R
= § (air—lvjt _aimjt+1)Xh et E iy, 57 Zm]T E :aH,]t 11,7t
r=2 t=1 r=2

This is 0 precisely when
@, jr =0, forr=1,...,R—1,
ai, j, =0, fort =2,...,7 and
7P :air+17jt+1, for r = 1,...,R717t: 1’7T71

Therefore, the centralizer of f in Vg is spanned by

(5.3) E:XZ-R_MSJS7 forn=1,...,R, when R<T
s=1

and by

(5.4) > Xip wioie forn=1,...,T, when R>T.
s=1

Case (2), a = b # m. Essentially the same calculation as in Case (1) (with R = T') gives a basis for
the centralizer of f in V, 4 as

R
(5.5) > Xipowpuger forn=1,... . R(=T).

sS=n

Case (3), a # b, b =m. A similar calculation gives a basis for the centralizer of f in V, ,, as
(5.6) Xing>» J € Sm.
Case (4), a # b, a = m. A basis for the centralizer of f in V;,; is
(5.7) Xiji, 1 € Sm.
Case (5), a = b =m. Then V,; commutes with f by the construction construction of f.
Theorem 5.8. If f is the generic element constructed by the algorithm then

Y Hf) = Ly --- Lol 1 L(b) € Kc/Ke N B.

Proof. The proof is by induction on m, the number of strings in the array determined by A™. We
have given a basis for the centralizer 3¢, in (5.3-5.7). Since Zk is connected (a special fact for the
indefinite unitary groups), Zx is generated by exp(tZ) with ¢t € R and Z in the basis described in
(5.3-5.7). Therefore, by Theorem 5.1 and Remark 5.2 it suffices to show that for such Z

(5.9) exp(tZ) Lo -+ Lol Q C Ly, - - Ly L1 Q.

There four number of cases.
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Case (1): Z € 34.p,1 < a,b < m. This puts us in the situation of f' = f — fo (m — 1 strings) inside
G1. By induction

exp(tZ) Ly, -+ LaQ1 C Ly, - -+ L2Q1.

Therefore,

exp(tZ)Lm e LQLlQ = exp(tZ)Lm LR LQQlQ

C Ly LoQ1Q
=Ly, - LoaL1 Q.

Case (2): Z € 30,0. Each of the root vectors occurring in Z is in q N €c by (5.5). Also, note that Z
commutes with each Ly, therefore (5.9) holds.

The final two cases are 34,0 and 39,4, @ > 0. The proofs of (5.9) in these two cases require some
preparation.

Recall that the array consists of a number of blocks and the string defining fy passes through each
block. Now consider the strings defining f. for ¢ = 1,2,...,m — 1. Define an equivalence relation
on the set {1,2,...,p+ ¢} of indices by i ~ j if and only if either (i) 1 < ¢,5 < p and there exists
no ¢ € S, sothat p+1<{¢<p+qande¢ —e¢ and ¢ — ¢; are both positive or both negative, or (ii)
p+1<4,j <p+qand there exists no £ € S. so that 1 < ¢ < p and ¢; — ¢¢ and ¢, — ¢; are both
positive or both negative. We call the equivalence classes c-blocks.

Now define a Levi subalgebra of € ¢ by specifying its roots: A(m.) contains €; — ¢; if and only
ifi,j ¢ So and 4, j are in the same c-block. Let M, be the connected subgroup of K; ¢ with Lie
algebra m.. Note that for k =1,2,...,¢, A(lx) C A(m.). Therefore,

L.---LoLy C M,.

In the remaining two cases we will show that [m,, 34,0] C 9N Ec and [mg,30.6) C g N €c. Then (5.9)
will follow.

Case (3): Z € 34,0, a > 1. First suppose that a # m. Then, as in (5.3), Z is a linear combination of
root vectors X;, .. .,n=1,...,R. Since j; € Sy and fo passes through each block in the array,
js is the label of the first dot in the s** block. It follows that for each s = 1,..., R, j, is to the
left of i5 in the array, and therefore j; is also to the left of ig_, 5. With this observation and the
equivalence relation defining the a-blocks we will show that

(5.10) [ma, Xip_,,.] €aNE.
Let Y be a root vector in m,. Then
(5.11) Y, Xin i) € CXirj,

with ¢’ ~ ig_n1s (i-e., ¢ and igys_p, in the same a-block. If s = 1, then j, = j; si the dot farthest
en NEC qgné When s > 1, consider ¢ — €;,. Suppose
€y — €, were positive. Then in the array i’ would be to the left of js, so also to the left of js_1.

to the left in the array, so X;,, .. j,
But js—1 is to the left of ig4s_n—1 (by the above observation). Therefore € — €, . ., > 0 and
€inten_1 — €igss_n > 0, and we have a contradiction to i’ ~ iris_,. We therefore have that
Xij, €En-NECqNEt

From (5.11), it follows that ad(Y)* (X is contained in the span of X; ;. with ¢ ~ ip_p4s,
so is in g N €. Therefore, Ad(exp(Y))(X C qne and so Ad(M,)(exp(tZ)) C QN K, for Z
in the basis for 3,0. In particular, for ¢, € L,k =1,2,...,a,

TR—mn+s:Js )

IR—n+s:Js )

exp(tZ)ly -ty € by 1,Q N K.
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Now, 34,0 commutes with L,,,..., Lo+1 (since these [, have no root vectors involving indices from
S, and Sp). Therefore,

exp(tZ) Ly, -+ L1Qk = Ly -+~ La—1exp(tZ) L, - - - L1QK
C Ly L1Qk.

Now if @ = m, then Z is a linear combination of root vectors X; ; , i € S,,. For any root vector
Y in €, ad(Y)*(X;,) € Nt So, Ad(K; c)(exp(tZ)) C QN K. So (5.9) follows.
Case (4): Z € 30,5- This case is very similar to Case 5. Here, Z is a sum of root vectors X;, . . ..,
withn=1,...,T, as in (5.4). O

6. AN ALGORITHM FOR COMPUTING THE MULTIPLICITY OF (DN

Let my be a representation in the discrete series of SU(p, q). Then, as described in Section 2, 7y
is associated to a closed Kg-orbit Z in the flag variety X. Also, there is a corresponding positive
system At = A*(gc, hc) containing AF. Then, by Theorem 2.4 ([6, Prop. 1.4]), the characteristic
cycle of my is given by

(6.1) Ch(my) = dim(H° (v () La=potpn l-1(0)) - 1T (X))

The goal of this section is to use this formula for the multiplicity along with our description of the
fiber of the moment map (Theorem 5.8) to give an algorithm for computing the the multiplicities of
discrete series representations of SU(p, q).

First, we give a description of the cohomology space H°(yv~(f),La—p.4p,|-1(s)) in terms of
representations. Identify Z with the flag manifold K¢/B N K¢ for the complex group K¢ and we
interprete v~ (f) as the closed subvariety Nxo(f,n~ Npc)~! b of Kc/BN Kc.

Let = XA — p. + pn, and view p as a linear functional on b N € by setting pu(u™ Nec) = 0. Since
@ is analytically integral, x,(b) = e*(log(b)) is a well defined character of B N Kc. We denote by
O(p) the Kc-equivariant sheaf over Z defined by the local sections

T(U,0(n)) = {f : regular function on p,*(U) and f(gb) = lel(b)f(g), for b € B}.

Let O,-1(s) (resp., Oz) be the structure sheaf over y~'(f) (resp., Z) and let O(u) = O(p) ®o,
O,-1(). Then, the cohomology in (6.1) is the sheaf cohomology HO(y~1(f), Oy-1(p)(1)).

Now take W_,, to be the irreducible representation of K with lowest weight —u and let w_,, be
the lowest weight vector in W_,. The Borel-Weil theorem gives an isomorphism

(6.2) HY(Z,0(n) =WZ,

which is implemented using matrix coefficients by
qu —T(Z,0(u))
v — (v, kw_,).
The description of such a space of sections, along with the following definitions are in [10, page

590] We set W15y = {zw_, : 2 € Ngo(f,n~ Npc) '} gy-1(5)(n) = dim(spangW,-1(5)) and

Wj:l(f) ={feW:,: fla)=0foralaec W, 1}
As in [10], we conclude from Serre’s theorem [9, page 228], that for A sufficiently dominant
HO(v 1 (f), Oy1(py (1) = T(Z,0(=p)) {g € T(Z,0(=p)) : g(v~ 1 (f)) = 0}

—u

Therefore, for sufficiently dominant A

(6.3) dim H(y ™ (f), Oy-1(p) (1) = ay-1(5) (10)-
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Putting together the above observations and using our description of the fiber v~1(f) in Section
5, we conclude the following.

Proposition 6.4. The multiplicity of O = Kc(f) in the associated cycle of the discrete series
representation my is dimg(spancg({z - wy : 2 € LyyLyy—1 ... L1L}), provided X is very dominant.

Recall ga+(p) = dim(spang{Ly, ---L1L(w—,)}). Then, by Joseph’s argument, ga+ () is the
multiplicity of 7y (where u = A+ p,, — p.) when u is dominant enough. Since the multiplicity of
is a polynomial in A we will see that ga+ () is the multiplicity for all X if we can show that ga+ ()
extends to a polynomial in p. This is contained in the following theorem.

Theorem 6.5. qa+(u), defined for p integral and A} -dominant, extends to a polynomial on bh*.

Therefore, ga+ (A + pn — pe) is the multiplicity of discrete series representations wy corresponding to
AT,

Proof. We proceed by induction on m. If m = 1 there is just one string in the array determined
by At and Ly C L. Therefore, U_,, = spanc{L(w_,)} is the irreducible L-representation of lowest
weight —u. The dimension extends to a polynomial on h* by the Weyl dimension formula.

Now consider m > 1. Decompose U_, as a representation of L; N L. Write this decomposition
as »_ F_,, and write the lowest weight vectors as w_,,.
Claim: each w_,,, is annihilated by n™ N gy N€. To see this, note that since L normalizes u~ N¢ and
w_,, is annihilated by u™ N ¢, each w_,, (in fact all of U_,,) is annihilated by u~. Now each w_,,
is annihilated by n= N NL But, n"Ngy=n"NgCu NE+n"NLHNL

The claim tells us that F_,, = spang{G1i(w_,,)} is the irreducible G-representation of lowest
weight —p;. Therefore,

(6.6) an+(p) = Z dim(spang{Lm, - -+ L1 (w—p,;)}) = Z At (1i)-

By induction each ¢ At (;) extends to a polynomial in ;.

We now make two observations. First, L is a product of a number of groups isomorphic to a
GL(r) for various r. Furthermore, Ly N L is a product of various groups isomorphic to GL(r'),
and 7’ is 7 or r — 1. The standard branching law for the restriction of representations of GL(r) to
GL(r — 1) is as follows. Let V_, be the irreducible GL(r) representation of lowest weight —a =
—(a1y...,a.), a1 > ag > --+ > a,. Similarly, let U_; be the irreducible GL(r — 1) representation of
lowest weight —b = —(by,...,b,—_1). The the restriction of V_, to GL(r —1) is >, U_;, with the sum
being over all b € Z"! so that a; > by > ag > by > -+ > b._1 > a,. Bach occurs with multiplicity
one.

We state the second observation as a Lemma
Lemma 6.7. If p(b), b€ C"™' is a polynomial, then for a € Z"

P(a) = > p(by, ..., be_1)

a1 >by>ax>ba>-->b._1>a,,b;€EZ

extends to a polynomial on C'.

Proof of lemma. For a € Z",

al Ar—1
P(a) = Z Z plai,...,a)
bi=asz bn—1=a,
N N M
extends to a polynomial in @ € C". This is essentially because Z nk = nk — Z n* is a
n=M-—1 n=1 n=1

polynomial in M, N.



CHARATERISTIC CYCLES OF DISCRETE SERIES REPRESENTATIONS 17

We now conclude the proof of the theorem by noting that the y;’s occurring in (6.6) come from
the branching rule mentioned above (for the various factors of L), and the Lemma along with (6.6)
says that ga+(u) extends to a polynomial in p.

0

Corollary 6.8. The multiplicity of Kc(f) in 7y is ga+(p) = dim(spanc{Ly, --- L1L(w_,)}), for
all X (dominant with X\ — p dominant integral for A™T).

The proof of the theorem contains an algorithm for computing the multiplicity Kc(f) in mx. We
describe an algorithm for computing

qa+(p) = dim(spanc{Lnm -+ L1 L(w_,)}
for any p which is a Af-dominant weight. This algorithm may be stated as follows. Given a positive

system AT containing AT, form the array as in (3). Form the first string and fy as in (3.4), also
form and G; and Q1 k (as at the end of Section 3).

(1) Decompose the L-representation U_,, = spanc{L(w_,)} into L N L;-representations using
the branching law for restricting G L(r)-representations to GL(r — 1)-representations. Call
the constituents F_,,.

(2) As shown in the proof of the theorem (see the ‘Claim’), each p; is dominant for A7 N A(l;)
and

ane (1) = D aay (1a)-

(3) Now repeat the procedure to find the ¢ NG (1), a computation on a smaller rank group.

The procedure ends after m (the number of strings) iterations.

Remark 6.9. In [20] Yamashita constructs a Zg (f)-representation which is contained in the isotropy
representation ([18,]). The description of H? given here shows that Yamashita Z . (f)-representation
is equal to spang{ L, ... LiL(w_,)}. As we will see in Section 8, if Qx has a dense orbit in n= Np
then the isotropy representation is spanc{Z(f)L(w_,)}.

7. EXAMPLES

We give several examples of computations of the multiplicities of discrete series representations
using the algorithm of Section 6. The result of the first example is now well-known ([11] and [4]).

Ezample 7.1. (Holomorphic Discrete Series) This is the case where there is a unique simple non-
compact root. The array is therefore one of the following;:

o PN .p or .p+1 e .p+q

i1 - ey o ... e,

and (assuming p < q) f ==+ " (€ — €pt;). Therefore, L = K¢, so L1 L = K¢ the multiplicity of
my is the dimension of the lowest K—type of m.

Ezample 7.2. (Quaternionic Discrete series of SU(p, 2)) Consider the positive system determined by

the following diagram:
[ ]

p+1 ®p+2

The reductive part of Q is L = S(GL(p,C) x C*) and Ly C L. Therefore, m(Kc(f),m\) =
dimg(L - wy), ie., the dimension of the irreducible representation of L with highest weight p =

>\+Pn—/’c~
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Ezample 7.3. Consider the group G = SU(p,q) with p < ¢ and the positive system is given by a
Dynkin diagram with the maximum number of simple roots noncompact. The array is

[ ] [ . .p

1 2 :
NN AN
.p+1 .P+2 e .217 .2p+1 e .p+q

Here L = Ly = the torus and the multiplicity is one.

Ezample 7.4. We consider G = SU(7,7) and the positive system determined by the following array

L 3% (D) o3 oy L 251 og L drd

s oy LI St L JP) ®i3 oy
(See also Example 8.22.) Then spanc{L - w_,} is the irreducible L-representation of lowest weight
—u, call it U_,. Then L is a product of six copies of SL(2) (and a torus) and U_, is the tensor
product of representations of these SL(2)’s. Since L1 NL is the torus the decomposition of U_M|L1m;
is given by the weights

7‘LL =+ 0(61 — 62) —+ a(64 — 65) —+ C(66 — 67) =+ d(Eg — 69) =+ +€(€10 — 611) =+ f(613 — 614).

Witha':07"'HU/1_M27b:07"'7/’é4_u5acz07'"a,U/G_/’("ﬁd:07"'7/’(‘8_/1/5%6:07"'7/’('10_/’['11
and f =0,...,u13 — p14. Ly is the product of two copies of SL(2) (and a torus). The roots in [y
N(N +1)

N
are +{e5 — €7,e9 — €11}. Using the formula Z n= 5

n=0

, the dimension of spanc{L1L-w_,}

is therefore

> (us—pr+b—c+1)(uo — pay +d—e+1)

g — s — e + pr
= (1 — p2 + 1) ((a — ps + 1) (6 — pr + 1) (s — pr + 1 + 5 )

— 1o — o +
(s — po + 1) (p10 — a1 + 1) (po — p1 + 1 + Hs — 1o 2#10 AL ) (113 — paa + 1).

Writing this in terms of A\ (using 4 = A + p,, — p.) the formula for multiplicity is

1
1()\1 —X2)(Ad = A5) (A6 — A7) (As — Ag) (A0 — A1) (A1 — Ara) (Aa + As — A — A7) (As + Ag — Ao — A11).

8. QK-ORBITS IN U~ Npc

In this section we consider the Qx = Q N K-orbits in u~ N pc. It is reasonable to ask whether
the Borel subgroup B N K¢ (with Lie algebra (t+n~) N ¢) has a dense orbit in u™ Npc. There are
examples for which the answer is no, see for example [15]. In fact, we will see that even Q does
not always have a dense orbit in u™ N pc. We give a criterion in terms of the algorithm of Section
3 for Qk to be transitive (or have a dense orbit) on u~ N pc. At the end of the section an example
is given, in SU(7,7), for which there is no such dense @ k-orbit.

We begin this section with two propositions which indicate that it is of interest to understand
the Qg-orbits on u™ Npc.

Let 4 be the moment map 4 : K¢ Q>< (v Npc) — ge Consider Y = K¢ /Qk as a closed Kc-orbit

K

in Ge/Q,s0Y ={k-q:k € Kc}. Then the fiber of 5 : K¢ QXK (u” Npe) — pc may be described
as follows. For x € u~ Npc let N(z,u” Npc) ={k € Kc : k-z € u” Npc} (as in Section 2). Then
7 @) ={d €Y weq}
={k7'.q:ke N(z,u npc)}
Note that Kc(z) N (u” Npc) ={k-z:k € N(z,u” Npc)}.
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Proposition 8.1. For arbitrary x € u™ Npg, there is a bijection
{Zye — orbits in 1 (x)} — {Qx — orbits in Kc(x) N (u™ Npc)}
Zre (kq) & Qr(k™ -2),k € N(z,u™ Npc).

Moreover, if x is generic in u” Npg, then Zx - q is open in 7~ 1(x) if and only if Qi (x) is open in
U Npe.
Proof. For the first statement, notice that for k1, ke € N(z,u” Npc)

Ik k19 = Zkg - koq if and only if

k1 = zkaq, for some q € Qk, 2 € Zk if and only if
k;l_lx = q_lkgl, for some g € Qg if and only if

Qr (ki 'z) = Qi (ky 'x).

For the second statement apply Lemma 8.13. O

Here is an alternative to the formula of Proposition 6.4 for the multiplicities.

Proposition 8.2. If there exists © € u~ Npg generic so that Qk(x) C Kc(z) N (u™ Npc) is open
and dense, then
m(Kc(z),mx) = dimc{Zkq(z)L - w_,}.
Proof. Indeed, under the assumptions in the Lemma we have
m(Kc(z),m) = dim H(y"H(x), Oy-1(p) (1)
= dim H®(Z (2)Qx - b, 0515 (1))
= (s @an o) = Uz @)@r-o (1):
0
Let 4 be the moment map 7 : K¢ x (u”Npe) — ge given by ¥(kQk,Y) = k-Y. For z € u” Npc
Qk
generic, we write a formula for the dimc(57!(z)) in terms of data produced by the algorithm in
Section 3. This formula will be used later in this section to study the structure of @ g-orbits in
u Npc.
Let {p1,q1,P2,92,---,Pr,qr} be a sequence satisfying (3.3) and let AT (gc,hc) be the positive
system determined by the sequence. Let N, (resp., Ng) stand for the number of p; (resp., ¢;)
occurring in the sequence. Then N = N, + N,. Write, as in previous sections, Qx = Qo,x =

L exp(u™ Nktc) and Q; x = L; exp(u; NEc). We obtain a formula for dime (5! (x)) as a corollary
of the following theorem.

Theorem 8.3. Let x € u™ Npc be a generic element. Then,

N, Ny N
dim Zao(v) = pi+ > ¢ +2>  dim(Qk.i/Qk.i N Qx.i-1)
1 1 1

N
(8.4) =dim(+2)  dim(Qx.i/Qx.i N Qr.i1)-
1

Corollary 8.5. If x € u™ Npc is generic, then dim7~!(z) = Ziv dim(Qki/Qk,: N QK. i-1)-
Proof. On the one hand

dim 5~} (z) = dim(Kc/Qx) + dim(u™ N pe) — dim(O)
(8.6) = dim(u™) — dim(0O).
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On the other hand, the dimension of the nilpotent Kg-orbit O = K¢ (z) is half the dimension of
Gc(x). Hence,

dim(0) = £ (dim(gc) ~ dim(3eo (f)))

_dim()  dim(36(/))
2 2

(8.7) + dim(u™).

Combining formulas (8.6) and (8.7), we get dim7~1(f) = dim(?’gc(f)) - di‘;‘([). Now, the formula

in Theorem 8.3 gives dimy~1(f) = Ziv dim(Qg i/ QK,i N QK i—1)-
O

We begin the proof of Theorem 8.3 with two preliminary lemmas.
Lemma 8.8. Write qx =+ (u” Nec), g1,k =1 + (u] Ntc). Then,
dim(l) =dim(INh)+2 (p+¢q) — N.

Proof. By construction, dim(l) = ZJIV” pf—i—ZiV“ q3, while dim(IN[;) = Zjlv” (pi— 1)2+Zivq (gj—1)%
Hence,

N, N,
dim(Int) =Y p2+> ¢ =20 pi+> ¢)+N
1 1

=dim(l) -2 (p+q) + N.
O

Lemma 8.9. Starting from the partitions {p;} of p and {q;} of ¢, form the nilpotent element
f=fo+fi+...+ fm asin the algorithm in Section 3. Set f' = f—fo=fi+ fo+ ...+ fm. Then,

dim Zg (f) = dim Zg, o (f')+2 (p+¢) — N.

Proof. Associate to f the tableau that parameterizes the nilpotent Kg-orbit through f. Let a; stand
for the number of rows in the tableau having at least ¢ blocks. Then, by [7, Thm 6.1.], we know that
dim Zgo (f) = > a?. Similarly, since the tableau corresponding to the nilpotent orbit K c(f’) is
obtained from that of f by removing a longest row, we have dim Zg, (') = > _(a; — 1)2. Thus,

N

dim Zg (f) —dim Zg, o (f) =Y a7 =Y (a;i—1)*=2 Y a;i—N=2(p+q) - N.

1

O

Proof of Theorem 8.3. We proceed by induction on the number of strings produced by the algorithm.

Assume first that our algorithm has produced only one string, ie., f = fy. Without loss of
generality we can assume that ¢; =1 for j = 1,2,..., N, = q. The tableau corresponding to the
nilpotent orbit Kc(f) has a row of length N and p + ¢ — N rows of length one. By [7, Thm 6.1.3]

we have

dim Zgo (f) = (p+q—N+1)* + (N —1).



CHARATERISTIC CYCLES OF DISCRETE SERIES REPRESENTATIONS

On the other hand, the right hand side of (8.4) is

(8.10)

However,

(8.11)

Z(pi -

1<j

Np Nyg

pr + qu +2 dim(Q1,x/Q1,xk N Qk)
1 1
Np Ny
— pr +qu2. +2 dim(u” N1y)

—sz+q+2z : = 1)

1<j

= pipi— > (pitp)+ Y1

i<j i<j 1<j
Np=N-—q N—q
N—q)(N—-—q—1
=Y ppi— >, (N—gq—ipi— Y (G—Dp+ ( )(2 )
i<j 1 1
N—q=N,
N—q)(N—-—q—1
—Y (g1 Y pp o0 an Y
i<j 1
N—-—q)(N—-q-1
i<j

Combining equations (8.10) and (8.11) we write the right hand side of (8.4) as

(8.12)

Np Ny

N
Zpg + Z q +2 Z dim(Qk,i/Qri N Qr,i-1)
1

pr1+q+2Zplpj N—g—1p+(N—-q)(N-qg-1)

=0 p)P+q-2(N-q-1)p+(N—q-1>+(N-qg-1)
=P —2(N—qg-—1p+(N—-q-1)?*+N-1
=(p+q—N+1)?+(N-1)=dim Zg,(f).

Therefore, the proposed formula (8.4) holds when the algorithm produces exactly one string.

21
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Next, assume that the dimension formula holds for f/ = f1 + fo + ...+ fm, with m > 1. By
Lemma 8.9, we know that

dim Zgo (f) =dimZg, o(f)+2(p+q) — N

=dim(l) +2 Y dim(Qx.i/Qk.i NQxi1) +2(p+q) — N
2

(by the induction hypothesis)

=dim(l; N0) + 2 dim(lh Nu™) + 2 Zdim(QK7i/QK,i NQki-1)+2(p+q) — N
2

=dim(L N0 +2 Y dim(Qk.i/Qk.i NQki1)+2(p+q) — N
1
(Since dim(QLK/QLK N QK) = dim(Ll/Ll N QK) = d1m([1 N u_))
= dim([) + 2 Z dim(Qr i/ QK. N QK. i—1)
1

(by Lemma 8.8).
We give a condition for Qk to be transitive (or have a dense open orbit) on n~ Npe. See Theorem
8.14 and Corollary 8.21.
Lemma 8.13. Let x € u~ Npc be generic. Then,
dim 5~ (z) = codimy— np @k (z) + dim Zx (z) — dim Zg, (z).
Proof. This is a simple computation:
dim4 ! (z) = dimu~ — dim O
=dimu~ — diméc + dim Zx ()
=dim(u” Npc) — dim qx + dim Zgx (x)
(since dim tc = dim qx + dim(u™ N¢c) and dimu~™ = dim(u™ Npe) + dim(u™ Nec))

= (dim(u”™ Npc) —dim Qx + dim Zg, (z)) + (dim Zk (z) — dim Zg, (z))
= (codimension Qk (z)) + (dim Zk (z) — dim Zg . (x)).

Let f be constructed by the algorithm in Section 3 and O = K(f).

Theorem 8.14. Qx acts transitively on O N (u™ Npe) if and only if Qx N Q1,x acts transitively
on the set of generic elements in u; Npc.

Proof. Assume that Qg acts transitively on O N (u™ Npe). Let 2’ € uj Npc be a generic element
and form z = fy + z/. By Proposition 4.13 we know that x € u™ N pc is generic. Since Q is
assumed to act transitively on O N (u™ N pe), we conclude that Qi (x) = Qr(fo + 2’) is open in
u~ Npc. Hence, the tangent space to the orbit Qx (fo + ') at the base point fy+ 2’ coincides with
u~ Npc. This implies that

(8.15) [qNtc, fo +2'] = Tyt (Qu (fo + l’/)) =u Npc Du Npc.

We show that Qx N Q1,x(2') is open in u] Npc.
The Borel subalgebra b = hc +n~ C q is determined by an array of numbered dots. The first
step of our algorithm determines fy by choosing a first string. Let S be the set of labels of the
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dots in the array that are left after deleting labels of the first string. In particular, notice that
fo is a sum of root vectors for roots €; — €; where neither ¢ nor j belong to the set S. Moreover,
A(gi,c,bc) ={e —€; 14,5 € S}. The set S determines a decomposition

qNtc=gNgicNtc+o,+0;
where
AlgngicNtc) ={ei—¢j i, € STNA(qNEc)
A(vo) ={ei —¢;:i,j ¢ S}NA(@NEc)
A(v1) = {e; —€; : exactly one of 7, j belongs to S} N A(qNec).
Observe that,
(8.16) [00 + 01, fo + '] C span{X, : v = ¢; — ¢; with at most one of i and j € S}.
If X3 is a root vector in uj Npc, then § =¢; —¢; with ¢, j € S and, by inclusion (8.15),
Xp € [antc, fo+a'] =[aNgi,cNkc, fo+ '] + [0g + 01, fo +2'].
Now, the observation (8.16) and the description of the root 5 imply that X5 € [qNg1,cNtc, fo+2'].
Hence,
uy Npc C l[aNgicNtc, fo+2'] Cuy Npc,

ie Ty [Q1x NQk(2)] =ul Npc and Q1. x N Qk(2’) is open in u] Npc. Since 2’ is an arbitrary

generic element in u; N pc, we conclude that Q1 x N Qx acts transitively on the set of generic

elements in u; Npc.
m—1

For the converse, let = be generic in u~ Npc and let f = f+ f/, [/ = Zfl as constructed by
i=1
the algorithm of Section 3. By Proposition 4.13 there exist ¢ € Qx and ¢; € Q; x so that x =

qq1 - @m-1(fo+ f'). Since each ¢; commutes with fo), ¢~z = fo+2a’, where 2’ = q1 -+ gm_1(f'), a
generic element of u; Npc. Now assume Qg NQ1, i is transitive on the generic elements of u; Npc.
Then,

(817) dim(QLK(x')) = dlm((QK N Ql,K)(xl» = dim(u_ n pc)
Therefore it suffices to show that Q(z) = Qx (f + 2’) has codimension zero in u~™ Npc.

By Lemma 8.13 and Corollary 8.5 applied to 2’ € u™ N pg, along with (8.17),
(8.18)

m—1

O = COdimul—ﬁpc (QLK(Z‘/)) = Z dim(QLK/Qi,K N Qi—l,K) — (dim ZKl,c (a:’) — dim ZQl,K(x/)>'

=2

Also, by (8.17),
(8.19) dim(Q1,x/(Q1,xk N Qk)) =dimQy,x —dim Q1 x N Qk
. = dim ZQLK(II) — dim ZQKOQLK("LJ)'

Applying Lemma 8.13 and Corollary 8.5 for the first equality and (8.18) and (8.19) for the second,

we have

codimy - npg (@i (f + 27))

(820) = Zdlm(Qz,K/Qz,K N Qi—l,K) — (dlm ZKC (.13) — dim ZQK (1‘))
1

= (ZKI,C (x/) — dim Q1 xkNQx (Z‘/)> - (dim Zkc(z) — dim ZQx ($))
Since
ZKI,C (xl)/ZQl,KﬁQK (ml) - ZKC (fO + x/)/ZQK (fO + 1'/)
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is injective, we may conclude that the right hand side of (8.20) is less than or equal to zero. Therefore,
codimy -, (Qr (f +2')) = 0, and the proof is complete.
O

Corollary 8.21. Qi has an open orbit in u™ Npc if and only if Q1,x N QK has an open orbit in
u; Npc.
We conclude this section with an example of how Corollary 8.21 produces a situation where Qg

does not have an open orbit in u™ N pc.

Ezample 8.22. Let G = SU(7,7) and let he be the diagonal Cartan of gc = sl(p+¢, C) as in Section
3. Consider the positive root system AT = A% (g¢, hc) determined by the following numbered array,
and the first string formed by the algorithm,

L1 ®)

\08/(.3\%04{.4&'12/.6‘.7\'13

Equivalently, AT is the positive system of roots having positive inner product with

®14

(14,13,10,7,6,4,3[12,11,9,8,5, 2, 1).

Apply the algorithm in Section 3 to produce the first string. After deleting the first string the
resulting array is

(D) L] L drd

® 0] ®14
Thus, g1 = su(3,3) and Qx N K_B; is a Borel subgroup of K;. Moreover, dim(tc Nby) = 11
while dim(u] Npc) = 9. An arbitrary element X in u; Npc is of the form

X =aXgo+bX112+cXiap+dXa7r+eXsi1 + fXuas +9Xs9+hXrg+iX11,7.

We claim that K¢ N Bi(X) is not dense in u; Npc for any X € uy Npe. Indeed, when a # 0,
then 3¢cne, (X) contains

aXs52+ fX14,9,aX7 2+ dX14,9;aX1411 — 0X149.

We then conclude that dim(K¢ N B1)(X) < 8 < dim(u; Npc) = 9. When a = 0, the argument is
slightly different; Xg o ¢ [tc N by, X] (as is easily checked). But, [fc N by, X] is the tangent space
to (Kc N Bp)(X) at X, so dim((K¢c N B1)(X)) < dim(u™ N pc). This proves the claim. Now,
Proposition 8.14, implies that Qi has no open orbit in u™ Npc.

The orbit structure of @ x on the generic elements in u~ Npe may be described as follows. Assume
that € u~ N pg is generic. By Corollary 8.5, we know that dim4~!(z) = dim L, /(L1 N Qx) = 2.
Hence, by Lemma 8.13, the only possible dimensions of the @ i-orbits in K¢(z) Npc are 47, 48 and
49. We have just argued that no orbit has dimension 49.

Observe that Ly = L} x L? is the product of two commuting copies of GL(2,C) (generated by
the roots +{e7 — €5,€11 — €9}). By using the Bruhat decompositions of the subgroups Li,i = 1,2
one sees that the Q) x-orbits in the generic elements of u™ N pc are as follows. Orbits of dimension
47:

Qr(f), Qr(exp(Xoa1) - f), Qx (057 exp(Xo 11 - f),

and orbits of dimension 48:

Qk (o057 f), QK (09,11 f), QK (0570911 - f), QK (exp(X5.7) - f), QK (exp(X5,7)09,11 - f),
Qx (exp(Xs5,7exp(sX9,11), s € C (an infinite family).



CHARATERISTIC CYCLES OF DISCRETE SERIES REPRESENTATIONS 25

Kc(z)Npe = Qr(f) UQk(exp (Xo11)f) U QK (59,11f) U QK (s9,116xp (X5.7)f) U QK (s5,7f)
UQr(exp (Xo11)f) UUsec@r (exp (Xs5,7) epx (sXo11) - f) U Qi (59,1155,7.f)

with sg 11 and s5 7 the non-trivial Weyl group elements of the respective copies of GL(2, C).

APPENDIX A. REAL DISTINGUISHED ORBITS

In this appendix we show that the associated variety of any discrete series representation of
SU(p, q) is the closure of distinguished real nilpotent orbit. This seems to be known by the experts,
but no proof has appeared. We give a proof here because it follows very directly from our algorithm.

Definition A.1. A nilpotent element E € g is said to be R-distinguished if E does not lie in
a Levi subalgebra of a (proper) parabolic subalgebra of g. A nilpotent orbit €2 in g is called R-
distinguished if © does not meet the Levi component of a (proper) parabolic subalgebra of g. (So,
Q is R-distinguished if and only if each element of  is R-distinguished.)

We remark that an element in the complex Lie algebra gc is distinguished means that it does not
lie in a Levi component of a parabolic in g¢ (see [7, page 121]). Thus FE € g is distinguished implies
F is R-distinguished. However, the converse fails.

Lemma A.2. Let E be a nilpotent element in g and {E, H, F'} a standard basis for a subalgebra of
g isomorphic to sl(2,R). Then E is R-distinguished if and only if Zg(E, H, F') is compact.

Proof. We may assume that the triple {E, H, F'} satisfies §(H) = —H and §(E) = —F. Then, since
the triple is 6-stable, the centralizer decomposes as

3E(E’H’F) :zf(EvHvF)@ap(EvHvF)'

Therefore, Z¢(E, H, F) is noncompact if and only if 3, (E, H, F) is nonzero. However, the centralizer
of a nonzero element of p is a Levi subalgebra of a proper parabolic subalgebra of g. Therefore, if
the centralizer is noncompact, then the orbit is not R-distinguished. Conversely, if the orbit is not
R-distinguished then some element of (2 lies in a Levi subalgebra of a proper parabolic subalgebra.
By conjugating in G we see that some E’ in Q lies in the centralizer of some nonzero X € p.
Then, inside the centralizer of X (a reductive group), E’ is part of a triple {E’, H', F'}. Therefore,
X €3,(E',H',F'), s0 Zg(E, H, F) is noncompact. a

In order to see that the associated variety of a discrete series is the closure of an R-distinguished
orbit we will need to consider the Sekiguchi dual of a real orbit. For this let us write the triple
{e, h, f} for the Sekiguchi dual of {E, H, F'}. We assume that §(H) = —H and 6(E) = —F. Then

e:%(H—i(E—FF))
f:%(H—i—z’(E—i—F))
h=i(E—F)

Observe that the two triples have the same centralizer 3 in gc (as they span the same complex
subalgebra, which we will call s). Since 3 is stable under both the complex conjugation and the
Cartan involution, we have

3= 3e(s) ©ize(s) 3p(s) B igp(s).

Let S be the subgroup of GL(p + ¢, C) with Lie algebra s = spanc(E, H, F) = spang(e, h, f).
Consider the the representation of Z; x S on CP*4. The algorithm has the property that for any
isotypic subspace for the S-representation, all highest weight vectors (i.e., annihilated by e) lie in
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either CP x {0} or in {0} x C? If F' were not distinguished then there would be some nonzero
X € 3p(s). Since X maps C? x {0} to {0} x C? (and {0} x C? to C? x {0}), X must be zero on
each highest weight vector. Since X commutes with S, X must be zero. This is a contradiction. We
have proved the first part of the following theorem.

Theorem A.3. The associated varieties of the discrete series representations of SU(p,q) are the
closures of R-distinguished orbits. FEvery R-distinguished orbit is the associated variety of some
discrete series representation.

The second part follows by induction on the number of strings (or the number of rows in the
tableaux). It is convenient to use the characterization of R-distinguished in terms of the tableaux: a
nilpotent orbit is R-distinguished if and only if all rows of a given length begin with the same sign.
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