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CUSPIDAL REPRESENTATIONS OF
REDUCTIVE GROUPS

DAN BARBASCH AND BIRGIT SPEHT

ABSTRACT. The goal of this paper is to prove the existence of
cuspidal automorphic representations of a reductive group G which
are invariant under an (outer) automorphism 7 of finite order. In
particular we focus on the well known examples are G = GL(n)
with 7(x) := *r~! and in the even case the inner twist with fixed
points Sp(2n). Our main tool is the twisted Arthur trace formula,
and a local analysis of orbital integrals and Lefschetz numbers of
representations.
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I. Introduction

In classical analytic number theory automorphic functions are holo-
morphic functions on the upper half plane H = SL(2,R)/SO(2) with
a prescribed transformation rule under a subgroup of finite index I' of
SL(2,7Z). Automorphic functions lift to square integrable functions on
L*(T'\G) with respect to an invariant measure, and under the right ac-
tion of SL(2,R) theses functions generate a subspace of L?(I"\&) which
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decomposes into a direct sum of irreducible automorphic cuspidal rep-
resentations of SL(2,R).

A well known generalization is as follows. Let G be a semisimple non
compact Lie group and I' a discrete subgroup of finite covolume with
respect to a some right invariant measure dg, and let L?(I'\G) be the
space of square integrable functions with respect to dg. When T'\G
is compact, L?(I'\G) decomposes into a direct sum of irreducible rep-
resentations occuring with finite mulitplicity by results of Gelfand and
Piatetsky-Shapiro. When I'\ G is not compact, an irreducible (necessar-
ily unitary) representation II is said to be automorphic with respect to
I if it occurs discretely with finite multiplicity in L?*(T'\G). These repre-
sentations are also referred to as the discrete spectrum of L*(T'\G). The
discrete spectrum contains a G—invariant subspace denoted L2(T'\G).
Functions in L2(T'\G) are called cuspidal, and are characterized by
the property that they decay very rapidly at the cusps of I'\G. For
G = SL(2,R) the representation generated by a given automorphic
function is in L3(T\G). The complement of the cuspidal spectrum
in the discrete spectrum is called the residual spectrum. One of the
major unsolved problems in the theory of automorphic forms is to de-
termine the multiplicities of the irreducible representations occuring in
L3(T\G).

The techniques used to show that certain representations Il occur
with nonzero multiplicity either exploit the connection with the ge-
ometry of the corresponding locally symmetric space (see for example
and references therein), or use the Arthur trace formula
(see and the references therein).

For the construction of representations in the residual spectrum, it
is also very important to know the existence of cuspidal representa-
tions invariant under an automorphism 7 of G. For example GL(n,R)
is the Levi component of a parabolic subgroup of the split real form of
G = SO(2n) or SO(2n+1), as well as G = Sp(2n). Let 7 be a cuspidal
automorphic representation of GL(n,R). The residual spectrum of the
Eisenstein series associated to the induced modules IndgL(n) [xs ® 7],
where x, is a character of GL(n,R), is tied to the nature of the poles
of the L—functions L(s, 7, S?C") and L(s,, /\2 C™). With the appro-
priate normalization, the product of these two functions has a simple
pole at s = 1 precisely when 7 is invariant under the outer automor-
phism of GL(n). A detailed discussion of results and conjectures about
the poles of these L—functions can be found in [Bump-Ginsburg] and
[Bump-Friedberg].




CUSPIDAL REPRESENTATIONS 3

[.L1. The main goal of this paper is to prove the existence of cuspidal
automorphic representations of reductive groups G. We are in partic-
ular interested in those representations with integral nonsingular in-
finitesimal character which are also invariant under an automorphism
of the group G. Our main tool is the Arthur trace formula together
with local harmonic analysis. All the local results hold for arbitrary
fields. But the global techniques mostly apply to the case of a totally
real number field K. In the interest of clarity in the global situation we
present the case of K = Q only.

So let G/Q be a connected reductive algebraic group so that G(R) is
noncompact. Let 7 : G — G be a Q—rational automorphism of finite
order. The automorphism acts on the cuspidal automorphic functions
on G(A). If F is a finite dimensional representation of G(R) x {1, 7},
then trF(7) is well defined. Note that if trF'(7) # 0, then the restriction
of F' to G(R) must be irreducible.

The main result is the following theorem.

Theorem (theorem [XLI)). Let G be a connected reductive linear al-
gebraic group defined over Q, and assume that G(R) has no compact
factors.  Let I be a finite dimensional irreducible representation of
G(R) x {1,7}, and assume that the centralizer of T in g(R) is of equal
rank. IftrF (1) # 0, then there exists a cuspidal automorphic represen-
tation mp of G(A) stable under T, with the same infinitesimal character
as F.
In addition
H*(g(R), Koo, ma @ F) # 0. (I.1.1)

If 7 is an involution, trF(7) is computed in (see[V.3 for
a more uniform proof). In general we show that there exist infinitely
many irreducible representations F with trF'(7) # 0.

This theorem is a generalization of the results of A.Borel, J.P. Labesse
and J.Schwermer [B-L-S]. They prove such a result for an almost abso-
lutely simple, connected, algebaic group G and a Cartan-like involution
T.

[.2. In the special case of G = GL,, we consider the involution 7, with
fixed points SO(n), and if n = 2m also the the symplectic involution 7,
with fixed points Sp(n). The following theorem summarizes our results
for these special cases.

Theorem (theorems (1) and (2) in [XL.2). There exist cuspidal repre-
sentations ma of GL(n,A) with trivial infinitesimal character invariant
under the Cartan involution 7.. If n= 2m there also exist cuspidal
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representations wa of GL(n,A) with trivial infinitesimal character in-
variant under 7.

A suitable generalization can be proved for the case when the in-
finitesimal character of 74 coincides with that of a finite dimensional
representation F.

Using base change results of J. Arthur and L. Clozel [AC], we obtain
in theorem (3) in section [XI.2 cuspidal representations for GL(n) over
number fields which are towers of cyclic extensions of prime order of

Q.

[.3. Let K; be an open compact subgroup of G(Ay), and Ag the split
component of the center of G(A). Then

S(Ky) = (Ko Kp)\G(A)/AcG(Q)
is a locally symmetric space.

Theorem (theorem [XL3). Let G be a connected reductive linear al-
gebraic group defined over Q which admits a Cartan like involution.
Then for Ky small enough

H2, o (S(K /), C) £0.

cusp

Previously, nonvanishing results for the cohomology of locally sym-
metric spaces were proved by [B-L-S] for the case of semisimple groups
and S—arithmetic groups also using L?—Lefschetz numbers. Using geo-
metric techniques results of this type for an anisotropic form of G were

proved in and in the special case of the SO(n,1). (For a

more detailed history of the problem see section

[.4.  Our main tool is the twisted Arthur trace formula. We construct
a function f; which satisfies the conditions for the simple trace formula
of Kottwitz/Labesse to hold. The major part of the article is devoted
to analyzing the twisted orbital integrals of this function.

In the real case the main result is the following. We first prove in
theorem a formula for the Lefschetz numbers of the automorphism
7 on the (g, Ko )—cohomology of standard representations and define
a Lefschetz function fr. We use this to find an explicit formula for the
twisted orbital integral O, (fr) of an arbitrary elliptic element v = 7

in [VILE
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Theorem (theorem [VILA). Let fr be the Lefschetz function corre-
sponding to a T—stable finite dimensional representation F' and v = o1
be an elliptic element. Then

0. (fr) = / fr(grg™) dg = (~1)1De(r)teF" ()
G(R)/G(R)(v)

The undefined notation is as in section [VIII

At the finite places, the main result is a slight generalization of a
result of Kottwitz for the value of the orbital integral of an elliptic
element v = 7 on a Lefschetz function f.

Theorem (theorem VIILA). The orbital integrals of fr are

Ov(fﬁ) = {

1 if v is elliptic,
0  otherwise.

In the last section we plug the function f, into the trace formula,
and prove that under the assumption of theorem XL 1l we get a nonzero
cuspidal contribution on the spectral side of the trace formula.

Throughout the article we illustrate the results in the example of

GL(n).

I.5. The paper is organized as follows. In sections [Il and [IIl we intro-
duce notation and review basic facts about twisted conjugacy classes.
In section [V] we introduce orbital integrals, in particular we specify
the normalization of the invariant measures we use. In section [V] and
VI and [VIIl we deal with finite dimensional representations and Lef-
schetz numbers in the real case. The main idea is well known; for a
finite dimensional representation F', we construct a Lefschetz function
fr which has the property that for any representation 7, trm(fr) equals
the Lefschetz number. We rely heavily on the work of Knapp-Vogan,
[Knapp-Vogan] and Labesse [Labessel]. Representations of a discon-
nected group, G := G x (7), where 7 acts on G by an automorphism
of finite order, are described by Mackey theory. We use the version
of the classification of irreducible (g, K) modules of Vogan, where a
standard module is cohomologically induced, i.e. of the form R(x),
where b C g is a Borel subalgebra. This makes it convenient to extend
modules of G(R) to G(R) in a uniform way by using only the extension
of the action of 7 to Verma modules. The main result is theorem
which computes the Lefschetz number of a standard module. Section
VI computes orbital integrals O.(fr). These formulas are used in the
trace formula. Since our methods are global, we have to construct
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Lefschetz functions at the finite places as well, and compute orbital
integrals; for this we rely heavily on [Kottwitz2]. In section [X] we de-
scribe the twisted trace formula, and in [X] we give the simple form that
we actually use. This relies on not only choosing Lefschetz functions
at the infinite places and two of the finite places, but also choosing the
components of f, to have very small support at a finite set of places,
lemmas [X.4] and XT.1]

The main result is in section X1l proposition [XL.1l and theorem XI.II
Section [XI.2] is devoted to the standard example of GL(n) with the
automorphism transpose inverse, and other applications where 7 does
not necessarily have to be an outer automorphism.

II. Assumptions and Notation

II.1. Let K be an arbitrary number field with Galois group I'. Its
adeles are denoted by A and the finite adeles by A. If the adeles refer
to a field other than K, this will be indicated by a subscript.

A localization K, at a place v will be abbreviated k. Denote by k
its algebraic closure, and I'y the Galois group. Since K is totally real,
k is R at an infinite place, and a finite extension of @, for some finite
prime p at a finite place.

Let G be a connected reductive linear algebraic group defined over
K. Since K C k, G is also defined over k , i.e. there is a group homo-
morphism

Iy — Aut(G(k)) (I1.1.1)
which takes regular functions to regular functions in the sense that if
f is regular, then so is [0 - f](z) := o7 [f(o(x))] for any o € T.

To simplify notation we write G for G(k) and G for G(k). The con-
nected component of the identity of a group is denoted by subscript 0.
The Lie algebra of a subgroup is always denoted by the corresponding
gothic letter.

We assume that the derived group Gy, is simply connected so that
we have to deal with fewer technicalities. This is certainly true for the
main example we have in mind which is G = GL(n) whose derived
group is SL(n). But in general we will also consider groups of the form
G(7), the centralizer of an element 7 € G. Such a group may not be
simply connected, and in fact may not even be connected. A result of
Steinberg states that if G is simply connected, then G(7) is connected.

I1.2. We will fix an automorphism 7 of finite order d defined over K
(i.e. 7o = o7 for all o € I).
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Denote by G the group

G:=Gx{1,7}, [g1, a1] - [92, as] = [017(92), anas),  (11.2.1)

and write G* := G7 for the connected component containing 7. The
center of G is denoted Z, and the center of G by Z.
For v € G* we denote its centralizer in G by G(7).

I1.3. If v € G is arbitrary, then it has a Jordan decomposition v =
YssYn- Then 7, = eV where N € g(v) is nilpotent. In particular
Yo € G, and v, € G*.

Definition. An element v is called semisimple if Ady is semisimple.
An element v € G is called almost semisimple if it stabilizes a pair
(b,b) where b is a Borel subgroup of the Lie algebra g of G and b C g
is a Cartan subalgebra. For such elements, Ad~y is semisimple on [g, g],
but the action on the center of g need not be semisimple.

A semisimple v € G is called

(1) elliptic if G(vy) contains a mazimal anisotropic torus,

(2) compact if the closure of the group < ~v > generated by =y is
compact

(3) regular if it is in G and its centralizer in G is a torus,

(4) superreqular if it is of the form st with s € G, and
sT(8)72(s) ... 747 1(s) = (s7)% is regular.

The set of superreqular points is denoted by G
The map
N : st — s7(s)72(s) ... 77(s) (I1.3.1)

1s called the norm map.

Remarks.

(1) In the p—adic case the definition of elliptic is equivalent to the
closure of the group < v > generated by v being compact (see

[Kottwitz1] section 9.1 or [Kott-Shel] section I), but not in the

real case.
(2) In section 3.2 of [Kott-Shel] the norm map is defined for an
abelian group H as the canonical quotient map

o — H/(1-1)H. (11.3.2)

where (1 — 7)H := {z7(z™") : z € H}. See lemma [IL] for
a comparison between H7 and the image of the map in [L3.1]
over a closed field. O
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The set ésr is open and dense in G*.

For v € G* its G-conjugacy class is denoted by O(v). Its G-
conjugacy class is denoted by O(~).

ITI. Twisted conjugacy classes

In this section we discuss the following:

(1) describe the conjugacy classes of elements v € G* under the

adjoint action of G. These are called twisted conjugacy classes.

(2) set up a map from twisted conjugacy classes in G* to usual

conjugacy classes in G(7). This is called a norm class corre-

spondence. We also discuss this map in detail for G = GL(n).

For the real case many or most of these results are well known from

the work of Bouaziz. We provide proofs that are uniform for both the
real and the p-adic case.

III.1. We first work in G := G(k). Suppose that v € G* is semisim-

ple. According to [Steinbergl], there is a pair (b, h), where b is a Borel
subgroup and h C b is a Cartan subalgebra, which is stabilized by ~.

Since 7 is semisimple (7¢ = 1), fix a 7-stable pair (b, hy). Then there
is g € G such that by = gbg™', o = ghg~'. Thus replacing v by gyg*
we may assume that -y stabilizes a 7-stable pair (b, hg), i.e. there is a
pair (bg, ho) such that

v(bo) = bo, ¥(ho) =bo and  7(by) = by, 7(ho) =bho. (IIL1.1)

It follows that if we write v = h7, then h € H, the Cartan subgroup
corresponding to f. Write T for the fixed points of 7 in H.

Lemma. Let
HY:={hcH : hr(h)- ... -77h) =1}
Then
H" = (1-7)H:={hr(h)™" : he H},

and the map

U:TxH" — H, U(t,h) :=th 'r(h) (I11.1.2)
1s onto and has finite kernel.
Proof. Let X, be the weight lattice. Since H is abelian and connected,

H =X, ®; EX, and T = X] ®z k. To show that U is onto, observe
that the polynomial relation

T 1= [T 1] T2 42T 3 o 4 (d— 1)) +d (111.1.3)
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holds. Thus any = € X, can be written as

DY d_l _—
d d
where
y:=—(d—1)z—(d—2)7(z) — - = 2r7%(z) — 797%(2) € A,
Write

zi=a+7(@) 4+ + 77 2) € AT
Passing to H, let h := 2 ® a, with z € X, and a € EX, and let o € k°
be such that a? = a. Then

rRa=(z®a)(y@a)T(y@a)’ (II1.1.5)

where 2 @ a € T, and (y ® a)7(y ® a)~! € HL. The fact that the map
has finite kernel now follows from computing the differential of ¥, and
observing that it is nondegenerate. U

Proposition. Every semisimple v € G* is conjugate under G to an
element of the form tT with t € T.

Proof. By the discussion at the beginning of section [IL1] there is an
element g € G such that gyg~! stabilizes the pair (b, bo). Thus 7 :=

gvg~ " is of the form hr with h € H. By lemma [IL1 hr = httr =
x7(x) T = xtral. O

Corollary. Suppose that v € G* is semisimple and ¥ = 1. Then 7 is
conjugate by G to .

Proof. By the above discussion, 7 is conjugate to an element of the
form t7 with ¢ in a torus T fixed under 7. On the other hand, the
condition v¢ = 1 implies that t € HL. Thus ¢t = h~'r(h) so
tr = h'7(h)T = h™'7h.
O

IT1.2.  We now consider the case of k which is not necessarily closed.
Recall H= TH* C G, a 7-invariant Cartan subgroup.

Proposition (1).
(1) T contains reqular elements as well as superreqular elements.

(2) If T is defined overk, then T := T(k) contains reqular elements
as well as superreqular elements.
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Proof. We first show the assertions for T. Because we are working over
k, it is enough to consider the case of the Lie algebra; then it is the
same as over C and it is due to F. Gantmacher ( See theorem 5 and
28 in [Gantmacher]). Thus the set of regular elements as well as the
set of superregular elements is dense in T. For T, the assertions follow
from Rosenlicht’s density theorem, which says that for a perfect field

k, G(k) is dense in G(k) for any G defined over k, [Rosenlicht]. O

Remark. In case k = R, a similar result is proved by A. Bouaziz (1.3.1
in [Bouaziz]) for a more general type of group in essentially in the same
way.

Proposition (2). There ezist finitely many superreqular elements
Y1, ..,k € G* such that every superreqular element is conjugate under
G to an element in Tyy;, where T; = G(;).

Proof. By proposition (1) of [IL2l there are superregular elements de-
fined over k; in fact the set of such elements is open and dense in G*.
Fix a superregular v € G*, and let (b, ) be a pair stabilized by ~. Let
T be the centralizer of . Then T is stabilized by any o € I' because
~ is stabilized by such a o. Since H is the centralizer of T, the same
holds for H. Thus there is a Cartan subgroup H C G defined over k
which is normalized by . Two superregular elements v, and 7, which
stabilize the pair (b, h) differ by an automorphism of the pair; there
are only finitely many such automorphisms. Suppose 7, and 7, induce
the same automorphism. Then H' := T{h~'v(h)},ex has finite index
in H. Let ay,...,a; be representatives of H/H'. It follows that 75 is
conjugate to ta;y; for some 1 < j <. The claim now follows from the
fact that the number of G—conjugacy classes of Cartan subgroups and
pairs (b, h) with the same b is finite.

If a superregular ' normalizes the Cartan subgroup H, then Ady’ is
an automorphism of H which stabilizes the root system, and there are
only finitely many such automorphisms.

Then 7 = hy; with h € H. Let T be the fixed points of 71 (and s
as well). O

I11.3.  Recall (IL31)) the norm map, N : G* — G, given by N(v) :=
4. Tt induces a map from twisted G-orbits in G* to usual orbits
in G. The discussion above shows that for v semisimple, the orbit
of N(v) intersects the fixed points G(7). Thus N induces a a norm
class correspondence N, which takes twisted semisimple orbits in G*

to unions of semisimple orbits in G(7) :

N :0(y) — O(v) NG(r). (I11.3.1)
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Proposition. If v is semisimple, then O(y?) N G(7) is a finite union
of orbits.

Proof. From earlier, v is conjugate to t7 with ¢ € T showing that the
intersection is nonempty. The orbit O(~%) coincides with O(¢?). Thus
it suffices to show that O(t?) intersects G(7) in finitely many orbits.
But this is clear since O(t%) N H is finite. O

The map N and correspondence N make sense for G* and G. It is
still true that O(y%) N G(7) consists of finitely many orbits, but the
image might be empty.

II1.4. We illustrate this for G = GL(n,k). The automorphism 7 will
be of order two related to Cartan involutions of real groups. We write
it as

0 . o1
0 .. oo ... 10
m(g) == wo( 'z Vwyt,  we=|: ¢ 1 i (II14.1)
0 1 ... ... ... 0
1 ... ... ... ...0

If n is odd 7 is up to conjugation the unique outer automorphism of or-
der two. If n is even, there is another conjugacy class of automorphisms
of order two with representative Ad(¢,) o 7 where

to = diag[i, ..., i, —i,...,—i].

The element ty7 has order 4, and is conjugate to the one in more
familiar form where wy in ([IL4J) is replaced by

o ... ... ... ... 1
0 ... 1 0
wy = | : : : : A (I11.4.2)
o -1 ... ... ... 0
-1 ... ... ... ... 0

These elements preserve the upper triangular group which gives a 7
stable pair (bg, hp) defined over k. The centralizers are G(1) = O(n)
for (IIL4I) and G(7) = Sp(n) for (IL42). In case (IIL4AI) with n
even, the automorphism 7 does not preserve the root vectors. In other
words it does not preserve a splitting.

More generally, outer automorphisms of finite order of GL(n,k) are
(conjugate to elements) of the form ¢7 with ¢ € H fixed by 7. The
centralizer of such an element is a product of GL(m)’s and possibly an
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orthogonal or a symplectic group. This follows from the fact that the
centralizer of ¢ is a product of GL(m)'s.

Conjugacy classes of semisimple elements in GL(n, k) are determined
by the characteristic polynomial

pa(A) = det(A — A).

The minimal polynomial m4(\) of A is the polynomial of minimal
degree with leading coefficient 1 satisfying m4(A) = 0. The matrix A
is regular if my = p4, where m, is the minimal polynomial of A.
Two regular semisimple matrices A and B are similar if and only if
maqg=mpg.

Suppose v = xT € G, is superregular. From [ILI] we know that we
can assume x € T, so v? can be conjugated into G(7).

Proposition (1). Suppose 7 € Gy.. Then O(7%) N G(7) is a single
orbit.

Proof. Two regular semisimple elements A, B € G(7) are conjugate if
and only if ps = pp. This follows by using an explicit realization of a
Cartan subgroup of G(7). (Note however that this fact is not true for
SO(k).) Thus all the elements in O(y2) N G(7) have the same minimal
polynomial and the claim follows. 0

We will now show that O(y?) has points defined over k. For this
we will use the cross section introduced by Steinberg. Let G be any
connected linear algebraic semisimple group, and (B, H) be as in sec-
tion [ILIl Let AT be the system of positive roots attached to (B, H)
and II be the simple roots. Let o; be representatives for the simple
root reflections, and X; be root vectors. Let Z;(t) = exp(tX;) be the
corresponding 1-parameter subgroup. In section 1.4 of [Steinberg2]) it
is proved that the set

M = Zl(tl)O'l o Zn(tn)dn (11143)

is a cross section for the set of regular elements of G.
If GG is defined over k and is quasiplit, then M can be defined over k.

Remarks.

(1) There is a restriction on n for type A for the fact that M is
defined over k. This restriction applies to the unitary groups,
not the general linear group.
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(2) For SL(n,k), this cross section is the well known canonical form

Cno1l —Cng ... (=1l (=1)"
1 0 0 0
M={]: L : ok (I11.4.4)
0 0o ... 0 0
0 0 1 0

The characteristic polynomial is p(A) = A" — ¢, (A" 1+ -+ +
G
Since 72 can be conjugated into G(7) the characteristic polynomial
of v* = w7 (x) satisfies

Npa(A™H = pa(N). (I11.4.5)

Proposition (2). Suppose that either n is odd and G(1) = O(n) orn
is even and G(7) = Sp(n). For any polynomial p(\) satisfying (I[I1.4.5)
with coefficients in Kk, there is a reqular element A in the split form of
G(7) with characteristic polynomial p.

Proof. Write n = 2m + €. We can choose a labelling of the simple roots
so that the one parameter subgroups Y;(t) of the simple root vectors
in G(7) are

}q(tl) = Zl(t1>ZQ(t1), ey Ym—l(tm—1> = m—l(tm—1>Zm(tm—1)7
K(te) = Ze(tE)

and the o; have similar expressions. The proof follows from a direct
calculation. Any polynomial p(t) = t" —c "™ 1+ cot™ 2+ .. satisfying
[I1.4.5lis the characteristic polynomial of the matrix obtained by setting
tlzcl,...,tm_lsz_l, tEICm. O

Now assume n = 2m and that G(7) = O(n). Consider the split form
of O(n). In this case we can choose a labelling of the simple roots so
that

m(tl) = Zl(tl)ZQ(tl), e aYm—l(tm—l) = m—l(tm—l)Zm(tm—l)

are the l-parameter subgroups corresponding to m — 1 of the simple
roots of type D. The last simple root vector Y,,(t,,) cannot be written
in terms of simple root vectors of GL(2n, k). Let t,, be the parameter
for the last simple root. The characteristic polynomial of an element
in this cross section is

T2 4 02+ (o1 — D)2 4 (G — @) 4L

— (ay + agar) ™™ — (2a3 + a2 +a3)a™ + ... (I11.4.6)
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All but the last two equations are linear so we can solve for as, ..., a,,
in terms of the coefficients of the polynomial for A. For the last two we
need that

Cm — 2a3 £ (26,1 — 2a4) (I11.4.7)

be squares.

Proposition (3). If n = 2m, the orbit O(v?) intersects a unique quasi

split form of O(n).

Proof. Let (4, (5 € k. Consider the orthogonal group which preserves
the form

Q(z) = 2109 + - + Ty 1 Tpyo + G2, + ngfnﬂ. (I11.4.8)

These groups are quasisplit. Precisely, the most split Cartan subgroup
is

a » m—1»

H :={ diag(a,...,am1, [_C[L)C b} aty ... a0t),} (I11.4.9)
where ¢ = (1/(, a® + (b = 1.

A similar calculation in the proof of the previous theorem shows
that there is always a choice of (i, (5 so that the equations have a
solution. U

If a regular semisimple ¢t € G'L(n, k) is such that its orbit is 7—stable,
then ¢ is conjugate to a T—stable element by a ¢ € GL(n,k) not just
GL(n,k). This is again because the characteristic polynomial deter-
mines the conjugacy class over GL(n, k).

Corollary. FEvery semisimple v € G* is conjugate by an element of
GL(n,k) to one of the form xT, wth x in a T-stable Cartan subalgebra
H.

Proof. The centralizer C'(7, k) contains a superregular point whose G-
orbit is 7-stable, because by section [IL.1] v is conjugate to an element
ht with h € Hy. Because the variety of such elements is invariant under
I, it has regular rational points in C'(, k). Let ¢ be such a point. Then
conjugate t via GL(n, k) into a 7-fixed point. So we may as well assume
that C'(v,k) has a 7-fixed regular semisimple point ¢. Let H be the
(necessarily 7-stable) Cartan subgroup corresponding to ¢. Then since
~v = a7 centralizes it, x € H. 0

In particular, all the conclusions about the norm map and regular
elements, extend to the case of semisimple elements.



CUSPIDAL REPRESENTATIONS 15

II1.5. Orbits in the Real Case. Let G := G(R) be the real points
of G. We assume that 7 is defined over R, so it induces an automor-
phism of G. We denote by subscript 0 a real algebra; an absence of a
subscript indicates a complex algebra or vector space. So let gy be the
Lie algebra of G. It is well known ([Helgason]) that we may fix a max-
imal compact subgroup K, and a Cartan decomposition gy = £, + s
with Cartan involution ¢ so that § commutes with 7. Then the Cartan
decomposition gy = € + s is invariant under 7. Let K := K x {7}.

If v € G* is semisimple, it has a decomposition into its compact and
hyperbolic parts v = v.v,. Here v, = expY where Y is hyperbolic.

Suppose 7 is compact. There is a Cartan involution 6’ which com-
mutes with v ([Helgason]). Then let g € G be such that g710g = ¢'.
Then gyg~! is fixed by 6. So if we write v = x7, then z € K.

So in general, if 7 = 7,7, is arbitrary, we may assume (by possibly
conjugating v by G) that 0(.) = 7. and #(Y) = =Y. We will do so
without further mention.

The classification of compact elliptic elements reduces to the corre-
sponding problem for the compact group. But since this group may be
disconnected, we need some modification of our previous results.

We assume in this section that K is arbitrary compact with identity
component Ky, and Lie algebra £,. Denote by K. the connected group
with Lie algebra £, the complexification of &, . We say that a pair
(b,h) in € is rational if h is rational (or equivalently b N @b = b).

Proposition. Suppose that v € K. There is a rational pair (b,h)
stable under .

Proof. Let (b,h) be a fixed rational pair. There is k € K such that kv
stabilizes (b, h). Let B C K. be the Borel subgroup with Lie algebra b.
The map

V:Kox B — K.,  (z,b) := abky(z 1 )k™! (ITL.5.1)
is onto. The pair (zb, zh) satisfies the required properties. U

Recall that for an arbitrary compact group, a Cartan subgroup H C
K is defined to be the normalizer of a rational pair (b,h). Similarly H
is the normalizer of (b, h) in K.

Corollary. Suppose that v € Kt. Then v is conjugate via Ky to an
element which leaves a T-stable rational pair (b;,h,) invariant. Thus
v is conjugate to an element of the form v = ht with h € H. Any
element of K s conjugate via Ko to an element in H and H meets
every connected component ofK
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Proof. Let (b,h) be a rational pair stable under ~, and (b, h,) a ratio-
nal pair stable under 7. There is k € Ko such that Adk(b, h) = (b, b,).

Then kvyk=! = hr. It is clear that h € H, and therefore kvk=* € H.
The claims of the corollary follow. O

IT1.6. Results about twisted orbits are often expressed in terms of
group cohomology. Let G be a group acting on another group A. A
cocycle is a map

G — A, satisfying (st) = (s) - s(¥(t)) (I11.6.1)
Two cocycles v, 1)/ are called equivalent if there is ¢ € A such that
U'(s) = gi(s)s(g) ™" (111.6.2)

The quotient space of cocycles under this relation is the cohomology
group H*(G, A).

There are two instances where this construction arises. In the first
case, let G = (7), the group generated by an automorphism 7 of A.
Then a cocycle ¢ is determined by its value ¥ () := a in A. If 7 is of
finite order d, then

a-t(a)- ... -7 a) = 1.
Proposition (1). The map a — at is a bijection
HY(G, A) «— {x € A"}/ A.
In words, H' parametrizes twisted conjugacy classes of elements in A*.

Proof. We omit the details which are standard. 0

In the second instance, let G = I, the Galois group of k/k. In this case,
H' is denoted H'(k, G) and is called Galois cohomology. Recall that if
G is reductive connected simply connected or GL(n), and k is a p-adic
field, these groups are trivial.

Proposition (2). Let O(y) be the G orbit of v € G*. Then
[0(1) N1 G*)/G —— ker[H (k, G(7)) — H'(k, G)].

Proof. This is well known. An element xyx~! is I-stable s(xyx~!) =
xyx~! for all s € T' which is equivalent to z71s(z) € G(v). It is clear
that 1(s) := 7 's(z) is a cocycle with trivial image in H'(I', G). This
cocyle depends only on the G coset of x. Conversely any cocycle in the
kernel must be of the form ¢ (z) = 27 1s(z) for some z € G. O
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IV. Orbital Integrals

In this section we discuss twisted orbital integrals. These results will
be used in section VI.

IV.1. Recall from section [II] that if v € G* is superregular, it can
conjugated (by G) into an element of the form v = ¢, where t € T is
a semisimple element of a 7-invariant rational maximal torus of G(7).
As before, let H be the centralizer of T, a maximal torus of G.

Proposition. For any compact set w C G*, there exists a compact
set 0 C G/G(v) satisfying the condition that if gyg~ € w, then g €
QG (7).

Proof. There is a field k C k' such that H(k’) is split. Since
G(k)/G(k)(7) € G(K')/G(K)(7)

is a closed embedding it is enough to show the claim for the case when
H is split. Write G = KB for a maximal compact K and B = NH a
Borel subgroup so that G = BK. Then decompose g = knh. The claim
follows by applying the following lemma and the observation that

VT x H- — yH, (t,h) — vyh~ty(h) (IV.1.1)

has finite fiber and its image has finite index in H. More details can be

found in [Arthur] or in the untwisted case in [Harish-Chandra3|] Part
L. U

Assume P = MN C (G is a rational parabolic subgroup and ~ is
rational semisimple such that G(v) C M. Let Oy (7y) be the orbit of v
under M.

Lemma. The map
U :M/G(v) x N — Ou(7)N,
U(m,n) : = mym [Ad(mym™") " (n)n]
s an isomorphism.

Proof. The proof is identical to the similar result proved by Harish-
Chandra. The statements are straightforward consequences of the fact
that d¥ is an isomorphism. We omit the details which for the un-
twisted case can be found for example in [Warner] section 8.1.3, par-
ticularly lemma 8.1.3.6 and corollary 8.1.3.7. U
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The proposition shows that for v semisimple the orbital integrals

0,(f) = / f(g*g) dg
GO (IV.1.2)

L(f) = / f(gvg) dg
G(y\G

are well defined. Following [Kottwitz2], for a connected reductive group
H we use the Euler-Poincare measure. If the group is disconnected, we
use the unique invariant measure which restricts to the Fuler-Poincare
measure on Hy.

IV.2. Harish-Chandra (|[Harish-Chandra3| Part II) considered the in-
tegrals

FE0)=V002 [ fgtgdg vz
G(7)o\G

where V() = |det(/ — Advy)|g/g(y)|- We suppress the superscript G

when it is clear what group is involved.

In the real case we use the following variant of [V.2.1l Let v € G*
be semisimple, and (b, ) a y—stable pair. Let t := g(v) Nh. Then t is
a I'—stable Cartan subalgebra, and by theorem 1.1A in [Kott-Shel| its
centralizer is h. Define

'FE(y) = "DMO,(f),  FF(7) = D)0,(f) (IV.2.2)
with
D)= [[ =", D)= [ 72— e?2(). (1vV.2.3)
aeAd acAd

The quantities 'D and D do not depend on the choice (b, h), and the
formula for D only makes sense for a cover for which e” exists, see
section [Vl The first asertion follows from the fact that v is conjugate
by an element in G to one of the form ¢7 as in proposition IIL1]

Let ~v1,...,7 be a set of representatives of conjugacy classes satis-
fying the conclusion of proposition (2) of section [TL.2

Proposition. Suppose f € C®(G*) and © is a locally L' invariant
function analytic on the reqular set. Then

/G flg)ely’) dg” = Z ; D' () Oty Fy(tys) dt;  (IV.2.4)

where D' :==V/D.
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Proof. The proof is the same as for the untwisted case. It follows from
the fact that the differentials of the maps

U, :G/T; x T, — G, Wi(g,t) = gtyig™ (IV.2.5)

are D'(t;y;) (so are isomorphisms when restricted to the regular set),
and proposition (2) of section [IL.2l For the formula in the untwisted
case see for example (ITA) in section 8.1.2 in [Warner]. O

IV.3. Assume k is real and that v € G* is semisimple. Let t be a fun-
damental Cartan subalgebra in g(7) and write T" for the corresponding
group. Let (b,h) be a pair which is stable under ~ such that t C b.
Then in fact § is the centralizer of t in g. The roots A" of b are stable
under 7. Decompose AT = AT UA*, and so D = D, - D+ where D is

defined in (IV.2.3). Let
= = [[ 5 (1V.3.1)

BeAt

and write J(w,) for the corresponding differential operator. Let hry
be superregular, with h € 7. Then Fy(v;0(w,)) is defined to be the
derivative of Fy(h7y) in h, and then setting h = 1.

Theorem. There is a nonzero constant c¢(y) such that
Ff(v;0(w,)) = c(0) Ff (7).
Proof. Let t € T be such that tv is regular. First observe that
O(w) 0 D*|im1 = D™ (7)0(@) |11, (IV.3.2)

because the left hand side is, on the one hand skew invariant under
W,, on the other hand a linear combination of constant coefficient
differential operators of degree less than or equal to degd(w,). Then
only the leading term survives, which is the right hand side of [V.3.2

On the other hand,

Fy(ty) = / D7) Fyl) () dg. (IV.3.3)
G/G(7)

The result now follows from Harish-Chandra’s formula |[Harish-Chandra2)]
FYO(1;0(w)) = () £(1). (IV.3.4)
O
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V. Finite dimensional representations

Let K be an arbitrary compact group with identity component Ky,
and Lie algebra €, with complexification €. Let (b,h) be a pair of a
Borel subgroup b C ¢ and a (rational) Cartan subalgebra h C b. Denote
by A™ the roots of h in b, and by ¢ all the roots of f in &. Let H be the
Cartan subgroup corresponding to this pair and recall its properties
from section M5 The irreducible finite dimensional representations
of K are parametrized by highest weights ;1 which are irreducible rep-
resentations of H with differential dominant for A*. For details about
the Cartan Weyl theory of disconnected groups see |[Knapp-Vogan|. In
this section we obtain a formula for the character trm,(v) for m, the

irreducible representation with highest weight © and v € H. We also
evaluate the character on v of order 2.

The results of this section are known, but since our proofs are dif-
ferent we include them here.

V.1. Let Hy be the connected component of H and write H for the
centralizer of b in H. Then

HyC HC H. (V.1.1)

The Weyl group is defined as W := N(H)/H. If w € W, then I(w) :=
dimb/(wbNb).

We first extend the roots to the group generated by Hy and ~. Let
AY be the orbits of the action of < v > (the group generated by )
on AT, Fix root vectors {Eg}gea. Let d(5) be the size of the orbit of
5 € A. The vector

Xs=Es By ...  Euapy€S™m) geAt (V.1.2)
is independent of the choice of 3 in its y—orbit. Define e” via
Ad(7) X5 = € (7) X. (V.1.3)

This is independent of the choice of root vectors Ej as well. Similarly
let )
Yy:=EgAEpsA ... NEapge \ n (V.1.4)
Then
Ad(1)Yj = (~1)%0)16 ()Y, (V.1.5)
Recall that an element € H is regular if [det Ad(z) — I]]e/p # 0. In
particular e’ (x) # 1 for any g € A*.

If w e W, then H stabilizes b N wb and therefore also b/(b N wb).
This is because if f = wa with 8, € AT, then v6 € AT, and 76 =
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ww™(y)a; since w(y) € H, it stabilizes (b,h), so w(7)a € At
We will identify b/(b Nwb) with
Qu:={f A" : B=—wa with a € AT} (V.1.6)
Write @), for the 7-orbits in @),. Then H acts on A“@[b/(b N
wb)] by (—1)IQul=IQualer—wr We write e(w) := (1)1 and €, (w) :=
(_1)|Qw,'y"

Lemma. For h € Hy,
a0 Al = T (=)
BeAt
Proof. We have
iy A'nj= Y (~1)TAIe<@> (1) (V.1.7)
QCAT, yQ=Q

where @ N AT are the y-orbits in @, and e<9> is the product of the e’
with 3 € Aj N Q. The claim follows from the fact that

ST (1@ () = T 1 -€P(hy).  (V.1.8)

QCAT, 1Q=Q BeAt
U

Let (x,Vy) be an irreducible representation of H , and consider the
Verma module

MX = U(EC) ®U(b) VX’ (Vlg)
This is a (¢, H) module.
Proposition. Let h € Hy be such that hvy is regular. Then

r ) r - _ trx (hy)
tr My (hy) szzmaa’t x(hy)e=? (hy) pea: (1 — (k)

7(Q)=Q

Proof. As an H-module M, is S(n™) ® V. The weights of S(n™) are all
of the form e™® with Q = Y _x+ mac. If the weight is not fixed by 7,
it contributes zero to the trace. If it is, it contributes the corresponding
product of characters e’ defined in (\.1.3). The formula then follows
in the usual manner. U

Theorem. Let 7, be an irreducible representation of K. Then

Zwew €y (w)trew“(h'y)@w(p)—p(h,y)
[Moea; (1 —ePh7))

trm, (hy) =
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Proof. The trace can be computed as in the untwisted case by estab-
lishing a BGG type resolution of the representation (m,,V,), [BGG].
Then the formula follows from proposition [V.1l

We will sketch a different approach. The cohomology is computed
from the complex

—ve N Lve AT — (V.1.10)
Then
SO (Dt Hin, V)] = S (~Ditelhr Ve A\ w7 =
trm,(hy) ] (1= e P(hy)),

pBeat

(V.1.11)

To prove the theorem it suffices to prove that as an H -module,
Hi(n7 ﬂ-ﬂ) = @ pr ® pr—p (V112>
(w)=1
We follow [GS]. Let w™® be the basis dual to the root vectors, and

e(w™®) the exterior wedge, and ((w™®) contraction with w™®. Then
d' = 0+ T, where

O(f ®w) = Z T(E_o)f @ e(w™®)w,

(V.1.13)
T(f @w) Z fRe(w *)E_qw.
So (d')* = 0" + T* is given by
O (f@w) = -ZW(E )f @ t(w™)w,
(V.1.14)

T*(f ®w) = Zf@

The basis {Eq}acta+ is in Weyl normal form; if we write [E,, Es] =
Na,ﬁEoe-i-Ba then

Ew™ = N, gw™ P,
B f N_,pw? if B—ae At (V.1.15)
_qw = '
0 otherwise.

Then the cohomology is given by harmonic forms, ¢.e. forms annihilated
by d' and (d')*. Section 6 of [GS] then proves the result.
O

Remark: A similar formula has also been obtained by B. Kostant in

[Kostant].
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V.2. We can construct a cover H such that the square root of the
character e* (same as A'P(n)) makes sense; namely take

H:={(hz) e HxC"|e*h) =22} (V.2.1)
The character e’ is defined as the projection onto the second component

of H. Then p® e” makes sense on H and equals —1 on (1, —1) and has
differential du + p. The formula in the proposition becomes

 Dwew Glw)tr et (hy)
trm, (y) = [pear (772(hy) — e=PP2(h7))°

(V.2.2)

Separately, the numerator and denominator only make sense on H , but
the ratio makes sense on H.

V.3. The value at a singular v can be computed by taking the limit
h — 1. In this section we consider the special case when 7 = 7 is such
that AdT? = Id on K. We will assume (as we may) that K is generated
by K and 7. Choose a pair (b, ) which is stable under 7. Decompose

AT = Aim U Ac:(: = Ac U Anc U Acx

where A., are the roots such that 7o # «, A, are the roots satisfying
Ta = «, A,. are the roots so that 7 acts by —1 on the root vector
and A. are the roots such that 7 acts by 1 on the root vectors. In
other words, €’(7) = 1 for 8 € A, and €’(1) = —1 for B € A,..
Then €(7) is spanned by b7, {E, }acxn,, and {Ey + ¢, Frq }aeta,, . The
restrictions of the roots in A™ to h(7) form a positive system A(7)" of
a reduced root system. The Weyl subgroup W, of K(7) corresponding
to (b(7),h(7)) is generated by the s, for a € A., s,8,4 for a € A,
such that (a, 7a) = 0, and Sa4rq if (@, 7)) > 0, 0or S4—74 if (a, Tar) < 0.
We write s, . for these reflections. Let W+ := W/W.. Each coset
has a unique representative w such that if p is dominant, then wy is
dominant for A(7)". Then

Theorem ([Rohlfs-Speh], section 3). Suppose F is T-stable finite di-
mensional with highest weight p satisfying T = p and {u, &) € 27 for
all roots . Then

trF'(7) # 0.
Proof. A typical term in the numerator of (V.2.2)) is of the form
€ (zw)emte(m) grwp=zwp(r) (V.3.1)

When evaluated at 7,
e (1) = ¢ (zw)e(x). (V.3.2)
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It follows that

_ D wew+ TFw(7)
[lsen, (€72(7) — e7P2(1))
where F, is the representation of K (1) with highest weight w(u +

p(7)) — p(7). Because of the condition (u, &) € 27Z, trF,, (1) = dim F,,.
We conclude that

trF(7) (V.3.3)

z:wEVVJr dim Fy

tl"F(T) — Q‘Anc|

(V.3.4)

VI. Lefschetz Numbers for Real Groups

Recall the notation in [LI, G = G x {1, 7} for an element 7 of finite
order and let 6 be a Cartan involution which commutes with 7. Then
T stabilizes the maximal compact subgroup K. Its Lie algebra €, has
a T-stable Cartan subalgebra t. N

If 7 is an admissible representation of GG, then 7 induces an auto-
morphism of H'(g, K, 7) (see [Knapp-Vogan| chapter II, section 6 for a
definition of (g, K)-cohomology). The Lefschetz number of 7, L(7, ),
is by definition the Euler characteristic of the trace of 7 on H'(g, K, 7).
More general, let I’ be a finite dimensional representation of G' whose
restriction to G is irreducible. Then we define the Lefschetz number of
7 with respect to F' and T,

L(r,F,m) := L(1, F* @ 7). (VI.0.5)

In this section we determine the Lefschetz numbers of 7.

VI.1. Cohomology. Recall that we do not necessarily assume that G
is connected, rather that G = G(R), the real points of a connected
reductive group G. To determine the Lefschetz numbers we follow

[Labessel] and [B-L-S]. The module A\"(g/€) = A"s is a represen-

tation of K. Write
Xa(k7) == x(k: D> (—1)'A’s) = det[l — Ad(kT) :s].  (VLL1)
The Lefschetz number is given by the formula
Lirm) = S (=1)ita(r, Hi(g, K, 7)) = / o (k) Xl di. (VIL1.2)
K

The following is well known, |[Labessel], [Rohlfs-Speh|, and
Borel-Wallach].
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Proposition. Assume 7 is irreducible. Then L(t, F, ) = 0 unless the
restriction of m to G is irreducible and the infinitesimal character of
coincides with that of F. It only depends on the left coset of T under
K. In other words if § = kt with k € K, then L(f) = L(7).

O

VI.2. Standard Representations. In this section we construct the
irreducible representations with nonzero Lefschetz numbers.

Let P° = MYA°NY be a minimal parabolic subgroup of G such that
a’ C 59, MY € K. Then 7(P°) = 7(M°)7(A%)7(N?), and because T
commutes with 6, 7a® C s¢, and 7M° C K.

Let Ky be the connected component of the identity of K. Since any
two minimal parabolic subgroups are conjugate by Ky, there is an ele-
ment ky € K, such that ko7 fixes M?, A° and N° We will show that
in fact there is a minimal parabolic subgroup P° which is stable under
T.

Lemma. Let 1y be an isomorphism of G which commutes with the Car-
tan involution 6. Assume P is a minimal 1o-stable parabolic subgroup.
Then the map

a: Kox M° — K, a(k,m) = kmm(k™h)
15 onto.

Proof. Because K, and M are compact, the image of « is closed. The
set of (kg, mg) for which da is not onto is given by algebraic equations
with real coefficients. Thus its complement is either empty or Zarisky
dense. It is enough to show it is not empty. We show that there is a
point (kg,mg) such that doy, m, is onto. Take kg = Id. Then
exp Xmg exp 7o(—X) = mg exp(Ad(mg) ' X) exp —70(X),
and so the differential equals
Ay mo (X, Y) = Y + Ad(mg) ' X — 70(X)
= Ad(mo)_l[Y + X — Ad(mo)To(X)]

It is therefore enough to show that the map

o' X — X — Ad(mg)mo(X) (VI.2.1)

is onto the complement of my. Let Ay := A(g,a’) be the restricted
roots, and { X, }aen, a basis of root vectors. Then the complement of
mg in € has as basis {X, + 0X,} aea,. The claim that o in (VIL2.1])
is onto follows from the fact that we can choose mg such that Id —
Ad(mg)7o has no fixed points on the aforementioned basis. U
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Proposition (1). There exists a minimal parabolic P° = M°A°N°
satisfying 0(a®) = a®, M° C K and 7P° = P°.

Proof. Since P° and 7P are both minimal parabolic subgroups, there
is k € Ky such that Ad(k)7P° = P° Then 7’ := Adk o 7 does fix PY,
so we can apply lemma whose proof applies to any isomorphism
7o not just ones of finite order. We conclude that k= = amkr(z~1)k™?
or k =ma '7(x). Then Ad(z)P° is T—stable. O

We fix a minimal 7—stable parabolic subgroup P° with properties as
in corollary (1). Since N° is the radical of P°, we conclude 7N? = NV
as well.

Let now P be a standard parabolic subgroup, i.e. P O P°. Then
7(P) is also a standard parabolic subgroup. If it has decomposition
P = MAN, and it is T-stable, then 7TM = M, TA= A and TN = N.

Proposition (2). If P and TP are conjugate under Ky, then there is
a conjugate of P which is T-stable.

Proof. The analogue of lemma[VI.2| holds by essentially the same proof,
and then the reasoning in the proof of corollary 1 in [VI.2] applies. [

Remark. The arguments in lemma and proposition (1) and (2)
are adapted from [Steinbergl]. Note however that in proposition (2)
we do need the assumption that P and 7P are conjugate under the
connected group Ky. To see that this is necessary, consider the example
G = GL(3) with 7(z) = ‘'z~ and P a proper maximal parabolic
subgroup.

Since G = G(R) we do not assume in this paper that K is connected
and so special care is needed in the arguments starting with the notion

of 7—stable data in definition [VI.2] O

Let X (P,W,v) be a standard module for G, where P = M AN is a
standard cuspidal parabolic subgroup (i.e. P® C P), W is a tempered
irreducible module for M and < Re v,a >> 0 for all « € A(n). We

will always denote by L(P, W, v) the irreducible Langlands quotient of
X(P,W,v).

Suppose an irreducible module 7 of G has nonzero Lefschetz number.
By proposition [VI ] its restriction to G is irreducible; it is of the form
L(P,W,v). It must be isomorphic to L(7P,7W,7v). The modules
L(P,W,v) and L(TP,7W, Tv) are equivalent if and only if there exists
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k € K such that

ktM =M, krA=A, krtN=N, ktW=ZW, krv=uvr.
(VI.2.2)

Definition. We say that the data (P, W, v) are T-stable, if they satisfy
equation VI 2.2.

It follows that there is an intertwining operator a, : W — W,
satisfying
a;my(m) = my(kT(m))a,. (VI.2.3)
Two choices of a, differ by a scalar multiple. Then a, induces an
intertwining operator

A X(PW,v) — X (TP, TW, V)
by the formula

A (F)9) = arf((kT)"H(g)),  for  flgm) =mw(m™)f(g),
(V1.2.4)

satisfying A? = Id (because a, does). Since v is strictly dominant for
A(n), Tv is strictly dominant for 7A(n). Thus L(P, W, v) is the unique
irreducible quotient of X (P, W,v), and L(TP,7W,tv) is the unique
irreducible quotient of X (7P, 7V, Tv). Thus A, induces a nonzero op-
erator A, from L(P,W,v) to L(tP,7W,1v), and both are equivalent
to m. Any two such operators are scalar multiples of each other. We
normalize A, so that A, coincides with 7(k7). Thus the action of G on

X(P,W,v) extends to GG, in such a way that = is its unique irreducible
quotient.

Theorem. Suppose the data (P, W, v) are T-stable so that X (P,W,v)
has an action of G. If dim A > 1, then

L(m, X(P,W,v)) =0.

Proof. We can replace 7 by k7 and apply formula (VLI.2)). By Frobe-
nius reciprocity, y, is supported on M. Thus we need to calculate
Xs(m7) with m € M N K. Because m7 has fixed points (namely v) on

a, formula (VLI equals 0. See also [B-L-S]. O

Thus if 7 satisfies L(7,7) # 0, then 7 is a tempered representation.

VI.3. Tempered Representations. According to the refinements of
the Langlands classification due to Knapp and Zuckermann an irre-
ducible tempered representation of G is of the form

W = Ind3[Wo @ C)
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with Wy a Discrete Series or Limit of Discrete Series representation,
and < v,a >> 0 for all @ € A(n) :

Suppose that the tempered representation W is 7-stable and that
H*(g, K, F* @ W) # 0 for some finite dimensional F. Because the
infinitesimal character of VW coincides with that of a finite dimensional
representation, v = 0 and W is associated to a pair (b, ) where b is a
f-stable Borel subalgebra and fh C b a f-stable Cartan subalgebra. In
particular, b is a fundamental Cartan subalgebra.

Now let H be the stabilizer in G of a #-stable pair (b, b); then H =
H; - Hg is a O-stable fundamental Cartan subgroup. Let h; be the Lie
algebra of Hy := H N K, and hr := h N s. Since G is the real points
of a connected reductive linear algebraic group, H is abelian. Write
s = dim(nN¢¥), r = dim(nNs) and let hr be the complexification of
the Lie algebra of Hgr. Then

W =TRi(x) (VI.3.1)

where x € Hj is a character such that dx + p is dominant for b. (See
chapter V in [Knapp-Vogan] for the definition of the functor R.) We
will write R ,(x) or Rae(X) or Rey,6(x) When we need to emphasize

whether the derived functor module is a (g, K), or (g, K) or (g, Ko)
module. The (g, K)-module W is 7-stable if and only if there is k € K
such that v := k7 stabilizes the data (b, b, x). By proposition [VLII
when we compute Lefschetz numbers we can replace 7 by v = k7 and
thus the data (b, b, x) is y—stable.

Theorem. Let W = R (x), b = b +n be an irreducible tempered
T-stable (g, K)—module. Let v be as before. Assume that F is an
irreducible finite dimensional v-stable (g, K)—module and that F™ = x
as an h-module. The Lefschetz number L(T, F* @ W) equals

(17> 1 (= A\ bp).
It is zero if and only if v has fized points in b.
Proof. Denote by C the trivial representation of H. Note that
H'(g, K, F* ® Ri(x)) = Exty, [F, R{(x)]- (VL3.2)

Corollary 5.121 in [Knapp-Vogan| applies, and there is a first quadrant
spectral sequence

EPY — Exth I F, Ry (X)) (V1.3.3)
with differential of bidegree (r,1 — r) and with E; term
EY? = Ext’é’HI [Hy,(n, F), x]
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The F5 term is nonzero only for ¢ = dimn. The conclusion is
H'(g, K, F* ® Ry(x)) = H™"[h, H;, CJ. (VL.3.4)
In view of this, the Lefschetz number is

L(r,F*@W) =Y (=1)'tr(y: H"[h, H;,C]) =
= (-1 Y (=1)'tr(y, A\ ).

Finally if ¢y,...,{ are the eigenvalues of v on Hompy,[hr,C] (with
multiplicities), then

Sty N bl =0 -¢), (VL.3.6)

which is zero if and only if one of the ¢; equals 1. O

(VL.3.5)

Example. Consider the case G = GL(n) with the standard 7, trans-
pose inverse. Then A = (Ay,...,\,) is the highest weight of a self
dual finite dimensional representation F if and only if \; = =\, 1.
There is exactly one irreducible tempered (g, K')-module W with non-
trivial (g, K')-cohomology with the same infinitesimal character as F
[Speh]. If n = 2m, the Lefschetz number L(r, F* @ W) is (—1)™2™, if
n = 2m + 1, then it is equal to (—1)m™F2m+!,

VII. Lefschetz functions in the real case

By [Bouaziz], the distribution character of a (g, K) module 7 is given
by a function ©, which is analytic on the set of regular semisimple
elements in G*. We want to compute ©, on the regular elliptic set H,.,
for the tempered representations W = R (x) considered in section VL3

This is known [Bouaziz], but we sketch a different treatment here based
on derived functors.

VIL.1. Let 7 be an admissible (g, K ) module. The formal sum
O,k = Z m[Vy, ©]V,. (VIL.1.1)
pek

is a distribution on K in the sense that we can replace V), by its char-

acter and evaluate on K-finite functions.
For a vector space V, define a formal sum

(V)= (-1 \'V. (VIL1.2)

If V is a representation of some group, view this sum in the correspond-
ing Grothendieck group as a formal sum of characters.
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VIL2. Recall W =Rg ((x), b = h+n, s =dim(nNE), r = dim(nNs).
We assume that W is 7-stable, and choose H and v as in (VL3.1)) i.e. so
that (b, b, x) is y—stable. We lift y to a double cover as in section (V.2))
and tensor with e”. Since the group H; is the stabilizer of (b, h) in K,
it is a normal subgroup of the stabilizer Hyx in K of (bN€,HhNE). So
we have Hy C H; C Hg, where Hj is the connected component of
the identity in H;, same as the connected component of the identity
in Hg. Let b; the conjugates of b under Hg. Then the restriction of
Re,p(x) to Go is a direct sum of R, , (x;) one for each b;. Suppose

v E fIK. Then v permutes the b;, and in particular fixes b. Let 7" be
the fixed points of v in Hg. Then ty permutes the b;. If it does not fix
any b;, then trWW(ty) = 0. Thus we only need to compute tr)V(t7) for

ty which fix a b;. Then tv is conjugate to an element in H;. Thus we
only need to compute the character for elements in Hj.

Remark. The results and proofs in section [ILI] are for the case of
an algebraically closed field, but they also hold for compact connected
groups. But since we do not assume that K is connected, it is not
necessarily true that Hx = H+ - T. O

Let AT be the roots in b which are not 1 on . Similarly A, (s)* is

the set of roots in b N's which are not 1 on 4. The K character e(V')
for V = s equals

e(s)(hy) =e(r)() [] (= Pm)1 = (hy).  (VIL21)

BEA,(9)+

Assume that rkg = rk €. Then the spin representation decomposes
into a sum of two representations denoted S*. They extend to K. The
formula

(teST—trS7)(hy) = [ (¥ —e ) (hy) = (VIL22)
BEA(s)T
= (=1)"e Moy M §)(hy)(VIL2.3)
holds. When rk¢ < rk g, the expression
e(5) = [ (72 —e )2 (VIL2.4)
BEA(s)T
is a virtual character of K.

Proposition (1). Assume rkt = rkg, and let W = R% (x) with
b = bh+n and s = dim(nNt). The formal combination (ST—S7)®0,, ¢
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s a finite linear combination of irreducible K representations. It equals
the irreducible module with highest weight x ® eP™.

Proof. We use the notation and results in [Knapp-Vogan| chapter V.
Write x# for the representation y ® A"(n). If we denote by W an

arbitrary K module, then
(—1)" dim Hom (W, R*(x)) =

— Z(—l)j Z dim Homg, (H;(n N €, W), S"(nNs) ®c xX7).
=0 n=0

(VIL2.5)
Tensoring R*(y) with (ST — S7) in (VIL2.5), and using the formula

ZS"(nﬂs) ce(nns) =1,
we get

dim Homz (W, R*(x) ® (ST — 57)) =
= (—1) dim Homg (H;(n e, W), x# @ e 00000,
7=0

(VIL2.6)
Recall that x# = x - %™ and the weights of H;(n N & W) are of the
form w(wop — p(n N €)) + p(n N €) with wy the longest element in W.
We get the equation

w(wedp — p(mNE)) 4+ pnNe) =dx+pn) +pnne). (VIL2.7)

Since dy + p(n) is dominant, it follows that w = 1, and

[Py p)

Now assume that rkt < rk g.

Proposition (2). The formal combination e(S)*® O is a finite linear
combination of irreducible representations of K. Assume dx + p(n) is
very dominant. For a subset B C nNs, let < B > be the sum of roots
in B, and denote by V (x - e~<B>) the finite dimensional module off?
with this highest weight. Then

e(S2@0z = > (—1)V(x- e <)

i\| B|=i
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Proof. We tensor R*() with e(S)? as in the proof of VIL.2}
dim Hom (W, R*(y) ® e(S)?) =

= (1) dimHomg (H;(n N €, W), x* @ e "V @ e(mn s)).
§=0

(VIL2.8)
Because dy+p(n) is very dominant, dy—+p(n)— < B > is dominant, and
the reasoning in the proof of proposition [VIL2] after (VIL2.7) applies.
The claim follows. U

The distribution character of W denoted 0,y is given by integration
against a locally L' analytic function on the regular set [Bouaziz].
Let e(w) for w € Wk be defined by

[T 2 =) =ew) J[ (72—e??). (VIL2.)
BEA(s)F BEA(s)t

Theorem. Let (b, h,x) be 7-stable data for a tempered module W =
Ri(x). Then

> wewse €(wywx (hy)e ¢ (hy)
HﬁeA.y(l — e P(hy))

Ow(hy) = (=1)"

for any hy € fIreg stabilizing b.

Proof. By results of Harish-Chandra, [Harish-Chandral|] sections 11
and 12, the distribution GW, 7 coincides with ©yy when restricted to

the regular set intersected with G,.,. The formula now follows from
proposition (1) for rk€¢ = rkg. If rkt # rkg and dy + p(n) is very
dominant, it follows from proposition (2) of [VIL2] and in general by
using translation functors as given in chapter VII of [Knapp-Vogan)|.

O

As in section we can twist y by e” and change the definition of
R accordingly. We refer to [Knapp-Vogan| for details. The formula is
rewritten as

Ow(hy) = (=1)"

> wew, E(w)wx(hy)e””(hy)
HﬁeAw(s)(eﬁ/z(hﬁ) — e P12(hy))

for any hy € H I,reg Stabilizing b.

(VIL.2.10)

Corollary. Let I' be finite dimensional T invariant irreducible repre-
sentation and v € Hg. Then

Or(hy) = Ow(hy)
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where the sum s over all the YW corresponding to the fIK conjugacy
classes of y-stable (b, b, x).

VIL.3. Assume 7 is arbitrary semisimple. Recall that v = 7.e¥ with
Y € g(v) hyperbolic. We can conjugate v so that Y is in a f-stable
Cartan subalgebra h = by + b, in fact Y € hr. Let P = M N be the
parabolic subgroup defined by Y; the roots A(m) are the ones that are
zero on Y, the roots A(n) are the ones that are positive on Y. Then

G(v) C M.
If f e CX(Gr) and vy normalizes M, then define
FP(mey) = 6(my) Y2 / / Fermmk~")dn, (VIL3.1)
KJN
Then

Fi(y) = F¥ (7). (VIL3.2)
is well defined.

In , afunction fr € C2°(GT) is defined which has the property
that

(1) fr(kak™") = fr(x),
(2) fE = 0 for P a real parabolic whose conjugacy class is stable
under 7 (this means P and 7(P) are conjugate under G),

(3) ©,(fr) = L(1,m® F).
We refer to fr as the Lefschetz function for F, T.

For the next results, keep in mind also that orbits of semisimple
elements are closed.

Theorem. Let fr be a Lefschetz function for F', 7. Suppose that v has
nontrivial hyperbolic part. Then

F Jg (v) =0.
Proof. Apply formula (VIL3.2)). O

VII.4. In this section we compute the orbital integrals on Lefschetz

functions. For general results see [Renardl] and |[Renard2].

We use the conventions and notation of section [Vl Assume that v =
kT with k € K is compact, and let t be a fundamental Cartan subalgebra
in g(v). The centralizer of t is a fundamental Cartan subalgebra b of
g. Fix (b,h) a 7-stable pair, H = H; - Hg the corresponding Cartan
subgroup in G and H the Cartan subgroup in G. If b is another ~v-stable
Borel subgroup, let e(b) := (—1)dm{t’/(6nt)],
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Theorem. Suppose f € C>(G*) is such that f¥ =0 for all P. Then
there is a constant c(vy) depending on the Haar measures on G and
G(v) such that

Fr(y) = () D _IW)IX() D e(t) O (f)-

The first sum is over x such that dx is dominant for b N¢ and the
second sum over b’ D bNE.

Proof. The idea of the proof originates in the work of Sally, Warner
and Herb.

Suppose f is C2°(G*) supported on the regular elliptic set. Then the
function Fy(h7) is a well defined function ¢ which is C2° on Hj ,.,. Its
Fourier transform is

H

500 = [ x(@yla) de (VILAL)

Assume for the moment that the support of f is contained in AdG(Ty).
Since ¢ is invariant (i.e. we assume as we may by averaging that
f(Ady(x)) = f(x) for € G*), Fourier inversion gives

o(hy) =Y trx(hy) o(x). (VI1.4.2)

If the restriction of x to H is not irreducible, then try(hy) = 0. In
other words we may assume that y is y-stable so 1-dimensional and so
we can suppress tr from the notation.

We now compute ¢. On the one hand, because Fy(htyh™) = Fy(t),
we have

$(x) = vol(H,/T) /T |e(b/O A0 (t7) Fy (ty) dt (VIL4.3)
where e(h/t) is defined in (VILT.2), and
Oy (t7) = Y e(w) wx(ty). (VIL4.4)
weW

On the other hand, for the tempered module corresponding to b’
and xy — p, we can group the terms in the sum in (VIL4.2) according
to the y such that dy is dominant for b N €. Fix a v-stable b’ which is
dominant for dy. Then

Ow(w ) (f) = e(b")vol(H;/T) /T le(h/O) ()] Ox(ty) Fy(ty)+
(VIL4.5)

+ (integrals of f coming from Cartan subgroups of higher real rank).
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So (VILZ3) is equal to the first term of (VIL4H). By the continuity
of the F, the equality holds for all C2° functions. In particular for a

cuspidal function fr the integrals coming from the more split Cartan
subgroups vanish and we get the claimed formula. U

VIL5. Fix a Haar measure on GG. There is a canonical normalization
of measures on the G(7), namely the ones where ¢(v) = 1. Equiva-
lently, when G(7) is elliptic this measure is the one so that the formal
dimension of the discrete series with infinitesimal character equal to the
one of the trivial representation, is 1. These choices induce invariant
measures on the elliptic orbits. With this normalization, the formulas
in the previous sections simplify so that there are no ¢(y). Furthermore
note that r coincides with the number

(7) = & (dimg(y) — dim &(1)

associated to a real form of G(v) by Kottwitz, so that
(1) = (1),

Theorem. (1) Let fr be the Lefschetz function corresponding to a
T-stable finite dimensional representation F' and suppose that 7y is el-
liptic. With the normalizations above,

O,(fr) = (=1)"Ve(T)trF*(7)
where e(t) = >_,(=1)4r(r : /\Z b%) as in proposition VL3 In par-
ticular O,(fr) = 0 unless g(7) is equal rank.

Proof. The formula follows from the above discussion and the fact that
the Lefschetz number is independent of the choice of ~. U

Theorem. (2) Fiz an elliptic . The stable combination of orbital in-
tegrals associated to v satisfies

Y (=)0, (fr) = e(7)| ker[H (T, I(7)) — H'(I, G)][trF (7).
The sum on the left is over the stable conjugacy class of .

Proof. If v and +' are elliptic stably conjugate (definition [VIIL3]), then
tr* () = trF*(+'). The proof follows from the fact that

| ker[H'(T', I(v)) — HY(T', G)]|
is the number of stable conjugacy classes, (see proposition [IL.G U
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VIL.6. Suppose that 7 stabilizes (b, b, x) with h fundamental as before.
If ' stabilize the data as well, then 7/y~! is in the Cartan subgroup
attached to (b, ) which is abelian. Thus e(vy) = e(v/).

Now consider the restriction of Ry(x) to G :

Ro(x) = Y R, (xi): (VIL6.1)

If none of the modules on the right are stabilized by 7, (with an element
kot with kg € Ky) then the Lefschetz number is zero.

So let (b;, b, x;) be T—stable data of a summand in [VILG.Il We can
use it instead of the original (b, b, ). Thus we can assume that v € GoT.
Recalling the assumption that 7 itself is elliptic, corollary [IL.5] shows
that ~ is conjugate to hT and we can assume h is in the Cartan subgroup
in Ky. It follows that e(y) = e(7) because H is abelian.

VIII. Lefschetz functions in the p-adic case

Recall the twisted orbital integral of a function f € C®(GT),

O,(f) == / flg " vg) dg.
GG

In this section we compute the orbital integrals for Lefschetz func-
tions in the p—adic case. The results and techniques are essentially
in [Kottwitzl]. There are minor modifications due to the fact that G
is reductive and possibly disconnected rather than semisimple. The
definition of the Lefschetz function f, follows [B-L-S].

VIII.1. In this section G is a linear algebraic reductive group, and 7
an automorphism of finite order, both defined over a nonarchimedean
local field k of characteristic zero. Let G := G(k).

Now consider the building B associated to G. Recall that G acts
transitively on the chambers, and 7 permutes them. Thus fix a chamber
C and let = b x 7 be in the stabilizer of C. Denote by F(BB) the set
of facets of B, and by F(C) the facets of C. These are permuted by
3. Let °G be the intersection of the kernels of the absolute values of
all characters of GG. This is a normal open compact subgroup of G. Let
P, be the stabilizer in °G of the facet 0. Then P, is an open compact
group which we will call a parahoric subgroup. An element x which
stabilizes the facet o, permutes its vertices. Let sgn,(z) be the sign of
this permutation. Fix a Haar measure m of G. The Lefschetz function
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is defined as

fel) = Y (-1
ceF(C)
Blo)=0

VIIL.2. Let vy =7 =098 € G with 0 € G be a fixed almost semisim-
pleelement. See section [L3] for the definition. We want to evaluate
O,(fz). Fix P a parahoric subgroup of G corresponding to a (-stable
facet o of C. Write P for the normalizer of P in G and Xp := °G/P.
Then Xp is equivalent to the set of facets of type P; the left action of
G corresponds to the standard action of G on B. Let

1
frs = m%ﬁ- (VIIL.2.1)

ﬁsigna(x)apﬁ(x). (VIIL1.1)

Then fps(g~'vg) # 0 if and only if g-'yg3~' € P, equivalently,
g'803(g) € P. Thus

1

O,(frp) = (P m[G(Y)\G(v)g  g7'0B(g) € P}].  (VIIL2.2)

In this formula m refers to the quotient measure on G(7)\G.

By possibly using a conjugate we may as well assume that 0 € P, or
else all integrals are zero anyway. If g satisfies ¢7103(g) € P, then so
does gn for any n € P. Thus

0(f)=—— 3 mlGHN\GHP] (VIIL2.3)
mP) sectmarp
g~ 'oB(g)eP

The group G equals G - A where A is the split component of the
center. Then A = (F*)" = GL(1,F)". The lattice of coroots is X*(A) =
Z". Then the automorphism [ induces a linear isomorphism on this
lattice, also denoted (3, satisfying ™ = Id for some m. There is a basis
in which ( is block diagonal with blocks corresponding to irreducible
factors of t™ — 1. Precisely, let

R (VIIL.2.4)
be such a factor. On the basis of this block,
Blag, ... as1) = (ag, ... as_9,a5% .. a "), (VIIL2.5)

Let YA := AN Y. Suppose a € A is such that a=*f(a) € °A. Using
the block decomposition of (VIIL2.H), we conclude that a = o’z where
B(a') = a’ and z € "A. Tt follows that we can replace G by °G and G ()
by G4 () :==" G N G(v). The condition ¢g~'63(g) € P is equivalent to

Ad(y)(gPg™") = gPg ™" (VIIL.2.6)
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Let R := gPg~!. Then

GOYN\G()gP = [G(y) N R\R = [G4(7) N R]\R.
Then (VIIL.2.2)) becomes

1
O fr)= S (VIIL2.7)
T M PO

We conclude that

Of)= Y (-1

PEGC(V\Xp(7)

1

AR (VIIL.2.8)

VIIL.3. Suppose H is a unimodular group acting in a cell-wise fashion
on a CW-complex (or more generally on a polysimplicial complex) 7.
Assume the following hold:

(i): 7 is contractible.

(ii): 7 is locally compact.

(iii): The stabilizer H, of any cell o is an open compact subgroup

of H.
(iv): Any compact subgroup of H is contained in a H,.
(v): The number of cells are finite modulo the action of H.

Denote by X the set of orbits of the cells. Let m be an invariant
measure. Then write

x(m) = 3" (~1)dime 2 (VIIL3.1)

oey

Theorem ([Serre]). The measure = x(m)m is independent of m and
is an Euler-Poincarémeasure. If H is semisimple (or reductive but has
a totally anisotropic torus) then this measure is nonzero.

VIIL.4. We show that conditions (i)-(v) are satisfied for H = G 4(7)
and 7 = B(7). Items (i)-(iv) are straightforward. For (v), suppose
that P is stabilized by ~. There is € G such that P = zP,x~1. It
follows that zyx~! stabilizes P,, i.e. x71§3(x) is in the normalizer P,
of P,. This is an open compact group. The orbit O(7) is closed, so
the set ' := {z7164(x)} is also closed. Thus the intersection I' NP, is
compact. Thus there are x4, ...,z, and a neighborhood & C P such
that

TPy = | J uay'0p(zu™) (VIIL.4.1)

1, uCU

The claim follows.
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VIIL5.  We say that  is elliptic if G(y) contains a maximal anisotropic
torus.

Theorem. The orbital integrals of fr are

1 if v is elliptic,
0  otherwise.

O*/(fﬁ) = {

Proof. The proof is the same as in [Kottwitzl]. The necessary modifi-
cation were discussed in sections VITTIHVIIT.4l O
VIIIL.6.

Theorem ([B-L-S] section 8.2 and 8.4, and [Kottwitz2]). Assume G is
simple. The only irreducible unitary representations for which trm(fz) #
0, are the Trivial and the Steinberg representations. In these cases,

et 1 if m = Trivial,
)= (=1)9&)  f 7 = Steinberyg,

where q(G) is the k rank of G.

IX. The twisted trace formula

In this section we describe the trace formula and the effect of plugging
in a function which has local components as in sections [IHVITIL The
formulation of the simple version of the trace formula we use can be

found in [B-L-S] and in [Kottwitz2]. In turn it is based on [Arthu].

The assumptions on the group will be as in section [l

IX.1. Generalities. Recall that K is a totally real number field. Let
X be a unitary character of G(A) trivial on G(K). We assume that it
satisfies Y = yo7 so that it has an extension to G(A). If U is unipotent,
we normalize the Haar measure duy so that meas(U(A)/U(K)) =1
where U(K) has the counting measure. We fix a Haar measure dky
on the maximal compact subgroup K, so that meas(K,) = 1. Fix a
minimal parabolic subgroup Py = MU, defined over K. Fix a Haar
measure dmy on My(A). Then

f— f(uAmAkA)m_zppo dkaydmyduy
U(A)Mo(A) Ky

defines a Haar measure dgy on G(A). We also fix a Haar measure dz,
on Z(A).
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Let L*(G(A)/G(K), x) be the space of square integrable functions
on G(A)/G(K) so that f(gz) = x(2)f(g) for g € G(A) and z € Z(A).
The group G(A) acts unitarily on the space L2(G(A)/G(K), y).

Let Ag be the split component of the center of G, and X*(Ag)
be its rational characters. Let agc := Hom[X(Ag),C|, and ag :=

Hom[X (A¢), R]. The function He is defined as
Hg : G(A) — R, Hg :aw— (x — |x(a)|a). (IX.1.1)

Let °G(A) be the intersection of the absolute values of the kernels of
the rational characters of G(A). The group (Ag)s has a subgroup AZ,
such that G(A) = °G(A) - Af,.

The above discussion allows us to work with L?(°G(A)/°G(K)) in-
stead of of L*(G(A)/G(K), x). By abuse of notation we write
L2(G(A)/G(K)) for 12(°G(A) *G(K)).

As reminder, the goal of this article is to show that there are ir-
reducible representations my of G(A) in L2,,,(G(A)/G(K), x) so that
H*(g, K, 7y ® F') # 0 for some finite dimensional representation F' such

that 74 = 74 060. For this we will use the twisted Arthur trace formula
on G*(A).

We define a function f, = [[, f, on G(A) as follows. We fix a

finite dimensional #-stable representation F' of G(C) with infinitesimal
character \. For each infinite place vy, choose f, = fr € C°(G*(R)),
the Lefschetz function in section [VIL2 attached to F. For the finite
number S of places where x is not trivial on G(O,), choose f, to
have support in a small enough open set K on which y, is trivial.
We fix two finite places vy, 1 ¢ S where we assume (as we may)
that K,, = G(O,,). At these places we let f,, = fr be the Lefschetz

functions constructed in section [VIILGl For all other places let h, be the
characteristic function of a maximal compact subgroup K, C G(K,).

We summarize the properties of the function fy.

a: trr(fp) is L(7, F,m) = e(7, hg) if 7 is a 7 stable representation
of the form W = Ry(x) of G(R) with the same infinitesimal
character A (section [VL3.1l). For other tempered representa-
tions, trm(fr) = 0. Furthermore fr is very cuspidal in the sense
of [Labessel].

b: trm, (fz) is equal to 1 if m,, is the trivial or the Steinberg
representation. The trace is zero on any other irreducible rep-
resentation.
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c: Suppose v € G*(R). The orbital integral

0, (fs) = / (g~ 9)dg
G(v)(R)\G(R)

is 0 if v is regular semisimple but not elliptic.
d: Suppose v € G(k,,). The orbital integral

0,(fz) = / Felg~Yvg)do
G(v)(kv; \G(ky;)

is 1 if ~ is elliptic and zero otherwise, for i = 0, 1.

The twisted trace formula is an identity of distributions
LHS = RHS

on °G"(A)/°G"(K), where the right hand side is parameterized by har-
monic, i.e representation theoretic data, whereas the left hand side is
parameterized by geometric data.

IX.2. The harmonic side. Following the notation in [Arthur|we write
R, for the representations in the discrete spectrum of the right regular
representation of G(A) on L2(G(A)/G(K)) whose infinitesimal charac-
ter has length ¢. Let mgy;s.(ma) be the multiplicity of a representation
74 of G(A) in the discrete spectrum of L2(G(A)/G(K)). We also write
R » for the discrete spectrum with infinitesimal character A.

Proposition. Let fy be as above. Then

LHS(fs) = Z Maise(Ta)trma(fa)

TaERG N

Proof. The function f, satisfies assumption a) and b) of 9.2 in [B-L-5].
Furthermore, since at the local place vy the Lefschetz function f, is a
factor of fa, the assumption c¢) of 9.5 in is satisfied. Thus by the
formula 9.2 in [B-L=5] a%,.(74) = 0 for L # G and a$,.(74) = Maisc(7a)

disc

(see proof of Corollary 7.3 in [Arthur]). So
LHS(fA) = Z Z mdisc(ﬂ-A)trﬂ-A(fA)'
t>0 mp€Rq

Taking into account that tr mo.(f\) # 0 only if the infinitesimal charac-
ter of T is equal to A, the sum over ¢ disappears, and Rq; is replaced
by Rd’ - ]
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IX.3. Let P = MN be a parabolic subgroup defined over K and K, a
maximal compact group so that G(A) = P(A)K,. Let Ap be the split
component of the center of M and X*(Ap) be its rational characters.
The complexified Lie algebra ap of Ap is isomorphic to X (Ap) ®; C.
Let A(ap, P) be the simple roots of P and write pp for half the sum
of positive roots.

The group (Ap)s has a subgroup A} so that M(A) = "M(A) - A},
where “M(A) is the set of all my € M(A) so that |x(ma)|a = 1 for all
rational characters x of X*(M). The function Hp( ) on A} is defined
by the condition

e OX) = |x(a)]. (IX.3.1)

for all x € X(Ap).

Let H = Ho ® Hy be the global Hecke algebra. If X is an H-
invariant space of automorphic forms on G(A), then the constant term
fp of any f € X along IP has an expression

fe(kamaany) = ZP (Hp(a))a" P (Y dij(ma) fig(ka)]. (1X.3.2)

The P; are polynomials, the ¢; ; are automorphic forms of °M(A) and
the f; ; are Ku-finite functions. The p; are distinct and the ones with
nonzero contribution are called the automorphic exponents of f along
P and we call the set of all i;’s which appear as we vary f over X the
automorphic exponents of X along P.

The local exponents of f at a place v along P are defined as follows:
If v is finite, then the Jacquet module of the H, module (H, * f,)
associated to N(K,) is a finitely generated admissible M(K,)-module.
The exponents at the place v are the absolute values of the characters
of A(K,) that occur in the Jacquet module.

An automorphic function is called concentrated along PP if fo = 0 for
any Q which is not associate to P.

Theorem (1). ([Kudla-Rallis-Soudry], 6.9) Suppose f that the auto-
morphic form is concentrated along P. Let p be an automorphic expo-
nent of f.

(1) For any finite v there is an exponent n along P so that
Re(p) =n.

(2) Suppose that v is an infinite place. The generalized eigenspace
Hy(n,, X), is non zero. Here n, is the Lie algebra of N(K,).
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Proposition (Rallis). If an automorphic form is tempered at one place,
then it is cuspidal.

Proof. We may as well assume that f is concentrated along P. The
condition for the local component to be tempered is that the exponents
should be of the form

Re(p) = pp + Zxaa, To >0, a € A(ap,n).
The condition for f € L*(G(A)/G(K)) is

Re(:u) = pp — Zyaa*a Yo =20, a € A(aPan)a

where o is the dual basis to the simple roots. These two conditions
are incompatible unless the ¢, ; in ([X:3.2)) are all zero. O

Remark: In the nonadelic context, this proposition is an earlier result
of Wallach [Wallach]. The above adelic version already appears in

[Clozell. O

Lemma. Suppose m = @, is such that w, is 1-dimensional for some
v. Then m 1s 1-dimensional.

Proof. A 1-dimensional representation has a single exponent 7, and
this exponent satisfies Re(n) = pp. By theorem [X3] all automorphic
exponents satisfy Re(p) = pp, and therefore for any place v there is an

exponent v, satisfying Re(v,) = pp. By theorem 6.1 of [Howe-Moore], a
unitary representation with this property has to be a unitary character.

U

The discrete spectrum of the regular representation of é(A) on
L*(G(A)/G(K)) decomposes into a cuspidal part and a residual part.
Recall that R, is the set of representations in the discrete spectrum
with infinitesimal character A and write R, ) for the subset of repre-
sentations in the the cuspidal part.

Theorem (2). Every representation which contributes to RHS(fa) is
either one dimensional or in the cuspidal spectrum.

Proof. The Steinberg representation is tempered. So the theorem fol-
lows from the previous propositions. O
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IX.4. The geometric side. Recall that for v = {7,} € G*(A)

Jo(v, fa) = falg ' vg)dga

/G(’Y)O(A)\G(A)
= H/ fl/(gu_lfyug)dgu-
v JG(n)(k)\G(ky)

In the previous sections we have computed orbital integrals of the
form

/ f(g7vg)dg. (IX.4.1)
GY\G
In what follows we will use
/ flg™ vg)dy. (IX.4.2)
G(7)\G

where G(7)° is the connected component of the centralizer of . The
relation between the two is a factor |G(7)/G(7)°].

The results in 9.2 of [B-L-S] combined with section 5 of [Kottwitz2]
show that

LHS(fs) = Z a®(v)Je (7, fa) (IX.4.3)
YE(G*(K))ewtiptic
where
A G()eA) | | Gy)
o) = wllgeid| S (X.44)

We note that the argument in about the geometric side of
the trace formula depends only on the fact that at one place v, the
component f, of fy is an Euler-Poincaré function which in turn relies
on results of Arthur for a connected component of a reductive group.

Lemma ([Clozel]). Let K C G be a fized compact set. There is a set
Sy of finite places with vy, vy € S1 with the following property. There
s a choice of compact open subgroups K,,, v € Sy so that if

veGEK)nK [] ¢o,) [] K.
V&Sl vesS,
then v is unipotent. The set K] cq Kul, g5, G(Oy) can be chosen
so that 1t is T-stable.

Proof. (included for completeness) Choose any set S; of finite places
that does not contain 1y and vy. Let p : G — GL(m) be a faithful
representation. Let

p(x,t) ==det(t—1+p(x)) =" + a1 (2)t" "+ +ap(z). (IX.4.5)
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The a; are polynomials which extend to G(A) and equal

a;(x) = aioo(x) [ ain(@) [ ainl@). (IX.4.6)

llisl veSy

If all the a;(x) = 0, then z is unipotent. The first two factors of the
product are bounded. The last part can be made arbitrarily small for
x, € K, by making K, small enough. The claim follows from the fact
that for z € G(K), |a;(x)|a is either 1 or 0. O

Theorem. There is a choice of fa so that

Z a®(v)Jz(v, fa) = Z Maise(Ta)trma(fa)

'\/G(é(K))elipptic WAeRd'A
N(v)=1

As before, the sum is over (representatives of ) conjugacy classes. All
representations contributing are either one dimensional or in the cus-
pidal spectrum.

Proof. Recall that f. is a Lefschetz function, and has compact support
contained in a set 7K. Modify fu so that f, is the delta function of K,
for v € S;. Then apply lemma [XAl with K as above to 44 to conclude
it must be the identity. Thus ([X.4.3) simplifies to the formula in the

proposition. See also [Rohlfs-Speh)]. O

X. A simplification of theorem [X.4]

In this section we combine the terms in RHS(fs) in proposition
(IX4) along stable conjugacy classes. The references are [Kott-Shell,
[Labesse2] and [Kottwitzl]. Most of section is a summary of those
results.

We consider in this section a connected reductive algebraic group
G. This will be either the group considered in section I with an auto-
morphism 7 of finite order or the connected component I(7) := G(~)°
of the centralizer of an elliptic element v in G*. Denote by Gy, the
derived group and by Gg¢ its simply connected cover.
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X.1. Let F' be a global or local field. For ¢ in the Galois group of F'
and g € G(F) we define a cocycle by

vy(0) =g 'alg). (X.1.1)

Fix a semisimple element v = 67 in G*(F) and let v/ = gyg~' €
G*(F) with g € G(F). The cocycle v, takes values in G(v)(F) but not
necessarily in I(vy)(F).

Definition. We say that two elements v, and v = gyg~' € G*(F) are
stably conjugate if the cocycle v, of (X.11) takes values in I(v)(F) for
all o in the Galois group of F.

Conversely if v,(0) is in I(y)(F) for all o in the Galois group of F
then gyg~! € G(F).

If v is stably conjugate to 7/ = gyg~', then the cocycle v,(0) in
H'(F,I(v)) belongs to

D(I/F) = ker[H'(F,1(v)) — H*(F,G)].
See also 2.6.

Remarks:

(1) If v and «" are stably conjugate then I(7') is an inner twist of
I().

(2) Assume that F' is a number field, that G is a simply con-
nected semisimple group. Then Kneser, Harder, Springer and
Chernousov [Chernousov] show that the Hasse principle holds,

1.€.

H'(F,G(F)) — [[ H'(F.G(F,)).

This implies that v,+" € @(F ) are conjugate by an element in

G(F) if and only if the components in G(F;,) are conjugate by
elements in G(F,).

(3) Suppose that F' is a number field and that the Hasse principle
holds for the derived group Gge. Let v € G(A). In 6.6 of
[KottwitzI], R. Kottwitz defines an invariant obs(vy) which is
trivial if and only if v conjugate under G(A) to an element in
G(F).



CUSPIDAL REPRESENTATIONS 47

X.2. A local example. Suppose k is a local field and G = GL(n). We

consider the automorphism 7(z) := 'z~!. An element v = d7 € G(k)
is conjugate to 7 if and only if 6 = g7(g71) = gg', i.e. it is a symmetric
matrix. Equivalently, we can think of the ~'s as quadratic forms and
the problem is then to classify them according to usual conjugacy under

GL(n,k) and GL(n, k).

Proposition. An element v = 07 € @(k) is stably conjugate to T if
and only if the determinant of § is a square in k*. The stable conjugacy
classes satisfying N(v) = 1 are parametrized by k*/(k*)2.

Proof. The centralizer of 7 is the orthogonal group O(n) which has
two connected components corresponding to det = £1. Let H be the
diagonal Cartan subgroup which is both 7 and v stable. The fact that
a quadratic form over any field k can be diagonalized is equivalent to
the fact that any v is conjugate by SL(n,k) to an element §7 with
§ € H(k). It is clear that there is h € H(k) such that § = hh'. The
element h can be chosen so that det h = det o(h) for any o € I" precisely
when det d € (k*)2.

The proof follows by recalling that v and ' viewed as symmetric
forms are conjugate by an element in G(k) if and only if the discrimi-
nant and determinant of § and ¢’ are equal modulo squares in k. [

Remark. By corollary [IL1}, the condition N(v) = 1 in the propo-
sition is equivalent to the fact that ~ is conjugate via G(F') to the
automorphism 7.

X.3. Recall the formulas in section [X.4 Fix Tamagawa measures
on G(A) and I(7)(A). Then the first factor in a%(v) in (X:44) is the
Tamagawa number of I()(A) which we denote 7(v). By [Kottwitz2],
if v is stably conjugate to 7/

() = 7(v"). (X.3.1)
Thus becomes
Theorem.
RiS() = o) gy A (X32
VEA +'€D(I/K)

where A is a sel of representatives of stable conjugacy classes of ellip-
tic semisimple elements v in G(K) satisfying N(y) = 1, and D(I/K)
parametrizes the stable conjugacy class of v as in[X. 1

If I(7) is simply connected, then 7(vy) = 1.
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XI. The main theorems

We assume K = Q. We prove that RHS(fs) # 0 and use this
to show that there exist 7—invariant cuspidal automorphic forms, and
prove nonvanishing theorems for cuspidal cohomology. In particular
we illustrate these results in the case of G = GL(n).

XI.1. Since Tamagawa numbers are volumes, the coefficient of each
integral in[X.3.2]is positive. We need a function f4 such that the orbital
integrals all have the same sign and at least one is nonzero.

The orbital integrals have a product formula

L) =1 T ) o )l L BV T J ()]

v infinite v finite,v#vp,v1
(XI.1.1)
By VIILT J. o, (fu,) =1fori=0,1and J,(f,) >0 for v finite, v # v;.
In addition, if v is finite and v = 7, J.(f,) > 0 . Recall that F is
a fixed irreducible finite dimensional representation of G and that for
each finite place v f, is a Lefschetz function fr and that by VL3

O,(fr) = (=1)Ve(y)trF*(7)
where '

e(n) =D (~'tly = N\ o)
and

7) = 5 (dimg() — dimt(3))

is the number associated to a real form G(v) by Kottwitz. Therefore,

G(v) ‘

J = (—1)‘1(“’)6(’Y)UF*(7>}G(fy)o

(XL.1.2)

We will restrict the support of the function f, at a finite number of
finite places such that the contribution of only one «y in theorem [X.3.2]
is nonzero.

Let I' = G(Q) N GooK g, where Ky, is a product of compact open
subgroups as in lemma [[X.4l This choice depends on the function f,
only. A theorem of Borel-Serre [Borel-Serre], section 3.8, states that
H'((7),T') (notation [ILA) is finite dimensional, i.e. that the intersec-
tion of the set of elements satisfying N(vy) = 1 with I breaks up into
finitely many orbits under I'. Let 7 = 7, ..., 7 be representatives of
these I'-orbits.
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Lemma. There is an open compact subgroup K; = [[ K, C K i, with
K, = G(O,) for all but finitely many places Sy such that Ky, K1, =
0 for all i # j.

Proof. The elements (7;), are semisimple. So for each v € S replace K,
by a smaller K, so that the orbit of (7;), does not intersect K/ (71),. O

Recall that the set S was defined in section [X.] as the finite set of
finite places v where the character x is not trivial on G(O, ). The set
S, is defined in lemma [X:41

We also recall that according to theorem [VL3] e(7) is nonzero pre-
cisely when the centralizer of of 7 in g(R) is equal rank.

Proposition. Let fa = [[, f, be a function on @(A) satisfying the
following properties.
(1) fu. = fr € CX(G*(R)) is the Lefschetz function defined in
section [VIL.2.
(2) For the finite places vy, vy f,, = fr is the Lefschetz functions
constructed in section [VIIL 0.
(3) Forthe places v € SUS let f, be the characteristic function of a
compact subgroup K, C G(Q,) which satisfies the assumptions
in [IX. 1, XT 1 and [IX 4]
(4) For all places v ¢ SU Sy let f, be the characteristic function of
a mazimal compact subgroup 1, K, C G(Q,).
Ife(T) # 0, then
RHS(fa) # 0.

Proof. The proof follows from the lemma and the discussion above. [J

In conclusion we have proved the following theorem.

Theorem. Let G be a connected reductive linear algebraic group de-
fined over Q and F a finite dimensional irreducible representation of
G(R). If trF'(1) # 0 and the centralizer of T in g(R) is equal rank, then
there exist cuspidal automorphic representations of G(A) stable under
T.

Proof. Let fa be the function in proposition XTIl Theorem [X4] and
the previous proposition imply that

Z mdisc(WA>tr7TA(fA) 3& 0.
TAERG N

If dim F© > 1, then all the representations contributing to the sum
are in the cuspidal spectrum by the results in [X.3]
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Suppose now that the representation F' is one dimensional. Denote
the contribution of the one dimensional representations of G(A) by I,.
Then

Ly (fa) + Z Meusp(Ta ) trma (fa) = a®(7) T (fa)-
TAER )

We make the simplifying assumption that the center of G(A) is isomor-
phic to (AX)". A character of G(A) is determined by its values on the
center. Let x be a character of (A*)" trivial on (K*)" is of the form

x(a, ... a;) =lag|* -+~ la,|* x1(a1, ..., a.) (XI.1.3)
where y; is unitary. By the discussion in section [XI] we can work
with °G(A), the intersection of the kernels of the absolute values of
the characters of G(A), we may as well assume s; = ...s, = 0. The
character y; must be trivial at the infinite places as well as vy, 4.
There are finitely many places v such that (x1), # triv. If such a place
is not in S U Sy, then since f, = 1p,, we have x;(f,) = 0. Thus I
consists of finitely many characters.

Following the idea in [B-L-S] we fix a finite place w ¢ SUS; U{vg, v1}.
Choose a sequence of compact open subgroups K, (i) (congruence sub-
groups 1 + @w'G(O)) with characteristic functions h¥. Then

JTu; (h?) — Cwq;i(dimG—dimG(T)) — 0 fori — 0,
and ¢, # 0 independent of 7. Similarly,
vol(K (7)) = dywqy, ™€ — 0 for i — oo.

A character x,, satisfies x,,(h{") = 0 unless it is trivial when restricted

to K, (7). But there are at most g m 2 EET quch characters. Thus if
dimG — dimG(7) < dim G — dim Z(G)", (XI.1.4)

a(T)J,(fa(i)) goes to zero strictly slower than I, (fa(i)). It follows
that there must be a nonzero contribution from the cuspidal part. [

Remark: The number trF*(f) for 7 = 6 an automorphism of order
2 is computed in section IV. In the case when 7 has order d > 2, we
can see that there are infinitely many finite dimensional representations
satisfying trF'(7) # 0 as follows. It is enough to prove this for the case
of finite dimensional representations of the compact group K. Let K (1)
be the centralizer of 7. The Fourier expansion of the delta function o,
is

6= Y  trV(r)dimV. (XL.1.5)

VeR(r)
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Since d, is not smooth, there are infinitely many nonzero terms in the
right hand side. The claim that there are infinitely many finite di-
mensional representations F' of K satisfying trF'(r) # 0 follows from

the fact that the restrictions of the representations of K span the
Grothendieck group of K (7).

XI.2. An example. For G = GL(n) we consider the automorphism
7. which is transpose inverse. Then 7.(gy) = g, ' for all g5 € Z(A).

Therefore the set X (G)g of Q—rational characters of G is trivial,

agz = Hom(X(G)g,R) = 0 and Arthur’s function Hs equals zero.
Thus in Arthur’s notation

G(A)' = G(A).

For GL(n) the local measures and all the normalization factors are as
in [Cassels-Frohlich] page 261. We call a discrete series representation

D of GL(2,R) even if
-1 0
D(( 0 1 )) =1d

and odd otherwise. A tempered representation of GL(n,R) induced
from a maximal cuspidal parabolic subgroup P = M AN is even if it is
induced from an even discrete series representation of every factor of
M. We call it odd if it is induced from an odd representation on every
factor of M.

Recall that A = (Ay,...,\,) is the highest weight of a self dual
finite dimensional representation F if and only if \; = —\,1_;. The
conditions of are satisfied if

(1) nis odd and all \; are even,
(2) nis even and for all 4, j, \; = \; (mod 2)

For GL(n,A) all representations in the cuspidal spectrum are tem-
pered [Shalika]. There is exactly one irreducible tempered (g, K)—
module W with nontrivial (g, K')-cohomology with the same infini-
tesimal character as F and

(1) if n is odd then W is even
(2) if n is even then W is odd

W is invariant under 7, and has nontrivial Lefschetz number.

Theorem (1). There exist tempered cuspidal representations
ma = [[m of GL(n,A) with the following properties:
(1) ma is invariant under the Cartan involution ..
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(2) oo has an integral nonsingular infinitesimal character satisfy-
ing the conditions of (V.3

(3) If n is even then T, an odd representation.

(4) If n is odd then 7y is an even representation.

Proof. This is essentially theorem [XI.I] combined with the results in
section [V.3] 0

For G = GL(2m) we also consider the symplectic automorphism 7
with fix point set Sp(2m). The irreducible finite dimensional repre-
sentation F' with highest weight (Ay,..., Ay,,) is invariant under 7, if
Aj=Mfori=2...,mand \; = =\ for e = m +1,...,2m. The
conditions of are satisfied if \; € N.

Theorem (2). There exist tempered cuspidal representations
wa = [[m of GL(2m,A ) with the following properties:

(1) mp is invariant under the symplectic automorphism ..
(2) moo has an integral nonsingular infinitesimal character satisfy-
ing the conditions of /3.

The following is a generalization of the theorems (1) and (2) using
base change.

Theorem (3). Let K/Q be an extension of Q such that there is tower
@CK1CK2C"'CK7«:K

of cyclic extensions of prime degree. There exist tempered cuspidal
representations I, of GL(n,Ax ) with nontrivial cohomology.

Proof. Let K/Q be a cyclic extension of prime degree, and 7, a cuspi-
dal representation of GL(n,A) with nontrivial cohomology constructed
in theorem (1). J. Arthur and L. Clozel proved that there exists an
automorphic representation Il of GL(n,Ak) lifting 7 (JAC], chap.3,
theorem 4.2). This representation has a Steinberg representation at 2
finite places (JAC|, chap.1, lemma 6.2) and is therefore also cuspidal.
Furthermore this representation has nontrivial cohomology. U

Remark: In the proof of theorem (2) no use is made of property (2)
of mp in theorem (1).



CUSPIDAL REPRESENTATIONS 53

XI.3. In this section we assume again that G is defined over Q and
satisfies of section [I.Il Consider the locally symmetric space

S(Ky) = Ko K\G(A)/AcG(Q)
with Ky small enough as in section [XI.Il The DeRham cohomology
H*(S(Ky), F)

with coefficients in the sheaf defined by a finite dimensional represen-
tation F' is isomorphic to

where A(G(A)/GA¢(Q)) is the space of automorphic forms [Franke]
and the upper index denotes the invariants under K; . Denote by

Acusp(G(A)/AGG(@))
the space of cusp forms. Then by
(8, Kooy Acusp(G(A) [AcG(Q)) & F))"1
— H'(9, Koo, A(G(Q)AG\G(A)) ® F))™.
The image is denoted by HJ, . (S(Ky), F).

cusp

Let F' be a finite dimensional irreducible representation of G which is
invariant under an automorphism 7 of G. Then 7 acts on H*(S(K), F).

Let U be a maximal normal compact subgroup of G(R). An involu-
tion 7 is called Cartan like if it defines an involution on G(R)/U which
is conjugate to a Cartan involution. The assumptions of nonvanishing
theorem [XT.1l are satisfied for a Cartan like involution 7 and the trivial
representation . Thus theorem XTIl implies

Theorem. Suppose that K satisfies the condition of proposition XL 1.
Let G be a connected reductive linear algebraic group defined over Q.
Then
Heyop (S(Ky), C) # 0.

Remarks: In the equal rank case the nonvanishing of the cuspidal
cohomology was first proved by L.Clozel and bounds on the cuspidal
cohomology were obtained in [Rohlfs-Speh2] and in [Savin]. In these
cases the ordinary trace formula respectively the Euler-Poincaré char-
acteristic was used and no twisting by an automorphism was necessary.

For S(K7) is compact and F nontrivial a nonvanishing theorem was

proved in [Rohlfs-Speh| using geometric Lefschetz numbers for Cartan
like involutions. For subgroups I' C SO(n, 1) and S(Ky) this theorem

was proved in [Rohlfs-Speh3| also using Lefschetz numbers.
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For semisimple G and S—arithmetic groups it proved in using
L?-Lefschetz numbers and a twisted trace Arthur trace formula.
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