
August 10, 2007UNITARY SPHERICAL SPECTRUM FOR SPLITCLASSICAL GROUPSDAN BARBASCH1. Introduction fsec:1gThis paper gives a omplete classi�cation of the spherical unitary dual ofthe split groups Sp(n) and So(n) over the real and p�adic �eld. Most of theresults were known earlier from [B1], [B2], [B3] and [BM3]. As is explained inthese references, in the p�adic case the classi�cation of the spherical unitarydual is equivalent to the classi�cation of the unitary generic (in the senseof admitting Whittaker models) Iwahori-spherical modules. The new resultis the proof of necessary conditions for unitarity in the real case. Followinga suggestion of D. Vogan, I �nd a set of K�types which I call relevantwhich detect the nonunitarity. They have the property that they are in 1-1correspondence with certain irreducible Weyl group representations (calledrelevant) so that the intertwining operators are the same in the real andp�adic case. The fact that these relevant W�types detect unitarity in thep�adic case is also new. Thus the same proof applies in both cases. Sincethe answer is independent of the �eld, this establishes a form of the Lefschetzprinciple.Let G be a split symplectic or orthogonal group over a local �eld F whichis either R or a p�adic �eld. Fix a maximal compact subgroup K: In thereal case, there is only one conjugacy class. In the p�adic case, F � R � P;where R is the ring of integers and P the maximal prime ideal. We �xK = G(R): Fix also a rational Borel subgroup B = AN: Then G = KB;and denote by M := K \ B: A representation (�; V ) (admissible) is calledspherical if V K 6= (0):The classi�cation of irreducible admissible spherical modules is well known.For every irreducible spherical �; there is a character � 2 bA such that�jA\K = triv; and � is the unique spherical subquotient of IndGB [�
11]:Wewill call a character � whose restriction to A\K is trivial, unrami�ed. WriteX(�) for the induced module (principal series) and L(�) for the irreduciblespherical subquotient. Two such modules L(�) and L(�0) are equivalent ifand only if there is an element in the Weyl group W such that w� = �0: AnL(�) admits a nondegenerate hermitian form if and only if there is w 2 Wsuch that w� = ��:The character � is called real if it takes only positive real values. Forreal groups, � is real if and only if L(�) has real in�nitesimal character ([K],1



2 DAN BARBASCHchapter 16). As is proved there, any unitary representation of a real re-ductive group with nonreal in�nitesimal character is unitarily induced froma unitary representation with real in�nitesimal character on a proper Levicomponent. So for real groups it makes sense to consider only real in�ni-tesimal character. In the p�adic case, � is called real if the in�nitesimalcharacter is real in the sense of [BM2]. The results in [BM1] show that theproblem of determining the unitary irreducible representations with Iwa-hori �xed vectors is equivalent to the same problem for the Iwahori-Heckealgebra. In [BM2], it is shown that the problem of classifying the unitarydual for the Hecke algebra reduces to determining the unitary dual with realin�nitesimal character of some smaller Hecke algebra (not necessarily onefor a proper Levi subgroup). So for p�adic groups as well it is su�cient toconsider only real �:So we start by parametrizing real unrami�ed characters of A: Since G issplit, A �= (F�)n where n is the rank. De�ne
a� = X�(A)
Z R; (1.0.1)feq:1.1g where X�(A) is the lattice of characters of the algebraic torus A: Eachelement � 2 a� de�nes an unrami�ed character �� of A, characterized bythe formula ��(�(f)) = jf jh�;�i; f 2 F�; (1.0.2)feq:1.2g where � is an element of the lattice of one parameter subgroupsX�(A): Sincethe torus is split, each element ofX�(A) can be regarded as a homomorphismof F� into A: The pairing in the exponent in (1.0.2) corresponds to thenatural identi�cation of a� with Hom[X�(A);R]: The map � �! �� from a�to real unrami�ed characters of A is an isomorphism. We will often identifythe two sets writing simply � 2 a�:Let �G be the (complex) dual group, and let �A be the torus dual to A:Then a� is canonically isomorphic to �a
RC; the Lie algebra of �A: So we canregard � as an element of �a: We attach to each � a nilpotent orbit �O(�) asfollows. By the Jacobson-Morozov theorem, there is a 1-1 correspondencebetween nilpotent orbits �O and �G-conjugacy classes of Lie triples f�e; �h; �fg;the correspondence satis�es �e 2 �O. Choose the Lie triple such that �h 2 �a:Then there are many �O such that � can be written as w� = �h=2 + � with� 2 z(�e; �h; �f); for example this is always possible with �O = (0): The resultsin [BM1] guarantee that for any � there is a unique �O(�) satisfying(1) there exists w 2W such that w� = 12�h+ � with � 2 z(�e; �h; �f);(2) if � satis�es property (1) for any other �O0; then �O0 � �O(�):Here is another characterization of the orbit �O: Let�g1 := f x 2 �g : [�; x] = x g; �g0 := fx 2 �g : [�; x] = 0 g:Then �G0, the Lie group corresponding to the Lie algebra �g0 has an opendense orbit in �g1: Its �G saturation in �g is �O(�):



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 3The pair ( �O(�); �) has further nice properties. For example assume that� = 0 in (1) above. Then the representation L(�) is one of the parametersthat the Arthur conjectures predict to play a role in the residual spectrum.In particular, L(�) should be unitary. In the p�adic case one can verifythe unitarity directly as follows. In [BM1] it is shown how to calculatethe Iwahori-Matsumoto dual of L(�) in the Kazhdan-Lusztig classi�cationof representations with Iwahori-�xed vector. It turns out that in the case� = 0; it is a tempered module, and therefore unitary. Since the resultsin [BM1] show that the Iwahori-Matsumoto involution preserves unitarity,L(�) is unitary as well. In the real case, a direct proof of the unitarity ofL(�) (still with � = 0 as in (1) above) is given in [B3], and in section 9 ofthis paper.In the classical Lie algebras, the centralizer z(�e; �h; �f) is a product of sym-plectic and orthogonal Lie algebras. We will often abbreviate it as z( �O): Theorbit �O is called distinguished if z( �O) does not contain a nontrivial torus;equivalently, the orbit does not meet any proper Levi component. Let �mBCbe the centralizer of a Cartan subalgebra in z( �O): This is the Levi compo-nent of a parabolic subalgebra. The subalgebra �mBC is the Levi subalgebraattached to �O by the Bala-Carter classi�cation of nilpotent orbits. The in-tersection of �O with mBC is the other datum attached to �O; a distinguishedorbit in �mBC : We will usually denote it �mBC( �O) if we need to emphasizethe dependence on the nilpotent orbit. Let MBC � G be the Levi subgroupwhose Lie algebra mBC has �mBC as its dual.The parameter � gives rise to a spherical irreducible representation LMBC (�)onMBC as well as a L(�): Then L(�) is the unique spherical irreducible sub-quotient of IMBC (�) := IndGMBC [LMBC (�)]: (1.0.3) feq:1.3gTo motivate why we consider MBC( �O); we need to recall some facts aboutthe Kazhdan-Lusztig classi�cation of representations with Iwahori �xed vec-tors in the p-adic case. Denote by � the Iwahori-Matsumoto involution.Then the space of Iwahori �xed vectors of �(L(�)) is a W�representation(see 5.2), and contains the W�representation sgn: Irreducible representa-tions with Iwahori-�xed vectors are parametrized by Kazhdan-Lusztig data;these are �G conjugacy classes of (�e; �;  ) where �e 2 �g is such that [�; �e] = �e;and  is an irreducible representation of the component group A(�; �e): Toeach such parameter there is associated a standard module X(�e; �;  ) whichcontains a unique irreducible submodule L(�e; �;  ): All other factors haveparameters (�e0; �0;  0) such that�O(�e) � �O(�e0); �O(�e) 6= �O(�e0):As explained in section 4 and 8 in [BM1], X(�e0; �0;  0) contains sgn if andonly if  0 = triv: Thus if we assume �O satis�es (1) and (2) with respectto �, it follows that X(�e; �; triv) = L(�e; �; triv): We would like it to equalIMBC but this is not true. In general (for an M which contains MBC),



4 DAN BARBASCHL(�e; �; triv) = IndGM [XM (�e; �; triv)] if and only if the component AM (�e; �)equals the component group A(�e; �): We will enlarge MBC( �O) to an MKLso that AMKL(�e; �) = A(�e; �): Note that if �mBC � �m � �m0, then AM (�e; �) �AM 0(�e; �). ThenIndGMKL [XMKL(�e; �; triv)] = X(�e; �; triv) = L(�e; �; triv) (1.0.4)feq:1.4g and L(�) = IMKL(�) := IndGMKL [LMKL(�)] (1.0.5)feq:1.5g follows by applying � . We remark that MKL depends on � as well as �e: Itwill be described explicitly in section 2. A more general discussion abouthow canonical �mKL is, appears in [BC1].In the real case, we use the same Levi components as in the p�adic case.Then equality (1.0.5) does not hold for any proper Levi component. A resultessential for the paper is that equality does hold at the level of multiplicitiesof the relevant K�types (section 4.2).We will use the data ( �O; �) to parametrize the unitary dual. Fix an �O:A representation L(�) will be called a complementary series attached to �O;if it is unitary, �O(�) = �O: To describe it, we need to give the set of � suchthat L(�) with � = �h=2 + � is unitary. Viewed as an element of z( �O); theelement � gives rise to a spherical parameter ((0); �) where (0) denotes thetrivial nilpotent orbit. The main result in section 3.2 says that the � givingrise to the complementary series for �O coincide with the ones giving rise tothe complementary series for (0) on z( �O): This is suggestive of Langlandsfunctoriality.It is natural to conjecture that such a result will hold for all split groups.Recent work of D. Ciubotaru for F4; and by D. Ciubotaru and myself forthe other exceptional cases, show that this is generally true, but there areexceptions.I give a more detailed outline of the paper. Section 2 reviews notationfrom earlier papers. Section 3 gives a statement of the main results. Arepresentation is called spherical unipotent if its parameter is of the form�h=2 for the neutral element of a Lie triple associated to a nilpotent orbit�O: The unitarity of the spherical unipotent representations is dealt with insection 8. For the p�adic case I simply cite [BM3]. The real case (sketchedin [B2]) is redone in section 9.5. The proofs are simpler than the originalones because I take advantage of the fact that wave front sets, asymptoticsupports and associated varieties \coincide" due to [SV]. Section 10.1 provesan irreducibility result in the real case which is clear in the p�adic casefrom the work of Kazhdan-Lusztig. This is needed for determining thecomplementary series (de�nition 3.1 in section 3.1).Sections 4 and 5 deal with the nonunitarity. The decomposition � =�h=2 + � is introduced in section 3. It is more common to parametrize the



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 5� by representatives in �a which are dominant with respect to some posi-tive root system. We use Bourbaki's standard realization of the positivesystem. It is quite messy to determine the data ( �O; �) from a dominant pa-rameter, because of the nature of the nilpotent orbits and the Weyl group.Sections 2.3 and 2.8 give a combinatorial description of ( �O; �) starting froma dominant �:In the classical cases, the orbit �O is given in terms of partitions. To sucha partition we associate the Levi component�mBC := gl(a1)� � � � � gl(ak)� �g0(n0)given by the Bala-Carter classi�cation. (The �g0 in this formula is not relatedto the one just after conditions (1) and (2). The intersection of �O with �mBCis an orbit of the form (a1)� � � � � (ar)� �O0where �O0 is a distinguished nilpotent orbit, and (ai) is the principal nilpotentorbit on gl(ai): This is the distinguished orbit associated to �O by Bala-Carter. Then � gives rise to irreducible spherical modules LM (�); L(�)and IM (�) as in (1.0.3) and (1.0.5). The module L(�) is the irreduciblespherical subquotient of IM (�). As already mentioned, IMKL(�) = L(�) inthe p�adic case, but not the real case. In all cases, the multiplicities ofthe relevant K�types in L(�); IM (�) coincide. These are representations ofthe Weyl group in the p�adic case, representations of the maximal compactsubgroup in the real case. Their de�nition is in section 4.2; they are a small�nite set of representations which provide necessary conditions for unitaritywhich are also su�cient. The relationship between the real and p�adic caseis investigated in section 4, and 4.3. In particular the issue is addressed ofhow the relevant K�types allow us to deal with the p�adic case only. Amore general class of K�types for split real groups (named petite K-types),on which the intertwining operator is equal to the p-adic operator, is de�nedin [B6]. Sections 4.4, and 4.5 are included for completeness. The interestedreader can consult [B6] and [BC1] for results where these kinds of K�typesand W�types are useful.The determination of the nonunitary parameters proceeds by inductionon the rank of g and by the inclusion relations of the closure of the orbit�O: Section 5 completes the induction step; it shows that conditions (B) insection 3.1 is necessary. The last part of the induction step is actually donein section 3.1.I would like to thank David Vogan for generously sharing his ideas aboutthe relation between K�types, Weyl group representations and signatures.They were the catalyst for this paper.This research was supported by NSF grants DMS-9706758,DMS-0070561and DMS-03001712.



6 DAN BARBASCH2. Description of the spherical parameters fsec:2gf1.1g2.1. Explicit Langlands parameters. We consider spherical irreduciblerepresentations of the split connected classical groups of rank n of typeB; C; D; precisely, G = So(2n + 1); G = Sp(2n) and G = So(2n). Thesegroups will be denoted by G(n) when there is no danger of confusion (n isthe rank). Levi components will be written asM = GL(k1)� � � � �GL(kr)�G0(n0); (2.1.1)feq:1.1levig where G0(n0) is the factor of the same type as G: The Lie algebras aredenoted g(n) and m = gl(k1)� � � � � gl(kr)� g0(n0):As already explained in the introduction, we deal with real unrami�edcharacters only. In the case of classical groups, such a character can berepresented by a vector of size the rank of the group. Two such vectorsparametrize the same irreducible spherical module if they are conjugate viathe Weyl group which acts by permutations and sign changes for type B; Cand by permutations and an even number of sign changes in type D: Fora given �; let L(�) be the corresponding irreducible spherical module. Wewill occasionally refer to � as the in�nitesimal character.For any nilpotent orbit �O � �g we attach a parameter � �O 2 a� ' �a asfollows. Let f�e; �h; �fg be representatives for the Lie triple associated to anilpotent orbit �O: Then � �O := �h=2:Conversely, to each � we will attach a nilpotent orbit �O � �g and the Levicomponents MBC , MKL := GL(k1)� � � � �GL(kr)�G0(n0), along with aneven nilpotent orbit �O0 � �g0(n0) and unrami�ed characters �0 := � �O0 and�i on GL(ki). Then L(�) is the spherical subquotient ofIndGMKL [Oi L(�i)
 L(�0)]: (2.1.2)f1.1.0gf1.2ag 2.2. We introduce the following notation (a variant of the one used byZelevinski [ZE]).fd:1.1g De�nition. A string is a sequence(a; a+ 1; : : : ; b� 1; b)of numbers increasing by 1 from a to b: A set of strings is called nested iffor any two strings either the coordinates do not di�er by integers, or if theydo, then their coordinates, say (a1; : : : ; b1) and (a2; : : : ; b2); satisfya1 � a2 � b2 � b1 or a2 � a1 � b1 � b2; (2.2.1)feq:d1g or b1 + 1 < a2 or b2 + 1 < a1: ˜ (2.2.2)feq:d2g A set of strings is called strongly nested if the coordinates of any two stringseither do not di�er by integers or else satisfy (2.2.1).



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 7Each string represents a 1-dimensional spherical representation of a GL(ni)with ni = bi � ai + 1: The matchup is(a; : : : ; b) ! �� det ��a+b2 ; of GL(b� a+ 1): (2.2.3)feq:1.1.1ag In the case of G = GL(n); we record the following result. For the p�adiccase, it originates in the work of Zelevinski, and Bernstein-Zelevinski ([ZE]and references therein). To each set of strings (a1; : : : ; b1; : : : ; ak; : : : ; bk)we can attach a Levi component MBC := Q1�i�kGL(ni); and an inducedmodule I(�) := IndGL(n)MBC [OL(�i)] (2.2.4) feq:1.1.1bgwhere �i is as in (2.2.3).In general, if the set of strings is not nested, then the corresponding in-duced module is not irreducible. The coordinates of � in a� ' Rn; determinea set of nested strings as follows. Extract the longest sequence starting withthe smallest element in A1 that can form a string. Continue to extract se-quences from the remainder until there are no elements left. This set ofstrings is, up to the order of the strings, the unique set of nested strings onecan form out of the entries of �: ft:2.1gTheorem. Suppose F is p-adic. ThenL(�) = IndGL(n)M h ��det ��a1+b12 � � � � � �� det ��ar+br2 i:The nilpotent orbit �O corresponds to the partition of n with entries bi �ai + 1; it is the unique orbit satisfying (1) and (2) in the introduction, withrespect to �.For the real case (still GL(n)), the induced module in theorem 2.2 failsto be irreducible. However equality holds on the level of multiplicities ofrelevant K-types.We will generalize this procedure to the other classical groups. As before,the induced modules that we construct fail to be irreducible in the realcase. The closest result to irreducibility is equality of multiplicity of relevantK�types in the two sides of (1.0.5). fsec:2.3g2.3. Nilpotent orbits. In this section we attach a set of parameters toeach nilpotent orbit �O � �g: Let �e; �h; �f be a Lie triple so that �e 2 �O; and let
z( �O) be its centralizer. In order for � to be a parameter attached to �O werequire that � = �h=2 + �; � 2 z( �O); semisimple, (2.3.1) feq:2.3.1gbut also that if � = �h0=2 + � 0; � 0 2 z( �O0); semisimple (2.3.2) feq:2.3.2gfor another nilpotent orbit �O0 � �g; then �O0 � �O: In [BM1], it is shown thatthe orbit of �; uniquely determines �O and the conjugacy class of � 2 z( �O):We describe the pairs ( �O; �) explicitly in the classical cases.



8 DAN BARBASCHNilpotent orbits are parametrized by partitions(1; : : : ; 1| {z }r1 ; 2; : : : ; 2| {z }r2 ; : : : ; j; : : : ; j| {z }rj ; : : : ): (2.3.3) feq:2.3.3gsatisfying the following constraints.An�1: gl(n), partitions of n:Bn: so(2n+ 1), partitions of 2n+ 1 such that every even part occursan even number of times.Cn: sp(2n), partitions of 2n such that every odd part occurs an evennumber of times.Dn: so(2n), partitions of 2n such that every even part occurs an evennumber of times. In the case when every part of the partition is even,there are two conjugacy classes of nilpotent orbits with the sameJordan blocks, labelled (I) and (II). The two orbits are conjugateunder the action of O(2n):The Bala-Carter classi�cation is particularly well suited for describing theparameter spaces attached to the �O � �g: An orbit is called distinguished ifit does not meet any proper Levi component. In type A, the only distin-guished orbit is the principal nilpotent orbit, where the partition has onlyone part. In the other cases, the distinguished orbits are the ones whereeach part of the partition occurs at most once. In particular, these are evennilpotent orbits, i.e. ad �h has even eigenvalues only. Let �O � �g be an ar-bitrary nilpotent orbit. We need to put it into as small as possible Levicomponent �m: In type A, if the partition is (a1; : : : ; ak); the Levi componentis �mBC = gl(a1)�� � ��gl(ak): In the other classical types, the orbit �O meetsa proper Levi component if and only if one of the rj > 1: So separate asmany pairs (a; a) from the partition as possible, and rewrite it as((a1; a1); : : : ; (ak; ak); d1; : : : ; dl); (2.3.4)feq:2.3.4g with di < di+1: The Levi component �mBC attached to this nilpotent byBala-Carter is�mBC = gl(a1)� � � � � gl(ak)� �m0(n0); n0 := n�X ai; (2.3.5)feq:2.3.5g The distinguished nilpotent orbit is the one with partition (di) on �g(n0);principal nilpotent on each gl(aj): The � of the form �h=2 + � are the oneswith � an element of the center of �mBC : The explicit form is in (2.3.6), andwe will write out (di) and �h0=2 in sections 2.4-2.7.We will consider more general cases where we write the partition of �O inthe form (2.3.4) so that the di are not necessarily distinct, but (di) forms aneven nilpotent orbit in �g(n0): In this case � = �h=2 + � will be of the form(: : : ;�ai � 12 + �i; : : : ; ai � 12 + �i; : : : ; �h0=2); (2.3.6)feq:2.3.6g where �h0 is the neutral element of a triple corresponding to (di).



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 9The parameter � determines an irreducible spherical module L(�) for Gas well as an LM (�) for M , of the formL1(�1)
 � � � 
 Lk(�k)
 L0(�0); (2.3.7)feq:2.3.7g where the Li(�i) are one dimensional. We will consider the relation betweenthe induced module IM (�) := IndGM [LM (�)]; (2.3.8) feq:2.3.8gand L(�) for various M: fsec:2.3ag2.4. Type A. We write the �h=2 for a nilpotent �O corresponding to(a1; : : : ; ak) with ai � ai+1 as(: : : ;�ai � 12 ; : : : ; ai � 12 ; : : : ):The parameters of the form � = �h=2 + � are then(: : : ;�ai � 12 + �i; : : : ; ai � 12 + �i; : : : ): (2.4.1) f2.3a.1gConversely, given a parameter as a concatenation of strings� = (: : : ;Ai; : : : ; Bi; : : : ); (2.4.2) feq:2.3a.2git is of the form �h=2+� where �h is the neutral element for the nilpotent orbitwith partition (Ai +Bi + 1) (the parts need not be in any particular order)and �i = Ai�Bi2 . We recall the following well known result about closures ofnilpotent orbits. fl:2.3agLemma. Assume �O and �O0 correspond to the partitions (a1; : : : ; ak) andb1; : : : ; bk) respectively, where some of the ai or bj may be zero in order tohave the same number k: The following are equivalent(1) �O0 � �O:(2) Pi�s ai �Pi�s bi for all k � s � 1: fp:2.3agProposition. A parameter � as in (2.4.1) is attached to �O in the sense ofsatisfying (2.3.1) and (2.3.2) if and only if it is nested.Proof. Assume the strings are not nested. There must be two strings(A; : : : ; B); (C; : : : ;D) (2.4.3) feq:2.3a.3gsuch that A � C 2 Z, and A < C � B < D; or C = B � 1. Then byconjugating � by the Weyl group to a �0, we can rearrange the coordinatesof the two strings in (2.4.3) so that the strings(A; : : : ;D); (C; : : : B); or (A; : : : ;D): (2.4.4) feq:2.3a.4gappear. Then by the lemma, �0 = �h0=2 + � 0 for a strictly larger nilpotent�O0.Conversely, assume � = �h=2 + �, so it is written as strings, and theyare nested. The nilpotent orbit for which the neutral element is �h=2 haspartition given by the lengths of the strings, say (a1; : : : ak) in increading



10 DAN BARBASCHorder. If � is nested, then ak is the length of the longest string of entries wecan extract from the coordinates of �; ak�1 the longest string we can extractfrom the remaining coordinates and so on. Then (2) of lemma 2.4 precludesthe possibility that some conjugate �0 equals �h0=2 + � 0 for a strictly largernilpotent orbit. ˜In type A, �mKL = �mBC :fsec:2.3bg 2.5. G of Type B. Rearrange the parts of the partition of �O � sp(2n;C);in the form (2.3.4), ((a1; a1); : : : ; (ak; ak); 2x0; : : : ; 2x2m) (2.5.1)feq:2.3b.1g The di have been relabeled as 2xi and a 2x0 = 0 is added if necessary, toinsure that there is an odd number. The xi are integers, because all theodd parts of the partition of �O occur an even number of times, and werethrerefore extracted as (ai; ai): The � of the form �h=2 + � are(: : : ;�ai � 12 +�i; : : : ; ai � 12 +�i; : : : ; 1=2; : : : ; 1=2| {z }n1=2 ; : : : ; x2m � 1=2| {z }nx2m�1=2 ; : : : ; x2m�1=2):(2.5.2)feq:2.3b.2g where nl�1=2 = #fxi � lg: (2.5.3)feq:2.3b.3g Lemma 2.4 holds for this type verbatim. So the following proposition holds.fp:2.3bg Proposition. A parameter � = �h=2 + � cannot be conjugated to one of theform �h0=2 + � 0 for any larger nilpotent �O0 if and only if(1) the set of strings satisfying ai�12 +�i� aj�12 ��j 2 1=2+Z are nested.(2) the strings satisfying ai�12 + �i 2 Z satisfy the additional conditionthat either x2m + 1=2 < �ai�12 + �i or there is j such thatxj + 1=2 < �ai � 12 + �i � ai � 12 + �i < xj+1 + 1=2: (2.5.4)feq:2.3b.4g The Levi component �mKL is obtained from �mBC as follows. Consider thestrings for which ai is even, and �i = 0. If ai is not equal to any 2xj ; thenremove one pair (ai; ai), and add two 2xj = ai to the last part of (2.5.1).For example, if the nilpotent orbit is(2; 2; 2; 3; 3; 4; 4); (2.5.5)feq:2.3b.5g then the parameters of the form �h=2 + � are(� 1=2 + �1; 1=2 + �1;�1 + �2; �2; 1 + �2;� 3=2 + �3;�1=2 + �3; 1=2 + �3; 3=2 + �3; 1=2) (2.5.6)feq:2.3b.6g The Levi component is �mBC = sp(4)� gl(2)� gl(3)� gl(4). If �3 6= 0; then�mBC = �mKL: But if �3 = 0; then �mKL = sp(6)�gl(2)�gl(3): The parameteris rewritten



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 11�O  ! ((2; 2)(3; 3); 2; 4; 4) (2.5.7)feq:2.3b.7g � ! (�1=2 + �1; 1=2 + �1;�1 + �2; �2; 1 + �2; 1=2; 1=2; 1=2; 3=2; 3=2):The explanation is as follows. For a partition (2.3.3),
z( �O) = sp(r1)� so(r2)� sp(r3)� : : : (2.5.8) feq:2.3b.8gand the centralizer in �G is a product of Sp(r2j+1) and O(r2j); i.e. Sp for theodd parts, O for the even parts. Thus the component group is a product of

Z2, one for each r2j 6= 0: Then A(�; �e) = A(�; �h; �e); and so AMBC (�; �e) =A(�; �e) unless one of the �i = 0 for an even ai with the additional propertythat there is no 2xj = ai:We can rewrite each of the remaining strings(�ai � 12 + �i; : : : ; ai � 12 + �i) (2.5.9) feq:2.3b.9gas �i :=(fi + �i; fi + 1 + �i; : : : ; Fi + �i); (2.5.10) feq:2.3b.10gsatisfyingfi 2 Z+ 1=2; 0 � �i � 1=2; Fi = fi + ai: (2.5.11) feq:2.3b.11gThis is done as follows. We can immediately get an expression like (2.5.10)with 0 � �i < 1; by de�ning fi to be the largest element in Z+1=2 less than orequal to �ai�12 +�i. If �i � 1=2 we are done. Otherwise, use the Weyl groupto change the signs of all entries of the string, and put them in increasingorder. This replaces fi by �Fi� 1; and �i by 1� �i: The presentation of thestrings subject to (2.5.11) is unique except when �j = 1=2: In this case theargument just given also provides the presentation(�Fi � 1 + 1=2; : : : ;�fi � 1 + 1=2): (2.5.12) feq:2.3b.12gWe choose between (2.5.10) and (2.5.12) the one whose leftmost term islarger in absolute value. That is, we require fi + Fi � �1 whenever �i =�1=2: fsec:2.3cg2.6. G of Type C. Rearrange the parts of the partition of �O � so(2n+1;C); in the form (2.3.4),((a1; a1); : : : ; (ak; ak); 2x0 + 1; : : : ; 2x2m + 1; (2.6.1) feq:2.3c.1gThe di have been relabeled as 2xi + 1. In this case it is automatic thatthere is an odd number of nonzero xi: The xi are integers, because all theeven parts of the partition of �O occur an even number of times, and werethrerefore extracted as (ai; ai): The � of the form �h=2 + � are(: : : ;�ai � 12 + �i; : : : ; ai � 12 + �i; : : : ; 0; : : : ; 0| {z }n0 ; : : : ; x2m|{z}nx2m ; : : : ; x2m): (2.6.2) feq:2.3c.2g



12 DAN BARBASCHwhere nl = (m if l = 0;#fxi � lg if l 6= 0: (2.6.3) feq:2.3c.3gLemma 2.4 holds for this type verbatim. So the following proposition holds.fp:2.3cg Proposition. A parameter � = �h=2 + � cannot be conjugated to one of theform �h0=2 + � 0 for any larger nilpotent �O0 if and only if(1) the set of strings satisfying ai�12 + �i � aj�12 � �j 2 Z are nested.(2) the strings satisfying ai�12 + �i 2 Z satisfy the additional conditionthat either x2m + 1 < �ai�12 + �i or there is j such thatxj + 1 < �ai � 12 + �i � ai � 12 + �i < xj+1 + 1: (2.6.4)feq:2.3c.4g The Levi component �mKL is obtained from �mBC as follows. Consider thestrings for which ai is odd and �i = 0. If ai is not equal to any 2xj +1; thenremove one pair (ai; ai), and add two 2xj+1 = ai to the last part of (2.6.1).For example, if the nilpotent orbit is(1; 1; 1; 3; 3; 4; 4); (2.6.5)feq:2.3c.5g then the parameters of the form �h=2 + � are(�1;�1 + �2; �2; 1 + �2;� 3=2 + �3;�1=2 + �3; 1=2 + �3; 3=2 + �3; 0) (2.6.6)feq:2.3c.6g The Levi component is �mBC = so(3)� gl(1)� gl(3)� gl(4). If �2 6= 0; then�mBC = �mKL: But if �2 = 0; then �mKL = so(9)�gl(1)�gl(4): The parameteris rewritten�O  ! ((1; 1); (4; 4); 1; 3; 3) (2.6.7)feq:2.3c.7g � ! (�1;�3=2 + �3;�1=2 + �3; 1=2 + �3; 3=2 + �3; 0; 1; 1):The Levi component is unchanged if �1 = 0:The explanation is as follows. For a partition (2.3.3),
z( �O) = so(r1)� sp(r2)� so(r3)� : : : (2.6.8)feq:2.3c.8g and the centralizer in �G is a product of O(r2j+1) and Sp(r2j); i.e. O for theodd parts, Sp for the even parts. Thus the component group is a product of

Z2, one for each r2j+1 6= 0: Then A(�; �e) = A(�; �h; �e); and so AMBC (�; �e) =A(�; �e) unless one of the �i = 0 for an odd ai with the additional propertythat there is no 2xj + 1 = ai:We can rewrite each of the remaining strings(�ai � 12 + �i; : : : ; ai � 12 + �i) (2.6.9)feq:2.3c.9g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 13as �i :=(fi + �i; fi + 1 + �i; : : : ; Fi + �i); (2.6.10)feq:2.3c.10g satisfyingfi 2 Z; 0 � �i � 1=2; Fi = fi + ai: (2.6.11)feq:2.3c.11g This is done as follows. We can immediately get an expression like (2.6.10)with 0 � �i < 1; by de�ning fi to be the largest element in Z+1=2 less than orequal to �ai�12 +�i. If �i � 1=2 we are done. Otherwise, use the Weyl groupto change the signs of all entries of the string, and put them in increasingorder. This replaces fi by �Fi� 1; and �i by 1� �i: The presentation of thestrings subject to (2.6.11) is unique except when �j = 1=2: In this case theargument just given also provides the presentation(�Fi � 1 + 1=2; : : : ;�fi � 1 + 1=2): (2.6.12) feq:2.3c.12gWe choose between (2.6.10) and (2.6.12) the one whose leftmost term islarger in absolute value. That is, we require fi + Fi � �1 whenever �i =�1=2: fsec:2.3dg2.7. G of Type D. Rearrange the parts of the partition of �O � so(2n;C);in the form (2.3.4),((a1; a1); : : : ; (ak; ak); 2x0 + 1; : : : ; 2x2m�1 + 1) (2.7.1) feq:2.3d.1gThe di have been relabeled as 2xi+1. In this case it is automatic that thereis an even number of nonzero 2xi + 1: The xi are integers, because all theeven parts of the partition of �O occur an even number of times, and weretherefore extracted as (ai; ai): The � of the form �h=2 + � are(: : : ;�ai � 12 + �i; : : : ; ai � 12 + �i; : : : ; 0; : : : ; 0| {z }n0 ; : : : ; x2m; : : : ; x2m| {z }nx2m ): (2.7.2) feq:2.3d.2gwhere nl = (m if l = 0;#fxi � lg if l 6= 0: (2.7.3) feq:2.3d.3gLemma 2.4 holds for this type verbatim. So the following proposition holds. fp:2.3dgProposition. A parameter � = �h=2 + � cannot be conjugated to one of theform �h0=2 + � 0 for any larger nilpotent �O0 if and only if(1) the set of strings satisfying ai�12 + �i � aj�12 � �j 2 Z are nested.(2) the strings satisfying ai�12 + �i 2 Z satisfy the additional conditionthat either x2m + 1 < �ai�12 + �i or there is j such thatxj + 1 < �ai � 12 + �i � ai � 12 + �i < xj+1 + 1: (2.7.4) feq:2.3d.4g



14 DAN BARBASCHThe Levi component �mKL is obtained from �mBC as follows. Consider thestrings for which ai is odd and �i = 0. If ai is not equal to any 2xj +1; thenremove one pair (ai; ai), and add two 2xj+1 = ai to the last part of (2.7.1).For example, if the nilpotent orbit is(1; 1; 3; 3; 4; 4); (2.7.5) feq:2.3d.5gthen the parameters of the form �h=2 + � are(�1;�1 + �2; �2; 1 + �2;� 3=2 + �3;�1=2 + �3; 1=2 + �3; 3=2 + �3) (2.7.6)feq:2.3d.6g The Levi component is �mBC = gl(1) � gl(3) � gl(4). If �2 6= 0 �1 6= 0, then�mBC = �mKL: If �2 = 0 and �1 6= 0; then �mKL = so(6) � gl(1) � gl(4): Theparameter is rewritten�O  ! ((1; 1); (4; 4); 3; 3) (2.7.7)feq:2.3d.7g � ! (�1;�3=2 + �3;�1=2 + �3; 1=2 + �3; 3=2 + �3; 0; 1; 1):Similarly if �1 = �2 = 0.The explanation is as follows. For a partition (2.3.3),
z( �O) = so(r1)� sp(r2)� so(r3)� : : : (2.7.8)feq:2.3d.8g and the centralizer in �G is a product of O(r2j+1) and Sp(r2j); i.e. O for theodd parts, Sp for the even parts. Thus the component group is a product of

Z2, one for each r2j+1 6= 0: Then A(�; �e) = A(�; �h; �e); and so AMBC (�; �e) =A(�; �e) unless one of the �i = 0 for an odd ai with the additional propertythat there is no 2xj + 1 = ai:We can rewrite each of the remaining strings(�ai � 12 + �i; : : : ; ai � 12 + �i) (2.7.9)feq:2.3d.9g as �i :=(fi + �i; fi + 1 + �i; : : : ; Fi + �i); (2.7.10)feq:2.3d.10g satisfying fi 2 Z; 0 � �i � 1=2; Fi = fi + ai: (2.7.11)feq:2.3d.11g This is done as in types B and C, but see the remarks which have to dowith the fact that �Id is not in the Weyl group. We can immediately getan expression like (2.7.10) with 0 � �i < 1; by de�ning fi to be the largestelement in Z + 1=2 less than or equal to �ai�12 + �i. If �i � 1=2 we aredone. Otherwise, use the Weyl group to change the signs of all entries ofthe string, and put them in increasing order. This replaces fi by �Fi � 1;and �i by 1� �i: The presentation of the strings subject to (2.7.11) is uniqueexcept when �j = 1=2: In this case the argument just given also provides thepresentation (�Fi � 1 + 1=2; : : : ;�fi � 1 + 1=2): (2.7.12)feq:2.3d.12g We choose between (2.7.10) and (2.7.12) the one whose leftmost term islarger in absolute value. That is, we require fi + Fi � �1 whenever �i =�1=2:



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 15Remarks(1) A (real) spherical parameter � is hermitian if and only if there isw 2 W (Dn) such that w� = ��: This is the case if the parameterhas a coordinate equal to zero, or if none of the coordinates are 0,then n must be even.(2) Assume the nilpotent orbit �O is very even, i.e. all the parts of thepartition are even (and therefore occur an even number of times).The nilpotent orbits labelled (I) and (II) are characterized by thefact that �mBC is of the form(I) ! gl(a1)� � � � � gl(ak�1)� gl(ak);(II) ! gl(a1)� � � � � gl(ak�1)� gl(ak)0:The last gl factors di�er by which extremal root of the fork at theend of the diagram for Dn is in the Levi component. The string fork is(I) ! (�ak � 12 + �k; : : : ; ak � 12 + �k);(II) ! (�ak � 12 + �k; : : : ak � 32 + �k;�ak � 12 � �k):We can put the parameter in the form (2.7.10) and (2.7.11), becauseall strings are even length. In any case (I) and (II) are conjugate bythe outer automorphism, and for unitarity it is enough to considerthe case of (I).Certain � having a coordinate equal to 0, can be written as hI=2+�I or hII=2 + �II ; but then they can also be written as h0=2 + � 0 fora larger nilpotent orbit. For example, in type D2; the two cases are(2; 2)I and (2; 2)II ;(I) ! (1=2;�1=2) + (�; �);(II) ! (1=2; 1=2) + (�;��):For the parameter to contain a zero, it has to be (1; 0) and thiscorresponds to (1; 3); the principal nilpotent orbit.(3) Because we can only change an even number of signs using the Weylgroup, we might not be able to change all the signs of a string. Wecan always do this if the parameter contains a coordinate equal to0, or if the length of the string is even. If there is an odd lengthstring, and none of the coordinates of � are 0, changing all of thesigns of the string cannot be achieved unless some other coordinatechanges sign as well. However if � = h=2 + � cannot be made tosatisfy (2.7.10) and (2.7.11), then �0; the parameter obtained from� by applying the outer automorphism, can. Since L(�) and L(�0)are either both unitary of both nonunitary, it is enough to considerjust the cases that can be made to satisfy (2.7.10) and (2.7.11).



16 DAN BARBASCHFor example, the parameters(5=3; 2=3;�1=3; 1=4;�3=4;�7=4);(1=3;�2=3;�5=3; 1=4;�3=4;�7=4)in type D6 are of this kind. Both parameters are in a form satisfying(2.7.10) but only the �rst one satis�es (2.7.11). The second onecannot be conjugated by W (D6) to one satisfying (2.7.11).fsec:2.4g 2.8. Relation between in�nitesimal characters and strings. In theprevious sections we described for each nilpotent orbit �O the parameters ofthe form �h=2 + � with � 2 z( �O) semisimple, along with condition (2.3.2).In this section we show how to �nd the data ( �O; �) satisfying (2.3.1) and(2.3.2) from a � 2 �a:G of Type B. Partition the coordinates of � into subsets parametrizedf2.4bg by 0 � � � 1=2;A� = f�i : �i or � �i � 1=2 + � (mod Z)g:There are three cases � = 0; 1=2 and 0 < � < 1=2: From the coordinatesin A0 extract the longest possible string. Continue extracting strings untilthere are no coordinates left. From the subset of strings that start with1=2; remove all pairs of strings of equal length. The coordinates of thestrings that are left over are the ones coming from the (2x0; : : : ; 2x2m)of �O written as in (2.5.1). The coordinates of each pair of equal strings(1=2; : : : ; ai�12 ; 1=2; : : : ; ai�12 ) combine to give a string (�ai�12 ; : : : ; ai�12 ) cor-responding to a pair (ai; ai). For example if the parameter is(1=2; 1=2; 1=2; 3=2; 3=2; 3=2; 5=2; 5=2; 5=2; 5=2; 7=2);then the strings are(1=2; 3=2; 5=2; 7=2); (1=2; 3=2; 5=2); (1=2; 3=2; 5=2); (5=2))and the parameter is(5=2;�5=2;�3=2;�1=2; 1=2; 3=2; 5=2; 1=2; 3=2; 5=2; 7=2):corresponding to the nilpotent orbit �O = (1; 1; 6; 6; 8).For the coordinates inA1=2, extract the longest possible string, but by chang-ing some coordinates into their negatives if necessary. If necessary, changethe coordinates of the string to their negatives, to make it conform to (2.5.10)and (2.5.11). Continue until there are no entries left. These are strings in(2.5.2) corresponding to pairs (ai; ai) in (2.5.1). For example for(0; 0; 1; 1; 1; 1; 2; 3; 3; 4; 5);the strings are(�5;�4;�3;�2;�1; 0; 1); (�1; 0; 1); (�4;�3): (2.8.1)feq:2.4.2ag This adds the pairs (2; 2; 3; 3; 7; 7) to the partition of �O:



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 17For A� with 0 < � < 1=2; change signs in the coordinates if necessary andrearrange in increasing order(a+ �; : : : ; a+ �; : : : ; A+ �; : : : ; A+ �) (2.8.2)f2.4.3g Then extract the longest possible string. Extract strings in the same wayfrom the remainder until there are no coordinates left. These are stringsin (2.5.2) corresponding to pairs (ai; ai) in (2.5.1). For example, if theparameter is (1=4; 1=4; 3=4; 5=4; 5=4);rewrite it as (�5=4;�5=4;�1=4;�1=4; 3=4);and then extract the strings(�5=4;�1=4; 3=4); (�5=4;�1=4):This adds the pairs (2; 2; 3; 3) to the partition of �O:G of Type C. Partition the coordinates of � into subsets parametrized f2.4cgby 0 � � � 1=2; A� = f�i : �i or � �i � � (mod Z)g:From the coordinates in A0 extract the longest possible string by changingcoordinates into their negatives if necessary. Continue extracting strings un-til there are no coordinates left. Set aside the strings of the form (�ai�12 ; : : : ; ai�12 );they correspond to pairs (ai; ai) in (2.6.1). The coordinates of the remainingstrings come from the (2x0 + 1; : : : ; 2x2m + 1) of �O written as in (2.6.1).For example if the strings are as in (2.8.1), then the nilpotent orbit is�O = (2; 2; 3; 3; 1; 3; 11), and � = (�4;�3;�1; 0; 1; 0; 1; 1; 2; 3; 4; 5).From the coordinates in A1=2, extract the longest possible string, but bychanging some coordinates into their negatives if necessary. If necessary,change the coordinates of the string to their negatives, to make it conformto (2.6.10) and (2.6.11). Continue until there are no entries left. These arestrings in (2.5.2) corresponding to pairs (ai; ai) in (2.5.1).For A� with 0 < � < 1=2; change signs in the coordinates if necessary andrearrange in increasing order(a+ �; : : : ; a+ �; : : : ; A+ �; : : : ; A+ �) (2.8.3) f2.4c.1gThen extract the longest possible string. Extract strings in the same wayfrom the remainder until there are no coordinates left. These are strings in(2.6.2) corresponding to pairs (ai; ai) in (2.6.1).G of Type D. Partition the coordinates of � into subsets parametrized f2.4dgby 0 � � � 1=2; A� = f�i : �i or � �i � � (mod Z)g:From the coordinates in A0 extract the longest possible string by changingcoordinates into their negatives if necessary. Continue extracting stringsuntil there are no coordinates left. Separate the strings of the form



18 DAN BARBASCH(�ai�12 ; : : : ; ai�12 ); they correspond to pairs (ai; ai) in (2.6.1). The coordi-nates of the remaining strings come from the (2x0+1; : : : ; 2x2m�1+1) of �Owritten as in (2.6.1). For example if the strings are as in (2.8.1), then thenilpotent orbit is �O = (2; 2; 3; 3; 3; 11), and � = (�4;�3;�1; 0; 1; 0; 1; 1; 2; 3; 4; 5).From the coordinates in A1=2, extract the longest possible string, but bychanging some coordinates into their negatives. If necessary, change thecoordinates of the string to their negatives, to make it conform to (2.6.10)and (2.6.11). Continue until there are no entries left. These are strings in(2.5.2) corresponding to pairs (ai; ai) in (2.5.1).For A� with 0 < � < 1=2; change signs in the coordinates if necessary andrearrange in increasing order(a+ �; : : : ; a+ �; : : : ; A+ �; : : : ; A+ �) (2.8.4)f2.4d.1g Then extract the longest possible string. Extract strings in the same wayfrom the remainder until there are no coordinates left. These are strings in(2.7.2) corresponding to pairs (ai; ai) in (2.7.1).All the changes of signs can be implemented using the Weyl group if oneof the coordinates of � equals 0. Suppose none of the coordinates are equalto 0. If the lengths of all the strings is even, we can put all strings in theform (2.7.10) satisfying (2.7.11) by using W (Dn), but the longest one willbe (fi + �i; : : : ; Fi + �i);or (2.8.5)feq:2.4d.2g (fi + �i; : : : ;�Fi � �i)The �rst parameter corresponds to a very even nilpotent labelled (I), thesecond (II). The two parameters are not conjugate by W (Dn), but are con-jugate by an outer automorphism.In the case when the strings in (2.8.5) are of odd length, the two param-eters are not conjugate by W (Dn); but the associated nilpotent orbit is thesame.fsec:2.6g 2.9. Let � = �h=2 + � be associated to the orbit �O: Recall from 2.3IM (�) := IndGM [LM (�)]; (2.9.1)feq:2.6.1g where LM (�) is the irreducible spherical module of M with parameter �:Write the nilpotent orbit in (2.3.4) with the (d1; : : : ; dl) as in sections 2.5-2.7depending on the Lie algebra type. Then �mBC = gl(a1)�� � ��gl(ak)��g0(n0)is as in (2.3.5). Thus � determines a spherical irreducible moduleLMBC (�) = L1(�1)
 � � � 
 Lk(�k)
 L0(�0); (2.9.2)feq:2.6.2g with �i = (�ai�12 +�i; : : : ; ai�12 +�i), while �0 = �h0=2 for the nilpotent (di).Let �mKL be the Levi component attached to � = �h=2 + � in sections2.5-2.7. As for �mBC we have a parameter LMKL(�). In this case �O =



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 19((a01; a01); : : : ; (a0r; a0r); d01; : : : d0l) as described in 2.5-2.7. Then (aW -conjugateof) � can be written as in (2.5.2)-(2.7.2)), and�mKL = gl(a01)� � � � � gl(a0r)� �g0(n00);LMKL(�) = L1(�01)
 � � � 
 Lr(�0r)
 L0(�00): (2.9.3)feq:2.6.3g ft:2.6gTheorem. In the p-adic caseIMKL(�) = L(�):Proof. This is in [BM1], �mKL was de�ned in such a way that this resultholds. ˜ fc:2.6gCorollary. The module IMBC (�) equals L(�) in the p�adic case if all the�i 6= 0: 3. The Main Result fsec:3gf2.1g3.1. Recall that �G is the (complex) dual group, and �A � �G the maximaltorus dual to A: Assuming as we may that the parameter is real, a sphericalirreducible representation corresponds to an orbit of an element � 2 �a; theLie algebra of �A: In section 2 we attached a nilpotent orbit �O in �g to sucha parameter. Let �e; �h; �f be a Lie triple attached to �O. Let � := �h=2 + �satisfy (2.3.1)-(2.3.2). fd:2.1gDe�nition. A representation L(�) is said to be in the complementary seriesfor �O; if the parameter � is attached to �O in the sense of satisfying (2.3.1)and (2.3.2), and is unitary.We will describe the complementary series explicitly in coordinates.The centralizer Z �G(�e; �h; �f) has Lie algebra z( �O) which is a product ofsp(rl;C) or so(rl;C) 1 � l � k according to the rule�G of type B, D: sp(rl) for al even, so(rl) for al odd,�G of type C: sp(rl) for al odd, so(rl) for al even.The parameter � determines a spherical irreducible module L �O(�) for thedual of z( �O). It is attached to the trivial orbit in z( �O): fthm:3.1gTheorem. The complementary series attached to �O coincides with the oneattached to the trivial orbit in z( �O): For the trivial orbit (0) in each of theclassical cases, the complementary series areG of type B: 0 � �1 � � � � � �k < 1=2:G of type C, D:0 � �1 � � � � � �k � 1=2 < �k+1 < � � � < �k+l < 1so that �i + �j � 1: There are(1) an even number of �i such that 1� �k+1 < �i � 1=2;(2) an odd number of �i such that 1� �k+j+1 < �i < 1� �k+j:In type D of odd rank, �1 = 0 or else the parameter is not hermitian.



20 DAN BARBASCHRemarks.(1) The condition that �i + �j 6= 1 implies that in types C,D there is atmost one �k = 1=2.(2) Each of the coordinates forms a string, but in the form above theparameter does not satisfy (2.3.2). For (2.3.2) to hold, it su�ces tochange �k+j for types C; D to 1� �k+j:fsec:3.2g 3.2. We prove the unitarity of the parameters in the theorem for �O = (0)for types B,C, and D. First we record some facts.Let G := GL(2a) and� := (�a� 12 � �; : : : ; a� 12 � �;�a� 12 + �; : : : ; a� 12 + �): (3.2.1)feq:3.2.1g Let M := GL(a) �GL(a) � GL(2a). Then the two strings of � determinean irreducible spherical (1-dimensional) representation LM (�) onM . RecallIM (�) := IndGM [LM (�)]:fl1:3.2g Lemma (1). The representation IM (�) is unitary irreducible for 0 � � <1=2: The irreducible spherical module L(�) is not unitary for � > 12 ; 2� =2 Z:Proof. This is well known and goes back to [Stein] (see also [T] and [V1]). ˜We also recall the following well known result due to Kostant in the realcase, Casselman in the p�adic case.fl2:3.2g Lemma (2). If none of the h�; �i for � 2 �(�a) is a nonzero integer, thenX(�) is irreducible. In particular, if � = 0; thenL(�) = X(�) = IndGA[�];and it is unitary.Let �m � �g be a Levi component, and �t 2 z(�m), where z( �m) is the centerof �m; depending continuously on t 2 [a; b].fl3:3.2g Lemma (3). Assume thatIM (�t) := IndGM [LM (�0)
 �t]is irreducible for a � t � b; and LM (�0) 
 �t is hermitian. Then IM (�t)(equal to L(�t)) is unitary if and only if LM (�0) is unitary.This is well known, and amounts to the fact that (normalized ) inductionpreserves unitarity. I don't know the original reference.We now start the proof of the unitarity.Type B. In this case there are no roots � 2 �(�g; �a) such that h�; �i is anonzero integer. Thus L(�) = IndGA[�]as well. When deforming � to 0 continuously, the induced module staysirreducible. Since IndGB [0] is unitary, so is L(�):



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 21Type C,D. There is no root such that h�; �i is a nonzero integer, so L(�) =IndGB[�]. If there are no �k+i > 1=2 the argument for type B carries overword for word. When there are �k+i > 1=2 we have to be more careful withthe deformation. We will do an induction on the rank. Suppose that forsome j there is more than one �j . Necessarily, �j < 1=2: Conjugate � by theWeyl group so that� = (�1; : : : ; �j ; : : : b�j ; b�j ; : : : ; ; �j ; �j) := (�0; �j ; �j): (3.2.2) feq:3.2.2gLet �m := �g(n� 2)� gl(2); and denote by M the corresponding Levi compo-nent. Then by induction in stages,L(�) = IndGM [LM (�)]; (3.2.3) feq:3.2.3gwhere LM(�) = L0(�0)
 L1(�j ; �j): By lemma (1) of 3.2, L1(�j ; �j) is uni-tary. Thus L(�) is unitary if and only if L0(�0) is unitary. If � satis�es theassumptions of the theorem, then so does �0. By the induction hypothesis,L0(�0) is unitary, and therefore so is L(�): Thus we may assume that0 � �1 < � � � < �k � 1=2 < �k+1 < � � � < �k+l: (3.2.4) feq:3.2.4gIf �k < 1 � �k+1, then the assumptions imply 1 � �k+2 < �k. Consider theparameter �t := (: : : ; �k; �k+1 � t; : : : ): (3.2.5) feq:3.2.5gThen L(�t) = IndGA[�t]; for 0 � t � �k+1 � �k; (3.2.6) feq:3.2.6gbecause no h�t; �i is a nonzero integer. At t = �k+1 � �k; the parameter isin the case just considered earlier. By induction we are done.If on the other hand 1��k+1 < �k; the assumptions on the parameter aresuch that at least 1� �k+1 < �k�1 < �k: Then repeat the argument with�t := (: : : ; �k�1; �k � t; : : : ); 0 � t � �k � �k�1: (3.2.7) feq:3.2.7gThis completes the proof of the unitarity of the parameters in theorem 3.1when �O = (0): fsec:3.3g3.3. We prove the unitarity of the parameters in theorem 3.1 in the generalcase.The proof is essentially the same as for �O = (0); but special care is neededto justify the irreducibility of the modules. We need to compare z( �O) and�mKL carefully. Recall the notation of the partition of �O (2.3.3). The factorsof z( �O) isomorphic to sp(rj); contribute rj=2 factors of the form gl(ai) to�mKL: The factors of type so(rj) with rj odd, contribute a di; and rj�12gl(ai). The factors so(rj) of type D (rj even) are more complicated. Writethe strings coming from this factor as in (2.3.6),(�ai � 12 + �i; : : : ; ai � 12 + �i)



22 DAN BARBASCHwith the �i satisfying the assumptions of theorem 3.1. If rj is not divisibleby 4, then �1 = 0; and �mBC 6= �mKL. This is also the case when rj is divisibleby 4 and �1 = 0: In all situations, we considerIMKL(�): (3.3.1) feq:3.3.1gIn the p-adic case, the only way IMKL(�t) can become reducible in thedeformations in section 3.2 is if the associated nilpotent orbit changes, andthis does not happen. For the �j attached to factors of type D in z( �O), it isimportant in the argument that we do not deform to (0):Example. Assume �O = (2; 2; 2; 2) � sp(8). The parameters of the form�h=2 + � are (�1=2 + �1; 1=2 + �1;�1=2 + �2; 1=2 + �2); (3.3.2)feq:3.3.2g and, because paramters are up to W�conjugacy, we may restrict attentionto the region 0 � �1 � �2: In this case z( �O) = so(2); and the unitarity regionis 0 � ��1+�2 < 1: Furthermore �mBC = gl(2)�gl(2); but �mKL = �mBC onlyif 0 < �1:When �1 = 0; �mKL = sp(4)�gl(2); the nilpotent orbit is rewritten(2; 2; (2; 2)); and �h0=2 = (1=2; 1=2): For �1 = 0; the induced representationsIMKL(��2) := IndSp(8)Sp(4)�GL(2)[L0(1=2; 1=2)
L1(�1=2+�2; 1=2+�2)] (3.3.3)feq:3.3.3g are induced irreducible in the range 0 � �2 < 1: For 0 < �1 the representationIndSp(8)GL(4)[L((�1=2+�1+t; 1=2+�1+t); (�1=2��1�t; 1=2��1�t))] (3.3.4)feq:3.3.4g is induced irreducible for 0 � t � 1=2 � �1:The main point of the example is that IndSp(4)GL(2)[L(�1=2 + t; 1=2 + t)] isreducible at t = 0: So we cannot conclude that L(�) is unitary for a (�1; �2)with 0 < �1 from the unitarity of L(�) for a parameter with �1 = 0: ˜In the case of real groups, the same irreducibility results hold, but areharder to prove. Given �, consider the root system�� := f� 2 � : h�; �i 2 Zg: (3.3.5)feq:3.3.5g Let G� be the connected split real group corresponding to this root sys-tem. Then � determines an irreducible spherical representation LG�(�): TheKazhdan-Lusztig conjectures for nonintegral in�nitesimal character providea way to prove any statement about the character of L(�) by proving it forLG�(�). This is beyond the scope of this paper (or my competence), I referto [ABV], chapters 16 and 17 for an explanation.Since G� is not simple, it is su�cient to prove the needed irreducibilityresult for each simple factor. This root system is a product of classicalsystems as follows. Recall the set A� in section 2.8. Each A� contributes asfollows.G of type B: Every 0 < � < 1=2 contributes a type A. Every � =0; 1=2 contributes a type C.G of type C: Every 0 < � < 1=2 contributes a type A. Every � = 0contributes a type B; while � = 1=2 contributes type D.



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 23G of type D: Every 0 < � < 1=2 contributes a type A. Every � =0; 1=2 contributes a type D.To prove that IMKL(�) is irreducible, it su�ces to prove the followingresult. fp:3.3gProposition. Assume �g is of type A or D. Let� := (: : : ;�ai � 12 + �i; : : : ; ai � 12 + �i; : : : )be given in terms of strings, and let �m = gl(a1)� � � � � gl(ak) be the corre-sponding Levi component. Assume that � is integral for type A and type D,in addition in type D assume that the coordinates of � are all in 1=2 +Z: Ifthe strings are strongly nested, thenIM(�) = IndGM [L(�)]:The proof will be in section 10.4. Relevant K�types fsec:4g4.1. In the real case we will call a K�type (�; V ) quasi-spherical if it occursin the spherical principal series. By Frobenius reciprocity (�; V ) is quasi-spherical if and only if V K\B 6= 0. Because the Weyl group W (G;A) maybe realized as NK(A)=ZK(A); this Weyl group acts naturally on this space.The representations of W (An�1) = Sn are parametrized by partitions ofn; written as a := (a1; : : : ; ak); ai � ai+1: The representations of W (Bn) �=W (Cn) are parametrized as in [L1] by pairs of partitions, which we write as�((a1; : : : ; ar); (b1; : : : ; bs));ai � ai+1; bj � bj+1; X ai +X bj = n: (4.1.1) feq:4.0.4gPrecisely the representation parametrized by (4.1.1) is as follows. Let k =P ai; l = P bj : Recall that W �= Sn n Zn2 : Let � be the character of Zn2which is trivial on the �rst k Z2's, sign on the last l: Its centralizer in Sn isSk � Sl: Let �(a) and �(b) be the representations of Sk; Sl correspondingto the partitions a and b: Then let �(a; b; �) be the unique representation of(Sk�Sl)nZn2 which is a multiple of � when restricted to Zn2 ; and �(a)
�(b)when restricted to Sk � Sl: The representation in (4.1.1), is�(a; b) = IndW(Sk�Sl)nZn2 [�(a; b; �)]: (4.1.2) feq:4.0.5gIf a 6= b; the representations �(a; b) and �(b; a) restrict to the same ir-reducible representation of W (Dn); which we denote again by the samesymbol. When a = b; the restriction is a sum of two inequivalent repre-sentations which we denote �(a; a)I; II : Let Wa;I := Sa1 � � � � � Sar andWa;II := Sa1 � � � � � S0ar ; be the Weyl groups corresponding to the Levi



24 DAN BARBASCHcomponents considered in Remark (2) in section 2.7. Then �(a; a)I is char-acterized by the fact that its restriction toWa;I contains the trivial represen-tation. Similarly �(a; a)II is the one that contains the trivial representationof Wa;II :fsec:4.2g 4.2. Symplectic Groups. The group is Sp(n) and the maximal com-pact subgroup is U(n): The highest weight of a K-type will be written as�(a1; : : : ; an) with ai � ai+1 and ai 2 Z, or�(ar11 ; : : : ; arkk ) := (a1; : : : ; a1| {z }r1 ; : : : ; ak; : : : ; ak| {z }rk ): (4.2.1)feq:4.2.1g when we want to emphasize the repetitions. We will repeatedly use thefollowing restriction formulafl:4.2g Lemma. The restriction of �(a1; : : : ; an) to U(n� 1)� U(1) isX�(b1; : : : ; bn�1)
 �(bn);where the sum ranges over all possible a1 � b1 � a2 � � � � � bn�1 � an; andbn =P1�i�n ai �P1�j�n�1 bj :fdef:4.2g De�nition. The representations �e(r; n � r) := �(2r; 0n�r) and �o(k; n �k) := �(1k; 0n�2k;�1k) are called relevant.fp:4.2g Proposition. The relevant K�types are quasispherical. The representationof W (Cn) on VM is �e(r; n� r) ! �[(n� r); (r)];�o(k; n� k) ! �[(k; n� k); (0)];The K-types �(0n�r; (�1)r), dual to �e(r) are also quasispherical, andcould be used in the same way.Proof. We do an induction on n: Consider the case n = 2: There are fourrelevant representations of U(2) with highest weights (2; 0); (1;�1); (2; 2)and (0; 0): The �rst representation is the symmetric square of the standardrepresentation, the second one is the adjoint representation and the fourthone is the trivial representation. The normalizer of A in K can be identi�edwith the diagonal subgroup (�1;�1) inside U(1)� U(1) � U(2): The Weylgroup is generated by the elements�i 00 1� ; �1 00 i� ; � 0 1�1 0� : (4.2.2)feq:4.2.3g The restriction to U(1)� U(1) of the four representations of U(2) is(2; 0) �! (2) 
 (0) + (1)
 (1) + (0) 
 (2);(1;�1) �! (1) 
 (�1) + (0)
 (0) + (�1)
 (1);(2; 2) �! (2) 
 (2); (4.2.3)feq:4.2.4g (0; 0) �! (0) 
 (0):



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 25The space VM is the sum of all the weight spaces (p) 
 (q) with both pand q even. For the last one, the representation of W on VM is �[(2); (0)]:The third one is 1-dimensional so VM is 1-dimensional; the Weyl grouprepresentation is �((0); (2)): The second one has V M 1-dimensional andthe Weyl group representation is �((11); (0)): For the �rst one, VM is 2-dimensional and the Weyl group representation is �((1); (1)): These factscan be read o� from explicit realizations of the representations.Assume that the claim is proved for n� 1: Choose a parabolic subgroupso that its Levi component is M 0 = Sp(n� 1)�GL(1) and M is containedin it. Let H = U(n� 1)� U(1) be such that M �M 0 \K � H:Suppose that � is relevant. The cases when k = 0 or r = 0 are 1-dimensional and are straightforward. So we only consider k; r > 0: TheK-type �(2r; 0n�r) restricts to the sum of�(2r; 0n�r�1)
 �(0) (4.2.4) feq:4.2.5g�(2r�1; 1; 0n�r�1)
 �(1) (4.2.5) feq:4.2.6g�(2r�1; 0n�r)
 �(2): (4.2.6) feq:4.2.7gOf the representations appearing, only �(2r; 0n�r�1)
 �(0) and�(2r�1; 1; 0n�r�1) 
 �(2) are quasispherical. So the restriction of VM toW (Cn�1)�W (C1) is the sum of�[(n� r � 1); (r)] 
 �[(1); (0)] (4.2.7) feq:4.2.8g�[(n� r); (r � 1)]
 �[(0); (1)] (4.2.8) feq:4.2.9gThe only representations of W (Cn) containing (4.2.7) in their restrictionsto W (Cn�1) are �[(1; n� r � 1); (r)] (4.2.9) feq:4.2.10g�[(n� r); (r)]: (4.2.10) feq:4.2.11gBut the restriction of �[(1; n� r � 1); (r)] to W (Cn�1)�W (C1) contains�[(1; n�r�1); (r�1)]
�[(0); (1)]; and this does not appear in (4.2.7)-(4.2.8).Thus the representation of W (Cn) on VM for (4.2.9) must be (4.2.5), andthe claim is proved in this case.Consider the case �(1k; 0l;�1k) for k > 0: The restriction of this K-typeto U(n� 1)� U(1) is the sum of�(1k; 0l;�1k�1)
 �(�1) (4.2.11) feq:4.2.12g�(1k�1; 0l;�1k)
 �(1) (4.2.12) feq:4.2.13g�(1k�1; 0l+1;�1k�1)
 �(0) (4.2.13) feq:4.2.14g�(1k; 0l�1;�1k)
 �(0) (4.2.14) feq:4.2.15g



26 DAN BARBASCHOf the representations appearing, only (4.2.13) and (4.2.14) are quasispher-ical. So the restriction of V M to W (Cn�1)�W (C1) is the sum of�[(k � 1; k + l); (0)] 
 �[(1); (0)]; (4.2.15) feq:4.2.16g�[(k; k + l � 1); (0)] 
 �[(1); (0)]: (4.2.16) feq:4.2.17gThe representation (4.2.16) can only occur in the restriction to W (Cn�1)�W (C1) of �[(1; k; k + l � 1); (0)] or �[(k; k + l); (0)]: If k > 1, the �rst onecontains �[(1; k � 1; k + l � 1); (0)] in its restriction, which is not in thesum of (4.2.15) and (4.2.16). If k = 1 then (4.2.15) can only occur in therestriction of �[(0; l+2); (0)]; or �[(1; l+1); (0)]. But VM cannot consist of�[(0; l+2); (0)] alone, because (4.2.15) does not occur in its restriction. If itconsists of both �[(0; l + 2); (0)] and �[(1; l); (0)]; then the restriction is toolarge. The claim is proved in this case. ˜fsec:4.3g 4.3. Orthogonal groups. Because we are dealing with the spherical case,we can use the connected component of the orthogonal group. A K�typewill be identi�ed by its highest weight in coordinates, �(a1; : : : ; an), or ifthere are repetitions, �(an11 ; : : : ; ankk ).fsec:4.4g 4.4. We describe the relevantK-types for the orthogonal groups SOe(a; a):fdef:4.4g De�nition (even orthogonal groups). The relevant K�types for SOe(a; a)are �e(r; [a=2] � r) := �(0[a=2])
 �(2r; 0l) (4.4.1)feq:4.4.1g �o(k; [a=2] � k) := �(1k; 0l)
 �(1k; 0l): (4.4.2)feq:4.4.2g where r + l = [a=2].fp:4.4g Proposition. The relevant K�types are quasispherical. The representationof W (Da) of O(a; a) on VM is�[(r; a � r); (0)]  ! �(0[a=2])
 �(2r; 0l); (4.4.3)feq:4.4.3g �[(a� k); (k)];  ! �(1k; 0l)
 �(1k; 0l); (4.4.4)feq:4.4.4g When l = 0; and a is even,�[(a=2; a=2); (0)]  ! �(0)
 �(2a=2�1;�2); (4.4.5)feq:4.4.5g �[(a=2); (a=2)]I;II  ! �(1a=2�1;�1)
 �(1a=2�1;�1): (4.4.6)We will prove this together with the corresponding proposition for O(a+1; a)in section 4.6.fsec:4.5g 4.5. We describe the relevant K-types for O(a+ 1; a)fdef:4.5g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 27De�nition (odd orthogonal groups). The relevant K-types for O(a+1; a)are �e(a� r; r) := �(0[(a+1)=2])
 �(2r; 0l) (4.5.1)feq:4.5.1g �o(a� k; k) := �(1k; 0l)
 �(1k; 0s) (4.5.2)feq:4.5.2g �o(a� k; k) := �(1k+1; 0l)
 �(1k; 0s) (4.5.3)feq:4.5.3g where r + l = [a=2] in (4.5.1), k + l = [(a+ 1)=2]; k + s = [a=2] in (4.5.2),and k + 1 + l = [(a+ 1)=2]; k + s = [a=2] in (4.5.3). fp:4.5gProposition. The representations of W (Ba) on VM for the relevant K-types are�[(r; a � r); (0)]  ! �(0[(a+1)=2])
 �(2r; 0l) (4.5.4) feq:4.5.4g�[(a� k); (k)]  ! �(1k; 0[(a+1)=2]�k)
 �(1k; 0[a=2]�l); (4.5.5) feq:4.5.5g�[(k); (a � k)]  ! �(1k+1; 0[(a+1)=2]�k)
 �(1k; 0[a=2]�k): (4.5.6) feq:4.5.6gWhen a is even,�[(a=2); (a=2)]  ! �(1a=2)
 �(1a=2�1;�1): (4.5.7) feq:4.5.7gWhen a is odd,�[(a=2); (a=2)]  ! �(1(a�1)=2;�1)
 �(1(a�1)=2): (4.5.8) feq:4.5.8gThe proof will be in section 4.6. fsec:4.6g4.6. Proof of propositions 4.4 and 4.5. We use the standard realizationof the orthogonal groups O(a+ 1; a) and O(a; a): LetfM := f(�0; �1; : : : ; �a; �1; : : : ; �a) : �i; �j = �1;Y �i =Y �j = 1:g (4.6.1) feq:4.6.1gviewed as the subgroup of O(a+ 1)�O(a) with the �i; �j on the diagonal.With the appropriate choice of a �= Ra; fM � NK(a); and the action is(�i; �j) � (: : : ; xk; : : : ) = (: : : ; �k�kxk; : : : ): (4.6.2) feq:4.6.2gThen M is the subgroup of fM determined by the relations �j = �j ; j =1; : : : ; a: Similarly for O(a)�O(a) but there is no �0:We do the case O(a+ 1; a), O(a; a) is similar. The representations �o(k)and �o(a�k) can be realized as Vk Ca+1
Vk Ca; and Vk+1Ca+1
Vk(Ca):Let ei be a basis of Ca+1 and fj a basis of Ca: The space VM is the span ofthe vectors ei1^� � �^eik
fi1^� � �^fik ; and e0^ei1^� � �^eik
fi1^� � �^fik : Theelements ofW corresponding to short root re
ections all have representativesof the form �0 = �1; �j = �1; the rest zero. The action of Sa � W on thespace V M is by permuting the ei; fj diagonally. Claims (4.4.4-4.4.5) and(4.5.5-4.5.6) follow from these considerations, we omit further details..For cases (4.4.3) and (4.5.4) we do an induction on r: We do the caseO(a; a) only. The claim is clear for r = 0: Since the �rst factor of �e(r) isthe trivial representation, we only concern ourselves with the second factor.



28 DAN BARBASCHConsider Vr Ca 
Vr Ca: The space of M��xed vectors has dimension a; r,and a basis is ei1 ^ � � � ^ eir 
 ei1 ^ � � � ^ eir (4.6.3)feq:4.6.3g As a module of Sa; this isIndSaSr�Sa�r [triv 
 triv] = X1�j�r(j; a � j) (4.6.4)feq:4.6.4g On the other hand, the tensor product consists of representations with high-est weight �(2�; 1� ; 0
): From the explicit description of Vk Ca; and theaction of M; we can infer that VM for � 6= 0 is (0): This is because therepresentation occurs in V�+� Ca 
V� Ca; which has no m��xed vectors.On the other hand, �(2j ; 0l) for j � r occurs (for example by the P-R-Vconjecture). By the induction hypothesis, (j; a � j) occurs in �(2j ; 0l); forj < r; and so only (r; a � r) is unaccounted for. Thus VM for �e(r) cannotbe zero, so it must be (r; a � r): The claim now follows from the fact thatthe action of the short root re
ections is trivial, and the description of theirreducible representations of W (Ba):fsec:4.7g 4.7. General linear groups. The maximal compact subgroup ofGL(a;R)is O(a); the Weyl group is W (An�1) = Sa and M �= O(1)� � � � �O(1)| {z }a : Welist the case of the connected component GL(a;R)+ (matrices with positivedeterminant) instead, because its maximal compact group is K = SO(a)which is connected, and irreducible representations are parametrized by theirhighest weights.fdef:4.7g De�nition. The relevant K�types are the ones with highest weights�(2k; 0l):The corresponding Weyl group representations on VM are �[(k; a� k)]:We omit the details, the proof is essentially the discussion about therepresentation of Sa on VCa 
VCa for the orthogonal groups.fsec:5.8g 4.8. Relevant W�types.De�nition. LetW be the Weyl group of type B,C,D. The followingW�typesfd:5.8g will be called relevant.�e(r; n� r) := �[(n� r); (r)]; �o(k; n� k) := �[(k; n� k); (0)] (4.8.1)feq:4.8.1g In type D for n even, and r = n=2 there are twoW� types, �e[(n=2); (n=2)]I;II :=�[(n=2); (n=2)]I;II : If the root system is not simple, the relevant W�typesare tensor products of relevant W�types on each factor.



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 295. Intertwining Operatorsfsec:5gfsec:5.1g 5.1. Recall that X(�) denotes the spherical principal series. Let w 2 W:Then there is an intertwining operatorI(w; �) : X(�) �! X(w�): (5.1.1) feq:5.1.1gIf (�; V ) is a K�type, then I induces a mapIV (w; �) : HomK [V;X(�)] �! HomK [V;X(w�)]: (5.1.2) feq:5.1.2gBy Frobenius reciprocity, we get a mapRV (w; �) : (V �)K\B �! (V �)K\B : (5.1.3) feq:5.1.3gIn case (�; V ) is trivial the spaces are 1-dimensional and RV (w; �) is ascalar. We normalize I(w; �) so that this scalar is 1. The RV (w; �) aremeromorphic functions in �; and the I(w; �) have the following additionalproperties.(1) If w = w1 �w2 with `(w) = `(w1)+`(w2); then I(w; �) = I(w1; w2�)�I(w2; �): In particular if w = s�1 � � � s�k is a reduced decomposition,then I(w) factors into a product of intertwining operators Ij , onefor each s�j : These operators areIj : X(s�j+1 : : : s�k � �) �! X(s�j : : : s�k � �) (5.1.4) feq:5.1.4g(2) Let P = MN be a standard parabolic subgroup (so A � M) andw 2W (M;A): The intertwining operatorI(w; �) : X(�) = IndGP [XM (�)] �! X(w�) = IndGP [XM (w�)]is of the form I(w; �) = IndGM [IM (w; �)]:(3) If Reh�; �i � 0 for all positive roots �; then RV (w0; �) has no poles,and the image of I(w0; �) (w0 2W is the long element) is L(�):(4) If �� is in the same Weyl group orbit as �; let w be the shortestelement so that w� = ��: Then L(�) is hermitian with inner producthv1; v2i := hv1; I(w; �)v2i:Let � be a simple root and P� =M�N be the standard parabolic subgroupso that the Lie algebra of M� is isomorphic to the sl(2;R) generated by theroot vectors E��:We assume that �E� = �E��: Let D� = p�1(E��E��)and s� = ep�1�D�=2: Then s2� = m� is in M \M�: Since the square ofany element in M is in the center and M normalizes the the root vectors,Adm(D�) = �D�: Grade V � = �V �i according to the absolute values ofthe eigenvalues of D� (which are integers). Then M preserves this gradingand (V �)M = Mi even(V �i )M :The map  � : sl(2;R) �! g determined by � �0 10 0� = E�;  � �0 10 0� = E��



30 DAN BARBASCHdetermines a map 	� : SL(2;R) �! G (5.1.5) feq:5.1.5gwith image G�; a connected group with Lie algebra isomorphic to sl(2;R):Let R� be the maps (5.1.3) for G�:fp:5.1g Proposition. On (V �2m)M ;RV (s�; �) = (Id if m = 0;Q0�j<m 2j+1�<�;��>2j+1+<�;��> Id if m 6= 0:In particular, I(w; �) is an isomorphism unless h�; ��i 2 �N:Proof. The formula is well known for SL(2;R): The second assertion followsfrom this and the listed properties of intertwining operators. ˜fc:5.1g Corollary. For relevant K�types the formula isRV (s�; �) = (Id on the +1 eigenspace of s�;1�<�;��>1+<�;��> Id on the -1 eigenspace of s�:When restricted to (V �)M ; the long intertwining operator is the product ofthe R� corresponding to the reduced decomposition of w0 and depends onlyon the Weyl group structure of (V �)M :Proof. Relevant K�types are distinguished by the property that the eigen-values of D� are 0;�2 only. The element s� acts by 1 on the zero eigenspaceof D� and by �1 on the �2 eigenspace. The claim follows from this. ˜fsec:5.2g 5.2. We now show that the formulas in the previous section coincide withcorresponding ones in the p�adic case. In the split p-adic case, sphericalrepresentations are a subset of representations with I-�xed vectors, where Iis an Iwahori subgroup. As explained in [B], the category of representationswith I �xed vectors is equivalent to the category of �nite dimensional repre-sentations of the Iwahori-Hecke algebra H := H(InG=I). The equivalenceis V �! VI : (5.2.1)feq:5.2.1g The papers [BM1] and [BM2] show that the problem of the determination ofthe unitary dual of representations with I �xed vectors, is equivalent to theproblem of the determination of the unitary dual of irreducible representa-tions of H with real in�nitesimal character. In fact it is the a�ne gradedHecke algebras we will need to consider, and they are as follows.Let A := S(�a); and de�ne the a�ne graded Hecke algebra to be H :=
C[W ] 
 A as a vector space, and usual algebra structure for C[W ] and A.Impose the additional relation!t� = s�(!)t�+ < !;� >; ! 2 �a; (5.2.2)feq:5.2.2g where t� is the element in C[W ] corresponding to the simple root �: If X(�)is the standard (principal series) module determined by �; thenX(�)I = H
A C�: (5.2.3)feq:5.2.3g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 31The intertwining operator I(w;�) is a product of operators I�i according toa reduced decomposition of w = s�1 � � � � � s�k : If � is a simple root,r� := (t��� 1) 1�� 1 ; I� : x
 11� 7! xr� 
 11s��: (5.2.4)feq:5.2.4g The I(w; �) have the same properties as in the real case. The r� are mul-tiplied on the right, so we can replace � with �h�; �i in the formulas. Fur-thermore,
C[W ] = X�2cW V� 
 V �� :Since r� acts as multiplication on the right, it gives rise to an operatorr�(s�; �) : V �� �! V �� : ft:5.2gTheorem. The RV (s�; �) for the real case on relevant K�types coincidewith the r�(s�; �) on the V �� �= (V �)MProof. The operators R� and r� act the same way:r�(s�; �) = (Id on the + 1 eigenspace of t�1�h�;�i1+h�;�iId on the � 1 eigenspace of t� (5.2.5) feq:5.2.5gThe assertion is now clear from corollary (5.1) and formula (5.2.2). Weemphasize that the Hecke algebra for a p-adic group G is de�ned using thedual root system of the complex group �G so that there is no discrepancybetween � and �� in the formulas. ˜ fsec:5.3g5.3. The main point of section 5.2 is that for the real case, and a rele-vant K-type (V; �), the intertwining operator calculations coincide with theintertwining operator calculations for the a�ne graded Hecke algebra onthe space VM : Thus we will deal with the Hecke algebra caclulations exclu-sively, but the conclusions hold for both the real and p-adic case. Recall fromsection 2.3 that to each � we have associated a nilpotent orbit �O, and Levicomponents �mBC and �mKL. These are special instances of the following situ-ation. Assume that �O is written as in (2.3.4) (i.e. ((a1; a1); : : : ; (ak; ak); (di))with �g of type B: (di) all odd; they are relabelled (2x0 +1; : : : ; 2x2m +1),�g of type C: (di) all even; they are relabelled (2x0; : : : ; 2x2m),�g of type D: (di) all odd; they are relabelled (2x0; : : : ; 2x2m�1):Similar to (2.3.5), let�m := gl(a1)� � � � � gl(ak)� �g(n0); n0 = n�X ai: (5.3.1) feq:5.3.1gWe consider parameters of the form � = �h=2 + �:



32 DAN BARBASCHWrite �0 for the parameter �h=2; and �i := (�ai�12 +�i; : : : ; ai�12 +�i):Wefocus on �0 as a parameter on �g(n0). We attach two Levi components�ge :B gl(2x2m�1 + 2x2m�2 + 2)� � � � � gl(2x1 + 2x0 + 2)� �g(x2m)C gl(2x2m�1 + 2x2m�2)� � � � � gl(2x1 + 2x0)� �g(x2m)D gl(2x2m�1 + 2x2m�2 + 2)� � � � � gl(2x1 + 2x0 + 2)�go :B gl(2x2m + 2x2m�1 + 2)� � � � � gl(2x2 + 2x1 + 2)� �g(x0)C gl(2x2m + 2x2m�1)� � � � � gl(2x2 + 2x1)�g(x0)D gl(2x2m�3 + 2x2m�4 + 2)� � � � � gl(2x2m�2 + 1)� �g(x2m�1):(5.3.2) feq:5.3.2gThere are 1-dimensional representation L(�e) and L(�o) such that the spher-ical irreducible representation L(� �O) = X(� �O) with in�nitesimal charac-ter �0 is the spherical irreducible subquotient of Xe := IndGPe(�e) andXo := IndGPo(�o) respectively. The parameters �e and �o are written interms of strings as follows:Xe:B : : : : (�x2i�1; : : : ; x2i�2) : : : (�x2m; : : : ;�1)C : : : : (�x2i�1 + 1=2; : : : ; x2i�2 � 1=2) : : : (�x2m + 1=2; : : : ;�1=2)D : : : : (�x2i�1; : : : ; x2i�2) : : : (5.3.3)feq:5.3.3g Xo:B : : : : (�x2i; : : : ; x2i�1) : : : (�x0; : : : ;�1)C : : : : (�x2i + 1=2; : : : ; x2i�1 � 1=2) : : : (�x0 + 1=2; : : : ;�1=2)D : : : : (�x2i; : : : ; x2i�1) : : : (�x2m�2; : : : ;�1)(�x2m�1 + 1; : : : ; 0) (5.3.4)ft:5.3g Theorem. For the Hecke algebra, p-adic groups,[�[(n� r); (r)] : Xe] = [�[(n� r); (r)] : L(�0)];[�[(k; n� k); (0)] : Xo] = [�[(k; n� k); (0)] : L(�0)]hold.The proof is in section 6.7.For a general parameter, the strings de�ned in section 2 and the aboveconstruction de�nes parabolic subgroups with Levi components gl(a1)�� � ��gl(ak)��ge and gl(a1)�� � ��gl(ar)��go; and corresponding Le(�) and Lo(�).We denote these induced modules by Xe and Xo as well.fc:5.3g Corollary. The relations[�[(n� r); (r)] : Xe] = [�[(n� r); (r)] : L(�)];[�[(k; n� k); (0)] : Xo] = [�[(k; n � k); (0)] : L(�)]



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 33hold in general. For real groups,[�e(r; n� r) : Xe] = [�e(r; n� r) : L(�)];[�o(k; n� k) : Xo] = [�o(k; n� k) : L(�)]:The proof is in section 6.8. Section 5 explains the passage from the calcula-tions with W�types and the Hecke algebra to the relevant K�types in thereal case. 6. Hecke algebra calculations fsec:6gfsec:6.1g6.1. The proof of the results in 5.3 is by a computation of intertwiningoperators on the relevant K�types. It only depends on the W�type ofVM , so we work in the setting of the Hecke algebra. The fact that we candeal exclusively with W�types, is a big advantage. In particular we do nothave to worry about disconnectedness of Levi components. We will writeGL(k) for the Hecke algebra of type A and G(n) for the types B; C or Das the case may be. This is so as to emphasize that the results are aboutgroups, real or p�adic.The intertwining operators will be decomposed into products of simpleroperators induced from operators coming from maximal Levi subgroups. Weintroduce these �rst.Suppose M is a Levi component of the formGL(a1)� � � � �GL(al)�G(n0): (6.1.1) feq:6.1.1gLet �i be characters for GL(ai): We simplify the notation somewhat bywriting �i  ! (�i) := (�ai � 12 + �i; : : : ; ai � 12 + �i): (6.1.2) feq:6.1.2gThe parameter is antidominant, and so L(�i) occurs as a submodule ofthe principal series X((�i)): The module is spherical 1-dimensional, and theaction of fraka is�i(!) = h!; (ai � 12 + �i; : : : ;�ai � 12 + �i)i; ! 2 a; (6.1.3) feq:6.1.3gwhile W acts trivially. The trivial representation of G(n0) corresponds tothe string (�n0 + �; : : : ;�1 + �) where� := 8><>:0 H of type B;1=2; H of type C;1; H of type D: (6.1.4) feq:6.1.4gWe abbreviate this as (�0). Again L(�0) is the trivial representation, andbecause �0 is antidominant, it appears as a submodule of the principal seriesX(�0): We abbreviateXM (: : : (�i) : : : ) := IndGQGL(ai)�G(n)[
�i 
 triv]: (6.1.5) feq:6.1.5g



34 DAN BARBASCHThe module XM (: : : (�i) : : : ) is a submodule of the standard module X(�)with parameter corresponding to the strings(: : : ;�ai � 12 + �i; : : : ; ai � 12 + �i; : : : ;�n0 + �; : : : ;�1 + �): (6.1.6) feq:6.1.6gIn the setting of the Hecke algebra, the induced modules (6.1.5) is reallyXM (: : : (�i) : : : ) = H
HM [N�i 
 triv]:Let wi;i+1 2W be the shortest Weyl group element which interchanges thestrings (�i) and (�i+1) in �; and �xes all other coordinates. The intertwiningoperator Iwi;i+1 : X(�) �! X(wi;i+1�) restricts to an intertwining operatorIM;i;i+1(: : : (�i)(�i+1) : : : ) :XM (: : : (�i)(�i+1) : : : ) �! Xwi;i+1M (: : : (�i+1)(�i) : : : ): (6.1.7)feq:6.1.7g This operator is induced from the same kind for GL(ai + ai+1) where M =GL(ai) � GL(ai+1) � GL(ai + ai+1) is the Levi component of a maximalparabolic subgroup.Let wl 2 W be the shortest element which changes �l to ��l; and �xesall other coordinates. It induces an intertwining operatorIM;l(: : : (�l)(�0)) : XM (: : : (�l); (�0)) �! XwlM (: : : (��l); (�0)): (6.1.8)feq:6.1.8g In this case, wlM =M , so we will not always include it in the notation. Intype D, if n0 = 0; the last entry of the resulting string might have to stay�al�12 +�l instead of al�12 ��l: This operator is induced from the same kindon G(al + n0) with M = GL(al)�G(n0) � G(al + n0) the Levi componentof a maximal parabolic subgroup.Lemma. The operators IM;i;i+1 and IM;l are meromorphic in �i in both thereal and p-adic case.(1) IM;i;i+1 has poles only if ai�12 + �i � ai+1�12 + �i 2 Z: If so, a poleonly occurs if�ai � 12 + �i < �ai+1 � 12 + �i+1; ai � 12 + �i < ai+1 � 12 + �i+1:(2) IM;l has a pole only if al�12 +�l � �(mod Z) In that case, a pole onlyoccurs if �al � 12 + �l < 0:Proof. We prove the assertion for IM;i;i+1, the other one is similar. The factthat the integrality condition is necessary is clear. For the second condition,it is su�cent to consider the case M = GL(a1) � GL(a2) � GL(a1 + a2):If the strings are strongly nested, then the operator cannot have any polebecause XM is irreducible. Remains to show there is no pole in the case



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 35when �a2�12 + �2 � �a1�12 + �1; but a1�12 + �1 > a2�12 + �2: LetM 0 := GL(a1 + a22 + �2 + �1)�GL(a1 � a22 + �1 � �2)�GL(a2);(� 01) = (�a1 � 12 + �1; : : : ; a2 � 12 + �2)(� 02) = (a2 � 12 + 1 + �2; : : : ; a1 � 12 + �2)(� 03) = (�2) = (�a2 � 12 + �2; : : : ; a2 � 12 + �2): (6.1.9)feq:6.1.9g
Then XM ((�1)(�2)) � XM 0((� 01)(� 02)(� 03)); and IM;1;2 is the restriction ofIw2;3M 0;1;2; ((� 01)(� 03)(� 02) � IM 0;2;3((� 01)(� 02)(� 03)) to XM : Because the strings(� 01)(� 03) are strongly nested, Iw2;3M 0;1;2 has no pole, and IM 0;2;3 has no polebecause it is a restriction of operators coming from SL(2)'s which do nothave poles. The claim follows. ˜Let � be a W�type. We are interested in computing r�(w; : : : (�i) : : : ),where w changes all the �i for 1 � i to ��i: The operator can be factored intoa product of r�(wi;i+1; �) of the type (6.1.7) and r�(wl; �) of the type (6.1.9).These operators are more tractable. Here's a more precise explanation. LetM be the Levi componentGL(a1)� � � � �GL(ai + ai+1)� : : : in case (6.1.7) (6.1.10) feq:6.1.11gGL(a1)� � � � �G(al + n0) in case (6.1.8) (6.1.11) feq:6.1.12gSince XM is induced from the trivial W (M) module,HomW [�;XM ((�i))] = HomW (M)[�jW (M) : triv 
XMi;i+1((�i); (�i+1))
 triv]in case (6.1.7) (6.1.12) feq:6.1.13gHomW [�;X((�i))] = HomW (M)[�jW (M) : triv 
XMl((�l); (�0))]in case (6.1.8) (6.1.13) feq:6.1.14gwhereMi;i+1 = GL(ai)�GL(ai+1) is a maximal Levi component of GL(ai+ai+1) and Ml = G(al + n0) is a maximal Levi component of G(al + n0): Tocompute the r�(wi;i+1; �) and r�(wl; �), it is enough to compute the cor-responding r�j for the �j ocuring in the restriction � jW (M) in the casesGL(ai)�GL(ai+1) � GL(ai+ ai+1) and GL(al)�G(n0) � G(al+n0). Therestrictions of relevant W�types to Levi components consists of relevantW�types of the same kind, i.e. �[(n� r); (r)] restricts to a sum of represen-tation of the kind �e; and �[(k; n�k); (0)] restricts to a sum of �o. Typicallythe multiplicities of the factors are 1.We also note that XM jW= X�2cW V� 
 (V �� )W (M): (6.1.14) feq:6.1.15gSo the r�(w; �) map (V �� )W (M) to (V �� )W (wM):



36 DAN BARBASCHIn the next sections we will compute the cases of Levi components ofmaximal parabolic subgroups.f6.2g 6.2. GL(a) � GL(b) � GL(a + b). This is the case of Ii;i+1 with i < l:Let n = a + b and G = GL(n) and M = GL(a) � GL(b): The moduleXM ((�1); (�2)) induced from the characters corresponding to(�a� 12 + �1; : : : ; a� 12 + �1); (�b� 12 + �2; : : : ; b� 12 + �2) (6.2.1)feq:6.2.1g has the following Sa+b structure. Letm := min(a; b) and write �(k; a+b�k)for the module corresponding to the partition (k; a + b � k); 0 � k � m:Then XM ((�1); (�2)) jW= M0�k�m�(k; a + b� k): (6.2.2)feq:6.2.2gfl:6.2g Lemma. For 1 � k � m; the intertwining operator IM;1;2((�1)(�2)) re-stricted to � givesr�(k;a+b�k)(a; b; �1; �2) = Y0�j�k�1 (�1 � a�12 )� ( b�12 + �2 + 1) + j(�1 + a�12 )� (� b�12 + �2 � 1)� j :Proof. The proof is an induction on a; b and k: We omit most details butgive the general idea. Assume k < m; the case k = m is simpler. EmbedXM ((�1); (�2)) into XM 0((� 0); (� 00); (�2)) corresponding to the strings(�a� 12 + �1; : : : ; a� 32 + �1)(a� 12 + �1); (�b� 12 + �2; : : : ; b� 12 + �2):(6.2.3)feq:6.2.3g The intertwining operator IM;1;2(�1; �2) is the restriction ofIM 0;1;2(� 0; �2; � 00) � IM 0;2;3(� 0; � 00; �2) (6.2.4)feq:6.2.4g to XM ((�1); (�2)) � XM 0((� 0)(�")(�2)). By an induction on n we can assumethat these operators are known. The W�type �(k; n� k) occurs with mul-tiplicity 1 in XM (�1); (�2)) and with multiplicity 2 in XM 0((� 0); (�"); (�2)):The restrictions are�(k; n� k) jW (M 0) = triv 
 �(k � 1; b + 1� k) + triv 
 �(k; b� k) (6.2.5)for IM 0;1;2 (6.2.6)feq:6.2.5g �(k; n� k) jW (M 0) = �(1; b) + �(0; b + 1) for IM 0;2;3 (6.2.7)feq:6.2.6g The representation �(k; n� k) has a realization as harmonic polynomials inS(a) spanned by Y1�l�k(�il � �jl) (6.2.8)feq:6.2.7g where (i1; j1); : : : ; (i`; j`) are ` pairs of integers ik 6= jk; and 1 � ik; jk � n:We apply the intetwining operator to the Sa � Sb��xed vectore := X�2Sa�Sb � � [(�1 � �a+1)� � � � � (�k � �a+k)]: (6.2.9)feq:6.2.8g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 37The intertwining operator IM 0;2;3; has a simple form on the vectorse1 := X�2Sa�1�Sb+1 � � [(�1 � �a+1)� � � � � (�k � �a+k)]; in �(0; b+ 1) (6.2.10)feq:6.2.9g e2 := X�2Sa�1�S1�Sb � � [(�1 � �a+1)� � � � � (�k�1 � �a+k�1)(�a � �a+k)]; in �(1; b)(6.2.11)feq:6.2.10g which appear in (6.2.7). They are mapped into scalar multiples (given bythe lemma) of the vectors e01; e02 which are invariant under Sa�1 � Sb � S1;and transform according to triv 
 �(0; b+ 1) and triv 
 �(1; b): We choosee01 = e1;e02 := X�2Sa�1�Sb�S1 � � [(�1 � �a)� � � � � (�k�1 � �a+k�2)(�n � �a+k�1)](6.2.12) feq:6.2.11gThe intertwining operator IM 0;1;2 has a simple form on the vectors invariantunder Sa�1 � Sb � S1 transforming according to �(k; n � k � 1) and �(k �1; n� k): We can choose multiples off1 := (6.2.13) feq:6.2.12gX�2Sa�1�Sb�S1�[(�1 � �a)� � � � � (�k�1 � �a+k�2)(�k � �a+k�1)];in �(k � 1; n� k)f2 := (6.2.14) feq:6.2.13gX�2Sa�1�Sb�S1�[(�1 � �a)� � � � � (�k�1 � �a+k�2)��(ek + � � �+ �a�1+�a + �a+k + � � �+ �n�1 � (n� 2k + 1)�n)]in �(k; n� k � 1)The fact that f1 transforms according to �(k; n�1) follows from (6.2.8). Thefact that f2 transforms according to �(k�1; n) is slightly more complicated.The product Q(�1 � �a) � � � � � (�k�1 � �a+k�2) transforms according to�(k � 1; k � 1) under S2k�2: The vector (ek + � � �+ �a�1 + �a + �a+k + � � �+�n�1�(n�2k+1)�n) is invariant under the Sn�2k�1 acting on the coordinates�k; : : : �a; �a+k; : : : ; �n�1: Since �(k; n � k � 1) does not have such invariantvectors, the product inside the sum in (6.2.14) must transform according to�(k�1; n�k): The average under � is nonzero. The operator IM 0;2;3 maps f1and f2 into multiples (using the induction hypothesis) of the vectors f 01; f 02which are the Sb � Sa�1 � S1 invariant vectors transforming according to�(k; n� 1) and �(k� 1; n� k): The composition IM 0;1;2 � IM 0;2;3 maps e into



38 DAN BARBASCHa multiple ofe0 := X�2Sb�Sa � � [(�1 � �b+1)� � � � � (�k � �b+k)]: (6.2.15) feq:6.2.14gThe multiple is computable by using the induction hypothesis and the ex-pression ofe in terms of e1; e2;e01; e02 in terms of f1; f2; ande0 in terms of f 01; f 02:For example for the case k = 1; we get the following formulas.e = b(�1 + � � � + �a)� a(�a+1 + � � �+ �n);e1 = (b+ 1)(�1 + � � �+ �a�1)� (a� 1)(�a + � � �+ �n);e2 = b�a � (�a+1 + � � �+ �n);f1 = b(�1 + � � �+ �a�1)� (a� 1)(�a + � � �+ �n�1);f2 = (�1 + � � �+ �a�1) + (�a + � � � + �n�1)� (n� 1)�n;e0 = �a(�1 + � � � + �b)� b(�b+1 + � � � + �n);e01 = (b+ 1)(�1 + � � �+ �a�1)� (a� 1)(�a + � � �+ �n);e02 = �(�a + � � �+ �n�1) + b(�n);f 01 = �(a+ 1)(�1 + � � �+ �b) + b(�b+1 + � � �+ �n�1);f 02 = (�1 + � � �+ �b) + (�b+1 + � � �+ �n�1)� (n� 1)�n:
(6.2.16)feq:6.2.14ag

Then e = a� 1b+ 1 e1 � nb+ 1e2;e01 = nn� 1f1 + a� 1n� 1f2;e02 = 1n� 1f1 � bn� 1f2;e0 = nn� 1f 01 � bn� 1f 02: (6.2.17)feq:6.2.15g
˜fsec:6.3g 6.3. GL(k)�G(n) � G(n+ k). In the next sections we prove theorem 5.3in the case of a parabolic subgroup with Levi component GL(k)�G(n) forthe induced moduleXM ((�1)(�0)) = IndGM [L(�1)
 L(�0)]: (6.3.1)feq:6.3.1g The strings are(�k � 12 + �; : : : ; k � 12 + �)(�n+ 1 + �; : : : ;+�): (6.3.2)feq:6.3.2g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 39Recall that � = 0 when the Hecke algebra is type B, � = 1=2 for type C, and� = 1 for type D, andr�(�) : (V �� )W (M) �! (V �� )W (M): (6.3.3)feq:6.3.3g We will compute r�(w1; (�)(�0)) by induction on k: In this case the relevantW�types have multiplicity � 1 so r� is a scalar. fsec:6.4g6.4. We start with the special case k = 1 when the maximal parabolicsubgroup P has Levi component M = GL(1)�G(n) � G(n+1): In type Dwe assume n � 1: ThenXM jW= �[(n+ 1); (0)] + �[(1; n); (0)] + �[(n); (1)]; (6.4.1) feq:6.4.1gand all the W�types occuring are relevant. The operator r�(�) is the re-striction to (V �� )W (M) of the productr1;2 � � � � � rn;n+1 � rn+1 � rn;n+1 � � � � � r1;2 (6.4.2) feq:6.4.2gas an operator on V�: Here ri;j is the r�(w; �) corresponding to the root�i � �j and rn+1 is the r� corresponding to �n+1 or 2�n+1 in types B and C,and �n + �n+1 in type D. Since the multiplicities are 1, this is a scalar. fp:6.4gProposition. The scalar r�(w1; ((�)(�0))) is�e(1; n) = �[(n); (1)] �o(1; n) = �[(1; n); (0)]B n+1��n+1+� �n+1��n+1+�C 1=2+n��1=2+n+� 1=2+n��1=2+n+� � 1=2��1=2+�D n��n+� n��n+� 1��1+� (6.4.3) feq:6.4.3g
Proof. We do an induction on n:The re
ection representation �[(n); (1)] has dimension n+1 and the usualbasis f�ig: The W (M)��xed vector is �1: The representation �[(1; n); (0)]has a basis �2i � �2j with the symmetric square action. The W (M)��xedvector is �21 � 1n(�22 + � � �+ �2n+1):The case n = 0 for type C is clear; the intertwining operator is 1 on�o(1; 0) = triv and 1=2��1=2+� on �e(0; 1) = sgn: We omit the details for type B.In type for n = 1; i.e. D2, the middleW�type in (6.4.1) decomposes further�[(2); (0)] + �[(1); (1)]I + �[(1); (1)]II + �[(0); (2)]: (6.4.4) feq:6.4.4gThe representations �[(1); (1)]I;II are 1-dimensional with bases �1� �2: Theresult is straightforward in this case as well.We now do the induction step. We give details for type B. In the case�e(1; n); embed XM in the induced module from the characters correspond-ing to (�)(�n)(�n+ 1; : : : ; ): (6.4.5) feq:6.4.5g



40 DAN BARBASCHWriteM 0 = GL(1)�GL(1)�G(n�1) for the Levi component correspondingto these three strings. Then the intertwining operator I : XM ((�)(�0)) �!XM ((��)(�0)) is the restriction ofIM 0;1;2((�n); (��)(�0)) � IM 0;2((�n)(�)(�0)) � IM 0;1;2(�; (�n); (�0)): (6.4.6)feq:6.4.6g The r� have a corresponding decomposition(r�)M 0;1;2((��); (�n)(�0)) � (r�)M 0;2((�n)(�)(�0)) � (r�)M 0;1;2((�)(�n)(�0)):(6.4.7)feq:6.4.7g We need the restrictions of �e(1; n) and �o(1; n) to W (M 0). We haveIndW (Bn+1)W (Bn�1)[�[(n� 1); (0)]] = �[(n+ 1); (0)] + 2�[(n); (1)] + �[(1; n); (0)]+ �[(1; n� 1); (1)] + �[(n� 1); (2)] + �[(n� 1); (1; 1)]; (a)feq:6.4.8g IndW (Bn+1)W (Bn) [�[(n); (0)]] = �[(n+ 1); (0)] + �[(n); (1)] (b)(6.4.8)IndW (Bn+1)W (B1)W (Bn)[�[(1); (0)] 
 �[(n� 1); (0)]] = �[(n+ 1); (0)] + �[(1; n); (0)]++ �[(2; n); (0)] + �[(n); (1)] + �[(1; n� 1); (1)] + �[(n� 1); (2)] (c)IndW (Bn+1)W (B1)W (Bn)[�[(0); (1)] 
 �[(n� 1); (0)]] = �[(1; n); (0)] + �[(1; 1; n); (0)]+�[(n); (1)] + �[(1; n); (1)] + �[(n� 1); (1; 1)] (d)Thus �e(1; n) occurs with multiplicity 2 in XM 0 : The W (M 0) �xed vectorsare the linear span of �1; �2: The intertwining operators IM 0;1;2 and IM 0;2are induced from maximal parabolic subgroups whose Levi components welabel M1 and M2: Then �1 + �2 transforms like triv 
 triv under W (M1)and �1 � �2 transforms like sgn
 triv. The vector �1 is �xed under W (Bn)(which corresponds to M2) and the vector �2 is �xed under W (Bn�1) andtransforms like �o(1; n) underW (Bn): The matrix r� is, according to (6.4.7),� 12+��n ��n+12+��n��n+11+��n+1 12+��n� � �1 00 c+n�1��c+n�1+�� � � 1c+�+n �+c+n�1c+�+n�+n�1+cc+�+n 1c+1+�+n� : (6.4.9)feq:6.4.9g So the vector �1 is mapped into n+1��n+1+� �1 as claimed. For �o(1; n) we applythe same method. In this case the operator IM 0;2 is the identity because inthe representation �o(1; n) the element tn corresponding to the short simpleroot acts by 1.The calculation for type D is analogous, we sketch some details. Wedecompose the strings into(�)(�n+ 1; : : : ;�1)(0); (6.4.10)feq:6.4.10g and M 0 = GL(1)�GL(n� 1)�GL(1): Then



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 41IM;1((�)(�0)) = (6.4.11)feq:6.4.11g IM 0;1;2((�n+ 1; : : : ;�1)(��)(0)) � IM 0;1((�n+ 1; : : : ;�1)(�)(0))�IM 0;1;2((�)(�n+ 1; : : : ;�1)(0)):
˜ fsec:6.5g6.5. In this section we consider (6.3.2) for k > 1; n � 1 and the W�types�e(m;n + k �m) for 0 � m � k. These are the W�types which occur inXM . fp:6.5gProposition. The r�(w1; ((�)(�0)) for � = �e(m;n + k �m) are scalars.They equalType B: Y0�j�m�1n+ 1� (�k�12 + �)� jn+ 1 + (k�12 + �)� j (6.5.1) feq:6.5.1gType C: Y0�j�m�1n+ 1=2 � (�k�12 + �)� jn+ 1=2 + (k�12 + �)� j (6.5.2) feq:6.5.2gType D: Y0�j�m�1n� (�k�12 + �)� jn+ (k�12 + �)� j (6.5.3) feq:6.5.3gProof. The proof is by induction on k. The case k = 1 was done in section6.4 so we only need to do the induction step. For types B,C factor theintertwining operator as follows. Decompose the string((� 0)(�k � 12 )((�0)) := ((�k � 12 +�; : : : ; k � 32 +�)(k � 12 +�)(�0)) (6.5.4) feq:6.5.4gand letM 0 := GL(k�1)�GL(1)�G(n); andM 00 = GL(1)�GL(k�1)�G(n):Thus IM;1 = IM 00;2((�k � 12 � �)(� 0)(�0))�IM 0;1;2((� 0)(�k � 12 � �)(�0))�IM 0;2((� 0)(k � 12 + �)(�0)) (6.5.5) feq:6.5.5g



42 DAN BARBASCHIM 0;1;2 and IM 0;2 were computed earlier, while IM 00;2 is known by induction.Then�e(m;n+ k �m) jW (GL(k�1)�W (G(n+1))=triv 
 [triv 
 �e(1; n) + triv 
 �e(0; n+ 1) + : : : (6.5.6) feq:6.5.6g�e(m;n+ k �m) jW (GL(k)�W (G(n+k�1))=[(k) 
 triv + (1; k � 1)
 triv]
 triv + : : : (6.5.7) feq:6.5.7g�e(m;n+ k �m) jW (GL(1)�W (G(n+k�1))=triv 
 [triv 
 �e(m� 1; n+ k �m) + triv 
 �e(m;n+ k � 1�m)] + : : :(6.5.8) feq:6.5.8gwhere : : : denote W�types which are not spherical for W (M); so do notmatter for the computations. TheW�type �e(m;n+k�m) �= Vm �e(1; n+k � 1): It occurs with multiplicity 2 in XM 0 for 0 < m < min(k; n) andmultiplicity 1 for m = min(k; n): We will write out an explicit basis for theinvariant S1 � Sk�1 �W (Bn) vectors. Formulas (6.5.2)-(6.5.4) then comedown to a computation with 2� 2 matrices as in the case k = 1:. Lete := 1m!(k �m)! X�2Sk � � [�1 ^ � � � ^ �m]: (6.5.9)feq:6.5.9g This is the Sk �W (Bn) �xed vector of �e(m;n+ k �m): It decomposesas e = e0 + e1 = f0 + f1 (6.5.10)feq:6.5.10g wheree0 = 1m!(k � 1�m)! X�2Sk�1�S1 � � [�1 ^ � � � ^ �m];e1 = 1(m� 1)!(k �m)! X�2Sk�1�S1 � � [�1 ^ � � � ^ �m�1] ^ �k;f0 = 1m!(k � 1�m)! X�2S1�Sk�1 � � [�2 ^ � � � ^ �m+1];f1 = 1(m� 1)!(k �m)! X�2S1�Sk�1 �1 ^ � � [�2 ^ � � � ^ �m]:
(6.5.11)feq:6.5.11g

Let also e00 = e000 = 1(m� 1)!(k �m)! X�2Sk � � [�1 ^ � � � ^ �m];e01 = X�2Sk�1�S1 � � [�1 ^ � � � ^ �m�1 ^ (�m � �k)];e001 = X�2S1�Sk�1 � � [(��1 + �m+1) ^ �2 ^ � � � ^ �m+1]: (6.5.12)feq:6.5.12g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 43Then e0 = k �mk e00 + mk e01; e1 = mk e00 � mk e01;e000 = f0 + f1; e001 = f0 � k �mm f1: (6.5.13)feq:6.5.13g We now compute the action of the intertwining operators. The followingrelations hold:IM 0;2(e0) = e0; IM 0;2(e1) = n+ �� (k�12 + �)n+ �+ (k�12 + �)e1;IM 0;12(e00) = e000 ; IM 0;12(e01) = 2� � 12� + k � 1e001;I 02(f0) = Y0�j�m�2 n+ �� (�k�12 + �)� jn+ �+ (k�32 + �)� j f0;IM 00;2(f1) = Y0�j�m�1 n+ �� (�k�12 + �)� jn+ �+ (k�32 + �)� j f1; (6.5.14) feq:6.5.14g
where � = 1 in type B, � = 1=2 in type C, and � = 0 in type D. ThenIM 0;2(e0 + e1) = e0 + n+ �� (k�12 + �)n+ �+ (k�12 + �)e1: (6.5.15) feq:6.5.15gSubstituting the expressions of e0; e1 in terms of e00; e01; we get[k �mk + mk n+ �� (k�12 + �)n+ �+ (k�12 + �) ]e00 + mk [1� n+ �� (k�12 + �)n+ �+ (k�12 + �) ]e01: (6.5.16) feq:6.5.16gApplying IM;2 to this has the e�ect that e00 is sent to e000 and the term in e01is multiplied by 2��12�+k�1 and e01 is replaced by e001 : Substituting the formulasfor e000 and e001 in terms of f0; f1; and applying IM 00;2; we get the claim of theproposition. ˜ fsec:6.6g6.6. We now treat the case � = �o(m;n+ k�m): We assume n > 0 or elsethese W�types do not occur in the induced module XM : fp:6.6gProposition. The r�(w1; ((�)(�0)) are scalars. They equalY0�j�m�1 (� � k�12 )� (1) + j(� + k�12 )� (�n)� j � (�n)� (�� + k�12 ) + j(1) � (�� � k�12 )� j (6.6.1) feq:6.6.1gProof. The intertwining operator IM (�) decomposes in the same way as(6.5.5). Furthermore, �o(m;n+k�m) = Vm �e(1; n+k�1): The di�erencefrom the cases �e is that while �e(1; n+k�1) is the re
ection representation,and therefore realized as the natural action on �1; : : : �n+k; �o(1; n + k � 1)occurs in S2�e(1; n+ k � 1), generated by �2i � �2j with i 6= j: We can applythe same technique as for �e(m;n+ k �m), and omit the details.

˜



44 DAN BARBASCH fsec:6.7g6.7. GL(k) � G(k) in type D. In this section we consider the maximalLevi components M := GL(k) � G(k) and M 0 := GL(k)0 � G(k) for typeDn. The parameter corresponds to the string (�) := (�k�12 +�; : : : ; k�12 +�)or (� 0) := (�k�12 + �; : : : ;�k�12 � �):k even: TheW�structure of XM ((�)) and XM 0((�)0) is �e[(n�r); (r)]for 0 � r < k=2; and �e[(k=2); (k=2)]I ; or �e[k=2); (k=2)] respectively,with multiplicity 1. There are intertwining operatorsIM ((�)) : XM ((�)) �! XM ((��));IM 0((�)0) : XM 0((�)0) �! XM 0((��)0): (6.7.1)feq:6.7.1g corresponding to the shortest Weyl group element changing ((�)) to((��)): They determine scalars r�((�)) and r�((�)0):k odd: The W�structure in this case is �e[(n � r); (r)] with 0 � r �[k=2] for both XM and XM 0 ; again with multiplicity 1. In thiscase there is a shortest Weyl group element which changes ((�))to ((��)0); and one which changes ((�)0) to ((��)): These elementsgive rise to intertwining operatorsIM ((�)) : XM ((�)) �! XM 0((��)0);IM 0((�)) : XM 0((�)0) �! XM ((��)): (6.7.2)feq:6.7.2g Because theW�structure ofXM andXM 0 is the same, andW�typesoccur with multiplicity 1, these intertwning operators de�ne scalarsr�(�) and r�((�)0):fp:6.7g Proposition. The scalars r�((�)) and r�((�)0) arer�e[(n�r);(r)]((�)) = Y0�j<r (k�12 � �)� j(k�12 + �)� j : (6.7.3)feq:6.7.3g These numbers are the same for (�)) and ((�)0); and representations withsubscripts I; II they depend only on r:fsec:6.8g 6.8. Proof of theorem 5.3. We use the results in the previous sectionsto prove the theorem in general. We give the details in the case of the groupof type B and �e: Thus the Hecke algebra is type C. There are no signi�cantchanges in the proof for the other cases. Recall the notation from section2.3. Write � = (x2m � 1=2; : : : ; x2m � 1=2; : : : ; 1=2; : : : ; 1=2)Then � is dominant, so X(�) has a unique irreducible quotient L(�): Wefactor the long intertwining operator so thatX(�) I1�! Xe(�) I2�! X(��): (6.8.1)feq:6.8.1g The claim will follow if the decomposition has the property that the operatorI1 is onto, and I2 is into, when restricted to the �e isotypic component.



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 45The operator I1 is a composition of several operators. First take the longintertwining operator induced from the Levi component GL(n);X(x2m � 1=2; : : : ; : : : ; 1=2) �! X(1=2; : : : ; x2m � 1=2); (6.8.2)feq:6.8.2g corresponding to the shortest Weyl group element that permutes the en-tries of the parameter form increasing order to decreasing order. The im-age is the induced from the corresponding irreducible spherical moduleL(1=2; : : : ; x2m � 1=2) on GL(n): In turn this is induced irreducible from1-dimensional spherical characters on a GL(x0)� � � � �GL(x2m) Levi com-ponent corresponding to the strings(1=2; : : : ; x0 � 1=2) : : : (1=2; : : : ; x2m � 1=2)or any permutation thereof. This is well known by results of Bernstein-Zelevinski in the p�adic case, [V1] for the real case.Compose with the intertwining operatorX(: : : (1=2; : : : ; x2m � 1=2)) �! X(: : : (�x2m � 1=2; : : : ;�1=2)); (6.8.3) feq:6.8.3gall other entries unchanged. This intertwining operator is induced from thestandard long intertwining operator on G(x2m) which has image equal tothe trivial representation. The image is an induced module from characterson GL(x0)�� � ��GL(x2m�1)�G(x2m): Now compose with the intertwiningoperatorX(: : : (1=2; : : : ; x2m�1)(�x2m + 1=2; : : : ;�1=2)) (6.8.4) feq:6.8.4g�! X(: : : (�x2m�1 + 1=2; : : : ;�1=2)(�x2m + 1=2; : : : ;�1=2))(again all other entries unchanged). This is IM;2m�1 from the earlier sections,so its restriction of (6.8.4) to the �e isotypic component is an isomorphism.Now compose this operator with the one corresponding toX(: : : (1=2; : : : ; x2m�2)(�x2m�1 + 1=2; : : : ; 1=2) : : : ) (6.8.5) feq:6.8.5g�! X(: : : (�x2m�1; : : : ; x2m�2 � 1=2) : : : )with all other entries unchanged. This is induced from GL(x0) � � � � �GL(x2m�2 + x2m�1)�G(x2m) and the image is the representation inducedfrom the character corresponding to the string(�x2m�1 � 1=2; 1=2; : : : ; x2m�2) on GL(x2m�2 + x2m�1):Now compose further with the intertwining operatorX(: : : (�x2m�1 + 1=2); : : : ; x2m�2 � 1=2)(�x2m � 1=2; : : : ;�1=2)) (6.8.6) feq:6.8.6g�! X((�x2m�1 + 1=2; : : : ; x2m�2 � 1=2) : : : (�x2m � 1=2; : : : ;�1=2))from the representation induced fromGL(x0)� � � � �GL(x2m�3)�GL(x2m�2 + x2m�1)�G(x2m)to the induced fromGL(x2m�2 + x2m�1)�GL(x0)� � � � �GL(x2m�3)�G(x2m):



46 DAN BARBASCHBy lemma 6.2, this intertwining operator is an isomorphism on any �eisotypic component. In fact, because the strings are strongly nested, theirreducibility results for GL(n), 3.3 imply that the induced modules areisomorphic.We have constructed a composition of intertwining operators from thestandard module X(�) where the coordinates of � are positive and in de-creasing order (i.e. dominant) to a module induced fromGL(x2m�2 + x2m�1)�GL(x0)� � � � �GL(x2m�3)�G(x2m)corresponding to the strings((�x2m�1 + 1=2; : : : ; x2m�2)(1=2; : : : ; x0 � 1=2); : : :: : : (�x2m + 1=2; : : : ;�1=2))so that the restriction to any �e isotypic component is onto. We can repeatthe procedure with x2m�4; x2m�3 and so on to get an intertwining operatorfrom X(�) to the induced fromGL(x2m�1 + x2m�2)� � � � �GL(x1 + x0)�G(x2m)corresponding to the strings((�x2m�1 + 1=2; : : : ; x2m�2) : : : (�x1 + 1=2; : : : ; x0 � 1=2);(�x2m + 1=2; : : : ;�1=2)):This is the operator I1; and it is onto on the �e(�) isotypic components.We now deal with I2: Consider the group G(x1 + x0 + x2m) and the Levicomponent M = GL(x1 + x0)�G(x2m): Let M 0 be the Levi componentM 0 := GL(x2m�1 + x2m�2)� � � � �GL(x1)�GL(x0)�G(x2m): (6.8.7)feq:6.8.7g ThenXe embeds inXM 0(: : : (�x1+1=2; � � ��1=2)(1=2; : : : ; x0�1=2)(�x2m+1=2; : : : ;�1=2)): The intertwining operator IM 0;m+1 which changes the string(x0 � 1=2; : : : ; 1=2) to (�x0 + 1=2; : : : ;�1=2) is an isomorphism on the �eW�types, by the results in sections 6.1-6.5. Since the strings are stronglynested, the operators IM;i;i+1 are all isomorphisms, so we can construct anintertwining operator to an induced module XM 00(� 00) whereM 00 = GL(x1)�GL(x0)�GL(x2m1 + x2m�2)� � � � �G(x2m);� 00 = (�x1 + 1=2; � � � � 1=2)(�x0 + 1=2; : : : ;�1=2) : : : ) (6.8.8)feq:6.8.8g which is an isomorphism on the �e isotypic components. Repeating thisargument for x3; x2 up to x2m�1; x2m�2 we get an intertwining operatorfrom Xe to an induced module XM(3)(�(3)) whereM (3) := GL(x1)�GL(x0)� � � � �GL(x2m�1)�GL(x2m�2)�G(x2m)�(3) := (�x1 + 1=2; : : : ; 1=2)(�x0 + 1=2); : : : ;�1=2) : : :(�x2m�1 + 1=2; : : : ;�1=2)(�x2m�2 + 1=2; : : : ;�1=2)(�x2m + 1=2; : : : ; 1=2):(6.8.9)feq:6.8.9g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 47which is an isomorphism on the �e isotypic components. Let M (4) :=GL(x2m+ � � �+x0). ThenM (3) �M (4); and the induced module fromM (3)to M (4) is irreducible because the strings are strongly nested on the GLfactors. Thus the intertwining operator on M (4) which maps this inducedmodule to XM(4)(��) is an isomorphism. So the induced intertwining op-erator to G is therefore injective and maps to X(��): The composition ofall these operators is I1, and is therefore injective on the �e-isotypic compo-nents. The proof is complete in this case.The case of �o is similar, and we omit the details. fsec:6.9g6.9. Proof of Corollary 5.3. We give details for G of type B and theW�types �e(m;n�m). We factor the long intertwining operatorX(�) I1�! Xe(�) I2�! X(��) (6.9.1) feq:6.9.1gsuch that I1 is onto all the �e[(n � k); (k)] isotypic components, and I2 isinto. The module Xe is de�ned by the strings speci�ed in 5.3, equation(5.3.3). We will do an induction on the number of strings. Recall the setsA� with 0 � � � 1=2 from section 2.8. By conjugating by the Weyl group,assume � is dominant. We can apply intertwining operators coming fromSL(2)0s which are isomorphisms because the h�; �i are not integers, we canmap X(�) isomorphically to X(� 0), where � 0 is such that the coordinates inany A� are adjacent. Furthermore, we can permute the sets A� to be in anyorder by using an intertwining operator which is an isomorphism. So assumethat the coordinates in A0 are rightmost, and the leftmost set labelled A�1contains the largest coordinate. Assume also that the next set A�2 is suchthat �1 + �2 = 1: Let ��1 := (a1; : : : ; a1| {z }n1 ; : : : ; as; : : : ; as| {z }ns ) (6.9.2) feq:6.9.2gbe the coordinates in A�1 in decreasing order, and let (ar; ar + 1; : : : ; a1)be the longest string that can be extracted. Then there is an intertwiningoperator that mapsX(��1) �! X(� 0�1) (standard modules for GL(jA�1 j));� 0�1 = (� 00�1 ; ar; ar + 1; : : : ; as)� 00�1 := a1; : : : ; a1| {z }n1�1 ; : : : ; ar; : : : ; ar| {z }nr�1 ; ar+1; : : : ; ar+1| {z }nr+1 ; : : : ) (6.9.3) feq:6.9.3gIfM1 = GL(jA�1 j�s+r�1)�GL(s�r+1); then the above operator mapsX(��1) onto the induced moduleIndGL(jA�1)jM1 [X(��1)
 L((ar; : : : ; as)): (6.9.4) feq:6.9.4gThis operator induces up to one for G(n); which leaves all other coordinatesunchanged. Precisely, let M1 := GL(jA�1 j � s + r � 1) � GL(s � r + 1) �



48 DAN BARBASCHG(n�jA�1 j): Composing with the previous operator, we get an intertwiningoperatorI1 : X(�) �! IndGM1 [X(� 0�1)
 L(ar; : : : ; as)
X(� 00)]; (6.9.5) feq:6.9.5gwhich is onto the induced module on the right.Consider M2 := GL(s� r� 1)�G(n� jA�1 j) � G(n� jA�1 j+ s� r+1);and IndG(n�jA�1 j+s�r+1)M2 [L(ar; : : : ; as)
X(� 00)]: (6.9.6)feq:6.9.6g If there is no bt such that bt+ar = 1; then (�ar; : : : ;�as) is one of the stringsfor Xe. We would like to map (6.9.6) to the similar induced module whereL(ar; : : : ; as) is replaced by L(�as; : : : ;�ar); and verify that the intertwiningoperator is onto the �[(n� k); (k)] isotypic components. The results aboutIi;i+1 and Il in sections 6.1-6.5 imply the claim. The harder case is whenthere is a bt satisfying ar + bt = 1: Write��2 := (b1; : : : ; b1| {z }m1 ; : : : ; bt; : : : ; bt| {z }mt ); (6.9.7)feq:6.9.7g and let (bt; : : : ; bu) be the longest string that can be extracted starting withbt: The string in Xe is (�as; : : : ;�ar; bt; : : : bu). LetM3 := GL(s� t+ u� r + 2)�G(n� jA�1 j � s+ r � u+ t� 2);�3 := ((b1; : : : ; b1| {z }m1 ; : : : ; bu+1; : : : ; bu+1| {z }mu+1 ; bu; : : : ; bu| {z }mu�1 ; : : : ; bt; : : : ; bt| {z }mt�1 ); (6.9.8)feq:6.9.8g Then there is an intertwining operatorIndG(n�jA�1 j+s�r+1)M2 [L(ar; : : : ; as)
X(� 00)] �!IndG(n�jA�1 j+s�r+1)M3 [L(�as; : : : ;�ar; bt; : : : ; bu)
X(�3)] (6.9.9)feq:6.9.9g LetM4 := GL(jA�1 j � s+ r� 1)�GL(s� r+u� t+2) � GL(jA�1 j �u+ t� 1);and w1;2 be the shortest Weyl group element which interchanges the factorsin M4: The corresponding intertwining operatorIndGL(jA�1 j�u+t�1)M4 [X(� 0�1)
 L(�as; : : : bt)] �!IndGL(jA�1 j�u+t�1)w1;2M4 [L(�ar; : : : ; bt)
X(� 0�1)] (6.9.10)feq:6.9.10g is an isomorphism on the �[(n� k; k)] isotypic components. LettingM4 := GL(jA�1 j�u+t�1)�GL(jA�1 j�s+r�1)�G(n�jA�1j+u�t+1) � G(n);the operator in (6.9.9) induces to an operatorIndGM4 [X(� 0�1)
 L(�ar; : : : ; bt)
X(�3)] �!IndGw1;2M4 [L(�ar; : : : ; bt)
X(� 0�1)
X(�3)]; (6.9.11)feq:6.9.11g which is onto the �[(n � k); (k)] isotypic components of the module on theright. Applying the induction hypothesis to (� 0�1 ; �3), and composing with



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 49the intertwining operators in (6.9.5) and (6.9.11) yields the operator I1; withthe claimed properties.To construct I2 when there is no bt; satisfying au + bt = 1 we can applythe induction hypothesis. We do the case when there is such a bt which isharder. We have to change the coordinates (bt; : : : ; bu) to (�bu; : : : ;�bt):Wecan do this with a succession of intertwining operators Ii;i+1 and Il: Notethat if there are any coordinates in the set A�2 that are bigger than bu, thenthe di�erence to bu is strictly larger than 1. WriteM5 := GL(s� r + u� t+ 2)�G(n� s+ r � u+ t� 2):Then Xe = IndG(n)M5 [L(�as; : : : ; bu)
Xe(�5)]: (6.9.12) feq:6.9.12gLet �5 be the antidominant parameter conjugate to �5: By induction thereis an injective operatorXe �! IndG(n)M5 [L(�as; : : : ; bu)
X(�5)]: (6.9.13) feq:6.9.13gLet M6 = GL(n� s+ t� u+ r � 2)�GL(s� t+ u� r + 2):The intertwining operator coming from the shortest Weyl group elementin w 2 W (GL(n)) that interchanges (�as; : : : ; bu) with �5 can only have akernel because of coordinates belonging to A�1 or A�2 : But moving the stringpast such coordinates can be done via operators Ii;i+1 which do not havekernels. The crucial property is that au is the largest coordinate, so �au issmaller than any coordinates in �5; nd all coordinates in �5 are nonpositive.So we get an injective map from Xe to IndG(n)wM6 [X(�5) 
 L(�as; : : : ; bu)]:Next note thatL(�as; : : : ; bu) � IndG(s�t+u�r+2)GL(s�r+1)�GL(u�t+1)[L(�as; : : : ;�ar)
 L(bt; : : : ; bu)]:(6.9.14) feq:6.9.14gThe operator I1 for GL(u� t+ 1) � G(u� t+ 1) is an isomorphism on the�[(s� r + u� t+ 2 � k); (k)] isotypic components because the coordinatesare in A�2 ; and �2 6= 0: So the corresponding induced operator for G(n) isan isomorphism on the �[(n� k); (k)] isotypic components. Finally letM7 = GL(n�s+r�u+t�2)�GL(s�r+1)�GL(u�t+1)� GL(n) � G(n):There is an intertwining operatorIndG(n)M7 [X(�5)
 L(�as; : : : ;�ar)
 L(�bu; : : : ;�bt)] �! X(��) (6.9.15) feq:6.9.15ginduced from one in GL(n): The fact that this operator is injective followsfrom the property that au is the largest coordinate, and the fact that thecoordinates in A�2 are either less than or equal to bu or else are strictlygreater than bu + 1.



50 DAN BARBASCH7. Necessary conditions for unitarity fsec:7gfsec:7.1g7.1. We will need the following notions.De�nition. We will say a spherical irreducible module X is r-unitary ifthe form is positive on all the relevant W�types. Similarly, for an inducedmodule, r-irreducible means that all relevant W�types occur with the samemultiplicity in X as in L(�).fsec:7.2g 7.2. We recall (6.1.4),� = 8><>:1=2 G of type B; (H of type C)0 G of type C; (H of type B)1 G of type D:fd:7.2g De�nition. A string of the form (f + �; : : : ; F + �) with f; F 2 � + Z iscalled adapted, if it isof even length for G of type B,of odd length for G of types C,D.Otherwise we say the string is not adapted.We will consider the following case. Let �O � �g correspond to the partition�O  ! ((a1; a1); : : : (ar; ar); d1; : : : ; dl) (7.2.1)feq:7.2.1g so that �O meets the Levi component �m = gl(a1) � � � � � gl(ar) � �g(n0).The intersection of �O with each gl(di) is the principal nilpotent, and theintersection with �g(n0) is the even nilpotent orbit with partition (d1; : : : ; ds):Let �i = (fi + �i; : : : ; Fi + �i); 1 � i � r;�0 = �h0=2; (7.2.2)feq:7.2.2g and � be the parameter for g obtained by concatenating the �i: Then L(�)is the spherical subquotient ofIndGM [ O1�i�rL(�i)
 L(�0)] (7.2.3)feq:7.2.3g The next theorem gives necessary conditions for the unitarity of L(�):ft:7.2g Theorem. Assume that in type D, �O0 6= (0) or the rank is even. Therepresentation L(�) is unitary only if(1) Any string that is not adapted can be written in the form(�E + �; : : : ; E � 1 + �) 0 < � � 1=2; E � �(mod Z): (7.2.4)feq:7.2.4g (2) Any string that is adapted can be written in the form(�E + �; : : : ; E + �) 0 < � � 1=2; E � �(mod Z);or(�E � 1 + �; : : : ; E � 1 + �) 0 < � � 1=2; E � �(mod Z): (7.2.5)feq:7.2.5g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 51This is simply the fact that the �j satisfy 0 < �j < 1=2 or 1=2 < �j < 1 intheorem 3.1. The proof will be given in the next sections. It is by inductionon the dimension of �g; the number of strings with coordinates in an A� with� 6= 0; and by downward induction on the dimension of �O: The unitarity ofthe representation when there are no coordinates in any A� with � 6= 0 isdone in section 9. fsec:7.3g7.3. Consider the representation L(�) corresponding to the strings(a+�+�; : : : ; A+�+�)(�x0+�; : : : ;�1+�); jaj � A; 0 < � < 1; (7.3.1) feq:7.3.1gwhere a;A 2 Z; and � is as in (7.2). fp:7.3gProposition. In type D, assume that if there is no string (�x0+�; : : : ;�1+�); then A � a + 1 is even. Let L(�) correspond to (7.3.1). The hermitianform is negative on the following W�type:(1) If x0 < A then the form is negative on �[(A � 1); (x0 � a + 2)] fora � x0: When x0+1 � a; the form is negative on �[(x0+A�a); (1)]:(2) If �x0 < a � 0; then the form is negative on �[(1� a; x0 +A); (0)].When 0 < a � x0; the form is negative on �[(1; x0 +A� a); (0)].Proof. This is a corollary of the results in section 6.2. ˜ fsec:7.4g7.4. Initial Step. We do the case when there is a single A� with � >0; and the coordinates form a single string which we write as in (7.3.1),(a + � + �; : : : ; A + � + �). So let �O be a nilpotent orbit with partition((A � a + 1; A � a + 1); d1; : : : ; dl) which meets the Levi component �m =gl(A � a + 1) � �g(n0): Let �O0 be the intersection of �O with �g(n0): In typeD, either �O0 6= (0) or else A� a+ 1 is even. Theorem 7.2 is implied by thefollowing proposition. fp:7.4gProposition. Assume �O0 is even, and � is attached to �O: Then L(�) isr-unitary only if a+ � = �A� �; and the following hold.(1) If (a + � + �; : : : ; A + � + �) is adapted, then � = 0, unless there isdj = A� a+ 1; in which case 0 � � < 1:(2) If (a+ �+ �; : : : ; A+ �+ �) is not adapted, then 0 � � < 1=2:Proof. We do the case of g of type C only, the others are similar. So � = 0;and adapted means the length of the string is odd, not adapted means thelength of the string is even. The nilpotent orbit �O0 corresponds to thepartition (2x0 + 1; : : : ; 2x2m + 1) and the parameter has strings(1; : : : x0)(0; 1; : : : ; x1) : : : (1; : : : ; x2m):The partition of �O is (2x0 + 1; : : : ; 2x2m + 1; A� a+ 1; A� a+ 1):We want to show that if A+a > 0; or if A+a = 0 and there is no xi = A;then L(�) is not r-unitary. We do a downward induction on the rank of �gand a downward induction on the dimension of �O. So the �rst case is when�O is maximal, i.e. the principal nilpotent (m = 0). The claim follows fromproposition 7.3. So we assume that m is strictly greater than 0.



52 DAN BARBASCHAssume x2i < A � x2i+1: This case includes tbe possibility x2m < A: Wewill show by induction on rank of �g and dimension of �O that the form isnegative on a �[(n � r); (r)]: So we use the module Xe: If there is any pairx2j = x2j+1; the module Xe is unitarily induced from GL(2x2j +1)�G(n�2x2j�1) and all W�types �[(n� r); (r)] have the same multiplicity in L(�)as in Xe: We can remove the string corresponding to (x2jx2j+1) in Xe asexplained in section 3.2, lemma (3). By induction on rank we are done.Similarly we can remove any pair (x2j ; x2j+1) such that either x2j+1 � jaj orA � x2j as follows. Let M := GL(x2j +x2j+1+1)�G(n�x2j �x2j+1� 1):There is �M such that L(�) is the spherical subquotient ofIndGM [L(�x2j+1; : : : ; x2j)
 L(�M )]: (7.4.1)feq:7.4.1g Write �t := (�x2j+1 + t; : : : ; x2j + t;�M ): (7.4.2)feq:7.4.2g The induced moduleXe(�t) := IndGM [L(�x2j+1 + t; : : : ; x2j + t)
 L(�M )]: (7.4.3)feq:7.4.3g has L(�t) as its irreducible spherical subquotient. For 0 � t � x2j+1�x2j2 ; wehave Xe(L(�t)) = Xe(�t): Thus the signatures on the �[(n�r); (r)] in L(�t)are constant for t in the above interval. At t = x2j+1�x2j2 ; Xe(t) is unitarilyinduced from triv 
 X 0e on GL(x2j + x2j+1 + 1) � G(n � x2j � x2j+1 � 1)and we can remove the string corresponding to (x2jx2j+1): The inductionhypothesis applies to X 0e:When A+ a = 0; we are reduced to the case�O0  ! (2x0 + 1; 2x1 + 1; 2x2 + 1); x0 < A < x1 � x2: (7.4.4)feq:7.4.4g We reduce to (7.4.4) when A + a > 0 as well. We assume m = 2i + 2;since pairs (x2j ; x2j+1) with A � x2j can be removed. Suppose there is apair (x2j ; x2j+1) such that jaj < x2j+1; and j 6= i: The assumption is thatx2i < A � x2i+1 so x2j+1 � x2i < A:We consider the deformation �t in (7.4.2) with0 � t < �; a < 0;�� < t � 0; a � 0:In either case Xe(L(�t)) = Xe(L(�)); so the multiplicities of the �[(n �r); (r)] do not change until t reaches � in the �rst case, �� in the secondcase. If the signature on some �[(n� r); (r)] isotypic component is positivesemide�nite on L(�), the same has to hold when t = � or �� respectively.The corresponding nilpotent orbit for this parameter is strictly larger, but ithas two strings with coordinates which are not integers. For example, if a <0; the strings for Xe(L(��)) are (aside from the ones that were unchanged)(�x2j+1 + �; : : : ; A+ �); (a+ �; : : : ; x2j + �): (7.4.5)feq:7.4.5g We can deform the parameter further by replacing the second string by(a+�� t0; : : : ; x2j+�� t0) with 0 � t0 < �: The strings of the corresponding



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 53Xe do not change until t0 reaches �: At t0 = � the corresponding nilpotentorbit �O0 has partition(: : : ; 2jaj+ 1; : : : ; \2x2j+1 + 1; : : : ; A+ x2j+1 + 1; A+ x2j+1 + 1; : : : ) (7.4.6) feq:7.4.6gwhich contains �O in its closure. Since x2j+1 < A; the induction hypothesisapplies. The form is inde�nite on a W�type �[(n� r); (r)], so this holds forthe original � as well.We have reduced to case (7.4.3), i.e. the partition of �O0 has just threeterms 2x0 + 1; 2x1 + 1; 2x2 + 1): We now reduce further to the case�O0  ! (2x0 + 1); x0 < A: (7.4.7) feq:7.4.7gwhich is the initial step.Let I(t) be the induced module coresponding to the strings(�x1 + t; : : : ; x2 + t)(a+ �; : : : ; A+ �)(�x0; : : : ;�1): (7.4.8) feq:7.4.8gi.e. induced fromGL(x1 + x2)�GL(�a+A+ 1)�G(x0): (7.4.9) feq:7.4.9gConsider the irreducible spherical module for the last two strings in (7.4.8),inside the induced module from the Levi component GL(�a + A + 1) �G(x0) � G(�a + A + 1 + x0): By section 7.1, the form is, negative on�[(x0 � a + A); (1)] if x0 < a; negative on �[(A); (x0 + 1 � a)] if a � x0: Inthe second case the form is positive on all �[(A + r); (x0 + 1 � a � r)] for1 < r < n+1� a: So let r0 := 1 or x0+1� a depending on these two cases.The multiplicity formulas from section 6.2 imply that[�[(n�r0); (r0)] : I(t)] = [�[(n�r0); (r0)] : L(�)] for 0 � t � x2 � x12 :Thus signatures do not change when we deform t to x2�x12 ; where I(t) isunitarily induced. We conclude that the form on L(�) is negative on �[(n�r0); (r0)].Assume x2i�1 < A � x2i: In this case we can do the same arguments usingXo and �[(k; n� k); (0)]: We omit the details. ˜ f7.5g7.5. Induction step. The case when the parameter has a single stringwith coordinates in an A� with 0 < � < 1 was done in section 7.4. So weassume there is more than one string. Again we do case g of type C, andomit the details for the other ones.Write the two strings as in (2.6),(e+ �1; : : : ; E + �1); (f + �2; : : : ; F + �2): (7.5.1) feq:7.5.1gwhere 0 < �1 � 1=2 and 0 < �2 � 1=2: Recall that because we are in typeC, e;E; f; F 2 Z; and � = 0:We need to show that if F + f > 0 or F + f < �2 when F + f iseven, or F + f < �1 when F + f is odd, then the form is negative on arelevant W�type. Since r-reducibility and r-unitarity are not a�ected by



54 DAN BARBASCHsmall deformations, we may as well assume that (f + �2; : : : ; F + �2) is theonly string with coordinates in A�2 ; and (e + �1; : : : ; E + �1) the only onewith coordinates in A�1 :The strategy is as follows. Assume that L(�) is r-unitary. We deform(one of the strings of) � to a �t in such a way that the coresponding in-duced module is r-irreducible over a �nite interval, but is no longer so atthe endpoint, say t0: Because of the continuity in t the module L(�t0) isstill r-unitary. But the induction hypothesis applies, and we get a contra-diction. Sometimes we have to repeat the procedure before we arrive at acontradiction.So replace the �rst string by(e+ �1 + t; : : : ; E + �1 + t): (7.5.2)feq:7.5.2g If � = (e+ �1; : : : E + �1;�M ); then�t = (e+ �1 + t; : : : ; E + �1 + t;�M );X(�t) := IndGM [L(e+ �1 + t; : : : ; E + �1 + t)
 L(�M );where �m = gl(E � e+ 1)� �g(n�E + e� 1);If E < jej; we deform t in the negative direction, otherwise in the positivedirection. If t + �1 reaches 0 or 1=2; before the nilpotent orbit changes,we should rewrite the string to conform to the conventions (2.6.10) and(2.6.11). this means that we rewrite the string as (e0 + � 01; : : : ; E0 + � 01) with0 � � 01 � 1=2; and continue the deformation with a t going in the directiont < 0 if E0 < je0j, and t > 0 if E0 � je0j: This is not essential for theargument. We may as well assume that the following cases occur.(1) the nilpotent orbit changes at t0 = ��1;(2) the nilpotent orbit does not change, and at t0 = ��1,jej; jEj > x2m + 1:(3) the nilpotent orbit changes at a t0 such that 0 < �1 + t0 � 1=2;In the �rst case, the induction hypothesis applies, and since the string (f +�2; : : : ; F + �2) is una�ected, we conclude that the signature is negativeon a relevant W�type. In the second case the form is negative de�nite on�[(n�1); (1)]. In the third case, the only way the nilpotent orbit can changeis if the string (e+�1+t0; : : : ; E+�1+t0) combines with another string as insection 7.4, equation (7.4.6). If �1+t0 6= �2; the induction hypothesis applies,and since the string (f + �2; : : : ; F + �2) is una�ected, the form is negativeon a relevant W�type. If the nilpotent does not change at t = �2 � �1;continue the deformation in the same direction. Eventually either (1) or (2)are satis�ed, or else we are in case (3), and the strings in (7.5.1) combine to



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 55give a larger nilpotent. There are four cases:(1) e < f � E � F; e � f � E < F(2) f � e � F < E; f < e � F � E(3) e � E = f � 1 < F;(4) f � F = e� 1 < E: (7.5.3)feq:7.5.3g Assume jej � E. Then �1 < �2: If e � 0, we look at the deformation (7.5.2)for ��1 � t � 0: If the nilpotent changes for some ��1 < t < 0; the string(f + �2; : : : ; F + �2) is not involved, the induction hypothesis applies, so theparameter is not r-unitary. Otherwise at t = ��1 there is one less stringwith coordinates in an A� with � 6= 0, and again the induction hypothesisapplies so the original parameter is not r-unitary. Thus we are reduced tothe case 0 < e < E: Then consider the nilpotent orbit for the parameterwith t = ��1 + �2:In cases (1), (2) and (3) of (7.5.3), the new nilpotent has just one string(e+ �2; : : : ; F + �2); (7.5.4) feq:7.5.4ginstead of (7.5.1), and e + F > 0: The induction hypothesis applies, so theparameter is not r-unitary, nor is the original one.In case (4) of (7.5.3), the new nilpotent corresponds to the strings(f + �2; : : : ; E + �2) (7.5.5) feq:7.5.7gThe induction hypothesis applies, so f + E = 0;�2 if f + E is even orf + E = �1 if it is odd. Consider again the deformation �1 + �2 < t � 0:We may as well assume that the parameter is r-irreducible in this interval,or else we can apply the argument from before. So we arrive at the casewhen t = �1 + �2: The new nilpotent corresponds to the strings(f + �2; : : : ; E � 1 + �2); (e� 1 + �1); (F + �2): (7.5.6) feq:7.5.8gWrite the parameter as (�0; e� 1+ �2; F + �2): Since e� 1 = F; the inducedmodule I = IndGGL(2)�G(n�2)[L(e� 1 + �2; F + �2)
 L(�0)] (7.5.7) feq:7.5.9gis unitarily induced from a module which is hermitian and r-irreducible. Butthe parameter on GL(2) is not unitary unless e � 1 = F = 0: Furthermoref + E � 1 = 0;�2 if f + E is odd or f + E � 1 = �1 if f + E is even. Sothe original parameter (7.5.1) is(1 + �1; : : : ; E + �1); (�E + �2; : : : ; �2) E even,(1 + �1; : : : ; E + �1); (�E � 1 + �2; : : : ; �2) E odd. (7.5.8) feq:7.5.10gThe �rst string satis�es 1 + E > 0: Apply the deformation (�E + �2 +t; : : : ; �2 + t) with ��2 < t � 0: We may as well assume that the paameterstays r-irreducible in this interval. But then the induction hypothesis appliesat t = ��2 because there is one less string with coordines in A� with � 6= 0:



56 DAN BARBASCHAssume jej > E. The same argument applies, but this time it is e < E < 0that requires extra arguments, and in case (3) instead of case (4) of (7.5.3)we have to consider several deformations.fsec:7.6g 7.6. Proof of necessary condition for unitarity in theorem 3.1. We�rst reduce to the case of theorem 7.2. The di�erence is that the coordinatesin A0 may not form a �h=2 for an even nilpotent orbit. However r-reducibilityand r-unitary are una�ected by small deformations. So we can deform thestrings (notation as in (2.9.3)) corresponding to �01; : : : ; �0r with coordinatesin A0, so that their coordinates are no longer in A0: Then the assumptionsin theorem 7.2 are satis�ed.The argument now proceeds by analyzing each size of strings separately.In the deformations that we will consider, strings of di�erent sizes cannotcombine so that the nilpotent orbit attached to the paramter changes.Fix a size of strings with coordinates not in A0: If the strings are notadapted, they can be written in the form(�E � 1 + �i; : : : ; E + �i) 0 < �i � 1=2; E � �(mod Z): (7.6.1)feq:7.6.1g So there is nothing to prove. Now consider a size of strings that are adapted.Suppose there are two strings of the form(�E � 1 + �i; : : : ; E � 1 + �i); 0 < �i � 1=2; E � �(mod Z): (7.6.2)feq:7.6.2g Let �m := gl(2E + 1)� �g(n� 2E � 1); and write� := ((�E�1+ �i; : : : ; E�1+ �i;�E�1+ �i; : : : ; E�1+ �i);�M ): (7.6.3)feq:7.6.3g The moduleIndGM [L(�E � 1 + �i; : : : ; E � 1 + �i;�E � 1 + �i; : : : ; E � 1 + �i)
 L(�M )](7.6.4)feq:7.6.4g is r-irreducible, and unitarily induced from a hermitian module onM wherethe module on GL(2E+1) is not unitary. Thus L(�) is not unitary either.So L(�) is unitary only if for each �i there is at most one string of the form(�E � 1 + �i; : : : ; E � 1 + �i):Suppose there are two strings as in (7.6.1) with �1 < �2: If there is nostring �E + �3; : : : ; E + �3) with �1 < �3 < �2; then when we deform (�E �1 + �1 + t; : : : ; E � 1 + �1 + t) for 0 � t � �2 � �1; X(�t) stays r-irreducible.At t = �2 � �1 we are in case (7.6.2), so the parameter is not unitary.On the other hand suppose that there are two strings of the form(�E + �i; : : : ; E + �i); same �i: (7.6.5)feq:7.6.5g Let �m be as before, and write� := ((�E + �i; : : : ; E + �i;�E + �i; : : : ; E + �i);�M ): (7.6.6)feq:7.6.6g The moduleIndGM [L(�E + �i; : : : ; E + �i;�E + �i; : : : ; E + �i)
 L(�M )] (7.6.7)feq:7.6.7g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 57is irreducible, and unitarily induced from a hermitian module on M wherethe module on GL(2E + 1) is unitary. Thus L(�) is unitary if and only ifL(�M ) is unitary.So we may assume that for each �i there is at most one string of the form(�E + �i; : : : ; E + �i):Similarly if there are two strings of the form (�E + �1; : : : ; E + �1) and(�E + �2; : : : ; E + �2); such that there is no string of the form (�E � 1 +�3; : : : ; E � 1 + �3) with �1; �3 < �2; we reduce to the case (7.6.5).Let �k be the largest such that a string of the form (�E+ �k; : : : ; E+ �k)occurs, and �k+1 the smallest such that a string (�E � 1 + �k+1; : : : ; E �1 + �k+1) occurs. If �k > �k+1; we can deform (�E + �k + t; : : : ; E + �k + t)with 0 � t � 1 � �k � �k+1: No r-reducibility occurs, and we are again incase (7.6.2). The module is not unitary. If on the other hand �k < �k+1, thedeformation (�E�1+�k+1+t; : : : ; E�1+�k+1�t) for 0 � t � 1��k��k+1brings us to the case (7.6.5).Together the above arguments show that conditions (1) and (2) of theorem3.1 in types C,D must be satis�ed. Remains to check that for the case ofadapted strings, if there is an odd number of a given size 2E+1; then thereis a dj = 2E + 1:The arguments above (also the unitarity proof in the case �O = (0)) showthat an L(�) is unitary only if it is of the following form. There is a Levi com-ponent �m = gl(a1)�� � ��gl(ar)��g(n�P ai); and parameters �1; : : : ; �r; �0such that, L(�) = IndGM [OL(�i)
 L(�0)]; (7.6.8) feq:7.6.8gwith the following additional properties:(1) The �i for i > 0 are as in lemma (1) of section 3.2, with 0 < � < 1=2;in particular unitary.(2) �0 is such that there is at most one string for every A� with � 6= 0:To complete the proof we therefore need to consider the case of L(�0): IfL(�) is unitary, then so is the parameter where we deform all but one � 6= 0to zero. But for such a parameter the necessary conditions for unitarity aregiven in section 7.4. 8. Real nilpotent orbits fsec:8gIn this section we review some well known results for real nilpotent orbits.Some additional details and references can be found in [CM]. fsec:8.1g8.1. Fix a real form g of a complex semisimple Lie algebra gc: Let �c bethe complexi�cation of the Cartan involution � of g; and write for theconjugation. Let G be the adjoint group with Lie algebra gc; and let
gc = ac + sc; g = k + s (8.1.1) feq:8.1.1g



58 DAN BARBASCHbe the Cartan decomposition. Write Ac � Gc for the subgroup correspond-ing to ac; and G and K for the real Lie groups corresponding to g and
k:ft:8.1g Theorem (Jacobson-Morozov).(1) There is a one to one correspondence between Gc-orbits O of nilpo-tent elements and Gc-orbits of Lie triples fe; h; fg i.e. elementssatisfying[h; e] = 2e; [h; f ] = �2f; [e; f ] = h:This correspondence is realized by completing a nilpotent elemente 2 O to a Lie triple.(2) Two Lie triples fe; h; fg and fe0; h0; f 0g are conjugate if and onlyif the elements h and h0 are conjugate.fsec:8.2g 8.2. Suppose e 2 g is nilpotent. Then one can still complete it to a Lietriple e; h; f 2 g: Such a Lie triple is called real or ��stable. A Lie tripleis called Cayley if in addition �(h) = �h; �(e) = f: Every real Lie triple isconjugate by G to one which is Cayley.ft:8.2g Theorem (Kostant-Rao). Two real Lie triples are conjugate if and onlyif the elements e � f and e0 � f 0 are conjugate under G: Equivalently, twoCayley triples are conjugate if and only if e � f and e0 � f 0 are conjugateunder K:fsec:8.3g 8.3. Suppose e 2 sc is nilpotent. Then e can be completed to a Lie triplesatisfying �c(e) = �e; �c(h) = h; �c(f) = �f: (8.3.1)feq:8.3.1g We call such a triple �-stable. To any Cayley triple one can associate a�-stable triple as in (8.3.1), by the formulasee := 12(e+ f + ih); eh := i(e� f); ef := 12(e+ f � ih): (8.3.2)feq:8.3.2g A Lie triple is called normal if in addition to (8.3.1) it satis�es e = f; h =�h:ft:8.3g Theorem (Kostant-Sekiguchi).(1) Any �-stable triple is conjugate via Kc to a normal one.(2) Two nilpotent elements ee; ee0 2 s are conjugate by Kc; if and onlyif the corresponding Lie triples are conjugate by Kc: Two �-stabletriples are conjugate under K if and only if the elements eh; eh0 areconjugate under Kc:(3) The correspondence (8.3.2) is a bijection between G orbits of nilpo-tent elements in g and Kc orbits of nilpotent elements in sc:ft:8.3.1g Proposition. The correspondence between real and � stable orbits is com-patible with closure relations.Proof. This is the main result in [BS]. ˜



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 59fsec:8.4g 8.4. Let p = m+n be a real parabolic subalgebra and e 2 mc be a nilpotentelement. Let pc = mc + nc be the complexi�cation of p: Let cc := AdMc � e:According to [LS], the induceed orbit from cc is the uniqueGc orbit Cc whichhas the property that Cc \ [cc + nc] is dense (and open) in c + nc:Proposition (1). Let E = e+ n 2 e+ nc:(1) dimZMc(e) = dimZGc(E):(2) Cc \ [cc + nc] is a single Pc orbit.This is theorem 1.3 in [LS]. In particular, an element E0 = e0+n0 2 cc+ncis in Cc if and only if the mapadE0 : pc �! T �E0c + nc; adE0(y) = [E0; y] (8.4.1) feq:8.4.1gis onto.Another characterization of the induced orbit is the following.Proposition. The orbit Cc is the unique open orbit in AdGc(e + nc) =AdGc(cc + nc); as well as in the closure AdGc(e+ nc) = AdGc(cc + nc):We omit the proof, but note that the statements about the closures followfrom the fact that Gc=Pc is compact.Proposition (2). The orbit Cc depends on cc � mc; but not on nc:Proof. This is proved in section 2 of [LS]. We give a slightly di�erent proof.Let � 2 hc � mc be an element of the Cartan subalgebra hc such thath�; �i > 0 for all roots � 2 �(nc; hc): Then by a standard argument,AdPc(� + e) = � + cc + nc: (8.4.2) feq:8.4.2gAgain because Gc=Pc is compact,[t>0AdGc(t� + e)n[t>0AdGc(t� + e) = AdGc(cc + nc): (8.4.3) feq:8.4.3gThus if we change Pc to a parabolic subgroup which is associate, (i.e. itsLevi component is conjugate to Mc) then � is replaced by a conjugate of �by the Weyl group. The claim follows, because the left hand side of (8.4.3)remains unchanged. ˜We now consider the case of real induction. Let e 2 m be a nilpotentelement, and c := AdMe. fd:8.4gDe�nition. The ��induced set from c to g is the �nite union of orbits
Ci := AdGEi such that one of the following equivalent conditions hold.(1) Ci is open in AdG(c + n) and SCi = AdG(e+ n).(2) The intersection Ci \ [c + n] is open in c + n; and the union of theintersections is dense in c + n:



60 DAN BARBASCHWe write indg
p(c) =[Ci: (8.4.4) feq:8.4.4gand we say that each Ei is real or ��induced from e:We omit the details of the proof of the equivalence of the two statements.fp:8.4g Proposition (3). The ��induced set depends on e and the Levi component

m; but not on n:The proof is essentially identical to the one in the complex case. We omitthe details.In terms of the �-stable versions ee of e; and eEi of Ei; ��induction iscomputed in [BB]. This is as follows. Let hc � mc be the complexi�cationof a maximally split real Cartan subalgebra h, and � 2 Z(mc)\sc an elementof h such that � 2 �(n; h) if and only if �(�) > 0:Then [AdKc( eEi) = [t>0AdKc(t� + ee)n[t>0AdKc(t� + ee): (8.4.5)feq:8.4.5gfsec:8.5g 8.5. Let qc = lc+uc be a �-stable parabolic subgroup, and write qc = lc+ucfor its complex conjugate. Let e 2 lc \ sc be a nilpotent element.fp:8.5g Proposition. There is a unique Kc�orbit orbit OKc(E) so that its inter-section with OLc\Kc(e) + (uc \ sc) is open and dense.Proof. This follows from the fact that e + (uc \ sc) is formed of nilpotentorbits, there are a �nite number of nilpotent orbits, and being complex, theKc�orbits have even real dimension. ˜fd:8.5g De�nition. The orbit OKc(E) as in the proposition above is called ��inducedfrom e; and we write indgc
qc(Olc(e)) = O(E);and say that E is ��induced from e:Remark. The induced orbit is characterized by the property that it is the(unique) largest dimensional one which meets e+ uc\ sc: It depends on e aswell as qc; not just e and lc:fsec:8.6g 8.6. Consider Z2 o sl(2;C); where the nontrivial element � 2 Z2 acts onsl(2;C) by (8.3.1). Let (�; V ) be an irreducible representation of sl(2;C) ofdimension n+ 1 and let fvig be a basis so that�(e)vi = aivi+2; �(h)vi = iv; �(f)vi = vi�2: (8.6.1)feq:8.6.1gfp:8.6g Proposition. The representation (�; V ) extends in two inequivalent waysto Z2 o sl(2;C) according to whether � acts by �1 on vn:Proof. This is straightforward. ˜



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 61In general, for a not necessarily irreducible (�; V ); we de�ne its signatureto be the pair of integers (a+; a�); where a� is the dimension of the �1eigenspace of � on the kernel of �(e): fsec:8.7g8.7. u(p,q). Let V be a complex �nite dimensional vector space of dimen-sion n: There are two inner classes of real forms of gl(V ): One is such that �is an outer automorphism. It consists of the real form GL(n;R); and whenn is even, also U�(n): The other one is such that � is inner, and consists ofthe real forms U(p; q) with p+ q = n: In sections 8.7-8.13, we investigate �and � induction for these forms, and then derive the corresponding resultsfor so(p; q) and sp(n;R) from them in sections 8.14-8.15. The usual descrip-tion of u(p; q) is that V is endowed with a hermitian form ( ; ) of signature(p; q); and u(p; q) is the Lie algebra of skew hermitian matrices with respectto this form. Fix a positive de�nite hermitian form h ; i:We will identify thecomplexi�cation of g := u(p; q) with gc := gl(V ); and the complexi�cationof U(p; q) with GL(V ): Up to conjugacy by GL(V );(v; w) = h�v; wi; �2 = 1; (8.7.1) feq:8.7.1gThe eigenspaces of � on V will be denoted V �. The Cartan decompositionis gc = kc + sc; where k is the +1 eigenspace, and s the �1 eigenspace ofAd �:We need some results about closure relations between nilpotent orbits.For a �-stable nilpotent element e; we write a�(ek) for the signature of �on the kernel of ek; and a(ek) = a+(ek) + a�(ek) for the dimension of thekernel. If it is clear what nilpotent element they refer to, we will abbreviatethem as a�(k): ft:8.7.2gTheorem. Two ��stable nilpotent elements e and e0 are conjugate by Kcif and only if ek and e0k have the same signatures. The relation OKc(e0) �OKc(e) holds if and only if for all k;a+(e0k) � a+(ek); a�(e0k) � a�(ek):Proof. For real nilpotent orbits, the analogue of this result is in [D]. Thetheorem follows by combining these results with proposition 8.3. We omitmost of the details, except a few which will be useful later.Let e be a �-stable nilpotent orbit. DecomposeV =M Viinto Z2 o sl(2) representations, and let �i be the eigenvalue of � on thehighest eigenweight of Vi (also the kernel of e). We encode the informationabout e into a tableau with rows equal to the dimensions of Vi and alternatesigns + and � starting with the sign of �i: The number of +'s and �'s in the�rst column gives the signature of � on the kernel of e: Then the number of� in the �rst two columns gives the signature of � on the kernel of e2 andso on. The total number of +'s equals p; the number of �'s equals q: WriteV = V++ V�; where V� are the �1 eigenspaces of �: The element e is given



62 DAN BARBASCHby a pair (A;B); where A 2 Hom[V+; V�]; and B 2 Hom[V�; V+]: Thenek is represented by (ABAB : : : ; BABA : : : ); k factors each, and a�(k) isthe dimension of the kernel of the corresponding composition of A and B:The fact that the condition in the theorem is necessary, follows from thisinterpretation. ˜fsec:8.8g 8.8. A parabolic subalgebra of gl(V ) is the stabilizer of a generalized 
ag(0) =W0  W1  � � �  Wk = V: (8.8.1)feq:8.8.1g Fix complementary spaces Vi;Wi =Wi�1 + Vi; i > 0: (8.8.2)feq:8.8.2g They determine a Levi component
l �= gl(V1)� � � � � gl(Vk): (8.8.3)feq:8.8.1.2gfsec:8.9g 8.9. In order to get a �-stable parabolic subalgebra, one needs to asumethat the Wi are stable under �; or equivalently that the restriction of thehermitian form to each Wi is nondegenerate. In this case we may assumethat the Vi are �-stable as well, and let qc = lc + uc be the correspondingparabolic subalgebra of gl(V ): If we denote the signature of Vi by (pi; qi);then

lc \ g �= u(p1; q1)� � � � � u(pk; qk): (8.9.1)feq:8.9.1gfsec:8.10g 8.10. To get the complexi�cation of a real parabolic subalgebra, start witha partial 
ag (0) =W0  � � �  Wk (8.10.1)feq:8.10.1g such that the hermitian form is trivial when restricted to Wk; and completeit to (0) =W0  � � �  Wk  W �k  � � �  W �0 = V (8.10.2)feq:8.10.2g Choose transverse spacesWi =Wi�1 + Vi; W �i =W �i�1 + V �i ; W �k =Wk + V0: (8.10.3)feq:8.10.3g They determine a Levi component
lc = gl(V1)� � � � � gl(Vk)� gl(V0)� gl(V �k )� � � � � gl(V �1 ); (8.10.4)feq:8.8.10.4g so that

lc \ g = gl(V1;C)� � � � � gl(Vk;C)� u(p0; q0); (8.10.5)feq:8.10.5g where (p0; q0) is the signature of V0:



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 63fsec:8.11g 8.11. Let now qc = lc + uc be a maximal � stable parabolic subalgebracorresponding to the 
ag W1 = V1  W2 = V1 + V2 = V: Then
lc �= Hom[V1; V1] + Hom[V2; V2] = gl(V1)� gl(V2); uc �= Hom[V2; V1]:(8.11.1)feq:8.11.1g Write ni := dimVi; and � = �1 + �2 with �i 2 End(Vi): A nilpotent elemente 2 gl(V2) satisfying �2e = �e�2; can be viewed as a ��stable nilpotentelement in lc by making it act by 0 on V1: Let E = e +X; with X 2 uc (soX 2 gl(V ) acts by 0 on V1). Then X�2 = ��1X. DecomposeV2 =MW �ii (8.11.2)feq:8.11.2g where W �ii are irreducible Z2n sl(2;C) representations such that the eigen-value of �2 on the highest weight vi is �i. Order the W �ii so that dimWi �dimWi+1:Write A�(k) for the signatures of Ek and a�(k) for the signaturesof ek: fp:8.11gProposition. The signature (A+(k); A�(k)) of Ek satis�esA+(k) �dimV1;+ + a+(k � 1)++max �0 ; #f i j dimW �ii � k; �i = (�1)k�1g � dimV (�1)k1 �;A�(k) �dimV1;� + a�(k � 1)++max �0 ; #f i j dimW �ii � k; �i = (�1)kg � dimV (�1)k�11 �:Proof. Since Ek = ek + Xek�1; an element v 2 V2; is in the kernel of Ekif and only if ek�1v is in the kernel of X as well as e: Thus V1 � kerE.This accounts for the terms dimV �1 : Since ker ek�1 � kerXek�1 \ ker ek;this accounts for the terms a�(k � 1):The representation theory of sl(2;C) impliesker e \ Im ek�1 = spanfv�ii j e � v�ii = 0; dimW �ii � kg (8.11.3) feq:8.11.3gIf the sign of vi is �i; and vi = ek�1wj; then the sign of � on wj is �j(�1)k�1:Then X : V �i2 �! V ��i1 , and the minimum possible dimension of the kernelof X on the space in (8.11.3) is the last term in the inequalities of theproposition. The claim follows. ˜ fsec:8.12g8.12. We now construct an E such that the inequalities in proposition 8.11are equalities.For any integers a; b; let

K+a := spanf �rst a vi with �i = 1g;
K�b := spanf �rst b vj with �j = �1g (8.12.1) feq:8.12.1gNote that X(K+a ) � V �1 ; X(K�b ) � V +1 : (8.12.2) feq:8.11.4g



64 DAN BARBASCH ft:8.12gTheorem. Let E = e + X with notation as in 8.12.2. Choose X suchthat it is nonsingular on K�a;b for as large an a and b as possible. ThenAdKc(E) = indgc
q e:Proof. From the proposition it follows that the Ak� of any element in e +(uc \ sc) are minimal when they are equal to the RHS of proposition 8.11.Theorem 8.7 implies that if a nilpotent element achieves this minimum, itsorbit contains any other e + X in its closure. This minumum is achievedby the choice of X in the proposition, bering in mind that the Wi wereordered in decreasing order of their dimension. Thus AdKc(E) has maximaldimension among all orbits meeting e+(u\s) and so the claim follows fromthe observation at the end of 8.5. ˜This theorem implies the following algorithm for computing the inducedorbit in the case g �= u(p; q): Suppose the signature of V1 is (a+; a�): Thenadd a+ +'s to the beginning of largest possible rows of e starting with a �and a� �'s to the largest possible rows of e starting with a +: If a+ is largerthan the number of rows starting with �; add a new row of size 1 startingwith +: The similar rule applies to a�:If e 2 gl(V1); the analogous procedure applies, but the a+ +'s are addedat the end of the largest possible rows �nishing in � and a� �'s to the endof the largest possible rows �nishing in +:Because induction is transitive, the above algorithm can be generalizedto compute the �-induced of any nilpotent orbit. We omit the details.fsec:8.13g 8.13. Suppose pc = mc + nc is the complexi�cation of a real parabolic sub-algebra corresponding to the 
ag (0) � V1 � V1 + V0 � V1 + V0 + V �1 ; andlet e � gl(V0) be a real nilpotent element. The rest of the notation is as insection 8.4.ft:8.13g Theorem. The tableau of an orbit AdG(Ei) which is in the ��induced setindg

p(c); is obtained from the tableau of e by adding 2 to dimV1 of the largestrows leaving the signs unchanged.Proof. We use (8.4.2) and (8.4.3). Let � 2 Hom[V1; V �1 ] � Hom[V �1 ; V1] benondegenerate such that �2 = Id � Id; and extend it to an endomorphism� 2 gl(V ) so that its restriction to V0 is zero. This is an element such thatthe centralizer of ad � is m; in particular, [�; e] = 0: LetP (X) = Xm + am�1Xm�1 + � � �+ a0 (8.13.1)feq:8.13.1g be any polynomial in X 2 gl(V ). Suppose ti 2 R are such that ti ! 0; andassume there are gi 2 K such that tigi(� + e)g�1i ! E: Thenker tmi P (gi(� + e)g�1i ) �= kerP (� + e): (8.13.2)feq:8.13.2g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 65On the other hand,tmi P (gi(� + e)g�1i ) = [tigi(� + e)g�1i ]m++ am�1ti[tigi(� + e)g�1i ]m�1 + � � �+ tmi Id! Em; (8.13.3)feq:8.13.3g as ti ! 0: Thus dimkerEm jV�� dimkerP (� + e) jV� : (8.13.4) feq:8.13.4gChoosing P (X) = (X2 � 1)Xn; we conclude that E must be nilpotent.Choosing P (X) = Xm; (X � 1)Xm�1 or P (X) = (X2 � 1)Xm�2; we canbound the dimensions of kerEm jV� to conclude that it must be in the closureof one of the nilpotent orbits given by the algorithm of the theorem. Thefact that these nilpotent orbits are in (8.4.3) follows by a direct calculationwhich we omit. ˜ fsec:8.14g8.14. sp(V). Suppose gc �= sp(V0); where (V0; h ; i) is a real symplecticvector space of dimension n: The complexi�cation (V; h ; i) admits a complexconjugation ; and we de�ne a nondegenerate hermitian form(v; w) := hv; wi (8.14.1) feq:8.14.1gwhich is of signature (n; n): Denote by u(n; n) the corresponding unitarygroup. Since sp(V0) stabilizes ( ; ); it embeds in u(n; n); and the Cartaninvolutions are compatible. The results of sections 8.1-8.3 together withsection 8.6 imply the following classi�cation of nilpotent orbits of sp(V0) orequivalently �-stable nilpotent orbits.(1) To each orbit we assign a tableau so that every odd part occurs aneven number of times. Rows of equal size are interchangeable.(2) The entries in each row alternate + or �: Odd sized rows occur inpairs, one starting with + the other with �:A parabolic subalgebra of sp(V ) is the stabilizer of a 
ag of isotropicsubspaces (0) =W0 � � � � � Wk; (8.14.2) feq:8.14.2gso that the symplectic form restricts to 0 on Wk: As before, complete thisto a 
ag (0) =W0 � � � � � Wk � W�k � � � � � W�0 = V: (8.14.3) feq:8.14.3gWe choose transverse spacesWi =Wi�1 + Vi; W�k =Wk +W; W�i�1 =W�i + V �i (8.14.4) feq:8.14.4gin order to �x a Levi component. We get
l �= gl(V1)� � � � � gl(Vk)� sp(W): (8.14.5) feq:8.14.5gIf we assume that Vi; W are �-stable, then the corresponding parabolicsubalgebra is �-stable as well, and the real points of the Levi component are

l0 �= u(p1; q1)� � � � � u(pk; qk)� sp(W0): (8.14.6) feq:8.14.6g



66 DAN BARBASCHwhere (pi; qi) is the signature of Vi: The parabolic subalgebra correspondingto (8.14.4) in gl(V ) satis�es
l0 �= u(p1; q1)�� � ��u(pk; qk)�u(n0; n0)�u(qk; pk)�� � ��u(q1; p1): (8.14.7) feq:8.14.7gFor a maximal �-stable parabolic subalgebra, the Levi component l satis-�es l �= u(p1; q1) � sp(W0): Let e 2 sp(W ) be a �-stable nilpotent element.The algorithm for induced nilpotent orbits in section 8.9 implies the follow-ing for indgc

l (e):(1) add p +'s to the beginning of the longest possible rows starting with�'s, and q �'s to the beginning of the longest possible rows startingwith +'s.(2) add q +'s to the ending of the longest possible rows starting with�'s, and p �'s to the beginning of the longest possible rows startingwith +'s.Unlike in the complex case, the result is automatically a partition for anilpotent element in sp(V ):For a maximal real parabolic subalgebra, we must assume that V1 =V1; W = W: Let V1;0 and W0 be their real points. The Levi componentsatis�es
l �= gl(V1;0)� sp(W0): (8.14.8)feq:8.14.8g The results in section 8.13 imply the following algorithm for real induction.(1) add 2 to dimV1 largest possible rows of e leaving the signs un-changed.(2) Suppose dimV1 is odd and the last row that would be increased by2 is odd size as well. In this case there is a pair of rows of this size,one starting with + the other with �: In this case increase these tworows by one each leaving the sign unchanged.fsec:8.15g 8.15. so(p,q). Suppose gc �= so(V0); where (V0; h ; i) is a real nonde-generate quadratic space of signature (p; q): The complexi�cation admits ahermitian form h ; i with signature (p; q) as well as a complex nondegen-erate quadratic form ( ; ); which restrict to h ; i on V0: The form h ; igives an embedding of o(p; q) into u(p; q) with compatible Cartan involu-tions. The results of sections 8.1-8.3 together with section 8.6 imply thefollowing classi�cation of nilpotent orbits of so(V0) or equivalently �-stablenilpotent orbits.(1) To each orbit we assign a tableau so that every even part occurs aneven number of times. Rows of equal size are interchangeable.(2) The entries in each row alternate + or �: Even sized rows occur inpairs, one starting with + the other with �:(3) When all the rows have even sizes, there are two nilpotent orbitsdenoted I and II.



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 67A parabolic subalgebra of so(V ) is the stabilizer of a 
ag of isotropicsubspaces (0) =W0 � � � � � Wk; (8.15.1)feq:8.15.1g so that the quadratic form restricts to 0 on Wk: As before, complete this toa 
ag (0) =W0 � � � � � Wk � W�k � � � � � W�0 = V: (8.15.2) feq:8.15.2gWe choose transverse spacesWi =Wi�1 + Vi; W�k =Wk +W; W�i�1 =W�i + V �i (8.15.3) feq:8.15.3gin order to �x a Levi component,
l �= gl(V1)� � � � � gl(Vk)� so(W ): (8.15.4) feq:8.15.4gTo get a �-stable parabolic subalgebra we must assume Vi; W are �-stableand so Vi = V �i ; W = W: If the signature of Vi with respect to h ; i is(pi; qi); and that of W is (p0; q0); then

l0 �= u(p1; q1)� � � � � u(pk; qk)� so(p0; q0): (8.15.5) feq:8.15.5gThe parabolic subalgebra corresponding to (8.15.2) in gl(V ) satis�es
l0 �= u(p1; q1)�� � ��u(pk; qk)�u(p0; q0)�u(pk; qk)�� � ��u(p1; q1): (8.15.6) feq:8.15.6gFor a maximal �-stable parabolic subalgebra, the Levi component l satis�es

l �= u(p1; q1)� so(W0): Let e 2 so(W ) be a �-stable nilpotent element. Thealgorithm for induced nilpotent orbits in section 8.9 implies the followingfor indgc
l (e):(1) add p1 +'s to the beginning of the longest possible rows startingwith �'s, and q1 �'s to the beginning of the longest possible rowsstarting with +'s.(2) add p1 +'s to the ending of the longest possible rows starting with�'s, and q1 �'s to the beginning of the longest possible rows startingwith +'s.Unlike in the complex case, the result is automatically a partition for anilpotent element in so(V ):For a maximal real parabolic subalgebra, we must assume that V1 =V1; W = W: Let V1;0 and W0 be their real points. The Levi componentsatis�es

l �= gl(V1;0)� so(W0): (8.15.7) feq:8.15.7gThe results in section 8.13 imply the following algorithm for real induction.(1) add 2 to dimV1 largest possible rows of e leaving the signs un-changed.(2) Suppose dimV1 is even and the last row that would be increased by2 is even size as well. In this case there is a pair of rows of this size,one starting with + the other with �: Increase these two rows byone each leaving the sign unchanged.



68 DAN BARBASCH(3) When there are only even sized rows and dimV1 is even as well, typeI goes to type I and type II goes to type II.9. Unitarityfsec:9g In this section we prove the unitarity of the representations of the formL(�) where � = �h=2: As already mentioned, in the p�adic case this isdone in [BM1]. It amounts to the observation that the Iwahori-Matsumotoinvolution preserves unitarity, and takes such an L(�) into a tempered rep-resentation.The idea of the proof in the real case is described in [B2]. We give detailsof a simpler argument in the case G = So(2n+ 1): Only minor changes arerequired for the other cases. We will do an induction on rank.fsec:9.1g 9.1. We rely heavily on the properties of the wave front set, asymptoticsupport and associated variety, and their relations to primitive ideal cellsand Harish-Chandra cells. We review some facts. Since this is not the mainpurpose of the article, we refer to [SV], [V2] and [BV1], [BV2], [B3] for thedetails.Let � be an admissible (gc;K) module. we review some facts from [BV1].The distribution character �� lifts to an invariant eigendistribution �� ina neighborhood of the identity in the Lie algebra. For f 2 C1c (U); whereU � g is a small enough neighborhood of 0; let ft(X) := t�dim gcf(t�1X):Then ��(ft) = t�dXj cj\�Oj(R)(f) +Xi>0 td+iDd+i(f)]: (9.1.1)feq:9.1.1g The Di are homogeneous invariant distributions (each Di is tempered andthe support of its Fourier transform is contained in the nilpotent cone). The�Oj are invariant measures supported on real forms Oj of a single com-plex orbit Oc; and �Oj(R) is the Liouville measure on the nilpotent orbitassociated to the symplectic form induced by the Cartan-Killing form. Fur-thermore d = dimCOc=2; and the number cj is called the multiplicity ofOj(R) in the leading term of the expansion. The closure of the union ofthe supports of the Fourier transforms of all the terms occuring in (9.1.1) iscalled the asymptotic support, denoted AS(�): The leading term in (9.1.1)will be called AC(�): We will use the fact that the nilpotent orbits in theleading term are contained in the wave front set of �� at the origin, denotedWF (�):Alternatively, [V2] attaches to each � a combination of �-stable orbitswith integer coe�cients AV (�) =X ajOj ; (9.1.2)feq:9.1.2g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 69where Oj are nilpotent Kc�orbits in sc: The main result of [SV] is thatAC(�) in (9.1.1) and AV (�) in (9.1.2) correspond via theorem 8.3. Pre-cisely, the leading term in formula (8.3.2), and (9.1.2) are the same, whenwe identify real and � stable nilpotent orbits via the Kostant-Sekiguchi cor-respondence. The algorithms in section 8 compute the associated variety ofan induced representation as a set, which we also denote by AV (�) whenthere is no possibility of confusion. The multiplicities are computed in thereal setting in [B4] theorem 5.0.7. The formula is as follows. Let vj 2 Ojand vij = vj +Xij be representatives of the induced orbits Oij from Oj;m:If AV (�) =P cjOj;m; thenAV (indgc
p (�)) =Xi;j cj jCG(vij)jjCP (vij)jOij : (9.1.3) feq:9.1.3gWe use [SV] to compare multiplicities of real and � induced modules. For-mula (9.1.3) is straightforward for real induction and AC(�): Its analoguefor � stable induction and AV (�) is also straightforward. It is the passagefrom AC(�) to AV (�) that is nontrivial. fsec:9.2g9.2. Fix a regular integral in�nitesimal character �reg: Denote by G(�reg)the Grothendieck group of the category of (gc;K) modules with in�nitesimalcharacter �reg: Recall from [V2] (and references therein) that there is anaction of the Weyl group on G(�reg); called the coherent continuation action.Then G(�reg) decomposes into a direct sum according to blocks B,G(�reg) =MGB(�reg): (9.2.1) feq:9.2.1gWe give the explicit description of this representation in all types.Type B: In order to conform to the duality between type B and type C in[V2], we only count the real forms with p > q: The representation G(�reg)equalsG(�reg) = Xa;b;� IndWnWa�Wb�W2s�St[sgn
 sgn
 �[�; � ] 
 triv]; (9.2.2) feq:9.2.2gwhere � is a partition of s; and a + b + 2s + t = n: The multiplicity of a�[�L; �R] in one of the induced modules in (9.2.2) is as follows. Choose a �that �ts inside both �L and �R; and label it by �'s. Add \a" r and \b" r0 to�R; at most one to each row, and \t" c, at most one to each column, to �L or�R. The multiplicity of � in the induced module for a given (�; a; b) is thenthe number of ways that �l; �R can be �lled in this way. This procedureuses induction in stages, and the well known formulaIndWnSn (triv) = Xk+l=n�[(k); (l)]: (9.2.3) feq:9.2.3g



70 DAN BARBASCHExample. Let gc = so(5): The real forms are so(3; 2); so(4; 1); so(5): Thechoices of (�; a; b; t) are(1; 1; 0; 0); (1; 0; 1; 0); (1; 0; 0; 1);(0; 2; 0; 0); (0; 1; 1; 0)); (0; 1; 0; 1); (0; 0; 2; 0); (0; 0; 1; 1); (0; 0; 0; 2):(9.2.4) feq:9.2.4gLet � = �[(1); (1)]: Then its multiplicity is given by the number of labelings(�; �) ;; ;;;; ;; (c; r); ;; (c; r0); (c; c): (9.2.5)feq:9.2.5g For � = �[(0); (2)] we get;; ;; ;;; (0; rr0); (0; rc); ;; (0; r0c); (0; cc): (9.2.6)feq:9.2.6g
˜The following formula sorts the representations according to the variousreal forms of SO(p; q) with p+ q = 2n+ 1: A representation occuring in G;labelled as above, occurs in SO(p; q) withp = n+ 1+ j #r0 �#r j ��; where � = (0 if #r0 � #r;1 otherwise. (9.2.7)feq:9.2.7g In the above example, (�; �), (c; c), (0; rr0); (0; rc) and (0; cc) belong toso(3; 2) while (c; r0) and (0; r0c) belong to so(4; 1):To each pair of partitions parametrizing a representation of W;�L = (r0; : : : ; r2m); �R = (r1; : : : ; r2m�1); ri � ri+2; (9.2.8)feq:9.2.8g Lusztig attaches a symbol�r0 r2 + 1 : : : r2m +mr1 r3 + 1 : : : r2m�1 +m� 1 � : (9.2.9)feq:9.2.9g The symbol is called special ifr0 � r1 � r2 + 1 � r3 + 1 � � � � � r2m +m: (9.2.10)feq:9.2.10g Two representations belong to the same double cell if and only if their sym-bols have the same entries. Given a special symbol of the form (9.2.9), thecorresponding nilpotent orbit Oc has partition obtained as follows. Formthe set f2r2i + 2i+ 1; 2r2j�1 + 2j � 2g; (9.2.11)feq:9.2.11g and order the numbers in increasing order, x0 � � � � � x2m: The partition ofOc is (x0; x1 � 1; : : : ; xi � i; : : : ; x2m � 2m): (9.2.12)feq:9.2.12g Type C: The representation G(�reg) is obtained from the one in type B



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 71by tensoring with sign. ThusG(�reg) = Xa;b;� IndWnSt�W2s�Wa�Wb [sgn
 �[�; � ] 
 triv 
 triv]; (9.2.13)feq:9.2.13g where � is a partition of s; and a+b+2s+t = n: This takes into account theduality in [V2] of types B and C. We write r for the sign representation ofSt; and c and c0 for the trivial representations of Wa; Wb: A representationof W is parametrized by a pair of partitions (�L; �R); with�L = (r0; : : : ; r2m); �R = (r1; : : : ; r2m�1); ri � ri+2: (9.2.14) feq:9.2.14gThe associated symbol is�r0 r2 + 1 : : : r2m +mr1 r3 + 1 : : : r2m�1 +m� 1 � ; (9.2.15) feq:9.2.15gand it is called special ifr0 � r1 � r2 + 1 � r3 + 1 � � � � � r2m +m: (9.2.16) feq:9.2.16gTwo representations belong to the same double cell if their symbols havethe same entries. Given a special symbol as in (9.2.15), the nilpotent orbitOc attached to the double cell has partition obtained as follows. Order theset f2r2i + 2i; 2r2j�1 + 2j � 1g (9.2.17) feq:9.2.17gin increasing order, x0 � � � � � x2m: Then the partition of Oc is(x0; : : : ; xj � j; : : : ; x2m � 2m): (9.2.18) feq:9.2.18gType D: Since in this case �[�L; �R] and �[�R; �L] parametrize the samerepresentation, (except of course when �L = �R which corresponds to twononisomorphic representations), we assume that the size of �L is the largerone. The Cartan subgroups are parametrized by integers (t; u; 2s; p; q); p+q+2s+ t+ u = n: There are actually two Cartan subgroups for each s > 0;related by the outer automorphism of order 2. Then G(�reg) equalsG(�reg) = Xp+q+2s+t+u=n IndW 0nWa�Wb�W 02s�Wt�Wu [sgn
sgn
�[�; � ]I;II
triv
triv]:(9.2.19) feq:9.2.19gThe sum is also over � which is a partition of s. We label the � by �'s,trivial representations by c and c0 and the sgn representations by r and r0:These are added to �L when inducing. In this case we count all the realforms SO(p; q) with p+ q = 2n; and p = n+#r0 �#r: If�L = (r0; : : : ; r2m�2); �R = (r1; : : : ; r2m�1); (9.2.20) feq:9.2.20gthen the associated symbol is�r0 r2 + 1 : : : r2m�2 +m� 1r1 r3 + 1 : : : r2m�1 +m� 1� : (9.2.21) feq:9.2.21gA representation is called special if the symbol satis�esr0 � r1 � r2 + 1 � r3 + 1 � � � � � r2m�1 +m� 1: (9.2.22) feq:9.2.22g



72 DAN BARBASCHTwo representations belong to the same double cell if their symbols havethe same entries. The nilpotent orbit Oc attached to the special symbol isgiven by the same procedure as for type B.Let ha � gc be an abstract Cartan subalgebra and let �a be a set of(abstract) simple roots. For each irreducible representation L(
); denoteby �(
) the tau-invariant as de�ned in [V2]. Given a block B and disjointorthogonal sets S1; S2 � �a; de�neB(S1; S2) = f
 2 B j S1 � �(
); S2 \ �(
) = ;g : (9.2.23)feq:9.2.23g If in addition we are given a nilpotent orbit Oc � gc; we can also de�neB(S1; S2;Oc) = f
 2 B(S1; S2)j WF (L(
)) � Ocg : (9.2.24)feq:9.2.24g Recall the special case of a complex algebra gc viewed as a real Lie algebra.Then the case S1; S2 = ; is called the double cone C(Oc): The double cellcorresponding to Oc will be denoted C(Oc):Let Wi =W (Si), and de�nemS(�) = [� : IndWW1�W2(Sgn
 Triv)];mB(�) = [� : GB(�reg)] : (9.2.25)Theorem (1). jB(S1; S2;Oc)j = X�
�2C(Oc)mB(�)mS(�) :Assume that �O is even. Then � := �h=2 is integral, and it de�nes a set S2by S2 = S(�) = f� 2 �aj(�; �) = 0g : (9.2.26)feq:9.2.24g Then the special unipotent representations attached to �O are de�ned to beUnip( �O) =[B B(;; S(�);Oc) (9.2.27)feq:9.2.25g In the classical groups case, mB(�) is straightforward to compute. For thespecial unipotent case, mS(�) equals 0 except for the representations occur-ing in the corresponding left cell CL(Oc) when it is 1. These representationsare in 1-1 correspondence with the conjugacy classes in Lusztig's quotientof the component group A( �O): See [BV2] for details.ft:9.2.2g Theorem (2). jUnip( �O)j =XB X�2CL(Oc)mB(�) :fd:9.2g De�nition. We say that a nilpotent orbit Oc is smoothly cuspidal if itsatis�esType B, D: all odd sizes occur an even number of times,Type C: all even sizes occur an even number of times.



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 73For O(R); a real form of Oc; write A(O(R)) for its (real) component group. fp:9.2gProposition. For smoothly cuspidal orbits, A( �O) = A( �O): In particular,jCL(Oc)j = jA( �O)j: Furthermore,jUnip( �O))j = XO(R) jA(O(R))jwhere the sum is over all real forms O(R) of Oc.Proof. This is theorem 5.3 in [B2]. It consists of a direct calculation ofmultiplicities in the coherent continuation representation using the resultsdeveloped earlier in this section. ˜ fsec:9.3g9.3. Two representations �; �0 are said to be in the same Harish-Chandracell if there are �nite dimensional representations F; F 0 such that �0 is afactor of � 
 F and � a factor of �0 
 F 0: In this case WF (�) = WF (�0):We say that a Harish-Chandra cell is attached to a complex orbit Oc ifAdGc(WF (�)) = Oc:The set of representations in a Harish-Chandra cell gives rise to a repre-sentation of the (complex) Weyl group. ft:9.3gTheorem ([McG]). In the classical groups Sp(n); SO(p; q); each Harish-Chandra cell is of the form CL(Oc): fsec:9.4g9.4. We now return to type G = So(2n + 1): Consider the spherical irre-ducible representation L(� �O) with � �O = �h=2 corresponding to a nilpotentorbit �O in sp(n): If the orbit �O meets a proper Levi component �m; thenL( �O) is a subquotient of a representation which is unitarily induced froma unipotent representation on m: By induction, L(� �O) is unitary. Thus weonly consider the cases when �O does not meet any proper Levi component.This means�O = (2x0; : : : ; 2x2m); 0 � x0 < � � � < xi < xi+1 < � � � < x2m; (9.4.1) feq:9.4.1gso these orbits are even.Because of assumption (9.4.1), theWF -set of L(� �O) satis�es the propertythat AdGc(WF (L(� �O)))is the closure of the special orbit (in the sense of Lusztig) dual to �O: Thisis the orbit Oc with partition(1; : : : ; 1| {z }r1 ; 2; : : : ; 2| {z }r2 ; : : : ; 2m; : : : ; 2m| {z }r2m ; 2m+ 1; : : : ; 2m+ 1| {z }r2m+1 ); (9.4.2) feq:9.4.2gwhere r2i+1 = 2(x2m�2i � x2m�2i�1 + 1);r2i = 2(x2m�2i+1 � x2m�2i � 1);r2m+1 = 2x0 + 1:



74 DAN BARBASCHThe columns of Oc are (2x2m + 1; 2x2m�1 � 1; : : : ; 2x0 + 1):De�nition. Given an orbit Oc with partition (9.4.2) or more generally asmoothly cuspidal orbit, we call the split real form Ospl the one which, foreach row size,Type C,D: the number of rows starting with + and � is equal,Type B: in addition to the condition in types C,D for rows of size lessthan 2m + 1, for size 2m+ 1; the number of starting with + is onemore than those starting with �:Theorem. The WF -set of the spherical representation L(� �O) with �O sat-isfying (9.4.1) is the closure of the split real form Ospl of the (complex) orbitOc given by (9.4.2).Proof. The main idea is outlined in [B2]. We use the fact that if � is afactor of �0; then WF (�) � WF (�0): We do an induction on m: The claimamounts to showing that if E occurs in AS(L(� �O)); then the signatures ofE; E2; : : : are greater than the pairs(x2m + 1; x2m); (x2m + x2m�1; x2m + x2m�1); : : : ;: : : (x2m + � � � + x1; x2m + � � � + x1);(x2m + � � �+ x1 + x0 + 1; x2m + � � �+ x1 + x0): (9.4.3)feq:9.4.3g The statement is clear when m = 0; L(� �O) is the trivial representation. Let�O1 be the nilpotent orbit corresponding to(2x0; : : : ; 2x2m�2): (9.4.4)feq:9.4.4g By induction, AS(L( �O1)) is the split real form of the nilpotent orbit corre-sponding to the partition(1; : : : ; 1| {z }r01 ; 2; : : : ; 2| {z }r02 ; : : : ; 2m� 2; : : : ; 2m� 2| {z }r02m�2 ; 2m� 1; : : : ; 2m� 1| {z }r02m�1 ); (9.4.5)feq:9.4.5g where the columns are (2x2m�2+1; 2x2m�3�1; : : : ; 2x0+1). Let p be the realparabolic subalgebra with Levi component g(n� x2m � x2m�1)� gl(x2m +x2m�1): There is a character � of gl(x2m + x2m�1) such that � := L(� �O)is a factor of �0 := indgc
p [L(� �O1) 
 �]: But by section 8, WF (�0) is in theclosure of nilpotent orbits corresponding to partitions(2; : : : ; 2| {z }(r1+r2)=2; : : : ; 2m; : : : ; 2m| {z }r2m ; 2m+ 1; : : : ; 2m+ 1| {z }r2m+1 ); r1 + r2 even, (9.4.6)feq:9.4.6g (1; 1; 2; : : : ; 2| {z }(r1+r2�1)=2; : : : ; 2m; : : : ; 2m| {z }r2m ; 2m+ 1; : : : ; 2m+ 1| {z }r2m+1 ); r1+ r2 odd. (9.4.7)feq:9.4.7g It follows that the signatures for Ek in WF (L(� �O)) are greater than thepairs (a+; a�); (x2m + x2m�1; x2m + x2m�1); : : : ; (9.4.8)feq:9.4.8g



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 75for some a+ + a� = x2m + 1: Also, each row size greater than two and lessthan 2m+1 has an equal number that start with + and �: For size 2m+1there is one more row starting with + than �:The same argument with �O2 corresponding to(2x0; : : : \2x2m�2; \2x2m�1; 2x2m)shows that WF (L(� �O)) is also contained in the closure of the nilpotentorbits with signatures(x2m + 1; x2m); (x2m + 1 + a+; x2m + a�);(x2m + 1 + x2m�1 + x2m�2; x2m + 1 + x2m�1 + x2m�2); : : : ; (9.4.9) feq:9.4.9gfor some a+ + a� = x2m�1: The claim follows. ˜ fsec:9.5g9.5. Consider the special case whenx0 = x1 � 1 � x2 = x3 � 1 � � � � � x2m�2 = x2m�1 � 1 � x2m: (9.5.1) feq:9.5.1gThe component group A(O) has size 2m: We produce 2m irreducible rep-resentations so that their AS equals the closure of Ospl: We assume g isso(2p + 1; 2p). Let h be the compact Cartan subalgebra. We write thecoordinates (a1; : : : ; ap j b1; : : : ; bp) (9.5.2) feq:9.5.2gwhere the �rst p coordinates before the j are in the Cartan subalgebra ofso(2p + 1) the last p coordinates are in so(2p): The roots �i � �j ; �i withi; j � p are all compact and so are �p+k � �p+l with k; l � p: The roots�i � �p+k; �p+k are noncompact. Let qc = lc + uc be a �-stable parabolicsubalgebra with Levi component
l = u(x2i1+1; x2i1)� u(x2i2 ; x2i2+1)� � � � � g(x2m); (9.5.3) feq:9.5.3gwhere the ij are the numbers 0; : : : ;m � 1 in some order. The parabolicsubalgebra qc corresponds to the weight� = (mx2i1+1 ; : : : ; 1x2im�1+1; 0x2m j mx2i1 ; : : : ; 1x2im�1 ; 0x2m);or� = (mx2i1+1 ; : : : ; 1x2im�1 ; 0x2m j mx2i1 ; : : : ; 1x2im�1+1; 0x2m); (9.5.4) feq:9.5.4gdepending whether m is odd or even.The derived functor modules Ri

qc(�) from characters on lc have AC-setcontained in Ospl: To get in�nitesimal character � �O; these characters canonly be ��ij := �(1=2; : : : ; 1=2); (9.5.5) feq:9.5.5gon the unitary factors u(x2ij+1; x2ij ) or u(x2ij ; x2ij+1); and trivial on g(x2m):We need to show that there are choices of parabolic subalgebras qc as in(9.5.3) and characters as in (9.5.5) so that we get 2m nonzero and distinctrepresentations. For this we have to specify the Langlands parameters.



76 DAN BARBASCHFor each subset A := fk1; : : : ; krg � f0; : : : ;m � 1g; kj in decreasingorder, label the complement Ac := f`1; : : : ; `tg; and consider the ��stableparabolic subalgebra qc;A as in (9.5.3) and (9.5.4) corresponding tofi1; : : : ; im�1g = fk1; : : : ; kr; `1; : : : ; `tg: (9.5.6) feq:9.5.6gWe will consider the representations Rqc;A(�A); where �A is the concatenta-tion of the ��ij with + for the �rst r, and � for the last t:fl:9.5g Lemma.Ri
qc;A(�A) = ( 0 if i 6= dim(uc;A \ kc);nonzero irreducible if i = dim(uc;A \ kc):Proof. The vanishing part follows from [KnV], chapter V, section 7. Ac-cording to proposition 5.93, it is su�cient to show thatindg;K

qc;A;L\K(Z#
qc;A) := U(g)
qc;A Z#

qc;A (9.5.7)feq:9.5.7g is irreducible. Here Z#
qc;A is the 1�dimensional module corresponding to�A � �(uc;A); with �(uc;A) := 12 X�2�(uA;c)�The derived functors are normalized so that ifW has in�nitesimal character�; then so do Ri

qc(W ):But generalized Verma modules of this kind have characteristic varietieswhich are unions of nilpotent orbits in gc, and multiplicities; basically thede�nition of the associated cycle applies. Since �O is even, the results from[BV2] apply. The associated cycle of (9.5.8) is Oc from (9.4.2), and the mul-tiplicity is 1. Any composition factor cannot have associated cycle strictlysmaller than Oc: So if there is more than one factor, the multiplicity of Ocmust be strictly larger than 1.To show that Rdim(uc;A\kc)
qc;A (�A) 6= 0; we use the bottom layer K� typesde�ned in chapter V section 6 of [KnV]. To simplify the notation slightly,we writea1 = x2k1+1; b1 = x2k1 ; : : : ; ar = x2kr ; br = x2kr+1 r even;a1 = x2k1+1; b1 = x2k1 ; : : : ; ar = x2kr+1; br = x2kr r odd: (9.5.8)feq:9.5.8g Let also a :=P aj; b :=P bj : Note that jaj � bjj = 1; and also ja� bj = 1:Then � := � + 2�(u \ s)� �(u) = (1a; 0p�a j 1b; 0p�a) (9.5.9)feq:9.5.9g is dominant, therefore bottom layer. The aforementioned results then implythe nonvanishing. The derived functor module is irreducible because themultiplicity is 1. ˜



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 77We will need to use the intermediate parabolic subalgebras
qc;A � q0c;A � q

00c;A � gc (9.5.10)feq:9.5.10g with Levi components
l0c;A = u(a1; b1)� � � � � u(ar; br)� g(n� a� b);
l
00c;A = u(a; b)� g(n� a� b); (9.5.11)feq:9.5.11g Apply induction in stages from qc;A to q0c;A �rst. On the factor g(n� a� b)the K� type � in (9.5.9) is trivial, so the Langlands parameter is that ofthe spherical principal series. Similarly on the u(aj ; bj) assume the in�ni-tesimal character is �j := (max(aj ; bj); : : : ;min(aj ; bj)); and the Langlandsparameter is that of a principal series with the appropriate 1-dimensionalLanglands subquotient. Let h � hA � l0c;A be the the most split Cartansubalgebra. In particular the real roots are�d := �d+�d+p; Xj�s aj < d <Xj�s aj+min(aj ; bj); 0 � s � r�1: (9.5.12) feq:9.5.12gFor each factor u(aj ; bj) the Langlands parameter is of the form �j ; �j where�j 2 hA \ kc; and �j 2 hA \ sc: Then�j = (1=2aj j 1=2bj ); (9.5.13) feq:9.5.13gwhile h�j ; �di = max(aj; bj)� (d�Xj�s aj) (9.5.14) feq:9.5.14gfp:9.5gProposition. The representations Rdim(uc;A\kc)

qc;A (�A) have Langlands param-eters (�G; �) where �G is obtained by concatenating the �j in (9.5.13) and� satis�es (9.5.14).Proof. There is a nonzero map Xl0c(�G;��) �! Ll0(�G;��) given by theLanglands classi�cation. Thus there is a mapRdim kc\u0c
q0c;L0\K [Xl0(�G;��)] �!�! Rdim kc\u0c

q0c;L0\K (Ll0c(�G;��)) = Rdim kc\uc
qc;L\K (�A); (9.5.15) feq:9.5.15gwhich is nonzero on the bottom layer K�type (9.5.9). On the other hand,because these are standard modules,Ri

q(Xl0(�G; �)) = (X(�G; �) if i = dim kc \ uc;0 otherwise. (9.5.16) feq:9.5.16gThe proof follows. ˜



78 DAN BARBASCH fsec:9.6g9.6.Theorem. The spherical unipotent representations L(� �O) are unitary.Proof. Write g(n) for the Lie algebra containing O: There is a (real) para-bolic subalgebra p+ with Levi component m+ := gl(n1)�� � �� gl(nk)�g(n)in g+ of rank n1 + � � � + nk + n; such that the split form O+spl ofO+c := (1; 1; 3; 3; : : : ; 2m� 1; 2m� 1; 2m + 1)is induced from O on g(n); trivial on the gl's. We will consider the repre-sentation I(�) := Indg+
m+ [triv 
 � � � 
 triv 
 �]: (9.6.1)feq:9.6.1ag We show that the form on I(�) induced from � is positive de�nite; thisimplies that the form on � is de�nite. We do this by showing that thepossible factors of I(�) have to be unitary, and the forms on their lowestK�types are positive de�nite.Combining proposition 9.2 with (9.2.3), we conclude that there are 3m �2munipotent representations in the block of the spherical irreducible representa-tion; all the factors of I(�) are in this block. The number 3m also equals thenumber of real forms of O+. We describe how to get 3m �2m representations.For each O+j , we produce one representation � such that AC(�) = O+j : Thentheorem 9.3 implies that there is a Harish-Chandra cell with 2m represen-tations with this property. Since these cells must be disjoint, this gives therequired number.From section 9.1, each such form O+j is �-stable induced from the trivialnilpotent orbit on a parabolic subalgebra with Levi component a real formof gl(1) � gl(3) � � � � � gl(2m � 1) � gc(m): Using the results in [KnV], foreach such parabolic subalgebra, we can �nd a derived functor induced mod-ule from an appropriate 1-dimensional character, that is nonzero and hasassociated variety equal to the closure of the given real form. Actually itis enough to construct this derived functor module at regular in�nitesimalcharacter where the fact that it is nonzero irreducibile is considerably easier.The results listed in section 9.3 imply that there are 2m distinct represen-tations in this cell which are nonzero distinct when we apply translationfunctors to in�nitesimal character � �O+ :So in this block, there is a cell for each real form of O+; and each cell has2m irreducible representations with in�nitesimal character � �O: In particularfor Ospl, the Levi component is u(1; 0) � u(1; 2)� u(3; 2)� � � � � so(m;m+1): For this case, section 9.5 produced exactly 2m parameters; their lowestK�types are of the form �e(n�k; k): These are the only possible constituentsof the induced from L(� �O): Since the constituents of the restriction of a�e(n � k; k) to a Levi component are again �e(m � l; l)'s, the only wayL(� �O) can fail to be unitary is if the form is negative on one of the K�types



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 79�e(n � k; k): But sections 5 and 6.2 show that the form is positive on theK�types �e of L(� �O): ˜10. Irreducibility fsec:10gfsec:10.1g10.1. To complete the classi�cation of the unitary dual we also need toprove the following theorem. ft:10.1gTheorem. Assume �O is even, and such that xi�1 = xi = xi+1 for some i:Let m = gl(xi)�g(n�xi); and �O1 � g(n�xi) be the nilpotent orbit obtainedfrom �O by removing two rows of size xi: ThenL(� �O) = IndG(n)GL(xi)�G(n�xi)[triv 
 L(� �O1)]:In the p�adic case this follows from the work of Kazhdan-Lusztig ([BM1]).In the real case, it follows from the following proposition. fp:10.1gProposition. The associated variety of a spherical representation L(� �O) isgiven by the sum with multiplicity one of the following nilpotent orbits.Type B, D: On the odd sized rows, the di�erence between the numberof +'s and number of �'s is 1, 0 or -1.Type C: On the even sized rows, the di�erence between the number of+'s and number of �'s is 1, 0 or -1.The proof of the proposition is lengthy, and follows from more general re-sults which are unpublished ([B5]). We will give a di�erent proof of theorem10.1 in the next sections.Remark. When �O1 is even, but �O is not, and just xi = xi+1; the prooffollows from [BM1] in the p�adic case, and the Kazhdan-Lusztig conjecturesfor nonintegral in�nitesimal character in the real case. We have already usedthese results in the course of the paper. ˜The outline of the proof is as follows. In section 2, we prove some auxiliaryreducibility results in the case when �O is induced from the trivial nilpotentorbit in a maximal Levi component. In section 3, we combine these resultswith intertwining operator techniques to complete the proof of theorem 10.1. fsec:10.2g10.2. We need to study the ��induced modules from the trivial module on
m � g(n) where m �= gl(n); or m �= gl(a) � g(b);Type B. The nilpotent orbit �O corresponds to the partition 2x0 = 2x1 = 2a;in sp(n;C): The in�nitesimal character is (�a + 1=2; : : : ; a � 1=2) and thenilpotent orbit Oc corresponds to (1; 1; 2; : : : ; 2| {z }2a�2 ; 3): We are interested in thecomposition series of IndG(2a)GL(2a)[triv]: (10.2.1) feq:10.2.1og



80 DAN BARBASCHThere are three real forms of Oc;+ � ++ �� +... ...+ �� +++
+ � ++ �� +... ...+ �� ++�

� + �+ �� +... ...+ �� +++ (10.2.2) feq:10.2.1g
The associated cycle of 10.2.1 is the middle nilpotent orbit in (10.2.2) withmultiplicity 2. Section 6 shows that there are at least two factors character-ized by the fact that they contain the K�types which are the restrictionsto S[O(2a+ 1)�O(2a)] of(0; 0; : : : ; 0;+ j 0; 0; : : : ; 0;+)(1; 0; : : : ; 0;� j 0; 0; : : : ; 0;�): (10.2.3)feq:10.2.3g Thus because of multiplicity 2, there are exactly two factors. The nonspher-ical factor has Langlands parameter�G = (1=2; 0; : : : ; 0 j 0; : : : ; 0);� = (0; a� 1=2; a � 1=2; : : : ; 3=2; 3=2; 1=2): (10.2.4)feq:10.2.1pg The Cartan subalgebra for the parameter is such that the root �1 is non-compact imaginary, �i; �i� �j with j > i � 2; are real. The standard moduleX(�G; �) which has X(�G; �) as quotient is the one for which � is dom-inant. Thus we take the Cartan subalgebra such that �2a is noncompactimaginary, �i; �i � �j with i < j < 2a are real, and the usual positive system�+ = f�i; �i � �jgi<j .Type C. The nilpotent orbit �O corresponds to the partition 2x0 = 2x1 =2a+ 1 < 2x2 = 2b+ 1 in so(n;C): The in�nitesimal character is(�a; : : : ; a)(�b; : : : ;�1) (10.2.5)feq:10.2.2g The nilpotent orbit Oc is induced from the trivial one on gl(2a+ 1)� gc(b)and corresponds to (1; : : : ; 1| {z }2b�2a�2; 2; 2; 3; : : : ; 3| {z }2a ): (10.2.6)feq:10.2.3ag We are interested in the composition series ofIndG(2a+b+1)GL(2a+1)�G(b)][triv]: (10.2.7)feq:10.2.4ag



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 81There are three real forms of (10.2.6),+ � +� + �... ...+ � +� + �+ �+ �+�...+�

+ � +� + �... ...+ � +� + �+ �� ++�...+�

+ � +� + �... ...+ � +� + �� +� ++�...+�
(10.2.8)feq:10.2.4g

The AC cycle of (10.2.7) consists of the middle nilpotent orbit in (10.2.8)with multiplicity 2. By a similar argument as for type B, we conclude thatthe composition series consists of the representations with parameters( b+; : : : ; a+ 1+; a+; a+; a+; : : : ; 1+; 1+; 1+; 0+ );( b+; : : : ; a+ 1+; a;�a+ 1; : : : ; ; 1; 0; 0 ); (10.2.9) feq:10.2.4bgwith lowest K�types (0; : : : ; 0; : : : ; 0);(1; : : : ; 1| {z }a+1 ; 0; : : : ; 0| {z }b�1 ;�1; : : : ;�1| {z }a+1 ): (10.2.10) feq:10.2.4cgType D. The nilpotent orbit �O corresponds to the partition 2x0 = 2x1 =2a+1 in so(n;C): The in�nitesimal character is (�a; : : : ; a): The real formsof the nilpotent orbit O are + �� +... ...+ �� + (10.2.11) feq:10.2.5gThere are two nilpotent orbits with this partition labelled I; II: Each ofthem is induced from m �= gl(2a); there are two such Levi components. Weare interested in the induced modulesIndG(2a)GL(2a)[triv]: (10.2.12) feq:10.2.6gThe multiplicity of the nilpotent orbit (10.2.11) in the AC cycle of (10.2.12)is 1, so the representations are irreducible.We summarize these calculations in a proposition.



82 DAN BARBASCH fp:10.2gProposition. The composition factors of the induced module from the triv-ial representation on m all have relevant lowest K�types. In particular, theinduced module is generated by spherically relevant K�types. Precisely,Type B: the representation is generated by the �e;Type C: the representation is generated by the �o;Type D: the representation is generated by �e(0) = �o(0).fsec10:3g 10.3. We now prove the irreducibility result mentioned at the beginningof the section in the case of type B; the other cases are similar. Let � �O1be the nilpotent orbit where we have removed one string of size 2a: Let
m := gl(2a) � g(n � 2a): Then L(� �O) is the spherical subquotient of theinduced representationI(a; L(� �O1)) := Indg

m[(�a+ 1=2; : : : ; a� 1=2) 
 L(� �O1)]: (10.3.1)feq:10.3.1g It is enough to show that if a parameter is unipotent, and satis�es xi�1 =xi = xi+1 = a; then I(a; L(� �O1)) is generated by its K�types of the form�e: This is because by theorem 5.3, the K�types of type �e in (10.3.1)occur with full multiplicity in the spherical irreducible subquotient, and themodule is unitary.First, we reduce to the case when there are no 0 < xj < a: Let � be thedominant parameter of L(� �O); and assume i is the smallest index so thatxi�1 = a: There is an intertwining operatorX(�) �! I(1=2; : : : ; x0 � 1=2; : : : ; 1=2; : : : ; xi�2 � 1=2; � 0) (10.3.2)feq:10.3.2g where I is induced from gl(x0)�� � ��gl(xi�2)�g(n�Pj<i�1 xj) with char-acters on the gl's corresponding to the strings in (10.3.2) and the irreduciblemodule L(� 0) on g(n�Pj<i�1 xj). The intertwining operator is onto, andthus the induced module is generated by its spherical vector. By the induc-tion hypothesis, the induced module from (�a+1=2; : : : ; a� =2)
L(� 00) ongl(2a) � g(n�Pj�i xj) is irreducible. ButI(1=2; : : : ; x0 � 1=2; : : : ; 1=2; : : : ; xi�2 � 1=2;�a+ 1=2; : : : ; a� 1=2; � 00) �=I(�a+ 1=2; : : : ; a� 1=2; 1=2; : : : ; x0 � 1=2;x : : : ; 1=2; : : : ; xi�2 � 1=2; � 00)(10.3.3)feq:10.3.3g This module maps by an intertwining operator onto I(a; L(� �O1)); so thismodule is generated by its spherical vector.So we have reduced to the case whenx0 = x1 = x2 = a; orx0 = 0 < x1 = x2 = x3 = a: (10.3.4)feq:10.3.4g Suppose m = 1; so we are in the �rst case. The in�nitesimal character is(a� 1=2; a1=2; a� 1=2; : : : ; 1=2; 1=2; 1=2);



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 83each coordinate occuring three times. The induced moduleI(�a+ 1=2; : : : ; a� 1=2) (10.3.5)feq:10.3.5g of g(2a) is a direct sum of irreducible factors computed in section 10.2;in particular it is generated by K�types of the form �e(2a � k; k) (withk = 0; 1). Consider the moduleI(a� 1=2; : : : ; 1=2;�a + 1=2; : : : ; a� 1=2); (10.3.6) feq:10.3.6ginduced from characters on GL(1) � � � � � GL(1) � GL(2a): It is a directsum of induced modules from the two factors of (10.3.5). Each such inducedmodule is a homomorphic image of the corresponding standard module withdominant parameter. So (10.3.6) is also generated by its �e isotypic com-ponents. But thenI(a� 1=2; : : : ; 1=2;�a + 1=2; : : : ; a� 1=2) �=I(�a+ 1=2; : : : ; a� 1=2; a � 1=2; : : : ; 1=2) (10.3.7) feq:10.3.7gso the latter is also generated by its �e isotypic components. Finally, theintertwining operatorI(a� 1=2; : : : ; 1=2) �! I(1=2; : : : ; a� 1=2) (10.3.8) feq:10.3.8gis onto, and the image of the intertwining operatorI(1=2; : : : ; a� 1=2) �! I(�a+ 1=2; : : : ;�1=2) (10.3.9) feq:10.3.9gis onto L(�a+ 1=2; : : : ;�1=2): ThusI(�a+ 1=2; : : : ; a� 1=2;L(�a + 1=2; : : : ;�1=2)) (10.3.10) feq:10.3.10ginduced from gl(2a)�g(a) is generated by its �e isotypic components. Sincethe multiplicity of these K�types in the induced module is the same as inthe irreducible spherical module, it follows that they must be equal.Now suppose that m > 1 in the �rst case, or m > 2 in the second case.The parameter has another x2m�1 � x2m: We use an argument similar tothe one above to show that the moduleI(�x2m�1 + 1=2; : : : ; x2m � 1=2; L(� �O2)); (10.3.11) feq:10.3.11gwhere �O2 is the nilpotent orbit with partition obtained from �O by removing2x2m�1; 2x2m; is generated by its �e isotypic components. The claim thenfollows because the induced module is a homomorphic image of (10.3.11).Precisely, X(�) maps ontoI(x2m�1 + 1=2; : : : ;x2m � 1=2; 1=2; : : : ; x0 � 1=2; : : : ; 1=2; : : : ; x2m�2 � 1=2;L(�x2m�1 + 1=2;�x2m�1 + 1=2; : : : ;�1=2;�1=2))(10.3.12) feq:10.3.12gSo this module is generated by its spherical vector. Replace L(�x2m�1 +1=2;�x2m�1 + 1=2; : : : ;�1=2;�1=2) by I(�x2m�1 + 1=2; : : : ; x2m�1 � 1=2):The ensuing module is a direct sum of two induced modules by section 10.2.



84 DAN BARBASCHThey are both homomorphic images of standard modules, so generated bytheir lowest K�types, which are of type �e. Next observe that the mapI(x2m�1 + 1=2; : : : ; x2m � 1=2;1=2; : : : ; x0 � 1=2; : : : ; 1=2; : : : ; x2m�2 � 1=2;� x2m�1 + 1=2; : : : ; x2m�1 � 1=2) �!I(�x2m�1 + 1=2; : : : x2m � 1=2;1=2; : : : ; x0 � 1=2; : : : ; 1=2; : : : ; x2m�2 � 1=2)(10.3.13) feq:10.3.13gis onto. So the target module is generated by its �e isotypic components.The moduleI(1=2; : : : ; x0 � 1=2; : : : ; 1=2; : : : ; x2m�2 � 1=2) (10.3.14)feq:10.3.14g (the string�x2m�1+1=2; : : : ; x2m�1=2 removed) has L(�x2m�2+1=2; : : : ; 1=2)as its unique irreducible quotient, because it is the homomorphic image ofan X(�) with � dominant. Therefore it is generated by its spherical vector.Combining this with the induction assumption, we conclude thatI(�x2m�1 + 1=2; : : : ; x2m � 1=2;�a + 1=2; : : : ; a� 1=2;L( �O3)) (10.3.15)feq:10.3.15g is generated by its �e isotypic components. It is isomorphic toI(�a+ 1=2; : : : ; a� 1=2;�x2m�1 + 1=2; : : : ; x2m � 1=2;L( �O3)): (10.3.16)feq:10.3.16g Finally, the multiplicities of the �e isotypic components of I(�x2m�1 +1=2; : : : ; x2m � 1=2;L( �O3)) are the same as for the irreducible subquotientL( �O1)). This completes the proof of the claim in this case.Remains to consider the case when m = 2 and x0 = 0 < x1 = x2 = x3 =a � x4: In this case, the moduleI(a+1=2; : : : ; x4�1=2;�a+1=2; : : : ; a�1=2;�a+1=2; : : : ; a�1=2) (10.3.17)feq:10.3.17g is generated by its �e isotypic components because of proposition 10.2, andarguments similar to the above. Therefore the same holds forI(�a+ 1=2; : : : ; x4 � 1=2;�a + 1=2; : : : ; a� 1=2); (10.3.18)feq:10.3.18g which is a homomorphic image via the intertwining operator which inter-changes the �rst two strings. But this is isomorphic toI(�a+ 1=2; : : : ; a� 1=2;�a + 1=2; : : : ; x4 � 1=2): (10.3.19)feq:10.3.19g Then I(�a+1=2; : : : ; a� 1=2; L(�x4 +1=2; : : : ;�1=2;�1=2) is a homomor-phic image of (10.3.19) so it is generated by its �e isotypic components. Bysection 5.3, the multiplicities of the �e isotypic components are the samein I(�a+ 1=2; : : : ; a� 1=2; L(�x4 + 1=2; : : : ;�1=2;�1=2)as in L(� �O): Thiscompletes the proof of theorem 10.1. ˜References[ABV] J. Adams, D. Barbasch, D. Vogan, The Langlands classi�cation and irreduciblecharacters of real reductive groups, Progress in Mathematics, Birkh�auser, Boston-Basel-Berlin, (1992), vol. 104.[BB] D. Barbasch, M. Bozicevic The associated variety of an induced representa-tionproceedings of the AMS 127 no. 1 (1999), 279-288
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