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REDUCTION TO REAL INFINITESIMAL CHARACTER
IN AFFINE HECKE ALGEBRAS

DAN BARBASCH AND ALLEN MOY

1. INTRODUCTION

The main result of this paper is to show that the problem of the determi-
nation of the unramified unitary dual of a split p-adic group is equivalent to
the problem of determining the unitary dual of the corresponding graded Hecke
algebra.

In [BM], the authors established this equivalence in the case of Iwahori spher-
ical representations under a certain restriction; namely, it was essential for the
infinitesimal character to be real (in the terminology of [BM]). In terms of the
Langlands-Dellgne-Lusztlg parameters (s, u, p) [KL], the restriction is that
selG vea purely hyperbolic element. The techmque used in [BM] was to
combine the notion of the signature of a K-character in [V] with some facts
which follow from [KL], namely, that the #y,~characters of tempered repre-
sentations are linearly 1ndependent This is essentlally true precisely when the
1nﬁn1tes1mal character is real; for if not, s has an elliptic part s, such that

G(s ) # LG. Then the #y,~characters of tempered representatlons behave like
1nduced characters from thls smaller group and there is no a priori reason why
they should be independent; in general, they are not.

The removal of the real infinitesimal character restriction is Theorem 8.1.
The proof of Theorem 8.1 is entirely different from [BM]. What we prove, based
on ideas of Lusztig [Ls2], is that a certain Jantzen type filtration for standard
modules for /#Z is equivalent to the same kind of filtration for a corresponding
Hecke algebra #(s,). In this equivalence, representations with infinitesimal
characters with elhptlc part s, correspond; but since s, is a central element in

G(s ) » we are reduced to the setting of [BM].

We give a few more details. Consider the polar decomposition s = s S, of s
into its elliptic and hyperbolic parts. Let Z(G, &) be the category of represen-
tations of G of finite length and with infinitesimal character having elliptic part
in the Weyl group orbit & of s,. If G has connected center, the centralizer

Cii(s,) of s, in LG is connected. Let G’ be the split p-adic group whose
L-group is Cig(s,). Then Theorem 4.3 states that there is a category equiva-
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612 DAN BARBASCH AND ALLEN MOY

lence between % (G, ) and Z(G', {s,}). The category Z(G’, {s,}) in turn
is naturally equivalent to Z(G', {1}), the category of representations with real
infinitesimal character. The idea of the proof as well as the statement is due
to Lusztig. In [Ls2], he first constructs a graded Hecke algebra H correspond-
ing to the Hecke algebra #(G//.#) of Iwahori spherical functions. Then he
shows for fixed matching infinitesimal characters y and ¥ that there is an
isomorphism between #(G//.%) 2 and H.

In order to apply these ideas to questions of unitarity we need two additional
ingredients. The first is a slight generalization of Lusztig’s methods to yield an
isomorphism between Z(G//-%) 2 and H in an analytic family setting. This
is done in §4. The differences to [Ls2] are technical, but they are essential for
our argument. When C.(s,) is a Levi subgroup of L G, the group G’ is a
Levi subgroup of G. In this case the equivalence of categories is effectively the
irreducibility of certain unitarily induced representations from G to G and
is of course much simpler. This is analogous to reduction to real infinitesimal
character in real reductive groups [B, V]. However, the group C:(s,) need not
be a Levi subgroup. Here, the equivalence of categories between #'(G, &) and
%”(G' , 1) should be thought of as a strong realization, in a limited situation,
of endoscopic transfer of representations between G' and G. The transfer has
the important property that certain data, related to the signature character of a
hermitian representation, are preserved.

The second ingredient needed for unitarity is defining a natural * opera-
tion on the graded Hecke algebra H, and relating it to the * operation on
#(G//¥). This is done in §5. In §8, the unitarity of Iwahori spherical repre-
sentations is reduced to the question of the determination of the unitary dual
of a corresponding graded Hecke algebra at real infinitesimal character. In this
respect Theorem 5.6 for the * operation is essential. We hope to pursue the
problem of determining this dual in future work.

We also note Theorem 6.3 which basically describes the Hecke algebra module
of an induced module in terms of the action of the affine part of the Hecke
algebra. Undoubtedly this is known to the specialist.

Finally we comment on the validity of our results for the cases when G is
a nonsplit group. In this setting, the Hecke algebra with respect to an Iwahori
subgroup is a Hecke algebra associated to a parameter set. The allowable pa-
rameter sets can be found in [T]. When these algebras are graded at the orbit
@ = {1}, one obtains a graded Hecke algebra with parameter as described in
[Ls3, §2.13]. For these graded Hecke algebras, it is known that there are only
finitely many real tempered representations. The fact that the W characters of
these real tempered representations are linearly independent follows (presum-
ably) from [Ls4] (generalization of [BM, Theorem 4.4]). Then the techniques
of [BM] apply, so the unitarity of real representations for these groups can be
detected on the Iwahori fixed vectors.

2. REVIEW OF BASIC RESULTS

We use the notation in [BM]. Fix a p-adic field F, and let G be the F-
rational points of a split reductive group. We do not require G to be a specific
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type in its isogeny class. Thus, for example, in the extremes, G can be adjoint
or simply connected. The Hecke algebra #(G//-#) of compactly supported
Iwahori-spherical functions has a vector space decomposition

2.1) Z(G||F) =X, 0,

where #; and & are subalgebras of #(G//.%).

The subalgebra #, = #(K//7) is the finite Hecke algebra of functions
whose support lies in K = G(Ry), the integral points of G.

The subalgebra .« is abelian. To describe it explicitly, choose a Borel sub-
group B = AN compatible with K. Let 2”7 = Hom(G,,, 4) be the algebraic
homomorphisms of G,, = GL(1, F) into 4. Also,let [IC R" C R C 2 bethe
simple coroots, the positive coroots, and the coroots determined by B and A
respectively. Similarly, let ¥ =2 = Hom(4, G,) andlet [ICR" CRC #
be the simple roots, the positive roots, and the roots.

We mention for later use that “G is the (connected) complex alegbraic group
attached to the data (%, 2, R, R, II) dualto (Z°, %, R, R, I). In partic-
ular, ta=2 ®y C* is a maximal torus in *G , and the group algebra CZ is
the representation algebra of La.

The double cosets of .# in G are naturally parametrized by the semidirect
product W* = W x 2 of the Weyl group W and 2. Let s, € W denote the
reflection corresponding to the simple root o, and let s, € W? be the affine
reflection. A basis for the algebra #; is given by the elements

(2.2) T,, = characteristic function of Fw.”,

where w € W and w € K is a representative of w. The algebra #Z; is
generated by the elements 7, , « € I1. Of course, we have T, =T, -T, . if
L(ww') = L(w) +£(w') and (T, +1)(T, —q) =0. Here, g is the order of the
residue field.

Let 27 ={xeZ |akx)<0Vaell}. For x € Z" and w a prime
element in F, set

(2.3) 0, = characteristic function of # x(w).* .

An element L € 2 can be written as the difference L = x —y with x and y
in 2% . Then the element

(2.4) 6,=0.06,"

does not depend on the particular choice of x and y used in writing L = x—y.
The algebra &7 is the subalgebra generated by the 6, ’s. Identify C2” with &/
via the isomorphism L — 6, for L € 27. Each L is a character of L4 , hence
we can view 6, as a regular function on the torus L4 and & as the algebra

of regular functions on Lq.

In order to describe the cross multiplication between the subalgebras #; and
& , it is useful to recall [Ls2] the generic affine Hecke algebra /# based on the
datum (27, %, R, R, IT) with parameter set c, c*. A parameter set is a pair
ofmaps c:IT - N and ¢": {a €1, & € 2%} — N satisfying c(a) = c(a’)
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whenever (a, &) = (o', @) = —1. We write ¢, ¢, for the parameters. The
special case of Z(G//*) in (2.1) corresponds to all the c,’s and the c.’s
being equal to 1.

The generlc affine algebra with parameters is an algebra # over C[z, z_]] ,
where z is an indeterminant. It has generators T, = T (aell), 6, (LeZ)

and relations

(2.52) (T, +1)(T, - z2°)=0 foraell,
(2.5b) TT,T, =Ty T,T,..., a# o', m factors on both sides,
) where m is the order of 5,8, in W
(2.5¢) 0,6,=0,,, L, LeZ;
(2.5d) 6, = 1 when L is the trivial element of Z;
(2.5¢) L(T +1)— (T + 1) =(0,-6, L))?
where by Proposition 3.9 in [Ls2]
2c,
a—1

S 1, ifa g2y,
(2.5) ‘?a = 0 Otc +c, N —c, 1

(0,2 9)(012 D faeay.

2a

Let %, be the subalgebras of /# generated by the T ’s (x €I), ,Q/ the C-
subalgebra generated by the 0,’s (LeZ’),and [z, z* ] =Clz, z~ ]®C
Asa C[z, z~ ]-module, # has the decomposition

(2.6) ¥=%, © Alz,z ']
Clz,z7"]

When the indeterminant z is specialized to ¢, the order of the residue field,
the algebras # , #;,, and %[z, z_]] specialize to #(G//-%), #;, and &
respectively.

We identify the algebra [z, z_l] with the algebra of regular functions on
C* xL A4 . In this identification, the algebra .% is the algebra of regular functions

on 4, while z and ! generate the algebra of regular functions on C*. The
center of # is characterized as follows.

Theorem 2.1 (Bernstein). The center of # is & v ®c Clz, z_l].

An immediate consequence of Theorem 2.1 is that a character x of the
center, also called an infinitesimal character, is given by a semisimple

(2.7) W-orbit in C* x “4.

Let & be the corresponding orbit in L4 and s a representative. The element
s has a canonical polar decomposition s = s,-s, into an elliptic and hyperbolic
element.



REDUCTION TO REAL INFINITESIMAL CHARACTER 615

Definition 2.2. An infinitesimal character y is called real if the corresponding
W-orbit of s, consists of a single element.

The Weyl group W acts as automorphisms on &/[z, z_l] by the formula
w(0,) = 6, and w(z) = z. The algebra ¥/[z, z™'1 has no zero divisors.
Let ¥ be its quotient field. As in [Ls2], consider the two algebras defined as
follows. The first algebra is

(2.8a) XF)=X, © F,
Hz,z7"

with cross multiplication between Z;, and # given by the obvious extension
of (2.5e). The second algebra is the algebra semidirect product

(2.8b) CW %,
with multiplication given by
(2.9) (w, ® fi))(w, ® f,) = w,w, dw,(f})f, -

An important result on the two algebras is the following.
Theorem 2.3 [Ls2, Proposition 5.2]. The map
1:CWKSF - Z(F),
i(2) = (T, + 1)Z " -
WN=r ((feF)

defines an algebra isomorphism.

3. GRADED ALGEBRAS

In [Ls2], Lusztig associates a graded Hecke algebra H to the Hecke algebra
Z . Lusztig defines the graded Hecke algebra H as follows. Let .# be the ideal
in &z, z_l] consisting of the regular functions on C* x “4 which vanish at
the element (1, 1). For k£ a natural integer, Fk=#.7% isanideal in #.
The graded Hecke algebra H is obtained from if as the graded algebra with

respect to the descending sequence of ideals F'oF 5. 5F 5. we
need a generalization of Lusztig’s construction. Observe that the single element

1 € “4 is W-invariant. Our generalization consists of replacing 1 by a finite
W-invariant set & in “4. In analogy with 1, the set & defines an ideal .*
in &[z, z_l] , namely,

(3.1) F={f:C"x*4—C|f(1,0)=0forall o €@}

The ideal .#* consists of t those functlons which vanish to order at least k at
every element in & . Let Fk=mp. 7" . Exactly as in [Ls2], # - BANS AN 4
so that

(3.2) FloFris...0F 5.

is a descending sequence of ideals.
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Definition 3.1. Let H, be the graded algebra obtained from # and the sequence
of ideals in (3.2).

We summarize the properties of H, relevant for our needs. The proofs are
slight modifications of those found in [Ls2].
Define elements in H, as follows:

(3.3a) r=z-1 (mod.%)
(3.3b) t =T, (mod #), acll

The element r is central in H, and by (2.5a,b)

(3.4) ti =1 and (t,2,)" =1 where m is the order of s, s in W .

The subalgebra generated by the ¢_’s is canonically the group algebra CW .
Let {F,},.» be functions on L 4 satisfying

(3.5) F, -6, » vanishes to order at least 2 at each ¢’ € &.

In H,, the elements

(3.3¢) E,=F, (mod. %)

are well defined and satisfy

(3.6) S E,=1, EE,=6,,E, and Et =tE .
(134

For 0 =0, €& and g €7, set

_6-10(0) =2
(3.3d) E,w, = e F, (mod *"),
(3.3¢) wy = E,w,.

{32

Then
(3.7a) Wy g, = Wy + Wy for 0, = 01,, , 0, = 01-2 e
and
(3.7b) Wy = Wg — (L,a)w, fors=s €W

The Weyl group W acts on the algebra spanned by the w,’s via (3.7b). This
algebra is clearly canonically W-isomorphic to the symmetric algebra . of
¥ =2®,C. Let & be the commutative C-algebra generated by the E’s
and A the commutative algebra & @, & .

Proposition 3.2 [Ls2, Proposition 4.4]. (1) If s =s,_, then

(3.8) w-t,—t,-s(@)=r(w, &)y Eh, .,
oEC
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where
0 ifse#a0,

(3.9) h, .= 2c, ifso=0,a¢2¥,
c,+c.0_,(0) ifsc=0,ac2¥.

(2) The generator r lies in the center of H, and
(3.10) H, = CW ®¢ (C[r] ®¢ A)
with the cross multiplication between CW and A given by (3.8).

(3) If @ s the disjoint union of two W -invariant sets &, and O,, then as
algebras H, = ]H[gl & IHI%. ,

(4) The center of H, is C[r]®;A" .

The description of H, given in Proposition 3.2 leads immedately to a de-
scription of the characters of the center. We can assume that @ = W - g is a
single orbit. Let Stab(c) = {w € W | w(o) = ¢}. Multiplication by E_ de-
fines an isomorphism between the Weyl group invariant elements of A and the
Stab(g) invariant elements in .%. Under this identification, an infinitesimal
character for H, is a

(3.11) Stab(c)-orbit in C x (£ ®, C).

We recall some notation from [Ls2] describing the root datum necessary for
defining a smaller graded Hecke algebra. Set:

(3.12a) Stab(g) = {w € W | w(o) = 6} ;

(3.12b) Rt,={OteR|¢9¢l(a)={:1t1 gzzg
(3.12¢) R =R,NR";

(3.12d) I, = {a € R} | a is simple for R} };

(3.12¢) W_ = subgroup of W generated by s, (aell);
(3.12f) T, = {w € Stab(0) | w(R}) = R}}.

Let # be the Hecke algebra associated to the root system (27, %, R_, Rd ,
I1,). The Weyl group of this root system is W_. The element o is of course
W _-invariant. Denote the graded version of #, at g as H_. By (3.10),
(3.13) H, =CW_ ®;F[r],
where . is the algebra of polynomial functions on 2° ®, C. The group T,
acts as algebra automorphisms of H via its actions on W_ and . Let
(3.14) H,/ =T, xH,

denote the algebra semidirect product.
Let {w, =1, w,, ..., w,} be coset representatives of W /Stab(c). In par-
ticular, the elements of & are given by 7, = w;0 . Define, as in [Ls2],

(3.15) E ;= twi_lEatwj.
Clearly, E, = E ;.



618 DAN BARBASCH AND ALLEN MOY

Theorem 3.3. (1) For each t=1,, E_-H,-E_ is naturally isomorphic to %, .
(2) The E; ;s generate an n x n matrix algebra A, . The algebra H, is
naturally isomorphic to the matrix algebra

M (H,))=4c.H, .

The vector space &, = Z;’zl CE; , is, up to isomorphism, the unique irre-
ducible representation of .#, . The next corollary follows easily from Theorem
3.3.

Corollary 3.4. (1) The functor 77 =, &, ®c 7 is an equivalence between the
categories of finite-dimensional modules of T, x H and H, .

(2) As a CW module, & (7") = IndZ 7.

Following [Ls2], we describe a completion of H, which will be useful later.
For our purposes it is sufficient to work in the setting of holomorphic functions
rather than formal power series.

The algebras C[r], &, and C[r] ®.% consist of the polynomial functions
on C, £®,C,and M = Cx (£ ®, C) respectively. Let C[r], ., and
@[r] ®c ¥ denote the corresponding algebras of holomorphic functions, and
let Z and ;7/ be the fields of rational and meromorphic functions on M . Set
A=AQ®, . In analogy with (3.10) let

(3.16) H, = CW @ (Clr] ® A),
and in analogy with (2.8) set

(3.17a) H, (%) =CW ® (& ®.%)DH,,
(3.17b) B (Z)=CW® (&, %)>H,.

Multiplication for these algebras are defined via (3.8). The algebra lﬁly(‘% )
contains H,(Z). In [Ls2], Lusztig shows for & = {1} that the algebra
lﬁlﬁ(% ) is naturally isomorphic to a semidirect product algebra (cf. Theorem
2.1). Lusztig’s methods easily generalize to our setting, i.e., consider as in (2.8)
the semidirect product algebra

(3.18) CW X (& 8. 7).
Let

rh,
(3.19) Zo0= 1422

Theorem 3.5 [Ls2, Proposition 5.2). The map
1:CW (& ®..7) — By (Z),
(E,))=E,,
Wh=f (Fed),
i(t) = (1, +1) ( 3 ga_,laEa) -1

defines an algebra isomorphism.
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4. ANALYTIC FAMILIES
Given a character y of the center .2 of #, let .f ={z e Z|x(z) = 0}

be the kernel of x. Both ¥/ [z, z~ ] S, and & .f are ideals in W[z, z~ ]
and # respectively. Let

&, =z, Z_I]/{M[Z, Z—I]"jx}’

(4.1)
Z =¥ -5}

be the quotient algebras. The analogues for the graded algebras A, H,, A,
and ]ﬁ[ﬁ are clear. If ¥ is an infinitesimal character of H, , set

Ar=A/{A-7}=R/{A-F) =R,
H, = H,/{H, "77} =H,/{H, "77} = ]HIY.

The main result in this section is Theorem 4.3. It gives conditions under
which it is possible to match an infinitesimal character ¥ of H, to an infinitesi-
mal character y of # so that there are compatible natural 1somorph1sms from

A— to M and from H to Z; Theorem 4.3 is essentially Theorem 9.3 in [Ls2],
the dlﬁ'erence bemg that for applications to unitarity, we need to verify that the
isomorphism is analytic in the v parameter.

Assume @ = W - ¢ is the Weyl group orbit of an element ¢ with trivial
hyperbolic part. Let Stab(s) be the centralizer of ¢. By (2.7) and (3.11),
mﬁmtes1ma1 characters for # and H, are parameterized by W-orbitsin C* x

L4 and Stab(o)-orbits in C x (Z ®, C) respectively.
Proposition 4.1. (1) The map
Cx(Z®,C)—»C* x"4,
(r,ty— (e, 0 -e')

(4.2)

(4.3)

~ is Stab(a)-equivariant. It matches the infinitesimal character x = W(e", o - e')
with the infinitesimal character ¥ = Stab(a)(r, t). The map ¢ defined by

6. Az, z ]—»C[r]®CA

(4.4) p(z)=¢",
$0,)=> 0.(0)-E, - (xeZcCH)
ocED

is a C-algebra homomorphism. It maps f to f and defines, by passage to
the quotients, an isomorphism between M and A_
(2) The map

O: ¥ —H, (%),
D(a)=¢(a) (aeHz,z '),
O(T, +1) ZE o+ 1)—2e (g)

geqd »a

(4.5)
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where & and 8, o are defined as in (2.5f) and (3.19) respectively, is an algebra
homomorphism.
Proof. Clearly the map defined by (4.3) is Stab(o)-equivariant. It matches

!

infinitesimal characters because if ¢-¢' and o-e’ represent x then ¢ and ¢
must be conjugate by an element of Stab(g). Consider now the map ¢. That
¢ is a C-algebra homomorphism follows from the definition. Furthermore, if

y=>,c/0,, then

00)= 5, 0,08, = T £, (Lo

{34 {34
Relating the coefficient of E_ to the coefficient of Ew(a) , we see that ¢(y)

lies in KW if and only if y is in & ¥ . This means ¢(J§) C ‘Yi’ which
in turn implies both the existence of the quotient map from ‘Mx to A‘i and
its injectivity. Since both ‘Mx and AY are of dimension |W| over C, the
homomorphism is in fact an isomorphism.

For part (2), note that ® is the composition of 7o (id, ¢) o z"ll 4, Where 1
is defined in Theorem 2.3, 7 is defined in Theorem 3.5, and

(id, ¢): CW X F = CW x (£ 8. Z),
(id, ¢): (w, f) = (w, ¢()-

That ® is an isomorphism follows from the definitions of the cross multipli-
cations in termsof & and g, .. O

(4.6)

Definition 4.2. Suppose M is a real analytic manifold. An analytic family of
C-algebras depending on a parameter v € M is a finite-dimensional space A
equipped with an algebra multiplication -, such that, for each linear functional
A€ Hom(4,C) and any a,, a, € 4,

AMa,-,a,): M > C
is real analytic. In coordinates this means that if we choose a basis {x,, ..., x,,}

then .
X Xj= Zc,.j(u)xk
k

v

where the cfj are real analytic for v € M.

A morphism of analytic families is an algebra map ®,: A — B such that when
@, is expressed as a matrix with respect to the basis {x,, ..., x,}, all entries
are analytic in v. Clearly these notions are independent of the basis chosen.

The algebras [z, z"l] and A ®¢ C[r] can be used to construct analytic
families of C-algebras of dimension |W| parameterized by M = C x (Z ®,C)
which contain Mx and A7 = Ay respectively. To see this, we choose a basis

{a,,...,a,} (m=|W]|) of & asa free &% module. Define cf,j e” by

k
a;-a;= Zc,.,jak.
k
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By Proposition 4.1(1), ¢(a;) is a basis of A asafree A" module.

For v = (r,t) € M and y = W(e', o -¢'), the algebra 4, is just the
finite-dimensional algebra 4, given formally as the commutative algebra with
C-basis a; and multiplication

k
@, ;=3 ¢ ().
k

Similarly, A¥ = A¥ is the commutative algebra X\V with formal C-basis ¢(a;)
and multiplication

$(a)-, d(a) = 3 ok )D(a,).
k

In terms of analytic families, since cf’ j(x) = d)(cf.‘, j)(f) , the map a; — ¢(a,)
on the basis vectors is an isomorphism between 4, and f&y .

In a similar fashion, the three algebras #, H,, and ]F]Ié, can also be viewed
as analytic families of C-algebras of dimension |W|2 , 1.e., used to construct
C-algebras of dimension |W|2 . The parameter space is the same. Inclusion of
H, into ﬁg yields an inclusion of analytic families. The main result we want
to show is that Z‘)’C and HY are isomorphic under suitable conditions on the
parameter v . We may of course view the three algebras as analytic families
over My =Rx (Z®,R*)C M.

Theorem 4.3. For v € My the homomorphism ®, : /?)’C — ﬁ7 defined via
Proposition 4.2 is an analytic isomorphism of the two families of algebras.
Proof. It is enough to show };’a =¢(&)/ 8 .o € F is analytic and nowhere

zero on My . Adapting the proof of Lemma 9.5 in [Ls2] to our situation, we
find

(€0 (0) - 1
e®0 (o) -1
oo e2'c°e°’—1. a
9,0 e’ -1 2rc, +a
(€% (5) = 1) (¢"“"%e0_(0)+1) a
(€** = 1) {r(c, +c20_,(0)) +a}

if so # o,

ifsoc=0,d¢2%,

if so =0,a€2%.

Note that 6 (o) is not a positive real number if s(o) # o. Also, if s(o) =0
then
1 if &¢27,
6,(c) = { ifaday
@ +1 if ae2%.

It is clear that j:, , 1s a nonzero nonvanishing function on M . In particular,
®, is an isomorphism for all ¥ = W_-orbit of (r,v). O

v

5. HERMITIAN STRUCTURES

An important property of #(G//-%) is that it is a x-algebra with an inner
product. For f,, f, e #(G//.%),



622 DAN BARBASCH AND ALLEN MOY

(&) =1,

(5.1) — .

()= [ KT e = £+ £
There is a natural * operation on the generic affine Hecke algebra # com-
patible with the corresponding one on #(G//-#). We describe * on a set
of generators. Assume R is irreducible. Recall that # is generated by the
elements

(5.2) {Ta’ To’ T ox}ael'l,xe%’

where the 7, ’s and 7|, are generators indexed by the simple reflections in the
affine Weyl group and

(5.3) Z,={xeZ|(x,a) =0forall & € R}.

We need to describe 7. The group 4, = {x(a) € G | x € Z;, a € F} is the
split component of the center of G. Let N, be the normalizer of 4% in G.
Denote by & the Z span of the elements in R. By [S], we have 2“ nNg =
@ and Z/[€ + 2] is finite and isomorphic to N /{4, F}. Because R is
irreducible, these quotlents are cyclic. Let t4.% bea generator of N J{A S}
Then Ft =tfF = #t¥%. In Z(G/|F), the characteristic functlon T, of

t
S 1% is invertible. The inverse is the characteristic function of #¢™'.# =
Ft7' =117 . Let 1 be the element in # which goes to T,. In terms of the
generators (5.2), * is the unique complex conjugate linear antiautomorphism
which satisfies

(5.4a) ' =z,

(5.4b) T =T,

(5.4c) T, =T,

(5.4d) T=1",

(5.4e) 6,=0_,=0, ' x € Z; (split reductive group) .

The next lemma gives some indication of how * behaves on &/ .
Lemma 5.1.
(5.5) 0" =6~
Proof. Observe that

' (mod(z -z ")).

T, =T, (mod(z-z ")#),
7,6, =6 (mod(z — z“);?f).

w(x) w

(5.6)

In view of the relations in (5.4) it is sufficient to prove (5.5) forone 0 # x € &.
Let y be the negative of the highest short root in R* and T, =T, theelement
Y

in # corresponding to the reflection s, € W about y. Then

(5.7) 0,=T,T,
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Choose a simple root o and a sequence of simple reflections S5 .- 8, sothat

In the Hecke algebra

Thus

By (5.6) and (5.7), this gives
(6,)"=(6,)" =6_, (mod(z-z ")#). O

If (=, V) is a finite-dimensional representation of #(G//.%), let (n*, V")
be the hermitian dual with respect to *. To describe the hermitian dual of an
irreducible representation, we review their classification. Kazhdan and Lusztig
have shown in [KL] that the equivalence classes of irreducible. modules for
# are in 1-1 correspondence with Lg conjugacy classes of pairs {¢, p},
where ¢ : Z x SL(2, C) — LG is an admissible homomorphism, i.e., ¢(1, 1)
is semisimple, and p are certain characters of the component group of the
centralizer of ¢. It is well known that ¢ is equivalent to a pair of elements
S, uU€ LG with s semisimple, u unipotent, and sus'=ul. If selc , let
s =s,s, be the polar decomposition of s into its elliptic and hyperbolic parts.
Set

(5.8) S=s,5, .
For n€Z and g € SL(2, C), set ¢(n, g) = ¢(n, 1)$(0, g).

Theorem 5.2. Let (m, V) correspond to {¢, p}. Then the hermitian dual
(z*, V*) corresponds to {¢, p}. In terms of the pair {s, u} an irreducible
module admits a hermitian structure precisely when 5 is *G conjugate to s .

The proof is similar to the corresponding result for real reductive groups. We
omit the details.
To proceed further, we need to understand when H, is a x-algebra. If

sela, let 5=s, -sh"1 be as in (5.8) and set
(5.9) @ ={c|oecc).

By Lemma 5.1, the ideal of # corresponding to @” is the x of # -.# . The
* operation on /# induces an anti-isomorphism between H, and H,.. The
* operation satisfies

(5.10a) rr=r,
(5.10b) w'=w"'  (wew).
It follows from the relation

(5.11) (@) =6(c"")
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that

(5.100) E, =E..

Definition 5.3. The set @ is said to be hermitian if it is equal to @ .

In this setting, it follows from Lemma 5.1 that the ideal # -7 is * invariant,
so that H, and ﬁa are = algebras. A particularly important instance in which
- @ is hermitian is when it is the Weyl group orbit of an elliptic element. We
assume for the remainder of the section that ¢ is hermitian.

We compute a formula for w* for w € C ®, L.

Lemma 54. Let y € R be the highest short coroot, let s, €W be the cor-
responding reflection, and let T, =T, be the corresponding element in %, .
b4

Then
(5.12) *=ty'7'ty=t1’7'tu

where t, is the element in the graded Hecke algebra corresponding to the long
element w, in the Weyl group.

Proof. As in the proof of Lemma 5.1, choose a simple root o« and a sequence

of simple reflections s, , ..., s, so that

(5.13) Y= e S ().

Then in the Hecke algebra

(5.14) T,=T, - T,-T, T+ T,

and similarly in the Weyl group. By relation (2.5a),

(5.15) T, =207, — PP )=, (mod 7).
Thus

(5.16) (T) ' =1, (modF");

then

(5.17) 0,=T, T,ez".

To simplify notation, set 6 = Gy . If we apply * to (5.17) and use the fact that
by (5.14) (Ty)* =T,, weget
(5.18) 0" =(T,)'T,=(T,)"0T, ' =T,0T, "
Then
T.6T, —0(o) .

6 — 0(6 _ 71,
(5.19) (ZF )_Z——W (F,)".

({34 ocEd
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This expression is in #* and we must grade it modulo (F*)%. Thus we can
take (T,)", (F,)",and (7,)' modulo #*. We get

t 0t (o ~ 0-06(t, (o
J’—Zy ()EE(modJ2)=tyZEEMty
(5.20) ogET ged o(t)'(a))
=1,y E; t =t7t,.
oET
The second part of (5.12) follows from the fact that L=t ", where ¢’ isa
product of simple roots all commuting with y. O

We obtain a more general formula for * on . as follows. For w € & , set
(5.21) = —t,(w)

and extend it to a conjugate linear automorphism of .. This map defines a
permutation of the set of simple roots. The map ~ extends to an automorphism
of &.

Corollary 5.5. For fe ¥ CcH,,
(5.22) ff=t4-f1,.

Proof. 1t is enough to prove the formula for w(y) with w € W, or equiva-
lently, it is enough to show that for o € I1 and w € 2,

(5.23) if " = =t-@-t, thens (w) =1-s (w) L.
By Proposition 3.2,
(5.24) SO =t - t,—r(w,& Y Eh, t.
oed
Therefore,
s, ()" = t—rwaztaaaa
ocEd
(529 b8ty 10,8 T
geqd
=t- (ta'a”’a) “t - r{w, &) Z taha.,aEa..
oET

Thus, by using the *-invariance of ¢, we can rewrite this as

sa(w)*=t1'[t'&"a3.t3_rz(sa(w)’ a o‘a ] tl
(5.26) oes

We now prove a different more explicit formula for *. Recall the definition
of h, . in Proposition 3.2. We extend it to any root § € R, subject to
h = h, .. This is well defined in view of the properties of the functions

we , Wa
*
c,C.
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Theorem 5.6. For w € 2,

(5.27) w =-w+r Z tg(w, B) Z Eaha,ﬁ’
BER* (434
Proof. For each @, consider the expression
r v
(5.28) (w)=0-3 > ty(w, B) > E,h, g
BER* ged

We claim that 7(w) has the property that
(5.29) t,T(w) = t(w(w))t,.

To prove this it is enough to consider the case w = s, for a a simple root.
Here, it is enough to show that

(5.30) tr(w)t, = 1(s()).
By Proposition 3.2(1)
(5.31) tot, = s(w) +riw, &) Yy Eh, .
o€
On the other hand,
t, > ty(w, B) Y E,h, ,
BER* {4
= 2 typ@s BY 3 Eyoyhy 4t
BERT {4
(5.32) . 5
= > tpl@, B) D Egph, gt + (0, &) > E,h, .,
BER \a cED ocEd
=Y tylw, BY D Eh, gt —2r(w,8) ) Eh, ,
BER” gED ged

because of (5.24). Formula (5.29) follows by combining (5.30) and (5.31).
We now apply this to the highest coroot y. In view of Lemma 5.4,

(5.33) t,(t(7), = 1(1,(7) = —T(»)-
Therefore,

* r B
yo=-r+30 Z tﬂ<y’ﬂ)ZE"h"’ﬂty

BER* {4

+% Z tﬁ(y’ B>ZEaha,ﬂ'

BER ogE

(5.34)

The proof is complete once we observe that

(5.35) t, > tylo, B)Y E,h, 4t,= > o, B)YY E,h, 4-

BER* ged BeR” gECO
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This completes the proof of (5.27) for y. Formula (5.27) now follows for any
w(y) with w € W by
W) = (4,701, ) = 1,18, = —1(w@).

The general case follows from the fact that * is a (complex conjugate) antiau-
tomorphism. 0O

At this point we are ready to explain the relationship between the * operation
on /# and the * operation on H, . Recall that fo.a=8%)/8, .. Define

Fa,p= Hf;r,a’ szzEaFa,p’
(5.36) acR*

-1
m=(T)-F, -
where T is the element in /# corresponding to w,.

Theorem 5.7. For v real, the isomorphism ® of Theorem 4.3 is compatible with
the * structures on }7;( and H in the following sense:

(5.37a) O(T)=m-®T,) -m~', aell,

(5.37b) OO ) =m-®06) -m', few.
Proof. The fact that m is invertible follows from the fact that £ o areanalytic
nowhere zero on M established in the proof of Theorem 4.3.

Observe first that 7, = T, . Furthermore,

(5.38) O(T,)" = [t fat, (1, + 1) = 1] = [faltz + 1) — 1]t,,
and since fiF p_l is t; invariant,
(5.39) FULA(t+ 1) = 1] = [t + 1) - 1F, "

- Then (5.37a) follows by applying (5.38) and (5.39).
For (5.37b) it is enough to show the relation for 6 = 0,. This is clear from
Lemma 5.4 and Corollary 5.5. O

Corollary 5.8. The relation

(5.40) m =m

holds.

Proof. Relation (5.40) can be rewritten as

(5.41) ()" =1,-F, ' -®(T)-F, -1,

because F ,=F o Then (5.41) follows by repeated application of (5.37a) and
formulas (5.38) and (5.39). O

Suppose (z, V) is a representation of H, with infinitesimal character ¥
and via ® a representation of /# with infinitesimal character y. It follows
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from Corollary 5.8 that (z, V) is a hermitian or unitary representation of H,
precisely when it is a hermitian or unitary representation of # .

We conclude this section with a few words on the relationship of hermitian
representations and Theorem 3.3. The * structure on the matrix algebra ./Z,
in Theorem 3.3 is given by E =E, . The irreducible module %, of /l
admits a compatible positive deﬁmte hermman form, namely,

(5.42) (v, wy =w"-v.

The functor & of Corollary 3.4 has the property that 7° admits a compati-
ble hermitian form precisely when # (7”) does. The two are related as follows.
If 7 has invariant hermitian form ( , ), then & (7”) has invariant hermitian
form (, )y =(, )gp" -{, ). Every * compatible invariant hermitian form on

F(7°) is a multiple of one of this type. The ( , ) is positive definite if and
only if ( , )5 is positive definite.

6. PARABOLIC INDUCTION

In this section, we relate the functor &# of Corollary 3.4 with parabolic
induction. We begin by recalling some preliminary facts. Let I1,, be a subset
of the simple roots I1 and let P = MN D B be the corresponding parabolic
subgroup and .%,, = #NM . Denote by W, the subgroup of W corresponding
to M. Then the Iwahori Hecke algebra #(M//.%,) of M is a subalgebra
of #(G//-*). The algebra #(G//.#) is obtained from the generic Hecke
algebra # by specializing the variable z to g. The subalgebra #(M//.%,,) C
#(G//F#) is obtained from a subalgebra of # by the same specialization. Let

#M denote the generic Hecke algebra of M, and let %WM be the subalgebra
of %, generated by T, (a €Il,,). Then,

M _ -1
(6.1) V4 =/7WM ®C[Z’z_1].s/[z, z ]

A representation V of M is % -spherical if it is admissible, of finite length,
and if each submodule is generated by its %, -fixed vectors.

Theorem 6.1 (Bernstein).
5 5,
(Indy (V)" =Z(G//F) ® gy VM
The analogue of (6.1) in H, is the subalgebra
(6.2) HY = CWy, ® (& ®¢ 1))

If V is a finite-dimensional ]H[g module, we define the induced module Ind(V)
to be

(6.3) Ind(V) = H, @y V.

Theorem 6.2. View # and H, as analytic families and recall ® = ®, from
Theorem 4.3. Then the diagram
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M 2 E§7

X
(6.4) Indl Indl
7, —— H,
commutes.

Proof. This follows from Theorem 4.3 and the discussion above. O

We recall some results on tempered representations. Let ¥ be a tempered
representation (of 2?;( or equivalently of H. via the isomorphism ®). Since

the subalgebra #[r] C H, is abelian, there is a filtration
(6.5) {O=Wchchc...cV,=V (dim.V,=i)
such that each V; is & invariant and % acts by a character on Vi/Vi_, (1<

i < d). This character is completely determined by its restriction to .%
C®, 2 C & . Moreover, . can be viewed as the dual to the Lie algebra . =

Co®, % of L 4. Thus it acts via a linear functional ¢, € Z = Hom (%, C)
on V;/V,_, (1 <i<d). The ¢,;’s are called the generalized coweights of the

action of % on V. If we write the infinitesimal character as x = (e, e’) ,

then e’ and % are in the same Weyl group orbit. Let F denote either the real
R or the complex C numbers, and set

Z(F) = F-span of simple roots & in R
Zi(F)={ve ZF) | (a,v)=0foral acR).
Then & = .‘?R(C) @.%L(C) . With the obvious notation, we write i..‘?j:(]R) for
the imaginary elements in .‘?}j (C). Set
€= +9 v € %O, y,ei ®),
and Re((y,, w)) < 0 for w a fundamental weight},
Z = {yl +¥, Iyl E%(C), Y, € ,‘%L(R),
and Re((y, , ®)) < 0 for w a fundamental weight} .

(6.6)

(6.7)

A restatement of the condition on y, is that
(6.8)
V€Y c,®&, whereRe(c,)<0fory €% (Re(c,) <0 fory, €%).
&ER*
Suppose (7, V) is an irreducible _#-spherical representation of G , such that
V7 has infinitesimal character X.

Theorem 6.3 (Casselman). The representation (n, V) is tempered (resp. discrete
series) if and only if all the coweights ¢; of v liein @ (resp. 7).

Theorem 6.4. (1) Suppose V is a module for ]H[g and {¢;} are the coweights
of V. Let {w, =1,w,, ..., w,} be the coset representatives of W/ W, of
minimal length. Then {w qu,.} are the coweights of Ind(V).
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(2) Suppose o € &, V is a module for T H_, and {¢,} are the coweights
of V. Let {w,=1,w,,...,w,} be the coset representatives of W /Stab(a) of
minimal length. Then {wj¢i} are the coweights of F (V).

Proof. The proof of case (1) and (2) are essentially the same. We give the details
only in the case of parabolic induction. Let {0} =V, CV,cV,C---CV,; = V
be as in (6.5). For each i > 0 choose a vector v, € V,—V,_, . The set {twk®vi}

is a basis for Ind(¥) (over C).
Arrange the coset representatives w;’s s0 that £(w j) < (w; +1) - Let < be
the lexicographical ordering on the pairs (j, i) (1<j<n, 1<i<d),ie,
(,i)<(k,l) ifj<kor j=kand i</,

and set
v,

(i,j) = span of all w, ® v, with (k, /) X (J, i).
If (1,0)<(j,iQ),let
Goi) = { (,i-1) ifi>0,
I (j—1,d) ifi=0.
Then V,; / Vi iy is one dimensional generated by the image of w ;®Y;. Re-
lation (3.8) shows that in general

wt, =w(w)t, + Z t.o,
x<w

where < is the Bruhat order. In particular, /(x) < /(w), so by (6.5),
w(twj ®v;) = wj(q&,.)(w)wj ®v; (mod V(j’l.),)

forwe?. O

Corollary 6.5. If V is a tempered module for Hg (resp. T ,H,), then Ind(V)
(resp. F (V) is a tempered module of H, .

Proof. In the case of parabolic induction, let RL be the positive roots of M .
For W' = W,, (resp. W), let R™ be R}, (resp. R ). The representatives
{w;} of W/ W' of minimal length are the elements

(6.9) (w}={wew|w ' (R")cR"Y.
The corollary follows from this characterization of the minimal length ele-

ments. 0O

We recast the Langlands classification in terms of the graded algebra H, .

We assume r has been specialized to log(ql/ 2). For I1,, C II, let Z =
L 1 . .

.%M(C) GB,S”RM (C) where ,S’RM (C) and .‘ZRM (C) are defined, with the obvious

change in notation, as in (6.6). Denote by %M (resp. SVRLM ) the symmetric

algebra of .S”RM(C) (resp. .?}(t(C) ). The symmetric algebra & is then the
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algebra tensor product ¥ = S ®¢ 5’; . Then 5’; commutes with the
M M M
subalgebra
B =CW,, ®% [r]
and ]H[g decomposes as
M L
(6.10) Hy = B®c S -

Each v € _C?}M(C) defines an algebra homomorphism ¢, : S”RLM — C. If

(m, V) is a Hg-module, define (m,u, V,) to be the Hg-module whose space
is V' with the action

n,(h-A)v=¢ Nrh-A)v,

where 2 € B and A € SWRLM This construction is the analogue of twisting a
representation of M C G by a one-dimensional character of M .

Given data (M, V', v) such that V is tempered irreducible, define the stan-
dard module X(V ,v) tobe Ind(z,, V).
Theorem 6.6 (Langlands classification). (1) Suppose V is an irreducible tem-
pered module for ]H[g and v € fZRtI(R) with (a,v) >0 forall a € R* — RL.
Then X(V,v)=1Ind(V ®v) has a unique irreducible quotient X(V,v).

(2) Any irreducible module of H, occurs as some X(V,v). The data
(M, V,v) are unique (up to conjugation).

7. COMPARISON

We need to relate the functor & with parabolic induction. Let s =s,s, be
the polar decomposition of an element in L4 such that @ = W - s, is finite.
Write s, as e’ , where v e & ®, R. The centralizer Ly = Crg(s,) of s, in
LG is obviously a Levi subgroup. The Weyl group W,, of IM is generated by

the roots
I, = {a €Ills,(s,) =s,}.

For 0 € @, define R, C R" and R, , C R), asin (3.12). Obviously,
(7.1)  if(v,a)>0VaeR" — R,  then (v,a)>0Va€eR, —R, .

The orbit @ decomposes under the action of W, . These W, -orbits in fact

lead to a decomposition of ]I-][g into two-sided ideals. In order to formulate this
decomposition we need to parametrize the W, -orbits. This is accomplished by
considering the double cosets W, \W/Stab(s,). Suppose w,, w,, ..., w, are
representatives for the double cosets. The desired parameterization is given by

W,,w,;Stab(s,) < &, the W, -orbit of w,(s,).
Jo . . -1 .
Let 7, = w,(s,). The stabilizer Stab(z;) of 7, in W is w,Stab(s,)w, . Like-

wise, the stablizer W, of 7, in W, is W, NStab(z;). It is the V&}eyl group
of
"M, ="MnC.y(z,) = Cent(z,, “M).
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In particular,
| = (W), : Wy, ]= [W),w,Stab(s,) : Stab(s,)].

Let #™ be the Hecke algebra associated to M Then we can form the
graded algebras ]H[y and HY ~HY and (HY)' as in §3.

T

Proposition 7.1. (1) For each orbit &,

Hy = CW,, & (GBCE,) ®¢ F1Ir]
€0,

is a two-sided ideal of IHI . It is isomorphic to (]Hl ) M, (C)

(2) The ideals IHI,; commute and
M
H, = @Ha;-

Proof. The fact that IHIg are commuting ideals and the decomposition in (2)

follow from the commutation relations (3.3) between the E_’s. The isomor-
phism

M . oM
H, = (H,) ® M, (C)
is Theorem (3.3) applied to this setting. O

We now apply these results to compare Langlands standard modules for the
Hecke algebras H, and Hse'
Write LG for the group w, LG(s )w_1 , Wwhere LG(s ) is the stabilizer of
. It is important to note that M is a Levi subgroup of G ; indeed, it is
the centralizer of w; shw Thus, given a module ¥’ of (IHI ) we have two
ways to form a module of H,
One way is to induce V' from (IHI:{ ) to (]HIT,_)' and then apply Theorem 3.3.
This gives

[Ind(};;,) ] ®c %,

The other way is first to obtain a module V' ®, %, of IHIg_ via Proposition
7.1. Since IHIg is a two-sided ideal of ]H[ , we can view this module as a

l

module for IHI&, and therefore induce it to H, . This gives
H,
V, =Ind ‘,{;(V' ®c 5, ).

Theorem 7.2. The modules VI and V, of H, obtained in this fashion are iso-
morphic. The isomorphism is compatzble wzth *

Proof. The modules ¥, and V, are spanned (over H, ) by vectors of the form
E|  ®y (h,l_ ®v) (hri €H, )
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and M
l@gu (E, ,®v) (heH,, h' €Hy)

respectively. Then the correspondence
E, , ®Hn~ (hr,. ®U) < hr,. By (E, By M v)

defines an H, isomorphism between V| and V,. This isomorphism is in fact
a x isomorphism. 0O

We are now ready to compare standard modules.

Corollary 7.3. For v € .?Rt{ satisfying (v, a) >0 forall € R" - R}, and V
tempered irreducible,

XV, v)=X(V',v)®:F,.
Proof. Suppose V is an irreducible tempered module of ]H[g . By Proposition
7.1(2), there is a W, -orbit &, C & such that V' is a representation of the ideal
]H[g_ . As a module of Hg , V is tempered; so there is a tempered module V'
of (Hf_l)' sothat V=V'9.%, .If v e .‘?}i satisfies the positivity conditions

needed to form a standard module X(V,v), then by (7.1) X(V',v) is a
standard module of (H,)'. O

8. UNITARITY

Let G be a split reductive p-adic group. Our goal is Theorem 8.1. It shows
that the unitarity of an Iwahori spherical representation of G can be detected
on the Iwahori fixed vectors. An easy reduction is that we need only consider
the case when (G has connected center. This means the centralizer of any

semisimple element s € LG is a connected reductive group.
Recall .
X(V, v) = unique irreducible quotient of X (V', v)

and that X admits a hermitian form if and only if there is a
w € Weyl(G, Z("M))

satisfying
w(w)=—-v and V=w(V).

There are two ways to place a hermitian form on the family of standard modules
X, = Iwahori fixed vectors of Indﬁ(V ®e”) (teR);
they are:
(1) (, ), : the form obtained from the standard intertwining operator
L:I(P,o,v)=Ind3(V ®v) - I(P,0,v)=Inds(V ®v).

), : the form gotten, via Corollary 7.3, from the form on X, =

2) (.
X(V', tv) and the isomorphism X, = X, ® &,
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Both forms have the property that

X, = X,/{radical of form}  (£>0),
radical of form = unique subrepresentation of X, (t<0).

We conclude ( , ), and (, ): differ by a memomorphic function which has no
zeros or poles along the real axis.

Theorem 8.1. (1) X, is unitary if and only if Y’l is unitary.

(2) The unitarity of X, is detected on the .7 -fixed vectors.
Proof. It is obvious that the unitarity of the Iwahori fixed vectors of 71 is
equivalent to the unitarity of the Iwahori fixed vectors of 7’1 . For G', the
group corresponding to LG(se) , we are in the situation of real infinitesimal
character as in [BM]. Therefore, the unitarity of _)f'l is equivalent to the uni-
tarity of its Iwahori fixed vectors. We need only show that 7’1 unitary implies
71 unitary. Let 9 (s,) (resp. I '(se)) be the set of tempered representations
of G (resp. G') whose infinitesimal character has compact part s, . Corollary
6.5 establishes a natural one-one map 7 < 7' between these two sets so that

—=x + K
XI = Z anen’

nET (s,)
= £ + K’ + +
Xl = Z anlen/ (an/ =an )
€T (s,)

The unitarity of 7’1 means either a:, or a, is identically zero for all 7' . This
means a; or a_ is identically zero for all 7 and thus 71 is unitary. O
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