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1 Introduction

This paper investigates the unitary dual of the groups U(p, ¢), in particular the
spherical case.

The general philosophy for parametrizing the unitary dual is that each reduc-
tive group G should have a set of basic unitary irreducible representations which
generate the unitary dual in the following sense. To any unitary irreducible rep-
resentation 7, there should be attached a pair (Q,7r), where Q = LU is a real
or 6 stable parabolic subgroup, and 7 is a basic representation of the Levi
component L. Then 7 should be a factor of the unitarily or cohomologically
induced module from 7, or it should be in a complementary series from such
a module.

A basic representation should have the properties that

(1) it is not obtained by induction or complementary series from a proper Levi
component,

(2) its restriction to the semisimple part of L is a unipotent representation.

Unipotent representations are parametrized by nilpotent orbits. Let O, C §
be a nilpotent orbit in the Lie algebra of the dual group G. A representation
7 is called unipotent if its annihilator in the universal enveloping algebra of
G is the maximal primitive ideal with infinitesimal character one of a finite
set X1, Xg,0, associated to O.. It is not completely settled what these
infinitesimal characters should be. One of them was introduced by Arthur, and
is as follows. Let ¢&,h, f be a Lie triple attached to O.. Then ﬁ/2 is one of
the x; »,- The unipotent representations with this infinitesimal character are
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called special unipotent. For classical complex groups, a larger suggested set of
infinitesimal characters is in [B2].

For a unipotent representation, condition (1) is implied by the requirement
that O, should not meet any proper Levi component of §.. In type A, this
forces O, to be the principal nilpotent orbit. The only unipotent representation
attached to the principal nilpotent is the trivial one. Thus for a group of type
A, it is reasonable to expect that the basic representations can only be unitary
characters. In [V5] it is shown that GL(n,R) and GL(n,C) conform to the
aforementioned philosophy. The results in this paper present further evidence
that the spherical unitary dual of U(p, q), conforms as well. A more detailed
and precise discussion of these ideas can be found in [V4].

In the case of the quasisplit groups, U(n,n) and U(n + 1,n), we determine
the full spherical unitary spectrum. The main result is theorem 5.

The necessary conditions for unitarity are obtained in sections 4 and 5 of
[B1]. The connection is as follows. Let M be the Levi component of the minimal
parabolic subgroup of G. To establish whether a spherical module 7 is unitary,
one has to check that for any K type (V,u) occuring in 7, a certain form on
(V*)M is positive definite. To get necessary conditions for unitarity we compute
the signature of this hermitian form on a certain set of K-types which we call
relevant (section 4). The Weyl group W acts on (V*)M and for a relevant K-
type, the hermitian form is completely determined by the action of W. The W
representations that come from relevant K types are called relevant W-types.
The hermitian form is the same as the one for the affine Hecke algebras of type
B and C considered in [B1].

To show that the necessary conditions for unitarity obtained from the rel-
evant K-types are also sufficient, we have to prove certain irreducibility and
unitarity results for unipotent representations. For the unitary groups these
representations are cohomologically induced, so we use [KV] and the references
therein. The conclusion is that the unitary spherical dual for U(n,n), coincides
with the unitary spherical dual of the affine Hecke algebra of type C, while the
spherical unitary dual of U(n 4 1,n) coincides with the spherical dual of the
afffine Hecke algebra of type B.

Section 6 deals with Langlands parameters containing nontrivial fine K-types.
These occur in U(n,n) only. The same techniques as for the spherical case imply
that the unitary dual for such parameters is contained in the spherical unitary
dual of the affine Hecke algebra of type D. The main result is theorem 6.2.

For the case p — ¢ > 1, the results in [KS] show that the relevant K-types are
not sufficient to determine the entire spherical unitary dual. For these cases we
only consider integral infinitesimal character. The following theorem is consis-
tent with the philosophy outlined earlier, and holds for all values of p, q. This
result is independent of [B1].

Theorem. Let X(v) be a spherical principal series with integral infinitesimal
character and Langlands subquotient X (). Then X () is unitary if and only if
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there is a 0-stable parabolic ¢ = [+ u and an irreducible 1-dimensional unitary
representation W on L such that

. 0 i # dim(un e
Ry(W) = - . . ._( . )
has X () as a subquotient for i =s:=dim(unNt)

The sharper statement that R (W) = X(v) should hold. I expect it can be
proved by using the techniques in [KV] and [T].

The title of the paper refers to the way the 1-dimensional representation
W is obtained. If the form is negative on p=(1) (notation 4.4), then X(v) is
not unitary. If the form is positive on p;*(1), then we find a #-stable parabolic
subalgebra q = [+ u with the following properties. The Levi component is of
the form

L=Uk-z+14+REk—z+1)xUn—-k+x—1n—k+z-—1),

and there exists a unitary representation Won U(n—k+z—1,n—k+2—1)
such that X (7) is a factor of R (triv @ W). The question of whether X (v) is
unitary is then reduced to the same question for W. The representation W is
not necessarily spherical. Its Langlands parameter is induced from an antiholo-
morphic discrete series. If the form is negative on a certain K-type analogous
to pt (1), (section 7.7), then the form is negative on the isotypic component
pE of X (). On the other hand if the form is positive on this K-type, we find
a proper parabolic subalgebra q; of the same kind as g such that W occurs
in Ryl (x1 ® Wi). In finitely many steps we conclude that either X () is not
unitary or else it is of the form claimed by the theorem.

In the paper we don’t quite follow this outline. Instead we find necessary
conditions for the form to be positive definite on (1), uF(1). We then show
that these parameters are as in the theorem. The necessary conditions for uni-
tarity implied by positivity of the form on these K types should be proved in
the same spirit as [B1]. There we find certain representations induced from Levi
components so that we can deform the parameter until we can determine the
signature on the relevant K-types. The definition of these parabolic subgroups
is very involved combinatorially. So instead, we use the technique employed in
[B2]. We induce the parameter unitarily up to a bigger group and deform it
until the spherical module is a subquotient of a module unitarily induced from
a smaller rank Levi component than the original group. Keeping track of sig-
natures in this way is a lot more efficient. The drawback is that this does not
generalize to exceptional groups. Similar techniques were also used in [B-J2].

I first proved a version of theorem 1 in 1984 while I was supported by a
CNRS position in the mathematics department at Luminy. In particular I had
the opportunity to get to know J. Carmona more closely, and I benefitted
from many mathematical conversations with him. I would also like to thank P.
Delorme and the rest of the department for their hospitality. Another version of
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these results was presented at MSRI in the spring of 1988. I would also like to
thank J. Bang-Jensen, S. Riba, D. Vogan as well as the referee for their input.

2 Notation and Preliminary Results

2.1

Let G = U(p,q) with p > ¢, p+ ¢ = n be the group of n X n matrices which
leave the form Z |lz]? — Z |z;]? invariant. Then its Lie algebra is given by
i<p i>p

complex n X n matrices which are skew hermitian with respect to this form.
In general, for any real Lie subgroup, we will denote its Lie algebra by the
corresponding gothic german letter with subscript 0 and will drop the subscript
for the complexification.

We fix the Cartan involution (z) := Ja*J where x* is the conjugate trans-
pose and

— IPXP 0
J—[ ; —Iqxq]' (2.1.1)

Write go = € + 59, G = K - S for the corresponding Cartan decomposition.

2.2

We parametrize conjugacy classes of Cartan subgroups in the following way.
For each r < g let H" =T" - A™ be the Cartan subgroup such that

T" = diag(e(iv1), - - -, e(ivp—r), e(ith1), ..., e(i,), e(ith,),
coe(ir), e(ipsrt1)s - - - e(ion)) (2.2.1)
A" =diag(t(z1), ..., t(z)),

where e(ip) = exp(ip), t(z;) = explz;(Ep—jpt+;j + Eptjp—j)], and Ej;j is the

matrix with a 1 in the (4, k) entry, 0 otherwise. In this notation the compact
Cartan subgroup is H° and the most split Cartan subgroup is H9.

According to [BV2], the real Weyl group W (H") is identified with
W(H") = Sp—r X [(Z/2Z)" x S;] X Sq—r,
where
(1) Sp—, acts by permutations on (¢1,...,¢p—r),
(2) S, permutes the pairs (z;, ¢;),
(3) (Z/27Z)" changes the sign of @;,

(4) Sy—, permutes (Pptrii,---sPn)-
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Let A(q,h") be the root system. Then a root o € A(g, h") is called
real, if alypr=0,
imaginary, if a lqr=0, (2.2.2)
complex otherwise.

An imaginary root is called compact if the root vector is in £ and noncompact
if the root vector is in s. Given any subset ® C A(g, h") we will write

p(®) = % Za.

acd

2.3

The irreducible representations of K will be parametrized by their highest
weights, written as

p q
o= (ala"'7ap | ﬂlv"')ﬂq) = Zai5i+26j€p+j7
i=1 =1

such that oy > --- > «ap, 81 > - -+ > B,. We will denote by ®. the corresponding
positive root system in A(E, h°).

Let p. = p(®.). Then according to [V1], to each p one can attach a Cartan
subalgebra h” and a A\ € (h")* given by

G 1
AY = p+2p.— p(P) + 3V (2.3.1)

where ® is a positive system such that p + 2p. is dominant and v a certain
sum of noncompact roots (see Chapter 5 in [V1]). We will assume familiarity
with calculations involving p and A%,

Given v € (a")* we denote by X (A%, v) the standard generalized principal
series and by X (A%, v;u) the unique irreducible subquotient containing the
lowest K type . We call (A%, v) a Langlands parameter.

For U(p, q), a Langlands parameter is going to be written out in coordinates.
The coordinates of A¢ on the ¢; will be denoted by

A A A A (2.3.2)

while the coordinates of (A%, v) on (¢, x;) will be written

n1+V1a771_V17~-~7nr+yr777r_yr- (233>

The relation between the coordinates of i and the \’s and ’s come from (2.3.1).
The coordinates of pu + 2p. are

al+p_17a2+p_3a"'7ap_p+17ﬁ1+q_1aﬁ2+q_37'"7/6q_q+1' (234)
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Reorder the entries in (2.3.4) in decreasing order and subtract the entries of
p(®) which are
n—1n-3 n—3 n—1

(2’2"“’2’2

),

to get
n—1 n—1
N 5

(r1 — ). (2.3.5)

The entries of (2.3.5) satisfy one of the relations

n—2t+1 n—2—1
i Ty STl T OF
n—2i+1 n—2i—1
nT Ty T T

n—2t+1 n—2—1
T T +1:Ti+1_72 .

Form pairs of entries in (2.3.5) that are equal and come one from an « the
other from a . These form 7;’s. For the last relation, add 1/2 to one of them,
subtract 1/2 from the other to make them equal. The resulting coordinates are
n;’s as well.

In practice, we will follow the procedure in the example.

Example

Let
w=1(2,2,2,2,2,22|0,-3,-3,—4).
Then
w+2p. = (8,6,4,2,0,—2,—4|3,—2,—4,-7)

The coordinates satisfy
€] > €3 > €3 > €8 > €4 > €5 > €9 > €g > €7 > €10 > €11-

Instead of permuting the r;, we reorder the entries of p and substract from
B+ 2pc:
(8,6,4,2,0,—-2,—4 | 3,—-2,—4,-7)—

(57473717()’_27_3 | 27_17_47_5) =
(3,2,1,1,0, 0,-1 | 1,-1, 0,-2).
In p + 2p., the coordinates were in order €9 > €5 and €7 > €19, but now they

are in opposite order. So we add 1/2 to the coordinates ey, €19 and subtract
1/2 from the coordinates €5, €7 to get

AG=(3,2,1,1,0,-1/2,—-1/2 | 1,-1/2,-1/2, —2).
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So we have paired up the coordinates (e, €s), (€5, €9) and (e7, €19) to form
N1, N2 and n3. The coordinates €1, €o,€3 are )\f, /\2+7 )\3+ while €17 is a A;. A
typical Langlands parameter with lowest K-type p is written as

(31,27, 17,07, 1+ vy, 1 — 1, 1/2 4+ 19, 1/2 — 19, 1/2 4+ 13,1/2 — 13, —27)

or

(372,1,1+V1,0,1/2+V2,1/2+l/3 ‘ —1—Vl,—l/Q—VQ,—l/Q—Vg,Q).

24
Let £ € (h°)*. Then ¢ defines a complex f-stable parabolic subalgebra
g=I[+u

such that o
A(LY) ={a:(§a)=0}
Afu,b%) = {a: (£ a) > 0}.
Given an (I, L N K) module X, one can define, following chapter 6 in [V1], or
[KV] chapter V, functors Ry X[, such that for any (g, K') module Y,

(2.4.1)

Homy (Y, R'X 1) = Hom ) (H' (1,Y), X1).
(Here L = Cent(¢, G).)

Since our classifications of unitary representations is in terms of such functors
we will rely on the algebraic properties of the Rj as developed in [V1] Chapter
6, or [KV].

2.5

A real form gg of a complex reductive algebra g defines a conjugation ~— on g by
the formula X* := —X. This extends to an antiautomorphism of U(g) which
we denote by * as well. A bilinear form (, ) on a (g, K) module (7, X) is called
hermitian invariant if

a) (v,w) = (w,v),
b) (cv,w) = ¢(v,w), (v, cw) =¢(v,w), c € C
c) (m(X)v,w) = (v, 7(X*)w).

Let v = (A%, v) € (h")* be a Langlands parameter. Let ¥, ¥’ be two posi-
tive root systems for A(go, ay). Assume v € (a”)* is such that Re v is strictly
dominant for . Let P(X) and P(X’) be the real parabolic subalgebras corre-

sponding to X and ¥ as in [SV], Chapter 3. Let X5(A\“,v) and X5/ (A%, v) be
the induced representations. Then there is an intertwining operator

I(P(%),P(Y),7) : Xs(\%,v) = X5 (\E, )
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(which we sometimes denote by I(3,%/,~)). If ¥’ = =X, I(2, —X,v) is called
the long intertwining operator and its image is a sum ©X (A%, v;u) with u
a lowest K-type for X(\“, v). Every irreducible (g, K) module appears as a
X (A%, v; p) in this fashion. Fix u a lowest K-type. Then since it appears with
multiplicity 1 in X (A%, v) we can normalize (¥, —X,7) to be the identity on
XA\ v)m.

Theorem (KZ).

(1) X(\C,v;u) admits a hermitian form if and only if there is w € W(HT)
such that w(\%,v) = (A%, —v).

(2) Suppose (1) is satisfied for some w and assume % is dominant for Re v.
Then X (NG, v; 1) is unitary if and only if the form

(v, w) = (I(Z, =E,7)v, w)
1s positive definite.
For (2), recall that X (A%, v) and X (A\Y, —7) are hermitian dual. The form ( , )
is the hermitian pairing between these two modules.

Let (V,u) be a K-type. Fix a positive definite hermitian form on it. Then
identifying X (X, ) with I(o(AY)) := Ind&,/[0(A)], we get a fixed positive
definite hermitian form on

Hompg [V, X (3, 7)], (2.5.1)
independent of v and a map
I(p,7y) : HomK[Vu,I(U(AG))] — HOHlK[VM,I(O'()\G))]. (2.5.2)

This map is hermitian symmetric and depends analytically on v for Re v dom-
inant. Part (2) of the theorem can be rephrased as saying that X(\“ v) is
unitary if and only if I(u,~) is positive semidefinite for all p.

In the spherical case, 0(\?) is trivial and the map I(u,v) can be viewed via
Frobenius reciprocity as

I(p,v): (VHOM — (VM. (2.5.3)

2.6

The following theorem reduces the problem of determining the unitary dual to
the case when I'm v = 0. Let P’ = M’N’ be the parabolic subgroup determined
by Im v in the sense that M is the centralizer of I'm v and the roots of N are
a € A(h7,a") for which

(o, Im v) > 0. (2.6.1)

Then (A%, v) defines a Langlands parameter for both M and G; denote the
standard modules and their Langlands quotients by subscript G and M respec-
tively.
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Theorem ([K], theorem 16.10).

Xa(\ ) = IndS[ Xy (\C,v)].
When using normalized Harish-Chandra induction, X (A% v) is unitary if and
only if X, (A\C,v) is unitary.

Because of this, we will assume that v is always real, i.e. Im v = 0.

2.7

Given any two positive systems ¥ and X/ as in 2.5 there is a chain ¥ =
Yo, %1, ..., X, = X' such that the span of each X, \ (¥,;N%,11) is 1-dimensional.
Let P; be the smallest subgroup containing both P(X;) and P(X;41). If we pick
a; € X, a; € Xj4q we denote by G(a;) = M;A; the Levi component of P;.
Then

I(3,Y)=1Ipo-- 0l 4

where

I = 1(85,%,11) = Indg (I(P(Z) N G(ay), P(E41) N Glay), 7).

3 Cells in U(p, q)

3.1
Let v = (A%, v) be such that v is regular integral. Let

R¥(y) ={a € Ag.h") : (,7) > O}
Suppose o € RT(7) is a real root. Let
ag = {z € ap: a(X) =0}
and
M = Cent(A%, G).

Then there are maps
dpe :s1(2, R mg
pa i sl(2, R) = my (3.1.1)
¥a : SL(2,R) — M“

such that,
10 .
dipo (0 1) €ag, dpa(=X") = 0(pa(X)),
01 (3.1.2)
dpg <0 O) € ga- (ga the root space of «).
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The map dyp,, is the differential of ¢. Let

)
0 -1
Definition. Let a be real. We say that a satisfies the parity condition if
A (ma) = (=),
In practice suppose

()‘Gay) = (771’"'777p—r777p—r+1+V17"'777p+1/7‘)77p_l/7‘7"'a

(3.1.3)
Mp—r+1 = V1, Mptrt1s- - -5 1)
describes the infinitesimal character. The real roots are aq, ..., a, such that
a;(v) = 2v;,
and
A (ma,) = e(2min,_r4;) = £1.
So the parity condition is
e(2ming—r4j) = —(=1)%.
(A%, v) is integral means that 01, ..., Mp—r, Mp—rtj + Vi Nptrils---,Mn are all

either integers or half-integers.

3.2

Definition. Suppose o € R*(y) is simple. We say o € 7(7y) (« is in the
T-invariant) if one of the following holds:

a) « is compact imaginary,
b) « is compler, o € RT (%),
c) « is real and satisfies the parity condition.

This is definition 7.3.8 of [V1] for our case.

3.3

Fix a regular integral infinitesimal character x. Let
&(x) = {Zc, X (y) : X(7) has infinitesimal character x }

be the Grothendieck group of virtual characters with coefficients ¢, € C. Then
W, the complex Weyl group, acts on &(x) via the coherent continuation action
([V3]). This action decomposes into blocks which in turn can be decomposed
into cones and cells.
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Definition. We say that v1 < 72 if there is Fy finite dimensional, so that
X (72) ® F» contains X (1) as a factor. The relation ~, called block equivalence,
1s the equivalence relation generated by <. For w irreducible we write

{7 irreducible : 7' ~ 7}

= linear span{n’ : 7’ € B(w
o span(x' '€ () -
{7’ irreducible : 7" < 7}

)
)
)
) = linear span{n’ : v’ € C(m)}.

B(w) is called the block of w, C(m) is called the cone of 7.

3.4

Definition. We say m = my where my, mo are irreducible if my < mwo and
mo < m. We write

<l

() = {n’ irreducible : 7’ ~ 7}

‘ o o (3.4.1)
V() = C(w)/linear span{n’ : 7’ <m,x" ¢ V(m)}.

Then B(rw), C(n) and V(m) are Weyl group representations and

6(x) =@ B(r), B~PVH). (3.4.2)
TEB
We now describe these objects for U(p, ¢). We note that x need be defined only
up to translation functors; so we use x = p.

a) For p # ¢ there is one block, which we call By. Its dual is formed of repre-
sentations in GL(n,R).

b) For p = g, there are two blocks, the one containing the trivial representation
which we call By, dual to one in GL(n,R), and the block whose dual is
formed of representations in U*(2p) which we call B,.

3.5

We recall some facts about the wave front set of a representation for U(p, q).
For the basic notions on nilpotent orbits see [B1], [CMcG] and the references
therein. Recall that nilpotent orbits in U(p, ¢) are parametrized by signed par-
titions, 4.e. partitions (by,...,b;) so that each row gets a 4+ or a —. We write
the partition as (b3',...,b;") with ¢, = . Two entries of equal size are inter-
changeable. Usually the partition is pictured as a tableau and every row has
alternating signs starting with the e;.

For any irreducible representation m, we will write AV (7) for the union of
orbits in the asymptotic support of 7 as defined in [BV3].
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3.6

The block By was studied in [BV2]. Denote by (O, the irreducible Weyl group
representation attached to O, by Springer ([S]), tensored with sign so that the
trivial orbit corresponds to the sign representation.

Proposition. Let X(v) € Bo.
a) AV (X (7)) consists of exactly one nilpotent orbit in go.

b) By~ Y. m(0.)o(0O.) where
O:Cyl(n,C)

m(O.) = |{orbits of U(p,q) in O.Ngo}|.

c) Let m be irreducible such that AV (w) = O. Then V(mw) = o(O,).

3.7

Similar results hold for the block B, dual to U*(2p). The techniques for prov-
ing them are the same as in [BV2] but much easier. For example, U*(2p) has
only one conjugacy class of Cartan subgroups. If we write the Lie algebra in
coordinates as

(alv"',a2p)7 (371)

then the Cartan involution interchanges a; with —agp—;+1. We record the result
in the next proposition, but omit the details.

Proposition. a) X(v) € B,, if and only if v is the parameter of a principal
series such that all real roots satisfy the parity condition. Furthermore,

b) AV(X(y)) = O. N go, where O, is a complex orbit with Jordan decomposi-
tion such that each block is of even size.

c) B. =P a(0.) with O, as in b).
d) V(m)=0(0,).

4 Some Results on Derived Functors

4.1

Let ¢ = [+ u be a f-stable parabolic subgroup defined by v € (h°)*. Let L be
the real group with Lie algebra [p = [N gg and W an (I, L N K) module. Then
we recall that ([V1])

i _ g,LﬂK)i g.LNK
Ry(W) = (I‘ OPIO A g

B LN (W @ Adimmy) (4.1.1)
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where

g, LNK

Prog’ 7 o g (W @ AT u) = Homg (U (g), W @ AT "u). (4.1.2)

If W has infinitesimal character A, then Rﬁl (W) has infinitesimal character A +

p(u).
Let £ € (h%)* be such that

(¢,a) € NT a € Au)

() =0 a € A(D). (4.1.3)

Let (m, V) be a hermitian admissible (g, K') module. For each K-type (u, F'), the
hermitian form is given by a hermitian matrix A,,. It has a signature (p,, r., g,),
where p,, is the number of positive eigenvalues, r, is the dimension of the
kernel and ¢,, is the number of negative eigenvalues of A,,. We form the formal
combination of representations of K,

Vs = ZpMFM? Vo = ZTMFI“ V]- = ZQMFN' (4.14)

The signature is defined to be

Vs = V- = (0w — 4 F

Let (E,7) be an LN K type. We define

Ry(E) := Z[Rq(E) : F))F,, where [Rq(E) : F,] equals (4.1.5)

> (=17 dimHompnk[H;(un e, F,) : S"(uns) @ E @A™ (u)],
Proposition. Let W be a hermitian irreducible (I, LNK) module. Assume that
there is tg such that

Vi = Homq(U(g), W @ A 0 @ Cye)

is irreducible for t > to. Then Riy(W ® Cie) = 0 for i # s = dim(uns) and
t > tg. The module Ry(W @ Cy¢) is hermitian. Its signature satisfies

[RaW @ Cig)l+ = [RgW @ Cie)] - = Rq([W]4) = Rq((W]-).

In particular, if W is unitary, then RfI(W) is either unitary or 0.
Proof. See [V2] or [W]. |
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4.2

In order to apply the results in section 4.1, we need some conditions that insure
the irreducibility of V; and R§(W ® Cyy¢). Let

=) e+ epty (4.2.1)

1<p1 Ji<a

The parabolic subalgebra determined by & has Levi component L = L; X Lo
with Ly = U(p1,q1), L2 = U(pa,q2). Let W = W; ® Wy be such that W;
is a character. Assume that W, ® Wy @ C~?(") has infinitesimal character in
coordinates given by ~; for Wi and 5 for Ws. These are

:(leF‘h*l _P1+Q1*1)
n 2 2 (4.2.2)
Y2 = (A1, Az, - s Apatasr ~Apatqzs = AL)s

where --- > X\ > Ay > - 2> 0.

Proposition. If v5 is such that Ay < %, then V; is irreducible for all
t>1.

Proof. There are two cases to consider:

a) t is such that the infinitesimal character is integral.

b) ¢ is such that the infinitesimal character is not integral.

In case a), any factor of V; must have a parameter that is a 4" which is a per-
mutation of v := (y1,72) but such that it is a parameter for a finite dimensional
on L1, and the difference is a sum of roots dominant for £. This is not possible
in view of the assumption.

Case b) reduces to a similar question on the root system for which (1, y2) is
integral. It is then easy to see that V; must be irreducible. |

Because of the shift by p(u) in the infinitesimal character, we will work with
the functors

RE(W) = (rg’ (W ® Cr) (4.2.3)

LnK)i g LNK
q,LNK

POy LnK

instead of (4.1.1). Then RY(W) and W have the same infinitesimal character.
The formulas for K-types are adjusted by 2p(uns) — p(u) instead of 2p(uNs).
The disadvantage is that we have to consider representations that are genuine
for a double cover of U(p, ¢). This is the cover where highest weights with half-
integers in the coordinates give rise to representations of the corresponding
maximal compact group.
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4.3

Let m = X (7; ) be an irreducible representation with integral singular infinites-
imal character. Let A be the set of simple roots in R*(y) which are not zero
on the infinitesimal character. Let W(A€) C W be the subgroup generated by
the reflections from the roots in A°€.

Proposition. Let O, = AV (7). and O, C O,. Assume

, 1 oo =0,
(O ey triv] = {o if O # 0.

Then the only irreducible representation X with the same infinitesimal character
as w satisfying o
AV (X) C AV ()

s .

Proof. This follows from section 3 and [BV1]. |

This result will be applied in the following way. Let X = Ry(W) where q is
f-stable, or X =T ndg(W) where @) = M N is a real parabolic subgroup. When
q is f-stable, assume that W satisfies the vanishing conditions in sections 4.1-4.2
and X is nonzero. The infinitesimal character of X determines the set A¢ in
section 4.4. Any nilpotent orbit @’ in AV (7’) must satisfy

[U(Oé) | W (A©) ItTiU] 7& 0.

If the condition of proposition 4.4 is satisfied, then o(O.) = o(O,), so O., = O..
Thus AV (n') € AV(X). The results in sections 3.6 and 3.7 imply that X has
only one possible factor.

4.4

Suppose q = [+ u and 71, 2 are as in 4.1-4.2. We will need the multiplicities
of certain K-types in R; (triv® Wy) with triv® W satisfying the conditions in
4.2. Denote

py (1) == (1,0,...,0 ] 0,...,0,-1)
,(1):=(0...0,—1|1,0,...,0
(1) = ( | ) i
pd (1) :=(1,0,...,0,—1]0,...,0)
py (1) :==(0,...,0]1,0,...,0,—1).
Let y := C?¢(u0%)  For later reference, 2p(uNs) — p(u) has coordinates,
204N s) — plu) = (p2;(J2)_p1;Q1 ’ P2 ;QQ’pl ;Q1). (4.4.2)

—— = —— —
P1 P2 q1 q2
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Proposition.
[ (1) = Ry (trive Wa)] = [ud (1) @ x : Wa] +1,
g (1) = Ra(trive Wa)] = [ () @ x = W
Proof. The main tool is the Euler-Poincaré principle in section V.5 of [KV]:

S
> (~1)! dim Homg [V, R}(Z)] =

<
I
=)

. (4.4.3)
(—=1)7 > dimHompnx [H;(uNE, V), 5" (uns) @ Z#],

n=0

M

<.
Il
=)

where Z# = Z @ C?r(W),
As a representation of L N K,
uns=CM @ (C?)" o Cr e (C1)".

Then S™(uNs) is the sum of representations of the form

(Oél,...,ak,o,...,o; O,...,O,—ﬁg,...,—ﬁll
ﬂl,...,ﬁ[,o,...,o; 0,...,0,—ak,...,—a1).

Let wy € Wgk be the long element. The weights of H;(unNs,V,) are of the
form w(p + p.) — pe with w € W such that they are dominant for [N £. Since
the first factor of Z is the trivial representation, it follows that the only j that
contributes is such that w = 1. It follows that

(4.4.4)

dim Hompg [p(1) @ Ry(triv® Wa)] = dim Homp,nx [p(1) @ x* : Wa]  (4.4.5)

Consider the case of ! (1); the others are similar. Then ¢ =k and oy = - -+ =
ay = 1. The LN K-types py, such that py, ® (—a) contain the factor of u on the
U(q2) are exactly the ones in the statement of the proposition; (0,...,0,—1)
occurs with multiplicity 1 in this tensor product. |

4.5

Let p(a, B) = (a,--- ,a | B,---, 3) be a 1-dimensional K-type, and write 1 :=
O‘Tw. We will show that there is at most one irreducible representation m with a
given infinitesimal character x containing u(c, 3), and determine its Langlands
parameter.

Proposition. Let X be an irreducible (g, K) module such that XleB) £

and recall n = QQL'B Then the infinitesimal character x must be of the form
R-1 R-1
X~ (oz—i—T,...,oz—i,

2 (4.5.1)
77+V17---a77‘|’1/17~-~>7I+Vk7~-~>7]+1/k777—Vka--~777—V1 .
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The parameter (AS,vo) of any principal series containing u(c, 3) is of the
form

R-1 R-1

(a+ T)"‘,...,(a—T)Jr,n—l—yhn—u1,...,77+1/k,77—uk . (4.5.2)

Proof. By the subquotient theorem, X occurs in a principal series. We de-
termine the principal series that contains pu(a, 3). Let P® = MRARNE be
minimal cuspidal parabolic subgroup where R =p — ¢ > 0, and

AR = expall.

Then
MR =MENK ~U(R) xU(1)" £

In the usual coordinates on t&,

a+ﬁ“.a+5)a+ﬁ”.a+5
) 2 2 b

Mmmezqu®®( -, , 2).@5@

Thus a principal series X (\§, o) will contain u(a, 3) if and only if

R+1—-2¢ o+ 3
i<R i<n
The proof of the proposition follow from this. |

Corollary. Given an infinitesimal character x, there is at most one irreducible
module X such that X™M8) =£ (.

Proof. The coordinates of x must coincide with the coordinates in (4.5.2).
The only choice is for the v;, and two such choices differ by a permuation of the
v;. The principal series for such parameters have the same composition factors.
The corollary now follows from the fact that p(«, ) occurs with multiplicity 1
in such a principal series. |

4.6
Consider the case of U(R + 1,1).

Proposition. Assume o + % —-n—v; €7
1L Ifn—mn<n+un<a- g, then the parameter containing p(c, 3) is

(0t ol T ) (- )
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2. Ifn+uri>n—1 >a+ g, then the parameter containing p(c, 3) is

R-1 R-1 _
(@t ) s (o= S (=) ()
In all other cases, the parameter is the same as the one for the principal series
m proposition 4.5.

Proof. The group is rank 1, so there are only two conjugacy classes of Car-
tan subgroups, one of real rank 1 and a compact one. Thus all parameters
of irreducible representations are Langlands subquotients of principal series or
are discrete series or limits of discrete series. Thus the composition series of
X(\§, 1) containing yu(a, 8) is formed of parameters for other principal series
or limits of discrete series. Proposition 4.5 establishes that p(«, 3) cannot be-
long to any other principal series. The limits of discrete series are all derived
functor modules satisfying a Blattner type multiplicity formula. They will con-
tain p(a, 8) precisely in the two cases listed above. We omit further details.
|

4.7
The notation is as in 4.5. Write the a parameter as

(V1y ooy V1 eVl oo oy Uk, — Vg ooy —Vky ooy — V1, ooy —V1) (4.7.1)
with -+ >v; > v > > > 0.
Proposition. The representation X () containing p(«, 3) is obtained from the
parameter of the principal series in proposition 4.5 as follows.

1. For each v; such that o+ % <n—v; and a+ % —n—+v; € Z, change one
pair n+vi,n—v; to (n—vi) (n+v)”.

2. For each v; such thatn+v; < a— % and o + g —n+v; € Z, change one
pair n+vi,n —vi to (n—vi)~(n+wi)*.
In all other cases the parameter is unchanged from 4.5.

Proof. Fix a parameter (A\“,v) as in the proposition with § = 41 such that
X (NG v)MeB) £ 0. Let ¥ C Algo,a) be a positive system such that v is
dominant. By 2.6, the long intertwining operator factors into

I=I0---01,,.

It is enough to show that, under the conditions of the proposition, each I; is an
isomorphism when restricted to the u(«, 8)-isotypic component.

If o; is a short root then G(a;) ~ GL(2,C) and I; is easily seen to be an
isomorphism on u(«, 3).

If a; is a long root, then G(o;) is an U(R +1,1) or U(1, R + 1), so section
4.6 proves the claim. [ |
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Suppose R = 0 and @ = —(3 = m > 0. The principal series that contains
p(a, B) contains a fine K-type. Let z1 be the smallest integer such that m—v; €
N and v; > 0. Let x5 be the next larger integer with this property and so on
until x,.

Corollary. The Langlands parameter with infinitesimal character (4.7.1) and
containing the K-type p(m,—m) is

(Ve )T (=) "oy (Vw7.)+(—uxr)_, UL, —Ul, ..., Vg, —V

Similarly for p(—m,m), with the + signs reversed, i.e.

(Vajl)_(_yxl)-‘r) sy (er)_(—ywr)"', Vi, = V1,..., Vg, — Vg

4.8

We review the results we need from affine graded Hecke algebras. Consider the
Weyl group W := W(B,,). Let a be a real vector space of dimension 7, which
we think of as the Cartan subalgebra of the Lie algebra of type B,. The roots
are the usual ones,

A= {e £ €, Lert,

with simple roots {€; —€;11, €, }. Then denote by H the algebra which is C[IWV]®
S(a) as a vector space, with C[W] embedded as a subalgebra. Let s, be the
reflection corresponding to «, and let t,, be the generators of C[W]. Let ¢, > 0
be real numbers for a € A such that ¢, = ¢y. The affine graded Hecke algebra
with parameters c,, is H, with the additional relations

ts w = Sq(w)ts, + colw,a), w Ea. (4.8.1)

We assume that c, = 1 for the long roots +e; £ €;, ¢ = ¢ for the short roots
+¢;. The case ¢ = 1 corresponds to the Iwahori Hecke algebra for the split
group of type C, and ¢ = 1/2 to the split group of type B. The algebra H
also has a * operation. According to [BM1] and [BM2], the unitary dual of
H is in one-to-one correspondence with the Iwahori spherical unitary dual of
the corresponding split p-adic group. The theory of intertwining operators and
hermitian forms is parallel to the real case. The induced module corresponding
to the spherical principal series is X (v) := H®y 1,,, where we write A for S(a).

The intertwining operator I(w,v) is a product of operators I,, according to
a reduced decomposition of w = 54, - -+ - Say,- If av is a simple root,

To = (ta@ — co)(a —co) 7 F, Iy, : 2@1, — ar, ® 1g,,. (4.8.2)

The I(w,v) have the same properties as in the real case. Since the r, are
multiplied on the right, we can replace o with —(v, &) in the formulas. Because,

CWl= > V.oV,
aeW
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ro gives rise to an operator
ro(Sa,v) : Vi — VX

Lemma. 7,(sq4,v) on V,f is of the form

( ) Id on the + 1 eigenspace of t, (483)
To\Sa, V) = — (v, . .O.
2“+2V’a§ Id on the — 1 eigenspace of t,

Proof. This is clear from the above formulas.

4.9

In the unitary group U(p, ¢) with p > ¢, we can identify the Levi component of
the minimal parabolic subgroup with

M=Up—-q)xUl)x---xU(1) (4.9.1)

q

where each U(1) is embedded diagonally on the p — ¢ + i and p + ¢ entry. The
Weyl group is W(By). It acts on M by permuting and changing the signs of the
Ok in the U(1) = {ei%}.

For U(m), write

pt(k,m—k):=(1,...,1,0,...,0), pu (k,m—k):=(0,...,0,—1,...,-1).
—— —_—
k k
(4.9.2)

These are realized as A"C™ and A" (C™)*, and are often abbreviated as p* (k).

Definition. The following K-types in U(p) x U(q) will be called relevant:

ph(r)y=pt(rp—ry@u (rg—r) r<q (4.9.3)

pn(r)=p~(rp—r)@u (rg—7r) r<gq, (4.9.4)

H;(T):M(O,p)(@(l,,l,o,,07—1,,—1) TS[Q] (495)
AL — 2

We will suppress the 4 superscripts; the X behave the same way, and there
is only one pu. that we will consider. Recall that if (V| u) is a K type occuring
in a spherical principal series, then VM £ (0), and is a representation of the
Weyl group W.

We will parametrize irreducible representations of S,, by partitions written
as (ay,...,ax) with a; < a;41. The representations of W(B,,) & W(C,,) are
parametrized, as in [L1], by pairs of partitions

(al,...,ak) X (bl,...,bl),
a; < ajy1, bj < bj+1, Zai + Z bj =n. (496)
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Precisely the representation parametrized by (4.9.6) is as follows. Let k =
Y-ai, I = > bj. Recall that W = S, x Z3. Let x be the character of Z%
which is trivial on the first & Zs’s, sign on the rest. Its centralizer in S, is
Sk x S;. Let 01 and o9 be the representations of Sy, S; corresponding to the
partitions (a) and (b). Then o, the representation parametrized by (4.9.6) is

Indgkxsl)ng (01 ®02) @ x].

Proposition. The W -representation VM for the relevant K-type is irreducible
and is given by

pin(k) < (g — k) x (k), (4.9.7)
pe(k) s (k,q — k) x (0). (4.9.8)

Proof. The restriction of a K-type (g1, ..., ftm) with p; > pipq from U(m)

to U(m — 1) x U(1) is given by all K-types with highest weights

(a1, ame1) ® O i — Y ai), (4.9.9)

B1Za1 2 2 2 2 il 2
The space VM in i} (r,p — 1) ® p,, (r,q — r) consists of the weights
(0,...,0,€1,...,€6q | —€1,...,—€q) (4.9.10)
——
p—q

with €; = 0, 1 and exactly r 1’s. The action of W (By) is clear, it is the standard
one on AFCY. Assertion (4.9.7) follows from the fact that the representation
(g — k) x (k) is realized as A*CH.

The space VM for (0)® u.(r, g—r) can be identified with the invariants under
U(1l) x---x U(1) C U(q) in the representation

0,...,00®(1,...,1,0,...,0,—1,...,—1). (4.9.11)
—— —— ——
pP—q r T
We can ignore the first factor. We do an induction on g. The case ¢ = 0 is
clear. Similarly the case r = 1 is easy because this is the adjoint representation.
Consider the restriction of (1,...,1,0,...,0,—1,...,—1) to U(q — 1) x U(1).
—— ——

T
The K-types that contain VM are

(17 71707 707_17"'7_1)®(0)’
—— ———
T r
4.9.12
(la alaov 707713771)®(0) ( )
—— ———
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The first one does not appear if » = ¢/2. By induction, these factors give the
representations of W parametrized by

(r,R—1—r)x(0) (r—1,R—r) x (0). (4.9.13)

Thus the reflections corresponding to the short roots must act trivially. The
factors in (4.9.13) can only come from

(r,R—r) x (0), (ILr,R—7r—1) x (0), (IL,r—1,R—r) x (0).

The second and third choice have extra representations in their restriction which
do not match (4.9.13). The claim of the proposition follows in this case. |

Definition. The K-types and W-types in proposition 4.9 will be called relevant.

4.10

We review the values of the intertwining operators for real rank one. There
are two P; (notation as in section 2.7) that are relevant for our case, their M;
are U(R + 1,1) and GL(2,C). In the case of GL(2,C), the maximal compact
group is U(2). The restriction of a relevant K-type is either (0,0) or (1,—1).
The Weyl group element which has a representative in GL(2,C) which we call
t12 has eigenvalue +1 on the portion of VM corresponding to (0,0) and —1 on
(1, —1). The intertwining operator is

Id on the 1 eigenspace of 19, (410.1)
11253; Id on the —1 eignespace of t;5. e

For U(R + 1,1), the maximal compact subgroup is U(R+ 1) x U(1). Let ¢, be
the Weyl group reflection that has a representative in U (R, 1). The restriction of
- (r) is the trivial K-type and so the intertwining operator is the identity. For
wh (r)®@u, (r), the restriction is formed of either p,f (0)®@u,, (0) or wf (1)@p,, (1).
The intertwining operator corresponding to this simple root is the identity on
the first one, the element ¢,, acts trivially. On the second one, t,, acts by —1.

Lemma. ([JW]) The intertwining operator on U(R + 1,1) acts by

(R+1)/2— (v,a)
(R+1)/24 {v,a)

1d

on the K-type pt (1) @ pr, (1).

Corollary. The intertwining operators for the real case on relevant K-types
coincide with the ones in the affine graded Hecke algebra with parameter ¢ =
(R+1)/2 for the corresponding Weyl group representations.
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4.11

The case ¢ = 1 corresponds to the Hecke algebra of type B with all ¢, = 1.
The special case ¢ = 1/2 also corresponds to the Hecke algebra of type C' with
parameter ¢, = 1 for all a. In these cases, the spherical dual of the affine graded
Hecke algebras is computed in [B1]. A spherical irreducible representation is
unitary if and only if the form is positive definite on the relevant W-types
(proposition 4.11). In view of corollary 4.10, we can derive some consequences
for the unitary groups U(n,n) and U(n + 1,n).

We recall the results from [B1]. The infinitesimal character is always real.
A nilpotent orbit O in a simple Lie algebra of type B, C' is parametrized by
a partition (mg, ..., my) such that

Type B,, >.m; = 2n + 1, and every even part occurs an even number of
times,

Type C,, > m; =2n, and every odd part occurs an even number of times.

The nilpotent orbit O determines a partition

(@1, 501,y Qye oy QR), a; < apyq- (4.11.1)
— —

T1 Tk

Let {¢, h, f} be a Lie triple associated to the orbit O. The centralizer of the Lie

triple, 3(O), is a product of sp(r;, C) or so(r;, C) 1 <1 < k according to the rule
Type B, sp(r;) for a; even, so(r;) for a; odd,
Type C, sp(r;) for a; odd, so(r;) for a; even.

A spherical parameter can be viewed as a a W-conjugacy class of an element
X € a*, where a is a maximally split Cartan subalgebra. To each v there is
attached a unique nilpotent orbit O with the following properties:

(1) x=3h+v, vej0),
(2) If x = $A' + 1/ as in (1) for a different O, then O’ C 0.

The set of parameters is partitioned in this way into a disjoint union according
to nilpotent orbits.

Definition. The set of unitary parameters attached to a fized nilpotent orbit
O 1is called a complementary series attached to O.

Proposition ([B1]). A representation for the Hecke algebra of type B, with
parameter ¢ = 1/2 or 1, is unitary if and only if the form is positive definite on
the relevant W-types.
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Corollary. The parameter for the spherical unitary dual for U(n,n) is con-
tained in the spherical unitary dual for the Hecke algebra of type B, with pa-
rameter ¢ = 1/2. The spherical unitary dual of U(n + 1,n) is contained in the
spherical unitary dual for the Hecke algebra of type B,, with parameter ¢ = 1.

We write down the explicit description of the unitary representations. The
parameter v gives rise to a spherical parameter on each of the simple factors
in 3(O) (by restriction to that factor). Each of them is attached to the trivial
orbit, otherwise (2) would not be satisfied. Write v in coordinates on each factor
as

(V1o V1, V2 ey Vay e Uk e V), (4.11.2)
with0<uwq - <1y <-or < 1.

Theorem ([B1]). The complementary series attached to O coincides with the

one attached to the trivial orbit in 3(O). These are:

B: 0<uvy,...,v1 <+ <Vpy..., v < 1/2.

C: 0<v,...,v1 <+ <V .., s <1/2< 1 < - <vpp <1

so that v; +v; # 1 for i # j and there are an even number of v; such that
1 —vg1 <v; <1/2 and an odd number of v; such that

1-— Vitj+1 <V < 1-— Vitj-

5 Unipotent Representations

Corollary 4.11 and theorem 4.11 provide necessary conditions for unitarity. We
prove that they are also sufficient.

Theorem. The unitary spherical parameters of the groups U(n,n) and U(n +
1,m) coincide with the unitary parameters for the Hecke algebra of type B, with
parameter ¢ = 1/2 and ¢ = 1 respectively.

The proof is in the next sections.

5.1
Let g = [+ u be a f-stable parabolic subalgebra determined by
¢=(1,...,1,0,...,0 | 1,...,1,0,...,0). (5.1.1)
—— —— | N — ——
p1 b2 q1 q2

Let W be a (g, K) module for u(py,qz). Then AV (R (triv @ W)) is obtained
from AV (W) as follows:

To each nilpotent orbit in AV (W) add p1 +’s to the largest possible rows
starting with — and q1 —’s to the largest possible rows starting with +.

Let now q = [+ u be real so that

[ = gl(m,C) x u(p2,q2), (5.1.2)
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and let W be as before. Let Q = LU be the corresponding parabolic subgroup.
Then AV (Indg[triv @ W]) is obtained as follows:

Increase the largest m rows of each nilpotent orbit in AV(W) by 2. If there
s a choice, include all possible nilpotent orbits that can be obtained this way.

Example

Suppose m = 2 and AV(W) is (1t172%). Then AV of the induced module is
the union of (17374%) and (173%747).

5.2

We recall the notion of special unipotent representation. Let @ be a nilpotent
orbit in the dual algebra g, and let

X(0) = 5h, (5.2.1)

where h is the semisimple element in the Lie triple attached to O.

Definition. An irreducible (g, K) module (F,V) 15 called special unipotent
attached to O, if it has infinitesimal character x(O) and its annihilator in U(g)
s the maximal primitive ideal.

For a unitary group of rank m, g = gl(m,C). If (a1,...,ax) is the partition
of O, then we can write x(O) as a concatenation of strings,

a;—1 a; —3 a;—3 a;—1

( ) 9 9 ey 9 ’ 9 )7

(5.2.2)

one for each a;.

5.3

We determine a set of special unipotent representations which are spherical for
U(n,n) and U(n + 1,n). For U(n,n), let

O C sp(2n,C) C gl(2n,C)

be an even nilpotent orbit so that all the a; (notation (4.11.1)) are even. For
U(n+1,n), let )
O Cso(2n+1,C) C gl(2n+1,C)

be an even nilpotent orbit so that all a; are odd. According to the notation in
2.3.3, the spherical parameter will be also written as

( a;—1 a;—1 a;—3 a;—3 )
T 5 5 g

(5.3.1)
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Proposition. Suppose the a; have the same parity, even in the case of U(n,n),
odd in the case of U(n + 1,n). Then there is a 0-stable parabolic subalgebra q
such that

L(O) ifi=dim(uns),
0 otherwise.

'Rg (triv) = {

Furthermore, the representation L(O) is unitary.

Proof. For U(n,n), let q be the parabolic subalgebra determined by £ of the
form

hyo 1oL | Ky b k=1, k= 1,.0). (5.3.2)
—_—— N ——— —_—— N ——
a1/2 asz/2 ar/2 az/2

For U(n+ 1,n), let q be the parabolic subalgebra determined by £ of the form

by k=1, . k=1, |k kk—1,... k—1,...). (5.3.3)
—— N — —_—— N ——
(@+1)/2  (a2-1)/2 (@-1)/2  (a2t1)/2

The vanishing part of the proposition follows from the results in section 4.1-4.2,
and so does the unitarity. Section 4.3 implies the irreducibility once we check
the assumptions. The facts about the set A and the infinitesimal character
follow from [BV1] because O is even and the infinitesimal character is Lh.
Let (b1,...b;) with b; < b;41 be the transpose partition to (a, ..., ax), and let
O, be the corresponding nilpotent orbit. We need to compute AV (R{(triv)).
According to 5.1, the answer is as follows. Note that when all a; are even, each
row size in O appears an even number of times. When all the a; are odd, each
row size appears an even number of times except for the largest one. There is
a unique O in the AV-set, with signs on the rows as follows. Each row size gets
an even number of + and —, except for the largest size which gets one more +
than a — when the a; are odd. |

5.4

Let O be a nilpotent orbit in g. If @ intersects a proper Levi component, there
is a chance of a complementary series. Let @ C § be a nilpotent orbit and r;
the number of a; in its partition (notation 4.11.1). Write g(n) for sp(2n) or
so(2n + 1) depending on the case being considered. Suppose that r; > 2. The
nilpotent orbit O meets a Levi component of the form gi(a;) x §(n — a;) in a
nilpotent (a;) x O'. Let R = a;(mod 2).

Proposition.

L(O) = IndG’L(ai,C)XU(nfaiJrR,nfa.;) [t?“il] ® L(O/)] (541)

Proof. We need to show that the AV-set of the induced module coincides

with the AV-set of L(O). This follows from the algorithms in section 5.1. W
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5.5

Let O be arbitrary, O C sp(2n,C) for U(n,n), O C so(2n + 1) for U(n + 1,n).
Denote by a; the even entries in the case of sp(2n), odd in the case of so(2n+1).
Let b; be the remaining entries. The infinitesimal character y(O) = 3h is as in
(5.2.2), a string for each a;, b;. Let r; be the number of entries equal to a;, and
s; the number of entries equal to b;. The s; are all even. Let a = ) a;, b= > b;.

By the Jacobson-Morozov theorem, O, corresponds to a homomorphism
U sl(2,C) — g. (5.5.1)

By conjugating by GL(n,C) if necessary, we can assume that ¥ factors through
gl(a,C) x gl(b,C) so that if we write ¥ = (Uy, Uy), then ¥; corresponds to the
nilpotent orbit O, with partition (a;) and Wy corresponds to the nilpotent or-
bit O, with partition (bj). The Kazhdan-Lusztig conjectures for non-integral
infinitesimal character imply that the character theory for modules with in-
finitesimal character x(O) exactly matches the character theory of representa-
tions on U(pe, ge ) X U (po, ¢o) where p.+¢. = a and |p.—qe| < 1 while p,+¢g, = b
with p, = ¢,. The block is By on both factors.

Similar to 5.4, when s; > 0, O meets a Levi component gl(b;) x §(n — b;) in
a nilpotent orbit (b;) x O’. This is because s; is even.

Theorem. (1) Ifr; > 2, then
L(@) = IndGL(ai7((:)><U(n—a7¢+R7n_ai) [triv ® L(@/)]

(2) For any b;,

L(O) = IndgL(s,,0)xU(n—b,+Rn—by)[triv @ L(O")].

Proof. In view of the discussion on the Kazhdan-Lusztig conjectures for
nonintegral infinitesimal character, part (a) is a consequence of section 5.3. For
part (b) we omit the details. They are similar to section 5.3, but easier. |

5.6 Proof of theorem 5

As indicated at the begining of the section, section 4 provides necessary con-
ditions for unitarity which shows that the spherical unitary dual for the real
unitary group U(n,n) or U(n + 1,n) is contained in the set given by the theo-
rem. To conclude the proof, we need to show that this set is unitary. Theorem
5.5 shows that when r; > 2 or s; > 0, then L(O) is induced irreducible.
Remains to show that the sets in theorem 4.11 are complementary series.
Counsider the case of U(n,n), the other one is similar. Let (¢;) be the partition
for O C sp(2n,C), each ¢; occuring n; times. Let n; > 2 if ¢; is even, n; > 2 if

it is odd. The parameter for L(O) contains strings

c;i—1 ci—3 ci—3 c;i—1
j +Vz'jw-~a_T+Vij7_T+Vij). (5.6.1)

x(ci, viz) = (
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The v;; for fixed 7 are the v; in theorem 4.11. The remaining c¢; contribute
strings of the form
C; — 1 1

( 5 2).
The notation x(c;, v;;) will also be used to represent the character of GL(c;, C)
with the infinitesimal character given by the coordinates in (5.6.1).

(5.6.2)

Section 5.5 combined with the Kazhdan-Lusztig conjectures for nonintegral

infinitesimal character show that whenever
C; — 1 1
A

L(O) is induced irreducible from

U(n,n
IndG(L(Ci?C)XU(n—ci,n—ci) [x(ei, Vij) ® L(O,)]-

Thus we can deform the parameter v;;; say we write v;;+t;; for the deformation.
Reducibility will occur only if

Ci—].

1
+vi; + tij € §Z, (563)

or there exists another string ci + vg; such that we can extract coordinates from

Ci—l Ci—l
+V¢j+tij,---,*T+Vij+tija

o1 o — 1 (5.6.4)

5 Ukl 5
to form a string of coordinates decreasing by 1 which is strictly longer than
either string in (5.6.4). These conditions are exactly the the same as for re-
duciblility of the corresponding module for the Hecke algebra. So the results
in [B1] apply, and the parameters in theorem 4.11 are complementary series.
We sketch the argument. The parameters v;; are deformed separately for each
¢;. First, if v;; = v;;7, then the conditions say that v;; < 1/2. Then L(O)
is unitarily induced irreducible from a representation L((ci,c;)) x L(O’') on a
Levi component GL(2¢;, C) x U(n — 2¢;, n — 2¢;) such that L((¢;,¢;)) is a Stein
complementary series. So we are reduced to the case when the v;; (i fixed) are
distinct. Order them so that v;; > v; j11. A v;; +t;; is deformed downward so
that it equals v; j41 or downward so that (5.6.3) holds. No intermediate ¢;; has
the property that we can extract a striclty longer string from the pair

+ Vg

C; — 1 C; — 1
— tvi ity mmo— F vty
(5.6.5)
C — 1 C — 1
5 R Z T 5
When v;; +t;; = v;,j11, the representation is unitarily induced irreducible from
a unitary representation on a GL(2¢;) x U(n — 2¢;,n — 2¢;) as before. When
(5.6.3) holds, section 5.4 applies, and the module is unitarily induced irreducible
from a unipotent representation on a proper Levi component. |

+ vy
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6 Principal series

6.1
Suppose G = U(n,n) or U(n+1,n) and write it as U(n+ R,n) where R =0, 1.
Then consider the irreducible representations with lowest K-types of the form
= (A1 ey ALy ey Ay e ey A | Gy e ey Ay ey Ay e v s Q) (6.1.1)
—— —_———— N——
ni+ter nk+ek ni Nk

where ¢, = 0, 1 and €; + -+ + ¢, = R. Then a straightforward calculation
implies that

G
AT = (A1, ey QL ey Qe oy AR | Gy ey Gy e ARy e Q) (6.1.2)
—_———
ni+er nk+ex ni Nk
as well. The centralizer of A€ is
u(ny + €1,n1) X -+ X u(ng + €x, ng). (6.1.3)

A Langlands parameter for an irreducible representation with a lowest K-type
of the form (6.1.1) is (A%, v). We write

v=(v1,...,v) (6.1.4)

where the v; are the coordinates corresponding to u(n; + €;,n;).

6.2
The K-types
pg = (1/2,...,1/2 | —=1/2,...,-1/2),
py = (=1/2,...,-1/2 | 1/2,...,1/2)
for the double cover of U(n,n) are called fine in [V1]. They have the property

that A¢ = 0. The parameter v can also be viewed as a parameter of a spherical
representation for the Hecke algebra of type D.

(6.2.1)

Theorem. An irreducible representation with a fine lowest K-types is unitary
only if the parameter is unitary for the Hecke algebra of type D with parameter
co = 1. These are the parameters for which the form is positive definite on the
K-types
Ho i (r), g g (r).

If the infinitesimal character is that of a finite dimensional module, the repre-
sentation is unitary if and only if it is a derived functor module from a unitary
character on a Levi component.

Proof. The techniques in sections 4 and 5 apply to these K-types essentially
without change. The reason for the Hecke algebra of type D is that the in-
tertwining operators corresponding to long simple roots are isomorphisms. We
omit the details. [ ]
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6.3

Consider the case of y as in (6.1.1). The parameter (A\“,v) determines param-
eters (\;, ;) on each of the U(n; + €;,n;) which (up to the center) are either
spherical when €; = 1 or have fine lowest K-types when ¢; = 0. The results in
sections 4 5 and 6.2 apply to them.

Theorem. The parameter (A%, v) is unitary only if each of the parameters
(Niyvi) for U(n; + €;,n;) is unitary for the corresponding Hecke algebra of type
D if the lowest K-type is fine but not trivial, type B with ¢ = 1 if it is trivial.
Proof. Recall the relevant K-types uii and ,uii for U(n; + €;,n;) from def-
inition 4.9. Then p + uii and p + ,ujfi are bottom layer K-types in the sense

of [SV]. By [KV], the signature on such a K-type in X (\“,v) coincides with
the signature on the corresponding pg; + fin,i, Or fo,i + [, respectively in
Xu(nitern)(AF,15). Thus a parameter (A%, v) is unitary only if all the (AY, ;)
are unitary. |

6.4 Remark

Let q = [ 4 u be the f-stable parabolic subalgebra determined by A“. Write
X, = YU(M_‘_%M)(/\@, v;). (6.4.1)

The results in [KV] should be sufficient to prove

Ry(X1 @ ®Xy) =

— {X()\G, v) ifi=s:=dimunt, (6.4.2)

0 otherwise,

so that the representation X (\“,v) is unitary whenever the X; are unitary. It
amounts to proving analogues of the irreducibility results in section 5.4. But I
haven’t checked the details.

7 The case of integral infinitesimal character

The relevant K-types are not sufficient to determine the full unitary dual in the
case p — q > 1. We write
R+1
ci=—.
2

For general p, g, we restrict to the case of integral infinitesimal character; this
means that all the entries in the parameter are congruent to ¢ modulo Z. Let

er = ¢ ( mod Z), 0<e<1/2. (7.0.4)

p=n+ R, q=n, (7.0.3)

In this case, we will show that the K-types u_ (1) and p;, (1) provide the nec-
essary conditions to prove theorem 1. We sometimes abbreviate them as (1)

and g, (1).
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7.1

We compute the multiplicities of (1), pn(1) in X. The Langlands parameter
is

N=(c—1,...,—c+1)
V:(k‘,...7]6,...,ER,...,€R7...,—]€,...,—k). (711)
N—_—— N—— ~————
K Ne Nk

Theorem. a) The multiplicity [p,(1) : X(A\9,v)] equals
’I’Ll/g +1

n— Z min{ng1,n,} — [T] — min{nq, ?0} — min{n,, 1}.
x>0

b) The multiplicity [11.(1) : X(\%,v)] equals
1o

n—1-— Zmin{nzﬂ,nx} —min{ny, —} — [

n1/2 + 1]
5 _—.
>0

2

Proof. The first statement is in [B-J1]. The second one is proved by similar
techniques, only it is simpler because the intertwining operators coming from
the long restricted roots are isomorphisms. We give details for case b). We do
an induction on 2n + R. Assume that n, = 0 for x > ¢. Let q be the 8-stable
parabolic subalgebra determined by

6::(17()’"'70’_1|O7~-~70)- (712)

Then p.(1) is bottom layer for g, so we can conclude that the formula is true
by induction.

Assume that ni > 0 for some k& > c¢. Let p = m + n be the real parabolic
subalgebra with Levi component

gl(1,C) x glln —k+2,C) xun—k+xz—-14+Rn—k+xz—-1). (7.1.3)
We choose x as follows. Let a be the smallest such that n, > 0 for all y > a.
i) Ifa>1,ora=1/2and ny); =1,0ora=0and n; =1, let z = a.

ii) Ifa = 1/2, and ny /5 > 1, let —x be the largest so that n, > 1 for all y < —z.
iii) If a = 0 and n; > 1, let —z be the largest so that n, > 1forall 0 <y < —uz.

The meaning of these conditions is that we can extract coordinates k, k—1,...,
from v and form a character on gl(k —z + 1,C)

X — (=k,—k+1,...,—x). (7.1.4)
Let x1 be the character on GL(k — x,C) corresponding to

x1— (=k+1,...,—x), (7.1.5)



32 D. Barbasch

and let xo be the character of GL(1,C) corresponding to (k). Let 14 be the
parameter obtained from v by removing k, i.e.

vy =(k,....k,k—1,...0k—=1,...),

—_——— ——
nk—l k—1
and let o be the parameter which is obtained from v by removing all the
coordinates in (7.1.4). In case i),
vo=(k,....k,...;a,...;a,a—1,...;a—1,...),
—— —_—— ———

ne—1 Ng—1 Ng—1
but in the other cases the appropriate n, are decreased by 2. Let

M=GLk-2+1,C)Un—k+z—-14+Rn—k+x—1),
M, =GL(1,C) x U(n+ R —1,n — 1), (7.1.6)
My =GL(k-—2,C)xUn—-k+z—1+Rn—k+z—1).

Then the long intertwining operator I factors into I = I3 o I; such that

X(A%,v) =5 Indf, [xo ® XA, 01)] — 0, -
Ind$,. [vo ® XA, )] 2 X(A, —) — 0. .

The image of I is X (\“,v). Thus I, maps the u.(1) isotypic component of the
induced module onto the corresponding isotypic component of X (A%, v). Let
G1=U(n—1+4+ R,n —1). By induction, we can assume that

le(1) = Indgh D @ XA, )] ] = [ue(1) + XY, ). (7.1.8)
By Frobenius reciprocity and (7.1.8),
0 — Ind§, [xo © X(AY, )] — Indp ey [Xo ® x1 @ XA 12)] (7.1.9)

is an isomorphism on the level of the p.(1) isotypic components. The intertwin-
ing operator o
A :IndgL(l)xNIZ [Xo ® x1 ® X(AY, v2)] —

_ = (7.1.10)
I”dgL(1)xM2 o' ®x1® X(A%,vy)],

when restricted to the p.(1) isotypic component, has as image the p.(1) iso-

typic component of Ind§;[x ® X (A%, vs)]. This follows from the fact that in

the factoring of A into intertwining operators that are induced from rank one

parabolic subalgebras all but the last one is an isomorphism on the p.(1) iso-

typic component. This is because the value of the corresponding coroot is not

1. The last one is induced from one of the form B ® Id where

B: fndgfgziifcl)’f&(l,@ i@xp 'l — f"dgfélf,giéi%ﬂ,c> o' ®xal-

(7.1.11)
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The intertwining operator B is known on the restriction of u.(1). The pu.(1)
isotypic component of Ind$;[x ® X(A%, 1»)] is a homomorphic image of the
pe(1) isotypic component of X (A%, v).

Finally, the intertwining operator

Ind$;[x ® X(\C,1n)]] — X (A%, —v) (7.1.12)

is injective on the (1) isotypic component. It follows that the multiplicity
of pe(1) in X (A%, v) is the same as the multiplicity in the induced module in
(7.1.12). By induction, this give the formula in the theorem. |

7.2

Assume that k > ¢, and we can extract a sequence
(k,k—1,...,—x+1,—x) (7.2.1)
from v with z > ¢. Then let

M:=GLk+xz+1)xUn—k—z—1+R,n—k—uz),

x «— (k,...,—x), (7.2.2)

and let v/ be the parameter obtained from v by removing the coordinates in
(7.2.1).

Corollary. Assume that v is such that we can extract a sequence as in (7.2.1).
Then — . —
[e(1) = X(A%,v)] = [ne(1) = Indy[x ® X(A%, )],

[n(1) = XA )] = [ua(1) = Ind§ylx ® X(AC,0)]).
Proof. The results in section 7.1 show that
(1) = XY v)] = [ke(1) = XA

o 7.2.3
[n(1) © XA )] = [ua(1) + XA V)] + 1. (7:25)

The restriction formulas of (1), p,(1) to M N K completes the proof. [ |

7.3

Let
M*:=GL22y+1) x U(n+ R,n),
Gt =Un+2y+1+Rn+2y+1), (7.3.1)
XFe—= ().

Let vt be the parameter obtained from v by adding the coordinates of ¥ in
(7.3.1). If the form is positive definite on the p, (1) or u.(1) isotypic component
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of X(X9,v), then it is positive definite on the p,(1) or pc(1) isotypic com-
ponent of Ind§,, [x™ ® X (A%, v)]. Therefore the same holds for the spherical
subquotient X (A%, v1).

Assume k > ¢, and let y = k — 1. Then in G, let

M~ =GL(2k,C) x U(n — 1+ R,n— 1+ R),

7.3.2
xt— (k—1+4¢...,—k+1). ( )

Let v~ be the parameter obtained from v by removing a single coordinate k.
By corollary 7.2,

e(1) = XG0 = [1e(1) = Ind§, [xe ® X(AC,07)), 733
[ (1) s XA, 0] = [1n (1) : Ind§y" [ ® X(AF,07)]

for 0 <t <1/2. At t =1/2, x1/2 is the trivial character, so the representation
is unitarily induced from y;/, ® X(\% v).

Proposition. Assume k > c. The form is positive definite on the isotypic
components i, (1), pe(1) of X(AG,v) only if it is so for X(\&,v7).

Proof. This follows from the above discussion. |

7.4

Theorem. The hermitian form on the jun(1), pc(1) isotypic component of
X (\C,v) is positive definite only if v satisfies the following conditions:

a) ng41 < ng for allx > c,
b) if x < ¢, and n, is even, then n, < mn, for all y < =,
c) if x <c, and ny is odd, then n, <mn, —1 for all y < z.

The proof will be broken up over several sections. It is by induction on rank.

7.5

Assume that n, = 0 for all x > ¢. Let q be the -stable parabolic subalgebra
determined by (7.1.2). Let \’ be the parameter obtained from A“ by removing
the entries i%. Then the following holds:

X(\C, v or ¢ = s = dim
(1) Rﬁl[(R21)®X(/\’,y)®(_R21)]:{XO‘ ,v) f dim(unNe),

0 otherwise.
(2) X(\%,v) is unitary if and only if X (X, v) is unitary,

(3) if the form is negative on p,(1) or u.(1) on X ()X, v), the same holds for
X(\% v).
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Parts (1) and (2) are in [V2] or [KV]. Such parameters are called in the weakly
good range. Part (3) follows by a multiplicity calculation which shows that
tn (1), pe(1) can only come from the same kind of K-types or the trivial one in
W, combined with the fact that for signatures,

R—-1 R—-1

[RZ[(T) QW ® (—?)]]i = [W].. (7.5.1)

We omit the details.

7.6

Assume k > c. Apply proposition 7.3. The parameter (A%, v) can fail to satisfy
a) only if £ > ¢ and ng = ng_1 + 1. We reduce to the case when ny = 1, ng_; =
0. Suppose ng > 1. Let

Mt =GL2k-2)xU(n+R,n), G" =U(n+2k—2+ R,n+ 2k —2),

xt <— (k—3/24+¢t,...,—k+3/2+1).
(7.6.1)
If the form is positive on p.(1), p,(1) on X, it is so for the spherical irreducible
subquotient of the induced module

Ind$, e ® X(AG, v)). (7.6.2)
for 0 <t <1/2. At t = 1/2, the module is also the spherical subquotient of
IndS, [x~ @ X(A\,v7)], (7.6.3)
where
M~ =GL2k)®U(n—2+ R,n—2),
- (7.6.4)
X — (k,...,—k+1).

The parameter v~ has n, = ny —1, n;_; = ng_1 — 1. The argument in section
7.3 implies that if the form is positive on the ji, (1), p.(1) isotypic components
of X(\%,v) it is so for X(\F, v7).

So assume that ny = 1, nx_1 = 0. We show that the form is negative on
tn(1). Let
M=GL(1)xUn—-14+R,n—1),

(7.6.5)
X (k)
and v’ be the parameter obtained from v by removing k. Then
[1n(1) = XOAC0)] = [pa(1) = IndGylx @ X(AY, 0] (7.6.6)

If v/ is empty, X (\“,v) is finite dimensional, and the claim is well known. If
not, do an induction on the number of coordinates of v. Let x < k — 1 be the
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largest coordinate so that n, > 0. Then apply (again) the argument in section
7.3. Induce up by using

Mt =GL(2x —1) x U(n + R,n),

7.6.7
XtTe—(z—1,...,—x+1). ( )
The spherical subquotient is a subquotient of
IndS§" [xe @ X(\%,v7)] (7.6.8)
where
M~ =GL2z)xUn—-14+x+R,n—1+z),
(22) ( ) (7.6.9)

Xt — (@ —1+1t,...,—x+1).

We can deform ¢ from 0 to 1/2 without any change in the multiplicity of 1, (1).
At t = 1/2, the module is unitarily induced and the signature of the p,(1)
isotypic component only depends on the signature of the corresponding isotypic
component of X (A%, v7), and v/ has strictly fewer coordinates than v.

7.7

Assume that a) holds, but b) or c) fail to be satisfied. The main cases are when
the largest entry of v is ¢ and

(1) n.=2, while n,_; =1,
(2) ne=3and n._; = 1.
Case (2) can be reduced to case (1) by inducing up. Let

Mt =GL(2¢) x U(n+ R,n), Gt =U(n+2c+ R,n + 2c)

4 (7.7.1)
X; «— (c—=1/2+¢t,...,—c+1/2+1).

Deform ¢ to 1/2. The spherical subquotient of Ind$,, [xf/2 ® X(\% v)] is a
subquotient of Ind$,” [x~ @ X (A%, v™)], where

M~ =GL(2c+1,C)@U(n—14+R,n—1),

B (7.7.2)
X~ —(¢,...,—c).
If the form is positive on (1), p,(1) on X (A%, v), it must be so on X (A%, v 7).
But v~ is asin (1).
Now consider case (1). Let q be the #-stable parabolic subgroup determined
by
£€=(1,...,1,0,...,0 | _1,0,...,0). (7.7.3)
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Then p0 — 2p(uNs) + p(u) equals

(0,...0,—R/2,...,—R/2| 0 _,R/2,...,R/2). (7.7.4)
R+1 1
We claim that X (A%, v) is a subquotient of an R; (triv ® W). The infinitesimal

character of W has to be v/, obtained from v by removing the coordinate c.
There is a unique irreducible module containing

w(R) == (-R/2,...,—R/2 | R/2,...,R/2) (7.7.5)

and infinitesimal character v/. We may as well assume that all coordinates
strictly less than ¢ — 1 occur at least once in v/ (by inducing the parameter
unitarily up to a larger group). Since

AY(u(R)) = (0,...,0,—€R,...,—c+ 1| c—1,...,€p,0,...,0), (7.7.6)

the parameter of W is (A(u(R)), V), where v is obtained from v by removing
the coordinates ¢,c — 1, ..., er. The results in section 4.7 show that

0 for i # s,

— 7.7.7
contains X (\%,v) fori=s. ( )

Ri(trive W) = {
The spherical module X () does not satsify a) of the theorem, so the form is
negative on u(1). Then u(R) + (1) is bottom layer for X (A(u(R)), ), so
the form is negative on it, and

[ (1) = X@)] = [(R) + iy (1) = X(A(u(R), D))]- (7.7.8)
Then by section 4.4,
[e(1) = Ry(triv @ W) = [w(R) + ph(1) = W] (7.7.9)

By section 7.1, the multiplicity of y} (1) in X (A%, v) and the multiplicity of
pr (1) in X(7) are the same. It follows that

(1) KOG, W) = b (1)« Wl (7.7.10)
as well. This completes the proof of the theorem. |

7.8 Proof of theorem 1

We need to see that the parameters satisfying the conditions of theorem 7.4 are
in fact derived functor modules from unitary characters. Let k be the largest so
that n, > 0. If £ < ¢—1, we can use the technique in section 7.5, the parameter
is derived functor induced in the weakly good range. If k > ¢, we use the 6
stable parabolic subgroup determined by

£€=(1,...,1,0,...,0 | 1,...,1,0,...,0). (7.8.1)
—— ——

k+c k—c—1
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(Recall that ¢ = £H.) As for (7.7.5) in section 7.7, R (triv @ W) vanishes
for i # s and contains X (A%, v). The representation W is not spherical. If the
parameter ' contains a coordinate larger than ¢, condition a) insure that we
can write W = R (triv ® Wy) from the parabolic subgroup determined by

&=(1,...,1,0,...,0| 1,...,1,0,...,0). (7.8.2)
N—— N—_——
ki1—c+1 ki+c

Then W7 is spherical and satisfies the conditions of the theorem.
If on the other hand, there is no coordinate > ¢, we can write

W=R;xoWi®x") (7.8.3)

for a character x so that the parameters are in the weakly good range. The
parabolic subgroup is of the type as in section 7.5. The character y is determined
in sections 4.5-4.7. In finitely many such steps we either run out of coordinates
or get again a spherical module satisfying the conditions of theorem 7.4. The
rank is strictly smaller, so the induction hypothesis applies.
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