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1. INTRODUCTION

Suppose G is a connected complex simple Lie group with Lie algebra g, and let Gr be a
real form of G. Let X denote the flag variety of G. A Cartan involution of the Lie algebra
of Gr extends (complex linearly) to an involution of g. Write the complexified Cartan
decomposition as g = €@ p. The moment map for the natural action of G on the cotangent
bundle T* X plays an important role in the theory of the associated cycle of Harish-Chandra
modules. Viewing the cotangent bundle as {(b,£) : b € X, £ € (g/b)*}, the moment map is
given by p((b,€)) = £. Tt follows that ;4 maps T*X into the nilpotent cone N* in g*. For
f € N*, u=1(f) is an interesting subvariety of T* X, which is called the Springer fiber over
f. Of particular importance in the representation theory of Gg is the Springer fiber when
f € (g/€)*. In this case the irreducible components of x~1(f) may be described as follows.
Let K be the fixed point group of the lift to G of the complexified Cartan involution of g.
Then, at least when K is connected, the irreducible components of ;~1(f) are all of the
form Tp X N p~'(f), where Z is a K-orbit in X and T5X is the conormal bundle to Z in
T*X. The purpose of this article is to give an explicit description of the components of the
Springer fiber that correspond to the closed orbits Z when Gg is the real group SU(p, q).
The main result is contained in Theorem 4.8. This result is then used to give an algorithm
that computes the associated cycles of discrete series representations.

We now consider the group Gr = SU(p,q). To describe the statement of Theorem 4.8
let us fix a closed K-orbit Z in X. There is a positive system of roots A1 (with respect to
the diagonal compact Cartan subalgebra) that is naturally associated to Z. The first point
is that one needs to obtain a useful description of the image of 77X under p. For this it
is convenient to use the Killing form to identify g* with g and (g/€)* with p. It is a fact
that p(75X) is the closure of a single K-orbit K - f in Np, the cone of nilpotent elements
in p. The details of a procedure for finding such a nilpotent element f, which we will call
generic, are contained in Section 3. We mention here that f = fo + f1 + fo + ..., where
fo is specified first (as a sum of certain root vectors), then there is a reduction to a smaller
rank group (G; where f7 is specified, and so on. At each stage of the procedure a reductive
subgroup L; of K N G; (where Gy = G) is defined. The groups L;, i = 0,1,2,..., are easy
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to describe; the Lie algebra of L; has root system generated by the simple compact roots in
g;- Theorem 4.8 states that the corresponding component of the Springer fiber is

TX N (f) ~ Ly -+ LaL1 Lo - b. (1.1)

(We remark that we are identifying the Springer fiber with a subvariety of the flag variety
X = G-b, as described in (2.3).) The proof of this theorem is given in Section 4. In Section

5 we give some geometric consequences.

Our motivation for understanding these components of the Springer fiber was the problem
of computing the associated cycles of discrete series representations. It is convenient to write

v for p
J.-T. Chang ([2]) has given a formula for the associated cycle in terms of a sheaf cohomology

Tz x; the component of the Springer fiber corresponding to Z is therefore ).

space on 7~ 1(f). It says that the associated cycle of a discrete series representation asso-
ciated to Z is m - y(T5X) and the multiplicity m is the dimension of a cohomology space.
For each discrete series representation there is a parameter A (the infinitesimal character)
and a line bundle L; — Z (1 = A+ p — 2p.). Then for the sheaf of local sections O(7) of
L, restricted to y~1(f), Chang’s theorem states that

m = dim H°(y~'(f), O(7)).

The important point is that the description of y~1(f) given in (1.1) allows one to use the
Borel-Weil Theorem (and a simple branching law) to compute the cohomology space. This
is carried out in Section 6.

An algorithm to find image =, i.e., the orbit closure K - f, has been given by P. Trapa
([12]). He describes the orbit in terms of signed tableaux. His inductive procedure is quite
different from ours. A. Yamamoto ([15]) has described the image of v in terms of matrices.
The significance of our procedure for producing the generic element f is that the method
allows us to compute y~1(f). We believe that our method will compute v~1(f) for the other
classical groups. Chang ([2], [4]) has used his formula to determine the associated cycles for
holomorphic discrete series representations and for the discrete series for rank one groups.
From a different point of view, D. King has computed character polynomials (which are the
multiplicities in the associated cycles) for holomorphic discrete series and for discrete series
of SU(n,1). In the appendix.....

2. PRELIMINARIES

Let Gr be a real form of a connected complex semisimple Lie group G. The Lie algebra
of G will be denoted by g, and similar notation will be used for the Lie algebras of other
Lie groups. Fix a Cartan involution of the Lie algebra of Gr and let 6 denote its complex
linear extension to g. Then 6 lifts to an involution of G, which we will also denote by 6.
Define K to be the fixed points of . The Cartan decomposition of g is written as g = ¢® p.

The variety of all Borel subalgebras of g, the flag variety, is denoted by X. As mentioned
in the introduction, our main interest is in the restriction of the moment map of T*X
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to the closures of the conormal bundles to certain K-orbits in X. Therefore we need to
carefully define these objects and express them in a useful way. For any point b in X,
letting B = Ng(b), X is the homogeneous space G/B. The tangent space to X at a point
b € X is naturally identified with g/b. Therefore the cotangent bundle is the homogeneous
bundle built on the B-representation (g/b)*:

T*X =G x (4/b)".

This is the space of equivalence classes in G x (g/b)* with respect to the equivalence relation
defined by (gb, A\) ~ (g, Ad*(b)A). We fix a Cartan subalgebra b of g that is contained in b
and write the Levi decomposition of b as b = h+n~. The Killing form allows us to identify
the G-representations g* and g. Since (g/b)* is the space of linear functionals that vanish
on b we have

(9/b)" — g,
which, via the Killing form, is the inclusion
n —g.
We will therefore take the cotangent bundle to be

T*X =G xn".
B

The moment map associated to the G-action on T* X is, after identification of g* with g
using the Killing form, denoted by u : G x n~ — g and is given by the formula
B

u(g,8) = Ad(g)¢, forgeG,fen”.

We consider the action of the complex group K on X and let Z be a K-orbit. The
base point b may be chosen so that Z = K - b. The conormal bundle to Z in T*X is
the set of cotangent vectors at points of Z that vanish on the tangent space of Z. This is
therefore the homogeneous vector bundle K 2 (g/(b+¥€))*, since the tangent space (at b)

ist/bNe~ (£+b)/b C g/b. We use the Killing form to identify the conormal bundle with
T;X =K x (n~ Np).
z R (n"Np)

Definition 2.1. The map + is defined to be the restriction of the moment map p to the
closure of T, X in T*X.

Note that v depends on the orbit Z. Since we will be considering just one K-orbit at any
given time, there will be no need to include Z in the notation for ~.

Writing g - £ = Ad(g)¢, for g € G, € € g, we have
1k &§ =k-§e K- (n"Np).
In particular, the image of v is the closure of K - (n~ Np), which lies in the nilpotent cone

Ne=Nnp, N={£eg: £isnilpotent}.
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The image of « is therefore a union of K-orbits in Ny; it is in fact the closure of a single
K-orbit. Therefore, there exists an f € n~ Np so that y(T5X) = K - f.

Definition 2.2. We say that f € n= N p is generic in n~ N p whenever y(T;X) = K - f.

It follows that f is generic in n~ N p if and only if K - f contains every K-orbit in Ny that
meets n~ N p. In particular, K - f is the K-orbit of greatest dimension meeting n™ N p.

Now let us specialize to the situation where Z is a closed K-orbit in X. Then Z is a flag
variety for K. Since T5X = T3 X, the domain of v is 75X and the image is K - (n~ Np).
For any f € n™ Np,

H=AREeTZX k£ = f}
={(k,k™'-f) : k7' fen Np}.
Defining N(f,n - Np) ={k € K : k- f € n~ Np}, it follows (by restricting the natural
projection T*X — X to y~1(f)) that
V) = fh b5 ke N(fnm )
=N(f,n - np)t-bcZz
Thus, the fiber y~1(f) may be identified with a subvariety of the flag variety Z.

(2.3)

Since the remainder of this article deals with closed K-orbits in X, we will need to
describe them. It suffices for our purposes to assume that Gr has a compact Cartan
subgroup. We may therefore fix a Cartan subalgebra b of g that is contained in €. Let
A(bh,g) (resp., A(h,€)) be the system of roots of  in g (resp., in £), and let W and W,
be the corresponding Weyl groups. Then it is well known that the closed K-orbits in
X are in one-to-one correspondence with W/W,. One way to express such a one-to-one
correspondence is as follows. Fix a positive system AT in A(h,€). Then for each positive
system AT C A(h, g) containing A} define a Borel subalgebra b = h + n~ by specifying
that n~ is the sum of all root spaces for roots in —A™. Since b N ¢ is a Borel subalgebra in
£, Z = K - b is a closed K-orbit in X. All closed orbits occur exactly once in this manner.
Thus, we have a one-to-one correspondence between the set of closed K-orbits and the set
of positive systems of A(h, g) containing Al, which is in bijection with W/W..

We now restrict our attention to the group Gr = SU(p, q), where p and ¢ are nonnegative
integers. Let n = p 4+ ¢q. The realization we use is

_ . I 0
Gr = {9 € M,xx(C) : gtIp7qg =1, 4,det(g) =1}, with I, , = <69 _7 ) .
q

The Cartan involution is chosen to be § = Ad(I,,). Then

a 0
0 d

Let h C € be the Cartan subalgebra of all diagonal matrices of trace zero. Define ¢; € h* to

G =GL(n) and K = { < ) : a € GL(p),d € GL(d) and det(a)det(d) = 1}.

be the linear functional giving the j** diagonal entry. Then

A(h?Q):{EJ_Ek : 1§]7k§n7j7ék}
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We fix once and for all the positive system of compact roots
Af={ej—e:1<j<k<porp+1<j<k<n} (2.4)
As discussed earlier, the closed K-orbits in X are parameterized by the positive systems
AT C A(h,g) that contain AF. They are in one-to-one correspondence with sequences of
integers (p1,q1, P2, -,Dr, ) SO that
Yp; =p and Xg; = g,
pi, q; are non-negative integers and (2.5)
pi >0fori=2,3,...,rand g; >0for j=1,2,...,r — 1.
Note that p; and ¢, may be zero.

It will be useful to describe such a sequence in terms of an array

1 P1 p1+1  p1+p2
e - e

e - o ° °
p+1 P+aq p+aqr+1 P+ q1+ g2

We call a sequence of consecutive labelled dots in the array a block. Therefore, the i*" block
(counting from left to right) in the upper row has p; dots and the i*” block on the lower row
has ¢; dots. The simple compact roots are the roots €; — €;41 with (é,7 + 1) indices of dots
that belong to the same block. The simple non-compact roots are the roots €; — ¢; with i, j
indices of consecutive dots that lie in different rows, and so that ¢ precedes j when reading
the array from left to right. Thus, the simple non-compact roots correspond to the “jumps”
between the rows. Here is an example. The array

1 2 3 4 5 6
L[] L] L] L] L] L[]
(] ° L] [ J
7 8 9 10
determines the Dynkin diagram
O L L L 4 L J
1-2 2-7 7-3 3-4 4-5 5-8 8-9 9-10 10-6

where ‘¢-j” means the root €, — ¢; (and the blackened nodes correspond to non-compact
simple roots).

The final bit of preliminary information is the parametrization of the K-orbits in M.
We will describe these in terms of signed tableaux. This information is well-known and can
be found in the present form in [1]. Suppose that {e, h, f} C g spans a copy of s[(2). Let
SL(2) be the corresponding complex subgroup of G. Suppose also that e, h and f satisfy
the relations

le, f] = h, [h,e] =2e and [h, f] = —2f

O(h) = h,0(e) = —e and 6(f) = —f. (2.6)
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Form the semidirect product Zs x SL(2) where the non-trivial element of Zs acts by 6. Irre-
ducible finite dimensional representations of SL(2) extend to representations of the semidi-
rect product in two distinct ways. These are distinguished by the action of the non-trivial
element of Zy being +1 or —1 on the lowest weight space. Define the signature of a (possible
reducible) representation 7 of Zy x SL(2) to be the pair (ay,a_), where ay is the dimension
of the 1 eigenspace of 6 in the kernel of 7(f) (= the lowest weight space).

Now suppose that f € Np. Then f fits into a triple {e, h, f} satisfying (2.6); see [5]. This
gives a copy of SL(2) inside G = SL(n), thus a representation of SL(2) on C™",n = p+ q.
Extend this representation to a representation 7 of Zs x SL(2) so that the action of the
non-trivial element of Zs is by I, ;. Define a(f7) to be the dimension of the £1 eigenspace
of I, ; on the kernel of 7(f7). Write a(f7) = a(f7)+a—(f7) for the dimension of the kernel
of m(f7). Decompose C" = &V, into irreducible Zs x SL(2)-representations and let §; be
the eigenvalue of 6 on the lowest weight vector of V;.

Theorem 2.7. ([6]) Two nilpotent elements f and f’ are K-conjugate if and only a4 (f7) =

ax(f7), for every j = 1,2,.... The inclusion O(f’) C O(f) holds if and only if for every j
as(f9) > an(f?) and o (f9)>a_(f)

To each nilpotent orbit we associate a signed tableau as follows. The tableau has a row
for each irreducible constituent V;; the number of boxes in the i** row is the dimension of
the representation V;. Signs are inserted in each box by beginning the i*" row with the sign
of d;, then alternating the signs along each row. Then two such signed tableaux correspond
to the same orbit if and only if they are the same up to a permutation of the rows.

Lemma 2.8. A nilpotent element f is generic in w™ Ny if and only if for all j

ar(f9) = minfay (f9) : f' € Y(T3(X))} and
a(f7) = minf{a_ () : ' € ATH(X)}.

Proof. An element f is generic if and only if v(T5 (X)) = K - f. Thus, f is generic if and
only if K - f/ C K - f for any other f’ € v(T5(X)). The lemma now follows from Theorem
2.7. 0

3. GENERIC ELEMENTS

Let b = h +n~, b the diagonal Cartan subalgebra be a Borel subalgebra. An algorithm
will now be given for finding a generic element in n™ N p.

For the remainder of this section we fix a closed K-orbit Z in X. As in Section 2,
there is therefore a positive system AT C A(h, g) containing A} and a corresponding Borel
subalgebra b = h + n~ so that Z = K - b. Let {p1,q1,p2,...,q-} be the sequence of non-
negative integers as in (2.5) that determines At (and hence Z). The algorithm of this
section will produce f € n™ Np so that K - f is dense in the image of v: T; X — g.
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The algorithm is as follows. From the sequence {p1,qi,...,pr, g}, first form an array
as in the paragraph following (2.5). Second, form a string consisting of diagonal lines
connecting the first dots in each pair of consecutive blocks. Define a nilpotent element f
of n~ Np as follows. Let Ag = {i1,i2,...,in} be the set of indices of dots that the string
passes through, ordered from left to right. Then

N-1
fo= Z Xigirior (3.1)
s=1

where X, ; is the matrix that is a root vector for €; — €¢; with a one in the (¢, j) place. In

the example following (2.5), we have

1 2 3
[ ]

[N
® U
D

7 8 9 10

Third, omit the dots that the string passes through and repeat the procedure with the
smaller array to obtain an f; and an A;. The procedure is continued until no more diagonals

can be drawn. In the example, we have
1 2 3 4 5 6
7 8 9 10
Note that as the dots in the most recent string are omitted a new array is formed. For

example, to choose the second string in the example we omit the dots numbered 1, 7, 3, 8

and 6 to get

LN
XS
e cn

(]
9 10

Each string corresponds to a sum of root vectors in n~ N p. In the example we have
fo=Xe1+ X3+ Xg 3+ X¢s, f1 = Xo2 and fo = Xi04.

Set
f=fo+fi+...+ fou_1, with m equal to the number of strings.

Theorem 3.2. Let Z be a closed K-orbit in X, and let the Borel subalgebra b and the
sequence {p1,q1,D2,---,Pr, qr} be as described above. Then the element f built by the algo-
rithm is generic inn~ Np, i.e., K - f =~v(T3X).

The remainder of this section is devoted to a proof of this Theorem. It should be empha-
sized that the method of proof allows us to describe the relevant components of the Springer
fiber. This will be done in Section 4; the crucial ingredient is isolated in Proposition 3.14.
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Observe that for each string, f; is a principal nilpotent element in a subalgebra sl(d;)
where d; is the number of dots in the corresponding string. Starting with f; it is possible
to form an s((2)-triple {f;,h;,é;} so that h; € b and

é; = Z et Xl
{(k,): X1 occurs in f;}
with non-zero coefficients ay ;. Since the sl(d;)’s commute, {f,h = > hj,e = > ¢é;} spans
a copy of s[(2). Let SL(2); be the Lie subgroup of SL(n) whose Lie algebra is this copy of
s[(2). Tt is clear that the standard basis vectors e; € C™ are weight vectors for the action 7
of Zy x SL(2)¢ on C™. Consider the decompose C" under 7. We may conclude

(1) the dimension of the non-trivial irreducible subrepresentations of C™ are given by
the numbers of dots in the various strings,

(2) the lowest weight vector of a non-trivial irreducible subrepresentation is the standard
basis vector e where k is the label of the last dot (that is, the dot farthest to the
right) in the corresponding string, and

(3) the trivial subrepresentations are spanned by the t vectors e for which no dot
contained in any string has label k.

This information translates into the following description of the signed tableau for f.

Fact 3.3. The signed tableau corresponding to the nilpotent K-orbit K - f has m +t rows.
If 1 < i < m, then the length of the it" row in the tableau is the number of dots occurring
in the it string. If the it" string ends at a dot in the top row of the array, then the i row
of the tableau has alternating signs starting with +. Otherwise, the it"row of the tableau
has alternating signs starting with —. The remaining t rows have length one and their
corresponding signs are so that the total number of + signs in the tableau is p and the total
number of — signs is q.

In our example the tableau corresponding to K - f is

=T+ 1=]

+

-+
+

The subgroups defined below are crucial to both our description of the Springer fiber and
to the inductive proofs in the rest of the paper.

Let S be the set of simple compact roots in A" and (S) the set of roots generated by S.
Definition 3.4. (a) Define q to be the parabolic subalgebra of g defined by the simple roots
S, ie.,

g=I[4+u", withl=h+ Z g and u™ = Z g(@.
ae(S) acA+\(S)
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The connected subgroup of G with Lie algebra q (resp., [) will be denoted by @ (resp., L).
Set Qg = QN K.

(b) Consider the array that is the result of omitting all dots that are passed though by any
one of the first ¢ strings. Then A; = {¢; — €; : j, k are indices of remaining dots} is a root
system of type A,/,n’ < n. The Lie subalgebra generated by root spaces for roots in A; is
denoted by g;. The corresponding subgroup of G is denoted by G;. We set K; = K N G;.
(c) Let S; be the set of simple compact roots in A;r, then S; determines a parabolic subal-
gebra q; = [; + u; of g; as in (a). Let Q; be the subgroup of G; with Lie algebra q;; we set
Qix =QiNK.

The subalgebra g; is 6-stable and is the complexification of a smaller indefinite unitary Lie
algebra. Furthermore, h; = hNg; is a Cartan subalgebra of g; and b; =bNg; =h; +n; isa
Borel subalgebra so that the negative root vectors with respect to A; span n; . This positive
system corresponds to the array with the first ¢ strings omitted. There is a corresponding
closed K;-orbit Z; = K - b; in the flag variety for G;.

Note that gy, for example, is the subalgebra of sl(n) consisting of matrices having 0’s in
the j*" row and column for each index j occurring as index of a dot in the first string.

Remark 3.5. The following properties follow easily.

(1) @k normalizesn” Npandn” Np=u"Np
(2) Lic Kandu;, Np=g;N(n~ Np).

(3) u; Cu;_4.

(4) Qi fu=frforallk=0,1,...,i—1.

One should be aware that it is not always the case that q N g; = g;. Our example in
SL(9) illustrates this; when a string is omitted, several blocks ‘collapse’ to one block in the

smaller array.

We next describe the parabolic subgroup @ as the subgroup of G consisting of all linear
transformations preserving a flag in C". The following definition specifies the correct flag.
Let N be the number of blocks in the array.

Definition 3.6. Define F; to be the span of the e; for all ¢ occurring in any one of the
N — j + 1 blocks farthest to the right. Set Fni1 = {0}.

Lemma 3.7. The following hold.

(1) If Y en™ Np, then Y(Fy) C Fyq1 and Y7 (Fy) C Fryj.

(2) If Y € n~ Np, then YN=FHL(F) = 0. In particular YV = 0.

(3) The spaces Fy, are preserved by the Qg -action.

(4) The stabilizer of the flag C" =F, 2 F» D F3 2 ... Fn 2 Fny1 = {0} is Q.

We are now in position to begin the proof of Theorem 3.2. Continue with our fixed
positive system AT containing A}, and resulting sequence {p1,q1,ps ..., q-} as in (2.5) and
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f = fo+ - fm_1 built by the algorithm. Set f = fo+ f',f = fi+ -+ fmm_1. Let e,h
be chosen as in the paragraph preceding Facts 3.3. Then SL(2); denotes the corresponding
subgroup of G. Let (m, C™) be the representation of Zy x SL(2); for which the non-trivial
element of Z, acts by I, , and SL(2); acts by it embedding in G. Let Ay be the indices
labelling dots in the array that the string for fy passes through. Thus, # A4y = N, which is
the length of the first string as well as the length of the flag (F}) that defines the parabolic
subgroup @. The proof of the following lemma is immediate from the definitions.

Lemma 3.8. Let V) = spang{e; : i € Ao} and Wy = spanc{er : k ¢ Ao}. Under the
action of w, C" decomposes as C™ = Vo & Wy and

7(fo)lw, =0 and 7(fo)Vo C Vo

’R’(f/)|VO =0 and T(f/)WO c Wp.

Now let Y € n~ Np. Form a triple {X, H,Y'} spanning a copy of sl[(2) with X € nNp
and H € ¢ and let SL(2)y be the subgroup of G with Lie algebra spanc{X, H,Y}. Then
Z> x SL(2)y acts on C™.

Lemma 3.9. If K- f C K-Y, then C™ has a Zs X SL(2)y-irreducible constituent of
dimension N.

Proof. By Proposition 3.7, Y~ = 0. Hence, C" admits no irreducible constituent of di-
mension greater than N. Assume that no Zs x SL(2)y-constituent is of dimension N.
Write C* = R; @ ... ® R; where R; are Zy x SL(2)y-irreducible subrepresentations.
Then max;{dim(R;)} = N’ with N’ < N, so dim(Ker (YN/)) = p+ q. On the other
hand, since Zy x SL(2)s admits an irreducible subrepresentation of C™ of dimension N,
dim(Ker(fN')) < p+ ¢. Then Theorem 2.7 gives a contradiction to our hypothesis that
K-fCcK-Y. O

Continue with Y as in Lemma 3.9. Decompose C™ under the Zs x SL(2)y-action as
C™ =V @& W with Vi irreducible of dimension N. Denote by vy the highest weight vector
of V. The set {vo, Yo, ..., YN "1y} is therefore a basis for Viy. Note that Y*~1yy € Fy.

Lemma 3.10. For each k, F, = (F, NVy) ® (Fr NW).

Proof. Write v € Fy, as v = vy + w with vy = Z;y;()l anjvo € Vy and w € W. We need
to show that vy and w belong to Fj. It is enough to show that vy € Fj.

Observe that 0 = YN F+ly = YN—ktlyy 4 YNkl 50

k—2
0= YN_k+17)N = E anN_k+1+j1}0.

j=0
Since the vectors {vg, Yvg,...,Y¥"tyy} are linearly independent, aj =0 for all j <k — 2.
Thus, vy = Y211 | a;Y g lies in Fy, by Proposition 3.7 (1). O

Since F, N Vy = C-Y*~yy + F1 N Vi, we have the following corollary.
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Corollary 3.11. With W as above
dim (Fk N W)/(Fk+1 N W) = dlm(Fk/Fk+1) —1.

The following lemma implies the existence of a basis of C" that is well-behaved with
respect to the action of Y.

Lemma 3.12. There is a basis = (1 U---U By of C™ with the following properties.

Proof. Each 3; may be defined as follows. Put Y7~ lvg in ;. If the 4t block in the array
is up, then, by the definition of the flag and the fact that F; N W is I, ,-stable, the natural
map

(Fj N W) N (Cp X {0}) — Fj N W/Fj_H nw
is an isomorphism. If the j% block is down then we have an isomorphism

(Fj N W) N ({0} X Cq) s Fj n W/Fj+1 N W.
Fill out the remainder of 3; by pulling back a basis of F; "N W/F; 1 N W. g

A basis as in the Lemma may be ordered by (1) putting Y7/~ loq first in each 3;, and (2)
by choosing the 3;’s in the order

B1,085, ..., 02, B4,... (odd indices first), if the first block is up
and

B2, B4y .-, 01, 83, ... (even indices first), if the first block is down.

Let g be the matrix with the basis vectors of 3 inserted as columns, ordered as above. Then
g preserves the flag (F}), so lies in Q). It follows from (a) that ¢ is also in K. Then, writing
Ao = {i1,...,in} for the indices of the dots passed through by the first string, ordered from
left to right, we have

qiquel-j =q¢ lYYI Iy,
=q 'Yu
= Cijpa
For i ¢ A,
q 'Yqe; € spanc{e; : j ¢ Ao} = Wo
by (d). Therefore fo—¢~!-Y € (n"Np)Ngs = u; Np. The following lemma is now proved.

Lemma 3.13. There exists ¢ € Qk so that ¢-Y = fo + Y1, with Y1 € uy Np.
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Proposition 3.14. IfY e n"Np with K- f C K - Y, then there exists ¢ € Qg and q; € Q; k
5o that gm—_1---q2q1q-Y = f.

Proof. We use induction on the complex rank of g. Lemma 3.13 tells us that there exists
q € @sothat ¢-Y = fo+Y1,Y1 € u] Np. Recall that we have written f = fo+ f’. We claim
that for K, = KNGy, K, -g C K; -Y;. Once this claim is proved the inductive hypothesis
gives qm—1---q1- Y1 = f'. Since ¢; - fo = fo, foralli =1,...,m —1 (as observed in Remark
35), gm-1---quq-Y = fo+ f = [.

Now we turn to the proof of the claim. Write C™ = V; & W, as earlier. Then by Lemma
3.8

ax(f7) = ax((folv,)’) + ax((f'lw,)’)
a+(Y?) = ax((q-Y)) = ax((folv,)") + a=((Y1lw, )?)-
Since K - f C K -Y we conclude from Theorem 2.7 that
ar(Nlwo)?) < ax((F'|wo)),
for each j =1,2,.... Now Theorem 2.7 (applied in G;) proves the claim. O

Proof of Theorem 3.2. Assume that Y € n~ Np is generic. Then K -Y is dense in K -n™ Np.

Hence, K - f C K-Y. By Proposition 3.14, there exist kg = g¢m-1...-q1qx € K so that
ko-Y = f. Hence, K- Y = K - f, i.e., f is also generic. |

4. THE SPRINGER FIBER

In this section Proposition 3.14 of Section 3 is used to determine the structure of the
fiber of v over a generic element. We continue with the setup of Section 3. In particular,
a closed K-orbit in X, which determines a sequence (p1,q1,pa, ..., ¢-) and a corresponding
array, has been fixed. We write f = fo+---+ fin—1 for the given element of n™ Np built by
the algorithm. We denote the centralizer of f in K by Zx(f).

Theorem 4.1. The following expression for the fiber of ~v holds.

v Uf) = Zk(f)Lim—1Lm—2... LiLgk - b € K/K N B. (4.2)

Proof. We begin by showing that
YU = Zr(H)Qm-1,kQm-2k .- Q1,xkQK - b C K/KNB. (4.3)
By equation (2.3), v~ 1(f) = (Nx(f,n~ Np))~! - b where
Nig(fnnp)={keK:k-fen Np}
To prove (4.3) it is therefore enough to show that
Nk (f,n™ Np) =QxQik - Qu-1,xZk(f).

To show NK(f, n- ﬂp) C QKQI,K .. -mel,KZK(f% take k € NK(f, n- ﬂp) Then, k- f
lies in n~ Np and is generic. Therefore by Proposition 3.14 there exist ¢; € Q; x and ¢ € Qk
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so that ¢m—_1Gm-2-..q1q- (k- f) = f. Thus, ¢m_1Gm-2---q19k € Zx(f). The inclusion
follows.

For the other inclusion observe that Qg normalizes n™ Np (= u~ Np) and Zx(f) fixes
f. Hence, it is enough to show that Q1 k@2 i ... Qm—-1,k C Nk (f,n” Np). Recall that in
the expression f = fo+fi+...+ fi+...+ fim—1, we have fo €n~ Np and f; €u; Np for
i > 1. By Remark 3.5, @; xk normalizes u; Np, u; Np Cu,_; Np and Q; i stabilizes all f;
with j < 4. Therefore,
Qm-ax(f)CTfo+fit+. .o+ frn2+ Qu-1.x(fr—-1)
Cfot fit.ood fmoa+ (U Np).

Proceeding by (downward) induction on ¢, assume that

QikQit1,K - - Qm-1,x(f) C fo+ fi+ ...+ fic1 + (u; Np).
holds. Then,

Qi-1,kQi kQit1,K - Qm—1,x(f)
Clo+fi+ ...+ fica+Qicix(fim1+ (wiNp))
Clo+ i+ 4 ficeatQicrx(fic1+ (wim1Np))
Clo+fit. .o+ fica+ (w1 Np).
Therefore we conclude that Q1 xQ2.x ... Qm—_1,x(f) C fo+ (w1 Np) C n~ Np and (4.3)
holds.

Now we check that each @); k may be replaced by L;. Since u™ N€ C b it is clear that
QK -b=L-b, so Qg may be replaced by L. We show by induction that

Qjr-QkQr-b=L;---LL-b. (4.4)

Since u; N& C u™ N¢, we have Q1 xkQk b = L1Qk - b = L1L - b, proving the j =1
case. By Remark 3.5 u; C u;,_,, so [l;_1,u; N¥€ C [_1,u;_; NE C q,—1 N Therefore,
QixkQi—1,x = LiQi—1 k. Assuming (4.4) holds for j =i —1,

QikQi—1x  QrxQr - b=LiQi—1x QixkQrx -b=L;Li_y---LiL-b.

The proposition is now proved. |

Theorem 4.8 below makes the structure of the fiber of v much more tractable. It essen-
tially says that the centralizer may be dropped from the expression for the fiber in the above
theorem. We must however include L,,, which is formed in the algorithm for the generic
element f after the last string is formed. Note that A(l,,) consists of roots with indices not
in any of the strings, therefore L,, is contained in the centralizer of f (which is why L,, is
not needed in (4.2)).

The proof will use a fairly explicit description of the centralizer of f, and this will require
the introduction of some (temporary) notation. Recall that m is the number of strings.
These strings give f = fo+ -+ + fm—1. For a =0,1,...,m — 1 define A, to be the set of
all indices of dots in the string from which f, is formed. In other words A, is the set of
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indices occurring in the root vectors in the expression for f,. Let A,, be the set of indices
not occurring in any of the strings. Now set
Vap =spanc{X;; : 1 € Aq,j € Ap}.
Recall that X ; is the root vector with a 1 in the (g, j)-place and zeros elsewhere. Let 3 = 3¢,
the Lie algebra of Zx (f), and set
3ab =3MN Vap.
Since V, 5 is ad(f)-invariant
3 = Djap-
In fact, V, 5 is invariant under the s[(2) corresponding to f.

Consider one of the A,’s. Write A, = {i1,...,ig} ordered so that each 4, occurs to the
left of 4,41 in the array. Therefore,
R

= z :Xi7~,iT71 °

Similarly, write

We now find a basis of 3 by finding a basis for each 3,. There are 5 different cases which
must be considered.

Case (1) a#band a,b#m. Let X =) a;; X, ; € Vo . We see when X commutes with f.
[f; X] = [fa, X] + [fs, X]

= faX - be
= E § E a’ZJ Uyl — 1 %,J E : § : E :a’LJ Jta]t 1
r=2i€A, jJEAp t=21i€A, jJEA
T
=3 Y X =D a X,
r=2jcA, t=2 i€ A,
R T-1
:§ E (airfhjt_aiwwjtﬁ»l lry]t+§ al, 1,J1 1mJT E all;]t 11,7t
r=2 t=1

This is 0 precisely when
ai, i =0, forr=1,...,R—1,
ai,j, =0, fort =2,...,T and
Qi g, = Oipyy jopr, forr=1,... , R—1,t=1,..., T~ 1.

Therefore, the centralizer of f in V, ; is spanned by

> Xipings forn=1,... R when R<T (4.5)

s=1
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and by

n
> Xip wieie forn=1,...,T, when R>T. (4.6)

s=1
Case (2) a = b # m. Essentially the same calculation as in Case (1) gives a basis for the

centralizer of f in V, , as

R
> Xigorioige forn=1,... R(=T). (4.7)

Case (3) a # b, b =m. A similar calculation shows that{X,, ;, j € A} is a basis of 34,m.
Case (4) a # b, a = m. Similarly, {X; j,, i € A,,} is a basis for 3, p.

Case (5) a =b = m. Then V,; commutes with f by the construction of f, 0 34 = Va -

Theorem 4.8. If f is the generic element constructed by the algorithm then
Y Nf)=Lm-- LoL1L-bC K/KNB.

Proof. The proof is by induction on m, the number of strings in the array. Since Zg is
connected (a special fact for the indefinite unitary groups), Zk is generated by exp(tZ)
with ¢ € R and Z in the basis described above. Therefore, by Theorem 4.1 it suffices to
show that for such Z

exp(tZ) Ly - Lyl1Q C Ly -+ Lo L1 Q. (4.9)
There four cases.
Case (1) Z € 34,1 < a,b < m. This puts us in the situation of f' = f — fo (m — 1 strings)
inside G;. By induction
exp(tZ) Ly, -+ - Lo@Q1 C Ly, -+ - LoQ.
Therefore,
exp(tZ) Ly -+ Lal1Q = exp(tZ) Ly, - - - L2Q1Q
C Ly - La@:1Q
= Lo LoL1 Q.

Case (2) Z € 30,0. Each of the root vectors occurring in Z is in q N ¢ by (4.7). Also, Z
commutes with each Ly, therefore (4.9) holds.

The final two cases are 34,0 and 304, ¢ > 0. The proofs of (4.9) in these two cases
require some preparation. For this recall that the array consists of a number of blocks and
the string defining f; passes through each block. Now consider the strings defining f. for
¢c=1,2,...,m — 1. Define an equivalence relation on the set {1,2,...,p + g} of indices by
i ~ 7 if and only if either (i) 1 <4,j < p and there exists no £ € S, so that p+1 < ¢ <p+gq
and €; — ¢, and e, — €; are both positive or both negative, or (ii) p+1 < 4,5 <p+q and
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there exists no £ € S, so that 1 < ¢ < p and ¢; — ¢, and ¢, — ¢; are both positive or both
negative. We call the equivalence classes c-blocks.

Now define a Levi subalgebra of £ by specifying its roots: A(m.) contains €; — ¢; if and
only if i,7 ¢ Sy and i, 7 are in the same ¢-block. Let M, be the connected subgroup of K;
with Lie algebra m.. Note that for k =1,2,...,¢, A(lx) C A(m.). Therefore,

Lo+ LoLy C M,.

In the remaining two cases we will show that [mg,34,0] C qN € and [my,30,.] C gN ¢ Then
(4.9) will follow.

Case (3) Z € 340, @ > 1. First suppose that a # m. Then, as in (4.5), Z is a linear
combination of root vectors X;,,. . j.,n=1,...,R. Since j; € Sg and fy passes through
each block in the array, j, is the label of the first dot in the s block. It follows that for
each s = 1,..., R, js is to the left of i5 in the array, and therefore j is also to the left of
iR—n+s- With this observation and the equivalence relation defining the a-blocks we will
show that

[ma,XinnJrs] S qﬁE (410)
Let Y be a root vector in m,. Then
Y, Xin o] € CXirj, (4.11)

with i ~ ig_nys (€., i’ and igis_, in the same a-block. If s = 1, then js = j; is the
dot farthest to the left in the array, so X;, ., ., € n” NEC gNEt. When s > 1, consider
€y — €;,. Suppose €; — €;, were positive. Then in the array ¢ would be to the left of js,

s s

so also to the left of js_1. But js—1 is to the left of ig4s_n—1 (by the above observation).
Therefore €/ — €., _,_, >0and €, ., , — €p,. , >0, and we have a contradiction to
i’ ~ igys—n. We therefore have that X, ;, en~NéCqnt

From (4.11), it follows that ad(Y')*(X;, ... ;.) is contained in the span of X; ;, with i ~
iR—n+s, 50 is in qNE€. Therefore, Ad(exp(Y))(Xip_,.,..5.) C qNE, and so Ad(M,)(exp(tZ)) C
Q N K, for Z in the basis for 3,,. In particular, for ¢, € Ly, k=1,2,...,a,

exp(tZ)ly 01 € Ly L1Q N K.

Now, 34,0 commutes with L,,, ..., Lyy1 (since these [}, have no root vectors involving indices
from A, and Sy). Therefore,

exp(tZ) Ly, -+ L1Qk = Ly -+~ Lag—1exp(tZ)Lq - - - L1Q K
C Lm o 'LlQK-

Now if @ = m, then Z is a linear combination of root vectors X; ;,, ¢ € Ap,. For any root
vector Y in €1, ad(Y)*(X; ;,) € gN € So, Ad(K1)(exp(tZ)) C QN K. So (4.9) follows.

Case (4) Z € 30,. This case is very similar the previous case. Here, Z is a sum of root

vectors X, . ., withn=1,...,T, as in (4.6). O
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5. QK-ORBITS IN u~ Np

In this section we continue our study of the fibers of . In light of Richardson’s Theorem
[9] it is reasonable to ask the following question. Is there a dense Qx = @ N K-orbit in
u~ Np? There are examples in the literature for which BN K does not have a dense orbit in
n~ Np. See [11] for an example in SO(4,4). We give criteria for Q to be transitive on the
generic elements in u~ Np (Theorem 5.9) and for Qx to have a dense orbit in the generic
elements in u~ Np (Corollary 5.16). These criteria are in terms of the algorithm for the
construction of the generic element f. At the end of this section an example in SU(7,7) is
given for which there is no dense @ g-orbit in u™ N p.

We continue with our fixed closed K-orbit Z = K - b in the flag variety X and the
corresponding sequence (p1,qi,pa,...,q-) and array. We also continue with the parabolic
subgroup @ defined by the set of compact simple roots.

We begin this section with a proposition, which we learned through discussions with H.
Ochiai, that indicates one reason it is of interest to understand the @ g-orbit structure of
u Np.

Let oo : T*(G/Q) — g be the moment map for the cotangent bundle of the generalized
flag variety G/Q. Let Z be the closed orbit K - q. Let 5 be the restriction of the moment
map to the conormal bundle to Z. Thus

¥:K x (unNp)—g
QK

is given by the formula §(k,£) = k - £. For an arbitrary Y € u= Np
FHY)=NY,u"np)~tg
as described in Section 2. Note that (K -Y)Nn(u™ Np)=4{k-Y:ke NY,u" Np)}. We
write Zx (Y') for the centralizer in K of Y.
Proposition 5.1. For arbitrary Y € u™ Np, there is a bijection
{Zy (Y)-orbits in 7~ (Y)} < {Qg-orbits in (K -Y)N (u” Np)}
ZkY)k-q < Qrk™" Y, k€ N(Y,u” np).

Moreover, if Y is generic in u™ Np, then Zx(Y)-q is open in 7~1(Y) if and only if Qx - Y
18 open tn u~ N P.

Proof. For the first statement, notice that for k1, ke € N(Y,u™ Np)
Zx(Y)k1-q=Zk(Y)ks - qif and only if
k1 = zkagq, for some g € Qk,z € Zx(Y) if and only if
ET'Y = ¢ 'ky 'Y, for some ¢ € Q if and only if
Qrky'Y = Qrky'Y.
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For the second statement we prove the following formula for the dimension of the fiber of
~v. If Y is generic then,

dim 5 '(Y) = codimy -y (Qk + Y) + dim Zk (V) — dim Zg, (Y). (5.2)
The proof is a simple computation:
dim4 1Y) = dimu~ — dim(K - Y)
=dimu~ — dim € + dim Zx (V)
=dim(u” Np) — dim(qgN¢) + dim Zg (V)
(since dim ¢ = dim qx + dim(u™ N¢) and dimu~™ = dim(u™ Np) + dim(u™ N ¢))
= (dim(u™ Np) —dim Qx +dim Zg, (Y)) + (dim Zx (Y') — dim Zg, (Y))
= (codim,-npQx - Y) + (dim Zg (V) — dim Zg, (Y)).
O
For Y € u™ Np generic, we write a formula for the dim(5~1(Y")) in terms of data produced

by the algorithm in Section 3. This formula will be used later in this section to study the
structure of @ g-orbits in u™ N p.

Let N, (resp., N,) stand for the number of nonzero p; (resp., ¢;) occurring in our sequence
(p1,q1:D2, -5 qr). Then N = N, + N,. Write Qo.x = Qx = Lexp(u™ N¢) and Q; x =
L;exp(u; N€). We will obtain a formula for dim(37!(Y)) as a corollary of the following
theorem.

Proposition 5.3. Let Y € u™ Np be a generic element. Then,
N, N, m
dim Zo(Y) =Y pl+ Y q; +2)_ dim(Qi k/Qix NQi1.x) — 1
1 1 1
=dim(+2)  dim(Qi x/Qi.x N Qi-1,x)-
1
Corollary 5.4. If Y € u™ Np is generic, then

dimA 1Y) = Zdim(Qi,K/Qi,K NQi-1,K)-
1

Proof. On the one hand

dim 5 1Y) = dim(K/Qg) + dim(u™ Np) — dim(O)
= dim(u™) — dim(0O). (5.5)
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On the other hand the dimension of the nilpotent K-orbit O = K -Y is half the dimension
of G -Y. Hence,
. 1 .
dim(0) = 5 (dim(g) — dim(34(Y')))

_ dim(l)  dim(gg(Y))
2 2

+ dim(u™). (5.6)

Combining formulas (5.5) and (5.6), we get dim 5! (Y) = 1 dim(34(Y)) — 4 dim(l). Now,
the formula in Proposition implied the formula of the corollary.

O

We begin the proof of Proposition 5.3 with two preliminary lemmas.
Lemma 5.7. Write qx =+ (u” N¥), g1,k =1 + (u] NE). Then,

dim(l) =dim(INhL)+2 (p+¢q) — N.

Proof. By construction, dim(l) = 317 p2 + 310 ¢; — 1, while dim(IN 1) = SV (p — 1)+
SV (q; — 1)2 — 1. Hence,

NP Nq
dim(Int) =Y p?+> ¢ -2 pi+> ¢)+N-1
1 1
=dim(l) =2 (p+q) + N.
O

Lemma 5.8. For f = fo+f1+...+ fm_1 as in the algorithm in Section 3, set f' = f— fo =
fitfo+...+ fm_1. Then,

dim Z¢(f) = dim Ze, (f') +2 (p + ) = N.

Proof. Associate to f the tableau that parameterizes the nilpotent K-orbit through f. Let
a; stand for the number of rows in the tableau having at least ¢ blocks. Then, by [5, Thm
6.1.], we know that dim Zg(f) = Y. a? — 1. Similarly, since the tableau corresponding to
the nilpotent orbit K;(f’) is obtained from that of f by removing a longest row, we have
dim Zg, (f') = Y_(a; — 1)?> — 1. Thus,

N

dim Zg(f) — dim Zg, (f') =Y af = > (a;i—1)>=2> a;—N=2(p+q)— N.

1

O

Proof of Proposition 5.3. We proceed by induction on the number of strings produced by
the algorithm.
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Assume that the dimension formula holds for /' = f1 + fo + ...+ fi_1 with m > 1. By
Lemma 5.8, we know that

dimZg(f) = dim Zg, (f) +2 (p+q¢) - N

=dim(h) +2 Y dim(Qi x/Qik N Qi—1,) +2 (p+q) — N
2

(by the inductive hypothesis)

=dim(l, N 1) + 2 dim(ly Nu) +2 Y dim(Qi x/Qix NQi—1.) +2 (p+q) — N
2

= dim([1 N [) +2 Zdim(QLK/Qi’K n Qi—l,K) +2 (p + q) - N
1
(since dim(Ql,K/Ql,K N QK) = dim(Ll/Ll N QK) = dlm([1 N uf))
= dim([) + 2 Z dim(Q;,x/Qi,x N Qi—1,K)
1

(by Lemma 5.7).

Begin the induction with the case of no strings (so f = 0). Then either p=0o0r ¢ =0
and L = G, making the formula clearly true. ]

In Theorem 5.9 we give a condition for Q to be transitive on the generic elements in
u” Np. Let O = K - f be the K-orbit of generic elements in u™ N p.

Theorem 5.9. Qx acts transitively on ON(u™Np) if and only if Qx NQ1 Kk acts transitively
on the set of generic elements in u; Np.

Proof. Assume that Qp acts transitively on O N (u™ Np). Let Y’ € u] Np be a generic
element and form Y = fy + Y’. By the proof of Proposition 3.14 we know that Y € u= Np
is generic. Since Qg is assumed to act transitively on O N (u™ N p), we conclude that
QY =Qk-(fo+Y’)is open in u™ Np. Hence, the tangent space to the orbit Qx - (fo+Y”)
at the base point fy + Y coincides with u™ N p. This implies that

[ane fo+Y'] =Tty (Qx - (fo+Y') =u" Np. (5.10)

We show that Qx N Q1,x - Y’ is open in u; Np.

The Borel subalgebra b = h +n~ C q is determined by an array of numbered dots.
The first step of our algorithm determines fy by choosing a first string. Recall that Ag
is the set of labels of dots occurring in the first string. In particular, notice that f; is
a sum of root vectors for roots €; — ¢; where i and j belong to the set Ag. Moreover,
Agr,h) ={e —€j 4,5 ¢ Ao}. The set Ay determines a decomposition

qﬁ{?:qﬂglﬂé+6+bo+01
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where

AfgNgiNe) ={e —¢; 4,5 ¢ Ao} NA(qNE)
A(Uo) = {Gi — € 1,] € Ao} ﬂA(q ﬂ{f)
A(v1) = {e; —€; : exactly one of ¢, j belongs to Ay} N A(q N €)
and b is the part of b consisting of matrices with 0 in the i*" diagonal entry when i € Aj.
Observe that,
[aNgiNE fo+Y']ClangiNE Y]
b, fo+ Y] =1[b fo] Co
. Jo ]/ 9 fol ’ (5.11)
[bo, fo + Y] C [vo, fo] C 0o
[o1, fo + Y] C oo+ 05,

We claim that Ty ((Q1,x NQ1)-Y’) = uy Np. This is equivalent to [qNg1NE Y'] = uy Np.
Since Y’ € u; Np the inclusion ‘C’ is clear. For the other inclusion, let Xz € uy Np. Then
Xgelant, fo+Y'Ngi, by (5.10),
=([g1Ngne+bh+ug+o1,fo+Y'])Ng
ClarNgneY'], by (5.11),.

The claim is now proved. Therefore (Q1,xk N Qk) - Y’ is open in u; Np.

Since Y is an arbitrary generic element in u; N p, we conclude that Q1 x N Qx acts
transitively on the set of generic elements in u; N p.

For the converse, let Y be genericinu~Npand let f = f+f/, f' = 27;1 fi as in Section
3. By Proposition 3.14 there exist ¢ € Qx and ¢; € Q; k so that Y = qq1 -+ ¢m—1-(fo+ f').
Since each ¢; commutes with fy, ¢7'Y = fo +Y’, where Y/ = ¢, ---qm_1 - f', a generic
element of u; Np. Now assume Qx N @1,k is transitive on the generic elements of u; N p.
Then,

dim(Q1 k- Y') =dim((Qx N Q1.x) - Y') = dim(u; Np). (5.12)
Therefore it suffices to show that Qi - Y = Qk - (f +Y”’) has codimension zero in u™ N p.
By Lemma 5.2 and Corollary 5.4 applied to Y’ € u;” Np, along with (5.12),

0= codimul— p (Q1.x(Y"))

m 5.13
:Zdim(QLK/QLKﬂQi_LK)f (dimZKl(Y’)—dimZQLK(Y’)). ( )
1=2
Also, by (5.12),
dim(Q1,x/Q1,xk NQk) =dim Q1 x —dim Q1 x N QK
(5.14)

= dim ZQ],K(Y/) — dim ZQKOQLK(Y/)'
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Applying formula 5.2 and Corollary 5.4 for the first equality and (5.13) and (5.14) for the
second, we have

codimy—ry (@ (f +Y7))
= Z dim(Qi x /Qix N Qi-1.K) — (dim Zx(Y) —dim Zg, (Y)) (5.15)
1

- (ZKl(Y’) - dimZQLKQQK(Y’)) - (dimZK(Y) — dim ZQK(Y)).
Since
Zi,(Y)/Zq, ki (Y') = Zr(fo+Y') /[ Zg, (fo+Y)

is injective, we may conclude that the right hand side of (5.15) is less than or equal to zero.
Therefore, codim,-n,(Qx (f +Y”)) =0, and the proof is complete.

O

Corollary 5.16. Qx has an open orbit in u™ Np if and only if @1,k N Qk has an open
orbit in uy Np.

We conclude this section with an example of how Corollary 5.16 identifies a situation
where Qi does not have an open orbit in u™ N p.

Ezample 517. Let Gr = SU(7,7). Consider the positive root system AT = A*(g,b)
determined by the following numbered array. The first string formed by the algorithm is

shown.

8 9 10 11 12 13 14

Equivalently, AT is the system of positive roots having positive inner product with
(14,13,10,7,6,4,3]12,11,9,8,5,2,1).

After deleting the first string the resulting array is

2 5 7
)

9 11 14

Thus, g1 = sl(6) and @1,k NQk = By is a Borel subgroup of K7. Moreover, dim(¢Nby) =
11, while dim(u; Np) = 9. An arbitrary element X in u; Np is of the form

X =aXgo+bX112+cX1uo+dX1u7r+eXs11+ fX145+9Xs0 +hX79+ X711 7.
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We claim that By - X is not dense in u; Np for any X € uj Np. Indeed, when a # 0
36, (X) contains

aXs52+ fX149, a X724+ dX149, and aXqa11 — bX149.

We then conclude that dim(B; - X) < 8 < dim(u; Np) = 9. When a = 0, the argument is
slightly different: Xg o ¢ [b1,X] (as is easily checked). But, [b1, X] is the tangent space to
By - X at X, so dim(B; - X) < dim(u™ Np). This proves the claim. Now, Proposition 5.9,
implies that @k has no open orbit in u™ N p.

The orbit structure of Qx on the generic elements in u~ N p may be described as fol-
lows. Assume that Y € u~ Np is generic. By Corollary 5.4, we know that dim5~}(Y) =
dim L, /(L1NQ k) = 2. Hence, by Lemma 5.2, the only possible dimensions of the Q g-orbits
in K(Y)Np are 47, 48 and 49. We have just argued that no orbit has dimension 49.

Observe that L; = L1 x L? is the product of two commuting copies of GL(2) (generated
by the roots +{e7 — €5,€11 — €9}). By using the Bruhat decompositions of the subgroups

Li,i = 1,2 one sees that the Qx-orbits in the generic elements of u~ N p are as follows.
Orbits of dimension 47:

Qk - f, Qx(exp(Xo11) - f), Qkr(05,7exp(Xo1 - f),

and orbits of dimension 48:

Qk(os7- f), Qr(0911 - f),
QK (0570911 f), Qr(exp(Xs,7) - f), Qr(exp(Xs5,7)09,11 - f),
QK (exp(Xs,7exp(sX9,11),s € C (an infinite family).

We have the following orbit decomposition

K{Y)Np=Qxk - fUQk(exp (Xo11)f) UQK(59,11f) U Qk(s9,116xp (X57)f)
UQk(s5,7f) UQKk (exp (Xo11)f) UQK(s9,1155,7f)
U | Qx(exp (Xs7) exp (sXo11) - f)
seC

with sg 11 and s5 7 the non-trivial Weyl group elements of the respective copies of GL(2).

6. MULTIPLICITY POLYNOMIALS FOR DISCRETE SERIES REPRESENTATIONS

An important invariant of a Harish-Chandra module V is its associated variety. In
general, the associated variety, denoted by AV (V), is the union of the closures of several
K-orbits in Ny. The associated cycle is a formal integer combination of the orbit closures O
occurring in AV (V). The integer attached to O is referred to as the multiplicity of O in the
associated cycle of V. In this section we will use Theorem 4.8 to give a simple algorithm
for computing the multiplicities for discrete series representations of Gg = SU(p,q). Our
starting point is a formula of J.T. Chang that gives a formula for the multiplicities in
terms of a sheaf cohomology space on v~ 1(f). For generalities on the associated cycle and
multiplicities see, for example, [3] and [13]. See [10] for the proof of a conjecture of D.
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Barbasch and D. Vogan that relates the associated cycle of a Harish-Chandra module to its
global character.

We begin by giving a parameterization of the discrete series. For each closed K-orbit
in the flag variety X there is a family of discrete series representations. So let us fix such
a closed orbit Z in X. Then, as in earlier parts of this article, there is a positive system
AT C A(h,g) containing AT so that Z = K - b, with b = h+n~, A(n~) = —A". The
discrete series representations corresponding to Z are parameterized by A € h* satisfying

(i) A is AT-dominant regular and 6.1)
6.1
(ii) 7 = A+ p — 2p. is analytically integral.
Here we are using the standard notation p (resp., p.) for one half the sum of the roots in
AT (resp. AT). The discrete series representation corresponding to A will be denoted by

V); it has infinitesimal character A and has lowest K-type of highest weight 7.

It is well-known that AV (V) is the image of v : T; X — Ny. Therefore AV(Vy) =K - f,
where f is the generic element constructed in Section 3. It is also known that the multiplicity
of K - f in the associated cycle of V) is a polynomial in A. (Note that we have fixed an

arbitrary closed K-orbit in X; there is one multiplicity polynomial for each such K-orbit
Z.)

Let Oz (resp., O,-1(5)) be the structure sheaf of Z (resp., v~ *(f)). Extend 7 € h* to a
representation of b by requiring that 7|,-~ = 0. By (ii) of (6.1) 7 lifts to a character x, of
BN K. This defines a homogeneous line bundle £, — Z. The sheaf of local regular sections
O(7) is described as follows. Let p: K — K - b be the natural quotient map. Then for an
open set U C Z a section on U is a regular function ¢ on p~1(U) so that

o(kb) = x-(b"1)p(k), for ke K,be BNK.
Let
O1-1(p)(1) = 0(7) @ Oymr(y).
Oz
We now may state J.T. Chang’s theorem ([2]).

Theorem 6.2. If V) is the Harish-Chandra module of a discrete series representation pa-
rameterized by a closed K-orbit Z in X and A\ € h*, as described above, then the multiplicity
of K - f in the associated cycle of V is

dim (HO(’}/_l(f)7 (9771(]«)(7'))).

This cohomology space may be described by the Borel-Weil Theorem as follows. Let W_,
be the irreducible finite dimensional K-representation of lowest weight —7 and let w_, be a
lowest weight vector. The Borel-Weil Theorem states that W*_~ H%(Z, O(7)). Note that
7 satisfies (ii) of (6.1), so is A} dominant. This isomorphism is implemented by

Vi oy, v E WX
pu(k) = (v, kw_r).
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As stated (and attributed to J. Bernstein) in [7, §6.1-6.3], for A sufficiently dominant
dim (H°(v7'(f), 04-1(p))) = dim (spanc{k~'w_, : k € N(f,n™ NE)}). (6.3)
This, along with our description of y~1(f) given in Theorem 4.8, implies the following
proposition.
Proposition 6.4. The multiplicity of K - f in the associated cycle of Vy is
dim (spanc{k cw_, i k€ L,,... LngL}),

provided X is sufficiently dominant.

For any X\ € h* satisfying (6.1), and 7 = A + p — 2p., we define
qz(A) = dim (spang{k-w_; : k € Ly, ... LoL1L}). (6.5)

We show that gz (\) extends to a polynomial on all of h*. Since the multiplicity (for the part
of the discrete series corresponding to Z) is also a polynomial in A, we may then conclude
that gz(\) equals the multiplicity polynomial.

Theorem 6.6. For all A\ € h* satisfying (6.1) the multiplicity of K - f in the associated
cycle of Vy is qz(N).

Proof. The notation will be slightly less burdensome if we define p(7) to be the right-hand
side of 6.5 for any dominant integral 7. By the relation 7 = A + p — 2p, it will be enough
to show that p(7) extends to a polynomial in 7. We will do this by induction on m, the
number of strings making up f.

If m = 0 the group Ggr is compact (p = 0 or ¢ =0). Then L = K = G and f = 0,
and the Springer fiber is Z = X and p(7) is given by the Weyl dimension formula (for g).

Therefore, p(7) extends to a polynomial.

Now consider m > 1. Write U_, for spanc{Lw_-}, the irreducible representation of
L having lowest weight —7. Decompose U_, as a representation of L; N L. Write this
decomposition as > E_,, and write the lowest weight vectors as w_,.

Claim: Each w_-, is annihilated by n= Nng; N ¢

To verify the claim, note that since L normalizes u~ N¥ and w_, is annihilated by u= N¢,
each w_,, (in fact all of U_;) is annihilated by u~ N ¢. Now each w_,, is annihilated by
nNhHNL But,nmNgiNECu NE+n"NGHNL

The claim tells us that F_,, = spanc{Kjw_,,} is the irreducible Kj-representation of
lowest weight —7;. Therefore,

p(T) = Z dim (spanC{Lm e Llw_n}). (6.7)

By induction on m, each pi(7;) = dim (spang{Ly, - - - Lyw_r,}) extends to a polynomial in

Ti-
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There are two observations to make. First, L is a product of a number of groups iso-
morphic to a GL(r) for various r. Furthermore, L1 N L is a product of various groups
isomorphic to GL(r’"), where " is r or r — 1. The standard branching law for the restriction
of representations of GL(r) to GL(r — 1) is as follows. Let V_, be the irreducible GL(r)-
representation of lowest weight —a = —(a1,...,a,), ay > ag > -+ > a,. Similarly, let U_;
be the irreducible GL(r — 1) representation of lowest weight —b = —(b1,...,b,_1). The the
restriction of V_, to GL(r — 1) is Y, U_p, with the sum being over all b € Z"~! so that
ay >by > ag >by >+ >b._1 > a,. Each occurs with multiplicity one.

The second observation is stated as an elementary Lemma.
Lemma 6.8. If Pi(b), b € C"! is a polynomial, then for a € Z"

P(a) = > Pi(by,...,br—1)

a1 >bi1>az2>by>->b._12a,,b;€Z

extends to a polynomial on C”.

Proof of lemma. For a € Z",

al Ar—1
P@)= Y- > Pi(bi,....b).
bi=as bn_1=a,

It follows easily, from the fact that Zf:]:l n* is polynomial in N, that P(a) extends to a
polynomial in a € C". ]

We now conclude the proof of the theorem by noting that the 7;’s occurring in (6.7) come
from the branching rule mentioned above (for the various factors of L), and the Lemma
along with (6.7) says that pz(7) extends to a polynomial in 7. O

The proof of the theorem contains an algorithm for computing the multiplicity of K - f
in V). We describe an algorithm for computing pz(7) for any 7 which is a AT-dominant
integral weight. Given a closed K-orbit and corresponding positive system A™ containing
AT, form the sequence as in (2.5) and the corresponding array. Form the first string and
fo asin (3.1), also form G and @1,k (as at the end of Section 3).

(1) Decompose the L-representation U_, = spang{L(w_,)} under L N L; using the
branching law for restricting GL(r)-representations to GL(r — 1). Call the con-
stituents E_-,.

(2) As shown in the proof of the theorem (see the ‘Claim’), each 7; is dominant for
AFNA(l) and

p(7) = pi(7).
(3) Now repeat the procedure to find the p;(7;).

The procedure ends after m (the number of strings) iterations.
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We now give several examples of computations of the multiplicities of discrete series
representations using the algorithm described above. The result of the first example is now
well-known ([8] and [2]), and the second follows from [2].

Ezample 6.9. (Holomorphic Discrete Series) This is the case where there is a unique simple
noncompact root. The array is therefore one of the following:

1 .. p 1 e p
* or

e ' c '
p+1 p+q p+1 p+q

and (assuming p < q) f = +> " (6 — €pti). Therefore, L = K, s0 Ly, --- LiL = K and

the multiplicity of V) is the dimension of the lowest K-type of V).

Ezample 6.10. (Quaternionic Discrete series of SU(p,2)) Consider the positive system de-
termined by the following diagram:

The reductive part of Qi is L = S(GL(p) x GL(1) x GL(1)) and Ly C L. Therefore, the
multiplicity is dim(L - w_,), i.e., the dimension of the irreducible representation of L with
lowest weight —7 = —(A + p — 2p.).

Ezample 6.11. Consider the group G = SU (p, p) with the positive system given by a Dynkin

diagram with the maximum number of simple noncompact roots. The array is

1 2 p

N A

p+1 p+2 2p

Here L = L = the torus and the multiplicity is one.

Ezample 6.12. We consider G = SU(7,7) and the positive system determined by the fol-
lowing array

8 9 10 11 12 13 14



28 L. BARCHINI AND R. ZIERAU

(See also Example 5.17.) Then spanc{L - w_-} is the irreducible L-representation of lowest
weight —7, call it U_,. Then L is a product of six copies of SL(2) (and a torus) and U_.
is the tensor product of representations of these SL(2)’s. Since L; N L is the torus, the
decomposition of U_. |1,z is given by the weights

—7 4 ale; —e3) +aleg — €5) + c(eg — €7) + d(es — €9) + +e(e10 — €11) + f(€13 — €14).
witha=0,...,mm—7,0=0,...,y—75,¢c=0,...,76—77,d=0,...,78s—T9,e =0,...,T10—
711 and f =0,...,73 — 714. L1 is the product of two copies of SL(2) (and a torus). The

N
N(N +1
roots in [; are +{e5 — €7, €9 — €11 }. Using the formula Z n= %

n=0

, the dimension of

spang{LiL - w_,} is therefore

Z (5 —mr+b—c+1)(rg—m1+d—e+1)

Gy f

T4 — T — Te + T7
2

T8 — T9 — T10 + T11
2

Writing this in terms of A (using 7 = A 4+ p — 2p.) the formula for multiplicity is

=(n—-—n+)(u—-—m+)(r—m+1)(5s—m+1+

)

(Tg — 79 + 1)(’7’10 — 711+ 1)(7’9 —711+14+ )(T13 — T14 + 1)

1
Z(>\1_)\2)()\4_)\5)()\6_)\7)()\8_/\9)(>\10_>\11)()\13_)\14)()\4+)\5_)\6_)\7)()\8+)\9_)\10_>\11)-

We end with two remarks.

Remark 6.13. As a consequence of Proposition 5.1 and the above discussion we have an
alternative formula for the multiplicity.

Proposition 6.14. If there exists Y € u™Np so that Qk-Y s dense in the generic elements,
then
qz(A\) =dim{Zg(Y)L - w_,}.

Proof. This follows from (6.3), since Zx(Y)L - b is dense in y~1(f). O

Remark 6.15. In [14] H. Yamashita constructs a Zx (f)-representation which is contained in
the isotropy representation ([13]). The description of H(y~'(f),0,-1(s)) given here shows
that Yamashita’s Zg (f)-representation is equal to spang{L,, ... L1L(w_,)}.
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