UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS

DAN BARBASCH

1. Introduction

 $\{sec:1\}$

This paper gives a omplete classification of the spherical unitary dual of the split groups Sp(n) and So(n) over the real and p-adic field. Most of the results were known earlier from [B1], [B2], [B3] and [BM3]. As is explained in these references, in the p-adic case the classification of the spherical unitary dual is equivalent to the classification of the unitary generic (in the sense of admitting Whittaker models) Iwahori-spherical modules. The new result is the proof of necessary conditions for unitarity in the real case. Following a suggestion of D. Vogan, I find a set of K-types which I call relevant which detect the nonunitarity. They have the property that they are in 1-1 correspondence with certain irreducible Weyl group representations (called relevant) so that the intertwining operators are the same in the real and p-adic case. The fact that these relevant W-types detect unitarity in the p-adic case is also new. Thus the same proof applies in both cases. Since the answer is independent of the field, this establishes a form of the Lefschetz principle.

Let G be a split symplectic or orthogonal group over a local field \mathbb{F} which is either \mathbb{R} or a p-adic field. Fix a maximal compact subgroup K. In the real case, there is only one conjugacy class. In the p-adic case, $\mathbb{F} \supset \mathcal{R} \supset \mathcal{P}$, where \mathcal{R} is the ring of integers and \mathcal{P} the maximal prime ideal. We fix $K = G(\mathcal{R})$. Fix also a rational Borel subgroup B = AN. Then G = KB, and denote by $M := K \cap B$. A representation (π, V) (admissible) is called spherical if $V^K \neq (0)$.

The classification of irreducible admissible spherical modules is well known. For every irreducible spherical π , there is a character $\chi \in \widehat{A}$ such that $\chi|_{A\cap K} = triv$, and π is the unique spherical subquotient of $Ind_B^G[\chi \otimes 1]$. We will call a character χ whose restriction to $A\cap K$ is trivial, unramified. Write $X(\chi)$ for the induced module (principal series) and $L(\chi)$ for the irreducible spherical subquotient. Two such modules $L(\chi)$ and $L(\chi')$ are equivalent if and only if there is an element in the Weyl group W such that $w\chi = \chi'$. An $L(\chi)$ admits a nondegenerate hermitian form if and only if there is $w \in W$ such that $w\chi = -\overline{\chi}$.

The character χ is called *real* if it takes only positive real values. For real groups, χ is real if and only if $L(\chi)$ has real infinitesimal character ([K],

chapter 16). As is proved there, any unitary representation of a real reductive group with nonreal infinitesimal character is unitarily induced from a unitary representation with real infinitesimal character on a proper Levi component. So for real groups it makes sense to consider only real infinitesimal character. In the p-adic case, χ is called real if the infinitesimal character is real in the sense of [BM2]. The results in [BM1] show that the problem of determining the unitary irreducible representations with Iwahori fixed vectors is equivalent to the same problem for the Iwahori-Hecke algebra. In [BM2], it is shown that the problem of classifying the unitary dual for the Hecke algebra reduces to determining the unitary dual with real infinitesimal character of some smaller Hecke algebra (not necessarily one for a proper Levi subgroup). So for p-adic groups as well it is sufficient to consider only real χ .

So we start by parametrizing real unramified characters of A. Since G is split, $A \cong (\mathbb{F}^{\times})^n$ where n is the rank. Define

$$\mathfrak{a}^* = X^*(A) \otimes_{\mathbb{Z}} \mathbb{R}, \tag{1.0.1}$$

where $X^*(A)$ is the lattice of characters of the algebraic torus A. Each element $\nu \in \mathfrak{a}^*$ defines an unramified character χ_{ν} of A, characterized by the formula

$$\{\mathsf{eq} \colon 1.2\} \qquad \qquad \chi_{\nu}(\tau(f)) = |f|^{\langle \tau, \nu \rangle}, \qquad f \in \mathbb{F}^{\times}, \tag{1.0.2}$$

where τ is an element of the lattice of one parameter subgroups $X_*(A)$. Since the torus is split, each element of $X^*(A)$ can be regarded as a homomorphism of \mathbb{F}^{\times} into A. The pairing in the exponent in (1.0.2) corresponds to the natural identification of \mathfrak{a}^* with $\operatorname{Hom}[X_*(A),\mathbb{R}]$. The map $\nu \longrightarrow \chi_{\nu}$ from \mathfrak{a}^* to real unramified characters of A is an isomorphism. We will often identify the two sets writing simply $\chi \in \mathfrak{a}^*$.

Let \check{G} be the (complex) dual group, and let \check{A} be the torus dual to A. Then \mathfrak{a}^* is canonically isomorphic to $\check{\mathfrak{a}} \otimes_{\mathbb{R}} \mathbb{C}$, the Lie algebra of \check{A} . So we can regard χ as an element of $\check{\mathfrak{a}}$. We attach to each χ a nilpotent orbit $\check{\mathcal{O}}(\chi)$ as follows. By the Jacobson-Morozov theorem, there is a 1-1 correspondence between nilpotent orbits $\check{\mathcal{O}}$ and \check{G} -conjugacy classes of Lie triples $\{\check{e},\check{h},\check{f}\}$; the correspondence satisfies $\check{e} \in \check{\mathcal{O}}$. Choose the Lie triple such that $\check{h} \in \check{\mathfrak{a}}$. Then there are many $\check{\mathcal{O}}$ such that χ can be written as $w\chi = \check{h}/2 + \nu$ with $\nu \in \mathfrak{z}(\check{e},\check{h},\check{f})$, for example this is always possible with $\check{\mathcal{O}} = (0)$. The results in [BM1] guarantee that for any χ there is a unique $\check{\mathcal{O}}(\chi)$ satisfying

- (1) there exists $w \in W$ such that $w\chi = \frac{1}{2}\check{h} + \nu$ with $\nu \in \mathfrak{z}(\check{e}, \check{h}, \check{f})$,
- (2) if χ satisfies property (1) for any other $\check{\mathcal{O}}'$, then $\check{\mathcal{O}}' \subset \overline{\check{\mathcal{O}}}(\chi)$.

Here is another characterization of the orbit $\check{\mathcal{O}}$. Let

$$\check{\mathfrak{g}}_1:=\{\ x\in\check{\mathfrak{g}}\ :\ [\chi,x]=x\ \},\qquad \check{\mathfrak{g}}_0:=\{x\in\check{\mathfrak{g}}\ :\ [\chi,x]=0\ \}.$$

Then \check{G}_0 , the Lie group corresponding to the Lie algebra $\check{\mathfrak{g}}_0$ has an open dense orbit in $\check{\mathfrak{g}}_1$. Its \check{G} saturation in $\check{\mathfrak{g}}$ is $\check{\mathcal{O}}(\chi)$.

The pair $(\mathcal{O}(\chi), \nu)$ has further nice properties. For example assume that $\nu=0$ in (1) above. Then the representation $L(\chi)$ is one of the parameters that the Arthur conjectures predict to play a role in the residual spectrum. In particular, $L(\chi)$ should be unitary. In the p-adic case one can verify the unitarity directly as follows. In [BM1] it is shown how to calculate the Iwahori-Matsumoto dual of $L(\chi)$ in the Kazhdan-Lusztig classification of representations with Iwahori-fixed vector. It turns out that in the case $\nu=0$, it is a tempered module, and therefore unitary. Since the results in [BM1] show that the Iwahori-Matsumoto involution preserves unitarity, $L(\chi)$ is unitary as well. In the real case, a direct proof of the unitarity of $L(\chi)$ (still with $\nu=0$ as in (1) above) is given in [B3], and in section 9 of this paper.

In the classical Lie algebras, the centralizer $\mathfrak{z}(\check{e},\check{h},\check{f})$ is a product of symplectic and orthogonal Lie algebras. We will often abbreviate it as $\mathfrak{z}(\check{\mathcal{O}})$. The orbit $\check{\mathcal{O}}$ is called distinguished if $\mathfrak{z}(\check{\mathcal{O}})$ does not contain a nontrivial torus; equivalently, the orbit does not meet any proper Levi component. Let $\check{\mathfrak{m}}_{BC}$ be the centralizer of a Cartan subalgebra in $\mathfrak{z}(\check{\mathcal{O}})$. This is the Levi component of a parabolic subalgebra. The subalgebra $\check{\mathfrak{m}}_{BC}$ is the Levi subalgebra attached to $\check{\mathcal{O}}$ by the Bala-Carter classification of nilpotent orbits. The intersection of $\check{\mathcal{O}}$ with \mathfrak{m}_{BC} is the other datum attached to $\check{\mathcal{O}}$, a distinguished orbit in $\check{\mathfrak{m}}_{BC}$. We will usually denote it $\check{\mathfrak{m}}_{BC}(\check{\mathcal{O}})$ if we need to emphasize the dependence on the nilpotent orbit. Let $M_{BC} \subset G$ be the Levi subgroup whose Lie algebra \mathfrak{m}_{BC} has $\check{\mathfrak{m}}_{BC}$ as its dual.

The parameter χ gives rise to a spherical irreducible representation $L_{M_{BC}}(\chi)$ on M_{BC} as well as a $L(\chi)$. Then $L(\chi)$ is the unique spherical irreducible subquotient of

$$I_{M_{BC}}(\chi) := Ind_{M_{BC}}^G[L_{M_{BC}}(\chi)].$$
 (1.0.3) {eq:1.3}

To motivate why we consider $M_{BC}(\check{\mathcal{O}})$, we need to recall some facts about the Kazhdan-Lusztig classification of representations with Iwahori fixed vectors in the p-adic case. Denote by τ the Iwahori-Matsumoto involution. Then the space of Iwahori fixed vectors of $\tau(L(\chi))$ is a W-representation (see 5.2), and contains the W-representation sgn. Irreducible representations with Iwahori-fixed vectors are parametrized by Kazhdan-Lusztig data; these are \check{G} conjugacy classes of (\check{e}, χ, ψ) where $\check{e} \in \check{\mathfrak{g}}$ is such that $[\chi, \check{e}] = \check{e}$, and ψ is an irreducible representation of the component group $A(\chi, \check{e})$. To each such parameter there is associated a standard module $X(\check{e}, \chi, \psi)$ which contains a unique irreducible submodule $L(\check{e}, \chi, \psi)$. All other factors have parameters $(\check{e}', \chi', \psi')$ such that

$$\check{\mathcal{O}}(\check{e}) \subset \overline{\check{\mathcal{O}}(\check{e}')}, \qquad \check{\mathcal{O}}(\check{e}) \neq \check{\mathcal{O}}(\check{e}').$$

As explained in section 4 and 8 in [BM1], $X(\check{e}', \chi', \psi')$ contains sgn if and only if $\psi' = triv$. Thus if we assume $\check{\mathcal{O}}$ satisfies (1) and (2) with respect to χ , it follows that $X(\check{e}, \chi, triv) = L(\check{e}, \chi, triv)$. We would like it to equal $I_{M_{BC}}$ but this is not true. In general (for an M which contains M_{BC}),

 $L(\check{e}, \chi, triv) = Ind_M^G[X_M(\check{e}, \chi, triv)]$ if and only if the component $A_M(\check{e}, \chi)$ equals the component group $A(\check{e}, \chi)$. We will enlarge $M_{BC}(\check{\mathcal{O}})$ to an M_{KL} so that $A_{M_{KL}}(\check{e}, \chi) = A(\check{e}, \chi)$. Note that if $\check{\mathfrak{m}}_{BC} \subset \check{\mathfrak{m}} \subset \check{\mathfrak{m}}'$, then $A_M(\check{e}, \chi) \subset A_{M'}(\check{e}, \chi)$. Then

$$\{\operatorname{eq}: 1.4\} \qquad \qquad Ind_{M_{KL}}^G[X_{M_{KL}}(\check{e},\chi,triv)] = X(\check{e},\chi,triv) = L(\check{e},\chi,triv) \qquad (1.0.4)$$

and

$$\{eq: 1.5\} \qquad \qquad L(\chi) = I_{M_{KL}}(\chi) := Ind_{M_{KL}}^G[L_{M_{KL}}(\chi)] \qquad \qquad (1.0.5)$$

follows by applying τ . We remark that M_{KL} depends on χ as well as \check{e} . It will be described explicitly in section 2. A more general discussion about how canonical $\check{\mathfrak{m}}_{KL}$ is, appears in [BC1].

In the real case, we use the same Levi components as in the p-adic case. Then equality (1.0.5) does not hold for any proper Levi component. A result essential for the paper is that equality does hold at the level of multiplicities of the $relevant\ K$ -types (section 4.2).

We will use the data $(\check{\mathcal{O}}, \nu)$ to parametrize the unitary dual. Fix an $\check{\mathcal{O}}$. A representation $L(\chi)$ will be called a complementary series attached to $\check{\mathcal{O}}$, if it is unitary, $\check{\mathcal{O}}(\chi) = \check{\mathcal{O}}$. To describe it, we need to give the set of ν such that $L(\chi)$ with $\chi = \check{h}/2 + \nu$ is unitary. Viewed as an element of $\mathfrak{z}(\check{\mathcal{O}})$, the element ν gives rise to a spherical parameter $((0), \nu)$ where (0) denotes the trivial nilpotent orbit. The main result in section 3.2 says that the ν giving rise to the complementary series for $\check{\mathcal{O}}$ coincide with the ones giving rise to the complementary series for (0) on $\mathfrak{z}(\check{\mathcal{O}})$. This is suggestive of Langlands functoriality.

It is natural to conjecture that such a result will hold for all split groups. Recent work of D. Ciubotaru for F_4 , and by D. Ciubotaru and myself for the other exceptional cases, show that this is generally true, but there are exceptions.

I give a more detailed outline of the paper. Section 2 reviews notation from earlier papers. Section 3 gives a statement of the main results. A representation is called *spherical unipotent* if its parameter is of the form $\hbar/2$ for the neutral element of a Lie triple associated to a nilpotent orbit \mathcal{O} . The unitarity of the spherical unipotent representations is dealt with in section 8. For the p-adic case I simply cite [BM3]. The real case (sketched in [B2]) is redone in section 9.5. The proofs are simpler than the original ones because I take advantage of the fact that wave front sets, asymptotic supports and associated varieties "coincide" due to [SV]. Section 10.1 proves an irreducibility result in the real case which is clear in the p-adic case from the work of Kazhdan-Lusztig. This is needed for determining the complementary series (definition 3.1 in section 3.1).

Sections 4 and 5 deal with the nonunitarity. The decomposition $\chi = \dot{h}/2 + \nu$ is introduced in section 3. It is more common to parametrize the

 χ by representatives in \check{a} which are dominant with respect to some positive root system. We use Bourbaki's standard realization of the positive system. It is quite messy to determine the data $(\check{\mathcal{O}}, \nu)$ from a dominant parameter, because of the nature of the nilpotent orbits and the Weyl group. Sections 2.3 and 2.8 give a combinatorial description of $(\check{\mathcal{O}}, \nu)$ starting from a dominant χ .

In the classical cases, the orbit $\check{\mathcal{O}}$ is given in terms of partitions. To such a partition we associate the Levi component

$$\check{\mathfrak{m}}_{BC} := gl(a_1) \times \cdots \times gl(a_k) \times \check{\mathfrak{g}}_0(n_0)$$

given by the Bala-Carter classification. (The $\check{\mathfrak{g}}_0$ in this formula is not related to the one just after conditions (1) and (2). The intersection of $\check{\mathcal{O}}$ with $\check{\mathfrak{m}}_{BC}$ is an orbit of the form

$$(a_1) \times \cdots \times (a_r) \times \check{\mathcal{O}}_0$$

where \mathcal{O}_0 is a distinguished nilpotent orbit, and (a_i) is the principal nilpotent orbit on $gl(a_i)$. This is the distinguished orbit associated to \mathcal{O} by Bala-Carter. Then χ gives rise to irreducible spherical modules $L_M(\chi)$, $L(\chi)$ and $I_M(\chi)$ as in (1.0.3) and (1.0.5). The module $L(\chi)$ is the irreducible spherical subquotient of $I_M(\chi)$. As already mentioned, $I_{M_{KL}}(\chi) = L(\chi)$ in the p-adic case, but not the real case. In all cases, the multiplicities of the relevant K-types in $L(\chi)$, $I_M(\chi)$ coincide. These are representations of the Weyl group in the p-adic case, representations of the maximal compact subgroup in the real case. Their definition is in section 4.2; they are a small finite set of representations which provide necessary conditions for unitarity which are also sufficient. The relationship between the real and p-adic case is investigated in section 4, and 4.3. In particular the issue is addressed of how the relevant K-types allow us to deal with the p-adic case only. A more general class of K-types for split real groups (named *petite* K-types), on which the intertwining operator is equal to the p-adic operator, is defined in [B6]. Sections 4.4, and 4.5 are included for completeness. The interested reader can consult [B6] and [BC1] for results where these kinds of K-types and W-types are useful.

The determination of the nonunitary parameters proceeds by induction on the rank of $\mathfrak g$ and by the inclusion relations of the closure of the orbit $\check{\mathcal O}$. Section 5 completes the induction step; it shows that conditions (B) in section 3.1 is necessary. The last part of the induction step is actually done in section 3.1.

I would like to thank David Vogan for generously sharing his ideas about the relation between K-types, Weyl group representations and signatures. They were the catalyst for this paper.

This research was supported by NSF grants DMS-9706758,DMS-0070561 and DMS-03001712.

2. Description of the spherical parameters

{**set**}2}

2.1. Explicit Langlands parameters. We consider spherical irreducible representations of the split connected classical groups of rank n of type B, C, D, precisely, G = So(2n+1), G = Sp(2n) and G = So(2n). These groups will be denoted by G(n) when there is no danger of confusion (n is the rank). Levi components will be written as

$$\{ \text{eq:1.1levi} \} \qquad \qquad M = GL(k_1) \times \cdots \times GL(k_r) \times G_0(n_0), \qquad (2.1.1)$$

where $G_0(n_0)$ is the factor of the same type as G. The Lie algebras are denoted $\mathfrak{g}(n)$ and $\mathfrak{m} = gl(k_1) \times \cdots \times gl(k_r) \times \mathfrak{g}_0(n_0)$.

As already explained in the introduction, we deal with real unramified characters only. In the case of classical groups, such a character can be represented by a vector of size the rank of the group. Two such vectors parametrize the same irreducible spherical module if they are conjugate via the Weyl group which acts by permutations and sign changes for type B, C and by permutations and an even number of sign changes in type D. For a given χ , let $L(\chi)$ be the corresponding irreducible spherical module. We will occasionally refer to χ as the infinitesimal character.

For any nilpotent orbit $\check{\mathcal{O}} \subset \check{\mathfrak{g}}$ we attach a parameter $\chi_{\check{\mathcal{O}}} \in \mathfrak{a}^* \simeq \check{\mathfrak{a}}$ as follows. Let $\{\check{e},\check{h},\check{f}\}$ be representatives for the Lie triple associated to a nilpotent orbit $\check{\mathcal{O}}$. Then $\chi_{\check{\mathcal{O}}} := \check{h}/2$.

Conversely, to each χ we will attach a nilpotent orbit $\check{\mathcal{O}} \subset \check{\mathfrak{g}}$ and the Levi components M_{BC} , $M_{KL} := GL(k_1) \times \cdots \times GL(k_r) \times G_0(n_0)$, along with an even nilpotent orbit $\check{\mathcal{O}}_0 \subset \check{\mathfrak{g}}_0(n_0)$ and unramified characters $\chi_0 := \chi_{\check{\mathcal{O}}_0}$ and χ_i on $GL(k_i)$. Then $L(\chi)$ is the spherical subquotient of

$$Ind_{M_{KL}}^G[\bigotimes_i L(\chi_i) \otimes L(\chi_0)]. \tag{2.1.2}$$

- {1.2a}
 2.2. We introduce the following notation (a variant of the one used by Zelevinski [ZE]).
- {d:1.1} **Definition.** A string is a sequence

$$(a, a + 1, \ldots, b - 1, b)$$

of numbers increasing by 1 from a to b. A set of strings is called nested if for any two strings either the coordinates do not differ by integers, or if they do, then their coordinates, say (a_1, \ldots, b_1) and (a_2, \ldots, b_2) , satisfy

$$\{ \mathsf{eq} \colon \mathsf{d1} \} \qquad \qquad a_1 \leq a_2 \leq b_2 \leq b_1 \qquad or \qquad a_2 \leq a_1 \leq b_1 \leq b_2, \qquad (2.2.1)$$

or

$$\{ {\tt eq:d2} \} \hspace{1.5cm} b_1 + 1 < a_2 \hspace{1.5cm} or \hspace{1.5cm} b_2 + 1 < a_1. \hspace{1.5cm} \square \hspace{1.5cm} (2.2.2)$$

A set of strings is called strongly nested if the coordinates of any two strings either do not differ by integers or else satisfy (2.2.1).

{t:2.1}

{sec:2.3}

Each string represents a 1-dimensional spherical representation of a $GL(n_i)$ with $n_i = b_i - a_i + 1$. The matchup is

$$\{\operatorname{eq}: 1.1.1a\} \qquad (a, \dots, b) \longleftrightarrow |\det|^{\frac{a+b}{2}}, \quad \text{of} \quad GL(b-a+1). \tag{2.2.3}$$

In the case of G = GL(n), we record the following result. For the p-adic case, it originates in the work of Zelevinski, and Bernstein-Zelevinski ([ZE] and references therein). To each set of strings $(a_1, \ldots, b_1; \ldots; a_k, \ldots, b_k)$ we can attach a Levi component $M_{BC} := \prod_{1 \leq i \leq k} GL(n_i)$, and an induced module

$$I(\chi) := Ind_{M_{BC}}^{GL(n)}[\bigotimes L(\chi_i)] \tag{2.2.4} \quad \{ \operatorname{eq:1.1.1b} \}$$

where χ_i is as in (2.2.3).

In general, if the set of strings is not nested, then the corresponding induced module is not irreducible. The coordinates of χ in $\mathfrak{a}^* \simeq \mathbb{R}^n$, determine a set of nested strings as follows. Extract the longest sequence starting with the smallest element in A_1 that can form a string. Continue to extract sequences from the remainder until there are no elements left. This set of strings is, up to the order of the strings, the unique set of nested strings one can form out of the entries of χ .

Theorem. Suppose \mathbb{F} is p-adic. Then

$$L(\chi) = Ind_M^{GL(n)} \left[\left| \det \right|^{\frac{a_1 + b_1}{2}} \cdot \dots \cdot \left| \det \right|^{\frac{a_r + b_r}{2}} \right].$$

The nilpotent orbit \mathcal{O} corresponds to the partition of n with entries $b_i - a_i + 1$; it is the unique orbit satisfying (1) and (2) in the introduction, with respect to χ .

For the real case (still GL(n)), the induced module in theorem 2.2 fails to be irreducible. However equality holds on the level of multiplicities of relevant K-types.

We will generalize this procedure to the other classical groups. As before, the induced modules that we construct fail to be irreducible in the real case. The closest result to irreducibility is equality of multiplicity of relevant K-types in the two sides of (1.0.5).

2.3. Nilpotent orbits. In this section we attach a set of parameters to each nilpotent orbit $\check{\mathcal{O}} \subset \check{\mathfrak{g}}$. Let $\check{e}, \check{h}, \check{f}$ be a Lie triple so that $\check{e} \in \check{\mathcal{O}}$, and let $\mathfrak{z}(\check{\mathcal{O}})$ be its centralizer. In order for χ to be a parameter attached to $\check{\mathcal{O}}$ we require that

$$\chi = \check{h}/2 + \nu, \qquad \nu \in \mathfrak{z}(\check{\mathcal{O}}), \text{ semisimple}, \qquad (2.3.1) \quad \{\text{eq:2.3.1}\}$$

but also that if

$$\chi = \check{h}'/2 + \nu', \qquad \nu' \in \mathfrak{z}(\check{\mathcal{O}}'), \text{ semisimple}$$
 (2.3.2) {eq:2.3.2}

for another nilpotent orbit $\check{\mathcal{O}}' \subset \check{\mathfrak{g}}$, then $\check{\mathcal{O}}' \subset \overline{\check{\mathcal{O}}}$. In [BM1], it is shown that the orbit of χ , uniquely determines $\check{\mathcal{O}}$ and the conjugacy class of $\nu \in \mathfrak{z}(\check{\mathcal{O}})$. We describe the pairs $(\check{\mathcal{O}}, \nu)$ explicitly in the classical cases.

Nilpotent orbits are parametrized by partitions

$$(\underbrace{1,\ldots,1}_{r_1},\underbrace{2,\ldots,2}_{r_2},\ldots,\underbrace{j,\ldots,j}_{r_j},\ldots). \tag{2.3.3}$$

satisfying the following constraints.

 A_{n-1} : gl(n), partitions of n.

 B_n : so(2n+1), partitions of 2n+1 such that every even part occurs an even number of times.

 C_n : sp(2n), partitions of 2n such that every odd part occurs an even number of times.

 D_n : so(2n), partitions of 2n such that every even part occurs an even number of times. In the case when every part of the partition is even, there are two conjugacy classes of nilpotent orbits with the same Jordan blocks, labelled (I) and (II). The two orbits are conjugate under the action of O(2n).

The Bala-Carter classification is particularly well suited for describing the parameter spaces attached to the $\mathcal{O} \subset \mathfrak{g}$. An orbit is called distinguished if it does not meet any proper Levi component. In type A, the only distinguished orbit is the principal nilpotent orbit, where the partition has only one part. In the other cases, the distinguished orbits are the ones where each part of the partition occurs at most once. In particular, these are even nilpotent orbits, i.e. ad \check{h} has even eigenvalues only. Let $\check{\mathcal{O}} \subset \check{\mathfrak{g}}$ be an arbitrary nilpotent orbit. We need to put it into as small as possible Levi component $\check{\mathfrak{m}}$. In type A, if the partition is (a_1,\ldots,a_k) , the Levi component is $\check{\mathfrak{m}}_{BC} = gl(a_1) \times \cdots \times gl(a_k)$. In the other classical types, the orbit $\check{\mathcal{O}}$ meets a proper Levi component if and only if one of the $r_j > 1$. So separate as many pairs (a,a) from the partition as possible, and rewrite it as

$$\{eq: 2.3.4\} \qquad ((a_1, a_1), \dots, (a_k, a_k); d_1, \dots, d_l), \qquad (2.3.4)$$

with $d_i < d_{i+1}$. The Levi component $\check{\mathfrak{m}}_{BC}$ attached to this nilpotent by Bala-Carter is

$$\{eq: 2.3.5\} \qquad \quad \check{\mathfrak{m}}_{BC} = gl(a_1) \times \cdots \times gl(a_k) \times \check{\mathfrak{m}}_0(n_0), \quad n_0 := n - \sum a_i, \qquad (2.3.5)$$

The distinguished nilpotent orbit is the one with partition (d_i) on $\check{\mathfrak{g}}(n_0)$, principal nilpotent on each $gl(a_j)$. The χ of the form $\check{h}/2 + \nu$ are the ones with ν an element of the center of $\check{\mathfrak{m}}_{BC}$. The explicit form is in (2.3.6), and we will write out (d_i) and $\check{h}_0/2$ in sections 2.4-2.7.

We will consider more general cases where we write the partition of $\check{\mathcal{O}}$ in the form (2.3.4) so that the d_i are not necessarily distinct, but (d_i) forms an even nilpotent orbit in $\check{\mathfrak{g}}(n_0)$. In this case $\chi = \check{h}/2 + \nu$ will be of the form

{eq:2.3.6}
$$(\ldots; -\frac{a_i-1}{2} + \nu_i, \ldots; \frac{a_i-1}{2} + \nu_i, \ldots; \check{h}_0/2),$$
 (2.3.6)

where \check{h}_0 is the neutral element of a triple corresponding to (d_i) .

The parameter χ determines an irreducible spherical module $L(\chi)$ for G as well as an $L_M(\chi)$ for M, of the form

$$\{\mathsf{eq}: 2.3.7\} \qquad \qquad L_1(\chi_1) \otimes \cdots \otimes L_k(\chi_k) \otimes L_0(\chi_0), \tag{2.3.7}$$

where the $L_i(\chi_i)$ are one dimensional. We will consider the relation between the induced module

$$I_M(\chi) := Ind_M^G[L_M(\chi)],$$
 (2.3.8) {eq:2.3.8}

and $L(\chi)$ for various M.

{sec:2.3a}

2.4. Type A. We write the $\check{h}/2$ for a nilpotent $\check{\mathcal{O}}$ corresponding to (a_1,\ldots,a_k) with $a_i\leq a_{i+1}$ as

$$(\ldots;-rac{a_i-1}{2},\ldots,rac{a_i-1}{2};\ldots).$$

The parameters of the form $\chi = \dot{h}/2 + \nu$ are then

$$(\ldots; -\frac{a_i-1}{2}+\nu_i, \ldots, \frac{a_i-1}{2}+\nu_i; \ldots).$$
 (2.4.1) {2.3a.1}

Conversely, given a parameter as a concatenation of strings

$$\chi = (\ldots; A_i, \ldots, B_i; \ldots),$$
 (2.4.2) {eq:2.3a.2}

it is of the form $\check{h}/2 + \nu$ where \check{h} is the neutral element for the nilpotent orbit with partition $(A_i + B_i + 1)$ (the parts need not be in any particular order) and $\nu_i = \frac{A_i - B_i}{2}$. We recall the following well known result about closures of nilpotent orbits.

{1:2.3a}

Lemma. Assume $\check{\mathcal{O}}$ and $\check{\mathcal{O}}'$ correspond to the partitions (a_1, \ldots, a_k) and b_1, \ldots, b_k) respectively, where some of the a_i or b_j may be zero in order to have the same number k. The following are equivalent

- (1) $\check{\mathcal{O}}' \subset \check{\mathcal{O}}$.
- (2) $\sum_{i \geq s} a_i \geq \sum_{i \geq s} b_i$ for all $k \geq s \geq 1$.

 ${p:2.3a}$

Proposition. A parameter χ as in (2.4.1) is attached to $\check{\mathcal{O}}$ in the sense of satisfying (2.3.1) and (2.3.2) if and only if it is nested.

Proof. Assume the strings are not nested. There must be two strings

$$(A, \dots, B), \qquad (C, \dots, D)$$
 (2.4.3) {eq:2.3a.3}

such that $A - C \in \mathbb{Z}$, and $A < C \leq B < D$, or C = B - 1. Then by conjugating χ by the Weyl group to a χ' , we can rearrange the coordinates of the two strings in (2.4.3) so that the strings

$$(A, \ldots, D), (C, \ldots B),$$
 or $(A, \ldots, D).$ $(2.4.4)$ {eq: 2.3a.4}

appear. Then by the lemma, $\chi' = \check{h}'/2 + \nu'$ for a strictly larger nilpotent $\check{\mathcal{O}}'$.

Conversely, assume $\chi = \check{h}/2 + \nu$, so it is written as strings, and they are nested. The nilpotent orbit for which the neutral element is $\check{h}/2$ has partition given by the lengths of the strings, say $(a_1, \ldots a_k)$ in increading

order. If χ is nested, then a_k is the length of the longest string of entries we can extract from the coordinates of χ , a_{k-1} the longest string we can extract from the remaining coordinates and so on. Then (2) of lemma 2.4 precludes the possibility that some conjugate χ' equals $h'/2 + \nu'$ for a strictly larger nilpotent orbit.

In type A, $\check{\mathfrak{m}}_{KL} = \check{\mathfrak{m}}_{BC}$.

 $\{sec:2.3b\}$

2.5. G of Type B. Rearrange the parts of the partition of $\check{\mathcal{O}} \subset sp(2n,\mathbb{C})$, in the form (2.3.4),

$$\{\mathsf{eq} : 2.3\mathsf{b}.1\} \qquad \qquad ((a_1, a_1), \dots, (a_k, a_k); 2x_0, \dots, 2x_{2m}) \qquad (2.5.1)$$

The d_i have been relabeled as $2x_i$ and a $2x_0 = 0$ is added if necessary, to insure that there is an odd number. The x_i are integers, because all the odd parts of the partition of \mathcal{O} occur an even number of times, and were threrefore extracted as (a_i, a_i) . The χ of the form $h/2 + \nu$ are

$$(\ldots; -\frac{a_i-1}{2}+\nu_i, \ldots, \frac{a_i-1}{2}+\nu_i; \ldots; \underbrace{1/2, \ldots, 1/2}_{n_{1/2}}, \ldots, \underbrace{x_{2m}-1/2}_{n_{x_{2m}-1/2}}, \ldots, x_{2m}-1/2).$$

(2.5.2) $\{eq:2.3b.2\}$

where

$$\{eq: 2.3b.3\} n_{l-1/2} = \#\{x_i \ge l\}. (2.5.3)$$

Lemma 2.4 holds for this type verbatim. So the following proposition holds.

 $\{p:2.3b\}$

Proposition. A parameter $\chi = \dot{h}/2 + \nu$ cannot be conjugated to one of the form $h'/2 + \nu'$ for any larger nilpotent O' if and only if

- (1) the set of strings satisfying $\frac{a_i-1}{2} + \nu_i \frac{a_j-1}{2} \nu_j \in 1/2 + \mathbb{Z}$ are nested. (2) the strings satisfying $\frac{a_i-1}{2} + \nu_i \in \mathbb{Z}$ satisfy the additional condition that either $x_{2m} + 1/2 < -\frac{a_i-1}{2} + \nu_i$ or there is j such that

$$\left\{ \text{eq:2.3b.4} \right\} \qquad \qquad x_j + 1/2 < -\frac{a_i - 1}{2} + \nu_i \le \frac{a_i - 1}{2} + \nu_i < x_{j+1} + 1/2. \tag{2.5.4}$$

The Levi component $\check{\mathfrak{m}}_{KL}$ is obtained from $\check{\mathfrak{m}}_{BC}$ as follows. Consider the strings for which a_i is even, and $\nu_i = 0$. If a_i is not equal to any $2x_i$, then remove one pair (a_i, a_i) , and add two $2x_i = a_i$ to the last part of (2.5.1). For example, if the nilpotent orbit is

$$\{eq: 2.3b.5\} \tag{2.5.5}$$

then the parameters of the form $\dot{h}/2 + \nu$ are

The Levi component is $\check{\mathfrak{m}}_{BC} = sp(4) \times gl(2) \times gl(3) \times gl(4)$. If $\nu_3 \neq 0$, then $\check{\mathfrak{m}}_{BC} = \check{\mathfrak{m}}_{KL}$. But if $\nu_3 = 0$, then $\check{\mathfrak{m}}_{KL} = sp(6) \times gl(2) \times gl(3)$. The parameter is rewritten

{sec:2.3c}

$$\{ \text{eq:2.3b.7} \} \qquad \check{\mathcal{O}} \longleftrightarrow ((2,2)(3,3);2,4,4)$$

$$\chi \longleftrightarrow (-1/2 + \nu_1, 1/2 + \nu_1; -1 + \nu_2, \nu_2, 1 + \nu_2; 1/2, 1/2, 1/2, 3/2, 3/2).$$

The explanation is as follows. For a partition (2.3.3),

$$\mathfrak{z}(\check{\mathcal{O}}) = sp(r_1) \times so(r_2) \times sp(r_3) \times \dots$$
 (2.5.8) {eq:2.3b.8}

and the centralizer in \check{G} is a product of $Sp(r_{2j+1})$ and $O(r_{2j})$, *i.e.* Sp for the odd parts, O for the even parts. Thus the component group is a product of \mathbb{Z}_2 , one for each $r_{2j} \neq 0$. Then $A(\chi, \check{e}) = A(\nu, \check{h}, \check{e})$, and so $A_{M_{BC}}(\chi, \check{e}) = A(\chi, \check{e})$ unless one of the $\nu_i = 0$ for an even a_i with the additional property that there is no $2x_j = a_i$.

We can rewrite each of the remaining strings

$$(-\frac{a_i-1}{2}+\nu_i,\ldots,\frac{a_i-1}{2}+\nu_i)$$
 (2.5.9) {eq:2.3b.9}

as

$$\chi_i := (f_i + \tau_i, f_i + 1 + \tau_i, \dots, F_i + \tau_i),$$
satisfying
$$(2.5.10) \quad \{eq: 2.3b.10\}$$

$$f_i \in \mathbb{Z} + 1/2, \quad 0 \le \tau_i \le 1/2, \quad F_i = f_i + a_i.$$
 (2.5.11) {eq:2.3b.11}

This is done as follows. We can immediately get an expression like (2.5.10) with $0 \le \tau_i < 1$, by defining f_i to be the largest element in $\mathbb{Z}+1/2$ less than or equal to $-\frac{a_i-1}{2} + \nu_i$. If $\tau_i \le 1/2$ we are done. Otherwise, use the Weyl group to change the signs of all entries of the string, and put them in increasing order. This replaces f_i by $-F_i - 1$, and τ_i by $1 - \tau_i$. The presentation of the strings subject to (2.5.11) is unique except when $\tau_j = 1/2$. In this case the argument just given also provides the presentation

$$(-F_i - 1 + 1/2, \dots, -f_i - 1 + 1/2).$$
 (2.5.12) {eq:2.3b.12}

We choose between (2.5.10) and (2.5.12) the one whose leftmost term is larger in absolute value. That is, we require $f_i + F_i \ge -1$ whenever $\tau_i = -1/2$.

2.6. G of Type C. Rearrange the parts of the partition of $\check{\mathcal{O}} \subset so(2n+1,\mathbb{C})$, in the form (2.3.4),

$$((a_1, a_1), \dots, (a_k, a_k); 2x_0 + 1, \dots, 2x_{2m} + 1;$$
 (2.6.1) {eq: 2.3c.1}

The d_i have been relabeled as $2x_i + 1$. In this case it is automatic that there is an odd number of nonzero x_i . The x_i are integers, because all the even parts of the partition of $\check{\mathcal{O}}$ occur an even number of times, and were threrefore extracted as (a_i, a_i) . The χ of the form $\check{h}/2 + \nu$ are

$$(\ldots; -\frac{a_i-1}{2}+\nu_i, \ldots, \frac{a_i-1}{2}+\nu_i; \ldots; \underbrace{0, \ldots, 0}_{n_0}, \ldots, \underbrace{x_{2m}}_{n_{x_{2m}}}, \ldots, x_{2m}). \quad (2.6.2) \quad \{\text{eq:2.3c.2}\}$$

where

$$n_l = \begin{cases} m & \text{if } l = 0, \\ \#\{x_i \ge l\} & \text{if } l \ne 0. \end{cases}$$
 (2.6.3) {eq:2.3c.3}

Lemma 2.4 holds for this type verbatim. So the following proposition holds.

- ${p:2.3c}$ **Proposition.** A parameter $\chi = \dot{h}/2 + \nu$ cannot be conjugated to one of the form $\check{h}'/2 + \nu'$ for any larger nilpotent $\check{\mathcal{O}}'$ if and only if

 - (1) the set of strings satisfying $\frac{a_i-1}{2} + \nu_i \frac{a_j-1}{2} \nu_j \in \mathbb{Z}$ are nested. (2) the strings satisfying $\frac{a_i-1}{2} + \nu_i \in \mathbb{Z}$ satisfy the additional condition that either $x_{2m} + 1 < -\frac{a_i-1}{2} + \nu_i$ or there is j such that

$$\{eq: 2.3c.4\} x_j + 1 < -\frac{a_i - 1}{2} + \nu_i \le \frac{a_i - 1}{2} + \nu_i < x_{j+1} + 1. (2.6.4)$$

The Levi component $\check{\mathfrak{m}}_{KL}$ is obtained from $\check{\mathfrak{m}}_{BC}$ as follows. Consider the strings for which a_i is odd and $\nu_i = 0$. If a_i is not equal to any $2x_i + 1$, then remove one pair (a_i, a_i) , and add two $2x_i + 1 = a_i$ to the last part of (2.6.1). For example, if the nilpotent orbit is

$$\{eq: 2.3c.5\} \tag{2.6.5}$$

then the parameters of the form $\check{h}/2 + \nu$ are

The Levi component is $\check{\mathfrak{m}}_{BC} = so(3) \times gl(1) \times gl(3) \times gl(4)$. If $\nu_2 \neq 0$, then $\check{\mathfrak{m}}_{BC} = \check{\mathfrak{m}}_{KL}$. But if $\nu_2 = 0$, then $\check{\mathfrak{m}}_{KL} = so(9) \times gl(1) \times gl(4)$. The parameter is rewritten

$$\{eq: 2.3c.7\} \qquad \check{\mathcal{O}} \longleftrightarrow ((1,1), (4,4); 1,3,3)$$

$$\chi \longleftrightarrow (\nu_1; -3/2 + \nu_3, -1/2 + \nu_3, 1/2 + \nu_3, 3/2 + \nu_3; 0, 1, 1).$$

$$(2.6.7)$$

The Levi component is unchanged if $\nu_1 = 0$.

The explanation is as follows. For a partition (2.3.3),

$$\{eq: 2.3c.8\} \qquad \qquad \mathfrak{z}(\check{\mathcal{O}}) = so(r_1) \times sp(r_2) \times so(r_3) \times \dots \qquad (2.6.8)$$

and the centralizer in G is a product of $O(r_{2j+1})$ and $Sp(r_{2j})$, i.e. O for the odd parts, Sp for the even parts. Thus the component group is a product of \mathbb{Z}_2 , one for each $r_{2j+1} \neq 0$. Then $A(\chi, \check{e}) = A(\nu, \check{h}, \check{e})$, and so $A_{M_{BC}}(\chi, \check{e}) =$ $A(\chi, \check{e})$ unless one of the $\nu_i = 0$ for an odd a_i with the additional property that there is no $2x_j + 1 = a_i$.

We can rewrite each of the remaining strings

$$\left\{ \text{eq:2.3c.9} \right\} \qquad \left(-\frac{a_i - 1}{2} + \nu_i, \dots, \frac{a_i - 1}{2} + \nu_i \right) \tag{2.6.9}$$

as

{eq:2.3c.10}
$$\chi_i := (f_i + \tau_i, f_i + 1 + \tau_i, \dots, F_i + \tau_i),$$
 satisfying (2.6.10)

{eq:2.3c.11}
$$f_i \in \mathbb{Z}, \quad 0 \le \tau_i \le 1/2, \quad F_i = f_i + a_i.$$
 (2.6.11)

This is done as follows. We can immediately get an expression like (2.6.10)with $0 \le \tau_i < 1$, by defining f_i to be the largest element in $\mathbb{Z}+1/2$ less than or equal to $-\frac{a_i-1}{2}+\nu_i$. If $\tau_i \leq 1/2$ we are done. Otherwise, use the Weyl group to change the signs of all entries of the string, and put them in increasing order. This replaces f_i by $-F_i-1$, and τ_i by $1-\tau_i$. The presentation of the strings subject to (2.6.11) is unique except when $\tau_i = 1/2$. In this case the argument just given also provides the presentation

$$(-F_i - 1 + 1/2, \dots, -f_i - 1 + 1/2).$$
 (2.6.12) {eq:2.3c.12}

We choose between (2.6.10) and (2.6.12) the one whose leftmost term is larger in absolute value. That is, we require $f_i + F_i \ge -1$ whenever $\tau_i =$ -1/2.

Rearrange the parts of the partition of $\check{\mathcal{O}}\subset so(2n,\mathbb{C}),$ $\{\mathtt{sec:2.3d}\}$ 2.7. G of Type D. in the form (2.3.4).

$$((a_1, a_1), \dots, (a_k, a_k); 2x_0 + 1, \dots, 2x_{2m-1} + 1)$$
 (2.7.1) {eq: 2.3d.1}

The d_i have been relabeled as $2x_i + 1$. In this case it is automatic that there is an even number of nonzero $2x_i + 1$. The x_i are integers, because all the even parts of the partition of \mathcal{O} occur an even number of times, and were therefore extracted as (a_i, a_i) . The χ of the form $h/2 + \nu$ are

$$(\ldots; -\frac{a_i-1}{2}+\nu_i, \ldots, \frac{a_i-1}{2}+\nu_i; \ldots; \underbrace{0, \ldots, 0}_{n_0}, \ldots, \underbrace{x_{2m}, \ldots, x_{2m}}_{n_{x_{2m}}}).$$
 (2.7.2) {eq:2.3d.2}

where

$$n_l = \begin{cases} m & \text{if } l = 0, \\ \#\{x_i \ge l\} & \text{if } l \ne 0. \end{cases}$$
 (2.7.3) {eq:2.3d.3}

Lemma 2.4 holds for this type verbatim. So the following proposition holds.

 $\{p:2.3d\}$ **Proposition.** A parameter $\chi = \check{h}/2 + \nu$ cannot be conjugated to one of the form $\check{h}'/2 + \nu'$ for any larger nilpotent $\check{\mathcal{O}}'$ if and only if

- (1) the set of strings satisfying $\frac{a_i-1}{2} + \nu_i \frac{a_j-1}{2} \nu_j \in \mathbb{Z}$ are nested. (2) the strings satisfying $\frac{a_i-1}{2} + \nu_i \in \mathbb{Z}$ satisfy the additional condition that either $x_{2m}+1<-\frac{a_i-1}{2}+\nu_i$ or there is j such that

$$x_j + 1 < -\frac{a_i - 1}{2} + \nu_i \le \frac{a_i - 1}{2} + \nu_i < x_{j+1} + 1.$$
 (2.7.4) {eq: 2.3d.4}

The Levi component $\check{\mathfrak{m}}_{KL}$ is obtained from $\check{\mathfrak{m}}_{BC}$ as follows. Consider the strings for which a_i is odd and $\nu_i=0$. If a_i is not equal to any $2x_j+1$, then remove one pair (a_i,a_i) , and add two $2x_j+1=a_i$ to the last part of (2.7.1). For example, if the nilpotent orbit is

$$(1, 1, 3, 3, 4, 4),$$
 $(2.7.5)$ {eq: 2.3d.5}

then the parameters of the form $\check{h}/2 + \nu$ are

The Levi component is $\check{\mathfrak{m}}_{BC} = gl(1) \times gl(3) \times gl(4)$. If $\nu_2 \neq 0$ $\nu_1 \neq 0$, then $\check{\mathfrak{m}}_{BC} = \check{\mathfrak{m}}_{KL}$. If $\nu_2 = 0$ and $\nu_1 \neq 0$, then $\check{\mathfrak{m}}_{KL} = so(6) \times gl(1) \times gl(4)$. The parameter is rewritten

$$\{ eq: 2.3d.7 \} \qquad \check{\mathcal{O}} \longleftrightarrow ((1,1),(4,4);3,3)$$

$$\chi \longleftrightarrow (\nu_1; -3/2 + \nu_3, -1/2 + \nu_3; 1/2 + \nu_3, 3/2 + \nu_3; 0, 1, 1).$$

$$(2.7.7)$$

Similarly if $\nu_1 = \nu_2 = 0$.

The explanation is as follows. For a partition (2.3.3),

$$\mathfrak{z}(\check{\mathcal{O}}) = so(r_1) \times sp(r_2) \times so(r_3) \times \dots \tag{2.7.8}$$

and the centralizer in \check{G} is a product of $O(r_{2j+1})$ and $Sp(r_{2j})$, i.e. O for the odd parts, Sp for the even parts. Thus the component group is a product of \mathbb{Z}_2 , one for each $r_{2j+1} \neq 0$. Then $A(\chi, \check{e}) = A(\nu, \check{h}, \check{e})$, and so $A_{MBC}(\chi, \check{e}) = A(\chi, \check{e})$ unless one of the $\nu_i = 0$ for an odd a_i with the additional property that there is no $2x_j + 1 = a_i$.

We can rewrite each of the remaining strings

$$\left\{ \text{eq:2.3d.9} \right\} \qquad \left(-\frac{a_i - 1}{2} + \nu_i, \dots, \frac{a_i - 1}{2} + \nu_i \right) \tag{2.7.9}$$

as

$$\{eq: 2.3d.10\} \qquad \chi_i := (f_i + \tau_i, f_i + 1 + \tau_i, \dots, F_i + \tau_i), \qquad (2.7.10)$$

{eq:2.3d.11} satisfying
$$f_i \in \mathbb{Z}, \quad 0 \le \tau_i \le 1/2, \quad F_i = f_i + a_i.$$
 (2.7.11)

This is done as in types B and C, but see the remarks which have to do with the fact that -Id is not in the Weyl group. We can immediately get an expression like (2.7.10) with $0 \le \tau_i < 1$, by defining f_i to be the largest element in $\mathbb{Z} + 1/2$ less than or equal to $-\frac{a_i-1}{2} + \nu_i$. If $\tau_i \le 1/2$ we are done. Otherwise, use the Weyl group to change the signs of all entries of the string, and put them in increasing order. This replaces f_i by $-F_i - 1$, and τ_i by $1 - \tau_i$. The presentation of the strings subject to (2.7.11) is unique except when $\tau_j = 1/2$. In this case the argument just given also provides the presentation

$$\{ \mathsf{eq} \colon 2 \colon 3 \mathsf{d} \colon 12 \} \qquad \qquad (-F_i - 1 + 1/2, \dots, -f_i - 1 + 1/2). \tag{2.7.12}$$

We choose between (2.7.10) and (2.7.12) the one whose leftmost term is larger in absolute value. That is, we require $f_i + F_i \ge -1$ whenever $\tau_i = -1/2$.

Remarks

- (1) A (real) spherical parameter χ is hermitian if and only if there is $w \in W(D_n)$ such that $w\chi = -\chi$. This is the case if the parameter has a coordinate equal to zero, or if none of the coordinates are 0, then n must be even.
- (2) Assume the nilpotent orbit $\check{\mathcal{O}}$ is very even, *i.e.* all the parts of the partition are even (and therefore occur an even number of times). The nilpotent orbits labelled (I) and (II) are characterized by the fact that $\check{\mathfrak{m}}_{BC}$ is of the form

$$(I) \longleftrightarrow gl(a_1) \times \cdots \times gl(a_{k-1}) \times gl(a_k),$$

 $(II) \longleftrightarrow gl(a_1) \times \cdots \times gl(a_{k-1}) \times gl(a_k)'.$

The last gl factors differ by which extremal root of the fork at the end of the diagram for D_n is in the Levi component. The string for k is

$$(I) \longleftrightarrow \left(-\frac{a_k - 1}{2} + \nu_k, \dots, \frac{a_k - 1}{2} + \nu_k\right),$$

$$(II) \longleftrightarrow \left(-\frac{a_k - 1}{2} + \nu_k, \dots, \frac{a_k - 3}{2} + \nu_k, -\frac{a_k - 1}{2} - \nu_k\right).$$

We can put the parameter in the form (2.7.10) and (2.7.11), because all strings are even length. In any case (I) and (II) are conjugate by the outer automorphism, and for unitarity it is enough to consider the case of (I).

Certain χ having a coordinate equal to 0, can be written as $h_I/2 + \nu_I$ or $h_{II}/2 + \nu_{II}$, but then they can also be written as $h'/2 + \nu'$ for a larger nilpotent orbit. For example, in type D_2 , the two cases are $(2,2)_I$ and $(2,2)_{II}$,

$$(I) \longleftrightarrow (1/2, -1/2) + (\nu, \nu),$$

 $(II) \longleftrightarrow (1/2, 1/2) + (\nu, -\nu).$

For the parameter to contain a zero, it has to be (1,0) and this corresponds to (1,3), the principal nilpotent orbit.

(3) Because we can only change an even number of signs using the Weyl group, we might not be able to change all the signs of a string. We can always do this if the parameter contains a coordinate equal to 0, or if the length of the string is even. If there is an odd length string, and none of the coordinates of χ are 0, changing all of the signs of the string cannot be achieved unless some other coordinate changes sign as well. However if $\chi = h/2 + \nu$ cannot be made to satisfy (2.7.10) and (2.7.11), then χ' , the parameter obtained from χ by applying the outer automorphism, can. Since $L(\chi)$ and $L(\chi')$ are either both unitary of both nonunitary, it is enough to consider just the cases that can be made to satisfy (2.7.10) and (2.7.11).

For example, the parameters

$$(5/3, 2/3, -1/3; 1/4, -3/4, -7/4),$$

 $(1/3, -2/3, -5/3; 1/4, -3/4, -7/4)$

in type D_6 are of this kind. Both parameters are in a form satisfying (2.7.10) but only the first one satisfies (2.7.11). The second one cannot be conjugated by $W(D_6)$ to one satisfying (2.7.11).

- $\{sec: 2.4\}$
- **2.8. Relation between infinitesimal characters and strings.** In the previous sections we described for each nilpotent orbit $\check{\mathcal{O}}$ the parameters of the form $\check{h}/2 + \nu$ with $\nu \in \mathfrak{z}(\check{\mathcal{O}})$ semisimple, along with condition (2.3.2). In this section we show how to find the data $(\check{\mathcal{O}}, \nu)$ satisfying (2.3.1) and (2.3.2) from a $\chi \in \check{\mathfrak{a}}$.
- {2.4b} **G of Type B.** Partition the coordinates of χ into subsets parametrized by $0 \le \tau \le 1/2$,

$$A_{\tau} = \{ \nu_i : \nu_i \ or - \nu_i \equiv 1/2 + \tau \ (mod \ \mathbb{Z}) \}.$$

There are three cases $\tau = 0, 1/2$ and $0 < \tau < 1/2$. From the coordinates in A_0 extract the longest possible string. Continue extracting strings until there are no coordinates left. From the subset of strings that start with 1/2, remove all pairs of strings of equal length. The coordinates of the strings that are left over are the ones coming from the $(2x_0, \ldots, 2x_{2m})$ of $\check{\mathcal{O}}$ written as in (2.5.1). The coordinates of each pair of equal strings $(1/2, \ldots, \frac{a_i-1}{2}; 1/2, \ldots, \frac{a_i-1}{2})$ combine to give a string $(-\frac{a_i-1}{2}, \ldots, \frac{a_i-1}{2})$ corresponding to a pair (a_i, a_i) . For example if the parameter is

$$(1/2, 1/2, 1/2, 3/2, 3/2, 3/2, 5/2, 5/2, 5/2, 5/2, 5/2, 7/2),$$

then the strings are

$$(1/2, 3/2, 5/2, 7/2), (1/2, 3/2, 5/2), (1/2, 3/2, 5/2), (5/2))$$

and the parameter is

$$(5/2; -5/2, -3/2, -1/2, 1/2, 3/2, 5/2; 1/2, 3/2, 5/2, 7/2).$$

corresponding to the nilpotent orbit $\mathcal{O} = (1, 1, 6, 6; 8)$.

For the coordinates in $A_{1/2}$, extract the longest possible string, but by changing some coordinates into their negatives if necessary. If necessary, change the coordinates of the string to their negatives, to make it conform to (2.5.10) and (2.5.11). Continue until there are no entries left. These are strings in (2.5.2) corresponding to pairs (a_i, a_i) in (2.5.1). For example for

the strings are

$$\{ \mathtt{eq:2.4.2a} \} \qquad \qquad (-5,-4,-3,-2,-1,0,1), \ (-1,0,1), \ (-4,-3). \qquad \qquad (2.8.1)$$

This adds the pairs (2, 2, 3, 3, 7, 7) to the partition of \mathcal{O} .

For A_{τ} with $0 < \tau < 1/2$, change signs in the coordinates if necessary and rearrange in increasing order

$$\{2.4.3\} \qquad (a + \tau, \dots, a + \tau, \dots, A + \tau, \dots, A + \tau) \qquad (2.8.2)$$

Then extract the longest possible string. Extract strings in the same way from the remainder until there are no coordinates left. These are strings in (2.5.2) corresponding to pairs (a_i, a_i) in (2.5.1). For example, if the parameter is

rewrite it as

$$(-5/4, -5/4, -1/4, -1/4, 3/4),$$

and then extract the strings

$$(-5/4, -1/4, 3/4), (-5/4, -1/4).$$

This adds the pairs (2, 2, 3, 3) to the partition of \mathcal{O} .

G of Type C. Partition the coordinates of χ into subsets parametrized $\{2.4c\}$ by $0 \le \tau \le 1/2$,

$$A_{\tau} = \{ \nu_i : \nu_i \text{ or } -\nu_i \equiv \tau \pmod{\mathbb{Z}} \}.$$

From the coordinates in A_0 extract the longest possible string by changing coordinates into their negatives if necessary. Continue extracting strings until there are no coordinates left. Set aside the strings of the form $\left(-\frac{a_i-1}{2},\ldots,\frac{a_i-1}{2}\right)$; they correspond to pairs (a_i,a_i) in (2.6.1). The coordinates of the remaining strings come from the $(2x_0+1,\ldots,2x_{2m}+1)$ of $\check{\mathcal{O}}$ written as in (2.6.1). For example if the strings are as in (2.8.1), then the nilpotent orbit is $\check{\mathcal{O}}=(2,2,3,3;1,3,11)$, and $\chi=(-4,-3;-1,0,1;0,1,1,2,3,4,5)$.

From the coordinates in $A_{1/2}$, extract the longest possible string, but by changing some coordinates into their negatives if necessary. If necessary, change the coordinates of the string to their negatives, to make it conform to (2.6.10) and (2.6.11). Continue until there are no entries left. These are strings in (2.5.2) corresponding to pairs (a_i, a_i) in (2.5.1).

For A_{τ} with $0 < \tau < 1/2$, change signs in the coordinates if necessary and rearrange in increasing order

$$(a + \tau, \dots, a + \tau, \dots, A + \tau, \dots, A + \tau)$$
 (2.8.3) {2.4c.1}

Then extract the longest possible string. Extract strings in the same way from the remainder until there are no coordinates left. These are strings in (2.6.2) corresponding to pairs (a_i, a_i) in (2.6.1).

G of Type D. Partition the coordinates of χ into subsets parametrized $\{2.4d\}$ by $0 \le \tau \le 1/2$,

$$A_{\tau} = \{ \nu_i : \nu_i \text{ or } -\nu_i \equiv \tau \pmod{\mathbb{Z}} \}.$$

From the coordinates in A_0 extract the longest possible string by changing coordinates into their negatives if necessary. Continue extracting strings until there are no coordinates left. Separate the strings of the form

 $(-\frac{a_i-1}{2},\ldots,\frac{a_i-1}{2})$; they correspond to pairs (a_i,a_i) in (2.6.1). The coordinates of the remaining strings come from the $(2x_0+1,\ldots,2x_{2m-1}+1)$ of $\check{\mathcal{O}}$ written as in (2.6.1). For example if the strings are as in (2.8.1), then the nilpotent orbit is $\check{\mathcal{O}}=(2,2,3,3;3,11)$, and $\chi=(-4,-3;-1,0,1;0,1,1,2,3,4,5)$. From the coordinates in $A_{1/2}$, extract the longest possible string, but by changing some coordinates into their negatives. If necessary, change the coordinates of the string to their negatives, to make it conform to (2.6.10) and (2.6.11). Continue until there are no entries left. These are strings in (2.5.2) corresponding to pairs (a_i,a_i) in (2.5.1).

For A_{τ} with $0 < \tau < 1/2$, change signs in the coordinates if necessary and rearrange in increasing order

$$\{2.4d.1\} \qquad (a + \tau, \dots, a + \tau, \dots, A + \tau, \dots, A + \tau) \qquad (2.8.4)$$

Then extract the longest possible string. Extract strings in the same way from the remainder until there are no coordinates left. These are strings in (2.7.2) corresponding to pairs (a_i, a_i) in (2.7.1).

All the changes of signs can be implemented using the Weyl group if one of the coordinates of χ equals 0. Suppose none of the coordinates are equal to 0. If the lengths of all the strings is even, we can put all strings in the form (2.7.10) satisfying (2.7.11) by using $W(D_n)$, but the longest one will be

$$(f_i+\tau_i,\ldots,F_i+\tau_i),$$
 or
$$(f_i+\tau_i,\ldots,-F_i-\tau_i)$$

$$(2.8.5)$$

The first parameter corresponds to a very even nilpotent labelled (I), the second (II). The two parameters are not conjugate by $W(D_n)$, but are conjugate by an outer automorphism.

In the case when the strings in (2.8.5) are of odd length, the two parameters are not conjugate by $W(D_n)$, but the associated nilpotent orbit is the

 $\{sec: 2.6\}$

2.9. Let $\chi = \check{h}/2 + \nu$ be associated to the orbit $\check{\mathcal{O}}$. Recall from 2.3

$$\{ \mathsf{eq} \colon 2.6.1 \} \qquad \qquad I_M(\chi) := Ind_M^G[L_M(\chi)], \qquad (2.9.1)$$

where $L_M(\chi)$ is the irreducible spherical module of M with parameter χ . Write the nilpotent orbit in (2.3.4) with the (d_1, \ldots, d_l) as in sections 2.5-2.7 depending on the Lie algebra type. Then $\check{\mathfrak{m}}_{BC} = gl(a_1) \times \cdots \times gl(a_k) \times \check{\mathfrak{g}}_0(n_0)$ is as in (2.3.5). Thus χ determines a spherical irreducible module

$$\{eq: 2.6.2\} \qquad L_{M_{BC}}(\chi) = L_1(\chi_1) \otimes \cdots \otimes L_k(\chi_k) \otimes L_0(\chi_0), \qquad (2.9.2)$$

with $\chi_i = (-\frac{a_i-1}{2} + \nu_i, \dots, \frac{a_i-1}{2} + \nu_i)$, while $\chi_0 = \check{h}_0/2$ for the nilpotent (d_i) .

Let $\check{\mathfrak{m}}_{KL}$ be the Levi component attached to $\chi = \check{h}/2 + \nu$ in sections 2.5-2.7. As for $\check{\mathfrak{m}}_{BC}$ we have a parameter $L_{M_{KL}}(\chi)$. In this case $\check{\mathcal{O}} =$

 $\{c:2.6\}$

 $((a'_1, a'_1), \ldots, (a'_r, a'_r); d'_1, \ldots d'_l)$ as described in 2.5-2.7. Then (a W-conjugate of) χ can be written as in (2.5.2)-(2.7.2)), and

$$\begin{aligned}
& \check{\mathfrak{m}}_{KL} = gl(a'_1) \times \cdots \times gl(a'_r) \times \check{\mathfrak{g}}_0(n'_0), \\
& L_{M_{KL}}(\chi) = L_1(\chi'_1) \otimes \cdots \otimes L_r(\chi'_r) \otimes L_0(\chi'_0).
\end{aligned} \tag{2.9.3}$$

Theorem. In the p-adic case

$$I_{M_{KL}}(\chi) = L(\chi).$$

Proof. This is in [BM1], $\check{\mathfrak{m}}_{KL}$ was defined in such a way that this result holds.

Corollary. The module $I_{M_{BC}}(\chi)$ equals $L(\chi)$ in the p-adic case if all the $\nu_i \neq 0$.

3. THE MAIN RESULT {Set}3}

3.1. Recall that \check{G} is the (complex) dual group, and $\check{A} \subset \check{G}$ the maximal torus dual to A. Assuming as we may that the parameter is real, a spherical irreducible representation corresponds to an orbit of an element $\chi \in \check{\mathfrak{a}}$, the Lie algebra of \check{A} . In section 2 we attached a nilpotent orbit $\check{\mathcal{O}}$ in $\check{\mathfrak{g}}$ to such a parameter. Let $\check{e}, \check{h}, \check{f}$ be a Lie triple attached to $\check{\mathcal{O}}$. Let $\chi := \check{h}/2 + \nu$ satisfy (2.3.1)-(2.3.2).

Definition. A representation $L(\chi)$ is said to be in the complementary series for $\check{\mathcal{O}}$, if the parameter χ is attached to $\check{\mathcal{O}}$ in the sense of satisfying (2.3.1) and (2.3.2), and is unitary.

We will describe the complementary series explicitly in coordinates.

The centralizer $Z_{\check{G}}(\check{e}, \check{h}, f)$ has Lie algebra $\mathfrak{z}(\check{\mathcal{O}})$ which is a product of $sp(r_l, \mathbb{C})$ or $so(r_l, \mathbb{C})$ $1 \leq l \leq k$ according to the rule

 $\check{\mathbf{G}}$ of type \mathbf{B} , \mathbf{D} : $sp(r_l)$ for a_l even, $so(r_l)$ for a_l odd,

 $\mathbf{\check{G}}$ of type C: $sp(r_l)$ for a_l odd, $so(r_l)$ for a_l even.

The parameter ν determines a spherical irreducible module $L_{\mathcal{O}}(\nu)$ for the dual of $\mathfrak{z}(\mathcal{O})$. It is attached to the trivial orbit in $\mathfrak{z}(\mathcal{O})$.

Theorem. The complementary series attached to $\check{\mathcal{O}}$ coincides with the one attached to the trivial orbit in $\mathfrak{z}(\check{\mathcal{O}})$. For the trivial orbit (0) in each of the classical cases, the complementary series are

G of type B:

$$0 \le \nu_1 \le \dots \le \nu_k < 1/2.$$

G of type C, D:

$$0 \le \nu_1 \le \dots \le \nu_k \le 1/2 < \nu_{k+1} < \dots < \nu_{k+l} < 1$$

so that $\nu_i + \nu_j \leq 1$. There are

- (1) an even number of ν_i such that $1 \nu_{k+1} < \nu_i \le 1/2$,
- (2) an odd number of ν_i such that $1 \nu_{k+j+1} < \nu_i < 1 \nu_{k+j}$. In type D of odd rank, $\nu_1 = 0$ or else the parameter is not hermitian.

Remarks.

- (1) The condition that $\nu_i + \nu_j \neq 1$ implies that in types C,D there is at most one $\nu_k = 1/2$.
- (2) Each of the coordinates forms a string, but in the form above the parameter does not satisfy (2.3.2). For (2.3.2) to hold, it suffices to change ν_{k+j} for types C, D to $1 \nu_{k+j}$.
- {sec:3.2} 3.2. We prove the unitarity of the parameters in the theorem for $\check{\mathcal{O}} = (0)$ for types B,C, and D. First we record some facts.

Let G := GL(2a) and

$$\{\operatorname{eq}: 3.2.1\} \qquad \chi := (-\frac{a-1}{2} - \nu, \dots, \frac{a-1}{2} - \nu; -\frac{a-1}{2} + \nu, \dots, \frac{a-1}{2} + \nu). \tag{3.2.1}$$

Let $M := GL(a) \times GL(a) \subset GL(2a)$. Then the two strings of χ determine an irreducible spherical (1-dimensional) representation $L_M(\chi)$ on M. Recall $I_M(\chi) := Ind_M^G[L_M(\chi)]$.

[11:3.2] Lemma (1). The representation $I_M(\chi)$ is unitary irreducible for $0 \le \nu < 1/2$. The irreducible spherical module $L(\chi)$ is not unitary for $\nu > \frac{1}{2}, \ 2\nu \notin \mathbb{Z}$.

Proof. This is well known and goes back to [Stein] (see also [T] and [V1]). \Box

We also recall the following well known result due to Kostant in the real case, Casselman in the p-adic case.

{12:3.2} Lemma (2). If none of the $\langle \chi, \alpha \rangle$ for $\alpha \in \Delta(\check{\mathfrak{a}})$ is a nonzero integer, then $X(\chi)$ is irreducible. In particular, if $\chi = 0$, then

$$L(\chi) = X(\chi) = Ind_A^G[\chi],$$

and it is unitary.

Let $\check{\mathfrak{m}} \subset \check{\mathfrak{g}}$ be a Levi component, and $\xi_t \in \mathfrak{z}(\check{\mathfrak{m}})$, where $\mathfrak{z}(\check{\mathfrak{m}})$ is the center of $\check{\mathfrak{m}}$, depending continuously on $t \in [a, b]$.

{13:3.2} Lemma (3). Assume that

$$I_M(\chi_t) := Ind_M^G[L_M(\chi_0) \otimes \xi_t]$$

is irreducible for $a \leq t \leq b$, and $L_M(\chi_0) \otimes \xi_t$ is hermitian. Then $I_M(\chi_t)$ (equal to $L(\chi_t)$) is unitary if and only if $L_M(\chi_0)$ is unitary.

This is well known, and amounts to the fact that (normalized) induction preserves unitarity. I don't know the original reference.

We now start the proof of the unitarity.

Type B. In this case there are no roots $\alpha \in \Delta(\check{\mathfrak{g}}, \check{\mathfrak{a}})$ such that $\langle \chi, \alpha \rangle$ is a nonzero integer. Thus

$$L(\chi) = Ind_A^G[\chi]$$

as well. When deforming χ to 0 continuously, the induced module stays irreducible. Since $Ind_B^G[0]$ is unitary, so is $L(\chi)$.

Type C,D. There is no root such that $\langle \chi, \alpha \rangle$ is a nonzero integer, so $L(\chi) = Ind_B^G[\chi]$. If there are no $\nu_{k+i} > 1/2$ the argument for type B carries over word for word. When there are $\nu_{k+i} > 1/2$ we have to be more careful with the deformation. We will do an induction on the rank. Suppose that for some j there is more than one ν_j . Necessarily, $\nu_j < 1/2$. Conjugate χ by the Weyl group so that

$$\chi = (\nu_1, \dots, \nu_j, \dots \widehat{\nu_i}, \widehat{\nu_i}, \dots, ; \nu_j; \nu_j) := (\chi_0; \nu_j; \nu_j). \tag{3.2.2}$$

Let $\check{\mathfrak{m}} := \check{\mathfrak{g}}(n-2) \times gl(2)$, and denote by M the corresponding Levi component. Then by induction in stages,

$$L(\chi) = Ind_M^G[L_M(\chi)],$$
 (3.2.3) {eq:3.2.3}

where $L_M(\chi) = L_0(\chi_0) \otimes L_1(\nu_j, \nu_j)$. By lemma (1) of 3.2, $L_1(\nu_j, \nu_j)$ is unitary. Thus $L(\chi)$ is unitary if and only if $L_0(\chi_0)$ is unitary. If χ satisfies the assumptions of the theorem, then so does χ_0 . By the induction hypothesis, $L_0(\chi_0)$ is unitary, and therefore so is $L(\chi)$. Thus we may assume that

$$0 \le \nu_1 < \dots < \nu_k \le 1/2 < \nu_{k+1} < \dots < \nu_{k+l}. \tag{3.2.4}$$

If $\nu_k < 1 - \nu_{k+1}$, then the assumptions imply $1 - \nu_{k+2} < \nu_k$. Consider the parameter

$$\chi_t := (\dots, \nu_k, \nu_{k+1} - t, \dots).$$
 (3.2.5) {eq:3.2.5}

Then

$$L(\chi_t) = Ind_A^G[\chi_t], \qquad \text{for } 0 \le t \le \nu_{k+1} - \nu_k,$$
 (3.2.6) {eq:3.2.6}

because no $\langle \chi_t, \alpha \rangle$ is a nonzero integer. At $t = \nu_{k+1} - \nu_k$, the parameter is in the case just considered earlier. By induction we are done.

If on the other hand $1 - \nu_{k+1} < \nu_k$, the assumptions on the parameter are such that at least $1 - \nu_{k+1} < \nu_{k-1} < \nu_k$. Then repeat the argument with

$$\chi_t := (\dots, \nu_{k-1}, \nu_k - t, \dots), \qquad 0 \le t \le \nu_k - \nu_{k-1}.$$
 (3.2.7) {eq:3.2.7}

This completes the proof of the unitarity of the parameters in theorem 3.1 when $\check{\mathcal{O}} = (0)$.

3.3. We prove the unitarity of the parameters in theorem 3.1 in the general case.

The proof is essentially the same as for $\check{\mathcal{O}}=(0)$, but special care is needed to justify the irreducibility of the modules. We need to compare $\mathfrak{z}(\check{\mathcal{O}})$ and $\check{\mathfrak{m}}_{KL}$ carefully. Recall the notation of the partition of $\check{\mathcal{O}}$ (2.3.3). The factors of $\mathfrak{z}(\check{\mathcal{O}})$ isomorphic to $sp(r_j)$, contribute $r_j/2$ factors of the form $gl(a_i)$ to $\check{\mathfrak{m}}_{KL}$. The factors of type $so(r_j)$ with r_j odd, contribute a d_i , and $\frac{r_j-1}{2}$ $gl(a_i)$. The factors $so(r_j)$ of type D $(r_j$ even) are more complicated. Write the strings coming from this factor as in (2.3.6),

$$\left(-\frac{a_i-1}{2}+\nu_i,\ldots,\frac{a_i-1}{2}+\nu_i\right)$$

with the ν_i satisfying the assumptions of theorem 3.1. If r_j is not divisible by 4, then $\nu_1 = 0$, and $\check{\mathfrak{m}}_{BC} \neq \check{\mathfrak{m}}_{KL}$. This is also the case when r_j is divisible by 4 and $\nu_1 = 0$. In all situations, we consider

$$I_{M_{KI}}(\chi).$$
 (3.3.1) {eq:3.3.1}

In the p-adic case, the only way $I_{M_{KL}}(\chi_t)$ can become reducible in the deformations in section 3.2 is if the associated nilpotent orbit changes, and this does not happen. For the ν_j attached to factors of type D in $\mathfrak{z}(\check{\mathcal{O}})$, it is important in the argument that we do not deform to (0).

Example. Assume $\check{\mathcal{O}}=(2,2,2,2)\subset sp(8)$. The parameters of the form $\check{h}/2+\nu$ are

{eq:3.3.2}
$$(-1/2 + \nu_1, 1/2 + \nu_1; -1/2 + \nu_2, 1/2 + \nu_2),$$
 (3.3.2)

and, because paramters are up to W-conjugacy, we may restrict attention to the region $0 \le \nu_1 \le \nu_2$. In this case $\mathfrak{z}(\check{\mathcal{O}}) = so(2)$, and the unitarity region is $0 \le \pm \nu_1 + \nu_2 < 1$. Furthermore $\check{\mathfrak{m}}_{BC} = gl(2) \times gl(2)$, but $\check{\mathfrak{m}}_{KL} = \check{\mathfrak{m}}_{BC}$ only if $0 < \nu_1$. When $\nu_1 = 0$, $\check{\mathfrak{m}}_{KL} = sp(4) \times gl(2)$, the nilpotent orbit is rewritten (2,2;(2,2)), and $\check{h}_0/2 = (1/2,1/2)$. For $\nu_1 = 0$, the induced representations

$$\{\text{eq:3.3.3}\} \qquad I_{M_{KL}}(\chi_{\nu_2}) := Ind_{Sp(4)\times GL(2)}^{Sp(8)}[L_0(1/2,1/2)\otimes L_1(-1/2+\nu_2,1/2+\nu_2)] \quad (3.3.3)$$

are induced irreducible in the range $0 \le \nu_2 < 1$. For $0 < \nu_1$ the representation

{eq:3.3.4}
$$Ind_{GL(4)}^{Sp(8)}[L((-1/2+\nu_1+t,1/2+\nu_1+t);(-1/2-\nu_1-t,1/2-\nu_1-t))]$$
 (3.3.4) is induced irreducible for $0 \le t \le 1/2 - \nu_1$.

The main point of the example is that $Ind_{GL(2)}^{Sp(4)}[L(-1/2+t,1/2+t)]$ is **reducible** at t=0. So we cannot conclude that $L(\chi)$ is unitary for a (ν_1,ν_2) with $0<\nu_1$ from the unitarity of $L(\chi)$ for a parameter with $\nu_1=0$.

In the case of real groups, the same irreducibility results hold, but are harder to prove. Given χ , consider the root system

$$\{\operatorname{eq}:3.3.5\} \qquad \qquad \Delta_{\chi}:=\{\alpha\in\Delta:\langle\chi,\alpha\rangle\in\mathbb{Z}\}. \tag{3.3.5}$$

Let G_{χ} be the connected split real group corresponding to this root system. Then χ determines an irreducible spherical representation $L_{G_{\chi}}(\chi)$. The Kazhdan-Lusztig conjectures for nonintegral infinitesimal character provide a way to prove any statement about the character of $L(\chi)$ by proving it for $L_{G_{\chi}}(\chi)$. This is beyond the scope of this paper (or my competence), I refer to [ABV], chapters 16 and 17 for an explanation.

Since G_{χ} is not simple, it is sufficient to prove the needed irreducibility result for each simple factor. This root system is a product of classical systems as follows. Recall the set A_{τ} in section 2.8. Each A_{τ} contributes as follows.

- **G of type B:** Every $0 < \tau < 1/2$ contributes a type A. Every $\tau = 0, 1/2$ contributes a type C.
- **G of type C:** Every $0 < \tau < 1/2$ contributes a type A. Every $\tau = 0$ contributes a type B, while $\tau = 1/2$ contributes type D.

G of type D: Every $0 < \tau < 1/2$ contributes a type A. Every $\tau = 0, 1/2$ contributes a type D.

To prove that $I_{M_{KL}}(\chi)$ is irreducible, it suffices to prove the following result.

 ${p:3.3}$

Proposition. Assume $\check{\mathfrak{g}}$ is of type A or D. Let

$$\chi := (\ldots; -\frac{a_i-1}{2} + \nu_i, \ldots, \frac{a_i-1}{2} + \nu_i; \ldots)$$

be given in terms of strings, and let $\check{\mathfrak{m}} = gl(a_1) \times \cdots \times gl(a_k)$ be the corresponding Levi component. Assume that χ is integral for type A and type D, in addition in type D assume that the coordinates of χ are all in $1/2 + \mathbb{Z}$. If the strings are strongly nested, then

$$I_M(\chi) = Ind_M^G[L(\chi)].$$

The proof will be in section 10.

4. Relevant
$$K$$
-types

 $\{sec:4\}$

4.1. In the real case we will call a K-type (μ, V) quasi-spherical if it occurs in the spherical principal series. By Frobenius reciprocity (μ, V) is quasi-spherical if and only if $V^{K\cap B} \neq 0$. Because the Weyl group W(G, A) may be realized as $N_K(A)/Z_K(A)$, this Weyl group acts naturally on this space.

The representations of $W(A_{n-1}) = S_n$ are parametrized by partitions of n, written as $a := (a_1, \ldots, a_k)$, $a_i \leq a_{i+1}$. The representations of $W(B_n) \cong W(C_n)$ are parametrized as in [L1] by pairs of partitions, which we write as

$$\sigma((a_1,\ldots,a_r),(b_1,\ldots,b_s)),$$

$$a_i \le a_{i+1}, \quad b_j \le b_{j+1}, \quad \sum a_i + \sum b_j = n.$$
 (4.1.1) {eq:4.0.4}

Precisely the representation parametrized by (4.1.1) is as follows. Let $k = \sum a_i$, $l = \sum b_j$. Recall that $W \cong S_n \ltimes \mathbb{Z}_2^n$. Let χ be the character of \mathbb{Z}_2^n which is trivial on the first $k \mathbb{Z}_2$'s, sign on the last l. Its centralizer in S_n is $S_k \times S_l$. Let $\sigma(a)$ and $\sigma(b)$ be the representations of S_k , S_l corresponding to the partitions a and b. Then let $\sigma(a, b, \chi)$ be the unique representation of $(S_k \times S_l) \ltimes \mathbb{Z}_2^n$ which is a multiple of χ when restricted to \mathbb{Z}_2^n , and $\sigma(a) \otimes \sigma(b)$ when restricted to $S_k \times S_l$. The representation in (4.1.1), is

$$\sigma(a,b) = Ind^W_{(S_k \times S_l) \bowtie \mathbb{Z}_2^n} \ [\sigma(a,b,\chi)]. \tag{4.1.2}$$

If $a \neq b$, the representations $\sigma(a,b)$ and $\sigma(b,a)$ restrict to the same irreducible representation of $W(D_n)$, which we denote again by the same symbol. When a = b, the restriction is a sum of two inequivalent representations which we denote $\sigma(a,a)_{I,\ II}$. Let $W_{a,I} := S_{a_1} \times \cdots \times S_{a_r}$ and $W_{a,II} := S_{a_1} \times \cdots \times S'_{a_r}$, be the Weyl groups corresponding to the Levi

components considered in Remark (2) in section 2.7. Then $\sigma(a, a)_I$ is characterized by the fact that its restriction to $W_{a,I}$ contains the trivial representation. Similarly $\sigma(a, a)_{II}$ is the one that contains the trivial representation of $W_{a,II}$.

- {sec: 4.2} **4.2. Symplectic Groups.** The group is Sp(n) and the maximal compact subgroup is U(n). The highest weight of a K-type will be written as $\mu(a_1, \ldots, a_n)$ with $a_i \geq a_{i+1}$ and $a_i \in \mathbb{Z}$, or
- $\{eq: 4.2.1\} \qquad \qquad \mu(a_1^{r_1}, \dots, a_k^{r_k}) := (\underbrace{a_1, \dots, a_1}_{r_1}, \dots, \underbrace{a_k, \dots, a_k}_{r_k}). \tag{4.2.1}$

when we want to emphasize the repetitions. We will repeatedly use the following restriction formula

{1:4.2} Lemma. The restriction of $\mu(a_1,\ldots,a_n)$ to $U(n-1)\times U(1)$ is $\sum \mu(b_1,\ldots,b_{n-1})\otimes \mu(b_n),$

where the sum ranges over all possible $a_1 \ge b_1 \ge a_2 \ge \cdots \ge b_{n-1} \ge a_n$, and $b_n = \sum_{1 \le i \le n} a_i - \sum_{1 \le j \le n-1} b_j$.

- [def:4.2] Definition. The representations $\mu_e(r, n-r) := \mu(2^r, 0^{n-r})$ and $\mu_o(k, n-k) := \mu(1^k, 0^{n-2k}, -1^k)$ are called **relevant**.
 - **Proposition.** The relevant K-types are quasispherical. The representation of $W(C_n)$ on V^M is

$$\mu_e(r, n-r) \longleftrightarrow \sigma[(n-r), (r)],$$

 $\mu_o(k, n-k) \longleftrightarrow \sigma[(k, n-k), (0)],$

The K-types $\mu(0^{n-r}, (-1)^r)$, dual to $\mu_e(r)$ are also quasispherical, and could be used in the same way.

Proof. We do an induction on n. Consider the case n=2. There are four relevant representations of U(2) with highest weights (2,0), (1,-1), (2,2) and (0,0). The first representation is the symmetric square of the standard representation, the second one is the adjoint representation and the fourth one is the trivial representation. The normalizer of A in K can be identified with the diagonal subgroup $(\pm 1, \pm 1)$ inside $U(1) \times U(1) \subset U(2)$. The Weyl group is generated by the elements

$$\begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$
 (4.2.2)

The restriction to $U(1) \times U(1)$ of the four representations of U(2) is

$$(2,0) \longrightarrow (2) \otimes (0) + (1) \otimes (1) + (0) \otimes (2),$$

$$(1,-1) \longrightarrow (1) \otimes (-1) + (0) \otimes (0) + (-1) \otimes (1),$$

$$(2,2) \longrightarrow (2) \otimes (2),$$

$$(0,0) \longrightarrow (0) \otimes (0).$$

$$(4.2.3)$$

The space V^M is the sum of all the weight spaces $(p) \otimes (q)$ with both p and q even. For the last one, the representation of W on V^M is $\sigma[(2),(0)]$. The third one is 1-dimensional so V^M is 1-dimensional; the Weyl group representation is $\sigma((0),(2))$. The second one has V^M 1-dimensional and the Weyl group representation is $\sigma((11),(0))$. For the first one, V^M is 2-dimensional and the Weyl group representation is $\sigma((1),(1))$. These facts can be read off from explicit realizations of the representations.

Assume that the claim is proved for n-1. Choose a parabolic subgroup so that its Levi component is $M' = Sp(n-1) \times GL(1)$ and M is contained in it. Let $H = U(n-1) \times U(1)$ be such that $M \subset M' \cap K \subset H$.

Suppose that μ is relevant. The cases when k=0 or r=0 are 1-dimensional and are straightforward. So we only consider k, r>0. The K-type $\mu(2^r, 0^{n-r})$ restricts to the sum of

$$\mu(2^r,0^{n-r-1})\otimes\mu(0) \hspace{1.5cm} (4.2.4) \quad \{\operatorname{eq}\!:\!4.2.5\}$$

$$\mu(2^{r-1}, 1, 0^{n-r-1}) \otimes \mu(1)$$
 (4.2.5) {eq:4.2.6}

$$\mu(2^{r-1}, 0^{n-r}) \otimes \mu(2).$$
 (4.2.6) {eq:4.2.7}

Of the representations appearing, only $\mu(2^r, 0^{n-r-1}) \otimes \mu(0)$ and $\mu(2^{r-1}, 1, 0^{n-r-1}) \otimes \mu(2)$ are quasispherical. So the restriction of V^M to $W(C_{n-1}) \times W(C_1)$ is the sum of

$$\sigma[(n-r-1),(r)] \otimes \sigma[(1),(0)]$$
 (4.2.7) {eq:4.2.8}

$$\sigma[(n-r),(r-1)]\otimes\sigma[(0),(1)] \hspace{1cm} (4.2.8) \hspace{0.2cm} \{\operatorname{eq}\!:\!4.2.9\}$$

The only representations of $W(C_n)$ containing (4.2.7) in their restrictions to $W(C_{n-1})$ are

$$\sigma[(1, n - r - 1), (r)] \tag{4.2.9}$$

$$\sigma[(n-r),(r)]. \tag{4.2.10} \quad \{ \operatorname{eq} : 4.2.11 \}$$

But the restriction of $\sigma[(1, n-r-1), (r)]$ to $W(C_{n-1}) \times W(C_1)$ contains $\sigma[(1, n-r-1), (r-1)] \otimes \sigma[(0), (1)]$, and this does not appear in (4.2.7)-(4.2.8). Thus the representation of $W(C_n)$ on V^M for (4.2.9) must be (4.2.5), and the claim is proved in this case.

Consider the case $\mu(1^k, 0^l, -1^k)$ for k > 0. The restriction of this K-type to $U(n-1) \times U(1)$ is the sum of

$$\mu(1^k, 0^l, -1^{k-1}) \otimes \mu(-1)$$
 (4.2.11) {eq:4.2.12}

$$\mu(1^{k-1}, 0^l, -1^k) \otimes \mu(1)$$
 (4.2.12) {eq:4.2.13}

$$\mu(1^{k-1},0^{l+1},-1^{k-1})\otimes\mu(0) \tag{4.2.13} \quad \{\operatorname{eq}\!:\!4.2.14\}$$

$$\mu(1^k,0^{l-1},-1^k)\otimes \mu(0) \tag{4.2.14}$$

Of the representations appearing, only (4.2.13) and (4.2.14) are quasispherical. So the restriction of V^M to $W(C_{n-1}) \times W(C_1)$ is the sum of

$$\sigma[(k-1,k+l),(0)] \otimes \sigma[(1),(0)],$$
 (4.2.15) {eq:4.2.16}

$$\sigma[(k, k+l-1), (0)] \otimes \sigma[(1), (0)].$$
 (4.2.16) {eq: 4.2.17}

The representation (4.2.16) can only occur in the restriction to $W(C_{n-1}) \times W(C_1)$ of $\sigma[(1,k,k+l-1),(0)]$ or $\sigma[(k,k+l),(0)]$. If k>1, the first one contains $\sigma[(1,k-1,k+l-1),(0)]$ in its restriction, which is not in the sum of (4.2.15) and (4.2.16). If k=1 then (4.2.15) can only occur in the restriction of $\sigma[(0,l+2),(0)]$, or $\sigma[(1,l+1),(0)]$. But V^M cannot consist of $\sigma[(0,l+2),(0)]$ alone, because (4.2.15) does not occur in its restriction. If it consists of both $\sigma[(0,l+2),(0)]$ and $\sigma[(1,l),(0)]$, then the restriction is too large. The claim is proved in this case.

- {sec:4.3} **4.3. Orthogonal groups.** Because we are dealing with the spherical case, we can use the connected component of the orthogonal group. A K-type will be identified by its highest weight in coordinates, $\mu(a_1, \ldots, a_n)$, or if there are repetitions, $\mu(a_1^{n_1}, \ldots, a_k^{n_k})$.
- {sec: 4.4} **4.4.** We describe the **relevant** K-types for the orthogonal groups $SO_e(a, a)$.
- {def:4.4} **Definition** (even orthogonal groups). The **relevant** K-types for $SO_e(a, a)$ are

$$\{eq: 4.4.1\} \qquad \qquad \mu_e(r, \lceil a/2 \rceil - r) := \mu(0^{\lceil a/2 \rceil}) \otimes \mu(2^r, 0^l) \tag{4.4.1}$$

$$\{\mathsf{eq}\!:\!4.4.2\} \qquad \qquad \mu_o(k,[a/2]-k) := \mu(1^k,0^l) \otimes \mu(1^k,0^l). \tag{4.4.2}$$

where r + l = [a/2].

 $\{p:4.4\}$ **Proposition.** The relevant K-types are quasispherical. The representation of $W(D_a)$ of O(a,a) on V^M is

$$\{ {\tt eq:4.4.3} \} \qquad \qquad \sigma[(r,a-r),(0)] \qquad \longleftrightarrow \qquad \mu(0^{[a/2]}) \otimes \mu(2^r,0^l), \qquad (4.4.3)$$

$$\{\operatorname{eq}: 4.4.4\} \qquad \qquad \sigma[(a-k),(k)], \qquad \longleftrightarrow \qquad \mu(1^k,0^l) \otimes \mu(1^k,0^l), \qquad (4.4.4)$$

When l = 0, and a is even,

$$\{eq: 4.4.5\} \qquad \sigma[(a/2, a/2), (0)] \qquad \longleftrightarrow \qquad \mu(0) \otimes \mu(2^{a/2-1}, \pm 2), \tag{4.4.5}$$

$$\sigma[(a/2), (a/2)]_{I,II} \qquad \longleftrightarrow \qquad \mu(1^{a/2-1}, \pm 1) \otimes \mu(1^{a/2-1}, \pm 1). \tag{4.4.6}$$

We will prove this together with the corresponding proposition for O(a+1, a) in section 4.6.

{sec: 4.5}
4.5. We describe the relevant
$$K$$
-types for $O(a+1,a)$

{def:4.5}

Definition (odd orthogonal groups). The **relevant** K-types for O(a+1, a) are

$$\{eq: 4.5.1\} \qquad \qquad \mu_e(a-r,r) := \mu(0^{[(a+1)/2]}) \otimes \mu(2^r,0^l) \tag{4.5.1}$$

$$\{eq: 4.5.2\} \qquad \qquad \mu_o(a-k,k) := \mu(1^k, 0^l) \otimes \mu(1^k, 0^s) \tag{4.5.2}$$

$$\{eq: 4.5.3\} \qquad \qquad \mu_o(a-k,k) := \mu(1^{k+1},0^l) \otimes \mu(1^k,0^s) \tag{4.5.3}$$

where r + l = [a/2] in (4.5.1), k + l = [(a + 1)/2], k + s = [a/2] in (4.5.2), and k + 1 + l = [(a + 1)/2], k + s = [a/2] in (4.5.3).

Proposition. The representations of $W(B_a)$ on V^M for the relevant K- $types \ are$

$$\sigma[(r, a - r), (0)] \longleftrightarrow \mu(0^{[(a+1)/2]}) \otimes \mu(2^r, 0^l) \tag{4.5.4}$$

$$\sigma[(a-k),(k)] \qquad \longleftrightarrow \quad \mu(1^k,0^{[(a+1)/2]-k}) \otimes \mu(1^k,0^{[a/2]-l}), \qquad (4.5.5) \quad \{\text{eq:} \, 4.5.5\}$$

$$\sigma[(k),(a-k)] \qquad \longleftrightarrow \quad \mu(1^{k+1},0^{[(a+1)/2]-k}) \otimes \mu(1^k,0^{[a/2]-k}). \quad (4.5.6) \quad \{\mathsf{eq} \colon 4.5.6\}$$

When a is even,

$$\sigma[(a/2), (a/2)] \longleftrightarrow \mu(1^{a/2}) \otimes \mu(1^{a/2-1}, \pm 1). \tag{4.5.7} \quad \{\mathsf{eq} \colon 4.5.7\}$$

When a is odd,

$$\sigma[(a/2),(a/2)] \qquad \longleftrightarrow \qquad \mu(1^{(a-1)/2},\pm 1) \otimes \mu(1^{(a-1)/2}). \qquad (4.5.8) \quad \{\text{eq:} \, 4.5.8\}$$

The proof will be in section 4.6.

{sec:4.6}

4.6. Proof of propositions **4.4** and **4.5**. We use the standard realization of the orthogonal groups O(a + 1, a) and O(a, a). Let

$$\widetilde{M}:=\{(\eta_0,\eta_1,\ldots,\eta_a,\epsilon_1,\ldots,\epsilon_a)\ :\ \eta_i,\ \epsilon_j=\pm 1,\prod\,\eta_i=\prod\,\epsilon_j=1.\}\ (4.6.1)\quad \{\operatorname{eq}\!:\!4.6.1\}$$

viewed as the subgroup of $O(a+1) \times O(a)$ with the η_i , ϵ_j on the diagonal. With the appropriate choice of $\mathfrak{a} \cong \mathbb{R}^a$, $\widetilde{M} \subset N_K(\mathfrak{a})$, and the action is

$$(\eta_i,\epsilon_j)\cdot(\dots,x_k,\dots)=(\dots,\eta_k\epsilon_kx_k,\dots). \tag{4.6.2}$$

Then M is the subgroup of \widetilde{M} determined by the relations $\eta_j = \epsilon_j$, $j = 1, \ldots, a$. Similarly for $O(a) \times O(a)$ but there is no η_0 .

We do the case O(a+1,a), O(a,a) is similar. The representations $\mu_o(k)$ and $\mu_o(a-k)$ can be realized as $\bigwedge^k \mathbb{C}^{a+1} \otimes \bigwedge^k \mathbb{C}^a$, and $\bigwedge^{k+1} \mathbb{C}^{a+1} \otimes \bigwedge^k (\mathbb{C}^a)$. Let e_i be a basis of \mathbb{C}^{a+1} and f_j a basis of \mathbb{C}^a . The space V^M is the span of the vectors $e_{i_1} \wedge \cdots \wedge e_{i_k} \otimes f_{i_1} \wedge \cdots \wedge f_{i_k}$, and $e_0 \wedge e_{i_1} \wedge \cdots \wedge e_{i_k} \otimes f_{i_1} \wedge \cdots \wedge f_{i_k}$. The elements of W corresponding to short root reflections all have representatives of the form $\eta_0 = -1$, $\eta_j = -1$, the rest zero. The action of $S_a \subset W$ on the space V^M is by permuting the e_i , f_j diagonally. Claims (4.4.4-4.4.5) and (4.5.5-4.5.6) follow from these considerations, we omit further details..

For cases (4.4.3) and (4.5.4) we do an induction on r. We do the case O(a, a) only. The claim is clear for r = 0. Since the first factor of $\mu_e(r)$ is the trivial representation, we only concern ourselves with the second factor.

Consider $\bigwedge^r \mathbb{C}^a \otimes \bigwedge^r \mathbb{C}^a$. The space of M-fixed vectors has dimension a, r, and a basis is

$$\{\mathsf{eq}\!:\!4.6.3\} \qquad \qquad e_{i_1}\wedge\dots\wedge e_{i_r}\otimes e_{i_1}\wedge\dots\wedge e_{i_r} \qquad (4.6.3)$$

As a module of S_a , this is

$$\{eq: 4.6.4\} \qquad Ind_{S_r \times S_{a-r}}^{S_a}[triv \otimes triv] = \sum_{1 < j < r} (j, a - j) \qquad (4.6.4)$$

On the other hand, the tensor product consists of representations with highest weight $\mu(2^{\alpha}, 1^{\beta}, 0^{\gamma})$. From the explicit description of $\bigwedge^k \mathbb{C}^a$, and the action of M, we can infer that V^M for $\beta \neq 0$ is (0). This is because the representation occurs in $\bigwedge^{\alpha+\beta} \mathbb{C}^a \otimes \bigwedge^{\alpha} \mathbb{C}^a$, which has no m-fixed vectors. On the other hand, $\mu(2^j, 0^l)$ for $j \leq r$ occurs (for example by the P-R-V conjecture). By the induction hypothesis, (j, a-j) occurs in $\mu(2^j, 0^l)$, for j < r, and so only (r, a-r) is unaccounted for. Thus V^M for $\mu_e(r)$ cannot be zero, so it must be (r, a-r). The claim now follows from the fact that the action of the short root reflections is trivial, and the description of the irreducible representations of $W(B_a)$.

{sec: 4.7} **4.7. General linear groups.** The maximal compact subgroup of $GL(a, \mathbb{R})$ is O(a), the Weyl group is $W(A_{n-1}) = S_a$ and $M \cong O(1) \times \cdots \times O(1)$. We

list the case of the connected component $GL(a, \mathbb{R})^+$ (matrices with positive determinant) instead, because its maximal compact group is K = SO(a) which is connected, and irreducible representations are parametrized by their highest weights.

{def:4.7} **Definition.** The **relevant** K-types are the ones with highest weights $\mu(2^k, 0^l)$.

The corresponding Weyl group representations on V^M are $\sigma[(k, a - k)]$.

We omit the details, the proof is essentially the discussion about the representation of S_a on $\bigwedge \mathbb{C}^a \otimes \bigwedge \mathbb{C}^a$ for the orthogonal groups.

- {sec: 5.8} 4.8. Relevant W-types.
 - {d:5.8} **Definition.** Let W be the Weyl group of type B, C, D. The following W-types will be called **relevant**.
- $\begin{aligned} \{\text{eq:4.8.1}\} & \quad \sigma_e(r,n-r) := \sigma[(n-r),(r)], \qquad \sigma_o(k,n-k) := \sigma[(k,n-k),(0)] \quad (4.8.1) \\ & \quad In \ type \ D \ for \ n \ even, \ and \ r = n/2 \ there \ are \ two \ W \ types, \ \sigma_e[(n/2),(n/2)]_{I,II} := \\ & \quad \sigma[(n/2),(n/2)]_{I,II}. \ If \ the \ root \ system \ is \ not \ simple, \ the \ relevant \ W types \ are \ tensor \ products \ of \ relevant \ W types \ on \ each \ factor. \end{aligned}$

 $\{sec:5:5\}$

5. Intertwining Operators

5.1. Recall that $X(\nu)$ denotes the spherical principal series. Let $w \in W$. Then there is an intertwining operator

$$I(w,\nu):X(\nu)\longrightarrow X(w\nu).$$
 (5.1.1) {eq:5.1.1}

If (μ, V) is a K-type, then I induces a map

$$I_V(w,\nu): \operatorname{Hom}_K[V,X(\nu)] \longrightarrow \operatorname{Hom}_K[V,X(w\nu)].$$
 (5.1.2) {eq:5.1.2}

By Frobenius reciprocity, we get a map

$$R_V(w,\nu): (V^*)^{K\cap B} \longrightarrow (V^*)^{K\cap B}.$$
 (5.1.3) {eq:5.1.3}

In case (μ, V) is trivial the spaces are 1-dimensional and $R_V(w, \nu)$ is a scalar. We normalize $I(w, \nu)$ so that this scalar is 1. The $R_V(w, \nu)$ are meromorphic functions in ν , and the $I(w, \nu)$ have the following additional properties.

(1) If $w = w_1 \cdot w_2$ with $\ell(w) = \ell(w_1) + \ell(w_2)$, then $I(w, \nu) = I(w_1, w_2 \nu) \circ I(w_2, \nu)$. In particular if $w = s_{\alpha_1} \cdots s_{\alpha_k}$ is a reduced decomposition, then I(w) factors into a product of intertwining operators I_j , one for each s_{α_j} . These operators are

$$I_j: X(s_{\alpha_{j+1}} \dots s_{\alpha_k} \cdot \nu) \longrightarrow X(s_{\alpha_j} \dots s_{\alpha_k} \cdot \nu)$$
 (5.1.4) {eq:5.1.4}

(2) Let P=MN be a standard parabolic subgroup (so $A\subset M$) and $w\in W(M,A)$. The intertwining operator

$$I(w,\nu): X(\nu) = Ind_P^G[X_M(\nu)] \longrightarrow X(w\nu) = Ind_P^G[X_M(w\nu)]$$

is of the form $I(w,\nu) = Ind_M^G[I_M(w,\nu)].$

- (3) If $Re\langle \nu, \alpha \rangle \geq 0$ for all positive roots α , then $R_V(w_0, \nu)$ has no poles, and the image of $I(w_0, \nu)$ ($w_0 \in W$ is the long element) is $L(\nu)$.
- (4) If $-\overline{\nu}$ is in the same Weyl group orbit as ν , let w be the shortest element so that $w\nu = -\overline{\nu}$. Then $L(\nu)$ is hermitian with inner product

$$\langle v_1, v_2 \rangle := \langle v_1, I(w, \nu) v_2 \rangle.$$

Let α be a simple root and $P_{\alpha} = M_{\alpha}N$ be the standard parabolic subgroup so that the Lie algebra of M_{α} is isomorphic to the $sl(2,\mathbb{R})$ generated by the root vectors $E_{\pm\alpha}$. We assume that $\theta E_{\alpha} = -E_{-\alpha}$. Let $D_{\alpha} = \sqrt{-1}(E_{\alpha} - E_{-\alpha})$ and $s_{\alpha} = e^{\sqrt{-1}\pi D_{\alpha}/2}$. Then $s_{\alpha}^2 = m_{\alpha}$ is in $M \cap M_{\alpha}$. Since the square of any element in M is in the center and M normalizes the the root vectors, $\operatorname{Ad} m(D_{\alpha}) = \pm D_{\alpha}$. Grade $V^* = \oplus V_i^*$ according to the absolute values of the eigenvalues of D_{α} (which are integers). Then M preserves this grading and

$$(V^*)^M = \bigoplus_{i \text{ even}} (V_i^*)^M.$$

The map $\psi_{\alpha}: sl(2,\mathbb{R}) \longrightarrow \mathfrak{g}$ determined by

$$\psi_{\alpha} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = E_{\alpha}, \qquad \psi_{\alpha} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = E_{-\alpha}$$

determines a map

$$\Psi_{\alpha} : SL(2,\mathbb{R}) \longrightarrow G \tag{5.1.5}$$

with image G_{α} , a connected group with Lie algebra isomorphic to $sl(2,\mathbb{R})$. Let R_{α} be the maps (5.1.3) for G_{α} .

{p:5.1} Proposition. $On (V_{2m}^*)^M$,

$$R_V(s_{\alpha}, \nu) = \begin{cases} Id & \text{if } m = 0, \\ \prod_{0 \le j < m} \frac{2j+1-\langle \nu, \check{\alpha} \rangle}{2j+1+\langle \nu, \check{\alpha} \rangle} Id & \text{if } m \ne 0. \end{cases}$$

In particular, $I(w, \nu)$ is an isomorphism unless $\langle \nu, \check{\alpha} \rangle \in -\mathbb{N}$.

Proof. The formula is well known for $SL(2,\mathbb{R})$. The second assertion follows from this and the listed properties of intertwining operators.

 $\{c:5.1\}$ Corollary. For relevant K-types the formula is

$$R_V(s_{lpha},
u) = egin{cases} Id & \textit{on the +1 eigenspace of } s_{lpha}, \ rac{1-<
u,\check{lpha}>}{1+<
u,\check{lpha}>} \ Id & \textit{on the -1 eigenspace of } s_{lpha}. \end{cases}$$

When restricted to $(V^*)^M$, the long intertwining operator is the product of the R_{α} corresponding to the reduced decomposition of w_0 and depends only on the Weyl group structure of $(V^*)^M$.

Proof. Relevant K-types are distinguished by the property that the eigenvalues of D_{α} are $0, \pm 2$ only. The element s_{α} acts by 1 on the zero eigenspace of D_{α} and by -1 on the ± 2 eigenspace. The claim follows from this.

{sec:5.2} 5.2. We now show that the formulas in the previous section coincide with corresponding ones in the p-adic case. In the split p-adic case, spherical representations are a subset of representations with \mathcal{I} -fixed vectors, where \mathcal{I} is an Iwahori subgroup. As explained in [B], the category of representations with \mathcal{I} fixed vectors is equivalent to the category of finite dimensional representations of the Iwahori-Hecke algebra $\mathcal{H} := \mathcal{H}(\mathcal{I} \setminus G/\mathcal{I})$. The equivalence is

$$\{eq:5.2.1\} \qquad \qquad \mathcal{V} \longrightarrow \mathcal{V}^{\mathcal{I}}. \tag{5.2.1}$$

The papers [BM1] and [BM2] show that the problem of the determination of the unitary dual of representations with \mathcal{I} fixed vectors, is equivalent to the problem of the determination of the unitary dual of irreducible representations of \mathcal{H} with real infinitesimal character. In fact it is the affine graded Hecke algebras we will need to consider, and they are as follows.

Let $\mathbb{A} := S(\check{\mathfrak{a}})$, and define the affine graded Hecke algebra to be $\mathbb{H} := \mathbb{C}[W] \otimes \mathbb{A}$ as a vector space, and usual algebra structure for $\mathbb{C}[W]$ and \mathbb{A} . Impose the additional relation

$$\{eq: 5.2.2\} \qquad \omega t_{\alpha} = s_{\alpha}(\omega)t_{\alpha} + \langle \omega, \alpha \rangle, \qquad \omega \in \check{\mathfrak{a}}, \qquad (5.2.2)$$

where t_{α} is the element in $\mathbb{C}[W]$ corresponding to the simple root α . If $X(\chi)$ is the standard (principal series) module determined by χ , then

$$\{\mathsf{eq} \colon \mathsf{5.2.3}\} \hspace{1cm} X(\chi)^{\mathcal{I}} = \mathbb{H} \otimes_{\mathbb{A}} \mathbb{C}_{\chi}. \hspace{1cm} (5.2.3)$$

The intertwining operator $I(w,\chi)$ is a product of operators I_{α_i} according to a reduced decomposition of $w = s_{\alpha_1} \cdot \dots \cdot s_{\alpha_k}$. If α is a simple root,

$$\{\operatorname{eq}: 5.2.4\} \qquad \qquad r_{\alpha}:=(t_{\alpha}\alpha-1)\frac{1}{\alpha-1}, \qquad I_{\alpha}: \ x\otimes 1\!\!1_{\chi} \mapsto xr_{\alpha}\otimes 1\!\!1_{s_{\alpha}\chi}. \tag{5.2.4}$$

The $I(w, \nu)$ have the same properties as in the real case. The r_{α} are multiplied on the right, so we can replace α with $-\langle \nu, \alpha \rangle$ in the formulas. Furthermore,

$$\mathbb{C}[W] = \sum_{\sigma \in \widehat{W}} V_{\sigma} \otimes V_{\sigma}^*.$$

Since r_{α} acts as multiplication on the right, it gives rise to an operator

$$r_{\sigma}(s_{\alpha}, \nu): V_{\sigma}^* \longrightarrow V_{\sigma}^*.$$

Theorem. The $R_V(s_\alpha, \nu)$ for the real case on relevant K-types coincide with the $r_\sigma(s_\alpha, \nu)$ on the $V_\sigma^* \cong (V^*)^M$

Proof. The operators R_{α} and r_{α} act the same way:

$$r_{\sigma}(s_{\alpha}, \nu) = \begin{cases} Id & \text{on the } +1 \text{ eigenspace of } t_{\alpha} \\ \frac{1 - \langle \nu, \alpha \rangle}{1 + \langle \nu, \alpha \rangle} Id & \text{on the } -1 \text{ eigenspace of } t_{\alpha} \end{cases}$$
 (5.2.5) {eq:5.2.5}

The assertion is now clear from corollary (5.1) and formula (5.2.2). We emphasize that the Hecke algebra for a p-adic group G is defined using the dual root system of the complex group \check{G} so that there is no discrepancy between α and $\check{\alpha}$ in the formulas.

{sec:5.3}

5.3. The main point of section 5.2 is that for the real case, and a relevant K-type (V, μ) , the intertwining operator calculations coincide with the intertwining operator calculations for the affine graded Hecke algebra on the space V^M . Thus we will deal with the Hecke algebra caclulations exclusively, but the conclusions hold for both the real and p-adic case. Recall from section 2.3 that to each χ we have associated a nilpotent orbit $\check{\mathcal{O}}$, and Levi components $\check{\mathfrak{m}}_{BC}$ and $\check{\mathfrak{m}}_{KL}$. These are special instances of the following situation. Assume that $\check{\mathcal{O}}$ is written as in (2.3.4) (i.e. $((a_1, a_1), \ldots, (a_k, a_k); (d_i))$ with

 $\check{\mathfrak{g}}$ of type B: (d_i) all odd; they are relabelled $(2x_0+1,\ldots,2x_{2m}+1)$,

 $\check{\mathfrak{g}}$ of type C: (d_i) all even; they are relabelled $(2x_0,\ldots,2x_{2m})$,

 $\check{\mathfrak{g}}$ of type **D**: (d_i) all odd; they are relabelled $(2x_0,\ldots,2x_{2m-1})$.

Similar to (2.3.5), let

$$\check{\mathfrak{m}}:=gl(a_1)\times\cdots\times gl(a_k)\times \check{\mathfrak{g}}(n_0),\quad n_0=n-\sum a_i. \tag{5.3.1}$$

We consider parameters of the form $\chi = \check{h}/2 + \nu$.

Write χ_0 for the parameter $\check{h}/2$, and $\chi_i := (-\frac{a_i-1}{2} + \nu_i, \dots, \frac{a_i-1}{2} + \nu_i)$. We focus on χ_0 as a parameter on $\check{\mathfrak{g}}(n_0)$. We attach two Levi components

$$\begin{array}{ll} \check{\mathfrak{g}}_{e}: \\ B & gl(2x_{2m-1}+2x_{2m-2}+2)\times\cdots\times gl(2x_{1}+2x_{0}+2)\times\check{\mathfrak{g}}(x_{2m}) \\ C & gl(2x_{2m-1}+2x_{2m-2})\times\cdots\times gl(2x_{1}+2x_{0})\times\check{\mathfrak{g}}(x_{2m}) \\ D & gl(2x_{2m-1}+2x_{2m-2}+2)\times\cdots\times gl(2x_{1}+2x_{0}+2) \\ \\ \check{\mathfrak{g}}_{o}: \\ B & gl(2x_{2m}+2x_{2m-1}+2)\times\cdots\times gl(2x_{2}+2x_{1}+2)\times\check{\mathfrak{g}}(x_{0}) \\ C & gl(2x_{2m}+2x_{2m-1})\times\cdots\times gl(2x_{2}+2x_{1})\check{\mathfrak{g}}(x_{0}) \\ D & gl(2x_{2m-3}+2x_{2m-4}+2)\times\cdots\times gl(2x_{2m-2}+1)\times\check{\mathfrak{g}}(x_{2m-1}). \end{array}$$

There are 1-dimensional representation $L(\chi_e)$ and $L(\chi_o)$ such that the spherical irreducible representation $L(\chi_{\mathcal{O}}) = \overline{X}(\chi_{\mathcal{O}})$ with infinitesimal character χ_0 is the spherical irreducible subquotient of $X_e := Ind_{P_e}^G(\chi_e)$ and $X_o := Ind_{P_o}^G(\chi_o)$ respectively. The parameters χ_e and χ_o are written in terms of strings as follows:

$$X_e: \\ B: \dots (-x_{2i-1}, \dots, x_{2i-2}) \dots (-x_{2m}, \dots, -1) \\ C: \dots (-x_{2i-1}+1/2, \dots, x_{2i-2}-1/2) \dots (-x_{2m}+1/2, \dots, -1/2) \\ D: \dots (-x_{2i-1}, \dots, x_{2i-2}) \dots \\ \{\text{eq:5.3.3}\}$$
 (5.3.3)

$$B: \dots (-x_{2i}, \dots, x_{2i-1}) \dots (-x_0, \dots, -1)$$

$$C: \dots (-x_{2i} + 1/2, \dots, x_{2i-1} - 1/2) \dots (-x_0 + 1/2, \dots, -1/2)$$

$$D: \dots (-x_{2i}, \dots, x_{2i-1}) \dots (-x_{2m-2}, \dots, -1)(-x_{2m-1} + 1, \dots, 0)$$
(5.3.4)

{t:5.3} **Theorem.** For the Hecke algebra, p-adic groups,

$$[\sigma[(n-r),(r)] : X_e] = [\sigma[(n-r),(r)] : L(\chi_0)],$$

$$[\sigma[(k,n-k),(0)] : X_o] = [\sigma[(k,n-k),(0)] : L(\chi_0)]$$

hold.

The proof is in section 6.7.

For a general parameter, the strings defined in section 2 and the above construction defines parabolic subgroups with Levi components $gl(a_1) \times \cdots \times gl(a_k) \times \check{\mathfrak{g}}_e$ and $gl(a_1) \times \cdots \times gl(a_r) \times \check{\mathfrak{g}}_o$, and corresponding $L_e(\chi)$ and $L_o(\chi)$. We denote these induced modules by X_e and X_o as well.

{c:5.3} Corollary. The relations

$$[\sigma[(n-r),(r)] : X_e] = [\sigma[(n-r),(r)] : L(\chi)],$$

$$[\sigma[(k,n-k),(0)] : X_o] = [\sigma[(k,n-k),(0)] : L(\chi)]$$

hold in general. For real groups,

$$[\mu_e(r, n-r) : X_e] = [\mu_e(r, n-r) : L(\chi)],$$

$$[\mu_o(k, n-k) : X_o] = [\mu_o(k, n-k) : L(\chi)].$$

The proof is in section 6.8. Section 5 explains the passage from the calculations with W-types and the Hecke algebra to the relevant K-types in the real case.

6. Hecke Algebra Calculations

{sec:6} sec:6:1}

6.1. The proof of the results in 5.3 is by a computation of intertwining operators on the relevant K-types. It only depends on the W-type of V^M , so we work in the setting of the Hecke algebra. The fact that we can deal exclusively with W-types, is a big advantage. In particular we do not have to worry about disconnectedness of Levi components. We will write GL(k) for the Hecke algebra of type A and G(n) for the types B, C or D as the case may be. This is so as to emphasize that the results are about groups, real or p-adic.

The intertwining operators will be decomposed into products of simpler operators induced from operators coming from maximal Levi subgroups. We introduce these first.

Suppose M is a Levi component of the form

$$GL(a_1) \times \cdots \times GL(a_l) \times G(n_0).$$
 (6.1.1) {eq:6.1.1}

Let χ_i be characters for $GL(a_i)$. We simplify the notation somewhat by writing

$$\chi_i \longleftrightarrow (\nu_i) := (-\frac{a_i - 1}{2} + \nu_i, \dots, \frac{a_i - 1}{2} + \nu_i).$$
 (6.1.2) {eq:6.1.2}

The parameter is antidominant, and so $L(\chi_i)$ occurs as a submodule of the principal series $X((\nu_i))$. The module is spherical 1-dimensional, and the action of fraka is

$$\chi_i(\omega) = \langle \omega, (\frac{a_i - 1}{2} + \nu_i, \dots, -\frac{a_i - 1}{2} + \nu_i) \rangle, \qquad \omega \in \mathfrak{a}, \tag{6.1.3}$$

while W acts trivially. The trivial representation of $G(n_0)$ corresponds to the string $(-n_0 + \epsilon, \ldots, -1 + \epsilon)$ where

$$\epsilon := \begin{cases} 0 & \mathbb{H} \text{ of type B,} \\ 1/2, & \mathbb{H} \text{ of type C,} \\ 1, & \mathbb{H} \text{ of type D.} \end{cases}$$

$$(6.1.4) \quad \{eq: 6.1.4\}$$

We abbreviate this as (ν_0) . Again $L(\chi_0)$ is the trivial representation, and because χ_0 is antidominant, it appears as a submodule of the principal series $X(\chi_0)$. We abbreviate

$$X_M(\dots(\nu_i)\dots):=Ind_{\prod GL(a_i)\times G(n)}^G[\otimes\chi_i\otimes triv]. \tag{6.1.5}$$

The module $X_M(\dots(\nu_i)\dots)$ is a submodule of the standard module $X(\chi)$ with parameter corresponding to the strings

$$(\ldots, -\frac{a_i-1}{2}+\nu_i, \ldots, \frac{a_i-1}{2}+\nu_i, \ldots, -n_0+\epsilon, \ldots, -1+\epsilon).$$
 (6.1.6) {eq:6.1.6}

In the setting of the Hecke algebra, the induced modules (6.1.5) is really $X_M(\dots(\nu_i)\dots) = \mathbb{H} \otimes_{\mathbb{H}_M} [\bigotimes \chi_i \otimes triv].$

Let $w_{i,i+1} \in W$ be the shortest Weyl group element which interchanges the strings (ν_i) and (ν_{i+1}) in ν , and fixes all other coordinates. The intertwining operator $I_{w_{i,i+1}}: X(\nu) \longrightarrow X(w_{i,i+1}\nu)$ restricts to an intertwining operator

{eq:6.1.7}
$$\begin{array}{c} I_{M,i,i+1}(\dots(\nu_i)(\nu_{i+1})\dots): \\ X_M(\dots(\nu_i)(\nu_{i+1})\dots) \longrightarrow X_{w_{i,i+1}M}(\dots(\nu_{i+1})(\nu_i)\dots). \end{array}$$
 (6.1.7)

This operator is induced from the same kind for $GL(a_i + a_{i+1})$ where $M = GL(a_i) \times GL(a_{i+1}) \subset GL(a_i + a_{i+1})$ is the Levi component of a maximal parabolic subgroup.

Let $w_l \in W$ be the shortest element which changes ν_l to $-\nu_l$, and fixes all other coordinates. It induces an intertwining operator

$$\{\mathsf{eq} : \mathsf{6.1.8}\} \qquad I_{M,l}(\ldots(\nu_l)(\nu_0)) : X_M(\ldots(\nu_l),(\nu_0)) \longrightarrow X_{w_lM}(\ldots(-\nu_l),(\nu_0)). \tag{6.1.8}$$

In this case, $w_l M = M$, so we will not always include it in the notation. In type D, if $n_0 = 0$, the last entry of the resulting string might have to stay $-\frac{a_l-1}{2} + \nu_l$ instead of $\frac{a_l-1}{2} - \nu_l$. This operator is induced from the same kind on $G(a_l + n_0)$ with $M = GL(a_l) \times G(n_0) \subset G(a_l + n_0)$ the Levi component of a maximal parabolic subgroup.

Lemma. The operators $I_{M,i,i+1}$ and $I_{M,l}$ are meromorphic in ν_i in both the real and p-adic case.

(1) $I_{M,i,i+1}$ has poles only if $\frac{a_i-1}{2} + \nu_i - \frac{a_{i+1}-1}{2} + \nu_i \in \mathbb{Z}$. If so, a pole only occurs if

$$-\frac{a_i-1}{2}+\nu_i<-\frac{a_{i+1}-1}{2}+\nu_{i+1}, \qquad \frac{a_i-1}{2}+\nu_i<\frac{a_{i+1}-1}{2}+\nu_{i+1}.$$

(2) $I_{M,l}$ has a pole only if $\frac{a_l-1}{2} + \nu_l \equiv \epsilon \pmod{\mathbb{Z}}$ In that case, a pole only occurs if

$$-\frac{a_l - 1}{2} + \nu_l < 0.$$

Proof. We prove the assertion for $I_{M,i,i+1}$, the other one is similar. The fact that the integrality condition is necessary is clear. For the second condition, it is sufficent to consider the case $M = GL(a_1) \times GL(a_2) \subset GL(a_1 + a_2)$. If the strings are strongly nested, then the operator cannot have any pole because X_M is irreducible. Remains to show there is no pole in the case

when
$$-\frac{a_2-1}{2} + \nu_2 \le -\frac{a_1-1}{2} + \nu_1$$
, but $\frac{a_1-1}{2} + \nu_1 > \frac{a_2-1}{2} + \nu_2$. Let
$$M' := GL(\frac{a_1+a_2}{2} + \nu_2 + \nu_1) \times GL(\frac{a_1-a_2}{2} + \nu_1 - \nu_2) \times GL(a_2),$$

$$(\nu'_1) = (-\frac{a_1-1}{2} + \nu_1, \dots, \frac{a_2-1}{2} + \nu_2)$$

$$(\nu'_2) = (\frac{a_2-1}{2} + 1 + \nu_2, \dots, \frac{a_1-1}{2} + \nu_2)$$

$$(\nu'_3) = (\nu_2) = (-\frac{a_2-1}{2} + \nu_2, \dots, \frac{a_2-1}{2} + \nu_2).$$
 (6.1.9)

Then $X_M((\nu_1)(\nu_2)) \subset X_{M'}((\nu'_1)(\nu'_2)(\nu'_3))$, and $I_{M,1,2}$ is the restriction of $I_{w_{2,3}M',1,2}, ((\nu'_1)(\nu'_3)(\nu'_2) \circ I_{M',2,3}((\nu'_1)(\nu'_2)(\nu'_3))$ to X_M . Because the strings $(\nu'_1)(\nu'_3)$ are strongly nested, $I_{w_{2,3}M',1,2}$ has no pole, and $I_{M',2,3}$ has no pole because it is a restriction of operators coming from SL(2)'s which do not have poles. The claim follows.

Let σ be a W-type. We are interested in computing $r_{\sigma}(w, \ldots (\nu_i) \ldots)$, where w changes all the ν_i for $1 \leq i$ to $-\nu_i$. The operator can be factored into a product of $r_{\sigma}(w_{i,i+1}, *)$ of the type (6.1.7) and $r_{\sigma}(w_{i,i+1}, *)$ of the type (6.1.9). These operators are more tractable. Here's a more precise explanation. Let M be the Levi component

$$GL(a_1) \times \cdots \times GL(a_i + a_{i+1}) \times \dots$$
 in case (6.1.7) (6.1.10) {eq:6.1.11}

$$GL(a_1) \times \cdots \times G(a_l + n_0)$$
 in case (6.1.8) (6.1.11) {eq:6.1.12}

Since X_M is induced from the trivial W(M) module,

$$\operatorname{Hom}_{W}[\sigma, X_{M}((\nu_{i}))] = \operatorname{Hom}_{W(M)}[\sigma|_{W(M)} : \operatorname{triv} \otimes X_{M_{i,i+1}}((\nu_{i}), (\nu_{i+1})) \otimes \operatorname{triv}]$$
in case (6.1.7) (6.1.12) {eq:6.1.13}

$$\operatorname{Hom}_{W}[\sigma, X((\nu_{i}))] = \operatorname{Hom}_{W(M)}[\sigma|_{W(M)} : \operatorname{triv} \otimes X_{M_{l}}((\nu_{l}), (\nu_{0}))]$$
in case (6.1.8)
$$(6.1.13) \quad \{eq: 6.1.14\}$$

where $M_{i,i+1} = GL(a_i) \times GL(a_{i+1})$ is a maximal Levi component of $GL(a_i + a_{i+1})$ and $M_l = G(a_l + n_0)$ is a maximal Levi component of $G(a_l + n_0)$. To compute the $r_{\sigma}(w_{i,i+1}, *)$ and $r_{\sigma}(w_l, *)$, it is enough to compute the corresponding r_{σ_j} for the σ_j ocuring in the restriction $\sigma \mid_{W(M)}$ in the cases $GL(a_i) \times GL(a_{i+1}) \subset GL(a_i + a_{i+1})$ and $GL(a_l) \times G(n_0) \subset G(a_l + n_0)$. The restrictions of relevant W-types to Levi components consists of relevant W-types of the same kind, i.e. $\sigma[(n-r), (r)]$ restricts to a sum of representation of the kind σ_e , and $\sigma[(k, n-k), (0)]$ restricts to a sum of σ_o . Typically the multiplicities of the factors are 1.

We also note that

$$X_M \mid_W = \sum_{\sigma \in \widehat{W}} V_\sigma \otimes (V_\sigma^*)^{W(M)}. \tag{6.1.14}$$

So the $r_{\sigma}(w,*)$ map $(V_{\sigma}^*)^{W(M)}$ to $(V_{\sigma}^*)^{W(wM)}$.

In the next sections we will compute the cases of Levi components of maximal parabolic subgroups.

- [6.2] **6.2.** $GL(a) \times GL(b) \subset GL(a+b)$. This is the case of $I_{i,i+1}$ with i < l. Let n = a + b and G = GL(n) and $M = GL(a) \times GL(b)$. The module $X_M((\nu_1), (\nu_2))$ induced from the characters corresponding to
- {eq:6.2.1} $\left(-\frac{a-1}{2}+\nu_1,\ldots,\frac{a-1}{2}+\nu_1\right),\left(-\frac{b-1}{2}+\nu_2,\ldots,\frac{b-1}{2}+\nu_2\right)$ (6.2.1)

has the following S_{a+b} structure. Let $m := \min(a, b)$ and write $\sigma(k, a+b-k)$ for the module corresponding to the partition (k, a+b-k), $0 \le k \le m$. Then

- {eq:6.2.2} $X_M((\nu_1), (\nu_2)) \mid_W = \bigoplus_{0 \le k \le m} \sigma(k, a+b-k).$ (6.2.2)
 - Lemma. For $1 \le k \le m$, the intertwining operator $I_{M,1,2}((\nu_1)(\nu_2))$ restricted to σ gives

$$r_{\sigma(k,a+b-k)}(a,b,\nu_1,\nu_2) = \prod_{0 < j < k-1} \frac{(\nu_1 - \frac{a-1}{2}) - (\frac{b-1}{2} + \nu_2 + 1) + j}{(\nu_1 + \frac{a-1}{2}) - (-\frac{b-1}{2} + \nu_2 - 1) - j}.$$

Proof. The proof is an induction on a, b and k. We omit most details but give the general idea. Assume k < m, the case k = m is simpler. Embed $X_M((\nu_1), (\nu_2))$ into $X_{M'}((\nu'), (\nu''), (\nu_2))$ corresponding to the strings

$$(-\frac{a-1}{2}+\nu_1,\ldots,\frac{a-3}{2}+\nu_1)(\frac{a-1}{2}+\nu_1),(-\frac{b-1}{2}+\nu_2,\ldots,\frac{b-1}{2}+\nu_2).$$
 {eq:6.2.3}

The intertwining operator $I_{M,1,2}(\nu_1,\nu_2)$ is the restriction of

{eq:6.2.4}
$$I_{M',1,2}(\nu',\nu_2,\nu'') \circ I_{M',2,3}(\nu';\nu'',\nu_2)$$
 (6.2.4)

to $X_M((\nu_1), (\nu_2)) \subset X_{M'}((\nu')(\nu")(\nu_2))$. By an induction on n we can assume that these operators are known. The W-type $\sigma(k, n-k)$ occurs with multiplicity 1 in $X_M(\nu_1), (\nu_2)$ and with multiplicity 2 in $X_{M'}((\nu'), (\nu"), (\nu_2))$. The restrictions are

$$\sigma(k, n-k) \mid_{W(M')} = triv \otimes \sigma(k-1, b+1-k) + triv \otimes \sigma(k, b-k) \quad (6.2.5)$$

$$\{eq:6.2.5\}$$
 for $I_{M',1,2}$ (6.2.6)

{eq:6.2.6}
$$\sigma(k, n-k) \mid_{W(M')} = \sigma(1,b) + \sigma(0,b+1) \text{ for } I_{M',2,3}$$
 (6.2.7)

The representation $\sigma(k, n-k)$ has a realization as harmonic polynomials in $S(\mathfrak{a})$ spanned by

$$\left\{\mathsf{eq}\!:\!\mathsf{6.2.7}\right\} \qquad \qquad \prod_{1\leq l\leq k} (\epsilon_{i_l}-\epsilon_{j_l}) \tag{6.2.8}$$

where $(i_1, j_1), \ldots, (i_\ell, j_\ell)$ are ℓ pairs of integers $i_k \neq j_k$, and $1 \leq i_k$, $j_k \leq n$. We apply the intetwining operator to the $S_a \times S_b$ -fixed vector

$$\{eq:6.2.8\} \qquad e := \sum_{\sigma \in S_a \times S_b} \sigma \cdot [(\epsilon_1 - \epsilon_{a+1}) \times \dots \times (\epsilon_k - \epsilon_{a+k})]. \tag{6.2.9}$$

The intertwining operator $I_{M',2,3}$, has a simple form on the vectors

$$e_1 := \sum_{\sigma \in S_{a-1} \times S_{b+1}} \sigma \cdot [(\epsilon_1 - \epsilon_{a+1}) \times \dots \times (\epsilon_k - \epsilon_{a+k})], \text{ in } \sigma(0, b+1)$$

$$\{eq: 6.2.9\}$$

$$e_2 := \sum_{\sigma \in S_{a-1} \times S_1 \times S_b} \sigma \cdot [(\epsilon_1 - \epsilon_{a+1}) \times \dots \times (\epsilon_{k-1} - \epsilon_{a+k-1})(\epsilon_a - \epsilon_{a+k})], \text{ in } \sigma(1, b)$$

$$\{eq: 6.2.10\}$$

$$(6.2.11)$$

which appear in (6.2.7). They are mapped into scalar multiples (given by the lemma) of the vectors e'_1 , e'_2 which are invariant under $S_{a-1} \times S_b \times S_1$, and transform according to $triv \otimes \sigma(0, b+1)$ and $triv \otimes \sigma(1, b)$. We choose

$$e'_1 = e_1,$$

$$e'_2 := \sum_{\sigma \in S_{a-1} \times S_b \times S_1} \sigma \cdot [(\epsilon_1 - \epsilon_a) \times \dots \times (\epsilon_{k-1} - \epsilon_{a+k-2})(\epsilon_n - \epsilon_{a+k-1})]$$

$$(6.2.12) \quad \{eq: 6.2.11\}$$

The intertwining operator $I_{M',1,2}$ has a simple form on the vectors invariant under $S_{a-1} \times S_b \times S_1$ transforming according to $\sigma(k, n-k-1)$ and $\sigma(k-1, n-k)$. We can choose multiples of

$$f_{1} := \qquad \qquad (6.2.13) \quad \{eq:6.2.12\}$$

$$\sum_{\sigma \in S_{a-1} \times S_{b} \times S_{1}} \sigma[(\epsilon_{1} - \epsilon_{a}) \times \cdots \times (\epsilon_{k-1} - \epsilon_{a+k-2})(\epsilon_{k} - \epsilon_{a+k-1})],$$

$$\inf_{\sigma \in S_{a-1} \times S_{b} \times S_{1}} \sigma[(\epsilon_{1} - \epsilon_{a}) \times \cdots \times (\epsilon_{k-1} - \epsilon_{a+k-2}) \cdot$$

$$\sum_{\sigma \in S_{a-1} \times S_{b} \times S_{1}} \sigma[(\epsilon_{1} - \epsilon_{a}) \times \cdots \times (\epsilon_{k-1} - \epsilon_{a+k-2}) \cdot$$

$$\cdot (e_{k} + \cdots + \epsilon_{a-1} + \epsilon_{a} + \epsilon_{a+k} + \cdots + \epsilon_{n-1} - (n-2k+1)\epsilon_{n})]$$

$$\inf_{\sigma \in S_{a-1} \times S_{b} \times S_{1}} \sigma[(\epsilon_{1} - \epsilon_{a}) \times \cdots \times (\epsilon_{k-1} - \epsilon_{a+k-2}) \cdot$$

$$\cdot (e_{k} + \cdots + \epsilon_{a-1} + \epsilon_{a} + \epsilon_{a+k} + \cdots + \epsilon_{n-1} - (n-2k+1)\epsilon_{n})]$$

$$\inf_{\sigma \in S_{a-1} \times S_{b} \times S_{1}} \sigma[(\epsilon_{1} - \epsilon_{a}) \times \cdots \times (\epsilon_{k-1} - \epsilon_{a+k-2}) \cdot$$

$$\cdot (e_{k} + \cdots + \epsilon_{a-1} + \epsilon_{a} + \epsilon_{a+k} + \cdots + \epsilon_{n-1} - (n-2k+1)\epsilon_{n})]$$

The fact that f_1 transforms according to $\sigma(k, n-1)$ follows from (6.2.8). The fact that f_2 transforms according to $\sigma(k-1,n)$ is slightly more complicated. The product $\prod (\epsilon_1 - \epsilon_a) \times \cdots \times (\epsilon_{k-1} - \epsilon_{a+k-2})$ transforms according to $\sigma(k-1,k-1)$ under S_{2k-2} . The vector $(e_k + \cdots + \epsilon_{a-1} + \epsilon_a + \epsilon_{a+k} + \cdots + \epsilon_{n-1} - (n-2k+1)\epsilon_n)$ is invariant under the S_{n-2k-1} acting on the coordinates $\epsilon_k, \ldots \epsilon_a, \epsilon_{a+k}, \ldots, \epsilon_{n-1}$. Since $\sigma(k, n-k-1)$ does not have such invariant vectors, the product inside the sum in (6.2.14) must transform according to $\sigma(k-1,n-k)$. The average under σ is nonzero. The operator $I_{M',2,3}$ maps f_1 and f_2 into multiples (using the induction hypothesis) of the vectors f'_1, f'_2 which are the $S_b \times S_{a-1} \times S_1$ invariant vectors transforming according to $\sigma(k, n-1)$ and $\sigma(k-1, n-k)$. The composition $I_{M',1,2} \circ I_{M',2,3}$ maps e into

a multiple of

$$e' := \sum_{\sigma \in S_b \times S_a} \sigma \cdot [(\epsilon_1 - \epsilon_{b+1}) \times \dots \times (\epsilon_k - \epsilon_{b+k})]. \tag{6.2.15}$$

The multiple is computable by using the induction hypothesis and the expression of

e in terms of e_1 , e_2 , e'_1 , e'_2 in terms of f_1 , f_2 , and e' in terms of f'_1 , f'_2 .

For example for the case k = 1, we get the following formulas.

$$e = b(\epsilon_{1} + \dots + \epsilon_{a}) - a(\epsilon_{a+1} + \dots + \epsilon_{n}),$$

$$e_{1} = (b+1)(\epsilon_{1} + \dots + \epsilon_{a-1}) - (a-1)(\epsilon_{a} + \dots + \epsilon_{n}),$$

$$e_{2} = b\epsilon_{a} - (\epsilon_{a+1} + \dots + \epsilon_{n}),$$

$$f_{1} = b(\epsilon_{1} + \dots + \epsilon_{a-1}) - (a-1)(\epsilon_{a} + \dots + \epsilon_{n-1}),$$

$$f_{2} = (\epsilon_{1} + \dots + \epsilon_{a-1}) + (\epsilon_{a} + \dots + \epsilon_{n-1}) - (n-1)\epsilon_{n},$$

$$e' = -a(\epsilon_{1} + \dots + \epsilon_{b}) - b(\epsilon_{b+1} + \dots + \epsilon_{n}),$$

$$e'_{1} = (b+1)(\epsilon_{1} + \dots + \epsilon_{a-1}) - (a-1)(\epsilon_{a} + \dots + \epsilon_{n}),$$

$$e'_{2} = -(\epsilon_{a} + \dots + \epsilon_{n-1}) + b(\epsilon_{n}),$$

$$f'_{1} = -(a+1)(\epsilon_{1} + \dots + \epsilon_{b}) + b(\epsilon_{b+1} + \dots + \epsilon_{n-1}),$$

$$f'_{2} = (\epsilon_{1} + \dots + \epsilon_{b}) + (\epsilon_{b+1} + \dots + \epsilon_{n-1}) - (n-1)\epsilon_{n}.$$

$$(6.2.16)$$

Then

$$e = \frac{a-1}{b+1}e_1 - \frac{n}{b+1}e_2,$$

$$e'_1 = \frac{n}{n-1}f_1 + \frac{a-1}{n-1}f_2,$$

$$e'_2 = \frac{1}{n-1}f_1 - \frac{b}{n-1}f_2,$$

$$e' = \frac{n}{n-1}f'_1 - \frac{b}{n-1}f'_2.$$

$$(6.2.17)$$

{sec:6.3}

6.3. $GL(k) \times G(n) \subset G(n+k)$. In the next sections we prove theorem 5.3 in the case of a parabolic subgroup with Levi component $GL(k) \times G(n)$ for the induced module

$$\{eq:6.3.1\} X_M((\nu_1)(\nu_0)) = Ind_M^G[L(\chi_1) \otimes L(\chi_0)]. (6.3.1)$$

The strings are

$$\left\{ \text{eq:6.3.2} \right\} \qquad \left(-\frac{k-1}{2} + \nu, \dots, \frac{k-1}{2} + \nu \right) (-n+1+\epsilon, \dots, +\epsilon). \tag{6.3.2}$$

 $\{p:6.4\}$

Recall that $\epsilon = 0$ when the Hecke algebra is type B, $\epsilon = 1/2$ for type C, and $\epsilon = 1$ for type D, and

$$\{eq: 6.3.3\} r_{\sigma}(\nu): (V_{\sigma}^{*})^{W(M)} \longrightarrow (V_{\sigma}^{*})^{W(M)}. (6.3.3)$$

We will compute $r_{\sigma}(w_1, (\nu)(\nu_0))$ by induction on k. In this case the relevant W-types have multiplicity ≤ 1 so r_{σ} is a scalar.

6.4. We start with the special case k=1 when the maximal parabolic subgroup P has Levi component $M=GL(1)\times G(n)\subset G(n+1)$. In type D we assume $n\geq 1$. Then

$$X_M \mid_W = \sigma[(n+1), (0)] + \sigma[(1, n), (0)] + \sigma[(n), (1)],$$
 (6.4.1) {eq:6.4.1}

and all the W-types occurring are relevant. The operator $r_{\sigma}(\nu)$ is the restriction to $(V_{\sigma}^*)^{W(M)}$ of the product

$$r_{1,2} \circ \cdots \circ r_{n,n+1} \circ r_{n+1} \circ r_{n,n+1} \circ \cdots \circ r_{1,2}$$
 (6.4.2) {eq:6.4.2}

as an operator on V_{σ} . Here $r_{i,j}$ is the $r_{\sigma}(w,*)$ corresponding to the root $\epsilon_i - \epsilon_j$ and r_{n+1} is the r_{σ} corresponding to ϵ_{n+1} or $2\epsilon_{n+1}$ in types B and C, and $\epsilon_n + \epsilon_{n+1}$ in type D. Since the multiplicities are 1, this is a scalar.

Proposition. The scalar $r_{\sigma}(w_1, ((\nu)(\nu_0)))$ is

$$\sigma_e(1, n) = \sigma[(n), (1)]$$
 $\sigma_o(1, n) = \sigma[(1, n), (0)]$

$$B \qquad \frac{n+1-\nu}{n+1+\nu} \qquad \qquad -\frac{n+1-\nu}{n+1+\nu}$$

$$C \qquad \frac{1/2+n-\nu}{1/2+n+\nu} \qquad \frac{1/2+n-\nu}{1/2+n+\nu} \cdot \frac{1/2-\nu}{1/2+\nu}$$

$$D \qquad \frac{n-\nu}{n+\nu} \qquad \frac{n-\nu}{n+\nu} \frac{1-\nu}{1+\nu}$$

$$\frac{n-\nu}{n+\nu} \frac{1-\nu}{1+\nu}$$
(6.4.3) {eq:6.4.3}

Proof. We do an induction on n.

The reflection representation $\sigma[(n), (1)]$ has dimension n+1 and the usual basis $\{\epsilon_i\}$. The W(M)-fixed vector is ϵ_1 . The representation $\sigma[(1, n), (0)]$ has a basis $\epsilon_i^2 - \epsilon_j^2$ with the symmetric square action. The W(M)-fixed vector is $\epsilon_1^2 - \frac{1}{n}(\epsilon_2^2 + \cdots + \epsilon_{n+1}^2)$.

The case n=0 for type C is clear; the intertwining operator is 1 on $\mu_o(1,0)=triv$ and $\frac{1/2-\nu}{1/2+\nu}$ on $\mu_e(0,1)=sgn$. We omit the details for type B. In type for n=1, i.e. D_2 , the middle W-type in (6.4.1) decomposes further

$$\sigma[(2),(0)] + \sigma[(1),(1)]_I + \sigma[(1),(1)]_{II} + \sigma[(0),(2)]. \tag{6.4.4}$$

The representations $\sigma[(1), (1)]_{I,II}$ are 1-dimensional with bases $\epsilon_1 \pm \epsilon_2$. The result is straightforward in this case as well.

We now do the induction step. We give details for type B. In the case $\sigma_e(1, n)$, embed X_M in the induced module from the characters corresponding to

$$(\nu)(-n)(-n+1,\ldots).$$
 (6.4.5) {eq:6.4.5}

Write $M' = GL(1) \times GL(1) \times G(n-1)$ for the Levi component corresponding to these three strings. Then the intertwining operator $I: X_M((\nu)(\nu_0)) \longrightarrow X_M((-\nu)(\nu_0))$ is the restriction of

$$\{\mathsf{eq} : \mathsf{6.4.6}\} \qquad I_{M',1,2}((-n),(-\nu)(\nu_0)) \circ I_{M',2}((-n)(\nu)(\nu_0)) \circ I_{M',1,2}(\nu,(-n),(\nu_0)). \tag{6.4.6}$$

The r_{σ} have a corresponding decomposition

$$(r_{\sigma})_{M',1,2}((-\nu),(-n)(\nu_0))\circ (r_{\sigma})_{M',2}((-n)(\nu)(\nu_0))\circ (r_{\sigma})_{M',1,2}((\nu)(-n)(\nu_0)).$$
 {eq:6.4.7}

We need the restrictions of $\mu_e(1,n)$ and $\mu_o(1,n)$ to W(M'). We have

$$Ind_{W(B_{n-1})}^{W(B_{n+1})}[\sigma[(n-1),(0)]] = \sigma[(n+1),(0)] + 2\sigma[(n),(1)] + \sigma[(1,n),(0)]$$
{eq:6.4.8}
$$+ \sigma[(1,n-1),(1)] + \sigma[(n-1),(2)] + \sigma[(n-1),(1,1)],$$
 (a)

$$Ind_{W(B_n)}^{W(B_{n+1})}[\sigma[(n),(0)]] = \sigma[(n+1),(0)] + \sigma[(n),(1)]$$
(b)

(6.4.8)

$$Ind_{W(B_1)W(B_n)}^{W(B_{n+1})}[\sigma[(1),(0)] \otimes \sigma[(n-1),(0)]] = \sigma[(n+1),(0)] + \sigma[(1,n),(0)] + \sigma[(2,n),(0)] + \sigma[(n),(1)] + \sigma[(1,n-1),(1)] + \sigma[(n-1),(2)]$$
(c)

$$Ind_{W(B_1)W(B_n)}^{W(B_{n+1})}[\sigma[(0),(1)] \otimes \sigma[(n-1),(0)]] = \sigma[(1,n),(0)] + \sigma[(1,1,n),(0)] + \sigma[(n),(1)] + \sigma[(1,n),(1)] + \sigma[(n-1),(1,1)]$$
(d)

Thus $\mu_e(1,n)$ occurs with multiplicity 2 in $X_{M'}$. The W(M') fixed vectors are the linear span of ϵ_1 , ϵ_2 . The intertwining operators $I_{M',1,2}$ and $I_{M',2}$ are induced from maximal parabolic subgroups whose Levi components we label M_1 and M_2 . Then $\epsilon_1 + \epsilon_2$ transforms like $triv \otimes triv$ under $W(M_1)$ and $\epsilon_1 - \epsilon_2$ transforms like $sgn \otimes triv$. The vector ϵ_1 is fixed under $W(B_n)$ (which corresponds to M_2) and the vector ϵ_2 is fixed under $W(B_{n-1})$ and transforms like $\mu_o(1,n)$ under $W(B_n)$. The matrix r_σ is, according to (6.4.7),

$$\left\{ eq: 6.4.9 \right\} \qquad \left[\begin{array}{ccc} \frac{1}{2+\nu-n} & \frac{\nu-n+1}{2+\nu-n} \\ \frac{\nu-n+1}{1+\nu-n+1} & \frac{1}{2+\nu-n} \end{array} \right] \cdot \left[\begin{array}{ccc} 1 & 0 \\ 0 & \frac{c+n-1-\nu}{c+n-1+\nu} \end{array} \right] \cdot \left[\begin{array}{ccc} \frac{1}{c+\nu+n} & \frac{\nu+c+n-1}{c+\nu+n} \\ \frac{\nu+n-1+c}{c+\nu+n} & \frac{1}{c+1+\nu+n} \end{array} \right]. \tag{6.4.9}$$

So the vector ϵ_1 is mapped into $\frac{n+1-\nu}{n+1+\nu}\epsilon_1$ as claimed. For $\sigma_o(1,n)$ we apply

the same method. In this case the operator $I_{M',2}$ is the identity because in the representation $\mu_o(1,n)$ the element t_n corresponding to the short simple root acts by 1.

The calculation for type D is analogous, we sketch some details. We decompose the strings into

$$\{eq: 6.4.10\} \qquad (\nu)(-n+1,\ldots,-1)(0), \qquad (6.4.10)$$

and
$$M' = GL(1) \times GL(n-1) \times GL(1)$$
. Then

$$I_{M,1}((\nu)(\nu_0)) = \qquad (6.4.11)$$

$$I_{M',1,2}((-n+1,\ldots,-1)(-\nu)(0)) \circ I_{M',1}((-n+1,\ldots,-1)(\nu)(0)) \circ$$

$$I_{M',1,2}((\nu)(-n+1,\ldots,-1)(0)).$$

{sec:6.5}

6.5. In this section we consider (6.3.2) for k > 1, $n \ge 1$ and the W-types $\sigma_e(m, n+k-m)$ for $0 \le m \le k$. These are the W-types which occur in X_M .

{p:6.5}

Proposition. The $r_{\sigma}(w_1, ((\nu)(\nu_0)))$ for $\sigma = \sigma_e(m, n + k - m)$ are scalars. They equal

Type B:

$$\prod_{0 \le j \le m-1} \frac{n+1-\left(-\frac{k-1}{2}+\nu\right)-j}{n+1+\left(\frac{k-1}{2}+\nu\right)-j} \tag{6.5.1}$$

Type C:

$$\prod_{0 < j < m-1} \frac{n + 1/2 - (-\frac{k-1}{2} + \nu) - j}{n + 1/2 + (\frac{k-1}{2} + \nu) - j}$$
 (6.5.2) {eq:6.5.2}

Type D:

$$\prod_{0 < j < m-1} \frac{n - \left(-\frac{k-1}{2} + \nu\right) - j}{n + \left(\frac{k-1}{2} + \nu\right) - j} \tag{6.5.3}$$

Proof. The proof is by induction on k. The case k=1 was done in section 6.4 so we only need to do the induction step. For types B,C factor the intertwining operator as follows. Decompose the string

$$((\nu')(-\frac{k-1}{2})((\nu_0)):=((-\frac{k-1}{2}+\nu,\ldots,\frac{k-3}{2}+\nu)(\frac{k-1}{2}+\nu)(\nu_0))\ (6.5.4)\quad \{\operatorname{eq}: 6.5.4\}$$

and let $M' := GL(k-1) \times GL(1) \times G(n)$, and $M'' = GL(1) \times GL(k-1) \times G(n)$. Thus

$$I_{M,1} = I_{M'',2}((-\frac{k-1}{2} - \nu)(\nu')(\nu_0)) \circ$$

$$I_{M',1,2}((\nu')(-\frac{k-1}{2} - \nu)(\nu_0)) \circ \qquad (6.5.5) \quad \{eq:6.5.5\}$$

$$I_{M',2}((\nu')(\frac{k-1}{2} + \nu)(\nu_0))$$

 $I_{M',1,2}$ and $I_{M',2}$ were computed earlier, while $I_{M'',2}$ is known by induction. Then

$$\begin{split} &\sigma_{e}(m,n+k-m)\mid_{W(GL(k-1)\times W(G(n+1))} = \\ &triv\otimes[triv\otimes\sigma_{e}(1,n)+triv\otimes\sigma_{e}(0,n+1)+\dots \\ &\sigma_{e}(m,n+k-m)\mid_{W(GL(k)\times W(G(n+k-1))} = \\ &[(k)\otimes triv+(1,k-1)\otimes triv]\otimes triv+\dots \\ &\sigma_{e}(m,n+k-m)\mid_{W(GL(1)\times W(G(n+k-1))} = \\ &triv\otimes[triv\otimes\sigma_{e}(m-1,n+k-m)+triv\otimes\sigma_{e}(m,n+k-1-m)]+\dots \\ &(6.5.8) \quad \{\text{eq:6.5.8}\} \end{split}$$

where ... denote W-types which are not spherical for W(M), so do not matter for the computations. The W-type $\sigma_e(m, n+k-m) \cong \bigwedge^m \sigma_e(1, n+k-1)$. It occurs with multiplicity 2 in $X_{M'}$ for $0 < m < \min(k, n)$ and multiplicity 1 for $m = \min(k, n)$. We will write out an explicit basis for the invariant $S_1 \times S_{k-1} \times W(B_n)$ vectors. Formulas (6.5.2)-(6.5.4) then come down to a computation with 2×2 matrices as in the case k = 1. Let

$$\{eq:6.5.9\} \qquad e := \frac{1}{m!(k-m)!} \sum_{\sigma \in S_k} \sigma \cdot [\epsilon_1 \wedge \cdots \wedge \epsilon_m]. \tag{6.5.9}$$

This is the $S_k \times W(B_n)$ fixed vector of $\sigma_e(m, n+k-m)$. It decomposes as

$$\{eq:6.5.10\} e = e_0 + e_1 = f_0 + f_1 (6.5.10)$$

where

$$e_{0} = \frac{1}{m!(k-1-m)!} \sum_{\sigma \in S_{k-1} \times S_{1}} \sigma \cdot [\epsilon_{1} \wedge \cdots \wedge \epsilon_{m}],$$

$$e_{1} = \frac{1}{(m-1)!(k-m)!} \sum_{\sigma \in S_{k-1} \times S_{1}} \sigma \cdot [\epsilon_{1} \wedge \cdots \wedge \epsilon_{m-1}] \wedge \epsilon_{k},$$

$$f_{0} = \frac{1}{m!(k-1-m)!} \sum_{\sigma \in S_{1} \times S_{k-1}} \sigma \cdot [\epsilon_{2} \wedge \cdots \wedge \epsilon_{m+1}],$$

$$f_{1} = \frac{1}{(m-1)!(k-m)!} \sum_{\sigma \in S_{1} \times S_{k-1}} \epsilon_{1} \wedge \sigma \cdot [\epsilon_{2} \wedge \cdots \wedge \epsilon_{m}].$$

$$(6.5.11)$$

Let also

$$e'_{0} = e''_{0} = \frac{1}{(m-1)!(k-m)!} \sum_{\sigma \in S_{k}} \sigma \cdot [\epsilon_{1} \wedge \cdots \wedge \epsilon_{m}],$$

$$e'_{1} = \sum_{\sigma \in S_{k-1} \times S_{1}} \sigma \cdot [\epsilon_{1} \wedge \cdots \wedge \epsilon_{m-1} \wedge (\epsilon_{m} - \epsilon_{k})],$$

$$e''_{1} = \sum_{\sigma \in S_{1} \times S_{k-1}} \sigma \cdot [(-\epsilon_{1} + \epsilon_{m+1}) \wedge \epsilon_{2} \wedge \cdots \wedge \epsilon_{m+1}].$$

$$(6.5.12)$$

Then

$$e_{0} = \frac{k - m}{k} e'_{0} + \frac{m}{k} e'_{1}, \qquad e_{1} = \frac{m}{k} e'_{0} - \frac{m}{k} e'_{1},$$

$$e''_{0} = f_{0} + f_{1}, \qquad e''_{1} = f_{0} - \frac{k - m}{m} f_{1}.$$

$$(6.5.13)$$

We now compute the action of the intertwining operators. The following relations hold:

$$I_{M',2}(e_0) = e_0, \qquad I_{M',2}(e_1) = \frac{n + \epsilon - (\frac{k-1}{2} + \nu)}{n + \epsilon + (\frac{k-1}{2} + \nu)} e_1,$$

$$I_{M',12}(e'_0) = e''_0, \qquad I_{M',12}(e'_1) = \frac{2\nu - 1}{2\nu + k - 1} e''_1,$$

$$I'_2(f_0) = \prod_{0 \le j \le m-2} \frac{n + \epsilon - (-\frac{k-1}{2} + \nu) - j}{n + \epsilon + (\frac{k-3}{2} + \nu) - j} f_0,$$

$$I_{M'',2}(f_1) = \prod_{0 \le j \le m-1} \frac{n + \epsilon - (-\frac{k-1}{2} + \nu) - j}{n + \epsilon + (\frac{k-3}{2} + \nu) - j} f_1,$$

$$(6.5.14) \quad \{eq: 6.5.14\}$$

where $\epsilon = 1$ in type B, $\epsilon = 1/2$ in type C, and $\epsilon = 0$ in type D. Then

$$I_{M',2}(e_0 + e_1) = e_0 + \frac{n + \epsilon - (\frac{k-1}{2} + \nu)}{n + \epsilon + (\frac{k-1}{2} + \nu)} e_1. \tag{6.5.15}$$

Substituting the expressions of e_0 , e_1 in terms of e'_0 , e'_1 , we get

$$\left[\frac{k-m}{k} + \frac{m}{k} \frac{n+\epsilon - (\frac{k-1}{2} + \nu)}{n+\epsilon + (\frac{k-1}{2} + \nu)}\right] e_0' + \frac{m}{k} \left[1 - \frac{n+\epsilon - (\frac{k-1}{2} + \nu)}{n+\epsilon + (\frac{k-1}{2} + \nu)}\right] e_1'. \quad (6.5.16) \quad \{\text{eq:} 6.5.16\}$$

Applying $I_{M,2}$ to this has the effect that e'_0 is sent to e''_0 and the term in e'_1 is multiplied by $\frac{2\nu-1}{2\nu+k-1}$ and e'_1 is replaced by e''_1 . Substituting the formulas for e_0'' and e_1'' in terms of f_0 , f_1 , and applying $I_{M'',2}$, we get the claim of the proposition.

6.6. We now treat the case $\sigma = \sigma_o(m, n+k-m)$. We assume n>0 or else these W-types do not occur in the induced module X_M .

Proposition. The $r_{\sigma}(w_1, ((\nu)(\nu_0)))$ are scalars. They equal

$$\prod_{0 < j < m-1} \frac{(\nu - \frac{k-1}{2}) - (1) + j}{(\nu + \frac{k-1}{2}) - (-n) - j} \cdot \frac{(-n) - (-\nu + \frac{k-1}{2}) + j}{(1) - (-\nu - \frac{k-1}{2}) - j}$$
(6.6.1) {eq:6.6.1}

Proof. The intertwining operator $I_M(\nu)$ decomposes in the same way as (6.5.5). Furthermore, $\sigma_o(m, n+k-m) = \bigwedge^m \sigma_e(1, n+k-1)$. The difference from the cases σ_e is that while $\sigma_e(1, n+k-1)$ is the reflection representation, and therefore realized as the natural action on $\epsilon_1, \ldots \epsilon_{n+k}, \sigma_o(1, n+k-1)$ occurs in $S^2 \sigma_e(1, n+k-1)$, generated by $\epsilon_i^2 - \epsilon_j^2$ with $i \neq j$. We can apply the same technique as for $\sigma_e(m, n+k-m)$, and omit the details.

{sec:6.6}

 $\{p:6.6\}$

{sec:6.7}

6.7. $GL(k) \subset G(k)$ in **type D.** In this section we consider the maximal Levi components $M := GL(k) \subset G(k)$ and $M' := GL(k)' \subset G(k)$ for type D_n . The parameter corresponds to the string $(\nu) := (-\frac{k-1}{2} + \nu, \dots, \frac{k-1}{2} + \nu)$ or $(\nu') := (-\frac{k-1}{2} + \nu, \dots, -\frac{k-1}{2} - \nu)$.

k even: The W-structure of $X_M((\nu))$ and $X_{M'}((\nu)')$ is $\sigma_e[(n-r), (r)]$ for $0 \le r < k/2$, and $\sigma_e[(k/2), (k/2)]_I$, or $\sigma_e[k/2), (k/2)]$ respectively, with multiplicity 1. There are intertwining operators

{eq:6.7.1}
$$I_{M}((\nu)): X_{M}((\nu)) \longrightarrow X_{M}((-\nu)),$$

$$I_{M'}((\nu)'): X_{M'}((\nu)') \longrightarrow X_{M'}((-\nu)').$$

$$(6.7.1)$$

corresponding to the shortest Weyl group element changing $((\nu))$ to $((-\nu))$. They determine scalars $r_{\sigma}((\nu))$ and $r_{\sigma}((\nu)')$.

k odd: The W-structure in this case is $\sigma_e[(n-r),(r)]$ with $0 \le r \le [k/2]$ for both X_M and $X_{M'}$, again with multiplicity 1. In this case there is a shortest Weyl group element which changes $((\nu))$ to $((-\nu)')$, and one which changes $((\nu)')$ to $((-\nu))$. These elements give rise to intertwining operators

{eq:6.7.2}
$$I_{M}((\nu)): X_{M}((\nu)) \longrightarrow X_{M'}((-\nu)'),$$

$$I_{M'}((\nu)): X_{M'}((\nu)') \longrightarrow X_{M}((-\nu)).$$

$$(6.7.2)$$

Because the W-structure of X_M and $X_{M'}$ is the same, and W-types occur with multiplicity 1, these intertwing operators define scalars $r_{\sigma}(\nu)$ and $r_{\sigma}((\nu)')$.

{p:6.7} Proposition. The scalars $r_{\sigma}((\nu))$ and $r_{\sigma}((\nu)')$ are

$$\{eq:6.7.3\} r_{\sigma_e[(n-r),(r)]}((\nu)) = \prod_{0 \le j \le r} \frac{\left(\frac{k-1}{2} - \nu\right) - j}{\left(\frac{k-1}{2} + \nu\right) - j}. (6.7.3)$$

These numbers are the same for (ν) and $((\nu)')$, and representations with subscripts I, II they depend only on r.

{sec:6.8}

6.8. Proof of theorem 5.3. We use the results in the previous sections to prove the theorem in general. We give the details in the case of the group of type B and σ_e . Thus the Hecke algebra is type C. There are no significant changes in the proof for the other cases. Recall the notation from section 2.3. Write

$$\nu = (x_{2m} - 1/2, \dots, x_{2m} - 1/2, \dots, 1/2, \dots, 1/2)$$

Then ν is dominant, so $X(\nu)$ has a unique irreducible quotient $L(\nu)$. We factor the long intertwining operator so that

$$\{eq:6.8.1\} X(\nu) \xrightarrow{I_1} X_e(\nu) \xrightarrow{I_2} X(-\nu). (6.8.1)$$

The claim will follow if the decomposition has the property that the operator I_1 is onto, and I_2 is into, when restricted to the σ_e isotypic component.

The operator I_1 is a composition of several operators. First take the long intertwining operator induced from the Levi component GL(n),

$$\{eq: 6.8.2\} \qquad X(x_{2m}-1/2,\ldots,1/2) \longrightarrow X(1/2,\ldots,x_{2m}-1/2), \tag{6.8.2}$$

corresponding to the shortest Weyl group element that permutes the entries of the parameter form increasing order to decreasing order. The image is the induced from the corresponding irreducible spherical module $L(1/2,\ldots,x_{2m}-1/2)$ on GL(n). In turn this is induced irreducible from 1-dimensional spherical characters on a $GL(x_0) \times \cdots \times GL(x_{2m})$ Levi component corresponding to the strings

$$(1/2,\ldots,x_0-1/2)\ldots(1/2,\ldots,x_{2m}-1/2)$$

or any permutation thereof. This is well known by results of Bernstein-Zelevinski in the p-adic case, [V1] for the real case.

Compose with the intertwining operator

$$X(\dots(1/2,\dots,x_{2m}-1/2)) \longrightarrow X(\dots(-x_{2m}-1/2,\dots,-1/2)), \quad (6.8.3) \quad \{eq:6.8.3\}$$

all other entries unchanged. This intertwining operator is induced from the standard long intertwining operator on $G(x_{2m})$ which has image equal to the trivial representation. The image is an induced module from characters on $GL(x_0) \times \cdots \times GL(x_{2m-1}) \times G(x_{2m})$. Now compose with the intertwining operator

$$X(\dots(1/2,\dots,x_{2m-1})(-x_{2m}+1/2,\dots,-1/2))$$
 (6.8.4) {eq:6.8.4}
 $\longrightarrow X(\dots(-x_{2m-1}+1/2,\dots,-1/2)(-x_{2m}+1/2,\dots,-1/2))$

(again all other entries unchanged). This is $I_{M,2m-1}$ from the earlier sections, so its restriction of (6.8.4) to the σ_e isotypic component is an isomorphism. Now compose this operator with the one corresponding to

$$X(\dots(1/2,\dots,x_{2m-2})(-x_{2m-1}+1/2,\dots,1/2)\dots)$$
 (6.8.5) {eq:6.8.5}
 $\longrightarrow X(\dots(-x_{2m-1},\dots,x_{2m-2}-1/2)\dots)$

with all other entries unchanged. This is induced from $GL(x_0) \times \cdots \times GL(x_{2m-2} + x_{2m-1}) \times G(x_{2m})$ and the image is the representation induced from the character corresponding to the string

$$(-x_{2m-1}-1/2,1/2,\ldots,x_{2m-2})$$
 on $GL(x_{2m-2}+x_{2m-1})$.

Now compose further with the intertwining operator

$$X(\dots(-x_{2m-1}+1/2),\dots,x_{2m-2}-1/2)(-x_{2m}-1/2,\dots,-1/2))$$
 (6.8.6) {eq:6.8.6}
 $\longrightarrow X((-x_{2m-1}+1/2,\dots,x_{2m-2}-1/2)\dots(-x_{2m}-1/2,\dots,-1/2))$

from the representation induced from

$$GL(x_0) \times \cdots \times GL(x_{2m-3}) \times GL(x_{2m-2} + x_{2m-1}) \times G(x_{2m})$$

to the induced from

$$GL(x_{2m-2} + x_{2m-1}) \times GL(x_0) \times \cdots \times GL(x_{2m-3}) \times G(x_{2m}).$$

By lemma 6.2, this intertwining operator is an isomorphism on any σ_e isotypic component. In fact, because the strings are strongly nested, the irreducibility results for GL(n), 3.3 imply that the induced modules are isomorphic.

We have constructed a composition of intertwining operators from the standard module $X(\nu)$ where the coordinates of ν are positive and in decreasing order (i.e. dominant) to a module induced from

$$GL(x_{2m-2}+x_{2m-1})\times GL(x_0)\times\cdots\times GL(x_{2m-3})\times G(x_{2m})$$

corresponding to the strings

$$((-x_{2m-1}+1/2,\ldots,x_{2m-2})(1/2,\ldots,x_0-1/2),\ldots$$

 $\ldots(-x_{2m}+1/2,\ldots,-1/2))$

so that the restriction to any σ_e isotypic component is onto. We can repeat the procedure with x_{2m-4}, x_{2m-3} and so on to get an intertwining operator from $X(\nu)$ to the induced from

$$GL(x_{2m-1}+x_{2m-2})\times\cdots\times GL(x_1+x_0)\times G(x_{2m})$$

corresponding to the strings

$$((-x_{2m-1}+1/2,\ldots,x_{2m-2})\ldots(-x_1+1/2,\ldots,x_0-1/2),$$

 $(-x_{2m}+1/2,\ldots,-1/2)).$

This is the operator I_1 , and it is onto on the $\sigma_e(*)$ isotypic components.

We now deal with I_2 . Consider the group $G(x_1 + x_0 + x_{2m})$ and the Levi component $M = GL(x_1 + x_0) \times G(x_{2m})$. Let M' be the Levi component

$$\{eq:6.8.7\} \qquad M' := GL(x_{2m-1} + x_{2m-2}) \times \dots \times GL(x_1) \times GL(x_0) \times G(x_{2m}). \tag{6.8.7}$$

Then X_e embeds in $X_{M'}(\ldots(-x_1+1/2,\cdots-1/2)(1/2,\ldots,x_0-1/2)(-x_{2m}+1/2,\ldots,-1/2))$. The intertwining operator $I_{M',m+1}$ which changes the string $(x_0-1/2,\ldots,1/2)$ to $(-x_0+1/2,\ldots,-1/2)$ is an isomorphism on the σ_e W-types, by the results in sections 6.1-6.5. Since the strings are strongly nested, the operators $I_{M,i,i+1}$ are all isomorphisms, so we can construct an intertwining operator to an induced module $X_{M''}(\nu'')$ where

$$M'' = GL(x_1) \times GL(x_0) \times GL(x_{2m_1} + x_{2m-2}) \times \cdots \times G(x_{2m}),$$
 {eq:6.8.8}
$$\nu'' = (-x_1 + 1/2, \dots - 1/2)(-x_0 + 1/2, \dots, -1/2)\dots)$$
 (6.8.8)

which is an isomorphism on the σ_e isotypic components. Repeating this argument for x_3 , x_2 up to x_{2m-1}, x_{2m-2} we get an intertwining operator from X_e to an induced module $X_{M(3)}(\nu^{(3)})$ where

$$\begin{split} M^{(3)} &:= GL(x_1) \times GL(x_0) \times \dots \times GL(x_{2m-1}) \times GL(x_{2m-2}) \times G(x_{2m}) \\ \nu^{(3)} &:= (-x_1 + 1/2, \dots, 1/2)(-x_0 + 1/2), \dots, -1/2) \dots \\ &\quad (-x_{2m-1} + 1/2, \dots, -1/2)(-x_{2m-2} + 1/2, \dots, -1/2)(-x_{2m} + 1/2, \dots, 1/2). \\ &\quad \{\text{eq:6.8.9}\} \end{split}$$

which is an isomorphism on the σ_e isotypic components. Let $M^{(4)} := GL(x_{2m} + \cdots + x_0)$. Then $M^{(3)} \subset M^{(4)}$, and the induced module from $M^{(3)}$ to $M^{(4)}$ is irreducible because the strings are strongly nested on the GL factors. Thus the intertwining operator on $M^{(4)}$ which maps this induced module to $X_{M^{(4)}}(-\nu)$ is an isomorphism. So the induced intertwining operator to G is therefore injective and maps to $X(-\nu)$. The composition of all these operators is I_1 , and is therefore injective on the σ_e -isotypic components. The proof is complete in this case.

The case of σ_o is similar, and we omit the details.

{sec:6.9}

6.9. Proof of Corollary 5.3. We give details for G of type B and the W-types $\sigma_e(m, n-m)$. We factor the long intertwining operator

$$X(\nu) \xrightarrow{I_1} X_e(\nu) \xrightarrow{I_2} X(-\nu)$$
 (6.9.1) {eq:6.9.1}

such that I_1 is onto all the $\sigma_e[(n-k),(k)]$ isotypic components, and I_2 is into. The module X_e is defined by the strings specified in 5.3, equation (5.3.3). We will do an induction on the number of strings. Recall the sets A_{τ} with $0 \le \tau \le 1/2$ from section 2.8. By conjugating by the Weyl group, assume ν is dominant. We can apply intertwining operators coming from SL(2)'s which are isomorphisms because the $\langle \nu, \alpha \rangle$ are not integers, we can map $X(\nu)$ isomorphically to $X(\nu')$, where ν' is such that the coordinates in any A_{τ} are adjacent. Furthermore, we can permute the sets A_{τ} to be in any order by using an intertwining operator which is an isomorphism. So assume that the coordinates in A_0 are rightmost, and the leftmost set labelled A_{τ_1} contains the largest coordinate. Assume also that the next set A_{τ_2} is such that $\tau_1 + \tau_2 = 1$. Let

$$\nu_{\tau_1} := (\underbrace{a_1, \dots, a_1}_{n_1}, \dots, \underbrace{a_s, \dots, a_s}_{n_s}) \tag{6.9.2}$$

be the coordinates in A_{τ_1} in decreasing order, and let $(a_r, a_r + 1, \dots, a_1)$ be the longest string that can be extracted. Then there is an intertwining operator that maps

$$X(\nu_{\tau_{1}}) \longrightarrow X(\nu'_{\tau_{1}}) \quad \text{(standard modules for } GL(|A_{\tau_{1}}|)),$$

$$\nu'_{\tau_{1}} = (\nu''_{\tau_{1}}; a_{r}, a_{r} + 1, \dots, a_{s})$$

$$\nu''_{\tau_{1}} := \underbrace{a_{1}, \dots, a_{1}}_{n_{1}-1}, \dots, \underbrace{a_{r}, \dots, a_{r}}_{n_{r}-1}, \underbrace{a_{r+1}, \dots, a_{r+1}}_{n_{r+1}}, \dots)$$

$$(6.9.3) \quad \{eq: 6.9.3\}$$

If $M_1 = GL(|A_{\tau_1}| - s + r - 1) \times GL(s - r + 1)$, then the above operator maps $X(\nu_{\tau_1})$ onto the induced module

$$Ind_{M_1}^{GL(|A_{\tau_1})|}[X(\nu_{\tau_1}) \otimes L((a_r, \dots, a_s)).$$
 (6.9.4) {eq:6.9.4}

This operator induces up to one for G(n), which leaves all other coordinates unchanged. Precisely, let $M^1 := GL(|A_{\tau_1}| - s + r - 1) \times GL(s - r + 1) \times GL(s - r + 1)$

 $G(n-|A_{\tau_1}|)$. Composing with the previous operator, we get an intertwining operator

$$I^1: X(\nu) \longrightarrow Ind_{M^1}^G[X(\nu'_{\tau_1}) \otimes L(a_r, \dots, a_s) \otimes X(\nu'')],$$
 (6.9.5) {eq:6.9.5}

which is onto the induced module on the right.

Consider $M_2 := GL(s-r-1) \times G(n-|A_{\tau_1}|) \subset G(n-|A_{\tau_1}|+s-r+1),$

and

{eq:6.9.6}
$$Ind_{M_2}^{G(n-|A_{\tau_1}|+s-r+1)}[L(a_r,\ldots,a_s)\otimes X(\nu'')]. \tag{6.9.6}$$

If there is no b_t such that $b_t + a_r = 1$, then $(-a_r, \ldots, -a_s)$ is one of the strings for X_e . We would like to map (6.9.6) to the similar induced module where $L(a_r, \ldots, a_s)$ is replaced by $L(-a_s, \ldots, -a_r)$, and verify that the intertwining operator is onto the $\sigma[(n-k), (k)]$ isotypic components. The results about $I_{i,i+1}$ and I_l in sections 6.1-6.5 imply the claim. The harder case is when there is a b_t satisfying $a_r + b_t = 1$. Write

$$\{eq:6.9.7\} \qquad \nu_{\tau_2} := (\underbrace{b_1, \dots, b_1}_{m_1}, \dots, \underbrace{b_t, \dots, b_t}_{m_t}), \tag{6.9.7}$$

and let (b_t, \ldots, b_u) be the longest string that can be extracted starting with b_t . The string in X_e is $(-a_s, \ldots, -a_r, b_t, \ldots b_u)$. Let

$$M_{3} := GL(s - t + u - r + 2) \times G(n - |A_{\tau_{1}}| - s + r - u + t - 2),$$

$$\nu_{3} := (\underbrace{(b_{1}, \dots, b_{1}, \dots, b_{u+1}, \dots, b_{u+1}, b_{u}, \dots, b_{u}, \dots, b_{u}, \dots, b_{t}, \dots, b_{t})}_{m_{t} - 1}, (6.9.8)$$

Then there is an intertwining operator

{eq:6.9.9}
$$Ind_{M_2}^{G(n-|A_{\tau_1}|+s-r+1)}[L(a_r,\ldots,a_s)\otimes X(\nu'')] \longrightarrow \\ Ind_{M_3}^{G(n-|A_{\tau_1}|+s-r+1)}[L(-a_s,\ldots,-a_r,b_t,\ldots,b_u)\otimes X(\nu_3)]$$
 (6.9.9)

Let

 $\{eq:6.9.8\}$

$$M_4 := GL(|A_{\tau_1}| - s + r - 1) \times GL(s - r + u - t + 2) \subset GL(|A_{\tau_1}| - u + t - 1),$$

and $w_{1,2}$ be the shortest Weyl group element which interchanges the factors in M_4 . The corresponding intertwining operator

{eq:6.9.10}
$$Ind_{M_4}^{GL(|A_{\tau_1}|-u+t-1)}[X(\nu'_{\tau_1}) \otimes L(-a_s, \dots b_t)] \longrightarrow \\ Ind_{w_{1,2}M_4}^{GL(|A_{\tau_1}|-u+t-1)}[L(-a_r, \dots, b_t) \otimes X(\nu'_{\tau_1})]$$
 (6.9.10)

is an isomorphism on the $\sigma[(n-k,k)]$ isotypic components. Letting

$$M^4 := GL(|A_{\tau_1}| - u + t - 1) \times GL(|A_{\tau_1}| - s + r - 1) \times G(n - |A_{\tau_1}| + u - t + 1) \subset G(n),$$

the operator in (6.9.9) induces to an operator

$$\{eq:6.9.11\} \begin{cases} Ind_{M^4}^G[X(\nu_{\tau_1}')\otimes L(-a_r,\ldots,b_t)\otimes X(\nu_3)] \longrightarrow \\ Ind_{w_{1,2}M^4}^G[L(-a_r,\ldots,b_t)\otimes X(\nu_{\tau_1}')\otimes X(\nu_3)], \end{cases}$$
(6.9.11)

which is onto the $\sigma[(n-k),(k)]$ isotypic components of the module on the right. Applying the induction hypothesis to $(\nu'_{\tau_1};\nu_3)$, and composing with

the intertwining operators in (6.9.5) and (6.9.11) yields the operator I_1 , with the claimed properties.

To construct I_2 when there is no b_t , satisfying $a_u + b_t = 1$ we can apply the induction hypothesis. We do the case when there is such a b_t which is harder. We have to change the coordinates (b_t, \ldots, b_u) to $(-b_u, \ldots, -b_t)$. We can do this with a succession of intertwining operators $I_{i,i+1}$ and I_l . Note that if there are any coordinates in the set A_{τ_2} that are bigger than b_u , then the difference to b_u is strictly larger than 1. Write

$$M^5 := GL(s - r + u - t + 2) \times G(n - s + r - u + t - 2).$$

Then

$$X_e = Ind_{M^5}^{G(n)}[L(-a_s, \dots, b_u) \otimes X_e(\nu^5)].$$
 (6.9.12) {eq:6.9.12}

Let ν_5 be the antidominant parameter conjugate to ν^5 . By induction there is an injective operator

$$X_e \longrightarrow Ind_{M^5}^{G(n)}[L(-a_s, \dots, b_u) \otimes X(\nu_5)].$$
 (6.9.13) {eq:6.9.13}

Let

$$M^{6} = GL(n - s + t - u + r - 2) \times GL(s - t + u - r + 2).$$

The intertwining operator coming from the shortest Weyl group element in $w \in W(GL(n))$ that interchanges $(-a_s, \ldots, b_u)$ with ν_5 can only have a kernel because of coordinates belonging to A_{τ_1} or A_{τ_2} . But moving the string past such coordinates can be done via operators $I_{i,i+1}$ which do not have kernels. The crucial property is that a_u is the largest coordinate, so $-a_u$ is smaller than any coordinates in ν^5 , and all coordinates in ν^5 are nonpositive. So we get an injective map from X_e to $Ind_{wM^6}^{G(n)}[X(\nu^5) \otimes L(-a_s, \ldots, b_u)]$. Next note that

$$L(-a_s, \dots, b_u) \subset Ind_{GL(s-r+1)\times GL(u-t+1)}^{G(s-t+u-r+2)}[L(-a_s, \dots, -a_r) \otimes L(b_t, \dots, b_u)].$$

$$(6.9.14) \quad \{eq: 6.9.14\}$$

The operator I_1 for $GL(u-t+1) \subset G(u-t+1)$ is an isomorphism on the $\sigma[(s-r+u-t+2-k),(k)]$ isotypic components because the coordinates are in A_{τ_2} , and $\tau_2 \neq 0$. So the corresponding induced operator for G(n) is an isomorphism on the $\sigma[(n-k),(k)]$ isotypic components. Finally let

$$\boldsymbol{M}^7 = GL(n-s+r-u+t-2) \times GL(s-r+1) \times GL(u-t+1) \subset GL(n) \subset G(n).$$

There is an intertwining operator

$$Ind_{M^7}^{G(n)}[X(\nu^5) \otimes L(-a_s, \dots, -a_r) \otimes L(-b_u, \dots, -b_t)] \longrightarrow X(-\nu) \ \ (6.9.15) \ \ \ \{eq: 6.9.15\}$$

induced from one in GL(n). The fact that this operator is injective follows from the property that a_u is the largest coordinate, and the fact that the coordinates in A_{τ_2} are either less than or equal to b_u or else are strictly greater than $b_u + 1$.

7. Necessary conditions for unitarity

{sec:7}1}

7.1. We will need the following notions.

Definition. We will say a spherical irreducible module X is **r-unitary** if the form is positive on all the relevant W-types. Similarly, for an induced module, **r-irreducible** means that all relevant W-types occur with the same multiplicity in X as in $L(\chi)$.

{sec:7.2} **7.2.** We recall (6.1.4),

$$\epsilon = \begin{cases} 1/2 & \text{G of type } B, & (\mathbb{H} \text{ of type } C) \\ 0 & \text{G of type } C, & (\mathbb{H} \text{ of type } B) \\ 1 & \text{G of type } D. \end{cases}$$

Definition. A string of the form $(f + \nu, ..., F + \nu)$ with $f, F \in \epsilon + \mathbb{Z}$ is called adapted, if it is

of even length for G of type B,

of odd length for G of types C,D.

Otherwise we say the string is not adapted.

We will consider the following case. Let $\check{\mathcal{O}} \subset \check{\mathfrak{g}}$ correspond to the partition

$$\{\mathsf{eq}: 7.2.1\} \qquad \qquad \check{\mathcal{O}} \longleftrightarrow ((a_1, a_1), \dots (a_r, a_r); d_1, \dots, d_l) \tag{7.2.1}$$

so that $\check{\mathcal{O}}$ meets the Levi component $\check{\mathfrak{m}}=gl(a_1)\times\cdots\times gl(a_r)\times\check{\mathfrak{g}}(n_0)$. The intersection of $\check{\mathcal{O}}$ with each $gl(d_i)$ is the principal nilpotent, and the intersection with $\check{\mathfrak{g}}(n_0)$ is the **even** nilpotent orbit with partition (d_1,\ldots,d_s) . Let

$$\chi_{i} = (f_{i} + \nu_{i}, \dots, F_{i} + \nu_{i}), \qquad 1 \leq i \leq r,$$

$$\chi_{0} = \check{h}_{0}/2, \qquad (7.2.2)$$

and χ be the parameter for \mathfrak{g} obtained by concatenating the χ_i . Then $L(\chi)$ is the spherical subquotient of

$$\{eq:7.2.3\} \qquad Ind_{M}^{G}\left[\bigotimes_{1 < i < r} L(\chi_{i}) \otimes L(\chi_{0})\right] \qquad (7.2.3)$$

The next theorem gives necessary conditions for the unitarity of $L(\chi)$.

(t:7.2) Theorem. Assume that in type D, $\check{\mathcal{O}}_0 \neq (0)$ or the rank is even. The representation $L(\chi)$ is unitary **only if**

(1) Any string that is not adapted can be written in the form

$$\{eq: 7.2.4\} \qquad (-E + \tau, \dots, E - 1 + \tau) \qquad 0 < \tau \le 1/2, \ E \equiv \epsilon \pmod{\mathbb{Z}}. \tag{7.2.4}$$

(2) Any string that is adapted can be written in the form

$$(-E + \tau, \dots, E + \tau)$$
 $0 < \tau \le 1/2, E \equiv \epsilon \pmod{\mathbb{Z}},$

$$\{eq:7.2.5\}$$
 or $(7.2.5)$

$$(-E-1+\tau,\ldots,E-1+\tau) \qquad 0 < \tau < 1/2, \ E \equiv \epsilon \pmod{\mathbb{Z}}.$$

This is simply the fact that the ν_i satisfy $0 < \nu_i < 1/2$ or $1/2 < \nu_i < 1$ in theorem 3.1. The proof will be given in the next sections. It is by induction on the dimension of $\check{\mathfrak{g}}$, the number of strings with coordinates in an A_{τ} with $\tau \neq 0$, and by downward induction on the dimension of $\hat{\mathcal{O}}$. The unitarity of the representation when there are no coordinates in any A_{τ} with $\tau \neq 0$ is done in section 9.

{sec:7.3}

7.3. Consider the representation $L(\chi)$ corresponding to the strings

$$(a+\epsilon+\nu,...,A+\epsilon+\nu)(-x_0+\epsilon,...,-1+\epsilon), \quad |a| \le A, \ 0 < \nu < 1, \ (7.3.1) \quad \{eq:7.3.1\}$$
 where $a,A \in \mathbb{Z}$, and ϵ is as in (7.2).

Proposition. In type D, assume that if there is no string $(-x_0 + \epsilon, \ldots, -1 +$ ϵ), then A-a+1 is even. Let $L(\chi)$ correspond to (7.3.1). The hermitian form is negative on the following W-type:

- (1) If $x_0 < A$ then the form is negative on $\sigma[(A-1), (x_0-a+2)]$ for $a \leq x_0$. When $x_0 + 1 \leq a$, the form is negative on $\sigma[(x_0 + A - a), (1)]$.
- (2) If $-x_0 < a \le 0$, then the form is negative on $\sigma[(1-a, x_0 + A), (0)]$. When $0 < a \le x_0$, the form is negative on $\sigma[(1, x_0 + A - a), (0)]$.

Proof. This is a corollary of the results in section 6.2.

 $\{sec: 7.4\}$

7.4. Initial Step. We do the case when there is a single A_{τ} with $\tau >$ 0, and the coordinates form a single string which we write as in (7.3.1), $(a + \epsilon + \nu, \dots, A + \epsilon + \nu)$. So let $\dot{\mathcal{O}}$ be a nilpotent orbit with partition $((A-a+1,A-a+1);d_1,\ldots,d_l)$ which meets the Levi component $\check{\mathfrak{m}}=$ $gl(A-a+1) \times \check{\mathfrak{g}}(n_0)$. Let $\check{\mathcal{O}}_0$ be the intersection of $\check{\mathcal{O}}$ with $\check{\mathfrak{g}}(n_0)$. In type D, either $\mathcal{O}_0 \neq (0)$ or else A-a+1 is even. Theorem 7.2 is implied by the following proposition.

 $\{p:7.4\}$

Proposition. Assume $\check{\mathcal{O}}_0$ is even, and χ is attached to $\check{\mathcal{O}}$. Then $L(\chi)$ is r-unitary only if $a + \epsilon = -A - \epsilon$, and the following hold.

- (1) If $(a + \epsilon + \nu, ..., A + \epsilon + \nu)$ is adapted, then $\nu = 0$, unless there is $d_j = A - a + 1, \text{ in which case } 0 \le \nu < 1.$ (2) If $(a + \epsilon + \nu, \dots, A + \epsilon + \nu)$ is not adapted, then $0 \le \nu < 1/2$.

Proof. We do the case of \mathfrak{g} of type C only, the others are similar. So $\epsilon = 0$, and adapted means the length of the string is odd, not adapted means the length of the string is even. The nilpotent orbit \mathcal{O}_0 corresponds to the partition $(2x_0 + 1, \dots, 2x_{2m} + 1)$ and the parameter has strings

$$(1,\ldots x_0)(0,1,\ldots,x_1)\ldots(1,\ldots,x_{2m}).$$

The partition of $\check{\mathcal{O}}$ is $(2x_0 + 1, \dots, 2x_{2m} + 1, A - a + 1, A - a + 1)$.

We want to show that if A + a > 0, or if A + a = 0 and there is no $x_i = A$, then $L(\chi)$ is not r-unitary. We do a downward induction on the rank of $\check{\mathfrak{g}}$ and a downward induction on the dimension of $\check{\mathcal{O}}$. So the first case is when \mathcal{O} is maximal, i.e. the principal nilpotent (m=0). The claim follows from proposition 7.3. So we assume that m is strictly greater than 0.

Assume $\mathbf{x_{2i}} < \mathbf{A} \leq \mathbf{x_{2i+1}}$. This case includes the possibility $x_{2m} < A$. We will show by induction on rank of $\check{\mathfrak{g}}$ and dimension of $\check{\mathcal{O}}$ that the form is negative on a $\sigma[(n-r),(r)]$. So we use the module X_e . If there is any pair $x_{2j} = x_{2j+1}$, the module X_e is unitarily induced from $GL(2x_{2j}+1) \times G(n-2x_{2j}-1)$ and all W-types $\sigma[(n-r),(r)]$ have the same multiplicity in $L(\chi)$ as in X_e . We can remove the string corresponding to $(x_{2j}x_{2j+1})$ in X_e as explained in section 3.2, lemma (3). By induction on rank we are done. Similarly we can remove any pair (x_{2j},x_{2j+1}) such that either $x_{2j+1} \leq |a|$ or $A \leq x_{2j}$ as follows. Let $M := GL(x_{2j} + x_{2j+1} + 1) \times G(n - x_{2j} - x_{2j+1} - 1)$. There is χ_M such that $L(\chi)$ is the spherical subquotient of

$$\{eq: 7.4.1\} \qquad Ind_M^G[L(-x_{2j+1}, \dots, x_{2j}) \otimes L(\chi_M)]. \tag{7.4.1}$$

Write

$$\{eq:7.4.2\} \qquad \qquad \chi_t := (-x_{2j+1} + t, \dots, x_{2j} + t; \chi_M). \tag{7.4.2}$$

The induced module

$$\{eq:7.4.3\} X_e(\chi_t) := Ind_M^G[L(-x_{2i+1} + t, \dots, x_{2i} + t) \otimes L(\chi_M)]. (7.4.3)$$

has $L(\chi_t)$ as its irreducible spherical subquotient. For $0 \le t \le \frac{x_{2j+1}-x_{2j}}{2}$, we have $X_e(L(\chi_t)) = X_e(\chi_t)$. Thus the signatures on the $\sigma[(n-r), (r)]$ in $L(\chi_t)$ are constant for t in the above interval. At $t = \frac{x_{2j+1}-x_{2j}}{2}$, $X_e(t)$ is unitarily induced from $triv \otimes X'_e$ on $GL(x_{2j}+x_{2j+1}+1) \times G(n-x_{2j}-x_{2j+1}-1)$ and we can remove the string corresponding to $(x_{2j}x_{2j+1})$. The induction hypothesis applies to X'_e .

When A + a = 0, we are reduced to the case

$$\{eq: 7.4.4\} \qquad \quad \check{\mathcal{O}}_0 \longleftrightarrow (2x_0+1, 2x_1+1, 2x_2+1), \qquad x_0 < A < x_1 \le x_2. \tag{7.4.4}$$

We reduce to (7.4.4) when A + a > 0 as well. We assume m = 2i + 2, since pairs (x_{2j}, x_{2j+1}) with $A \leq x_{2j}$ can be removed. Suppose there is a pair (x_{2j}, x_{2j+1}) such that $|a| < x_{2j+1}$, and $j \neq i$. The assumption is that $x_{2i} < A \leq x_{2i+1}$ so $x_{2j+1} \leq x_{2i} < A$.

We consider the deformation χ_t in (7.4.2) with

$$0 \le t < \nu,$$
 $a < 0,$
 $-\nu < t \le 0,$ $a \ge 0.$

In either case $X_e(L(\chi_t)) = X_e(L(\chi))$, so the multiplicities of the $\sigma[(n-r), (r)]$ do not change until t reaches ν in the first case, $-\nu$ in the second case. If the signature on some $\sigma[(n-r), (r)]$ isotypic component is positive semidefinite on $L(\chi)$, the same has to hold when $t = \nu$ or $-\nu$ respectively. The corresponding nilpotent orbit for this parameter is strictly larger, but it has two strings with coordinates which are not integers. For example, if a < 0, the strings for $X_e(L(\chi_{\nu}))$ are (aside from the ones that were unchanged)

$$\{eq: 7.4.5\} \qquad (-x_{2j+1} + \nu, \dots, A + \nu), \qquad (a + \nu, \dots, x_{2j} + \nu). \tag{7.4.5}$$

We can deform the parameter further by replacing the second string by $(a+\nu-t',\ldots,x_{2j}+\nu-t')$ with $0 \le t' < \nu$. The strings of the corresponding

{7.5}

 X_e do not change until t' reaches ν . At $t' = \nu$ the corresponding nilpotent orbit $\check{\mathcal{O}}'$ has partition

$$(\ldots, 2|a|+1, \ldots, 2\widehat{x_{2i+1}}+1, \ldots, A+x_{2i+1}+1, A+x_{2i+1}+1, \ldots)$$
 (7.4.6) {eq:7.4.6}

which contains $\check{\mathcal{O}}$ in its closure. Since $x_{2j+1} < A$, the induction hypothesis applies. The form is indefinite on a W-type $\sigma[(n-r), (r)]$, so this holds for the original χ as well.

We have reduced to case (7.4.3), *i.e.* the partition of \mathcal{O}_0 has just three terms $2x_0 + 1, 2x_1 + 1, 2x_2 + 1$). We now reduce further to the case

$$\check{\mathcal{O}}_0 \longleftrightarrow (2x_0 + 1), \qquad x_0 < A. \tag{7.4.7} \quad \{eq: 7.4.7\}$$

which is the initial step.

Let I(t) be the induced module coresponding to the strings

$$(-x_1+t,\ldots,x_2+t)(a+\nu,\ldots,A+\nu)(-x_0,\ldots,-1).$$
 (7.4.8) {eq:7.4.8}

i.e. induced from

$$GL(x_1 + x_2) \times GL(-a + A + 1) \times G(x_0).$$
 (7.4.9) {eq:7.4.9}

Consider the irreducible spherical module for the last two strings in (7.4.8), inside the induced module from the Levi component $GL(-a+A+1) \times G(x_0) \subset G(-a+A+1+x_0)$. By section 7.1, the form is, negative on $\sigma[(x_0-a+A),(1)]$ if $x_0 < a$, negative on $\sigma[(A),(x_0+1-a)]$ if $a \le x_0$. In the second case the form is positive on all $\sigma[(A+r),(x_0+1-a-r)]$ for 1 < r < n+1-a. So let $r_0 := 1$ or x_0+1-a depending on these two cases. The multiplicity formulas from section 6.2 imply that

$$[\sigma[(n-r_0),(r_0)]:I(t)]=[\sigma[(n-r_0),(r_0)]:L(\chi)]$$
 for $0 \le t \le \frac{x_2-x_1}{2}$.

Thus signatures do not change when we deform t to $\frac{x_2-x_1}{2}$, where I(t) is unitarily induced. We conclude that the form on $L(\chi)$ is negative on $\sigma[(n-r_0),(r_0)]$.

Assume $\mathbf{x_{2i-1}} < \mathbf{A} \leq \mathbf{x_{2i}}$. In this case we can do the same arguments using X_o and $\sigma[(k, n-k), (0)]$. We omit the details.

7.5. Induction step. The case when the parameter has a single string with coordinates in an A_{τ} with $0 < \tau < 1$ was done in section 7.4. So we assume there is more than one string. Again we do case \mathfrak{g} of type C, and omit the details for the other ones.

Write the two strings as in (2.6),

$$(e + \tau_1, \dots, E + \tau_1), \qquad (f + \tau_2, \dots, F + \tau_2).$$
 (7.5.1) {eq: 7.5.1}

where $0 < \tau_1 \le 1/2$ and $0 < \tau_2 \le 1/2$. Recall that because we are in type C, $e, E, f, F \in \mathbb{Z}$, and $\epsilon = 0$.

We need to show that if F + f > 0 or F + f < -2 when F + f is even, or F + f < -1 when F + f is odd, then the form is negative on a relevant W-type. Since r-reducibility and r-unitarity are not affected by

small deformations, we may as well assume that $(f + \tau_2, ..., F + \tau_2)$ is the only string with coordinates in A_{τ_2} , and $(e + \tau_1, ..., E + \tau_1)$ the only one with coordinates in A_{τ_1} .

The strategy is as follows. Assume that $L(\chi)$ is r-unitary. We deform (one of the strings of) χ to a χ_t in such a way that the coresponding induced module is r-irreducible over a finite interval, but is no longer so at the endpoint, say t_0 . Because of the continuity in t the module $L(\chi_{t_0})$ is still r-unitary. But the induction hypothesis applies, and we get a contradiction. Sometimes we have to repeat the procedure before we arrive at a contradiction.

So replace the first string by

$$\{eq: 7.5.2\} \qquad (e + \tau_1 + t, \dots, E + \tau_1 + t). \tag{7.5.2}$$

If $\chi = (e + \tau_1, \dots E + \tau_1; \chi_M)$, then

$$\chi_t = (e + \tau_1 + t, \dots, E + \tau_1 + t; \chi_M),$$

$$X(\chi_t) := Ind_M^G [L(e + \tau_1 + t, \dots, E + \tau_1 + t) \otimes L(\chi_M),$$

where
$$\check{\mathfrak{m}} = gl(E - e + 1) \times \check{\mathfrak{g}}(n - E + e - 1),$$

If E < |e|, we deform t in the negative direction, otherwise in the positive direction. If $t + \tau_1$ reaches 0 or 1/2, before the nilpotent orbit changes, we should rewrite the string to conform to the conventions (2.6.10) and (2.6.11). this means that we rewrite the string as $(e' + \tau'_1, \ldots, E' + \tau'_1)$ with $0 \le \tau'_1 \le 1/2$, and continue the deformation with a t going in the direction t < 0 if E' < |e'|, and t > 0 if $E' \ge |e'|$. This is not essential for the argument. We may as well assume that the following cases occur.

- (1) the nilpotent orbit changes at $t_0 = -\tau_1$,
- (2) the nilpotent orbit does not change, and at $t_0 = -\tau_1$, $|e|, |E| > x_{2m} + 1$.
- (3) the nilpotent orbit changes at a t_0 such that $0 < \tau_1 + t_0 \le 1/2$,

In the first case, the induction hypothesis applies, and since the string $(f + \tau_2, \ldots, F + \tau_2)$ is unaffected, we conclude that the signature is negative on a relevant W-type. In the second case the form is negative definite on $\sigma[(n-1), (1)]$. In the third case, the only way the nilpotent orbit can change is if the string $(e+\tau_1+t_0, \ldots, E+\tau_1+t_0)$ combines with another string as in section 7.4, equation (7.4.6). If $\tau_1+t_0\neq\tau_2$, the induction hypothesis applies, and since the string $(f+\tau_2, \ldots, F+\tau_2)$ is unaffected, the form is negative on a relevant W-type. If the nilpotent does not change at $t=\tau_2-\tau_1$, continue the deformation in the same direction. Eventually either (1) or (2) are satisfied, or else we are in case (3), and the strings in (7.5.1) combine to

give a larger nilpotent. There are four cases:

$$(1) \quad e < f \le E \le F, \ e \le f \le E < F$$

$$(2) \quad f \le e \le F < E, \ f < e \le F \le E$$

$$(3) \quad e \le E = f - 1 < F,$$

$$(4) \quad f < F = e - 1 < E.$$

$$(7.5.3)$$

Assume $|e| \leq E$. Then $\tau_1 < \tau_2$. If $e \leq 0$, we look at the deformation (7.5.2) for $-\tau_1 \leq t \leq 0$. If the nilpotent changes for some $-\tau_1 < t < 0$, the string $(f + \tau_2, \ldots, F + \tau_2)$ is not involved, the induction hypothesis applies, so the parameter is not r-unitary. Otherwise at $t = -\tau_1$ there is one less string with coordinates in an A_{τ} with $\tau \neq 0$, and again the induction hypothesis applies so the original parameter is not r-unitary. Thus we are reduced to the case 0 < e < E. Then consider the nilpotent orbit for the parameter with $t = -\tau_1 + \tau_2$.

In cases (1), (2) and (3) of (7.5.3), the new nilpotent has just one string

$$(e + \tau_2, \dots, F + \tau_2),$$
 (7.5.4) {eq:7.5.4}

instead of (7.5.1), and e + F > 0. The induction hypothesis applies, so the parameter is not r-unitary, nor is the original one.

In case (4) of (7.5.3), the new nilpotent corresponds to the strings

$$(f + \tau_2, \dots, E + \tau_2)$$
 (7.5.5) {eq:7.5.7}

The induction hypothesis applies, so f+E=0,-2 if f+E is even or f+E=-1 if it is odd. Consider again the deformation $-1+\tau_2 < t \le 0$. We may as well assume that the parameter is r-irreducible in this interval, or else we can apply the argument from before. So we arrive at the case when $t=-1+\tau_2$. The new nilpotent corresponds to the strings

$$(f + \tau_2, \dots, E - 1 + \tau_2), \quad (e - 1 + \tau_1), \quad (F + \tau_2).$$
 (7.5.6) {eq:7.5.8}

Write the parameter as $(\chi'; e-1+\tau_2, F+\tau_2)$. Since e-1=F, the induced module

$$I = Ind_{GL(2) \times G(n-2)}^{G}[L(e-1+\tau_2, F+\tau_2) \otimes L(\chi')] \tag{7.5.7} \quad \{eq: 7.5.9\}$$

is unitarily induced from a module which is hermitian and r-irreducible. But the parameter on GL(2) is not unitary unless e-1=F=0. Furthermore f+E-1=0,-2 if f+E is odd or f+E-1=-1 if f+E is even. So the original parameter (7.5.1) is

$$(1 + \tau_1, \dots, E + \tau_1), \quad (-E + \tau_2, \dots, \tau_2) \quad E \text{ even},$$

 $(1 + \tau_1, \dots, E + \tau_1), \quad (-E - 1 + \tau_2, \dots, \tau_2) \quad E \text{ odd}.$ (7.5.8) {eq:7.5.10}

The first string satisfies 1 + E > 0. Apply the deformation $(-E + \tau_2 + t, \ldots, \tau_2 + t)$ with $-\tau_2 < t \le 0$. We may as well assume that the paameter stays r-irreducible in this interval. But then the induction hypothesis applies at $t = -\tau_2$ because there is one less string with coordines in A_{τ} with $\tau \ne 0$.

Assume |e| > E. The same argument applies, but this time it is e < E < 0 that requires extra arguments, and in case (3) instead of case (4) of (7.5.3) we have to consider several deformations.

{sec:7.6}

7.6. Proof of necessary condition for unitarity in theorem 3.1. We first reduce to the case of theorem 7.2. The difference is that the coordinates in A_0 may not form a $\check{h}/2$ for an even nilpotent orbit. However r-reducibility and r-unitary are unaffected by small deformations. So we can deform the strings (notation as in (2.9.3)) corresponding to χ'_1, \ldots, χ'_r with coordinates in A_0 , so that their coordinates are no longer in A_0 . Then the assumptions in theorem 7.2 are satisfied.

The argument now proceeds by analyzing each size of strings separately. In the deformations that we will consider, strings of different sizes cannot combine so that the nilpotent orbit attached to the paramter changes.

Fix a size of strings with coordinates not in A_0 . If the strings are not adapted, they can be written in the form

$$\{eq: 7.6.1\} \qquad (-E - 1 + \tau_i, \dots, E + \tau_i) \qquad 0 < \tau_i \le 1/2, \ E \equiv \epsilon \pmod{\mathbb{Z}}. \tag{7.6.1}$$

So there is nothing to prove. Now consider a size of strings that are adapted. Suppose there are **two** strings of the form

{eq:7.6.2}
$$(-E - 1 + \tau_i, \dots, E - 1 + \tau_i), \quad 0 < \tau_i \le 1/2, \ E \equiv \epsilon \pmod{\mathbb{Z}}.$$
 (7.6.2)
Let $\check{\mathfrak{m}} := ql(2E + 1) \times \check{\mathfrak{g}}(n - 2E - 1), \text{ and write}$

$$\{eq: 7.6.3\} \qquad \chi := ((-E-1+\tau_i, \dots, E-1+\tau_i; -E-1+\tau_i, \dots, E-1+\tau_i); \chi_M). \quad (7.6.3)$$
 The module

$$Ind_{M}^{G}[L(-E-1+\tau_{i},\ldots,E-1+\tau_{i};-E-1+\tau_{i},\ldots,E-1+\tau_{i})\otimes L(\chi_{M})]$$
 {eq:7.6.4}

is r-irreducible, and unitarily induced from a hermitian module on M where the module on GL(2E+1) is **not unitary**. Thus $L(\chi)$ is not unitary either. So $L(\chi)$ is unitary only if for each τ_i there is at most one string of the form $(-E-1+\tau_i,\ldots,E-1+\tau_i)$.

Suppose there are two strings as in (7.6.1) with $\tau_1 < \tau_2$. If there is no string $-E + \tau_3, \ldots, E + \tau_3$ with $\tau_1 < \tau_3 < \tau_2$, then when we deform $(-E - 1 + \tau_1 + t, \ldots, E - 1 + \tau_1 + t)$ for $0 \le t \le \tau_2 - \tau_1$, $X(\chi_t)$ stays r-irreducible. At $t = \tau_2 - \tau_1$ we are in case (7.6.2), so the parameter is not unitary.

On the other hand suppose that there are **two** strings of the form

$$\{eq:7.6.5\}$$
 $(-E + \tau_i, \dots, E + \tau_i), \quad \text{same } \tau_i.$ (7.6.5)

Let m be as before, and write

$$\{eq:7.6.6\} \qquad \chi := ((-E + \tau_i, \dots, E + \tau_i; -E + \tau_i, \dots, E + \tau_i); \chi_M). \tag{7.6.6}$$

The module

{eq:7.6.7}
$$Ind_M^G[L(-E+\tau_i,\ldots,E+\tau_i;-E+\tau_i,\ldots,E+\tau_i)\otimes L(\chi_M)]$$
 (7.6.7)

is irreducible, and unitarily induced from a hermitian module on M where the module on GL(2E+1) is unitary. Thus $L(\chi)$ is unitary if and only if $L(\chi_M)$ is unitary.

So we may assume that for each τ_i there is at most one string of the form $(-E + \tau_i, \dots, E + \tau_i)$.

Similarly if there are two strings of the form $(-E + \tau_1, \ldots, E + \tau_1)$ and $(-E + \tau_2, \ldots, E + \tau_2)$, such that there is no string of the form $(-E - 1 + \tau_3, \ldots, E - 1 + \tau_3)$ with $\tau_1, \tau_3 < \tau_2$, we reduce to the case (7.6.5).

Let τ_k be the largest such that a string of the form $(-E + \tau_k, \dots, E + \tau_k)$ occurs, and τ_{k+1} the smallest such that a string $(-E - 1 + \tau_{k+1}, \dots, E - 1 + \tau_{k+1})$ occurs. If $\tau_k > \tau_{k+1}$, we can deform $(-E + \tau_k + t, \dots, E + \tau_k + t)$ with $0 \le t \le 1 - \tau_k - \tau_{k+1}$. No r-reducibility occurs, and we are again in case (7.6.2). The module is not unitary. If on the other hand $\tau_k < \tau_{k+1}$, the deformation $(-E - 1 + \tau_{k+1} + t, \dots, E - 1 + \tau_{k+1} - t)$ for $0 \le t \le 1 - \tau_k - \tau_{k+1}$ brings us to the case (7.6.5).

Together the above arguments show that conditions (1) and (2) of theorem 3.1 in types C,D must be satisfied. Remains to check that for the case of adapted strings, if there is an odd number of a given size 2E + 1, then there is a $d_i = 2E + 1$.

The arguments above (also the unitarity proof in the case $\check{\mathcal{O}} = (0)$) show that an $L(\chi)$ is unitary only if it is of the following form. There is a Levi component $\check{\mathfrak{m}} = gl(a_1) \times \cdots \times gl(a_r) \times \check{\mathfrak{g}}(n-\sum a_i)$, and parameters $\chi_1, \ldots, \chi_r, \chi_0$ such that,

$$L(\chi) = Ind_M^G[\bigotimes L(\chi_i) \otimes L(\chi_0)], \tag{7.6.8}$$

with the following additional properties:

- (1) The χ_i for i > 0 are as in lemma (1) of section 3.2, with $0 < \nu < 1/2$, in particular unitary.
- (2) χ_0 is such that there is at most one string for every A_{τ} with $\tau \neq 0$.

To complete the proof we therefore need to consider the case of $L(\chi_0)$. If $L(\chi)$ is unitary, then so is the parameter where we deform all but one $\tau \neq 0$ to zero. But for such a parameter the necessary conditions for unitarity are given in section 7.4.

In this section we review some well known results for real nilpotent orbits. Some additional details and references can be found in [CM].

{sec:8.1}

{sec:8}

8.1. Fix a real form \mathfrak{g} of a complex semisimple Lie algebra \mathfrak{g}_c . Let θ_c be the complexification of the Cartan involution θ of \mathfrak{g} , and write $\overline{}$ for the conjugation. Let G be the adjoint group with Lie algebra \mathfrak{g}_c , and let

$$\mathfrak{g}_c = \mathfrak{a}_c + \mathfrak{s}_c, \qquad \mathfrak{g} = \mathfrak{k} + \mathfrak{s}$$
 (8.1.1) {eq:8.1.1}

be the Cartan decomposition. Write $A_c \subset G_c$ for the subgroup corresponding to \mathfrak{a}_c , and G and K for the real Lie groups corresponding to \mathfrak{g} and \mathfrak{k} .

 $\{t:8.1\}$

Theorem (Jacobson-Morozov).

(1) There is a one to one correspondence between G_c -orbits \mathcal{O} of nilpotent elements and G_c -orbits of Lie triples $\{e, h, f\}$ i.e. elements satisfying

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

This correspondence is realized by completing a nilpotent element $e \in \mathcal{O}$ to a Lie triple.

(2) Two Lie triples $\{e, h, f\}$ and $\{e', h', f'\}$ are conjugate if and only if the elements h and h' are conjugate.

{sec:8.2}

8.2. Suppose $e \in \mathfrak{g}$ is nilpotent. Then one can still complete it to a Lie triple e, h, $f \in \mathfrak{g}$. Such a Lie triple is called real or ρ -stable. A Lie triple is called Cayley if in addition $\theta(h) = -h$, $\theta(e) = f$. Every real Lie triple is conjugate by G to one which is Cayley.

{t:8.2}

Theorem (Kostant-Rao). Two real Lie triples are conjugate if and only if the elements e - f and e' - f' are conjugate under G. Equivalently, two Cayley triples are conjugate if and only if e - f and e' - f' are conjugate under K.

{sec:8.3}

8.3. Suppose $e \in \mathfrak{s}_c$ is nilpotent. Then e can be completed to a Lie triple satisfying

 $\{eq:8.3.1\}$

$$\theta_c(e) = -e, \qquad \theta_c(h) = h, \qquad \theta_c(f) = -f.$$
 (8.3.1)

We call such a triple θ -stable. To any Cayley triple one can associate a θ -stable triple as in (8.3.1), by the formulas

{eq:8.3.2}

$$\widetilde{e} := \frac{1}{2}(e+f+ih), \quad \widetilde{h} := i(e-f), \quad \widetilde{f} := \frac{1}{2}(e+f-ih).$$
 (8.3.2)

A Lie triple is called *normal* if in addition to (8.3.1) it satisfies $\overline{e} = f$, $\overline{h} = -h$.

 $\{t:8.3\}$

 ${\bf Theorem} \ ({\rm Kostant\text{-}Sekiguchi}).$

- (1) Any θ -stable triple is conjugate via K_c to a normal one.
- (2) Two nilpotent elements \widetilde{e} , $\widetilde{e}' \in \mathfrak{s}$ are conjugate by K_c , if and only if the corresponding Lie triples are conjugate by K_c . Two θ -stable triples are conjugate under K if and only if the elements \widetilde{h} , \widetilde{h}' are conjugate under K_c .
- (3) The correspondence (8.3.2) is a bijection between G orbits of nilpotent elements in \mathfrak{g} and K_c orbits of nilpotent elements in \mathfrak{s}_c .

{t:8.3.1}

Proposition. The correspondence between real and θ stable orbits is compatible with closure relations.

Proof. This is the main result in [BS].

 $\{sec:8.4\}$

8.4. Let $\mathfrak{p} = \mathfrak{m} + \mathfrak{n}$ be a real parabolic subalgebra and $e \in \mathfrak{m}_c$ be a nilpotent element. Let $\mathfrak{p}_c = \mathfrak{m}_c + \mathfrak{n}_c$ be the complexification of \mathfrak{p} . Let $\mathfrak{c}_c := \operatorname{Ad} M_c \cdot e$. According to [LS], the induceed orbit from \mathfrak{c}_c is the unique G_c orbit \mathfrak{C}_c which has the property that $\mathfrak{C}_c \cap [\mathfrak{c}_c + \mathfrak{n}_c]$ is dense (and open) in $\mathfrak{c} + \mathfrak{n}_c$.

Proposition (1). Let $E = e + n \in e + \mathfrak{n}_c$.

- (1) dim $Z_{M_c}(e)$ = dim $Z_{G_c}(E)$. (2) $\mathfrak{C}_c \cap [\mathfrak{c}_c + \mathfrak{n}_c]$ is a single P_c orbit.

This is theorem 1.3 in [LS]. In particular, an element $E' = e' + n' \in \mathfrak{c}_c + \mathfrak{n}_c$ is in \mathfrak{C}_c if and only if the map

$$\operatorname{ad} E': \mathfrak{p}_c \longrightarrow T_{E'}^*\mathfrak{c} + \mathfrak{n}_c, \qquad \operatorname{ad} E'(y) = [E', y] \tag{8.4.1}$$

is onto.

Another characterization of the induced orbit is the following.

Proposition. The orbit \mathfrak{C}_c is the unique open orbit in $\operatorname{Ad} G_c(e+\mathfrak{n}_c)=$ $\operatorname{Ad} G_c(\mathfrak{c}_c + \mathfrak{n}_c)$, as well as in the closure $\operatorname{\overline{Ad}} G_c(e + \mathfrak{n}_c) = \operatorname{Ad} G_c(\overline{\mathfrak{c}_c} + \mathfrak{n}_c)$.

We omit the proof, but note that the statements about the closures follow from the fact that G_c/P_c is compact.

Proposition (2). The orbit \mathfrak{C}_c depends on $\mathfrak{c}_c \subset \mathfrak{m}_c$, but not on \mathfrak{n}_c .

Proof. This is proved in section 2 of [LS]. We give a slightly different proof. Let $\xi \in \mathfrak{h}_c \subset \mathfrak{m}_c$ be an element of the Cartan subalgebra \mathfrak{h}_c such that $\langle \xi, \alpha \rangle > 0$ for all roots $\alpha \in \Delta(\mathfrak{n}_c, \mathfrak{h}_c)$. Then by a standard argument,

Ad
$$P_c(\xi + e) = \xi + \mathfrak{c}_c + \mathfrak{n}_c$$
. (8.4.2) {eq:8.4.2}

Again because G_c/P_c is compact,

$$\overline{\bigcup_{t>0} \operatorname{Ad} G_c(t\xi+e)} \setminus \bigcup_{t>0} \operatorname{Ad} G_c(t\xi+e) = \operatorname{Ad} G_c(\overline{\mathfrak{c}_c}+\mathfrak{n}_c). \tag{8.4.3}$$

Thus if we change P_c to a parabolic subgroup which is associate, (i.e. its Levi component is conjugate to M_c) then ξ is replaced by a conjugate of ξ by the Weyl group. The claim follows, because the left hand side of (8.4.3) remains unchanged.

We now consider the case of real induction. Let $e \in \mathfrak{m}$ be a nilpotent element, and $\mathfrak{c} := \operatorname{Ad} Me$.

 $\{d:8.4\}$ **Definition.** The ρ -induced set from \mathfrak{c} to \mathfrak{g} is the finite union of orbits $\mathfrak{C}_i := \operatorname{Ad} GE_i$ such that one of the following equivalent conditions hold.

- (1) \mathfrak{C}_i is open in $\operatorname{Ad} G(\mathfrak{c} + \mathfrak{n})$ and $\overline{\bigcup \mathfrak{C}_i} = \overline{\operatorname{Ad} G(e + \mathfrak{n})}$.
- (2) The intersection $\mathfrak{C}_i \cap [\mathfrak{c} + \mathfrak{n}]$ is open in $\mathfrak{c} + \mathfrak{n}$, and the union of the intersections is dense in $\mathfrak{c} + \mathfrak{n}$.

We write

$$ind_{\mathfrak{p}}^{\mathfrak{g}}(\mathfrak{c}) = \bigcup \mathfrak{C}_{i}.$$
 (8.4.4) {eq:8.4.4}

and we say that each E_i is real or ρ -induced from e.

We omit the details of the proof of the equivalence of the two statements.

{p:8.4} Proposition (3). The ρ -induced set depends on e and the Levi component \mathfrak{m} , but not on \mathfrak{n} .

The proof is essentially identical to the one in the complex case. We omit the details.

In terms of the θ -stable versions \widetilde{e} of e, and E_i of E_i , ρ -induction is computed in [BB]. This is as follows. Let $\mathfrak{h}_c \subset \mathfrak{m}_c$ be the complexification of a maximally split real Cartan subalgebra \mathfrak{h} , and $\xi \in \mathcal{Z}(\mathfrak{m}_c) \cap \mathfrak{s}_c$ an element of \mathfrak{h} such that

$$\alpha \in \Delta(\mathfrak{n}, \mathfrak{h})$$
 if and only if $\alpha(\xi) > 0$.

Then

$$\{\operatorname{eq}: 8.4.5\} \qquad \overline{\bigcup \operatorname{Ad} K_c(\widetilde{E}_i)} = \overline{\bigcup_{t>0} \operatorname{Ad} K_c(t\xi + \widetilde{e})} \setminus \bigcup_{t>0} \operatorname{Ad} K_c(t\xi + \widetilde{e}). \tag{8.4.5}$$

- {sec:8.5} **8.5.** Let $\mathfrak{q}_c = \mathfrak{l}_c + \mathfrak{u}_c$ be a θ -stable parabolic subgroup, and write $\overline{\mathfrak{q}_c} = \mathfrak{l}_c + \overline{\mathfrak{u}_c}$ for its complex conjugate. Let $e \in \mathfrak{l}_c \cap \mathfrak{s}_c$ be a nilpotent element.
 - {p:8.5} Proposition. There is a unique K_c -orbit orbit $\mathcal{O}_{K_c}(E)$ so that its intersection with $\mathcal{O}_{L_c\cap K_c}(e) + (\mathfrak{u}_c\cap\mathfrak{s}_c)$ is open and dense.

Proof. This follows from the fact that $e + (\mathfrak{u}_c \cap \mathfrak{s}_c)$ is formed of nilpotent orbits, there are a finite number of nilpotent orbits, and being complex, the K_c -orbits have even real dimension.

{d:8.5} Definition. The orbit $\mathcal{O}_{K_c}(E)$ as in the proposition above is called θ -induced from e, and we write

$$ind_{\mathfrak{q}_c}^{\mathfrak{g}_c}(\mathcal{O}_{\mathfrak{l}_c}(e)) = \mathcal{O}(E),$$

and say that E is θ -induced from e.

Remark. The induced orbit is characterized by the property that it is the (unique) largest dimensional one which meets $e + \mathfrak{u}_c \cap \mathfrak{s}_c$. It depends on e as well as \mathfrak{q}_c , not just e and \mathfrak{l}_c .

{sec:8.6} **8.6.** Consider $\mathbb{Z}_2 \rtimes sl(2,\mathbb{C})$, where the nontrivial element $\theta \in \mathbb{Z}_2$ acts on $sl(2,\mathbb{C})$ by (8.3.1). Let (π,V) be an irreducible representation of $sl(2,\mathbb{C})$ of dimension n+1 and let $\{v_i\}$ be a basis so that

$$\begin{cases}
\{eq: 8.6.1\} \\
\{p: 8.6\}
\end{cases}$$

$$\pi(e)v_i = a_i v_{i+2}, \quad \pi(h)v_i = iv, \quad \pi(f)v_i = v_{i-2}. \quad (8.6.1)$$
Proposition. The representation (π, V) extends in two inequivalent ways

Proposition. The representation (π, V) extends in two inequivalent ways to $\mathbb{Z}_2 \rtimes sl(2, \mathbb{C})$ according to whether θ acts by ± 1 on v_n .

Proof. This is straightforward. \Box

In general, for a not necessarily irreducible (π, V) , we define its *signature* to be the pair of integers (a_+, a_-) , where a_{\pm} is the dimension of the ± 1 eigenspace of θ on the kernel of $\pi(e)$.

{sec:8.7}

8.7. $\mathbf{u}(\mathbf{p},\mathbf{q})$. Let V be a complex finite dimensional vector space of dimension n. There are two inner classes of real forms of gl(V). One is such that θ is an outer automorphism. It consists of the real form $GL(n,\mathbb{R})$, and when n is even, also $U^*(n)$. The other one is such that θ is inner, and consists of the real forms U(p,q) with p+q=n. In sections 8.7-8.13, we investigate ρ and θ induction for these forms, and then derive the corresponding results for so(p,q) and $sp(n,\mathbb{R})$ from them in sections 8.14-8.15. The usual description of u(p,q) is that V is endowed with a hermitian form $(\ ,\)$ of signature (p,q), and u(p,q) is the Lie algebra of skew hermitian matrices with respect to this form. Fix a positive definite hermitian form $(\ ,\)$. We will identify the complexification of $\mathfrak{g}:=u(p,q)$ with $\mathfrak{g}_c:=gl(V)$, and the complexification of U(p,q) with U(

$$(v, w) = \langle \theta v, w \rangle, \qquad \theta^2 = 1,$$
 (8.7.1) {eq:8.7.1}

The eigenspaces of θ on V will be denoted V^{\pm} . The Cartan decomposition is $\mathfrak{g}_c = \mathfrak{k}_c + \mathfrak{s}_c$, where \mathfrak{k} is the +1 eigenspace, and \mathfrak{s} the -1 eigenspace of $\operatorname{Ad} \theta$

We need some results about closure relations between nilpotent orbits. For a θ -stable nilpotent element e, we write $a_{\pm}(e^k)$ for the signature of θ on the kernel of e^k , and $a(e^k) = a_{+}(e^k) + a_{-}(e^k)$ for the dimension of the kernel. If it is clear what nilpotent element they refer to, we will abbreviate them as $a_{+}(k)$.

{t:8.7.2}

Theorem. Two θ -stable nilpotent elements e and e' are conjugate by K_c if and only if e^k and e'^k have the same signatures. The relation $\mathcal{O}_{K_c}(e') \subset \overline{\mathcal{O}_{K_c}(e)}$ holds if and only if for all k,

$$a_{+}(e^{\prime k}) \ge a_{+}(e^{k}), \qquad a_{-}(e^{\prime k}) \ge a_{-}(e^{k}).$$

Proof. For real nilpotent orbits, the analogue of this result is in [D]. The theorem follows by combining these results with proposition 8.3. We omit most of the details, except a few which will be useful later.

Let e be a θ -stable nilpotent orbit. Decompose

$$V = \bigoplus V_i$$

into $\mathbb{Z}_2 \rtimes sl(2)$ representations, and let ϵ_i be the eigenvalue of θ on the highest eigenweight of V_i (also the kernel of e). We encode the information about e into a tableau with rows equal to the dimensions of V_i and alternate signs + and - starting with the sign of ϵ_i . The number of +'s and -'s in the first column gives the signature of θ on the kernel of e. Then the number of \pm in the first two columns gives the signature of θ on the kernel of e^2 and so on. The total number of +'s equals p, the number of -'s equals q. Write $V = V_+ + V_-$, where V_\pm are the ± 1 eigenspaces of θ . The element e is given

by a pair (A, B), where $A \in \text{Hom}[V_+, V_-]$, and $B \in \text{Hom}[V_-, V_+]$. Then e^k is represented by (ABAB..., BABA...), k factors each, and $a_{\pm}(k)$ is the dimension of the kernel of the corresponding composition of A and B. The fact that the condition in the theorem is necessary, follows from this interpretation.

{sec: 8.8} 8.8. A parabolic subalgebra of gl(V) is the stabilizer of a generalized flag

$$\{eq: 8.8.1\} \qquad (0) = W_0 \subsetneq W_1 \subsetneq \cdots \subsetneq W_k = V. \tag{8.8.1}$$

Fix complementary spaces V_i ,

$$\{eq: 8.8.2\} W_i = W_{i-1} + V_i, i > 0. (8.8.2)$$

They determine a Levi component

$$\{\mathsf{eq}: \mathsf{8.8.1.2}\} \qquad \qquad \mathsf{l} \cong gl(V_1) \times \dots \times gl(V_k). \tag{8.8.3}$$

8.9. In order to get a θ -stable parabolic subalgebra, one needs to asume that the W_i are stable under θ , or equivalently that the restriction of the hermitian form to each W_i is nondegenerate. In this case we may assume that the V_i are θ -stable as well, and let $\mathfrak{q}_c = \mathfrak{l}_c + \mathfrak{u}_c$ be the corresponding parabolic subalgebra of gl(V). If we denote the signature of V_i by (p_i, q_i) , then

$$\{\mathsf{eq}: \mathsf{8.9.1}\} \qquad \qquad \mathfrak{l}_c \cap \mathfrak{g} \cong u(p_1, q_1) \times \dots \times u(p_k, q_k). \tag{8.9.1}$$

{sec:8.10}
8.10. To get the complexification of a real parabolic subalgebra, start with a partial flag

$$\{eq: 8.10.1\} \qquad (0) = W_0 \subsetneq \cdots \subsetneq W_k \qquad (8.10.1)$$

such that the hermitian form is trivial when restricted to W_k , and complete it to

$$\{\mathsf{eq}: \mathsf{8.10.2}\} \qquad \qquad (0) = W_0 \subsetneq \cdots \subsetneq W_k \subsetneq W_k^* \subsetneq \cdots \subsetneq W_0^* = V \qquad (8.10.2)$$

Choose transverse spaces

{eq:8.10.3}
$$W_i = W_{i-1} + V_i, \qquad W_i^* = W_{i-1}^* + V_i^*, \qquad W_k^* = W_k + V_0.$$
 (8.10.3)

They determine a Levi component

$$\{eq: 8.8.10.4\} \qquad \qquad \mathfrak{l}_c = gl(V_1) \times \dots \times gl(V_k) \times gl(V_0) \times gl(V_k^*) \times \dots \times gl(V_1^*), \qquad (8.10.4)$$

so that

$$\{\mathsf{eq}: \mathsf{8.10.5}\} \qquad \qquad \mathsf{l}_c \cap \mathsf{g} = gl(V_1, \mathbb{C}) \times \cdots \times gl(V_k, \mathbb{C}) \times u(p_0, q_0), \tag{8.10.5}$$

where (p_0, q_0) is the signature of V_0 .

{p:8.11}

{sec:8.11}

8.11. Let now $\mathfrak{q}_c = \mathfrak{l}_c + \mathfrak{u}_c$ be a maximal θ stable parabolic subalgebra corresponding to the flag $W_1 = V_1 \subsetneq W_2 = V_1 + V_2 = V$. Then

$$\mathfrak{l}_c \cong \text{Hom}[V_1, V_1] + \text{Hom}[V_2, V_2] = gl(V_1) \times gl(V_2), \qquad \mathfrak{u}_c \cong \text{Hom}[V_2, V_1].$$
(8.11.1)

{eq:8.11.1} Write $n_i := \dim V_i$, and $\theta = \theta_1 + \theta_2$ with $\theta_i \in End(V_i)$. A nilpotent element $e \in gl(V_2)$ satisfying $\theta_2 e = -e\theta_2$, can be viewed as a θ -stable nilpotent element in \mathfrak{l}_c by making it act by 0 on V_1 . Let E = e + X, with $X \in \mathfrak{u}_c$ (so $X \in gl(V)$ acts by 0 on V_1). Then $X\theta_2 = -\theta_1 X$. Decompose

$$\{\mathsf{eq} \colon \mathsf{8.11.2}\} \hspace{1.5cm} V_2 = \bigoplus W_i^{\epsilon_i} \hspace{1.5cm} (8.11.2)$$

where $W_i^{\epsilon_i}$ are irreducible $\mathbb{Z}_2 \ltimes sl(2,\mathbb{C})$ representations such that the eigenvalue of θ_2 on the highest weight v_i is ϵ_i . Order the $W_i^{\epsilon_i}$ so that dim $W_i \geq \dim W_{i+1}$. Write $A_{\pm}(k)$ for the signatures of E^k and $a_{\pm}(k)$ for the signatures of e^k .

Proposition. The signature $(A_{+}(k), A_{-}(k))$ of E^{k} satisfies

$$\begin{split} A_{+}(k) & \geq \dim V_{1,+} + a_{+}(k-1) + \\ & + \max \left[0 \; , \; \# \{ \; i \; | \; \dim W_{i}^{\epsilon_{i}} \geq k, \epsilon_{i} = (-1)^{k-1} \} - \dim V_{1}^{(-1)^{k}} \right], \\ A_{-}(k) & \geq \dim V_{1,-} + a_{-}(k-1) + \\ & + \max \left[0 \; , \; \# \{ \; i \; | \; \dim W_{i}^{\epsilon_{i}} \geq k, \epsilon_{i} = (-1)^{k} \} - \dim V_{1}^{(-1)^{k-1}} \right]. \end{split}$$

Proof. Since $E^k = e^k + Xe^{k-1}$, an element $v \in V_2$, is in the kernel of E^k if and only if $e^{k-1}v$ is in the kernel of X as well as e. Thus $V_1 \subset \ker E$. This accounts for the terms $\dim V_1^{\pm}$. Since $\ker e^{k-1} \subset \ker Xe^{k-1} \cap \ker e^k$, this accounts for the terms $a_{\pm}(k-1)$.

The representation theory of $sl(2,\mathbb{C})$ implies

$$\ker e \cap \operatorname{Im} e^{k-1} = \operatorname{span}\{v_i^{\epsilon_i} \mid e \cdot v_i^{\epsilon_i} = 0, \quad \dim W_i^{\epsilon_i} \ge k\}$$
 (8.11.3) {eq:8.11.3}

If the sign of v_i is ϵ_i , and $v_i = e^{k-1}w_j$, then the sign of θ on w_j is $\epsilon_j(-1)^{k-1}$. Then $X: V_2^{\epsilon_i} \longrightarrow V_1^{-\epsilon_i}$, and the minimum possible dimension of the kernel of X on the space in (8.11.3) is the last term in the inequalities of the proposition. The claim follows.

8.12. We now construct an E such that the inequalities in proposition 8.11 are equalities.

For any integers a, b, let

$$\mathbb{K}_a^+ := span\{ \text{ first } a \ v_i \text{ with } \epsilon_i = 1 \},$$

$$\mathbb{K}_b^- := span\{ \text{ first } b \ v_i \text{ with } \epsilon_i = -1 \}$$

$$(8.12.1) \quad \{eq:8.12.1\}$$

Note that

$$X(\mathbb{K}_a^+) \subset V_1^-, \qquad X(\mathbb{K}_b^-) \subset V_1^+.$$
 (8.12.2) {eq:8.11.4}

{t:8.12}

Theorem. Let E = e + X with notation as in 8.12.2. Choose X such that it is nonsingular on $\mathbb{K}_{a,b}^{\pm}$ for as large an a and b as possible. Then $\operatorname{Ad} K_c(E) = \operatorname{ind}_{\mathfrak{q}}^{\mathfrak{g}_c} e$.

Proof. From the proposition it follows that the A_{\pm}^{k} of any element in $e + (\mathfrak{u}_{c} \cap \mathfrak{s}_{c})$ are minimal when they are equal to the RHS of proposition 8.11. Theorem 8.7 implies that if a nilpotent element achieves this minimum, its orbit contains any other e + X in its closure. This minimum is achieved by the choice of X in the proposition, bering in mind that the W_{i} were ordered in decreasing order of their dimension. Thus $\operatorname{Ad} K_{c}(E)$ has maximal dimension among all orbits meeting $e + (\mathfrak{u} \cap \mathfrak{s})$ and so the claim follows from the observation at the end of 8.5.

This theorem implies the following algorithm for computing the induced orbit in the case $\mathfrak{g} \cong u(p,q)$. Suppose the signature of V_1 is (a_+,a_-) . Then add a_+ +'s to the beginning of largest possible rows of e starting with a – and a_- -'s to the largest possible rows of e starting with a +. If a_+ is larger than the number of rows starting with -, add a new row of size 1 starting with +. The similar rule applies to a_- .

If $e \in gl(V_1)$, the analogous procedure applies, but the a_+ +'s are added at the end of the largest possible rows finishing in - and a_- -'s to the end of the largest possible rows finishing in +.

Because induction is transitive, the above algorithm can be generalized to compute the θ -induced of any nilpotent orbit. We omit the details.

- {sec:8.13}
- **8.13.** Suppose $\mathfrak{p}_c = \mathfrak{m}_c + \mathfrak{n}_c$ is the complexification of a real parabolic subalgebra corresponding to the flag $(0) \subset V_1 \subset V_1 + V_0 \subset V_1 + V_0 + V_1^*$, and let $e \subset gl(V_0)$ be a real nilpotent element. The rest of the notation is as in section 8.4.
- {t:8.13}

Theorem. The tableau of an orbit $\operatorname{Ad} G(E_i)$ which is in the ρ -induced set $\operatorname{ind}_{\mathfrak{p}}^{\mathfrak{g}}(\mathfrak{c})$, is obtained from the tableau of e by adding 2 to $\dim V_1$ of the largest rows leaving the signs unchanged.

Proof. We use (8.4.2) and (8.4.3). Let $\alpha \in \text{Hom}[V_1, V_1^*] \oplus \text{Hom}[V_1^*, V_1]$ be nondegenerate such that $\alpha^2 = Id \oplus Id$, and extend it to an endomorphism $\xi \in gl(V)$ so that its restriction to V_0 is zero. This is an element such that the centralizer of ad ξ is \mathfrak{m} , in particular, $[\xi, e] = 0$. Let

$$\{eq:8.13.1\} P(X) = X^m + a_{m-1}X^{m-1} + \dots + a_0 (8.13.1)$$

be any polynomial in $X \in gl(V)$. Suppose $t_i \in \mathbb{R}$ are such that $t_i \to 0$, and assume there are $g_i \in K$ such that $t_i g_i(\xi + e)g_i^{-1} \to E$. Then

$$\{eq:8.13.2\} \qquad \ker t_i^m P(g_i(\xi + e)g_i^{-1}) \cong \ker P(\xi + e). \tag{8.13.2}$$

On the other hand,

$$\{eq:8.13.3\}$$

$$t_i^m P(g_i(\xi + e)g_i^{-1}) = [t_i g_i(\xi + e)g_i^{-1}]^m +$$

$$+ a_{m-1} t_i [t_i g_i(\xi + e)g_i^{-1}]^{m-1} + \dots + t_i^m Id \to E^m,$$

$$(8.13.3)$$

as $t_i \to 0$. Thus

$$\dim \ker E^m \mid_{V_+} \ge \dim \ker P(\xi + e) \mid_{V_+}.$$
 (8.13.4) {eq:8.13.4}

Choosing $P(X) = (X^2 - 1)X^n$, we conclude that E must be nilpotent. Choosing $P(X) = X^m$, $(X \pm 1)X^{m-1}$ or $P(X) = (X^2 - 1)X^{m-2}$, we can bound the dimensions of ker $E^m|_{V_{\pm}}$ to conclude that it must be in the closure of one of the nilpotent orbits given by the algorithm of the theorem. The fact that these nilpotent orbits are in (8.4.3) follows by a direct calculation which we omit.

{sec:8.14}

8.14. $\operatorname{sp}(\mathbf{V})$. Suppose $\mathfrak{g}_c \cong \operatorname{sp}(V_0)$, where (V_0, \langle , \rangle) is a real symplectic vector space of dimension n. The complexification (V, \langle , \rangle) admits a complex conjugation $\overline{}$, and we define a nondegenerate hermitian form

$$(v,w) := \langle v, \overline{w} \rangle \tag{8.14.1}$$

which is of signature (n, n). Denote by u(n, n) the corresponding unitary group. Since $sp(V_0)$ stabilizes (,), it embeds in u(n, n), and the Cartan involutions are compatible. The results of sections 8.1-8.3 together with section 8.6 imply the following classification of nilpotent orbits of $sp(V_0)$ or equivalently θ -stable nilpotent orbits.

- (1) To each orbit we assign a tableau so that every odd part occurs an even number of times. Rows of equal size are interchangeable.
- (2) The entries in each row alternate + or -. Odd sized rows occur in pairs, one starting with + the other with -.

A parabolic subalgebra of sp(V) is the stabilizer of a flag of isotropic subspaces

$$(0) = \mathcal{W}_0 \subset \cdots \subset \mathcal{W}_k, \tag{8.14.2}$$

so that the symplectic form restricts to 0 on W_k . As before, complete this to a flag

$$(0) = \mathcal{W}_0 \subset \cdots \subset \mathcal{W}_k \subset \mathcal{W}_k^* \subset \cdots \subset \mathcal{W}_0^* = V. \tag{8.14.3}$$

We choose transverse spaces

$$\mathcal{W}_i = \mathcal{W}_{i-1} + V_i, \quad \mathcal{W}_k^* = \mathcal{W}_k + \mathcal{W}, \quad \mathcal{W}_{i-1}^* = \mathcal{W}_i^* + V_i^*$$
 (8.14.4) {eq:8.14.4}

in order to fix a Levi component. We get

$$\mathfrak{l} \cong gl(V_1) \times \cdots \times gl(V_k) \times sp(\mathcal{W}). \tag{8.14.5}$$

If we assume that V_i , W are θ -stable, then the corresponding parabolic subalgebra is θ -stable as well, and the real points of the Levi component are

$$l_0 \cong u(p_1, q_1) \times \dots \times u(p_k, q_k) \times sp(\mathcal{W}_0).$$
 (8.14.6) {eq:8.14.6}

where (p_i, q_i) is the signature of V_i . The parabolic subalgebra corresponding to (8.14.4) in gl(V) satisfies

$$\mathfrak{t}' \cong u(p_1, q_1) \times \cdots \times u(p_k, q_k) \times u(n_0, n_0) \times u(q_k, p_k) \times \cdots \times u(q_1, p_1).$$
 (8.14.7) {eq:8.14.7}

For a maximal θ -stable parabolic subalgebra, the Levi component \mathfrak{l} satisfies $\mathfrak{l} \cong u(p_1, q_1) \times sp(\mathcal{W}_0)$. Let $e \in sp(W)$ be a θ -stable nilpotent element. The algorithm for induced nilpotent orbits in section 8.9 implies the following for $ind_{\mathfrak{l}}^{\mathfrak{g}_c}(e)$.

- (1) add p +'s to the beginning of the longest possible rows starting with -'s, and q -'s to the beginning of the longest possible rows starting with +'s.
- (2) add q +'s to the ending of the longest possible rows starting with -'s, and p -'s to the beginning of the longest possible rows starting with +'s.

Unlike in the complex case, the result is automatically a partition for a nilpotent element in sp(V).

For a maximal real parabolic subalgebra, we must assume that $\overline{V_1} = V_1$, $\overline{W} = W$. Let $V_{1,0}$ and W_0 be their real points. The Levi component satisfies

{eq:8.14.8}
$$l \cong gl(V_{1,0}) \times sp(\mathcal{W}_0).$$
 (8.14.8)

The results in section 8.13 imply the following algorithm for real induction.

- (1) add 2 to dim V_1 largest possible rows of e leaving the signs unchanged.
- (2) Suppose dim V_1 is odd and the last row that would be increased by 2 is odd size as well. In this case there is a pair of rows of this size, one starting with + the other with -. In this case increase these two rows by one each leaving the sign unchanged.

{sec:8.15}

- **8.15.** $\operatorname{so}(\mathbf{p},\mathbf{q})$. Suppose $\mathfrak{g}_c \cong \operatorname{so}(V_0)$, where $(V_0,\langle\ ,\ \rangle)$ is a real nondegenerate quadratic space of signature (p,q). The complexification admits a hermitian form $\langle\ ,\ \rangle$ with signature (p,q) as well as a complex nondegenerate quadratic form $(\ ,\)$, which restrict to $\langle\ ,\ \rangle$ on V_0 . The form $\langle\ ,\ \rangle$ gives an embedding of o(p,q) into u(p,q) with compatible Cartan involutions. The results of sections 8.1-8.3 together with section 8.6 imply the following classification of nilpotent orbits of $\operatorname{so}(V_0)$ or equivalently θ -stable nilpotent orbits.
 - (1) To each orbit we assign a tableau so that every even part occurs an even number of times. Rows of equal size are interchangeable.
 - (2) The entries in each row alternate + or -. Even sized rows occur in pairs, one starting with + the other with -.
 - (3) When all the rows have even sizes, there are two nilpotent orbits denoted I and II.

A parabolic subalgebra of so(V) is the stabilizer of a flag of isotropic subspaces

$$\{\mathsf{eq}: \mathsf{8.15.1}\} \tag{8.15.1}$$

so that the quadratic form restricts to 0 on W_k . As before, complete this to a flag

$$(0) = \mathcal{W}_0 \subset \cdots \subset \mathcal{W}_k \subset \mathcal{W}_k^* \subset \cdots \subset \mathcal{W}_0^* = V. \tag{8.15.2}$$

We choose transverse spaces

$$\mathcal{W}_i = \mathcal{W}_{i-1} + V_i, \quad \mathcal{W}_k^* = \mathcal{W}_k + \mathcal{W}, \quad \mathcal{W}_{i-1}^* = \mathcal{W}_i^* + V_i^* \qquad (8.15.3) \quad \{\text{eq:8.15.3}\}$$

in order to fix a Levi component,

$$\mathfrak{l} \cong gl(V_1) \times \cdots \times gl(V_k) \times so(W). \tag{8.15.4}$$

To get a θ -stable parabolic subalgebra we must assume V_i , W are θ -stable and so $\overline{V_i} = V_i^*$, $\overline{W} = W$. If the signature of V_i with respect to \langle , \rangle is (p_i, q_i) , and that of W is (p_0, q_0) , then

$$l_0 \cong u(p_1, q_1) \times \dots \times u(p_k, q_k) \times so(p_0, q_0).$$
 (8.15.5) {eq:8.15.5}

The parabolic subalgebra corresponding to (8.15.2) in gl(V) satisfies

$$\mathfrak{t}' \cong u(p_1, q_1) \times \cdots \times u(p_k, q_k) \times u(p_0, q_0) \times u(p_k, q_k) \times \cdots \times u(p_1, q_1).$$
 (8.15.6) {eq:8.15.6}

For a maximal θ -stable parabolic subalgebra, the Levi component \mathfrak{l} satisfies $\mathfrak{l} \cong u(p_1, q_1) \times so(\mathcal{W}_0)$. Let $e \in so(W)$ be a θ -stable nilpotent element. The algorithm for induced nilpotent orbits in section 8.9 implies the following for $ind_{\mathfrak{l}}^{\mathfrak{g}_c}(e)$.

- (1) add p_1 +'s to the beginning of the longest possible rows starting with -'s, and q_1 -'s to the beginning of the longest possible rows starting with +'s.
- (2) add p_1 +'s to the ending of the longest possible rows starting with -'s, and q_1 -'s to the beginning of the longest possible rows starting with +'s.

Unlike in the complex case, the result is automatically a partition for a nilpotent element in so(V).

For a maximal real parabolic subalgebra, we must assume that $\overline{V_1} = V_1$, $\overline{W} = W$. Let $V_{1,0}$ and W_0 be their real points. The Levi component satisfies

$$\mathfrak{l} \cong gl(V_{1.0}) \times so(W_0). \tag{8.15.7}$$

The results in section 8.13 imply the following algorithm for real induction.

- (1) add 2 to dim V_1 largest possible rows of e leaving the signs unchanged.
- (2) Suppose dim V_1 is even and the last row that would be increased by 2 is even size as well. In this case there is a pair of rows of this size, one starting with + the other with -. Increase these two rows by one each leaving the sign unchanged.

(3) When there are only even sized rows and dim V_1 is even as well, type I goes to type I and type II goes to type II.

 $\{sec:9\}$

9. Unitarity

In this section we prove the unitarity of the representations of the form $L(\chi)$ where $\chi = \check{h}/2$. As already mentioned, in the p-adic case this is done in [BM1]. It amounts to the observation that the Iwahori-Matsumoto involution preserves unitarity, and takes such an $L(\chi)$ into a tempered representation.

The idea of the proof in the real case is described in [B2]. We give details of a simpler argument in the case G = So(2n + 1). Only minor changes are required for the other cases. We will do an induction on rank.

{sec:9.1}

9.1. We rely heavily on the properties of the wave front set, asymptotic support and associated variety, and their relations to primitive ideal cells and Harish-Chandra cells. We review some facts. Since this is not the main purpose of the article, we refer to [SV], [V2] and [BV1], [BV2], [B3] for the details.

Let π be an admissible (\mathfrak{g}_c, K) module. we review some facts from [BV1]. The distribution character Θ_{π} lifts to an invariant eigendistribution θ_{π} in a neighborhood of the identity in the Lie algebra. For $f \in C_c^{\infty}(U)$, where $U \subset \mathfrak{g}$ is a small enough neighborhood of 0, let $f_t(X) := t^{-\dim \mathfrak{g}_c} f(t^{-1}X)$. Then

$$\{eq:9.1.1\} \qquad \theta_{\pi}(f_t) = t^{-d} \sum_{j} c_j \widehat{\mu_{\mathcal{O}_j(\mathbb{R})}}(f) + \sum_{i>0} t^{d+i} D_{d+i}(f)]. \qquad (9.1.1)$$

The D_i are homogeneous invariant distributions (each D_i is tempered and the support of its Fourier transform is contained in the nilpotent cone). The $\mu_{\mathcal{O}_j}$ are invariant measures supported on real forms \mathcal{O}_j of a single complex orbit \mathcal{O}_c , and $\mu_{\mathcal{O}_j(\mathbb{R})}$ is the Liouville measure on the nilpotent orbit associated to the symplectic form induced by the Cartan-Killing form. Furthermore $d = \dim_{\mathbb{C}} \mathcal{O}_c/2$, and the number c_j is called the multiplicity of $\mathcal{O}_j(\mathbb{R})$ in the leading term of the expansion. The closure of the union of the supports of the Fourier transforms of all the terms occurring in (9.1.1) is called the asymptotic support, denoted $AS(\pi)$. The leading term in (9.1.1) will be called $AC(\pi)$. We will use the fact that the nilpotent orbits in the leading term are contained in the wave front set of θ_{π} at the origin, denoted $WF(\pi)$.

Alternatively, [V2] attaches to each π a combination of θ -stable orbits with integer coefficients

$$\{eq:9.1.2\} \qquad \qquad AV(\pi) = \sum a_j \mathcal{O}_j, \qquad (9.1.2)$$

where \mathcal{O}_j are nilpotent K_c -orbits in \mathfrak{s}_c . The main result of [SV] is that $AC(\pi)$ in (9.1.1) and $AV(\pi)$ in (9.1.2) correspond via theorem 8.3. Precisely, the leading term in formula (8.3.2), and (9.1.2) are the same, when we identify real and θ stable nilpotent orbits via the Kostant-Sekiguchi correspondence. The algorithms in section 8 compute the associated variety of an induced representation as a set, which we also denote by $AV(\pi)$ when there is no possibility of confusion. The multiplicities are computed in the real setting in [B4] theorem 5.0.7. The formula is as follows. Let $v_j \in \mathcal{O}_j$ and $v_{ij} = v_j + X_{ij}$ be representatives of the induced orbits \mathcal{O}_{ij} from $\mathcal{O}_{j,\mathfrak{m}}$. If $AV(\pi) = \sum c_j \mathcal{O}_{j,\mathfrak{m}}$, then

$$AV(ind_{\mathfrak{p}}^{\mathfrak{g}_{c}}(\pi)) = \sum_{i,j} c_{j} \frac{|C_{G}(v_{ij})|}{|C_{P}(v_{ij})|} \mathcal{O}_{ij}. \tag{9.1.3}$$

We use [SV] to compare multiplicities of real and θ induced modules. Formula (9.1.3) is straightforward for real induction and $AC(\pi)$. Its analogue for θ stable induction and $AV(\pi)$ is also straightforward. It is the passage from $AC(\pi)$ to $AV(\pi)$ that is nontrivial.

 $\{sec: 9.2\}$

9.2. Fix a regular integral infinitesimal character χ_{reg} . Denote by $\mathcal{G}(\chi_{reg})$ the Grothendieck group of the category of (\mathfrak{g}_c, K) modules with infinitesimal character χ_{reg} . Recall from [V2] (and references therein) that there is an action of the Weyl group on $\mathcal{G}(\chi_{reg})$, called the *coherent continuation action*. Then $\mathcal{G}(\chi_{reg})$ decomposes into a direct sum according to blocks \mathcal{B} ,

$$\mathcal{G}(\chi_{reg}) = \bigoplus \mathcal{G}_{\mathcal{B}}(\chi_{reg}). \tag{9.2.1}$$

We give the explicit description of this representation in all types.

Type B: In order to conform to the duality between type B and type C in [V2], we only count the real forms with p > q. The representation $\mathcal{G}(\chi_{reg})$ equals

$$\mathcal{G}(\chi_{reg}) = \sum_{a,b,\tau} Ind_{W_a \times W_b \times W_{2s} \times S_t}^{W_n} [sgn \otimes sgn \otimes \sigma[\tau,\tau] \otimes triv], \qquad (9.2.2) \quad \{eq: 9.2.2\}$$

where τ is a partition of s, and a+b+2s+t=n. The multiplicity of a $\sigma[\tau_L, \tau_R]$ in one of the induced modules in (9.2.2) is as follows. Choose a τ that fits inside both τ_L and τ_R , and label it by •'s. Add "a" r and "b" r' to τ_R , at most one to each row, and "t" c, at most one to each column, to τ_L or τ_R . The multiplicity of σ in the induced module for a given (τ, a, b) is then the number of ways that τ_l , τ_R can be filled in this way. This procedure uses induction in stages, and the well known formula

$$Ind_{S_n}^{W_n}(triv) = \sum_{k+l=n} \sigma[(k), (l)].$$
 (9.2.3) {eq:9.2.3}

Example. Let $\mathfrak{g}_c = so(5)$. The real forms are so(3,2), so(4,1), so(5). The choices of (τ, a, b, t) are

Let $\sigma = \sigma[(1), (1)]$. Then its multiplicity is given by the number of labelings

$$\begin{cases}
(\bullet, \bullet) & \emptyset, & \emptyset, \\
\emptyset, & \emptyset, & (c, r), & \emptyset, & (c, r'), & (c, c).
\end{cases}$$
(9.2.5)

For $\sigma = \sigma[(0), (2)]$ we get

$$\begin{cases}
\emptyset, \quad \emptyset, \quad \emptyset \\
\emptyset, \quad (0, rr'), \quad (0, rc), \quad \emptyset, \quad (0, r'c), \quad (0, cc).
\end{cases}$$
(9.2.6)

The following formula sorts the representations according to the various real forms of SO(p,q) with p+q=2n+1. A representation occurring in \mathcal{G} , labelled as above, occurs in SO(p,q) with

$$\{eq: 9.2.7\} p = n + 1 + | \#r' - \#r | -\epsilon, \text{ where } \epsilon = \begin{cases} 0 & \text{if } \#r' \ge \#r, \\ 1 & \text{otherwise.} \end{cases}$$
 (9.2.7)

In the above example, (\bullet, \bullet) , (c, c), (0, rr'), (0, rc) and (0, cc) belong to so(3, 2) while (c, r') and (0, r'c) belong to so(4, 1).

To each pair of partitions parametrizing a representation of W,

{eq:9.2.8}
$$\tau_L = (r_0, \dots, r_{2m}), \qquad \tau_R = (r_1, \dots, r_{2m-1}), \qquad r_i \le r_{i+2}, \qquad (9.2.8)$$

Lusztig attaches a symbol

$$\{eq: 9.2.9\} \qquad \begin{pmatrix} r_0 & r_2+1 & \dots & r_{2m}+m \\ r_1 & r_3+1 & \dots & r_{2m-1}+m-1 \end{pmatrix}. \quad (9.2.9)$$

The symbol is called special if

$$\{eq: 9.2.10\} r_0 \le r_1 \le r_2 + 1 \le r_3 + 1 \le \dots \le r_{2m} + m. (9.2.10)$$

Two representations belong to the same double cell if and only if their symbols have the same entries. Given a special symbol of the form (9.2.9), the corresponding nilpotent orbit \mathcal{O}_c has partition obtained as follows. Form the set

$$\{ 2r_{2i} + 2i + 1, 2r_{2j-1} + 2j - 2 \}, \tag{9.2.11}$$

and order the numbers in increasing order, $x_0 \leq \cdots \leq x_{2m}$. The partition of \mathcal{O}_c is

$$\{ eq: 9.2.12 \} \qquad (x_0, x_1 - 1, \dots, x_i - i, \dots, x_{2m} - 2m).$$
 (9.2.12)

Type C: The representation $\mathcal{G}(\chi_{reg})$ is obtained from the one in type B

by tensoring with sign. Thus

$$\{\text{eq:9.2.13}\} \qquad \mathcal{G}(\chi_{reg}) = \sum_{a,b,\tau} Ind_{S_t \times W_{2s} \times W_a \times W_b}^{W_n}[sgn \otimes \sigma[\tau,\tau] \otimes triv \otimes triv], \qquad (9.2.13)$$

where τ is a partition of s, and a+b+2s+t=n. This takes into account the duality in [V2] of types B and C. We write r for the sign representation of S_t , and c and c' for the trivial representations of W_a , W_b . A representation of W is parametrized by a pair of partitions (τ_L, τ_R) , with

$$\tau_L = (r_0, \dots, r_{2m}), \qquad \tau_R = (r_1, \dots, r_{2m-1}), \qquad r_i \le r_{i+2}. \qquad (9.2.14) \quad \{eq: 9.2.14\}$$

The associated symbol is

$$\begin{pmatrix} r_0 & r_2+1 & \dots & r_{2m}+m \\ r_1 & r_3+1 & \dots & r_{2m-1}+m-1 \end{pmatrix}$$
, $(9.2.15)$ {eq:9.2.15}

and it is called special if

$$r_0 \le r_1 \le r_2 + 1 \le r_3 + 1 \le \dots \le r_{2m} + m.$$
 (9.2.16) {eq:9.2.16}

Two representations belong to the same double cell if their symbols have the same entries. Given a special symbol as in (9.2.15), the nilpotent orbit \mathcal{O}_c attached to the double cell has partition obtained as follows. Order the set

$$\{2r_{2i}+2i,2r_{2j-1}+2j-1\}$$
 (9.2.17) {eq:9.2.17}

in increasing order, $x_0 \leq \cdots \leq x_{2m}$. Then the partition of \mathcal{O}_c is

$$(x_0, \dots, x_j - j, \dots, x_{2m} - 2m).$$
 (9.2.18)

Type D: Since in this case $\sigma[\tau_L, \tau_R]$ and $\sigma[\tau_R, \tau_L]$ parametrize the same representation, (except of course when $\tau_L = \tau_R$ which corresponds to two nonisomorphic representations), we assume that the size of τ_L is the larger one. The Cartan subgroups are parametrized by integers (t, u, 2s, p, q), p + q + 2s + t + u = n. There are actually two Cartan subgroups for each s > 0, related by the outer automorphism of order 2. Then $\mathcal{G}(\chi_{reg})$ equals

$$\mathcal{G}(\chi_{reg}) = \sum_{p+q+2s+t+u=n} Ind_{W_a \times W_b \times W'_{2s} \times W_t \times W_u}^{W'_n} [sgn \otimes sgn \otimes \sigma[\tau, \tau]_{I,II} \otimes triv \otimes triv].$$

$$(9.2.19) \quad \{eq: 9.2.19\}$$

The sum is also over τ which is a partition of s. We label the σ by \bullet 's, trivial representations by c and c' and the sgn representations by r and r'. These are added to τ_L when inducing. In this case we count all the real forms SO(p,q) with p+q=2n, and p=n+#r'-#r. If

$$\tau_L = (r_0, \dots, r_{2m-2}), \qquad \tau_R = (r_1, \dots, r_{2m-1}), \qquad (9.2.20) \quad \{eq: 9.2.20\}$$

then the associated symbol is

$$\begin{pmatrix} r_0 & r_2 + 1 & \dots & r_{2m-2} + m - 1 \\ r_1 & r_3 + 1 & \dots & r_{2m-1} + m - 1 \end{pmatrix}. \tag{9.2.21}$$

A representation is called special if the symbol satisfies

$$r_0 \le r_1 \le r_2 + 1 \le r_3 + 1 \le \dots \le r_{2m-1} + m - 1.$$
 (9.2.22) {eq:9.2.22}

Two representations belong to the same double cell if their symbols have the same entries. The nilpotent orbit \mathcal{O}_c attached to the special symbol is given by the same procedure as for type B.

Let $\mathfrak{h}_a \subset \mathfrak{g}_c$ be an abstract Cartan subalgebra and let Π_a be a set of (abstract) simple roots. For each irreducible representation $\mathcal{L}(\gamma)$, denote by $\tau(\gamma)$ the tau-invariant as defined in [V2]. Given a block \mathcal{B} and disjoint orthogonal sets S_1 , $S_2 \subset \Pi_a$, define

$$\{eq: 9.2.23\} \qquad \qquad \mathcal{B}(S_1, S_2) = \{\gamma \in \mathcal{B} \mid S_1 \subset \tau(\gamma), \ S_2 \cap \tau(\gamma) = \emptyset\} \ . \tag{9.2.23}$$

If in addition we are given a nilpotent orbit $\mathcal{O}_c \subset \mathfrak{g}_c$, we can also define

$$\{eq: 9.2.24\} \qquad \qquad \mathcal{B}(S_1, S_2, \mathcal{O}_c) = \{\gamma \in \mathcal{B}(S_1, S_2) | WF(\mathcal{L}(\gamma)) \subset \overline{\mathcal{O}_c}\} . \qquad (9.2.24)$$

Recall the special case of a complex algebra \mathfrak{g}_c viewed as a real Lie algebra. Then the case S_1 , $S_2 = \emptyset$ is called the double cone $\mathcal{C}(\mathcal{O}_c)$. The double cell corresponding to \mathcal{O}_c will be denoted $\overline{\mathcal{C}}(\mathcal{O}_c)$.

Let $W_i = W(S_i)$, and define

$$m_S(\sigma) = [\sigma : Ind_{W_1 \times W_2}^W(Sgn \otimes Triv)],$$

$$m_B(\sigma) = [\sigma : \mathcal{G}_B(\chi_{reg})].$$
(9.2.25)

Theorem (1).

$$|\mathcal{B}(S_1, S_2, \mathcal{O}_c)| = \sum_{\sigma \otimes \sigma \in \mathcal{C}(\mathcal{O}_c)} m_{\mathcal{B}}(\sigma) m_{S}(\sigma) \ .$$

Assume that $\check{\mathcal{O}}$ is even. Then $\lambda:=\check{h}/2$ is integral, and it defines a set S_2 by

{eq:9.2.24}
$$S_2 = S(\lambda) = \{\alpha \in \Pi_a | (\alpha, \lambda) = 0\} . \tag{9.2.26}$$

Then the special unipotent representations attached to $\check{\mathcal{O}}$ are defined to be

$$\{eq: 9.2.25\} \qquad Unip(\check{\mathcal{O}}) = \bigcup_{\mathcal{B}} \mathcal{B}(\emptyset, S(\lambda), \mathcal{O}_c)$$
 (9.2.27)

In the classical groups case, $m_{\mathcal{B}}(\sigma)$ is straightforward to compute. For the special unipotent case, $m_{\mathcal{S}}(\sigma)$ equals 0 except for the representations occuring in the corresponding left cell $\overline{\mathcal{C}}^L(\mathcal{O}_c)$ when it is 1. These representations are in 1-1 correspondence with the conjugacy classes in Lusztig's quotient of the component group $\overline{A}(\check{\mathcal{O}})$. See [BV2] for details.

 $\{t:9.2.2\}$ Theorem (2).

$$|Unip(\check{\mathcal{O}})| = \sum_{\mathcal{B}} \sum_{\sigma \in \overline{\mathcal{C}}^L(\mathcal{O}_\sigma)} m_{\mathcal{B}}(\sigma) .$$

Definition. We say that a nilpotent orbit \mathcal{O}_c is smoothly cuspidal if it satisfies

Type B, D: all odd sizes occur an even number of times, Type C: all even sizes occur an even number of times.

 ${p:9.2}$

 $\{sec:9.3\}$

{t:9.3}

For $\mathcal{O}(\mathbb{R})$, a real form of \mathcal{O}_c , write $A(\mathcal{O}(\mathbb{R}))$ for its (real) component group.

Proposition. For smoothly cuspidal orbits, $A(\check{\mathcal{O}}) = \overline{A}(\check{\mathcal{O}})$. In particular, $|\mathcal{C}^L(\mathcal{O}_c)| = |A(\check{\mathcal{O}})|$. Furthermore,

$$|Unip(\check{\mathcal{O}}))| = \sum_{\mathcal{O}(\mathbb{R})} |A(\mathcal{O}(\mathbb{R}))|$$

where the sum is over all real forms $\mathcal{O}(\mathbb{R})$ of \mathcal{O}_c .

Proof. This is theorem 5.3 in [B2]. It consists of a direct calculation of multiplicities in the coherent continuation representation using the results developed earlier in this section.

9.3. Two representations π , π' are said to be in the same Harish-Chandra cell if there are finite dimensional representations F, F' such that π' is a factor of $\pi \otimes F$ and π a factor of $\pi' \otimes F'$. In this case $WF(\pi) = WF(\pi')$. We say that a Harish-Chandra cell is attached to a complex orbit \mathcal{O}_c if

$$\overline{\operatorname{Ad} G_c(WF(\pi))} = \overline{\mathcal{O}_c}.$$

The set of representations in a Harish-Chandra cell gives rise to a representation of the (complex) Weyl group.

Theorem ([McG]). In the classical groups Sp(n), SO(p,q), each Harish-Chandra cell is of the form $\overline{C}^L(\mathcal{O}_c)$.

9.4. We now return to type G = So(2n+1). Consider the spherical irreducible representation $L(\chi_{\check{\mathcal{O}}})$ with $\chi_{\check{\mathcal{O}}} = \check{h}/2$ corresponding to a nilpotent orbit $\check{\mathcal{O}}$ in sp(n). If the orbit $\check{\mathcal{O}}$ meets a proper Levi component $\check{\mathfrak{m}}$, then $L(\check{\mathcal{O}})$ is a subquotient of a representation which is unitarily induced from a unipotent representation on \mathfrak{m} . By induction, $L(\chi_{\check{\mathcal{O}}})$ is unitary. Thus we only consider the cases when $\check{\mathcal{O}}$ does not meet any proper Levi component. This means

$$\check{\mathcal{O}} = (2x_0, \dots, 2x_{2m}), \qquad 0 \le x_0 < \dots < x_i < x_{i+1} < \dots < x_{2m}, \quad (9.4.1) \quad \{eq: 9.4.1\}$$
 so these orbits are even.

Because of assumption (9.4.1), the WF-set of $L(\chi_{\mathcal{O}})$ satisfies the property that

$$\overline{\operatorname{Ad} G_c(WF(L(\chi_{\check{\mathcal{O}}})))}$$

is the closure of the special orbit (in the sense of Lusztig) dual to $\check{\mathcal{O}}$. This is the orbit \mathcal{O}_c with partition

$$(\underbrace{1,\ldots,1}_{r_1},\underbrace{2,\ldots,2}_{r_2},\ldots,\underbrace{2m,\ldots,2m}_{r_{2m}},\underbrace{2m+1,\ldots,2m+1}_{r_{2m+1}}), \qquad (9.4.2) \quad \{eq:9.4.2\}$$

where

$$r_{2i+1} = 2(x_{2m-2i} - x_{2m-2i-1} + 1),$$

$$r_{2i} = 2(x_{2m-2i+1} - x_{2m-2i} - 1),$$

$$r_{2m+1} = 2x_0 + 1.$$

The columns of \mathcal{O}_c are $(2x_{2m} + 1, 2x_{2m-1} - 1, \dots, 2x_0 + 1)$.

Definition. Given an orbit \mathcal{O}_c with partition (9.4.2) or more generally a smoothly cuspidal orbit, we call the split real form \mathcal{O}_{spl} the one which, for each row size,

Type C,D: the number of rows starting with + and - is equal,

Type B: in addition to the condition in types C,D for rows of size less than 2m + 1, for size 2m + 1, the number of starting with + is one more than those starting with -.

Theorem. The WF-set of the spherical representation $L(\chi_{\tilde{\mathcal{O}}})$ with $\tilde{\mathcal{O}}$ satisfying (9.4.1) is the closure of the split real form \mathcal{O}_{spl} of the (complex) orbit \mathcal{O}_c given by (9.4.2).

Proof. The main idea is outlined in [B2]. We use the fact that if π is a factor of π' , then $WF(\pi) \subset WF(\pi')$. We do an induction on m. The claim amounts to showing that if E occurs in $AS(L(\chi_{\mathcal{O}}))$, then the signatures of E, E^2, \ldots are greater than the pairs

$$(x_{2m}+1,x_{2m}),(x_{2m}+x_{2m-1},x_{2m}+x_{2m-1}),\ldots, \\ \dots (x_{2m}+\cdots+x_1,x_{2m}+\cdots+x_1), \qquad (9.4.3) \\ (x_{2m}+\cdots+x_1+x_0+1,x_{2m}+\cdots+x_1+x_0).$$

The statement is clear when m = 0; $L(\chi_{\mathcal{O}})$ is the trivial representation. Let \mathcal{O}_1 be the nilpotent orbit corresponding to

$$\{eq: 9.4.4\} \qquad (2x_0, \dots, 2x_{2m-2}). \tag{9.4.4}$$

By induction, $AS(L(\check{\mathcal{O}}_1))$ is the split real form of the nilpotent orbit corresponding to the partition

$$\{eq: 9.4.5\} \qquad (\underbrace{1, \dots, 1}_{r_1'}, \underbrace{2, \dots, 2}_{r_2'}, \dots, \underbrace{2m-2, \dots, 2m-2}_{r_{2m-2}'}, \underbrace{2m-1, \dots, 2m-1}_{r_{2m-1}'}), \quad (9.4.5)$$

where the columns are $(2x_{2m-2}+1, 2x_{2m-3}-1, \ldots, 2x_0+1)$. Let \mathfrak{p} be the real parabolic subalgebra with Levi component $\mathfrak{g}(n-x_{2m}-x_{2m-1})\times gl(x_{2m}+x_{2m-1})$. There is a character χ of $gl(x_{2m}+x_{2m-1})$ such that $\pi:=L(\chi_{\check{\mathcal{O}}})$ is a factor of $\pi':=ind_{\mathfrak{p}}^{\mathfrak{g}_c}[L(\chi_{\check{\mathcal{O}}_1})\otimes\chi]$. But by section 8, $WF(\pi')$ is in the closure of nilpotent orbits corresponding to partitions

$$\{eq: 9.4.6\} \qquad (\underbrace{2, \dots, 2}_{(r_1+r_2)/2}, \dots, \underbrace{2m, \dots, 2m}_{r_{2m}}, \underbrace{2m+1, \dots, 2m+1}_{r_{2m+1}}), \ r_1+r_2 \text{ even}, \qquad (9.4.6)$$

$$\{\mathsf{eq} : \mathsf{9.4.7}\} \qquad (1,1,\underbrace{2,\ldots,2}_{(r_1+r_2-1)/2},\ldots,\underbrace{2m,\ldots,2m}_{r_{2m}},\underbrace{2m+1,\ldots,2m+1}_{r_{2m+1}}), \ r_1+r_2 \ \mathrm{odd}. \ (9.4.7)$$

It follows that the signatures for E^k in $WF(L(\chi_{\check{\mathcal{O}}}))$ are greater than the pairs

$$\{eq:9.4.8\}$$
 $(a_+, a_-), (x_{2m} + x_{2m-1}, x_{2m} + x_{2m-1}), \dots,$ $(9.4.8)$

for some $a_+ + a_- = x_{2m} + 1$. Also, each row size greater than two and less than 2m + 1 has an equal number that start with + and -. For size 2m + 1 there is one more row starting with + than -.

The same argument with \mathcal{O}_2 corresponding to

$$(2x_0,\dots\widehat{2x_{2m-2}},\widehat{2x_{2m-1}},2x_{2m})$$

shows that $WF(L(\chi_{\mathcal{O}}))$ is also contained in the closure of the nilpotent orbits with signatures

$$(x_{2m}+1, x_{2m}), (x_{2m}+1+a_+, x_{2m}+a_-), (x_{2m}+1+x_{2m-1}+x_{2m-2}, x_{2m}+1+x_{2m-1}+x_{2m-2}), \dots,$$
 (9.4.9) {eq:9.4.9}

for some $a_+ + a_- = x_{2m-1}$. The claim follows. \Box {sec:9.5}

9.5. Consider the special case when

$$x_0 = x_1 - 1 \le x_2 = x_3 - 1 \le \dots \le x_{2m-2} = x_{2m-1} - 1 \le x_{2m}.$$
 (9.5.1) {eq:9.5.1}

The component group $A(\mathcal{O})$ has size 2^m . We produce 2^m irreducible representations so that their AS equals the closure of \mathcal{O}_{spl} . We assume \mathfrak{g} is so(2p+1,2p). Let \mathfrak{h} be the compact Cartan subalgebra. We write the coordinates

$$(a_1, \dots, a_p \mid b_1, \dots, b_p)$$
 (9.5.2) {eq:9.5.2}

where the first p coordinates before the | are in the Cartan subalgebra of so(2p+1) the last p coordinates are in so(2p). The roots $\epsilon_i \pm \epsilon_j$, ϵ_i with $i,j \leq p$ are all compact and so are $\epsilon_{p+k} \pm \epsilon_{p+l}$ with $k,l \leq p$. The roots $\epsilon_i \pm \epsilon_{p+k}$, ϵ_{p+k} are noncompact. Let $\mathfrak{q}_c = \mathfrak{l}_c + \mathfrak{u}_c$ be a θ -stable parabolic subalgebra with Levi component

$$\mathfrak{l} = u(x_{2i_1+1}, x_{2i_1}) \times u(x_{2i_2}, x_{2i_2+1}) \times \dots \times \mathfrak{g}(x_{2m}), \tag{9.5.3}$$

where the i_j are the numbers $0, \ldots, m-1$ in some order. The parabolic subalgebra \mathfrak{q}_c corresponds to the weight

$$\xi = (m^{x_{2i_1+1}}, \dots, 1^{x_{2i_{m-1}}+1}, 0^{x_{2m}} \mid m^{x_{2i_1}}, \dots, 1^{x_{2i_{m-1}}}, 0^{x_{2m}}),$$
or
$$\xi = (m^{x_{2i_1+1}}, \dots, 1^{x_{2i_{m-1}}}, 0^{x_{2m}} \mid m^{x_{2i_1}}, \dots, 1^{x_{2i_{m-1}}+1}, 0^{x_{2m}}),$$

$$(9.5.4) \quad \{eq: 9.5.4\}$$

depending whether m is odd or even.

The derived functor modules $\mathcal{R}_{\mathfrak{q}_c}^i(\xi)$ from characters on \mathfrak{l}_c have AC-set contained in \mathcal{O}_{spl} . To get infinitesimal character $\chi_{\mathcal{O}}$, these characters can only be

$$\xi_{i_j}^{\pm} := \pm (1/2, \dots, 1/2), \tag{9.5.5} \quad \{ \operatorname{eq} : 9.5.5 \}$$

on the unitary factors $u(x_{2i_j+1}, x_{2i_j})$ or $u(x_{2i_j}, x_{2i_j+1})$, and trivial on $\mathfrak{g}(x_{2m})$. We need to show that there are choices of parabolic subalgebras \mathfrak{q}_c as in (9.5.3) and characters as in (9.5.5) so that we get 2^m nonzero and distinct representations. For this we have to specify the Langlands parameters.

For each subset $A := \{k_1, \ldots, k_r\} \subset \{0, \ldots, m-1\}$, k_j in decreasing order, label the complement $A^c := \{\ell_1, \ldots, \ell_t\}$, and consider the θ -stable parabolic subalgebra $\mathfrak{q}_{c,A}$ as in (9.5.3) and (9.5.4) corresponding to

$$\{i_1, \dots, i_{m-1}\} = \{k_1, \dots, k_r, \ell_1, \dots, \ell_t\}.$$
 (9.5.6) {eq:9.5.6}

We will consider the representations $\mathcal{R}_{\mathfrak{q}_{c,A}}(\xi_A)$, where ξ_A is the concatentation of the $\xi_{i_i}^{\pm}$ with + for the first r, and – for the last t.

{1:9.5} **Lemma.**

$$\mathcal{R}^i_{\mathfrak{q}_{c,A}}(\xi_A) = \left\{ egin{array}{ll} 0 & \textit{if } i
eq \dim(\mathfrak{u}_{c,A} \cap \mathfrak{k}_c), \\ & \textit{nonzero irreducible if } i = \dim(\mathfrak{u}_{c,A} \cap \mathfrak{k}_c). \end{array}
ight.$$

Proof. The vanishing part follows from [KnV], chapter V, section 7. According to proposition 5.93, it is sufficient to show that

$$\{\mathsf{eq} : \mathsf{9.5.7}\} \qquad \qquad ind_{\overline{\mathfrak{q}}_{c,A},L\cap K}^{\mathfrak{g},K}(Z_{\overline{\mathfrak{q}}_{c,A}}^{\#}) := U(\mathfrak{g}) \otimes_{\overline{\mathfrak{q}}_{c,A}} Z_{\overline{\mathfrak{q}}_{c,A}}^{\#} \qquad \qquad (9.5.7)$$

is irreducible. Here $Z_{\overline{\mathfrak{q}}_{c,A}}^{\#}$ is the 1-dimensional module corresponding to $\xi_A - \rho(\mathfrak{u}_{c,A})$, with

$$\rho(\mathfrak{u}_{c,A}):=\frac{1}{2}\sum_{\alpha\in\Delta(\mathfrak{u}_{A,c})}\alpha$$

The derived functors are normalized so that if W has infinitesimal character χ , then so do $\mathcal{R}^{i}_{\mathfrak{q}_{c}}(W)$.

But generalized Verma modules of this kind have characteristic varieties which are unions of nilpotent orbits in \mathfrak{g}_c , and multiplicities; basically the definition of the associated cycle applies. Since $\check{\mathcal{O}}$ is even, the results from [BV2] apply. The associated cycle of (9.5.8) is \mathcal{O}_c from (9.4.2), and the multiplicity is 1. Any composition factor cannot have associated cycle strictly smaller than \mathcal{O}_c . So if there is more than one factor, the multiplicity of \mathcal{O}_c must be strictly larger than 1.

To show that $\mathcal{R}_{\mathfrak{q}_{c,A}}^{\dim(\mathfrak{u}_{c,A}\cap\mathfrak{t}_c)}(\xi_A)\neq 0$, we use the bottom layer K- types defined in chapter V section 6 of [KnV]. To simplify the notation slightly, we write

{eq:9.5.8}
$$a_1 = x_{2k_1+1}, \ b_1 = x_{2k_1}, \dots, a_r = x_{2k_r}, \ b_r = x_{2k_r+1} \ r \text{ even}, \\ a_1 = x_{2k_1+1}, \ b_1 = x_{2k_1}, \dots, a_r = x_{2k_r+1}, \ b_r = x_{2k_r} \ r \text{ odd}.$$
 (9.5.8)

Let also $a := \sum a_j$, $b := \sum b_j$. Note that $|a_j - b_j| = 1$, and also |a - b| = 1. Then

$$\{ \mathsf{eq} \colon 9.5.9 \} \qquad \qquad \mu := \xi + 2 \rho(\mathfrak{u} \cap \mathfrak{s}) - \rho(\mathfrak{u}) = (1^a, 0^{p-a} \mid 1^b, 0^{p-a}) \qquad \qquad (9.5.9)$$

is dominant, therefore bottom layer. The aforementioned results then imply the nonvanishing. The derived functor module is irreducible because the multiplicity is 1.

We will need to use the intermediate parabolic subalgebras

$$\{\mathsf{eq}: 9.5.10\} \qquad \qquad \mathfrak{q}_{c,A} \subset \mathfrak{q}_{c,A}' \subset \mathfrak{g}_{c} \qquad (9.5.10)$$

with Levi components

Apply induction in stages from $\mathfrak{q}_{c,A}$ to $\mathfrak{q}'_{c,A}$ first. On the factor $\mathfrak{g}(n-a-b)$ the K- type μ in (9.5.9) is trivial, so the Langlands parameter is that of the spherical principal series. Similarly on the $u(a_j,b_j)$ assume the infinitesimal character is $\chi_j := (\max(a_j,b_j),\ldots,\min(a_j,b_j))$, and the Langlands parameter is that of a principal series with the appropriate 1-dimensional Langlands subquotient. Let $\mathfrak{h} \subset \mathfrak{h}_A \subset \mathfrak{l}'_{c,A}$ be the most split Cartan subalgebra. In particular the real roots are

$$\alpha_d := \epsilon_d + \epsilon_{d+p}, \quad \sum_{j \leq s} a_j < d < \sum_{j \leq s} a_j + \min(a_j, b_j), \quad 0 \leq s \leq r-1. \ (9.5.12) \quad \{ \text{eq:} 9.5.12 \}$$

For each factor $u(a_j, b_j)$ the Langlands parameter is of the form λ_j, ν_j where $\lambda_j \in \mathfrak{h}_A \cap \mathfrak{k}_c$, and $\nu_j \in \mathfrak{h}_A \cap \mathfrak{s}_c$. Then

$$\lambda_j = (1/2^{a_j} \mid 1/2^{b_j}),$$
 (9.5.13) {eq:9.5.13}

while

$$\langle \nu_j, \alpha_d \rangle = \max(a_j, b_j) - (d - \sum_{j \le s} a_j)$$
 (9.5.14) {eq:9.5.14}

{p:9.5}

Proposition. The representations $\mathcal{R}_{\mathfrak{q}_{c,A}}^{\dim(\mathfrak{u}_{c,A}\cap\mathfrak{k}_c)}(\xi_A)$ have Langlands parameters (λ^G, ν) where λ^G is obtained by concatenating the λ_j in (9.5.13) and ν satisfies (9.5.14).

Proof. There is a nonzero map $X_{l'_c}(\lambda^G, -\nu) \longrightarrow L_{l'}(\lambda^G, -\nu)$ given by the Langlands classification. Thus there is a map

$$\mathcal{R}_{\mathbf{q}'_c, L' \cap K}^{\dim \mathfrak{k}_c \cap \mathbf{u}'_c}[X_{\mathfrak{l}'}(\lambda^G, -\nu)] \longrightarrow \\
\longrightarrow \mathcal{R}_{\mathbf{q}'_c, L' \cap K}^{\dim \mathfrak{k}_c \cap \mathbf{u}'_c}(L_{\mathfrak{l}'_c}(\lambda^G, -\nu)) = \mathcal{R}_{\mathbf{q}_c, L \cap K}^{\dim \mathfrak{k}_c \cap \mathbf{u}_c}(\xi_A), \tag{9.5.15}$$

which is nonzero on the bottom layer K-type (9.5.9). On the other hand, because these are standard modules,

$$\mathcal{R}_{\mathfrak{q}}^{i}(X_{\mathfrak{l}'}(\lambda^{G},\nu)) = \begin{cases} X(\lambda^{G},\nu) & \text{if } i = \dim \mathfrak{k}_{c} \cap \mathfrak{u}_{c}, \\ 0 & \text{otherwise.} \end{cases}$$
(9.5.16) {eq:9.5.16}

The proof follows.

{sec:9.6}

9.6.

Theorem. The spherical unipotent representations $L(\chi_{\check{O}})$ are unitary.

Proof. Write $\mathfrak{g}(n)$ for the Lie algebra containing \mathcal{O} . There is a (real) parabolic subalgebra \mathfrak{p}^+ with Levi component $\mathfrak{m}^+ := gl(n_1) \times \cdots \times gl(n_k) \times \mathfrak{g}(n)$ in \mathfrak{g}^+ of rank $n_1 + \cdots + n_k + n$, such that the split form \mathcal{O}^+_{snl} of

$$\mathcal{O}_c^+ := (1, 1, 3, 3, \dots, 2m - 1, 2m - 1, 2m + 1)$$

is induced from \mathcal{O} on $\mathfrak{g}(n)$, trivial on the gl's. We will consider the representation

$$\{\texttt{eq:9.6.1a}\} \hspace{1cm} I(\pi) := Ind_{\mathfrak{m}^+}^{\mathfrak{g}^+}[triv \otimes \cdots \otimes triv \otimes \pi]. \hspace{1cm} (9.6.1)$$

We show that the form on $I(\pi)$ induced from π is positive definite; this implies that the form on π is definite. We do this by showing that the possible factors of $I(\pi)$ have to be unitary, and the forms on their lowest K-types are positive definite.

Combining proposition 9.2 with (9.2.3), we conclude that there are $3^m \cdot 2^m$ unipotent representations in the block of the spherical irreducible representation; all the factors of $I(\pi)$ are in this block. The number 3^m also equals the number of real forms of \mathcal{O}^+ . We describe how to get $3^m \cdot 2^m$ representations. For each \mathcal{O}_j^+ , we produce one representation π such that $AC(\pi) = \overline{\mathcal{O}_j^+}$. Then theorem 9.3 implies that there is a Harish-Chandra cell with 2^m representations with this property. Since these cells must be disjoint, this gives the required number.

From section 9.1, each such form \mathcal{O}_j^+ is θ -stable induced from the trivial nilpotent orbit on a parabolic subalgebra with Levi component a real form of $gl(1) \times gl(3) \times \cdots \times gl(2m-1) \times \mathfrak{g}_c(m)$. Using the results in [KnV], for each such parabolic subalgebra, we can find a derived functor induced module from an appropriate 1-dimensional character, that is nonzero and has associated variety equal to the closure of the given real form. Actually it is enough to construct this derived functor module at regular infinitesimal character where the fact that it is nonzero irreducibile is considerably easier. The results listed in section 9.3 imply that there are 2^m distinct representations in this cell which are nonzero distinct when we apply translation functors to infinitesimal character $\lambda_{\tilde{O}^+}$.

So in this block, there is a cell for each real form of \mathcal{O}^+ , and each cell has 2^m irreducible representations with infinitesimal character $\chi_{\check{\mathcal{O}}}$. In particular for \mathcal{O}_{spl} , the Levi component is $u(1,0) \times u(1,2) \times u(3,2) \times \cdots \times so(m,m+1)$. For this case, section 9.5 produced exactly 2^m parameters; their lowest K-types are of the form $\mu_e(n-k,k)$. These are the only possible constituents of the induced from $L(\chi_{\check{\mathcal{O}}})$. Since the constituents of the restriction of a $\mu_e(n-k,k)$ to a Levi component are again $\mu_e(m-l,l)$'s, the only way $L(\chi_{\check{\mathcal{O}}})$ can fail to be unitary is if the form is negative on one of the K-types

 $\mu_e(n-k,k)$. But sections 5 and 6.2 show that the form is positive on the K-types μ_e of $L(\chi_{\mathcal{O}})$.

10. Irreducibility

{sec:10}1}

10.1. To complete the classification of the unitary dual we also need to prove the following theorem.

{t:10.1}

Theorem. Assume $\check{\mathcal{O}}$ is even, and such that $x_{i-1} = x_i = x_{i+1}$ for some i. Let $\mathfrak{m} = gl(x_i) \times \mathfrak{g}(n-x_i)$, and $\check{\mathcal{O}}_1 \subset \mathfrak{g}(n-x_i)$ be the nilpotent orbit obtained from O by removing two rows of size x_i . Then

$$L(\chi_{\check{\mathcal{O}}}) = Ind_{GL(x_i) \times G(n-x_i)}^{G(n)}[triv \otimes L(\chi_{\check{\mathcal{O}}_1})].$$

In the p-adic case this follows from the work of Kazhdan-Lusztig ([BM1]). In the real case, it follows from the following proposition.

{p:10.1}

Proposition. The associated variety of a spherical representation $L(\chi_{\tilde{O}})$ is given by the sum with multiplicity one of the following nilpotent orbits.

Type B, D: On the odd sized rows, the difference between the number of +'s and number of -'s is 1, 0 or -1.

Type C: On the even sized rows, the difference between the number of +'s and number of -'s is 1, 0 or -1.

The proof of the proposition is lengthy, and follows from more general results which are unpublished ([B5]). We will give a different proof of theorem 10.1 in the next sections.

Remark. When $\check{\mathcal{O}}_1$ is even, but $\check{\mathcal{O}}$ is not, and just $x_i = x_{i+1}$, the proof follows from [BM1] in the p-adic case, and the Kazhdan-Lusztig conjectures for nonintegral infinitesimal character in the real case. We have already used these results in the course of the paper.

The outline of the proof is as follows. In section 2, we prove some auxiliary reducibility results in the case when \mathcal{O} is induced from the trivial nilpotent orbit in a maximal Levi component. In section 3, we combine these results with intertwining operator techniques to complete the proof of theorem 10.1.

 $\{sec: 10.2\}$

10.2. We need to study the ρ -induced modules from the trivial module on $\mathfrak{m} \subset \mathfrak{g}(n)$ where $\mathfrak{m} \cong gl(n)$, or $\mathfrak{m} \cong gl(a) \times \mathfrak{g}(b)$,

Type B. The nilpotent orbit \mathcal{O} corresponds to the partition $2x_0 = 2x_1 = 2a$, in $sp(n,\mathbb{C})$. The infinitesimal character is $(-a+1/2,\ldots,a-1/2)$ and the nilpotent orbit \mathcal{O}_c corresponds to $(1, 1, \underbrace{2, \dots, 2}_{2a-2}, 3)$. We are interested in the

composition series of

$$Ind_{GL(2a)}^{G(2a)}[triv].$$
 (10.2.1) {eq:10.2.1o}

There are three real forms of \mathcal{O}_c ,

The associated cycle of 10.2.1 is the middle nilpotent orbit in (10.2.2) with multiplicity 2. Section 6 shows that there are at least two factors characterized by the fact that they contain the K-types which are the restrictions to $S[O(2a+1) \times O(2a)]$ of

Thus because of multiplicity 2, there are exactly two factors. The nonspherical factor has Langlands parameter

$$\lambda^G = (1/2, 0, \dots, 0 \mid 0, \dots, 0), \nu = (0, a - 1/2, a - 1/2, \dots, 3/2, 3/2, 1/2).$$
 (10.2.4)

The Cartan subalgebra for the parameter is such that the root ϵ_1 is non-compact imaginary, $\epsilon_i, \epsilon_i \pm \epsilon_j$ with $j > i \geq 2$, are real. The standard module $X(\lambda^G, \nu)$ which has $\overline{X}(\lambda^G, \nu)$ as quotient is the one for which ν is dominant. Thus we take the Cartan subalgebra such that ϵ_{2a} is noncompact imaginary, $\epsilon_i, \epsilon_i \pm \epsilon_j$ with i < j < 2a are real, and the usual positive system $\delta^+ = \{\epsilon_i, \epsilon_i \pm \epsilon_j\}_{i < j}$.

Type C. The nilpotent orbit $\check{\mathcal{O}}$ corresponds to the partition $2x_0 = 2x_1 = 2a + 1 < 2x_2 = 2b + 1$ in $so(n, \mathbb{C})$. The infinitesimal character is

$$\{ \mathsf{eq} \colon \mathsf{10.2.2} \} \qquad \qquad (-a, \dots, a) (-b, \dots, -1) \qquad (10.2.5)$$

The nilpotent orbit \mathcal{O}_c is induced from the trivial one on $gl(2a+1) \times \mathfrak{g}_c(b)$ and corresponds to

$$\{eq: 10.2.3a\} \qquad \underbrace{(\underbrace{1,\ldots,1}_{2b-2a-2},2,\underbrace{3,\ldots,3}_{2a})}. \tag{10.2.6}$$

We are interested in the composition series of

$$\{ \texttt{eq:10.2.4a} \} \hspace{1.5cm} Ind_{GL(2a+1)\times G(b)]}^{G(2a+b+1)}[triv]. \hspace{1.5cm} (10.2.7)$$

There are three real forms of (10.2.6),

The AC cycle of (10.2.7) consists of the middle nilpotent orbit in (10.2.8) with multiplicity 2. By a similar argument as for type B, we conclude that the composition series consists of the representations with parameters

$$\begin{array}{l} (\ \underline{b}^+, \dots, \underline{a+1}^+, \underline{a}^+, \underline{a}^+, \underline{a}^+, \underline{a}^+, \dots, \underline{1}^+, \underline{1}^+, \underline{1}^+, \underline{0}^+ \), \\ (\ \underline{b}^+, \dots, \underline{a+1}^+, \underline{a}, -a+1, \dots, \underline{1}, \underline{0}, \underline{0} \), \end{array}$$

with lowest K-types

$$(0, \dots, 0, \dots, 0), \underbrace{(1, \dots, 1, \underbrace{0, \dots, 0}_{b-1}, \underbrace{-1, \dots, -1}_{a+1})}.$$
 (10.2.10) {eq:10.2.4c}

Type D. The nilpotent orbit $\check{\mathcal{O}}$ corresponds to the partition $2x_0 = 2x_1 = 2a + 1$ in $so(n, \mathbb{C})$. The infinitesimal character is $(-a, \ldots, a)$. The real forms of the nilpotent orbit \mathcal{O} are

There are two nilpotent orbits with this partition labelled I, II. Each of them is induced from $\mathfrak{m} \cong gl(2a)$, there are two such Levi components. We are interested in the induced modules

$$Ind_{GL(2a)}^{G(2a)}[triv].$$
 (10.2.12) {eq:10.2.6}

The multiplicity of the nilpotent orbit (10.2.11) in the AC cycle of (10.2.12) is 1, so the representations are irreducible.

We summarize these calculations in a proposition.

 $\{p:10.2\}$

Proposition. The composition factors of the induced module from the trivial representation on \mathfrak{m} all have relevant lowest K-types. In particular, the induced module is generated by spherically relevant K-types. Precisely,

Type B: the representation is generated by the μ_e ,

Type C: the representation is generated by the μ_o ,

Type D: the representation is generated by $\mu_e(0) = \mu_o(0)$.

{sec10:3}

10.3. We now prove the irreducibility result mentioned at the beginning of the section in the case of type B; the other cases are similar. Let $\chi_{\tilde{\mathcal{O}}_1}$ be the nilpotent orbit where we have removed one string of size 2a. Let $\mathfrak{m} := gl(2a) \times \mathfrak{g}(n-2a)$. Then $L(\chi_{\tilde{\mathcal{O}}})$ is the spherical subquotient of the induced representation

$$\{ \text{eq:10.3.1} \} \hspace{1cm} I(a,L(\chi_{\check{\mathcal{O}}_1})) := Ind^{\mathfrak{g}}_{\mathfrak{m}}[(-a+1/2,\ldots,a-1/2) \otimes L(\chi_{\check{\mathcal{O}}_1})]. \hspace{1cm} (10.3.1)$$

It is enough to show that if a parameter is unipotent, and satisfies $x_{i-1} = x_i = x_{i+1} = a$, then $I(a, L(\chi_{\mathcal{O}_1}))$ is generated by its K-types of the form μ_e . This is because by theorem 5.3, the K-types of type μ_e in (10.3.1) occur with full multiplicity in the spherical irreducible subquotient, and the module is unitary.

First, we reduce to the case when there are no $0 < x_j < a$. Let ν be the dominant parameter of $L(\chi_{\mathcal{O}})$, and assume i is the smallest index so that $x_{i-1} = a$. There is an intertwining operator

{eq:10.3.2}
$$X(\nu) \longrightarrow I(1/2, \dots, x_0 - 1/2; \dots; 1/2, \dots, x_{i-2} - 1/2; \nu')$$
 (10.3.2)

where I is induced from $gl(x_0) \times \cdots \times gl(x_{i-2}) \times g(n - \sum_{j < i-1} x_j)$ with characters on the gl's corresponding to the strings in (10.3.2) and the irreducible module $L(\nu')$ on $\mathfrak{g}(n - \sum_{j < i-1} x_j)$. The intertwining operator is onto, and thus the induced module is generated by its spherical vector. By the induction hypothesis, the induced module from $(-a+1/2,\ldots,a-/2)\otimes L(\nu'')$ on $gl(2a) \times \mathfrak{g}(n - \sum_{j < i} x_j)$ is irreducible. But

$$I(1/2, \dots, x_0 - 1/2; \dots; 1/2, \dots, x_{i-2} - 1/2; -a + 1/2, \dots, a - 1/2; \nu'') \cong I(-a + 1/2, \dots, a - 1/2; 1/2, \dots, x_0 - 1/2; x \dots; 1/2, \dots, x_{i-2} - 1/2, \nu'')$$

$$(10.3.3)$$

{eq:10.3.3}

This module maps by an intertwining operator onto $I(a, L(\chi_{\mathcal{O}_1}))$, so this module is generated by its spherical vector.

So we have reduced to the case when

Suppose m=1, so we are in the first case. The infinitesimal character is

$$(a-1/2, a_1/2, a-1/2, \ldots, 1/2, 1/2, 1/2),$$

each coordinate occurring three times. The induced module

{eq:10.3.5}
$$I(-a+1/2,...,a-1/2)$$
 (10.3.5)

of $\mathfrak{g}(2a)$ is a direct sum of irreducible factors computed in section 10.2; in particular it is generated by K-types of the form $\mu_e(2a-k,k)$ (with k=0,1). Consider the module

$$I(a-1/2; \dots; 1/2; -a+1/2, \dots, a-1/2),$$
 (10.3.6) {eq:10.3.6}

induced from characters on $GL(1) \times \cdots \times GL(1) \times GL(2a)$. It is a direct sum of induced modules from the two factors of (10.3.5). Each such induced module is a homomorphic image of the corresponding standard module with dominant parameter. So (10.3.6) is also generated by its μ_e isotypic components. But then

$$I(a-1/2; \dots; 1/2; -a+1/2, \dots, a-1/2) \cong I(-a+1/2, \dots, a-1/2; a-1/2; \dots; 1/2)$$
 (10.3.7) {eq:10.3.7}

so the latter is also generated by its μ_e isotypic components. Finally, the intertwining operator

$$I(a-1/2;...;1/2) \longrightarrow I(1/2,...,a-1/2)$$
 (10.3.8) {eq:10.3.8}

is onto, and the image of the intertwining operator

$$I(1/2, \dots, a-1/2) \longrightarrow I(-a+1/2, \dots, -1/2)$$
 (10.3.9) {eq:10.3.9}

is onto L(-a + 1/2, ..., -1/2). Thus

$$I(-a+1/2,\ldots,a-1/2;L(-a+1/2,\ldots,-1/2))$$
 (10.3.10) {eq:10.3.10}

induced from $gl(2a) \times \mathfrak{g}(a)$ is generated by its μ_e isotypic components. Since the multiplicity of these K-types in the induced module is the same as in the irreducible spherical module, it follows that they must be equal.

Now suppose that m > 1 in the first case, or m > 2 in the second case. The parameter has another $x_{2m-1} \leq x_{2m}$. We use an argument similar to the one above to show that the module

$$I(-x_{2m-1}+1/2,\ldots,x_{2m}-1/2,L(\chi_{\check{\mathcal{O}}_2})),$$
 (10.3.11) {eq:10.3.11}

where O_2 is the nilpotent orbit with partition obtained from O by removing $2x_{2m-1}, 2x_{2m}$, is generated by its μ_e isotypic components. The claim then follows because the induced module is a homomorphic image of (10.3.11). Precisely, $X(\nu)$ maps onto

$$I(x_{2m-1}+1/2,\ldots,x_{2m}-1/2;1/2,\ldots,x_0-1/2;\ldots;1/2,\ldots,x_{2m-2}-1/2;\\ L(-x_{2m-1}+1/2,-x_{2m-1}+1/2,\ldots,-1/2,-1/2))$$

$$(10.3.12) \quad \{\text{eq:}10.3.12\}$$

So this module is generated by its spherical vector. Replace $L(-x_{2m-1} + 1/2, -x_{2m-1} + 1/2, \dots, -1/2, -1/2)$ by $I(-x_{2m-1} + 1/2, \dots, x_{2m-1} - 1/2)$. The ensuing module is a direct sum of two induced modules by section 10.2.

They are both homomorphic images of standard modules, so generated by their lowest K-types, which are of type μ_e . Next observe that the map

$$I(x_{2m-1}+1/2,\ldots,x_{2m}-1/2;1/2,\ldots,x_0-1/2;\ldots;1/2,\ldots,x_{2m-2}-1/2;$$

$$-x_{2m-1}+1/2,\ldots,x_{2m-1}-1/2) \longrightarrow$$

$$I(-x_{2m-1}+1/2,\ldots x_{2m}-1/2;1/2,\ldots,x_0-1/2;\ldots;1/2,\ldots,x_{2m-2}-1/2) \tag{10.3.13}$$

is onto. So the target module is generated by its μ_e isotypic components. The module

{eq:10.3.14}
$$I(1/2, \dots, x_0 - 1/2; \dots; 1/2, \dots, x_{2m-2} - 1/2)$$
 (10.3.14)

(the string $-x_{2m-1}+1/2, \ldots, x_{2m}-1/2$ removed) has $L(-x_{2m-2}+1/2, \ldots, 1/2)$ as its unique irreducible quotient, because it is the homomorphic image of an $X(\nu)$ with ν dominant. Therefore it is generated by its spherical vector. Combining this with the induction assumption, we conclude that

{eq:10.3.15}
$$I(-x_{2m-1}+1/2,...,x_{2m}-1/2;-a+1/2,...,a-1/2;L(\check{\mathcal{O}}_3))$$
 (10.3.15) is generated by its μ_e isotypic components. It is isomorphic to

{eq:10.3.16}
$$I(-a+1/2,...,a-1/2;-x_{2m-1}+1/2,...,x_{2m}-1/2;L(\tilde{\mathcal{O}}_3)).$$
 (10.3.16) Finally, the multiplicities of the μ_e isotypic components of $I(-x_{2m-1}+1/2,...,x_{2m}-1/2;L(\check{\mathcal{O}}_3))$ are the same as for the irreducible subquotient $L(\check{\mathcal{O}}_1)$). This completes the proof of the claim in this case.

Remains to consider the case when m = 2 and $x_0 = 0 < x_1 = x_2 = x_3 = a \le x_4$. In this case, the module

{eq:10.3.17}
$$I(a+1/2,...,x_4-1/2;-a+1/2,...,a-1/2;-a+1/2,...,a-1/2)$$
 (10.3.17) is generated by its μ_e isotypic components because of proposition 10.2, and arguments similar to the above. Therefore the same holds for

{eq:10.3.18}
$$I(-a+1/2,\ldots,x_4-1/2;-a+1/2,\ldots,a-1/2), \qquad (10.3.18)$$

which is a homomorphic image via the intertwining operator which interchanges the first two strings. But this is isomorphic to

$$\{ \texttt{eq:10.3.19} \} \hspace{1.5cm} I(-a+1/2,\ldots,a-1/2,-a+1/2,\ldots,x_4-1/2). \hspace{1.5cm} (10.3.19)$$

Then $I(-a+1/2,\ldots,a-1/2,L(-x_4+1/2,\ldots,-1/2,-1/2)$ is a homomorphic image of (10.3.19) so it is generated by its μ_e isotypic components. By section 5.3, the multiplicities of the μ_e isotypic components are the same in $I(-a+1/2,\ldots,a-1/2,L(-x_4+1/2,\ldots,-1/2,-1/2)$ as in $L(\chi_{\mathcal{O}})$. This completes the proof of theorem 10.1.

References

- [ABV] J. Adams, D. Barbasch, D. Vogan, The Langlands classification and irreducible characters of real reductive groups, Progress in Mathematics, Birkhäuser, Boston-Basel-Berlin, (1992), vol. 104.
- [BB] D. Barbasch, M. Bozicevic *The associated variety of an induced representa*tion proceedings of the AMS 127 no. 1 (1999), 279-288

- [B1] D. Barbasch, The unitary dual of complex classical groups, Inv. Math. 96 (1989), 103-176.
- [B2] D. Barbasch, Unipotent representations for real reductive groups, Proceedings of ICM, Kyoto 1990, Springer-Verlag, The Mathematical Society of Japan, 1990, pp. 769-777.
- [B3] D. Barbasch, The spherical unitary dual for split classical p-adic groups, Geometry and representation theory of real and p-adic groups (J. Tirao, D. Vogan, and J. Wolf, eds.), Birkhauser-Boston, Boston-Basel-Berlin, 1996, pp. 1-2.
- [B4] D. Barbasch, Orbital integrals of nilpotent orbits, Proceedings of Symposia in Pure Mathematics, vol. 68, (2000) 97-110.
- [B5] D. Barbasch, The associated variety of a unipotent representation preprint
- [B6] D. Barbasch Relevant and petite K-types for split groups, Functional Analysis VIII, D. Bakić et al, Various publication series no 47, Ny Munkegade, bldg530, 800 Aarhus C. Denmark.
- [B7] D. Barbasch A reduction theorem for the unitary dual of U(p,q) in volume in honor of J. Carmona, Birkhäuser, 2003, 21-60
- [B] A. Borel Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Inv. Math., vol. 35, 233-259, 1976
- [BC1] D. Barbasch, D. Ciubotaru Spherical unitary principal series, preprint to appear in Quarterly Journal of Mathematics.
- [BC2] _____Spherical unitary dual for exceptional groups of type E, preprint
- [BM1] D. Barbasch and A. Moy A unitarity criterion for p-adic groups, Inv. Math. 98 (1989), 19-38.
- [BM2] _____, Reduction to real infinitesimal character in affine Hecke algebras, Journal of the AMS 6 no. 3 (1993), 611-635.
- [BM3] _____, Unitary spherical spectrum for p-adic classical groups, Acta Applicandae Math 5 no. 1 (1996), 3-37.
- [BS] D. Barbasch, M. Sepanski Closure ordering and the Kostant-Sekiguchi correspondence, Proceedings of the AMS 126 no. 1 (1998), 311-317.
- [BV1] D. Barbasch, D. Vogan The local structure of characters J. of Funct. Anal. 37 no. 1 (1980) 27-55
- [BV2] D. Barbasch, D. Vogan Unipotent representations of complex semisimple groups Ann. of Math., 121, (1985), 41-110
- [BV3] D. Barbasch, D. Vogan Weyl group representation and nilpotent orbits Representation theory of reductive groups (Park City, Utah, 1982), Progr. Math., 40, Birkhuser Boston, Boston, MA, (1983), 21-33.
- [CM] D. Collingwood, M. McGovern Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., New York, (1993).
- [D] D. Djokovic Closures of conjugacy classes in classical real linear Lie groups II Trans. Amer. Math. Soc. 270 no. 1, (1982), 217-252.
- [K] A. Knapp Representation theory of real semisimple groups: an overview based on examples Princeton University Press, Princeton, New Jersey (1986)
- [KnV] A. Knapp, D. Vogan Cohomological induction and unitary representations Princeton University Press, Princeton Mathematical Series vol. 45, 1995.
- [L1] G. Lusztig Characters of reductive groups over a finite field Annals of Math. Studies, Princeton University Press vol. 107.
- [LS] G. Lusztig, N. Spaltenstein Induced unipotent classes J. of London Math. Soc. (2), 19 (1979), 41-52
- [McG] W. McGovern Cells of Harish-Chandra modules for real classical groups Amer. Jour. of Math., 120, (1998), 211-228.
- [SV] W. Schmid, K. Vilonen Characteristic cycles and wave front cycles of representations of reductive groups, Ann. of Math., 151 (2000), 1071-1118.
- [Stein] E. Stein Analysis in matrix space and some new representations of $SL(n, \mathbb{C})$ Ann. of Math. 86 (1967) 461-490

- [T] M. Tadic Classification of unitary representations in irreducible representations of general linear groups, Ann. Sci. École Norm. Sup. (4) 19, (1986) no. 3, 335-382.
- [V1] D. Vogan The unitary dual of GL(n) over an archimedean field, Inv. Math., 83 (1986), 449-505.
- [V2] _____Irreducible characters of semisimple groups IV Duke Math. J. 49, (1982), 943-1073
- [V3] ______Representations of real reductive Lie groups Progress in Mathematics, vol. 15, (1981) , Birkhäuser, Boston-Basel-Stuttgart
- [Weyl] H. Weyl The classical groups: Their invariants and Representations, Princeton Landmarks in Mathematics, Princeton University Press, Princeton NJ, 1997
- [ZE] A. Zelevinsky Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Sci. cole Norm. Sup. (4) 13 no. 2 165-210
 - (D. Barbasch) DEPT. OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14850 $E\text{-}mail\ address:\ barbasch@math.cornell.edu$