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1 Introduction

This paper investigates the unitary dual of the groups U(p, q), in particular the
spherical case.

The general philosophy for parametrizing the unitary dual is that each reduc-
tive group G should have a set of basic unitary irreducible representations which
generate the unitary dual in the following sense. To any unitary irreducible rep-
resentation π, there should be attached a pair (Q, πL), where Q = LU is a real
or θ stable parabolic subgroup, and πL is a basic representation of the Levi
component L. Then π should be a factor of the unitarily or cohomologically
induced module from πL, or it should be in a complementary series from such
a module.

A basic representation should have the properties that

(1) it is not obtained by induction or complementary series from a proper Levi
component,

(2) its restriction to the semisimple part of L is a unipotent representation.

Unipotent representations are parametrized by nilpotent orbits. Let Ǒc ⊂ ǧ
be a nilpotent orbit in the Lie algebra of the dual group Ǧ. A representation
π is called unipotent if its annihilator in the universal enveloping algebra of
G is the maximal primitive ideal with infinitesimal character one of a finite
set χ1,Ǒc

, . . . , χk,Ǒc
associated to Ǒc. It is not completely settled what these

infinitesimal characters should be. One of them was introduced by Arthur, and
is as follows. Let ě, ȟ, f̌ be a Lie triple attached to Ǒc. Then ȟ/2 is one of
the χj,Ǒc

. The unipotent representations with this infinitesimal character are
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called special unipotent. For classical complex groups, a larger suggested set of
infinitesimal characters is in [B2].

For a unipotent representation, condition (1) is implied by the requirement
that Ǒc should not meet any proper Levi component of ǧc. In type A, this
forces Ǒc to be the principal nilpotent orbit. The only unipotent representation
attached to the principal nilpotent is the trivial one. Thus for a group of type
A, it is reasonable to expect that the basic representations can only be unitary
characters. In [V5] it is shown that GL(n,R) and GL(n,C) conform to the
aforementioned philosophy. The results in this paper present further evidence
that the spherical unitary dual of U(p, q), conforms as well. A more detailed
and precise discussion of these ideas can be found in [V4].

In the case of the quasisplit groups, U(n, n) and U(n + 1, n), we determine
the full spherical unitary spectrum. The main result is theorem 5.

The necessary conditions for unitarity are obtained in sections 4 and 5 of
[B1]. The connection is as follows. Let M be the Levi component of the minimal
parabolic subgroup of G. To establish whether a spherical module π is unitary,
one has to check that for any K type (V, µ) occuring in π, a certain form on
(V ∗)M is positive definite. To get necessary conditions for unitarity we compute
the signature of this hermitian form on a certain set of K-types which we call
relevant (section 4). The Weyl group W acts on (V ∗)M , and for a relevant K-
type, the hermitian form is completely determined by the action of W. The W
representations that come from relevant K types are called relevant W-types.
The hermitian form is the same as the one for the affine Hecke algebras of type
B and C considered in [B1].

To show that the necessary conditions for unitarity obtained from the rel-
evant K-types are also sufficient, we have to prove certain irreducibility and
unitarity results for unipotent representations. For the unitary groups these
representations are cohomologically induced, so we use [KV] and the references
therein. The conclusion is that the unitary spherical dual for U(n, n), coincides
with the unitary spherical dual of the affine Hecke algebra of type C, while the
spherical unitary dual of U(n + 1, n) coincides with the spherical dual of the
afffine Hecke algebra of type B.

Section 6 deals with Langlands parameters containing nontrivial fine K-types.
These occur in U(n, n) only. The same techniques as for the spherical case imply
that the unitary dual for such parameters is contained in the spherical unitary
dual of the affine Hecke algebra of type D. The main result is theorem 6.2.

For the case p− q > 1, the results in [KS] show that the relevant K-types are
not sufficient to determine the entire spherical unitary dual. For these cases we
only consider integral infinitesimal character. The following theorem is consis-
tent with the philosophy outlined earlier, and holds for all values of p, q. This
result is independent of [B1].

Theorem. Let X(γ) be a spherical principal series with integral infinitesimal
character and Langlands subquotient X(γ). Then X(γ) is unitary if and only if
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there is a θ-stable parabolic q = l + u and an irreducible 1-dimensional unitary
representation W on L such that

Ri
q(W ) =

{
0 i 6= dim(u ∩ k)
has X(γ) as a subquotient for i = s := dim(u ∩ k)

The sharper statement that Rs
q(W ) = X(γ) should hold. I expect it can be

proved by using the techniques in [KV] and [T].

The title of the paper refers to the way the 1-dimensional representation
W is obtained. If the form is negative on µ±n (1) (notation 4.4), then X(γ) is
not unitary. If the form is positive on µ±n (1), then we find a θ-stable parabolic
subalgebra q = l + u with the following properties. The Levi component is of
the form

L = U(k − x+ 1 +R, k − x+ 1)× U(n− k + x− 1, n− k + x− 1),

and there exists a unitary representation W on U(n− k+ x− 1, n− k+ x− 1)
such that X(γ) is a factor of Rs

q(triv ⊗W ). The question of whether X(γ) is
unitary is then reduced to the same question for W. The representation W is
not necessarily spherical. Its Langlands parameter is induced from an antiholo-
morphic discrete series. If the form is negative on a certain K-type analogous
to µ±n (1), (section 7.7), then the form is negative on the isotypic component
µ±c of X(γ). On the other hand if the form is positive on this K-type, we find
a proper parabolic subalgebra q1 of the same kind as q such that W occurs
in Rs1

q1
(χ1 ⊗W1). In finitely many steps we conclude that either X(γ) is not

unitary or else it is of the form claimed by the theorem.
In the paper we don’t quite follow this outline. Instead we find necessary

conditions for the form to be positive definite on µ±n (1), µ±c (1). We then show
that these parameters are as in the theorem. The necessary conditions for uni-
tarity implied by positivity of the form on these K types should be proved in
the same spirit as [B1]. There we find certain representations induced from Levi
components so that we can deform the parameter until we can determine the
signature on the relevant K-types. The definition of these parabolic subgroups
is very involved combinatorially. So instead, we use the technique employed in
[B2]. We induce the parameter unitarily up to a bigger group and deform it
until the spherical module is a subquotient of a module unitarily induced from
a smaller rank Levi component than the original group. Keeping track of sig-
natures in this way is a lot more efficient. The drawback is that this does not
generalize to exceptional groups. Similar techniques were also used in [B-J2].

I first proved a version of theorem 1 in 1984 while I was supported by a
CNRS position in the mathematics department at Luminy. In particular I had
the opportunity to get to know J. Carmona more closely, and I benefitted
from many mathematical conversations with him. I would also like to thank P.
Delorme and the rest of the department for their hospitality. Another version of
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these results was presented at MSRI in the spring of 1988. I would also like to
thank J. Bang-Jensen, S. Riba, D. Vogan as well as the referee for their input.

2 Notation and Preliminary Results

2.1

Let G = U(p, q) with p ≥ q, p + q = n be the group of n × n matrices which
leave the form

∑
i≤p

|xi|2 −
∑
i>p

|xi|2 invariant. Then its Lie algebra is given by

complex n × n matrices which are skew hermitian with respect to this form.
In general, for any real Lie subgroup, we will denote its Lie algebra by the
corresponding gothic german letter with subscript 0 and will drop the subscript
for the complexification.

We fix the Cartan involution θ(x) := Jx∗J where x∗ is the conjugate trans-
pose and

J =
[
Ip×p 0

0 −Iq×q

]
. (2.1.1)

Write g0 = k0 + s0, G = K · S for the corresponding Cartan decomposition.

2.2

We parametrize conjugacy classes of Cartan subgroups in the following way.
For each r ≤ q let Hr = T r ·Ar be the Cartan subgroup such that

T r = diag(e(iϕ1), . . . , e(iϕp−r), e(iψ1), . . . , e(iψr), e(iψr),
. . . , e(iψ1), e(iϕp+r+1), . . . , e(iϕn))

Ar =diag(t(x1), . . . , t(xr)),
(2.2.1)

where e(iϕ) = exp(iϕ), t(xj) = exp[xj(Ep−j,p+j + Ep+j,p−j)], and Ej,k is the
matrix with a 1 in the (j, k) entry, 0 otherwise. In this notation the compact
Cartan subgroup is H0 and the most split Cartan subgroup is Hq.

According to [BV2], the real Weyl group W (Hr) is identified with

W (Hr) ∼= Sp−r × [(Z/2Z)r o Sr]× Sq−r,

where

(1) Sp−r acts by permutations on (ϕ1, . . . , ϕp−r),

(2) Sr permutes the pairs (xi, ϕi),

(3) (Z/2Z)r changes the sign of ϕi,

(4) Sq−r permutes (ϕp+r+1, . . . , ϕn).
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Let ∆(q, hr) be the root system. Then a root α ∈ ∆(g, hr) is called

real, if α |hr= 0,
imaginary, if α |ar= 0,
complex otherwise.

(2.2.2)

An imaginary root is called compact if the root vector is in k and noncompact
if the root vector is in s. Given any subset Φ ⊆ ∆(g, hr) we will write

ρ(Φ) =
1
2

∑
α∈Φ

α.

2.3

The irreducible representations of K will be parametrized by their highest
weights, written as

µ = (α1, . . . , αp | β1, . . . , βq) =
p∑

i=1

αiεi +
q∑

j=1

βjεp+j ,

such that α1 ≥ · · · ≥ αp, β1 ≥ · · · ≥ βq. We will denote by Φc the corresponding
positive root system in ∆(k, h0).

Let ρc = ρ(Φc). Then according to [V1], to each µ one can attach a Cartan
subalgebra hr and a λG ∈ (hr)∗ given by

λG = µ+ 2ρc − ρ(Φ) +
1
2
v (2.3.1)

where Φ is a positive system such that µ + 2ρc is dominant and v a certain
sum of noncompact roots (see Chapter 5 in [V1]). We will assume familiarity
with calculations involving µ and λG.

Given ν ∈ (ar)∗ we denote by X(λG, ν) the standard generalized principal
series and by X(λG, ν;µ) the unique irreducible subquotient containing the
lowest K type µ. We call (λG, ν) a Langlands parameter.

For U(p, q), a Langlands parameter is going to be written out in coordinates.
The coordinates of λG on the φi will be denoted by

λ+
1 , . . . , λ

+
p−r, λ

−
p+r+1, . . . , λ

−
n , (2.3.2)

while the coordinates of (λG, ν) on (ψi, xi) will be written

η1 + ν1, η1 − ν1, . . . , ηr + νr, ηr − νr. (2.3.3)

The relation between the coordinates of µ and the λ’s and η’s come from (2.3.1).
The coordinates of µ+ 2ρc are

α1 +p−1, α2 +p−3, . . . , αp−p+1, β1 +q−1, β2 +q−3, . . . , βq−q+1. (2.3.4)
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Reorder the entries in (2.3.4) in decreasing order and subtract the entries of
ρ(Φ) which are

(
n− 1

2
,
n− 3

2
, . . . ,−n− 3

2
,
n− 1

2
),

to get

(r1 −
n− 1

2
, . . . , rn +

n− 1
2

). (2.3.5)

The entries of (2.3.5) satisfy one of the relations

ri −
n− 2i+ 1

2
> ri+1 −

n− 2i− 1
2

, or

ri −
n− 2i+ 1

2
= ri+1 −

n− 2i− 1
2

, or

ri −
n− 2i+ 1

2
+ 1 = ri+1 −

n− 2i− 1
2

.

Form pairs of entries in (2.3.5) that are equal and come one from an α the
other from a β. These form ηi’s. For the last relation, add 1/2 to one of them,
subtract 1/2 from the other to make them equal. The resulting coordinates are
ηi’s as well.

In practice, we will follow the procedure in the example.

Example

Let
µ = (2, 2, 2, 2, 2, 2, 2 | 0,−3,−3,−4).

Then
µ+ 2ρc = (8, 6, 4, 2, 0,−2,−4 | 3,−2,−4,−7)

The coordinates satisfy

ε1 > ε2 > ε3 > ε8 > ε4 > ε5 > ε9 ≥ ε6 > ε7 ≥ ε10 > ε11.

Instead of permuting the ri, we reorder the entries of ρ and substract from
µ+ 2ρc:

(8, 6, 4, 2, 0,−2,−4 | 3,−2,−4,−7)−
(5, 4, 3, 1, 0,−2,−3 | 2,−1,−4,−5) =
(3, 2, 1, 1, 0, 0,−1 | 1,−1, 0,−2).

In µ + 2ρc, the coordinates were in order ε9 ≥ ε6 and ε7 ≥ ε10, but now they
are in opposite order. So we add 1/2 to the coordinates ε9, ε10 and subtract
1/2 from the coordinates ε6, ε7 to get

λG = (3, 2, 1, 1, 0,−1/2,−1/2 | 1,−1/2,−1/2,−2).
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So we have paired up the coordinates (ε3, ε8), (ε6, ε9) and (ε7, ε10) to form
η1, η2 and η3. The coordinates ε1, ε2, ε3 are λ+

1 , λ
+
2 , λ

+
3 while ε11 is a λ−11. A

typical Langlands parameter with lowest K-type µ is written as

(3+, 2+, 1+, 0+, 1 + ν1, 1− ν1, 1/2 + ν2, 1/2− ν2, 1/2 + ν3, 1/2− ν3,−2−)

or

(3, 2, 1, 1 + ν1, 0, 1/2 + ν2, 1/2 + ν3 | −1− ν1,−1/2− ν2,−1/2− ν3, 2).

2.4

Let ξ ∈ (h0)∗. Then ξ defines a complex θ-stable parabolic subalgebra

q = l + u

such that
∆(l, h0) = {α : (ξ, α) = 0}
∆(u, h0) = {α : (ξ, α) > 0}.

(2.4.1)

Given an (l, L ∩K) module XL, one can define, following chapter 6 in [V1], or
[KV] chapter V, functors Ri

qXL such that for any (q,K) module Y ,

Hom(g,K)(Y,RiXL) ∼= Hom(l,L∩K)(Hi(u, Y ), XL).

(Here L = Cent(ξ,G).)
Since our classifications of unitary representations is in terms of such functors

we will rely on the algebraic properties of the Ri
q as developed in [V1] Chapter

6, or [KV].

2.5

A real form g0 of a complex reductive algebra g defines a conjugation on g by
the formula X∗ := −X. This extends to an antiautomorphism of U(g) which
we denote by ∗ as well. A bilinear form ( , ) on a (g,K) module (π,X) is called
hermitian invariant if

a) (v, w) = (w, v),

b) (cv, w) = c(v, w), (v, cw) = c(v, w), c ∈ C

c) (π(X)v, w) = (v, π(X∗)w).

Let γ = (λG, ν) ∈ (hr)∗ be a Langlands parameter. Let Σ, Σ′ be two posi-
tive root systems for ∆(g0, a

r
0). Assume ν ∈ (ar)∗ is such that Re ν is strictly

dominant for Σ. Let P (Σ) and P (Σ′) be the real parabolic subalgebras corre-
sponding to Σ and Σ′ as in [SV], Chapter 3. Let XΣ(λG, ν) and XΣ′(λG, ν) be
the induced representations. Then there is an intertwining operator

I(P (Σ), P (Σ′), γ) : XΣ(λG, ν)→ XΣ′(λG, ν)
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(which we sometimes denote by I(Σ,Σ′, γ)). If Σ′ = −Σ, I(Σ,−Σ, γ) is called
the long intertwining operator and its image is a sum ⊕X(λG, ν;µ) with µ
a lowest K-type for X(λG, ν). Every irreducible (g,K) module appears as a
X(λG, ν;µ) in this fashion. Fix µ a lowest K-type. Then since it appears with
multiplicity 1 in X(λG, ν) we can normalize I(Σ,−Σ, γ) to be the identity on
X(λG, ν)µ.

Theorem (KZ).

(1) X(λG, ν;µ) admits a hermitian form if and only if there is w ∈ W (Hr)
such that w(λG, ν) = (λG,−ν).

(2) Suppose (1) is satisfied for some w and assume Σ is dominant for Re ν.
Then X(λG, ν;µ) is unitary if and only if the form

〈v, w〉 = (I(Σ,−Σ, γ)v, w)

is positive definite.

For (2), recall that X(λG, ν) and X(λG,−ν) are hermitian dual. The form ( , )
is the hermitian pairing between these two modules.

Let (V, µ) be a K-type. Fix a positive definite hermitian form on it. Then
identifying X(Σ, γ) with I(σ(λG)) := IndK

K∩M [σ(λG)], we get a fixed positive
definite hermitian form on

HomK [Vµ, X(Σ, γ)], (2.5.1)

independent of ν and a map

I(µ, γ) : HomK [Vµ, I(σ(λG))] −→ HomK [Vµ, I(σ(λG))]. (2.5.2)

This map is hermitian symmetric and depends analytically on ν for Re ν dom-
inant. Part (2) of the theorem can be rephrased as saying that X(λG, ν) is
unitary if and only if I(µ, γ) is positive semidefinite for all µ.

In the spherical case, σ(λG) is trivial and the map I(µ, ν) can be viewed via
Frobenius reciprocity as

I(µ, ν) : (V ∗µ )M −→ (V ∗µ )M . (2.5.3)

2.6

The following theorem reduces the problem of determining the unitary dual to
the case when Im ν = 0. Let P ′ = M ′N ′ be the parabolic subgroup determined
by Im ν in the sense that M is the centralizer of Im ν and the roots of N are
α ∈ ∆(hr, ar) for which

(α, Im ν) > 0. (2.6.1)

Then (λG, ν) defines a Langlands parameter for both M and G; denote the
standard modules and their Langlands quotients by subscript G and M respec-
tively.
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Theorem ([K], theorem 16.10).

XG(λG, ν) = IndG
P [XM (λG, ν)].

When using normalized Harish-Chandra induction, X(λG, ν) is unitary if and
only if XM (λG, ν) is unitary.

Because of this, we will assume that ν is always real, i.e. Im ν = 0.

2.7

Given any two positive systems Σ and Σ′ as in 2.5 there is a chain Σ =
Σ0,Σ1, . . . ,Σk = Σ′ such that the span of each Σj \(Σj∩Σj+1) is 1-dimensional.
Let Pj be the smallest subgroup containing both P (Σj) and P (Σj+1). If we pick
αj ∈ Σj , αj ∈ Σj+1 we denote by G(αj) = MjAj the Levi component of Pj .
Then

I(Σ,Σ′) = I0 ◦ · · · ◦ Ik−1

where

Ij = I(Σj ,Σj+1) = IndG
Pj

(I(P (Σj) ∩G(αj), P (Σj+1) ∩G(αj), γ).

3 Cells in U(p, q)

3.1

Let γ = (λG, ν) be such that γ is regular integral. Let

R+(γ) = {α ∈ ∆(g, hr) : (α, γ) > 0}.

Suppose α ∈ R+(γ) is a real root. Let

aα
0 = {x ∈ ar

0 : α(X) = 0}

and
Mα = Cent(Aα, G).

Then there are maps
dϕα : sl(2, R)→ mα

0

ϕα : SL(2, R)→Mα (3.1.1)

such that,

dϕα

(
1 0
0 −1

)
∈ αr

0, dϕα(−Xt) = θ(ϕα(X)),

dϕα

(
0 1
0 0

)
∈ gα. (gα the root space of α).

(3.1.2)
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The map dϕα is the differential of ϕ. Let

mα = ϕα

(
−1 0
0 −1

)
.

Definition. Let α be real. We say that α satisfies the parity condition if

λG(mα) = −(−1)(ν,α).

In practice suppose

(λG, ν) = (η1, . . . , ηp−r,ηp−r+1 + ν1, . . . , ηp + νr, ηp − νr, . . . ,

ηp−r+1 − ν1, ηp+r+1, . . . , ηn)
(3.1.3)

describes the infinitesimal character. The real roots are α1, . . . , αr such that

αj(ν) = 2νj ,

and
λG(mαj ) = e(2πiηp−r+j) = ±1.

So the parity condition is

e(2πiηp−r+j) = −(−1)2νr .

(λG, ν) is integral means that η1, . . . , ηp−r, ηp−r+j + νj , ηp+r+1, . . . , ηn are all
either integers or half-integers.

3.2

Definition. Suppose α ∈ R+(γ) is simple. We say α ∈ τ(γ) (α is in the
τ -invariant) if one of the following holds:

a) α is compact imaginary,

b) α is complex, θα ∈ R+(γ),

c) α is real and satisfies the parity condition.

This is definition 7.3.8 of [V1] for our case.

3.3

Fix a regular integral infinitesimal character χ. Let

G(χ) =
{
ΣcγX(γ) : X(γ) has infinitesimal character χ

}
be the Grothendieck group of virtual characters with coefficients cγ ∈ C. Then
W , the complex Weyl group, acts on G(χ) via the coherent continuation action
([V3]). This action decomposes into blocks which in turn can be decomposed
into cones and cells.
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Definition. We say that γ1 ≤ γ2 if there is F2 finite dimensional, so that
X(γ2)⊗F2 contains X(γ1) as a factor. The relation ∼, called block equivalence,
is the equivalence relation generated by ≤. For π irreducible we write

B(π) = {π′ irreducible : π′ ∼ π}
B(π) = linear span{π′ : π′ ∈ B(π)}
C(π) = {π′ irreducible : π′ ≤ π}
C(π) = linear span{π′ : π′ ∈ C(π)}.

(3.3.1)

B(π) is called the block of π, C(π) is called the cone of π.

3.4

Definition. We say π1 ≈ π2 where π1, π2 are irreducible if π1 ≤ π2 and
π2 ≤ π1. We write

V (π) = {π′ irreducible : π′ ≈ π}
V (π) = C(π)/linear span{π′ : π′ ≤ π, π′ /∈ V (π)}.

(3.4.1)

Then B(π), C(π) and V (π) are Weyl group representations and

G(χ) ∼=
⊕

B(π), B '
⊕
π∈B

V (π). (3.4.2)

We now describe these objects for U(p, q). We note that χ need be defined only
up to translation functors; so we use χ = ρ.

a) For p 6= q there is one block, which we call B0. Its dual is formed of repre-
sentations in GL(n,R).

b) For p = q, there are two blocks, the one containing the trivial representation
which we call B0, dual to one in GL(n,R), and the block whose dual is
formed of representations in U∗(2p) which we call B∗.

3.5

We recall some facts about the wave front set of a representation for U(p, q).
For the basic notions on nilpotent orbits see [B1], [CMcG] and the references
therein. Recall that nilpotent orbits in U(p, q) are parametrized by signed par-
titions, i.e. partitions (b1, . . . , bl) so that each row gets a + or a −. We write
the partition as (bε11 , . . . , b

εl

l ) with εi = ±. Two entries of equal size are inter-
changeable. Usually the partition is pictured as a tableau and every row has
alternating signs starting with the εi.

For any irreducible representation π, we will write AV (π) for the union of
orbits in the asymptotic support of π as defined in [BV3].
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3.6

The block B0 was studied in [BV2]. Denote by σ(Oc) the irreducible Weyl group
representation attached to Oc by Springer ([S]), tensored with sign so that the
trivial orbit corresponds to the sign representation.

Proposition. Let X(γ) ∈ B0.

a) AV (X(γ)) consists of exactly one nilpotent orbit in g0.

b) B0 '
∑

Oc⊆gl(n,C)

m(Oc)σ(Oc) where

m(Oc) = |{orbits of U(p, q) in Oc ∩ g0}|.

c) Let π be irreducible such that AV (π) = O. Then V (π) = σ(Oc).

3.7

Similar results hold for the block B∗, dual to U∗(2p). The techniques for prov-
ing them are the same as in [BV2] but much easier. For example, U∗(2p) has
only one conjugacy class of Cartan subgroups. If we write the Lie algebra in
coordinates as

(a1, . . . , a2p), (3.7.1)

then the Cartan involution interchanges ai with −a2p−i+1. We record the result
in the next proposition, but omit the details.

Proposition. a) X(γ) ∈ B∗, if and only if γ is the parameter of a principal
series such that all real roots satisfy the parity condition. Furthermore,

b) AV (X(γ)) = Oc ∩ g0, where Oc is a complex orbit with Jordan decomposi-
tion such that each block is of even size.

c) B∗ =
⊕
σ(Oc) with Oc as in b).

d) V (π) = σ(Oc).

4 Some Results on Derived Functors

4.1

Let q = l + u be a θ-stable parabolic subgroup defined by γ ∈ (h0)∗. Let L be
the real group with Lie algebra l0 = l ∩ g0 and W an (l, L ∩K) module. Then
we recall that ([V1])

Ri
q(W ) =

(
Γ
g, L ∩K
q, L ∩K

)i

◦ pro
g, L ∩K
q, L ∩K

(
W ⊗ ∧dim uu

)
(4.1.1)
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where

pro
g, L ∩K
q, L ∩K

(
W ⊗ ∧dim uu

)
= Homq

(
U(g),W ⊗ ∧dim uu

)
. (4.1.2)

If W has infinitesimal character λ, then Ri
q(W ) has infinitesimal character λ+

ρ(u).
Let ξ ∈ (h0)∗ be such that

(ξ, α) ∈ N+ α ∈ ∆(u)
(ξ, α) = 0 α ∈ ∆(l).

(4.1.3)

Let (π, V ) be a hermitian admissible (g,K) module. For each K-type (µ, F ), the
hermitian form is given by a hermitian matrix Aµ. It has a signature (pµ, rµ, qµ),
where pµ is the number of positive eigenvalues, rµ is the dimension of the
kernel and qµ is the number of negative eigenvalues of Aµ. We form the formal
combination of representations of K,

[V ]+ =
∑

pµFµ, [V ]0 =
∑

rµFµ, [V ]− =
∑

qµFµ. (4.1.4)

The signature is defined to be

[V ]+ − [V ]− =
∑

(pµ − qµ)Fµ.

Let (E, τ) be an L ∩K type. We define

Rq(E) :=
∑

µ

[Rq(E) : Fµ]Fµ, where [Rq(E) : Fµ] equals (4.1.5)

∑
(−1)j

∑
n

dim HomL∩K [Hj(u ∩ k, Fµ) : Sn(u ∩ s)⊗ E ⊗ ∧dim u(u)],

Proposition. Let W be a hermitian irreducible (l, L∩K) module. Assume that
there is t0 such that

Vt = Homq(U(g),W ⊗ ∧dim uu⊗ Ctξ)

is irreducible for t ≥ t0. Then Ri
q(W ⊗ Ctξ) = 0 for i 6= s = dim(u ∩ s) and

t ≥ t0. The module Rs
q(W ⊗ Ctξ) is hermitian. Its signature satisfies

[Rs
q(W ⊗ Ctξ)]+ − [Rs

q(W ⊗ Ctξ)]− = Rq([W ]+)−Rq([W ]−).

In particular, if W is unitary, then Rs
q(W ) is either unitary or 0.

Proof. See [V2] or [W]. �
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4.2

In order to apply the results in section 4.1, we need some conditions that insure
the irreducibility of Vt and Rs

q(W ⊗ Ct0ξ). Let

ξ =
∑
i≤p1

εi +
∑
j≤q1

εp+j . (4.2.1)

The parabolic subalgebra determined by ξ has Levi component L = L1 × L2

with L1 = U(p1, q1), L2 = U(p2, q2). Let W = W1 ⊗ W2 be such that W1

is a character. Assume that W1 ⊗W2 ⊗ C−ρ(u) has infinitesimal character in
coordinates given by γ1 for W1 and γ2 for W2. These are

γ1 =
(p1 + q1 − 1

2
, . . . ,−p1 + q1 − 1

2

)
γ2 = (λ1, λ2, · · · , λp2+q2 ,−λp2+q2 , · · · ,−λ1),

(4.2.2)

where · · · ≥ λi ≥ λi+1 ≥ · · · ≥ 0.

Proposition. If γ2 is such that λ1 ≤ p1+q1−1
2 , then Vt is irreducible for all

t ≥ 1.

Proof. There are two cases to consider:

a) t is such that the infinitesimal character is integral.

b) t is such that the infinitesimal character is not integral.

In case a), any factor of Vt must have a parameter that is a γ′ which is a per-
mutation of γ := (γ1, γ2) but such that it is a parameter for a finite dimensional
on L1, and the difference is a sum of roots dominant for ξ. This is not possible
in view of the assumption.

Case b) reduces to a similar question on the root system for which (γ1, γ2) is
integral. It is then easy to see that Vt must be irreducible. �

Because of the shift by ρ(u) in the infinitesimal character, we will work with
the functors

Ri
q(W ) :=

(
Γ
g, L ∩K
q, L ∩K

)i

◦ pro
g, L ∩K
q, L ∩K

(
W ⊗ Cρ(u)

)
(4.2.3)

instead of (4.1.1). Then Ri(W ) and W have the same infinitesimal character.
The formulas for K-types are adjusted by 2ρ(u ∩ s)− ρ(u) instead of 2ρ(u ∩ s).
The disadvantage is that we have to consider representations that are genuine
for a double cover of U(p, q). This is the cover where highest weights with half-
integers in the coordinates give rise to representations of the corresponding
maximal compact group.
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4.3

Let π = X(γ;µ) be an irreducible representation with integral singular infinites-
imal character. Let A be the set of simple roots in R+(γ) which are not zero
on the infinitesimal character. Let W (Ac) ⊂ W be the subgroup generated by
the reflections from the roots in Ac.

Proposition. Let Oc = AV (π)c and O′c ⊂ Oc. Assume

[σ(O′c)
∣∣
W (Ac)

: triv] =

{
1 if O′c = Oc,

0 if O′c 6= Oc.

Then the only irreducible representation X with the same infinitesimal character
as π satisfying

AV (X) ⊆ AV (π)

is π.

Proof. This follows from section 3 and [BV1]. �

This result will be applied in the following way. Let X = Rs
q(W ) where q is

θ-stable, or X = IndG
Q(W ) where Q = MN is a real parabolic subgroup. When

q is θ-stable, assume that W satisfies the vanishing conditions in sections 4.1-4.2
and X is nonzero. The infinitesimal character of X determines the set Ac in
section 4.4. Any nilpotent orbit O′ in AV (π′) must satisfy

[σ(O′c)
∣∣

W (Ac) : triv] 6= 0.

If the condition of proposition 4.4 is satisfied, then σ(O′c) = σ(Oc), so O′c = Oc.
Thus AV (π′) ⊂ AV (X). The results in sections 3.6 and 3.7 imply that X has
only one possible factor.

4.4

Suppose q = l + u and γ1, γ2 are as in 4.1-4.2. We will need the multiplicities
of certain K-types in Rs

q(triv⊗W2) with triv⊗W2 satisfying the conditions in
4.2. Denote

µ+
n (1) := (1, 0, . . . , 0

∣∣ 0, . . . , 0,−1)

µ−n (1) := (0 . . . 0,−1
∣∣ 1, 0, . . . , 0)

µ+
c (1) := (1, 0, . . . , 0,−1

∣∣ 0, . . . , 0)

µ−c (1) := (0, . . . , 0
∣∣ 1, 0, . . . , 0,−1).

(4.4.1)

Let χ := C2ρ(u∩s). For later reference, 2ρ(u ∩ s)− ρ(u) has coordinates,

2ρ(u ∩ s)− ρ(u) = (
p2 − q2

2︸ ︷︷ ︸
p1

,−p1 − q1
2︸ ︷︷ ︸
p2

∣∣ − p2 − q2
2︸ ︷︷ ︸
q1

,
p1 − q1

2︸ ︷︷ ︸
q2

). (4.4.2)
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Proposition.

[µ±n (1) : Rs
q(triv⊗W2)] = [µ∓c (t)⊗ χ : W2] + 1,

[µ±c (1) : Rs
q(triv⊗W2)] = [µ∓n (t)⊗ χ : W2]

Proof. The main tool is the Euler-Poincaré principle in section V.5 of [KV]:

S∑
j=0

(−1)j dim HomK [V,Rj
q(Z)] =

S∑
j=0

(−1)j
∞∑

n=0

dim HomL∩K [Hj(u ∩ k, V ), Sn(u ∩ s)⊗ Z#],

(4.4.3)

where Z# = Z ⊗ C2ρ(u).
As a representation of L ∩K,

u ∩ s = Cp1 ⊗ (Cq2)∗ ⊕ Cp2 ⊗ (Cq1)∗.

Then Sn(u ∩ s) is the sum of representations of the form

(α1, . . . , αk, 0, . . . , 0 ; 0, . . . , 0,−β`, . . . ,−β1 |
β1, . . . , β`, 0, . . . , 0 ; 0, . . . , 0,−αk, . . . ,−α1).

(4.4.4)

Let w0 ∈ WK be the long element. The weights of Hj(u ∩ s, Vµ) are of the
form w(µ + ρc) − ρc with w ∈ W such that they are dominant for l ∩ k. Since
the first factor of Z is the trivial representation, it follows that the only j that
contributes is such that w = 1. It follows that

dim HomK [µ(1) : Rs
q(triv⊗W2)] = dim HomL2∩K [µ(1)⊗ χ∗ : W2] (4.4.5)

Consider the case of µ+
n (1); the others are similar. Then ` = k and α1 = · · · =

α` = 1. The L∩K-types µL such that µL⊗ (−α) contain the factor of µ on the
U(q2) are exactly the ones in the statement of the proposition; (0, . . . , 0,−1)
occurs with multiplicity 1 in this tensor product. �

4.5

Let µ(α, β) = (α, · · · , α | β, · · · , β) be a 1-dimensional K-type, and write η :=
α+β

2 . We will show that there is at most one irreducible representation π with a
given infinitesimal character χ containing µ(α, β), and determine its Langlands
parameter.

Proposition. Let X be an irreducible (g,K) module such that Xµ(α,β) 6= 0,
and recall η = α+β

2 . Then the infinitesimal character χ must be of the form

χ ≈
(
α+

R− 1
2

, . . . , α− R− 1
2

,

η + ν1, . . . , η + ν1, . . . , η + νk, . . . , η + νk, η − νk, . . . , η − ν1
)
.

(4.5.1)
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The parameter (λG
0 , ν0) of any principal series containing µ(α, β) is of the

form

(α+
R− 1

2
)+, . . . , (α− R− 1

2
)+, η + ν1, η − ν1, . . . , η + νk, η − νk . (4.5.2)

Proof. By the subquotient theorem, X occurs in a principal series. We de-
termine the principal series that contains µ(α, β). Let PR = MRARNR be
minimal cuspidal parabolic subgroup where R = p− q ≥ 0, and

AR := exp aR
0 .

Then
MR = MR ∩K ' U(R)× U(1)n−R.

In the usual coordinates on tR0 ,

µ(α, β)
∣∣
MR = (α, . . . , α)⊗

(α+ β

2
, · · · , α+ β

2

∣∣∣ α+ β

2
, · · · , α+ β

2

)
. (4.5.3)

Thus a principal series X(λG
0 , ν0) will contain µ(α, β) if and only if

λG
0 =

∑
i≤R

(
α+

R+ 1− 2i
2

)
εi +

∑
j≤n

α+ β

2
(εR+j + εp+j). (4.5.4)

The proof of the proposition follow from this. �

Corollary. Given an infinitesimal character χ, there is at most one irreducible
module X such that Xµ(α,β) 6= 0.

Proof. The coordinates of χ must coincide with the coordinates in (4.5.2).
The only choice is for the νi, and two such choices differ by a permuation of the
νi. The principal series for such parameters have the same composition factors.
The corollary now follows from the fact that µ(α, β) occurs with multiplicity 1
in such a principal series. �

4.6

Consider the case of U(R+ 1, 1).

Proposition. Assume α+ R−1
2 − η − νi ∈ Z.

1. If η − ν1 ≤ η + ν1 ≤ α− R
2 , then the parameter containing µ(α, β) is

(α+
R− 1

2
)+, . . . , (α− R− 1

2
)+, (η + ν1)+, (η − ν1)−.
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2. If η + ν1 ≥ η − ν1 ≥ α+ R
2 , then the parameter containing µ(α, β) is

(α+
R− 1

2
)+, . . . , (α− R− 1

2
)+, (η − ν1)+, (η + ν1)−.

In all other cases, the parameter is the same as the one for the principal series
in proposition 4.5.

Proof. The group is rank 1, so there are only two conjugacy classes of Car-
tan subgroups, one of real rank 1 and a compact one. Thus all parameters
of irreducible representations are Langlands subquotients of principal series or
are discrete series or limits of discrete series. Thus the composition series of
X(λG

0 , ν0) containing µ(α, β) is formed of parameters for other principal series
or limits of discrete series. Proposition 4.5 establishes that µ(α, β) cannot be-
long to any other principal series. The limits of discrete series are all derived
functor modules satisfying a Blattner type multiplicity formula. They will con-
tain µ(α, β) precisely in the two cases listed above. We omit further details.
�

4.7

The notation is as in 4.5. Write the a parameter as

(ν1, . . . , ν1 . . . νk, . . . , νk,−νk, . . . ,−νk, . . . ,−ν1, . . . ,−ν1) (4.7.1)

with · · · > νi > νi+1 > · · · > νk ≥ 0.

Proposition. The representation X(γ) containing µ(α, β) is obtained from the
parameter of the principal series in proposition 4.5 as follows.

1. For each νi such that α+ R
2 ≤ η− νi and α+ R

2 − η+ νi ∈ Z, change one
pair η + νi, η − νi to (η − νi)+(η + νi)−.

2. For each νi such that η+ νi ≤ α− R
2 and α+ R

2 − η+ νi ∈ Z, change one
pair η + νi, η − νi to (η − νi)−(η + νi)+.

In all other cases the parameter is unchanged from 4.5.

Proof. Fix a parameter (λG, ν) as in the proposition with δ = ±1 such that
X(λG, ν)µ(α,β) 6= 0. Let Σ ⊆ ∆[g0, a

r
0) be a positive system such that ν is

dominant. By 2.6, the long intertwining operator factors into

I = I1 ◦ · · · ◦ Im.

It is enough to show that, under the conditions of the proposition, each Ij is an
isomorphism when restricted to the µ(α, β)-isotypic component.

If αj is a short root then G(αj) ' GL(2,C) and Ij is easily seen to be an
isomorphism on µ(α, β).

If αj is a long root, then G(αj) is an U(R + 1, 1) or U(1, R + 1), so section
4.6 proves the claim. �
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Suppose R = 0 and α = −β = m > 0. The principal series that contains
µ(α, β) contains a fine K-type. Let x1 be the smallest integer such that m−νi ∈
N and νi > 0. Let x2 be the next larger integer with this property and so on
until xr.

Corollary. The Langlands parameter with infinitesimal character (4.7.1) and
containing the K-type µ(m,−m) is

(νx1)
+(−νx1)

−, . . . , (νxr )
+(−νxr )

−, ν1,−ν1, . . . , νk,−νk

Similarly for µ(−m,m), with the ± signs reversed, i.e.

(νx1)
−(−νx1)

+, . . . , (νxr
)−(−νxr

)+, ν1,−ν1, . . . , νk,−νk

4.8

We review the results we need from affine graded Hecke algebras. Consider the
Weyl group W := W (Bn). Let a be a real vector space of dimension n, which
we think of as the Cartan subalgebra of the Lie algebra of type Bn. The roots
are the usual ones,

∆ := {εi ± εj , ±εk},

with simple roots {εi−εi+1, εn}. Then denote by H the algebra which is C[W ]⊗
S(a) as a vector space, with C[W ] embedded as a subalgebra. Let sα be the
reflection corresponding to α, and let tw be the generators of C[W ]. Let cα > 0
be real numbers for α ∈ ∆ such that cα = cwα. The affine graded Hecke algebra
with parameters cα is H, with the additional relations

tsαω = sα(ω)tsα + cα〈ω, α〉, ω ∈ a. (4.8.1)

We assume that cα = 1 for the long roots ±εi ± εj , cα = c for the short roots
±εi. The case c = 1 corresponds to the Iwahori Hecke algebra for the split
group of type C, and c = 1/2 to the split group of type B. The algebra H
also has a ∗ operation. According to [BM1] and [BM2], the unitary dual of
H is in one-to-one correspondence with the Iwahori spherical unitary dual of
the corresponding split p-adic group. The theory of intertwining operators and
hermitian forms is parallel to the real case. The induced module corresponding
to the spherical principal series is X(ν) := H⊗A 11ν , where we write A for S(a).

The intertwining operator I(w, ν) is a product of operators Iαi
according to

a reduced decomposition of w = sα1 · · · · · sαk
. If α is a simple root,

rα := (tαα− cα)(α− cα)−1, Iα : x⊗ 11ν 7→ xrα ⊗ 11sαν . (4.8.2)

The I(w, ν) have the same properties as in the real case. Since the rα are
multiplied on the right, we can replace α with −〈ν, α〉 in the formulas. Because,

C[W ] =
∑
σ∈cW

Vσ ⊗ V ∗σ ,
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rα gives rise to an operator

rσ(sα, ν) : V ∗σ −→ V ∗σ .

Lemma. rσ(sα, ν) on V ∗σ is of the form

rσ(sα, ν) =

{
Id on the + 1 eigenspace of tα
cα−〈ν,α〉
cα+〈ν,α〉Id on the − 1 eigenspace of tα

(4.8.3)

Proof. This is clear from the above formulas.

4.9

In the unitary group U(p, q) with p ≥ q, we can identify the Levi component of
the minimal parabolic subgroup with

M ∼= U(p− q)× U(1)× · · · × U(1)︸ ︷︷ ︸
q

(4.9.1)

where each U(1) is embedded diagonally on the p− q + i and p+ i entry. The
Weyl group is W (Bq). It acts on M by permuting and changing the signs of the
θk in the U(1) = {eiθk}.

For U(m), write

µ+(k,m− k) := (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0), µ−(k,m− k) := (0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

).

(4.9.2)
These are realized as ΛrCm and Λr(Cm)∗, and are often abbreviated as µ±(k).

Definition. The following K-types in U(p)× U(q) will be called relevant:

µ+
n (r) = µ+(r, p− r)⊗ µ−(r, q − r) r ≤ q, (4.9.3)

µ−n (r) = µ−(r, p− r)⊗ µ+(r, q − r) r ≤ q, (4.9.4)

µ−c (r) = µ(0, p)⊗ (1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
r

) r ≤ [
q

2
]. (4.9.5)

We will suppress the ± superscripts; the µ±n behave the same way, and there
is only one µc that we will consider. Recall that if (V, µ) is a K type occuring
in a spherical principal series, then V M 6= (0), and is a representation of the
Weyl group W.

We will parametrize irreducible representations of Sn by partitions written
as (a1, . . . , ak) with ai ≤ ai+1. The representations of W (Bn) ∼= W (Cn) are
parametrized, as in [L1], by pairs of partitions

(a1, . . . , ak)× (b1, . . . , bl),

ai ≤ ai+1, bj ≤ bj+1,
∑

ai +
∑

bj = n. (4.9.6)
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Precisely the representation parametrized by (4.9.6) is as follows. Let k =∑
ai, l =

∑
bj . Recall that W ∼= Sn o Zn

2 . Let χ be the character of Zn
2

which is trivial on the first k Z2’s, sign on the rest. Its centralizer in Sn is
Sk × Sl. Let σ1 and σ2 be the representations of Sk, Sl corresponding to the
partitions (a) and (b). Then σ, the representation parametrized by (4.9.6) is

IndW
(Sk×Sl)×Zn

2
[(σ1 ⊗ σ2)⊗ χ].

Proposition. The W -representation V M for the relevant K-type is irreducible
and is given by

µn(k)←→ (q − k)× (k), (4.9.7)
µc(k)←→ (k, q − k)× (0). (4.9.8)

Proof. The restriction of a K-type (µ1, . . . , µm) with µi ≥ µi+1 from U(m)
to U(m− 1)× U(1) is given by all K-types with highest weights

(a1, . . . , am−1)⊗ (
∑

µi −
∑

ai),

µ1 ≥ a1 ≥ · · · ≥ µi ≥ ai ≥ µi+1 ≥ . . .
(4.9.9)

The space V M in µ+
n (r, p− r)⊗ µ−n (r, q − r) consists of the weights

(0, . . . , 0︸ ︷︷ ︸
p−q

, ε1, . . . , εq | −ε1, . . . ,−εq) (4.9.10)

with εi = 0, 1 and exactly r 1’s. The action of W (Bq) is clear, it is the standard
one on ΛkCq. Assertion (4.9.7) follows from the fact that the representation
(q − k)× (k) is realized as ΛkCq.

The space V M for (0)⊗µc(r, q−r) can be identified with the invariants under
U(1)× · · · × U(1) ⊂ U(q) in the representation

(0, . . . , 0︸ ︷︷ ︸
p−q

)⊗ (1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
r

). (4.9.11)

We can ignore the first factor. We do an induction on q. The case q = 0 is
clear. Similarly the case r = 1 is easy because this is the adjoint representation.
Consider the restriction of (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
r

) to U(q − 1) × U(1).

The K-types that contain V M are

(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
r

)⊗ (0),

(1, . . . , 1︸ ︷︷ ︸
r−1

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
r−1

)⊗ (0).
(4.9.12)
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The first one does not appear if r = q/2. By induction, these factors give the
representations of W parametrized by

(r,R− 1− r)× (0) (r − 1, R− r)× (0). (4.9.13)

Thus the reflections corresponding to the short roots must act trivially. The
factors in (4.9.13) can only come from

(r,R− r)× (0), (1, r, R− r − 1)× (0), (1, r − 1, R− r)× (0).

The second and third choice have extra representations in their restriction which
do not match (4.9.13). The claim of the proposition follows in this case. �

Definition. The K-types and W-types in proposition 4.9 will be called relevant.

4.10

We review the values of the intertwining operators for real rank one. There
are two Pj (notation as in section 2.7) that are relevant for our case, their Mj

are U(R + 1, 1) and GL(2,C). In the case of GL(2,C), the maximal compact
group is U(2). The restriction of a relevant K-type is either (0, 0) or (1,−1).
The Weyl group element which has a representative in GL(2,C) which we call
t12 has eigenvalue +1 on the portion of V M corresponding to (0, 0) and −1 on
(1,−1). The intertwining operator is{

Id on the 1 eigenspace of t12,
1−〈ν,α〉
1+〈ν,α〉Id on the − 1 eignespace of t12.

(4.10.1)

For U(R+ 1, 1), the maximal compact subgroup is U(R+ 1)×U(1). Let tn be
the Weyl group reflection that has a representative in U(R, 1). The restriction of
µ−c (r) is the trivial K-type and so the intertwining operator is the identity. For
µ+

n (r)⊗µ−n (r), the restriction is formed of either µ+
n (0)⊗µ−n (0) or µ+

n (1)⊗µ−n (1).
The intertwining operator corresponding to this simple root is the identity on
the first one, the element tn acts trivially. On the second one, tn acts by −1.

Lemma. ([JW]) The intertwining operator on U(R+ 1, 1) acts by

(R+ 1)/2− 〈ν, α〉
(R+ 1)/2 + 〈ν, α〉

Id

on the K-type µ+
n (1)⊗ µ−n (1).

Corollary. The intertwining operators for the real case on relevant K-types
coincide with the ones in the affine graded Hecke algebra with parameter c =
(R+ 1)/2 for the corresponding Weyl group representations.
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4.11

The case c = 1 corresponds to the Hecke algebra of type B with all cα = 1.
The special case c = 1/2 also corresponds to the Hecke algebra of type C with
parameter cα = 1 for all α. In these cases, the spherical dual of the affine graded
Hecke algebras is computed in [B1]. A spherical irreducible representation is
unitary if and only if the form is positive definite on the relevant W-types
(proposition 4.11). In view of corollary 4.10, we can derive some consequences
for the unitary groups U(n, n) and U(n+ 1, n).

We recall the results from [B1]. The infinitesimal character is always real.
A nilpotent orbit Ǒ in a simple Lie algebra of type B, C is parametrized by

a partition (m1, . . . ,mk) such that

Type Bn,
∑
mi = 2n + 1, and every even part occurs an even number of

times,

Type Cn,
∑
mi = 2n, and every odd part occurs an even number of times.

The nilpotent orbit Ǒ determines a partition

(a1, . . . , a1︸ ︷︷ ︸
r1

, . . . , ak, . . . , ak︸ ︷︷ ︸
rk

), al < al+1. (4.11.1)

Let {ě, ȟ, f̌} be a Lie triple associated to the orbit Ǒ. The centralizer of the Lie
triple, z(Ǒ), is a product of sp(rl,C) or so(rl,C) 1 ≤ l ≤ k according to the rule

Type B, sp(rl) for al even, so(rl) for al odd,

Type C, sp(rl) for al odd, so(rl) for al even.

A spherical parameter can be viewed as a a W -conjugacy class of an element
χ ∈ a∗, where a is a maximally split Cartan subalgebra. To each ν there is
attached a unique nilpotent orbit Ǒ with the following properties:

(1) χ = 1
2 ȟ+ ν, ν ∈ z(Ǒ),

(2) If χ = 1
2 ȟ

′ + ν′ as in (1) for a different Ǒ′, then Ǒ′ ⊂ Ǒ.

The set of parameters is partitioned in this way into a disjoint union according
to nilpotent orbits.

Definition. The set of unitary parameters attached to a fixed nilpotent orbit
Ǒ is called a complementary series attached to Ǒ.

Proposition ([B1]). A representation for the Hecke algebra of type Bn with
parameter c = 1/2 or 1, is unitary if and only if the form is positive definite on
the relevant W-types.
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Corollary. The parameter for the spherical unitary dual for U(n, n) is con-
tained in the spherical unitary dual for the Hecke algebra of type Bn with pa-
rameter c = 1/2. The spherical unitary dual of U(n + 1, n) is contained in the
spherical unitary dual for the Hecke algebra of type Bn with parameter c = 1.

We write down the explicit description of the unitary representations. The
parameter ν gives rise to a spherical parameter on each of the simple factors
in z(Ǒ) (by restriction to that factor). Each of them is attached to the trivial
orbit, otherwise (2) would not be satisfied. Write ν in coordinates on each factor
as

(ν1, . . . , ν1, ν2, . . . , ν2, . . . , νk, . . . , νk), (4.11.2)

with 0 ≤ ν1 · · · < νi < · · · < νk.

Theorem ([B1]). The complementary series attached to Ǒ coincides with the
one attached to the trivial orbit in z(Ǒ). These are:
B: 0 ≤ ν1, . . . , ν1 < · · · < νk, . . . , νk < 1/2.
C: 0 ≤ ν1, . . . , ν1 < · · · < νk, . . . , νk ≤ 1/2 < νk+1 < · · · < νk+l < 1
so that νi + νj 6= 1 for i 6= j and there are an even number of νi such that
1− νk+1 < νi ≤ 1/2 and an odd number of νi such that
1− νk+j+1 < νi < 1− νk+j .

5 Unipotent Representations

Corollary 4.11 and theorem 4.11 provide necessary conditions for unitarity. We
prove that they are also sufficient.

Theorem. The unitary spherical parameters of the groups U(n, n) and U(n+
1, n) coincide with the unitary parameters for the Hecke algebra of type Bn with
parameter c = 1/2 and c = 1 respectively.

The proof is in the next sections.

5.1

Let q = l + u be a θ-stable parabolic subalgebra determined by

ξ = (1, . . . , 1︸ ︷︷ ︸
p1

, 0, . . . , 0︸ ︷︷ ︸
p2

∣∣ 1, . . . , 1︸ ︷︷ ︸
q1

, 0, . . . , 0︸ ︷︷ ︸
q2

). (5.1.1)

Let W be a (g,K) module for u(p2, q2). Then AV (Ri
q(triv ⊗W )) is obtained

from AV (W ) as follows:

To each nilpotent orbit in AV (W ) add p1 +’s to the largest possible rows
starting with − and q1 −’s to the largest possible rows starting with +.

Let now q = l + u be real so that

l = gl(m,C)× u(p2, q2), (5.1.2)
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and let W be as before. Let Q = LU be the corresponding parabolic subgroup.
Then AV (IndQ[triv ⊗W ]) is obtained as follows:

Increase the largest m rows of each nilpotent orbit in AV (W ) by 2. If there
is a choice, include all possible nilpotent orbits that can be obtained this way.

Example

Suppose m = 2 and AV (W ) is (1+1−2+). Then AV of the induced module is
the union of (1+3−4+) and (1−3+4−).

5.2

We recall the notion of special unipotent representation. Let Ǒ be a nilpotent
orbit in the dual algebra ǧ, and let

χ(Ǒ) :=
1
2
ȟ, (5.2.1)

where ȟ is the semisimple element in the Lie triple attached to Ǒ.

Definition. An irreducible (g,K) module (π, V ) is called special unipotent
attached to Ǒ, if it has infinitesimal character χ(Ǒ) and its annihilator in U(g)
is the maximal primitive ideal.

For a unitary group of rank m, ǧ = gl(m,C). If (a1, . . . , ak) is the partition
of Ǒ, then we can write χ(Ǒ) as a concatenation of strings,

(
ai − 1

2
,
ai − 3

2
, . . . ,−ai − 3

2
,−ai − 1

2
), (5.2.2)

one for each ai.

5.3

We determine a set of special unipotent representations which are spherical for
U(n, n) and U(n+ 1, n). For U(n, n), let

Ǒ ⊂ sp(2n,C) ⊂ gl(2n,C)

be an even nilpotent orbit so that all the ai (notation (4.11.1)) are even. For
U(n+ 1, n), let

Ǒ ⊂ so(2n+ 1,C) ⊂ gl(2n+ 1,C)

be an even nilpotent orbit so that all ai are odd. According to the notation in
2.3.3, the spherical parameter will be also written as

(. . . ,
ai − 1

2
,−ai − 1

2
ai − 3

2
,−ai − 3

2
, . . . ) (5.3.1)
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Proposition. Suppose the ai have the same parity, even in the case of U(n, n),
odd in the case of U(n + 1, n). Then there is a θ-stable parabolic subalgebra q
such that

Ri
q(triv) =

{
L(Ǒ) if i = dim(u ∩ s),
0 otherwise.

Furthermore, the representation L(Ǒ) is unitary.

Proof. For U(n, n), let q be the parabolic subalgebra determined by ξ of the
form

(k, . . . , k︸ ︷︷ ︸
a1/2

, k − 1, . . . , k − 1︸ ︷︷ ︸
a2/2

, · · · | k, . . . , k︸ ︷︷ ︸
a1/2

, k − 1, . . . , k − 1︸ ︷︷ ︸
a2/2

, . . . ). (5.3.2)

For U(n+ 1, n), let q be the parabolic subalgebra determined by ξ of the form

(k, . . . , k︸ ︷︷ ︸
(a1+1)/2

, k − 1, . . . , k − 1︸ ︷︷ ︸
(a2−1)/2

, · · · | k, . . . , k︸ ︷︷ ︸
(a1−1)/2

, k − 1, . . . , k − 1︸ ︷︷ ︸
(a2+1)/2

, . . . ). (5.3.3)

The vanishing part of the proposition follows from the results in section 4.1-4.2,
and so does the unitarity. Section 4.3 implies the irreducibility once we check
the assumptions. The facts about the set A and the infinitesimal character
follow from [BV1] because Ǒ is even and the infinitesimal character is 1

2h.
Let (b1, . . . bl) with bi ≤ bi+1 be the transpose partition to (a, . . . , ak), and let
Oc be the corresponding nilpotent orbit. We need to compute AV (Ri

q(triv)).
According to 5.1, the answer is as follows. Note that when all ai are even, each
row size in O appears an even number of times. When all the ai are odd, each
row size appears an even number of times except for the largest one. There is
a unique O in the AV-set, with signs on the rows as follows. Each row size gets
an even number of + and −, except for the largest size which gets one more +
than a − when the ai are odd. �

5.4

Let Ǒ be a nilpotent orbit in ǧ. If Ǒ intersects a proper Levi component, there
is a chance of a complementary series. Let Ǒ ⊂ ǧ be a nilpotent orbit and ri
the number of ai in its partition (notation 4.11.1). Write ǧ(n) for sp(2n) or
so(2n + 1) depending on the case being considered. Suppose that ri > 2. The
nilpotent orbit Ǒ meets a Levi component of the form gl(ai) × ǧ(n − ai) in a
nilpotent (ai)× Ǒ′. Let R = ai(mod 2).

Proposition.

L(Ǒ) = IndGL(ai,C)×U(n−ai+R,n−ai)[triv ⊗ L(Ǒ′)]. (5.4.1)

Proof. We need to show that the AV-set of the induced module coincides
with the AV-set of L(Ǒ). This follows from the algorithms in section 5.1. �
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5.5

Let Ǒ be arbitrary, Ǒ ⊂ sp(2n,C) for U(n, n), Ǒ ⊂ so(2n+ 1) for U(n+ 1, n).
Denote by ai the even entries in the case of sp(2n), odd in the case of so(2n+1).
Let bj be the remaining entries. The infinitesimal character χ(Ǒ) = 1

2h is as in
(5.2.2), a string for each ai, bj . Let ri be the number of entries equal to ai, and
sj the number of entries equal to bj .The sj are all even. Let a =

∑
ai, b =

∑
bj .

By the Jacobson-Morozov theorem, Ǒc corresponds to a homomorphism

Ψ : sl(2,C) −→ ǧ. (5.5.1)

By conjugating by GL(n,C) if necessary, we can assume that Ψ factors through
gl(a,C)× gl(b,C) so that if we write Ψ = (Ψ1,Ψ2), then Ψ1 corresponds to the
nilpotent orbit Ǒe with partition (ai) and Ψ2 corresponds to the nilpotent or-
bit Ǒo with partition (bj). The Kazhdan-Lusztig conjectures for non-integral
infinitesimal character imply that the character theory for modules with in-
finitesimal character χ(Ǒ) exactly matches the character theory of representa-
tions on U(pe, qe)×U(po, qo) where pe+qe = a and |pe−qe| ≤ 1 while po+qo = b
with po = qo. The block is B0 on both factors.

Similar to 5.4, when sj > 0, Ǒ meets a Levi component gl(bj)× ǧ(n− bj) in
a nilpotent orbit (bj)× Ǒ′. This is because sj is even.

Theorem. (1) If rj > 2, then

L(Ǒ) = IndGL(ai,C)×U(n−ai+R,n−ai)[triv ⊗ L(Ǒ′)].

(2) For any bj ,

L(Ǒ) = IndGL(bj ,C)×U(n−bj+R,n−bj)[triv ⊗ L(Ǒ′)].

Proof. In view of the discussion on the Kazhdan-Lusztig conjectures for
nonintegral infinitesimal character, part (a) is a consequence of section 5.3. For
part (b) we omit the details. They are similar to section 5.3, but easier. �

5.6 Proof of theorem 5

As indicated at the begining of the section, section 4 provides necessary con-
ditions for unitarity which shows that the spherical unitary dual for the real
unitary group U(n, n) or U(n+ 1, n) is contained in the set given by the theo-
rem. To conclude the proof, we need to show that this set is unitary. Theorem
5.5 shows that when ri > 2 or sj > 0, then L(Ǒ) is induced irreducible.

Remains to show that the sets in theorem 4.11 are complementary series.
Consider the case of U(n, n), the other one is similar. Let (ci) be the partition
for Ǒ ⊂ sp(2n,C), each ci occuring ni times. Let ni > 2 if ci is even, ni ≥ 2 if
it is odd. The parameter for L(Ǒ) contains strings

χ(ci, νij) := (
ci − 1

2
+νij ,

ci − 3
2

+νij , . . . ,−
ci − 3

2
+νij ,−

ci − 1
2

+νij). (5.6.1)
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The νij for fixed i are the νi in theorem 4.11. The remaining ci contribute
strings of the form

(
ci − 1

2
, . . . ,

1
2
). (5.6.2)

The notation χ(ci, νij) will also be used to represent the character of GL(ci,C)
with the infinitesimal character given by the coordinates in (5.6.1).

Section 5.5 combined with the Kazhdan-Lusztig conjectures for nonintegral
infinitesimal character show that whenever

ci − 1
2

+ νij /∈
1
2

Z,

L(Ǒ) is induced irreducible from

Ind
U(n,n)
GL(ci,C)×U(n−ci,n−ci)

[χ(ci, νij)⊗ L(Ǒ′)].

Thus we can deform the parameter νij ; say we write νij+tij for the deformation.
Reducibility will occur only if

ci − 1
2

+ νij + tij ∈
1
2

Z, (5.6.3)

or there exists another string ck +νkl such that we can extract coordinates from

ci − 1
2

+ νij + tij , . . . ,−
ci − 1

2
+ νij + tij ,

ck − 1
2

+ νkl, . . . ,−
ck − 1

2
+ νkl

(5.6.4)

to form a string of coordinates decreasing by 1 which is strictly longer than
either string in (5.6.4). These conditions are exactly the the same as for re-
duciblility of the corresponding module for the Hecke algebra. So the results
in [B1] apply, and the parameters in theorem 4.11 are complementary series.
We sketch the argument. The parameters νij are deformed separately for each
ci. First, if νij = νij′ , then the conditions say that νij < 1/2. Then L(Ǒ)
is unitarily induced irreducible from a representation L((ci, ci)) × L(Ǒ′) on a
Levi component GL(2ci,C)×U(n− 2ci, n− 2ci) such that L((ci, cj)) is a Stein
complementary series. So we are reduced to the case when the νij (i fixed) are
distinct. Order them so that νij > νi,j+1. A νij + tij is deformed downward so
that it equals νi,j+1 or downward so that (5.6.3) holds. No intermediate tij has
the property that we can extract a striclty longer string from the pair

ci − 1
2

+ νij + tij , . . . ,−
ci − 1

2
+ νij + tij ,

ck − 1
2

+ νkl, . . . ,−
ck − 1

2
+ νkl.

(5.6.5)

When νij + tij = νi,j+1, the representation is unitarily induced irreducible from
a unitary representation on a GL(2ci) × U(n − 2ci, n − 2ci) as before. When
(5.6.3) holds, section 5.4 applies, and the module is unitarily induced irreducible
from a unipotent representation on a proper Levi component. �
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6 Principal series

6.1

Suppose G = U(n, n) or U(n+1, n) and write it as U(n+R,n) where R = 0, 1.
Then consider the irreducible representations with lowest K-types of the form

µ := (a1, . . . , a1︸ ︷︷ ︸
n1+ε1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk+εk

| a1, . . . , a1︸ ︷︷ ︸
n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk

) (6.1.1)

where εi = 0, 1 and ε1 + · · · + εk = R. Then a straightforward calculation
implies that

λG = (a1, . . . , a1︸ ︷︷ ︸
n1+ε1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk+εk

| a1, . . . , a1︸ ︷︷ ︸
n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk

) (6.1.2)

as well. The centralizer of λG is

u(n1 + ε1, n1)× · · · × u(nk + εk, nk). (6.1.3)

A Langlands parameter for an irreducible representation with a lowest K-type
of the form (6.1.1) is (λG, ν). We write

ν = (ν1, . . . , νk) (6.1.4)

where the νi are the coordinates corresponding to u(ni + εi, ni).

6.2

The K-types
µ+

0 := (1/2, . . . , 1/2
∣∣ − 1/2, . . . ,−1/2),

µ−0 = (−1/2, . . . ,−1/2
∣∣ 1/2, . . . , 1/2)

(6.2.1)

for the double cover of U(n, n) are called fine in [V1]. They have the property
that λG = 0. The parameter ν can also be viewed as a parameter of a spherical
representation for the Hecke algebra of type D.

Theorem. An irreducible representation with a fine lowest K-types is unitary
only if the parameter is unitary for the Hecke algebra of type D with parameter
cα = 1. These are the parameters for which the form is positive definite on the
K-types

µ±0 + µ±n (r), µ±0 + µ±c (r).

If the infinitesimal character is that of a finite dimensional module, the repre-
sentation is unitary if and only if it is a derived functor module from a unitary
character on a Levi component.

Proof. The techniques in sections 4 and 5 apply to these K-types essentially
without change. The reason for the Hecke algebra of type D is that the in-
tertwining operators corresponding to long simple roots are isomorphisms. We
omit the details. �
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6.3

Consider the case of µ as in (6.1.1). The parameter (λG, ν) determines param-
eters (λi, νi) on each of the U(ni + εi, ni) which (up to the center) are either
spherical when εi = 1 or have fine lowest K-types when εi = 0. The results in
sections 4 5 and 6.2 apply to them.

Theorem. The parameter (λG, ν) is unitary only if each of the parameters
(λi, νi) for U(ni + εi, ni) is unitary for the corresponding Hecke algebra of type
D if the lowest K-type is fine but not trivial, type B with c = 1 if it is trivial.

Proof. Recall the relevant K-types µ±n,i and µ±c,i for U(ni + εi, ni) from def-
inition 4.9. Then µ + µ±n,i and µ + µ±c,i are bottom layer K-types in the sense
of [SV]. By [KV], the signature on such a K-type in X(λG, ν) coincides with
the signature on the corresponding µ0,i + µn,i, or µ0,i + µc,i respectively in
Xu(ni+εi,ni)(λ

G
i , νi). Thus a parameter (λG, ν) is unitary only if all the (λG

i , νi)
are unitary. �

6.4 Remark

Let q = l + u be the θ-stable parabolic subalgebra determined by λG. Write

Xi := XU(ni+εi,ni)(λi, νi). (6.4.1)

The results in [KV] should be sufficient to prove

Ri
q(X1 ⊗ · · · ⊗Xk) =

{
X(λG, ν) if i = s := dim u ∩ k,

0 otherwise,
(6.4.2)

so that the representation X(λG, ν) is unitary whenever the Xi are unitary. It
amounts to proving analogues of the irreducibility results in section 5.4. But I
haven’t checked the details.

7 The case of integral infinitesimal character

The relevant K-types are not sufficient to determine the full unitary dual in the
case p− q > 1. We write

p = n+R, q = n, c :=
R+ 1

2
. (7.0.3)

For general p, q, we restrict to the case of integral infinitesimal character; this
means that all the entries in the parameter are congruent to c modulo Z. Let

εR ≡ c ( mod Z), 0 ≤ ε ≤ 1/2. (7.0.4)

In this case, we will show that the K-types µ−c (1) and µ−n (1) provide the nec-
essary conditions to prove theorem 1. We sometimes abbreviate them as µc(1)
and µn(1).
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7.1

We compute the multiplicities of µc(1), µn(1) in X. The Langlands parameter
is

λG =(c− 1, . . . ,−c+ 1)
ν =(k, . . . , k︸ ︷︷ ︸

nk

, . . . , εR, . . . , εR︸ ︷︷ ︸
nε

, . . . ,−k, . . . ,−k︸ ︷︷ ︸
nk

). (7.1.1)

Theorem. a) The multiplicity [µn(1) : X(λG, ν)] equals

n−
∑
x>0

min{nx+1, nx} −
[n1/2 + 1

2
]
−min{n1,

n0

2
} −min{nc, 1}.

b) The multiplicity [µc(1) : X(λG, ν)] equals

n− 1−
∑
x>0

min{nx+1, nx} −min{n1,
n0

2
} −

[n1/2 + 1
2

]
.

Proof. The first statement is in [B-J1]. The second one is proved by similar
techniques, only it is simpler because the intertwining operators coming from
the long restricted roots are isomorphisms. We give details for case b). We do
an induction on 2n + R. Assume that nx = 0 for x ≥ c. Let q be the θ-stable
parabolic subalgebra determined by

ξ := (1, 0, . . . , 0,−1
∣∣ 0, . . . , 0). (7.1.2)

Then µc(1) is bottom layer for q, so we can conclude that the formula is true
by induction.

Assume that nk > 0 for some k ≥ c. Let p = m + n be the real parabolic
subalgebra with Levi component

gl(1,C)× gl(n− k + x,C)× u(n− k + x− 1 +R,n− k + x− 1). (7.1.3)

We choose x as follows. Let a be the smallest such that ny > 0 for all y ≥ a.

i) If a ≥ 1, or a = 1/2 and n1/2 = 1, or a = 0 and n1 = 1, let x = a.

ii) If a = 1/2, and n1/2 > 1, let −x be the largest so that ny > 1 for all y ≤ −x.

iii) If a = 0 and n1 > 1, let −x be the largest so that ny > 1 for all 0 < y ≤ −x.

The meaning of these conditions is that we can extract coordinates k, k−1, . . . , x
from ν and form a character on gl(k − x+ 1,C)

χ←→ (−k,−k + 1, . . . ,−x). (7.1.4)

Let χ1 be the character on GL(k − x,C) corresponding to

χ1 ←→ (−k + 1, . . . ,−x), (7.1.5)
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and let χ0 be the character of GL(1,C) corresponding to (k). Let ν1 be the
parameter obtained from ν by removing k, i.e.

ν1 = (k, . . . , k︸ ︷︷ ︸
nk−1

, k − 1, . . . , k − 1︸ ︷︷ ︸
k−1

, . . . ),

and let ν2 be the parameter which is obtained from ν by removing all the
coordinates in (7.1.4). In case i),

ν2 = (k, . . . , k︸ ︷︷ ︸
nk−1

, . . . , a, . . . , a︸ ︷︷ ︸
na−1

, a− 1, . . . , a− 1︸ ︷︷ ︸
na−1

, . . . ),

but in the other cases the appropriate ny are decreased by 2. Let

M = GL(k − x+ 1,C)⊗ U(n− k + x− 1 +R,n− k + x− 1),
M1 = GL(1,C)× U(n+R− 1, n− 1),
M2 = GL(k − x,C)× U(n− k + x− 1 +R,n− k + x− 1).

(7.1.6)

Then the long intertwining operator I factors into I = I2 ◦ I1 such that

X(λG, ν) I1−→ IndG
M1

[χ0 ⊗X(λG, ν1)] −→ 0,

IndG
M1

[χ0 ⊗X(λG, ν1)]
I2−→ X(λG,−ν) −→ 0.

(7.1.7)

The image of I is X(λG, ν). Thus I2 maps the µc(1) isotypic component of the
induced module onto the corresponding isotypic component of X(λG, ν). Let
G1 = U(n− 1 +R,n− 1). By induction, we can assume that

[µc(1) : IndG1
M2

[χ1 ⊗X(λG, ν2)] ] = [µc(1) : X(λG, ν1)]. (7.1.8)

By Frobenius reciprocity and (7.1.8),

0 −→ IndG
M1

[χ0 ⊗X(λG, ν1)] −→ IndG
GL(1)×M2

[χ0 ⊗ χ1 ⊗X(λG, ν2)] (7.1.9)

is an isomorphism on the level of the µc(1) isotypic components. The intertwin-
ing operator

A :IndG
GL(1)×M2

[χ0 ⊗ χ1 ⊗X(λG, ν2)] −→

IndG
GL(1)×M2

[χ−1
0 ⊗ χ1 ⊗X(λG, ν2)],

(7.1.10)

when restricted to the µc(1) isotypic component, has as image the µc(1) iso-
typic component of IndG

M [χ ⊗ X(λG, ν2)]. This follows from the fact that in
the factoring of A into intertwining operators that are induced from rank one
parabolic subalgebras all but the last one is an isomorphism on the µc(1) iso-
typic component. This is because the value of the corresponding coroot is not
1. The last one is induced from one of the form B ⊗ Id where

B : IndGL(k−x+1,C)
GL(k−x,C)×GL(1,C)[χ1 ⊗ χ−1

0 ] −→ Ind
GL(k−x+1,C)
GL(1,C)×GL(k−x,C)[χ

−1
0 ⊗ χ1].

(7.1.11)
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The intertwining operator B is known on the restriction of µc(1). The µc(1)
isotypic component of IndG

M [χ ⊗ X(λG, ν2)] is a homomorphic image of the
µc(1) isotypic component of X(λG, ν).

Finally, the intertwining operator

IndG
M [χ⊗X(λG, ν2)]] −→ X(λG,−ν) (7.1.12)

is injective on the µc(1) isotypic component. It follows that the multiplicity
of µc(1) in X(λG, ν) is the same as the multiplicity in the induced module in
(7.1.12). By induction, this give the formula in the theorem. �

7.2

Assume that k ≥ c, and we can extract a sequence

(k, k − 1, . . . ,−x+ 1,−x) (7.2.1)

from ν with x ≥ c. Then let

M := GL(k + x+ 1)× U(n− k − x− 1 +R,n− k − x),
χ←→ (k, . . . ,−x),

(7.2.2)

and let ν′ be the parameter obtained from ν by removing the coordinates in
(7.2.1).

Corollary. Assume that ν is such that we can extract a sequence as in (7.2.1).
Then

[µc(1) : X(λG, ν)] = [µc(1) : IndG
M [χ⊗X(λG, ν′)]],

[µn(1) : X(λG, ν)] = [µn(1) : IndG
M [χ⊗X(λG, ν′)]].

Proof. The results in section 7.1 show that

[µc(1) : X(λG, ν)] = [µc(1) : X(λG, ν′)]],

[µn(1) : X(λG, ν)] = [µn(1) : X(λG, ν′)]] + 1.
(7.2.3)

The restriction formulas of µc(1), µn(1) to M ∩K completes the proof. �

7.3

Let
M+ := GL(2y + 1)× U(n+R,n),

G+ := U(n+ 2y + 1 +R,n+ 2y + 1),

χ+ ←→ (y, . . . ,−y).
(7.3.1)

Let ν+ be the parameter obtained from ν by adding the coordinates of χ+ in
(7.3.1). If the form is positive definite on the µn(1) or µc(1) isotypic component
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of X(λG, ν), then it is positive definite on the µn(1) or µc(1) isotypic com-
ponent of IndG

M+ [χ+ ⊗ X(λG, ν)]. Therefore the same holds for the spherical
subquotient X(λG, ν+).

Assume k ≥ c, and let y = k − 1. Then in G+, let

M− = GL(2k,C)× U(n− 1 +R,n− 1 +R),
χt ←→ (k − 1 + t, . . . ,−k + t).

(7.3.2)

Let ν− be the parameter obtained from ν by removing a single coordinate k.
By corollary 7.2,

[µc(1) : X(λG, ν+)] = [µc(1) : IndG+

M− [χt ⊗X(λG, ν−)],

[µn(1) : X(λG, ν+)] = [µn(1) : IndG+

M− [χt ⊗X(λG, ν−)]
(7.3.3)

for 0 ≤ t ≤ 1/2. At t = 1/2, χ1/2 is the trivial character, so the representation
is unitarily induced from χ1/2 ⊗X(λG, ν−).

Proposition. Assume k ≥ c. The form is positive definite on the isotypic
components µn(1), µc(1) of X(λG, ν) only if it is so for X(λG, ν−).

Proof. This follows from the above discussion. �

7.4

Theorem. The hermitian form on the µn(1), µc(1) isotypic component of
X(λG, ν) is positive definite only if ν satisfies the following conditions:

a) nx+1 ≤ nx for all x ≥ c,

b) if x ≤ c, and nx is even, then nx ≤ ny for all y < x,

c) if x ≤ c, and nx is odd, then nx ≤ ny − 1 for all y < x.

The proof will be broken up over several sections. It is by induction on rank.

7.5

Assume that nx = 0 for all x ≥ c. Let q be the θ-stable parabolic subalgebra
determined by (7.1.2). Let λ′ be the parameter obtained from λG by removing
the entries ±R−1

2 . Then the following holds:

(1) Ri
q[(

R−1
2 )⊗X(λ′, ν)⊗ (−R−1

2 )] =

{
X(λG, ν) for i = s = dim(u ∩ k),
0 otherwise.

(2) X(λG, ν) is unitary if and only if X(λ′, ν) is unitary,

(3) if the form is negative on µn(1) or µc(1) on X(λ′, ν), the same holds for
X(λG, ν).
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Parts (1) and (2) are in [V2] or [KV]. Such parameters are called in the weakly
good range. Part (3) follows by a multiplicity calculation which shows that
µn(1), µc(1) can only come from the same kind of K-types or the trivial one in
W, combined with the fact that for signatures,

[Rs
q[(
R− 1

2
)⊗W ⊗ (−R− 1

2
)]]± = [W ]±. (7.5.1)

We omit the details.

7.6

Assume k ≥ c. Apply proposition 7.3. The parameter (λG, ν) can fail to satisfy
a) only if k > c and nk = nk−1 +1. We reduce to the case when nk = 1, nk−1 =
0. Suppose nk > 1. Let

M+ = GL(2k − 2)× U(n+R,n), G+ = U(n+ 2k − 2 +R,n+ 2k − 2),
χt ←→ (k − 3/2 + t, . . . ,−k + 3/2 + t).

(7.6.1)
If the form is positive on µc(1), µn(1) on X, it is so for the spherical irreducible
subquotient of the induced module

IndG+

M+ [χt ⊗X(λG, ν)]. (7.6.2)

for 0 ≤ t ≤ 1/2. At t = 1/2, the module is also the spherical subquotient of

IndG+

M− [χ− ⊗X(λG, ν−)], (7.6.3)

where
M− = GL(2k)⊗ U(n− 2 +R,n− 2),

χ− ←→ (k, . . . ,−k + 1).
(7.6.4)

The parameter ν− has n−k = nk−1, n−k−1 = nk−1−1. The argument in section
7.3 implies that if the form is positive on the µn(1), µc(1) isotypic components
of X(λG, ν) it is so for X(λG, ν−).

So assume that nk = 1, nk−1 = 0. We show that the form is negative on
µn(1). Let

M = GL(1)× U(n− 1 +R,n− 1),
χ←→ (k)

(7.6.5)

and ν′ be the parameter obtained from ν by removing k. Then

[µn(1) : X(λG, ν)] = [µn(1) : IndG
M [χ⊗X(λG, ν′)]. (7.6.6)

If ν′ is empty, X(λG, ν) is finite dimensional, and the claim is well known. If
not, do an induction on the number of coordinates of ν. Let x < k − 1 be the



36 D. Barbasch

largest coordinate so that nx > 0. Then apply (again) the argument in section
7.3. Induce up by using

M+ = GL(2x− 1)× U(n+R,n),

χ+ ←→ (x− 1, . . . ,−x+ 1).
(7.6.7)

The spherical subquotient is a subquotient of

IndG+

M− [χt ⊗X(λG, ν−)] (7.6.8)

where
M− = GL(2x)× U(n− 1 + x+R,n− 1 + x),
χt ←→ (x− 1 + t, . . . ,−x+ t).

(7.6.9)

We can deform t from 0 to 1/2 without any change in the multiplicity of µn(1).
At t = 1/2, the module is unitarily induced and the signature of the µn(1)
isotypic component only depends on the signature of the corresponding isotypic
component of X(λG, ν−), and ν′ has strictly fewer coordinates than ν.

7.7

Assume that a) holds, but b) or c) fail to be satisfied. The main cases are when
the largest entry of ν is c and

(1) nc = 2, while nc−1 = 1,

(2) nc = 3 and nc−1 = 1.

Case (2) can be reduced to case (1) by inducing up. Let

M+ = GL(2c)× U(n+R,n), G+ = U(n+ 2c+R,n+ 2c)

χ+
t ←→ (c− 1/2 + t, . . . ,−c+ 1/2 + t).

(7.7.1)

Deform t to 1/2. The spherical subquotient of IndG+

M+ [χ+
1/2 ⊗ X(λG, ν)] is a

subquotient of IndG+

M− [χ− ⊗X(λG, ν−)], where

M− = GL(2c+ 1,C)⊗ U(n− 1 +R,n− 1),

χ− ←→ (c, . . . ,−c).
(7.7.2)

If the form is positive on µc(1), µn(1) on X(λG, ν), it must be so on X(λG, ν−).
But ν− is as in (1).

Now consider case (1). Let q be the θ-stable parabolic subgroup determined
by

ξ = (1, . . . , 1︸ ︷︷ ︸
R+1

, 0, . . . , 0
∣∣ 1︸︷︷︸

1

, 0, . . . , 0). (7.7.3)
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Then µ0 − 2ρ(u ∩ s) + ρ(u) equals

(0, . . . 0︸ ︷︷ ︸
R+1

,−R/2, . . . ,−R/2
∣∣ 0︸︷︷︸

1

, R/2, . . . , R/2). (7.7.4)

We claim that X(λG, ν) is a subquotient of an Rs
q(triv⊗W ). The infinitesimal

character of W has to be ν′, obtained from ν by removing the coordinate c.
There is a unique irreducible module containing

µ(R) := (−R/2, . . . ,−R/2
∣∣ R/2, . . . , R/2) (7.7.5)

and infinitesimal character ν′. We may as well assume that all coordinates
strictly less than c − 1 occur at least once in ν′ (by inducing the parameter
unitarily up to a larger group). Since

λG(µ(R)) = (0, . . . , 0,−εR, . . . ,−c+ 1
∣∣ c− 1, . . . , εR, 0, . . . , 0), (7.7.6)

the parameter of W is (λ(µ(R)), ν̃), where ν̃ is obtained from ν by removing
the coordinates c, c− 1, . . . , εR. The results in section 4.7 show that

Ri
q(triv ⊗W ) =

{
0 for i 6= s,

contains X(λG, ν) for i = s.
(7.7.7)

The spherical module X(ν̃) does not satsify a) of the theorem, so the form is
negative on µ±n (1). Then µ(R) + µ+

n (1) is bottom layer for X(λ(µ(R)), ν̃), so
the form is negative on it, and

[µ+
n (1) : X(ν̃)] = [µ(R) + µ+

n (1) : X(λ(µ(R), ν̃))]. (7.7.8)

Then by section 4.4,

[µc(1) : Ri
q(triv ⊗W )] = [µ(R) + µ+

n (1) : W ]. (7.7.9)

By section 7.1, the multiplicity of µ+
n (1) in X(λG, ν) and the multiplicity of

µ+
n (1) in X(ν̃) are the same. It follows that

[µ−c (1) : X(λG, ν)]± = [µ+
n (1) : W ]± (7.7.10)

as well. This completes the proof of the theorem. �

7.8 Proof of theorem 1

We need to see that the parameters satisfying the conditions of theorem 7.4 are
in fact derived functor modules from unitary characters. Let k be the largest so
that nk > 0. If k ≤ c−1, we can use the technique in section 7.5, the parameter
is derived functor induced in the weakly good range. If k ≥ c, we use the θ
stable parabolic subgroup determined by

ξ = (1, . . . , 1︸ ︷︷ ︸
k+c

, 0, . . . , 0
∣∣ 1, . . . , 1︸ ︷︷ ︸

k−c−1

, 0, . . . , 0). (7.8.1)
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(Recall that c = R+1
2 .) As for (7.7.5) in section 7.7, Ri

q(triv ⊗ W ) vanishes
for i 6= s and contains X(λG, ν). The representation W is not spherical. If the
parameter ν′ contains a coordinate larger than c, condition a) insure that we
can write W = Rs

q(triv ⊗W1) from the parabolic subgroup determined by

ξ1 = (1, . . . , 1︸ ︷︷ ︸
k1−c+1

, 0, . . . , 0
∣∣ 1, . . . , 1︸ ︷︷ ︸

k1+c

, 0, . . . , 0). (7.8.2)

Then W1 is spherical and satisfies the conditions of the theorem.
If on the other hand, there is no coordinate ≥ c, we can write

W = Rs
q(χ⊗W1 ⊗ χ−1) (7.8.3)

for a character χ so that the parameters are in the weakly good range. The
parabolic subgroup is of the type as in section 7.5. The character χ is determined
in sections 4.5-4.7. In finitely many such steps we either run out of coordinates
or get again a spherical module satisfying the conditions of theorem 7.4. The
rank is strictly smaller, so the induction hypothesis applies.
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